WO2001092282A2 - Methods and compositions for treating flaviviruses and pestiviruses - Google Patents

Methods and compositions for treating flaviviruses and pestiviruses Download PDF

Info

Publication number
WO2001092282A2
WO2001092282A2 PCT/US2001/016687 US0116687W WO0192282A2 WO 2001092282 A2 WO2001092282 A2 WO 2001092282A2 US 0116687 W US0116687 W US 0116687W WO 0192282 A2 WO0192282 A2 WO 0192282A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
acyl
lower alkyl
pharmaceutically acceptable
compound
Prior art date
Application number
PCT/US2001/016687
Other languages
French (fr)
Other versions
WO2001092282A3 (en
Inventor
Jean-Pierre Sommadossi
Paolo Lacolla
Original Assignee
Idenix (Cayman) Limited
Universita Degli Studi Di Cagliari
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26902464&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001092282(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2002500895A priority Critical patent/JP5230052B2/en
Priority to AU2001272923A priority patent/AU2001272923A1/en
Priority to APAP/P/2002/002705A priority patent/AP1727A/en
Priority to IL15302001A priority patent/IL153020A0/en
Priority to EA200201262A priority patent/EA007867B1/en
Application filed by Idenix (Cayman) Limited, Universita Degli Studi Di Cagliari filed Critical Idenix (Cayman) Limited
Priority to CA2410579A priority patent/CA2410579C/en
Priority to BR0111196-5A priority patent/BR0111196A/en
Priority to AP2006003708A priority patent/AP2006003708A0/en
Priority to MXPA02011691A priority patent/MXPA02011691A/en
Priority to EP01952131A priority patent/EP1294735A2/en
Publication of WO2001092282A2 publication Critical patent/WO2001092282A2/en
Publication of WO2001092282A3 publication Critical patent/WO2001092282A3/en
Priority to NO20025600A priority patent/NO327249B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/23Heterocyclic radicals containing two or more heterocyclic rings condensed among themselves or condensed with a common carbocyclic ring system, not provided for in groups C07H19/14 - C07H19/22
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention is in the area of pharmaceutical chemistry, and in particular, is a compound, method and composition for the treatment of flaviviruses and pestiviruses.
  • This application claims priority to U.S. provisional application no. 60/207,674, filed on May 26, 2000 and U.S. provisional application no. 60/283,276, filed on April 11, 2001.
  • Pestiviruses and flaviviruses belong to the Flaviviridae family of viruses along with hepatitis C virus.
  • the pestivirus genus includes bovine viral diarrhea virus (BNDV), classical swine fever virus (CSFN, also called hog cholera virus) and border disease virus (BDN) of sheep (Moennig, N. et al. Adv. Vir. Res. 1992, 41, 53-98).
  • Pestivirus infections of domesticated livestock (cattle, pigs and sheep) cause significant economic losses worldwide.
  • BNDV causes mucosal disease in cattle and is of significant economic importance to the livestock industry (Meyers, G. and Thiel, H.-J., Advances in Virus Research, 1996, 47, 53- 118; Moennig V., et al, Adv. Vir. Res. 1992, 41, 53-98).
  • Pestivirus infections in man have been implicated in several diseases including congenital brain injury, infantile gastroenteritis and chronic diarrhea in human immunodeficiency virus (HIN) positive patients.
  • HIN human immunodeficiency virus
  • the flavivirus genus includes more than 68 members separated into groups on the basis of serological relatedness (Calisher et al., J Gen. Virol, 1993, 70, 37-43). Clinical symptoms vary and include fever, encephalitis and hemorrhagic fever. Fields Virology, Editors: Fields, B. ⁇ ., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, 1996, Chapter 31, 931-959. Flaviviruses of global concern that are associated with human disease include the dengue hemorrhagic fever viruses (DHF), yellow fever virus, shock syndrome and Japanese encephalitis virus. Halstead, S. B., Rev. Infect. Dis., 1984, 6, 251-264; Halstead, S. B., Science, 239:476-481, 1988; Monath, T. P., New Eng. J. Med., 1988, 319, 641-643.
  • DHF dengue hemorrhagic fever viruses
  • antiviral agents that have been identified as active against the flavivirus or pestiviruses include:
  • Inhibitors of serine proteases particularly hepatitis C virus NS3 protease, PCT WO 98/17679), including alphaketoamides and hydrazinoureas, and inhibitors that terminate in an electrophile such as a boronic acid or phosphonate (Llinas-Brunet et al, Hepatitis C inhibitor peptide analogues, PCT WO 99/07734).
  • an electrophile such as a boronic acid or phosphonate
  • Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives (Sudo K. et al, Biochemical and Biophysical Research Communications, 1997, 238, 643-647; Sudo K. et al. Antiviral Chemistry and Chemotherapy, 1998, 9, 186), including RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing apara- phenoxyphenyl group;
  • NS3 inhibitors based on the macromolecule elgin c, isolated from leech (Qasim M.A. et al, Biochemistry, 1997, 36, 1598-1607); (8) Helicase inhibitors (Diana G.D. et al, Compounds, compositions and methods for treatment of hepatitis C, U.S. Pat. No. 5,633,358; Diana G.D. et al, Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554);
  • S-ODN Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al, Hepatology, 1995, 22, 707-717), or nucleotides 326-348 comprising the 3' end of the NCR and nucleotides 371-388 located in the core coding region of the JJCN
  • Inhibitors of JRES-dependent translation (Ikeda ⁇ et al, Agent for the prevention and treatment of hepatitis C, Japanese Patent Pub. JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Pub. JP-10101591);
  • a compound of Formula I or a pharmaceutically acceptable salt or prodrug thereof, is provided:
  • R 1 , R 2 and R 3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , R 2 or R 3 is independently H or phosphate;
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 and X 2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabihzed phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R or R 3 is independently H or phosphate; and
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 and X 2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • R 1 , R 2 and R 3 are independently H; phosphate (including onophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 and X 2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • a compound of Formula IV or a pharmaceutically acceptable salt or prodrug thereof, is provided:
  • R 1 , R 2 and R 3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , R 2 or R 3 is independently H or phosphate;
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , ⁇ R.2 or R is independently H or phosphate; and
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , R 2 or R is independently H or phosphate;
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), CF 3) chloro, bromo, fluoro, iodo, ⁇ O 2 , NH 2 , -NH(lower alkyl), -NH(acyl), -N(lower alkyl) 2 , -N(acyl) 2 ; and
  • X is O, S, SO 2 or CH 2 .
  • a compound of Formulas X, XI and XII, or a pharmaceutically acceptable salt or prodrug thereof is provided:
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , R 2 or R 3 is independently H or phosphate;
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO 2 , NH , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) 2 , -N(acyl) 2 ;
  • R 7 is hydrogen, OR 3 , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) 2 , -N(acyl) 2 ; and
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
  • R , R or R 3 is independently H or phosphate
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) 2 , -N(acyl) 2 ; and
  • X is O, S, SO 2 , or CH 2 .
  • the invention provides a compound of Formula XVI, or a pharmaceutically acceptable salt or prodrug thereof:
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 and R 2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower allcyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO 2 , NH , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) 2 , -N(acyl) 2 ; R 7 and R 9 are independently hydrogen, OR 2 , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl),
  • R 8 and R 10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R 7 and R 9 , R 7 and R 10 , R 8 and R 9 , or R 8 and R 10 can come together to form a pi bond; and
  • X is O, S, SO 2 or CH 2 .
  • the invention provides a compound of Formula XVII, or a pharmaceutically acceptable salt or prodrug thereof:
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 and R 2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 or R 2 is independently H or phosphate;
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) 2 , -N(acyl) 2 ; 7 0 9
  • R and R are independently hydrogen, OR , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO 2 , NH 2 , - NH(lower alkyl), -NH(acyl), -N(lower alkyl) 2 , -N(acyl) 2 ;
  • R 10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R 7 and R 9 , or R 7 and R 10 can come together to form a pi bond; and
  • X is O, S, SO 2 or CH 2 .
  • the invention provides a compound of Formula XVIII, or a pharmaceutically acceptable salt or prodrug thereof:
  • Base is a purine or pyrimidine base as defined herein;
  • R and R independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 or R 2 is independently H or phosphate;
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) 2 , -N(acyl) 2 ;
  • R 7 and R 9 are independently hydrogen, OR 2 , alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO 2 , amino, loweralkylamino or di(lower- alky
  • R 8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R 7 and R 9 , or R 8 and R 9 can come together to form a pi bond;
  • X is O, S, SO 2 or CH 2 .
  • the /3-D- and /3-L-nucleosides of this invention may inhibit flavivirus or pestivirus polymerase activity. These nucleosides can be assessed for their ability to inhibit flavivirus or pestivirus polymerase activity in vitro according to standard screening methods. i one embodiment the efficacy of the anti-flavivirus or pestivirus compound is measured according to the concentration of compound necessary to reduce the plaque number ofthe virus in vitro, according to methods set forth more particularly herein, by 50% (i.e. the compound's EC 50 ). hi preferred embodiments the compound exhibits an EC 50 of less than 15 or preferably, less than 10 micromolar in vitro.
  • the active compound can be administered in combination or alternation with another anti-flavivirus or pestivirus agent.
  • combination therapy effective dosages of two or more agents are administered together, whereas during alternation therapy an effective dosage of each agent is administered serially.
  • the dosages will depend on absorption, inactivation and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens and schedules should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration ofthe compositions.
  • HCV is a member ofthe Flaviviridae family; however, now, HCV has been placed in a new monotypic genus, hepacivirus. Therefore, in one embodiment, the flavivirus or pestivirus is not HCV.
  • Nonlimiting examples of antiviral agents that can be used in combination with the compounds disclosed herein include: (1) an interferon and/or ribavirin (Battaglia, A.M. et al, Ann. Pharmacother. 34:487- 494, 2000); Berenguer, M. et al. Antivir. Ther. 3(Sup ⁇ l. 3):125-136, 1998);
  • Substrate-based NS3 protease inhibitors (Attwood et al, Antiviral peptide derivatives, PCT WO 98/22496, 1998; Attwood et al, Antiviral Chemistry and Chemotherapy 10.259-273, 1999; Attwood et al, Preparation and use of amino acid derivatives as anti-viral agents, German Patent Publication DE 19914474; Tung et al.
  • Llinas-Brunet et al Hepatitis C inhibitor peptide analogues, PCT WO 99/07734.
  • Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives(Sudo K. et al, Biochemical and Biophysical Research Communications, 238:643- 647, 1997; Sudo K. et al. Antiviral Chemistry and Chemotherapy 9:186, 1998), including RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing a ⁇ r -phenoxyphenyl group;
  • Helicase inhibitors (Diana G.D. et al, Compounds, compositions and methods for treatment of hepatitis C, U.S. Patent No. 5,633,358; Diana G.D. et al, Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554); (9) Polymerase inhibitors such as nucleotide analogues, gliotoxin (Ferrari R. et al. Journal of Virology 73:1649-1654, 1999), and the natural product cerulenin (Lohmann V. et al, Virology 249:108-118, 1998);
  • S-ODN Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al, Hepatology 22:707-717, 1995), or nucleotides 326-348 comprising the 3' end ofthe NCR and nucleotides 371-388 located in the core coding region of the IICV RNA (Alt M. et al, Archives of Virology 142:589-599, 1997; Galderisi U et al, Journal of Cellular Physiology 181:251-257, 1999);
  • Inhibitors of IRES-dependent translation (Ikeda N et al, Agent for the prevention and treatment of hepatitis C, Japanese Patent Publication JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Publication JP-10101591);
  • miscellaneous compounds including 1-amino-alkylcyclohexanes (U.S. Patent No. 6,034,134 to Gold et al), alkyl lipids (U.S. Patent No. 5,922,757 to Chojkier et al), vitamin E and other antioxidants (U.S. Patent No. 5,922,757 to Chojkier et al), squalene, amantadine, bile acids (U.S. Patent No. 5,846,964 to Ozelci et al), N- (phosphonoacetyl)-L-aspartic acid, (U.S. Patent No.
  • Figure 1 provides the structure ofvarious non-limiting examples of nucleosides ofthe present invention, as well as other known nucleosides, FIAU and Ribavirin, which are used as comparative examples in the text.
  • Figure 2 is a line graph of the pharmacokinetics (plasma concentrations) of ⁇ -D-2'- CH 3 -riboG administered to Cynomolgus Monkeys over time after administration.
  • Figure 3a and 3b are line graphs of the pharmacokinetics (plasma concentrations) of ⁇ -D-2'-CH 3 -riboG administered to Cynomolgus Monkeys either intravenously (3a) or orally (3b) over time after administration.
  • Figure 4 depicts line graphs of the results of the cell protection assay of ⁇ -D-2'-CH 3 - riboG against BVDV.
  • Figure 5 depicts line graphs of the results of the cell protection assay of ribavirin against BVDV.
  • Figure 6 are line graphs of the cell protection assay of ⁇ -D-2'-CH 3 -riboG, ⁇ -D-2'- CH 3 -riboC, ⁇ -D-2'-CH 3 -riboU, ⁇ -D-2'-CH 3 -riboA and ribavirin.
  • Figure 7 are line graphs of the results of the plaque reduction assay for ⁇ -D-2'-CH 3 - riboU, ⁇ -D-2'-CH 3 -riboC and ⁇ -D-2'-CH 3 -riboG.
  • Figure 8 is an illustration of plaque reduction based on increasing concentrations of ⁇ -D-2'-CH 3 -riboU.
  • Figure 9 is a line graph of the results of the yield reduction assay for ⁇ -D-2'-CH 3 - riboG, depicting a 4 log reduction at 9 ⁇ M.
  • Figure 10 is an illustration of the yield reduction based on increasing concentrations of ⁇ -D-2'-CH 3 -riboC.
  • the invention as disclosed herein is a compound, method and composition for the treatment of pestiviruses and flaviviruses in humans and other host animals, that includes the administration of an effective flavivirus or pestivirus treatment amount of an /3-D- or ⁇ -L- nucleoside as described herein or a pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier.
  • the compounds of this invention either possess antiviral (i.e., anti-flavivirus or pestivirus) activity, or are metabolized to a compound that exhibits such activity.
  • the present invention includes the following features:
  • compositions comprising the /3-D- and /3-L-nucleosides or pharmaceutically acceptable salts or prodrugs thereof together with a pharmaceutically acceptable carrier or diluent;
  • Flaviviruses included within the scope of this invention are discussed generally in Fields Virology, Editors: Fields, B. N., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, Chapter 31, 1996.
  • flaviviruses include, without limitation: Absettarov, Alfuy, AIN, Aroa, Bagaza, Banzi, Bouboui, Bussuquara, Cacipacore, Carey Island, Dakar bat, Dengue 1, Dengue 2, Dengue 3, Dengue 4, Edge Hill, Entebbe bat, Gadgets Gully, Hanzalova, Hypr, Ilheus, Israel turkey meningoencephalitis, Japanese encephalitis, Jugra, Jutiapa, Kadam, Karshi, Kedougou, Kokobera, Koutango, Kumlinge, Kunjin, Kyasanur Forest disease, Langat, Louping ill, Meaban, Modoc, Montana myotis leukoencephalitis, Murray valley encephalitis, Naranjal, Negishi, Ntaya, Omsk hemorrhagic fever, Phnom-Penh bat, Powassan, Rio Bravo, Rocio, Royal Farm, Russian spring-summer encephalitis, Saboya
  • Pestiviruses included within the scope of this invention are discussed generally in Fields Virology, Editors: Fields, B. N., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, Chapter 33, 1996.
  • Specific pestiviruses include, without limitation: bovine viral diarrhea virus ("BVDV”), classical swine fever virus (“CSFV,” also called hog cholera virus), and border disease virus (“BDV”).
  • BVDV bovine viral diarrhea virus
  • CSFV classical swine fever virus
  • BDV border disease virus
  • a compound of Formula I or a pharmaceutically acceptable salt or prodrug thereof, is provided:
  • R 1 , R 2 and R 3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , R 2 or R 3 is independently H or phosphate;
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 and X 2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • acyl including lower acyl
  • alkyl including but not limited to methyl, ethyl, propyl and cyclopropyl.
  • R 1 , R 2 and R 3 are independently H or phosphate (preferably H);
  • X 1 is H
  • X 2 is H orNH 2 ;
  • Y is hydrogen, bromo, chloro, fluoro, iodo, NH 2 or OH.
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
  • R , R or R 3 is independently H or phosphate
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 and X 2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • acyl including lower acyl
  • alkyl including but not limited to methyl, ethyl, propyl and cyclopropyl.
  • R 1 , R 2 and R 3 are independently H or phosphate (preferably H);
  • X 1 is H
  • X 2 is H or NH 2 ;
  • Y is hydrogen, bromo, chloro, fluoro, iodo, NH 2 or OH.
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 and X 2 are mdependently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • acyl including lower acyl
  • alkyl including but not limited to methyl, ethyl, propyl and cyclopropyl.
  • R 1 , R 2 and R 3 are independently H or phosphate (preferably H);
  • X 1 is H
  • X 2 is H or NH 2 ;
  • Y is hydrogen, bromo, chloro, fluoro, iodo, NH 2 or OH.
  • a compound of Formula IV or a pharmaceutically acceptable salt or prodrug thereof, is provided:
  • R 1 , R 2 and R 3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • acyl including lower acyl
  • alkyl including but not limited to methyl, ethyl, propyl and cyclopropyl.
  • R , R and R are independently H or phosphate (preferably H);
  • X 1 is H or CH 3 ;
  • Y is hydrogen, bromo, chloro, fluoro, iodo, NH 2 or OH.
  • R , R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
  • R , R or R 3 is independently H or phosphate
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • R 1 , R 2 and R 3 are independently H or phosphate (preferably H);
  • X 1 is H or CH 3 ;
  • Y is hydrogen, bromo, chloro, fluoro, iodo, NH or OH.
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , R 2 or R 3 is independently H or phosphate; and
  • Y is hydrogen, bromo, chloro, fluoro, iodo, OR 4 , NR 4 R 5 or SR 4 ;
  • X 1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR 4 , NR 4 NR 5 or SR 5 ; and
  • R 4 and R 5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
  • R 1 , R 2 and R 3 are independently H or phosphate (preferably H);
  • X 1 is H or CH 3 ; and Y is hydrogen, bromo, chloro, fluoro, iodo, NH or OH.
  • a compound selected from Formulas VII, VIII and IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), CF 3) chloro, bromo, fluoro, iodo, NO 2 , NH , -NH(lower alkyl), - NH(acyl), -N(lower alkyl) 2 , -N(acyl) 2 ; and
  • X is O, S, SO 2 , or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently hydrogen or phosphate
  • R 6 is alkyl
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are hydrogens
  • R 6 is alkyl
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently hydrogen or phosphate
  • R is alkyl
  • X is O.
  • a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof is provided:
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , R 2 or R 3 is independently H or phosphate; R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(
  • R 7 is hydrogen, OR 3 , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO 2 , NH , -NH(lower alkyl), -NH(acyl), - N(loweralkyl) 2 , -N(acyl) 2 ; and
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently hydrogen or phosphate
  • R 6 is alkyl
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are hydrogens
  • R 6 is alkyl
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently H or phosphate
  • R 6 is alkyl
  • X is O.
  • a compound of Formula XI, or its pharmaceutically acceptable salt or prodrug is provided:
  • Base is a purine or pyrimidine base as defined herein; optionally substituted with an amine or cyclopropyl (e.g., 2-amino, 2,6-diamino or cyclopropyl guanosine); and
  • R 1 and R 2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo i ⁇ s capable of provi •ding a compound wherein R 1 or R9 is independently H or phosphate.
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , R 2 or R is independently H or phosphate;
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO , NH 2 , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) 2 , -N(acyl) ; and
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently hydrogen or phosphate
  • R 6 is alkyl
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are hydrogens
  • R 6 is alkyl
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 , R 2 and R 3 are independently hydrogen or phosphate
  • R 6 is alkyl
  • X is O.
  • the invention provides a compound of Formula XVI, or a pharmaceutically acceptable salt or prodrug thereof:
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 and R 2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 and R 2 are independently H or phosphate;
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO , NH 2 , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) , -N(acyl) 2 ;
  • R 7 and R 9 are independently hydrogen, OR 2 , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), -N(lower alkyl) 2 , -N(acyl) 2 ;
  • R 8 and R 10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R 7 and R 9 , R 7 and R 10 , R 8 and R 9 , or R 8 and R 10 can come together to form a pi bond; and
  • X is O, S, SO 2 or CH 2 .
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6 is independently H or phosphate;
  • a compound of Formula XVI is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6 is independently H or phosphate;
  • a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6 is independently H or phosphate;
  • a compound of Formula XVI is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R is alkyl; (4) R 7 and R 9 are
  • a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R is al
  • a compound of Formula XVI is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6 is independently H or phosphate;
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when admimstered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); al
  • a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6 is independently H or phosphate;
  • a compound of Formula XVI is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate;
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is independently H or phosphate;
  • R 6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO , amino, loweralkylamino or di(loweralkyl)amino;
  • R 7 and R 9 are independently OR 2 ;
  • R 8 and R 10 are hydrogen;
  • (6) X is O, S, SO 2 or CH 2 .
  • a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl; (4) R 7 and R 9 are independently OR 2 ; (5) R 8 and R 10 are hydrogen; and (6) X is O, S, SO 2 , or CH 2 .
  • Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl; (4) R 7 and R 9 are independently OR 2 ; (5) R 8 and R 10 are hydrogen; and (6) X is O, S, SO 2 , or CH 2 .
  • a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or
  • R is independently H or phosphate; (3) R is alkyl; (4) R 7 and R 9 are independently OR 2 ; (5) R 8 and R 10 are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.
  • a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl; (4) R 7 and R 9 are independently OR 2 , alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO 2 , amino, loweralkylamino or di(loweralkyl)amino; (5) R 8 and R 10 are hydrogen; and (6) X is O.
  • a compound of Formula XVI is provided in which: (1) Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is guanine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is cytosine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is thymine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is uracil; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is phosphate; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is ethyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R ⁇ is propyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is butyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 is hydrogen and R 9 is hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is S;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is SO 2 ;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 and R 10 are hydrogen; and (6) X is CH 2 ;
  • the invention provides a compound of Formula XVII, or a pharmaceutically acceptable salt or prodrug thereof:
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate;
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) , -N(acyl) 2 ;
  • R 7 and R 9 are independently hydrogen, OR 2 , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO 2 , NH 2 , - NH(lower alkyl), -NH(acyl), -N(lower alkyl) 2 , -N(acyl) ;
  • R 10 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively, R 7 and R 9 , or R 7 and R 10 can come together to form a pi bond; and
  • X is O, S, SO 2 or CH 2 .
  • a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6
  • a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6
  • a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R is independently H or phosphate; (3) R 6 is
  • a compound of Formula XVII, or its pharaiaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphat
  • a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is mdependently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate;
  • R are independently hydrogen, OR , alkyl (including lower alkyl), alkenyl, alkynyl, Br- vinyl, O-alkenyl, chlorine, bromine, iodine, NO 2 , amino, loweralkylamino, or di(loweralkyl)amino; (5) R 10 is H; and (6) X is O.
  • a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6
  • a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl; (4) R 7 and R 9 are independently hydrogen, OR 2 , alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO 2 , amino, loweralkylamino or di(loweralkyl)-amino; (5) R 10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O, S, SO 2 , or CH 2 .
  • a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO 2 , amino, loweralkylamino, or di(loweralkyl)amino; (4) R 7 and R 9 are independently OR 2 ; (5) R 10 is H; and (6) X is O, S, SO 2 , or CH 2 .
  • a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl; (4) R 7 and R 9 are independently OR 2 ; (5) R 10 is H; and (6) X is O, S, SO 2 , or CH 2 .
  • Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl; (4) R 7 and R 9 are independently OR 2 ; (5) R 10 is H; and (6) X is O, S, SO 2 , or CH 2 .
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is guanine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is cytosine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is thymine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is uracil; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is phosphate; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is ethyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is propyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is butyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is S;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is SO 2 ; or
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 10 is hydrogen; and (6) X is CH 2 .
  • the invention provides a compound of Formula XVIII, or a pharmaceutically acceptable salt or prodrug thereof:
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate;
  • R 6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), - N(lower alkyl) 2 , -N(acyl) 2 ;
  • R and R are independently hydrogen, OR , alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO 2 , amino, lower alkylamino, or di(loweralkyl)amino;
  • R 8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R 7 and R 9 , or R 8 and R 9 can come together to form a pi bond;
  • X is O, S, SO 2 or CH 2 .
  • a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R is
  • Base is a purine or pyrimidine base as defined herein;
  • R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6
  • a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6
  • a compound of Formula XNTfl, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 1 is independently H or phosphate; (3) R 1
  • a compound of Formula XVIII, or its pharaiaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or
  • a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate; (3) R 6
  • R are independently hydrogen, OR , alkyl (including lower alkyl), alkenyl, alkynyl, Br- vinyl, O-alkenyl, chlorine, bromine, iodine, NO 2 , amino, loweralkylamino, or di(loweralkyl)amino; (5) R 8 is H; and (6) X is O.
  • a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO 2 , amino, loweralkylamino or di(loweralkyl)amino; (4) R 7 and R 9 are independently OR 2 ; (5) R 8 is H; and (6) X is O, S, SO 2 or CH 2 .
  • a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R 1 is independently H or phosphate; (3) R 6 is alkyl; (4) R 7 and R 9 are independently OR 2 ; (5) R 8 is H; and (6) X is O, S, SO 2 , or CH 2 .
  • a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R is independently H or phosphate; (3) R is alkyl; (4) R 7 and R 9 are independently OR 2 ; (5) R 8 is H; and (6) X is O. i even more prefened subembodiments, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which:
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is O;
  • Base is guanine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is O;
  • Base is cytosine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is O;
  • Base is thymine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is O;
  • Base is uracil; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5)
  • R is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is phosphate; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is ethyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is propyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is butyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is O;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is S;
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is SO 2 ; or
  • Base is adenine; (2) R 1 is hydrogen; (3) R 6 is methyl; (4) R 7 and R 9 are hydroxyl; (5) R 8 is hydrogen; and (6) X is CH 2 .
  • the /3-D- and /3-L-nucleosides of this invention belong to a class, of anti-flavivirus or pestivirus agents that may inhibit flavivirus or pestivirus polymerase activity.
  • Nucleosides can be screened for their ability to inhibit flavivirus or pestivirus polymerase activity in vitro according to screening methods set forth more particularly herein. One can readily determine the spectrum of activity by evaluating the compound in the assays described herein or with another confirmatory assay.
  • the efficacy of the anti-flavivirus or pestivirus compound is measured according to the concentration of compound necessary to reduce the plaque number ofthe virus in vitro, according to methods set forth more particularly herein, by 50% (i.e. the compound's EC50). hi preferred embodiments the compound exhibits an EC 50 of less than 15 or 10 micromolar.
  • HCV is a member ofthe Flaviviridae family; however, now, HCV has been placed in a new monotypic genus, hepacivirus. Therefore, in one embodiment, the flavivirus or pestivirus is not HCV.
  • the active compound can be administered as any salt or prodrug that upon administration to the recipient is capable of providing directly or indirectly the parent compound, or that exhibits activity itself.
  • Nonlimiting examples are the pharmaceutically acceptable salts (alternatively refened to as "physiologically acceptable salts"), and a compound, which has been alkylated or acylated at the 5 '-position, or on the purine or pyrimidine base (a type of "pharmaceutically acceptable prodrug").
  • the modifications can affect the biological activity ofthe compound, in some cases increasing the activity over the parent compound. This can easily be assessed by preparing the salt or prodrug and testing its antiviral activity according to the methods described herein, or other methods known to those skilled in the art.
  • alkyl refers to a saturated straight, branched, or cyclic, primary, secondary, or tertiary hydrocarbon of typically to C 10 , and specifically includes methyl, trifluoromethyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
  • the term includes both substituted and unsubstituted alkyl groups.
  • Moieties with which the alkyl group can be substituted are selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al, Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, hereby incorporated by reference.
  • lower alkyl refers to a to C 4 saturated straight, branched, or if appropriate, a cyclic (for example, cyclopropyl) alkyl group, including both substituted and unsubstituted forms. Unless otherwise specifically stated in this application, when alkyl is a suitable moiety, lower alkyl is preferred. Similarly, when alkyl or lower alkyl is a suitable moiety, unsubstituted alkyl or lower alkyl is prefened.
  • alkylamino or arylamino refers to an amino group that has one or two alkyl or aryl substituents, respectively.
  • protected refers to a group that is added to an oxygen, nitrogen, or phosphorus atom to prevent its further reaction or for other purposes. A wide variety of oxygen and nitrogen protecting groups are known to those skilled in the art of organic synthesis.
  • aryl refers to phenyl, biphenyl, or naphthyl, and preferably phenyl.
  • the term includes both substituted and unsubstituted moieties.
  • the aryl group can be substituted with one or more moieties selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al, Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the temi alkaryl or alkylaryl refers to an alkyl group with an aryl substituent.
  • aralkyl or arylalkyl refers to an aryl group with an alkyl substituent.
  • halo includes chloro, bromo, iodo, and fluoro.
  • purine or pyrimidine base includes, but is not limited to, adenine, N - alkylpurines, N 6 -acylpurines (wherein acyl is C(O)(alkyl, aryl, alkylaryl, or arylalkyl), N 6 - benzylpurine, N 6 -halopurine, N 6 -vinylpurine, N 6 -acetylenic purine, N 6 -acyl purine,
  • Purine bases include, but are not limited to, guanine, adenine, hypoxanthine, 2,6-diaminopurine, and 6-chloropurine. Functional oxygen and nitrogen groups on the base can be protected as necessary or desired. Suitable protecting groups are well known to those skilled in the art, and include tnmethylsilyl, dimethylhexylsilyl, t-butyldimethylsilyl and t-butyldiphenylsilyl, trityl, alkyl groups, and acyl groups such as acetyl and propionyl, methanesulfonyl, and p-toluenesulfonyl.
  • the purine or pyrimidine base can optionally substituted such that it forms a viable prodrug, which can be cleaved in vivo.
  • appropriate substituents include acyl moiety, an amine or cyclopropyl (e.g., 2-amino, 2,6-diamino or cyclopropyl guanosine).
  • acyl refers to a carboxylic acid ester in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic alkyl or lower alkyl, alkoxyalkyl including methoxymethyl, aralkyl including benzyl, aryloxyalkyl such as phenoxymethyl, aryl including phenyl optionally substituted with halogen, to C 4 alkyl or C ⁇ to C alkoxy, sulfonate esters such as alkyl or aralkyl sulphonyl including methanesulfonyl, the mono, di or triphosphate ester, trityl or monomethoxytrityl, substituted benzyl, trialkylsilyl (e.g.
  • esters dimethyl- t-butylsilyl
  • Aryl groups in the esters optimally comprise a phenyl group.
  • lower acyl refers to an acyl group in which the non-carbonyl moiety is lower alkyl.
  • the term “substantially free of or “substantially in the absence of refers to a nucleoside composition that includes at least 85 or 90% by weight, preferably 95% to 98 % by weight, and even more preferably 99% to 100% by weight, of the designated enantiomer of that nucleoside.
  • the compounds are substantially free of enantiomers.
  • isolated refers to a nucleoside composition that includes at least 85 or 90% by weight, preferably 95% to 98 % by weight, and even more preferably 99% to 100% by weight, of the nucleoside, the remainder comprising other chemical species or enantiomers.
  • the terai host refers to an unicellular or multicellular organism in which the virus can replicate, including cell lines and animals, and preferably a human. Alternatively, the host can be carrying a part of the flavivirus or pestivirus genome, whose replication or function can be altered by the compounds of the present invention.
  • the term host specifically refers to infected cells, cells transfected with all or part of the flavivirus or pestivirus genome and animals, in particular, primates (including chimpanzees) and humans. In most animal applications ofthe present invention, the host is a human patient. Veterinary applications, in certain indications, however, are clearly anticipated by the present invention (such as chimpanzees).
  • pharmaceutically acceptable salt or prodrug is used throughout the specification to describe any pharmaceutically acceptable form (such as an ester, phosphate ester, salt of an ester or a related group) of a nucleoside compound which, upon administration to a patient, provides the nucleoside compound.
  • Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic or organic bases and acids. Suitable salts include those derived from alkali metals such as potassium and sodium, alkaline earth metals such as calcium and magnesium, among numerous other acids well known in the pharmaceutical art.
  • Pharmaceutically acceptable prodrugs refer to a compound that is metabolized, for example hydrolyzed or oxidized, in the host to form the compound of the present invention.
  • prodrugs include compounds that have biologically labile protecting groups on a functional moiety of the active compound.
  • Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, dephosphorylated to produce the active compound.
  • the compounds of this invention possess antiviral activity against flavivirus or pestivirus, or are metabolized to a compound that exhibits such activity.
  • pharmaceutically acceptable salts are organic acid addition salts formed with acids, which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, - ketoglutarate, and ⁇ -glycerophosphate.
  • Suitable inorganic salts may also be formed, including, sulfate, nitrate, bicarbonate, and carbonate salts.
  • nucleosides described herein can be administered as a nucleotide prodrug to increase the activity, bioavailabihty, stability or otherwise alter the properties of the nucleoside.
  • a number of nucleotide prodrug ligands are known.
  • alkylation, acylation or other lipophilic modification of the mono, di or triphosphate of the nucleoside will increase the stability of the nucleotide.
  • substituent groups that can replace one or more hydrogens on the phosphate moiety are alkyl, aryl, steroids, carbohydrates, including sugars, 1,2-diacylglycerol and alcohols. Many are described in R. Jones and N. Bischofberger, Antiviral Research, 27 (1995) 1-17. Any of these can be used in combination with the disclosed nucleosides to achieve a desired effect.
  • the active nucleoside can also be provided as a 5'-phosphoether lipid or a 5 '-ether lipid, as disclosed in the following references, which are incorporated by reference herein: Kucera, L.S., N. Iyer, E. Leake, A. Raben, Modest E.K., D.L.W., and C. Piantadosi, "Novel membrane-interactive ether lipid analogs that inhibit infectious H1N-1 production and induce defective virus formation," AIDS Res. Hum. Retro Viruses, 1990, 6, 491-501; Piantadosi, C, J. Marasco C.J., S.L. Morris- ⁇ atschke, K.L. Meyer, F. Gumus, J.R. Surles, K.S.
  • Nonlimiting examples of U.S. patents that disclose suitable lipophilic substituents that can be covalently incorporated into the nucleoside, preferably at the 5' -OH position of the nucleoside or lipophilic preparations include U.S. Patent Nos. 5,149,794 (Sep. 22, 1992, Yatvin et al); 5,194,654 (Mar. 16, 1993, Hostetler et al, 5,223,263 (June 29, 1993, Hostetler et al.); 5,256,641 (Oct. 26, 1993, Yatvin et al.); 5,411,947 (May 2, 1995, Hostetler et al.); 5,463,092 (Oct.
  • Drug resistance most typically occurs by mutation of a gene that encodes for an enzyme used in viral replication.
  • the efficacy of a drug against flavivirus or pestivirus infection can be prolonged, augmented, or restored by administering the compound in combination or alternation with a second, and perhaps third, antiviral compound that induces a different mutation from that caused by the principle drug.
  • the pharmacokinetics, biodistribution or other parameter of the drug can be altered by such combination or alternation therapy.
  • combination therapy is typically preferred over alternation therapy because it induces multiple simultaneous stresses on the virus.
  • antiviral agents that can be used in combination or alternation with the compounds disclosed herein include:
  • Substrate-based NS3 protease inhibitors (Attwood et al, Antiviral peptide derivatives, PCT WO 98/22496, 1998; Attwood et al, Antiviral Chemistry and Chemotherapy 10.259-273, 1999; Attwood et al, Preparation and use of amino acid derivatives as anti-viral agents, German Patent Publication DE 19914474; Tung et al.
  • Llinas-Brunet et al Hepatitis C inhibitor peptide analogues, PCT WO 99/07734.
  • Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives(Sudo K. et al, Biochemical and Biophysical Research Communications, 238:643- 647, 1997; Sudo K. et al. Antiviral Chemistry and Chemotherapy 9:186, 1998), including RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing a ⁇ r -phenoxyphenyl group;
  • Helicase inhibitors (Diana G.D. et al, Compounds, compositions and methods for treatment of hepatitis C, U.S. Patent No. 5,633,358; Diana G.D. et al, Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554);
  • S-ODN Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al, Hepatology 22:707-717, 1995), or nucleotides 326-348 comprising the 3' end ofthe NCR and nucleotides 371-388 located in the core coding region of the IICV RNA (Alt M. et al, Archives of Virology 142:589-599, 1997; Galderisi U et al, Journal of Cellular Physiology 181:251-257, 1999);
  • Inhibitors of IRES-dependent translation (Ikeda N et al, Agent for the prevention and treatment of hepatitis C, Japanese Patent Publication JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Publication JP-10101591); (12) Nuclease-resistant ribozymes. (Maccjak D.J. et al, Hepatology 30 abstract 995, 1999); and
  • miscellaneous compounds including 1-amino-alkylcyclohexanes (U.S. Patent No. 6,034,134 to Gold et al), alkyl lipids (U.S. Patent No. 5,922,757 to Chojkier et al), vitamin E and other antioxidants (U.S. Patent No. 5,922,757 to Chojkier et al), squalene, amantadine, bile acids (U.S. Patent No. 5,846,964 to Ozeki et al), N- (phosphonoacetyl)-L-aspartic acid, (U.S. Patent No. 5,830,905 to Diana et al), benzenedicarboxamides (U.S.
  • Patent No. 5,633,388 to Diana et al polyadenylic acid derivatives (U.S. Patent No. 5,496,546 to Wang et al), 2',3'-dideoxyinosine (U.S. Patent No. 5,026,687 to Yarchoan et al), and benzimidazoles (U.S. Patent No. 5,891,874 to Colacino et al).
  • Host including humans, infected with flavivirus or pestivirus, or a gene fragment thereof can be treated by administering to the patient an effective amount of the active compound or a pharmaceutically acceptable prodrug or salt thereof in the presence of a pharmaceutically acceptable carrier or diluent.
  • the active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid or solid form.
  • a prefened dose of the compound for flavivirus or pestivirus infection will be in the range from about 1 to 50 mg/kg, preferably 1 to 20 mg/kg, of body weight per day, more generally 0.1 to about 100 mg per kilogram body weight of the recipient per day.
  • the effective dosage range of the pharmaceutically acceptable salts and prodrugs can be calculated based on the weight ofthe parent nucleoside to be delivered. If the salt or prodrug exhibits activity in itself, the effective dosage can be estimated as above using the weight of the salt or prodrug, or by other means known to those skilled in the art.
  • the compound is conveniently administered in unit any suitable dosage form, including but not limited to one containing 7 to 3000 mg, preferably 70 to 1400 mg of active ingredient per unit dosage form.
  • a oral dosage of 50-1000 mg is usually convenient.
  • the active ingredient should be administered to achieve peak plasma concentrations ofthe active compound of from about 0.2 to 70 ⁇ M, preferably about 1.0 to 10 ⁇ M. This may be achieved, for example, by the intravenous injection of a 0.1 to 5% solution of the active ingredient, optionally in saline, or administered as a bolus of the active ingredient.
  • the concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment ofthe person administering or supervising the administration ofthe compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
  • the active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
  • a prefened mode of administration of the active compound is oral.
  • Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets.
  • the active compound can be incorporated with excipients and used in the form of tablets, troches or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part ofthe composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a binder such as microcrystalline cellulose, gum tragacanth or gelatin
  • an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
  • a lubricant such as magnesium stearate or Sterotes
  • a glidant such as colloidal silicon dioxide
  • the compound can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like.
  • a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • the compound or a pharmaceutically acceptable prodrug or salts thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, anti-inflammatories, or other antivirals, including other nucleoside compounds.
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • prefened carriers are physiological saline or phosphate buffered saline (PBS).
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation.
  • Liposomal suspensions are also prefened as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811 (which is incorporated herein by reference in its entirety).
  • liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container.
  • aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives is then introduced into the container.
  • the container is then swirled by hand to free lipid material from the sides ofthe container and to disperse lipid aggregates, thereby forming the liposomal suspension.
  • nucleosides of the present invention can be synthesized by any means known in the art.
  • the synthesis of the present nucleosides can be achieved by either alkylating the appropriately modified sugar, followed by glycosylation or glycosylation followed by alkylation of the nucleoside.
  • the following non-limiting embodiments illustrate some general methodology to obtain the nucleosides ofthe present invention.
  • BASE is a purine or pyrimidine base as defined herein;
  • R and R are independently hydrogen, OR , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), -N(lower alkyl) , -N(acyl) 2 ;
  • R 8 and R 10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R 7 and R 9 , R 7 and R 10 , R 8 and R 9 , or R 8 and R 10 can come together to form a pi bond;
  • R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate;
  • R 6 is an alkyl, halogeno-alkyl (i.e. CF 3 ), alkenyl, or alkynyl (i.e. allyl); and X is O, S, SO 2 or CH 2 can be prepared by one ofthe following general methods.
  • the key starting material for this process is an appropriately substituted lactone.
  • the lactone can be purchased or can be prepared by any known means including standard epimerization, substitution and cyclization techniques.
  • the lactone can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the protected lactone can then be coupled with a suitable coupling agent, such as an organometallic carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R 6 -SiMe 3 in TBAF with the appropriate non-protic solvent at a suitable temperature, to give the l'-alkylated sugar.
  • a suitable coupling agent such as an organometallic carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R 6 -SiMe 3 in TBAF with the appropriate non-protic solvent at a suitable temperature, to give the l'-alkylated sugar.
  • the optionally activated sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994.
  • an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature.
  • nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the l'-C-branched ribonucleoside is desired.
  • the synthesis of a ribonucleoside is shown in Scheme 1.
  • deoxyribo-nucleoside is desired.
  • the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent.
  • the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
  • the key starting material for this process is an appropriately substituted hexose.
  • the hexose can be purchased or can be prepared by any known means including standard epimerization (e.g. via alkaline treatment), substitution and coupling techniques.
  • the hexose can be selectively protected to give the appropriate hexa-furanose, as taught by Townsend Chemistry of Nucleosides and Nucleotides. Plenum Press, 1994.
  • the 1 '-hydroxyl can be optionally activated to a suitable leaving group such as an acyl group or a halogen via acylation or halogenation, respectively.
  • a suitable leaving group such as an acyl group or a halogen via acylation or halogenation, respectively.
  • the optionally activated sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994.
  • an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature.
  • a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate.
  • the l'-CH 2 -OH if protected, can be selectively deprotected by methods well known in the art.
  • the resultant primary hydroxyl can be functionalized to yield various C-branched nucleosides.
  • the primary hydroxyl can be reduced to give the methyl, using a suitable reducing agent.
  • the hydroxyl can be activated prior to reduction to facilitate the reaction; i.e. via the Barton reduction.
  • the primary hydroxyl can be oxidized to the aldehyde, then coupled with a carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R 6 -SiMe 3 in TBAF with the appropriate non-protic solvent at a suitable temperature.
  • a carbon nucleophile such as a Grignard reagent, an organolithium, lithium dialkylcopper or R 6 -SiMe 3 in TBAF with the appropriate non-protic solvent at a suitable temperature.
  • the 1 '-C-branched ribonucleoside is desired.
  • the synthesis of a ribonucleoside is shown in Scheme 2.
  • deoxyribo-nucleoside is desired.
  • the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent.
  • the 2 '-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
  • the L-enantiomers conesponding to the compounds of the invention can be prepared following the same general methods (1 or 2), beginning with the conesponding L-sugar or nucleoside L-enantiomer as starting material.
  • B General Synthesis of 2 ' -C-Branched Nucleosides
  • BASE is a purine or pyrimidine base as defined herein;
  • R 7 and R 9 are independently hydrogen, OR 2 , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), -N(lower alkyl) 2 , -N(acyl) 2 ;
  • R 10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R 7 and R 9 , or R 7 and R 10 can come together to form a pi bond;
  • R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate;
  • R 6 is an alkyl, halogeno-alkyl (i.e. CF 3 ), alkenyl, or alkynyl (i.e. allyl); and
  • X is O, S, SO 2 or CH 2 can be prepared by one ofthe following general methods.
  • the key starting material for this process is an appropriately substituted sugar with a 2' -OH and 2'-H, with the appropriate leaving group (LG), for example an acyl group or a halogen.
  • the sugar can be purchased or can be prepared by any known means including standard epimerization, substitution, oxidation and reduction techniques.
  • the substituted sugar can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2'-modified sugar.
  • Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins 's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO 2 , ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl 2 -pyridine, H 2 O 2 - ammonium molybdate, NaBrO 2 -CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and N-bromosuccinimide.
  • Jones reagent a mixture of chromic acid and sulfuric acid
  • Collins 's reagent dipyridine Cr(VI) oxide
  • an organometallic carbon nucleophile such as a Grignard reagent, an organolithium, lithium dialkylcopper or R 6 -SiMe 3 in TBAF with the ketone with the appropriate non-protic solvent at a suitable temperature, yields the 2'-alkylated sugar.
  • the alkylated sugar can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the optionally protected sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994.
  • an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature.
  • a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate.
  • the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the 2'-C-branched ribonucleoside is desired.
  • the synthesis of a ribonucleoside is shown in Scheme 3. Altematively, deoxyribo-nucleoside is desired.
  • the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis. John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent.
  • the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
  • the key starting material for this process is an appropriately substituted nucleoside with a 2'-OH and 2'-H.
  • the nucleoside can be purchased or can be prepared by any known means including standard coupling techniques.
  • the nucleoside can be optionally protected with suitable protecting groups, preferably with acyl or silyl groups, by methods well known to those skilled in the art, as taught by Greene et al Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the appropriately protected nucleoside can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2'-modified sugar.
  • Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins 's reagent (dipyridine Cr(NI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO 2 , ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl 2 -pyridine, H O 2 -ammonium molybdate, ⁇ aBrO -CA ⁇ , NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and iV-bromosucc
  • nucleoside can be deprotected by methods well known to those skilled in the art, as taught by GreeneGreene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the 2 '-C-branched ribonucleoside is desired.
  • the synthesis of a ribonucleoside is shown in Scheme 4.
  • deoxyribo-nucleoside is desired.
  • the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent.
  • the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
  • the L-enantiomers are desired. Therefore, the L-enantiomers can be conesponding to the compounds of the invention can be prepared following the same foregoing general methods, beginning with the conesponding L-sugar or nucleoside L-enantiomer as starting material.
  • BASE is a purine or pyrimidine base as defined herein;
  • R and R are independently hydrogen, OR , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), chlorine, bromine, iodine, NO 2 , NH 2 , -NH(lower alkyl), -NH(acyl), -N(lower alkyl) 2 , -N(acyl) 2 ;
  • R is H, alkyl (including lower alkyl), chlonne, bromine or iodine; alternatively, R 7 and R 9 , or R 8 and R 9 can come together to form a pi bond;
  • R 1 and R 2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 is independently H or phosphate;
  • R 6 is an alkyl, halogeno-alkyl (i.e. CF 3 ), alkenyl, or alkynyl (i.e. allyl); and
  • X is O, S, SO 2 or CH 2 can be prepared by one ofthe following general methods.
  • the key starting material for this process is an appropriately substituted sugar with a 3' -OH and 3'-H, with the appropriate leaving group (LG), for example an acyl group or a halogen.
  • the sugar can be purchased or can be prepared by any known means including standard epimerization, substitution, oxidation and reduction techniques.
  • the substituted sugar can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 3 '-modified sugar.
  • Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO 2 , ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl 2 -pyridine, H 2 O 2 - ammonium molybdate, NaBrO 2 -CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and N-bromosuccinimide.
  • Jones reagent a mixture of chromic acid and sulfuric acid
  • Collins's reagent dipyridine Cr(VI) oxide
  • an organometallic carbon nucleophile such as a Grignard reagent, an organolithium, lithium dialkylcopper or R -SiMe 3 in TBAF with the ketone with the appropriate non-protic solvent at a suitable temperature, yields the 3 '-C-branched sugar.
  • the 3 '-C-branched sugar can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the optionally protected sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994.
  • an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature.
  • a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate.
  • nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the 3 '-C-branched ribonucleoside is desired.
  • the synthesis of a ribonucleoside is shown in Scheme 5.
  • deoxyribo-nucleoside is desired.
  • the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent.
  • the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
  • the key starting material for this process is an appropriately substituted nucleoside with a 3'-OH and 3'-H.
  • the nucleoside can be purchased or can be prepared by any known means including standard coupling techniques.
  • the nucleoside can be optionally protected with suitable protecting groups, preferably with acyl or silyl groups, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the appropriately protected nucleoside can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2 '-modified sugar.
  • Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins 's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO 2 , ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl 2 -pyridine, H 2 O 2 -ammonium molybdate, NaBrO 2 -CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and 7V-bromosuccin
  • nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
  • the 3 '-C-branched ribonucleoside is desired.
  • the synthesis of a ribonucleoside is shown in Scheme 6.
  • deoxyribo-nucleoside is desired.
  • the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent.
  • the 2 '-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
  • the L-enantiomers are desired. Therefore, the L-enantiomers can be conesponding to the compounds of the invention can be prepared following the same foregoing general methods, beginning with the conesponding L-sugar or nucleoside L-enantiomer as starting material.
  • Example 1 Preparation of l'-C-methylriboadenine via 6-amino-9-(l-deoxy- ⁇ -D- psicofuranosvDpurine
  • nucleosides of Formula I are prepared.
  • nucleosides of Formula IN are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula VII are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Fonnula NIII are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula IX are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula XVI are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula II are prepared.
  • nucleosides of Formula V are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula X are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula XI are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula XII are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula XVII are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula III are prepared.
  • nucleosides of Formula VI are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula XIII are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula XIN are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula XV are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • nucleosides of Formula XVIII are prepared, using the appropriate sugar and pyrimidine or purine bases.
  • Compounds can exhibit anti-flavivirus or pestivirus activity by inhibiting flavivirus or pestivirus polymerase, by inhibiting other enzymes needed in the replication cycle, or by other pathways.
  • test compounds were dissolved in DMSO at an initial concentration of 200 ⁇ M and then were serially diluted in culture medium.
  • BHK-21 baby hamster kidney (ATCC CCL- 10) and Bos Taurus (BT) (ATCC CRL 1390) cells were grown at 37°C in a humidified CO 2 (5%) atmosphere.
  • FBS fetal bovine serum
  • BT cells were passaged in Dulbecco's modified Eagle's medium with 4 mM L-glutamine and 10% horse serum (HS, Gibco), adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose and 1.0 mM sodium pyruvate.
  • the vaccine strain 17D (YFV-17D) (Stamaril®, Pasteur Merieux) and Bovine Viral Dianhea virus (BVDN) (ATCC NR-534) were used to infect BHK and BT cells, respectively, in 75 cm 2 bottles. After a 3 day incubation period at 37°C, extensive cytopathic effect was observed.
  • HepG2 cells were obtained from the American Type Culture Collection (Rockville, MD), and were grown in 225 cm 2 tissue culture flasks in minimal essential medium supplemented with non-essential amino acids, 1% penicillin-streptomycin. The medium was renewed every three days, and the cells were subcultured once a week. After detachment ofthe adherent monolayer with a 10 minute exposure to 30 mL of trypsin-EDTA and three consecutive washes with medium, confluent HepG2 cells were seeded at a density of 2.5 x 10 6 cells per well in a 6-well plate and exposed to 10 ⁇ M of [ 3 H] labeled active compound (500 dpm/pmol) for the specified time periods.
  • the cells were maintained at 37°C under a 5% CO 2 atmosphere. At the selected time points, the cells were washed three times with ice-cold phosphate-buffered saline (PBS). Intracellular active compound and its respective metabolites were extracted by incubating the cell pellet overnight at -20°C with 60% methanol followed by extraction with an additional 20 ⁇ L of cold methanol for one hour in an ice bath. The extracts were then combined, dried under gentle filtered air flow and stored at -20°C until HPLC analysis. The preliminary results ofthe HPLC analysis are tabulated in Table 1. Table 1
  • the cynomolgus monkey was surgically implanted with a chronic venous catheter and subcutaneous venous access port (VAP) to facilitate blood collection and underwent a physical examination including hematology and serum chemistry evaluations and the body weight was recorded.
  • VAP chronic venous catheter and subcutaneous venous access port
  • Each monkey (six total), received approximately 250 uCi of 3 H activity with each dose of active compound, namely ⁇ - D-2'-CH -riboG at a dose level of 10 mg/kg at a dose concentration of 5 mg/mL, either via an intravenous bolus (3 monkeys, IN), or via oral gavage (3 monkeys, PO).
  • Each dosing syringe was weighed before dosing to gravimetrically detennine the quantity of formulation administered.
  • Urine samples were collected via pan catch at the designated intervals (approximately 18-0 hours pre-dose, 0-4, 4-8 and 8-12 hours post-dosage) and processed. Blood samples were collected as well (pre-dose, 0.25, 0.5, 1, 2, 3, 6, 8, 12 and 24 hours post- dosage) via the chronic venous catheter and NAP or from a peripheral vessel if the chronic venous catheter procedure should not be possible.
  • Human bone marrow cells were collected from normal healthy volunteers and the mononuclear population was separated by Ficoll-Hypaque gradient centrifugation as described previously by Sommadossi J-P, Carlisle R. "Toxicity of 3'-azido-3'- deoxythymidine and 9-(l,3-dihydroxy-2-propoxymethyl)guanine for nonnal human hematopoietic progenitor cells in vitro" Antimicrobial Agents and Chemotherapy 1987; 31:452-454; and Sommadossi J-P, Schinazi RF, Chu CK, Xie M-Y.
  • HepG2 cells were cultured in 12-well plates as described above and exposed to various concentrations of drugs as taught by Pan-Zhou X-R, Cui L, Zhou X-J, Sommadossi J- P, Darley-Usmer NM. "Differential effects of antiretroviral nucleoside analogs on mitochondrial function in HepG2 cells" Antimicrob Agents Chemother 2000; 44:496-503. Lactic acid levels in the culture medium after 4 day drug exposure was measured using a Boehringer lactic acid assay kit. Lactic acid levels were nonnalized by cell number as measured by hemocytometer count. The prehrmnary results from this assay are tabulated in Table 5.
  • the assay was performed essentially as described by Baginski, S. G.; Pevear, D. C; Seipel, M.; Sun, S. C. C; Benetatos, C. A.; Chunduru, S. K.; Rice, C. M. and M. S. Collett "Mechanism of action of a pestivirus antiviral compound" PNAS USA 2000, 97(14), 7981- 7986.
  • MDBK cells ATCC were seeded onto 96-well culture plates (4,000 cells per well) 24 hours before use.
  • test compounds were added to both infected and uninfected cells in a final concentration of 0.5% DMSO in growth medium. Each dilution was tested in quadruplicate. Cell densities and virus inocula were adjusted to ensure continuous cell growth throughout the experiment and to achieve more than 90% virus-induced cell destruction in the untreated controls after four days post-infection. After four days, plates were fixed with 50% TCA and stained with sulforhodamine B. The optical density ofthe wells was read in a microplate reader at 550 nm.
  • the 50% effective concentration (EC 50 ) values were defined as the compound concentration that achieved 50% reduction of cytopathic effect of the virus. The results are tabulated in Table 7.
  • Figures 4 and 5 provide a graphical illustration of the methodology used to arrive at the 50% effective concentration (EC 50 ) values for ⁇ -D-2'-CH 3 -riboG and ribavirin.
  • Figure 6 compares the results of the CPA for ⁇ -D-2'-CH 3 -riboG, ⁇ -D-2'-CH 3 -riboC, ⁇ -D-2'-CH 3 - riboU, ⁇ -D-2'-CH -riboA and ribavirin
  • MDBK cells were seeded onto 24-well plates (2 x 105 cells per well) 24 hours before infection with BVDV (NADL strain) at a multiplicity of infection (MOI) of 0.1 PFU per cell.
  • Serial dilutions of test compounds were added to cells in a final concentration of 0.5% DMSO in growth medium. Each dilution was tested in triplicate. After three days, cell cultures (cell monolayers and supernatants) were lysed by three freeze-thaw cycles, and virus yield was quantified by plaque assay.
  • MDBK cells were seeded onto 6-well plates (5 x 105 cells per well) 24 h before use.
  • Figure 9 is a graphical illustration ofthe results from the Yield Reduction Assay.
  • Figure 8 is an image of BVDV yield reduction in the presence of increasing concentrations of ⁇ -D-2'-CH 3 -riboC.
  • Table 10 summarizes the cytoxicity of two compounds of this invention, ⁇ -D-l'-CH 3 - riboA and ⁇ -D-2'-CH -riboA, in comparison to RBV ("ribavirin"), in various cell systems.
  • Table 10 Comparative Cytotoxicity* (CC 5 0)
  • Table 11 summarizes the antiviral activity of ⁇ -D-l'-CH 3 -riboA and ⁇ -D-2'-CH 3 - riboA against several viruses within the flavivirus and pestivirus genuses.
  • ⁇ M Compound concentration ( ⁇ M) required to reduce the plaque number by 50%.
  • the following virus-cell system were used: BNDC-BT, YFN-BHK, PICO (Cosxackie Bl and Polio SabinVVSV - Vero.
  • Table 12 summarizes the antiviral activity and toxicity of ⁇ -D-2'-methyl-riboG, ⁇ -D- 2'-methyl-riboC and ⁇ -D-2'-methyl-riboU, against a couple of viruses within the flavivirus and pestivirus genuses.
  • Table 12 Comparative Antiviral Activity* (EC50)
  • Table 13 summarizes the anti-viral activity of several compounds of this invention against BVDV in three different assays.

Abstract

A method and composition for treating a host infected with flavivirus or pestivirus comprising administering an effective flavivirus or pestivirus treatment amount of a described 1', 2' or 3'-modified nucleoside or a pharmaceutically acceptable salt or prodrug thereof, is provided.

Description

METHODS AND COMPOSITIONS FOR TREATING FLAVIVIRUSES AND PESTIVIRUSES
FIELD OF THE INVENTION
This invention is in the area of pharmaceutical chemistry, and in particular, is a compound, method and composition for the treatment of flaviviruses and pestiviruses. This application claims priority to U.S. provisional application no. 60/207,674, filed on May 26, 2000 and U.S. provisional application no. 60/283,276, filed on April 11, 2001.
BACKGROUND OF THE INVENTION
Pestiviruses and flaviviruses belong to the Flaviviridae family of viruses along with hepatitis C virus. The pestivirus genus includes bovine viral diarrhea virus (BNDV), classical swine fever virus (CSFN, also called hog cholera virus) and border disease virus (BDN) of sheep (Moennig, N. et al. Adv. Vir. Res. 1992, 41, 53-98). Pestivirus infections of domesticated livestock (cattle, pigs and sheep) cause significant economic losses worldwide. BNDV causes mucosal disease in cattle and is of significant economic importance to the livestock industry (Meyers, G. and Thiel, H.-J., Advances in Virus Research, 1996, 47, 53- 118; Moennig V., et al, Adv. Vir. Res. 1992, 41, 53-98).
Human pestiviruses have not been as extensively characterized as the animal pestiviruses. However, serological surveys indicate considerable pestivirus exposure in humans. Pestivirus infections in man have been implicated in several diseases including congenital brain injury, infantile gastroenteritis and chronic diarrhea in human immunodeficiency virus (HIN) positive patients. M. Giangaspero et al., Arch. Virol. Suppl., 1993, 7, 53-62; M. Giangaspero et al., Int. J. Std. Aids, 1993, 4 (5): 300-302.
The flavivirus genus includes more than 68 members separated into groups on the basis of serological relatedness (Calisher et al., J Gen. Virol, 1993, 70, 37-43). Clinical symptoms vary and include fever, encephalitis and hemorrhagic fever. Fields Virology, Editors: Fields, B. Ν., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, 1996, Chapter 31, 931-959. Flaviviruses of global concern that are associated with human disease include the dengue hemorrhagic fever viruses (DHF), yellow fever virus, shock syndrome and Japanese encephalitis virus. Halstead, S. B., Rev. Infect. Dis., 1984, 6, 251-264; Halstead, S. B., Science, 239:476-481, 1988; Monath, T. P., New Eng. J. Med., 1988, 319, 641-643.
Examples of antiviral agents that have been identified as active against the flavivirus or pestiviruses include:
(1) interferon and ribavirin (Battaglia, A.M. et al., Ann. Pharmacother, 2000,. 34, 487- 494); Berenguer, M. et al. Antivir. Ther., 1998, 3 (Suppl. 3), 125-136);
(2) Substrate-based NS3 protease inhibitors (Attwood et al, Antiviral peptide derivatives, PCT WO 98/22496, 1998; Attwood et al, Antiviral Chemistry and Chemotherapy 1999, 10, 259-273; Attwood et al, Preparation and use of amino acid derivatives as anti-viral agents, German Patent Pub. DE 19914474; Tung et al. Inhibitors of serine proteases, particularly hepatitis C virus NS3 protease, PCT WO 98/17679), including alphaketoamides and hydrazinoureas, and inhibitors that terminate in an electrophile such as a boronic acid or phosphonate (Llinas-Brunet et al, Hepatitis C inhibitor peptide analogues, PCT WO 99/07734).
(3) Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives (Sudo K. et al, Biochemical and Biophysical Research Communications, 1997, 238, 643-647; Sudo K. et al. Antiviral Chemistry and Chemotherapy, 1998, 9, 186), including RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing apara- phenoxyphenyl group;
(4) Thiazolidine derivatives which show relevant inhibition in a reverse-phase HPLC assay with an NS3/4A fusion protein and NS5A/5B substrate (Sudo K. et al, Antiviral Research, 1996, 32, 9-18), especially compound RD-1-6250, possessing a fused cinnamoyl moiety substituted with a long alkyl chain, RD4 6205 and RD4 6193;
(5) Thiazolidines and benzanilides identified in Kakiuchi N. et al. J. EBS Letters 421, 217-220; Takeshita N. et al. Analytical Biochemistry, 1997, 247, 242-246;
(6) A phenan-threnequinone possessing activity against protease in a SDS-PAGE and autoradiography assay isolated from the fermentation culture broth of Streptomyces sp., Sch 68631 (Chu M. et al, Tetrahedron Letters, 1996, 37, 7229-7232), and Sch 351633, isolated from the fungus Penicillium griscofuluum, which demonstrates activity in a scintillation proximity assay (Chu M. et al, Bioorganic and Medicinal Chemistry Letters 9, 1949-1952);
(7) Selective NS3 inhibitors based on the macromolecule elgin c, isolated from leech (Qasim M.A. et al, Biochemistry, 1997, 36, 1598-1607); (8) Helicase inhibitors (Diana G.D. et al, Compounds, compositions and methods for treatment of hepatitis C, U.S. Pat. No. 5,633,358; Diana G.D. et al, Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554);
(9) Polymerase inhibitors such as nucleotide analogues, gliotoxin (Ferrari R. et al. Journal of Virology, 1999, 73, 1649-1654), and the natural product cerulenin
(Lohmann V. et al, Virology, 1998, 249, 108-118);
(10) Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al, Hepatology, 1995, 22, 707-717), or nucleotides 326-348 comprising the 3' end of the NCR and nucleotides 371-388 located in the core coding region of the JJCN
RΝA (Alt M. et al, Archives of Virology, 1997, 142, 589-599; Galderisi U. et al, Journal of Cellular Physiology, 1999, 181, 251-257);
(11) Inhibitors of JRES-dependent translation (Ikeda Ν et al, Agent for the prevention and treatment of hepatitis C, Japanese Patent Pub. JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Pub. JP-10101591);
(12) Nuclease-resistant ribozymes (Maccjak, D. J. et al, Hepatology 1999, 30, abstract 995); and
(13) Other miscellaneous compounds including 1-amino-alkylcyclohexanes (U.S. Patent No. 6,034,134 to Gold et al), alkyl lipids (U.S. Pat. No. 5,922,757 to Chojkier et al), vitamin E and other antioxidants (U.S. Pat. No. 5,922,757 to
Chojkier et al), squalene, amantadine, bile acids (U.S. Pat. No. 5,846,964 to Ozeki et al), N-(phosphonoacetyl)-L-aspartic acid, (U.S. Pat. No. 5,830,905 to Diana et al), benzenedicarboxamides (U.S. Pat. No. 5,633,388 to Diana et al), polyadenylic acid derivatives (U.S. Pat. No. 5,496,546 to Wang et al), 2',3'- dideoxyinosine (U.S. Pat. No. 5,026,687 to Yarchoan et α/.), and benzimidazoles
(U.S. Pat. No. 5,891,874 to Colacino et al). hi view of the severity of diseases associated with pestiviruses and flaviviruses, and their pervasiveness in animal and man, it is an object of the present invention to provide a compound, method and composition for the treatment of a host infected with flavivirus or pestivirus.
SUMMARY OF THE INVENTION
Compounds, methods and compositions for the treatment of a host infected with a flavivirus or pestivirus infection are described that includes an effective treatment amount of a 3-D- or -L-nucleoside of the Formulas (I) - (XVIII), or a pharmaceutically acceptable salt or prodrug thereof.
In a first principal embodiment, a compound of Formula I, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000005_0001
(I) wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 or R3 is independently H or phosphate;
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
In a second principal embodiment, a compound of Formula II, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000006_0001
(II) wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabihzed phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R or R3 is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). hi a third principal embodiment, a compound of Formula III, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000007_0001
(III) wherein:
R1, R2 and R3 are independently H; phosphate (including onophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
1 9 group which when administered in vivo is capable of providing a compound wherein R , R or R is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
In a fourth principal embodiment, a compound of Formula IV, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000007_0002
wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 or R3 is independently H or phosphate;
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
In a fifth principal embodiment, a compound of Formula V, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000008_0001
(V) wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R 1 , τ R.2 or R is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
In a sixth principal embodiment, a compound of Formula VI, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000009_0001
(VI) wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
1 9 group which when administered in vivo is capable of providing a compound wherein R , R or R is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). hi a seventh principal embodiment, a compound selected from Formulas Nil, VIII and IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000010_0001
wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 or R is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF3) chloro, bromo, fluoro, iodo, ΝO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
In a eighth principal embodiment, a compound of Formulas X, XI and XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000010_0002
(X) (XI) (XII) wherein:
Base is a purine or pyrimidine base as defined herein; R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 or R3 is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH , -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl)2;
R7 is hydrogen, OR3, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
In a ninth principal embodiment a compound selected from Formulas XIII, XIV and XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000011_0001
(XIII) (XIV) (XV) wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
1 9 group which when administered in vivo is capable of providing a compound wherein R , R or R3 is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2, or CH2.
In a tenth principal embodiment the invention provides a compound of Formula XVI, or a pharmaceutically acceptable salt or prodrug thereof:
Figure imgf000012_0001
(XVI) wherein:
Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
• . 1 group which when admimstered in vivo is capable of providing a compound wherein R or R is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower allcyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH , -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl)2; R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO , NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10 can come together to form a pi bond; and
X is O, S, SO2 or CH2.
In a eleventh principal embodiment the invention provides a compound of Formula XVII, or a pharmaceutically acceptable salt or prodrug thereof:
Figure imgf000013_0001
(XVII) wherein:
Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 or R2 is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl)2; 7 0 9
R and R are independently hydrogen, OR , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, - NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a pi bond; and
X is O, S, SO2 or CH2.
In an twelfth principal embodiment, the invention provides a compound of Formula XVIII, or a pharmaceutically acceptable salt or prodrug thereof:
Figure imgf000014_0001
(xviπ) wherein:
Base is a purine or pyrimidine base as defined herein;
1 9
R and R independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 or R2 is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl)2; R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(lower- alkyl)amino;
R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a pi bond;
X is O, S, SO2 or CH2.
The /3-D- and /3-L-nucleosides of this invention may inhibit flavivirus or pestivirus polymerase activity. These nucleosides can be assessed for their ability to inhibit flavivirus or pestivirus polymerase activity in vitro according to standard screening methods. i one embodiment the efficacy of the anti-flavivirus or pestivirus compound is measured according to the concentration of compound necessary to reduce the plaque number ofthe virus in vitro, according to methods set forth more particularly herein, by 50% (i.e. the compound's EC50). hi preferred embodiments the compound exhibits an EC50 of less than 15 or preferably, less than 10 micromolar in vitro.
In another embodiment, the active compound can be administered in combination or alternation with another anti-flavivirus or pestivirus agent. In combination therapy, effective dosages of two or more agents are administered together, whereas during alternation therapy an effective dosage of each agent is administered serially. The dosages will depend on absorption, inactivation and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens and schedules should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration ofthe compositions.
HCV is a member ofthe Flaviviridae family; however, now, HCV has been placed in a new monotypic genus, hepacivirus. Therefore, in one embodiment, the flavivirus or pestivirus is not HCV.
Nonlimiting examples of antiviral agents that can be used in combination with the compounds disclosed herein include: (1) an interferon and/or ribavirin (Battaglia, A.M. et al, Ann. Pharmacother. 34:487- 494, 2000); Berenguer, M. et al. Antivir. Ther. 3(Supρl. 3):125-136, 1998);
(2) Substrate-based NS3 protease inhibitors (Attwood et al, Antiviral peptide derivatives, PCT WO 98/22496, 1998; Attwood et al, Antiviral Chemistry and Chemotherapy 10.259-273, 1999; Attwood et al, Preparation and use of amino acid derivatives as anti-viral agents, German Patent Publication DE 19914474; Tung et al. Inhibitors of serine proteases, particularly hepatitis C virus NS3 protease, PCT WO 98/17679), including alphaketoamides and hydrazinoureas, and inhibitors that terminate in an electrophile such as a boronic acid or phosphonate. Llinas-Brunet et al, Hepatitis C inhibitor peptide analogues, PCT WO 99/07734.
(3) Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives(Sudo K. et al, Biochemical and Biophysical Research Communications, 238:643- 647, 1997; Sudo K. et al. Antiviral Chemistry and Chemotherapy 9:186, 1998), including RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing a αr -phenoxyphenyl group;
(4) Thiazolidine derivatives which show relevant inhibition in a reverse-phase HPLC assay with an NS3/4A fusion protein and NS5A/5B substrate (Sudo K. et al, Antiviral Research 32:9-18, 1996), especially compound RD-1-6250, possessing a fused cinnamoyl moiety substituted with a long alkyl chain, RD4 6205 and RD4 6193;
(5) Thiazolidines and benzanilides identified in Kakiuchi N. et al. J. EBS Letters 421:217-220; Takeshita N. et al Analytical Biochemistry 247:242-246, 1997;
(6) A phenan-threnequinone possessing activity against protease in a SDS-PAGE and autoradiography assay isolated from the fermentation culture broth of Streptomyces sp., Sch 68631 (Chu M. et al, Tetrahedron Letters 37:7229-7232, 1996), and Sch 351633, isolated from the fungus Penicillium griscofuluum, which demonstrates activity in a scintillation proximity assay (Chu M. et al, Bioorganic and Medicinal Chemistry Letters 9:1949-1952);
(7) Selective NS3 inhibitors based on the macromolecule elgin c, isolated from leech (Qasim M.A. et al, Biochemistry 36:1598-1607 ', 1997);
(8) Helicase inhibitors (Diana G.D. et al, Compounds, compositions and methods for treatment of hepatitis C, U.S. Patent No. 5,633,358; Diana G.D. et al, Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554); (9) Polymerase inhibitors such as nucleotide analogues, gliotoxin (Ferrari R. et al. Journal of Virology 73:1649-1654, 1999), and the natural product cerulenin (Lohmann V. et al, Virology 249:108-118, 1998);
(10) Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al, Hepatology 22:707-717, 1995), or nucleotides 326-348 comprising the 3' end ofthe NCR and nucleotides 371-388 located in the core coding region of the IICV RNA (Alt M. et al, Archives of Virology 142:589-599, 1997; Galderisi U et al, Journal of Cellular Physiology 181:251-257, 1999);
(11) Inhibitors of IRES-dependent translation (Ikeda N et al, Agent for the prevention and treatment of hepatitis C, Japanese Patent Publication JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Publication JP-10101591);
(12) Nuclease-resistant ribozymes. (Maccjak D.J. et al, Hepatology 30 abstract 995, 1999); and
(13) Other miscellaneous compounds including 1-amino-alkylcyclohexanes (U.S. Patent No. 6,034,134 to Gold et al), alkyl lipids (U.S. Patent No. 5,922,757 to Chojkier et al), vitamin E and other antioxidants (U.S. Patent No. 5,922,757 to Chojkier et al), squalene, amantadine, bile acids (U.S. Patent No. 5,846,964 to Ozelci et al), N- (phosphonoacetyl)-L-aspartic acid, (U.S. Patent No. 5,830,905 to Diana et al), benzenedicarboxamides (U.S. Patent No. 5,633,388 to Diana et al), polyadenylic acid derivatives (U.S. Patent No. 5,496,546 to Wang et al), 2',3'-dideoxyinosine (U.S. Patent No. 5,026,687 to Yarchoan et al.), and benzimidazoles (U.S. Patent No. 5,891,874 to Colacino et al).
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 provides the structure ofvarious non-limiting examples of nucleosides ofthe present invention, as well as other known nucleosides, FIAU and Ribavirin, which are used as comparative examples in the text.
Figure 2 is a line graph of the pharmacokinetics (plasma concentrations) of β-D-2'- CH3-riboG administered to Cynomolgus Monkeys over time after administration. Figure 3a and 3b are line graphs of the pharmacokinetics (plasma concentrations) of β-D-2'-CH3-riboG administered to Cynomolgus Monkeys either intravenously (3a) or orally (3b) over time after administration.
Figure 4 depicts line graphs of the results of the cell protection assay of β-D-2'-CH3- riboG against BVDV.
Figure 5 depicts line graphs of the results of the cell protection assay of ribavirin against BVDV.
Figure 6 are line graphs of the cell protection assay of β-D-2'-CH3-riboG, β-D-2'- CH3-riboC, β-D-2'-CH3-riboU, β-D-2'-CH3-riboA and ribavirin.
Figure 7 are line graphs of the results of the plaque reduction assay for β-D-2'-CH3- riboU, β-D-2'-CH3-riboC and β-D-2'-CH3-riboG.
Figure 8 is an illustration of plaque reduction based on increasing concentrations of β-D-2'-CH3-riboU.
Figure 9 is a line graph of the results of the yield reduction assay for β-D-2'-CH3- riboG, depicting a 4 log reduction at 9 μM.
Figure 10 is an illustration of the yield reduction based on increasing concentrations of β-D-2'-CH3-riboC.
DETAILED DESCRIPTION OF THE INVENTION
The invention as disclosed herein is a compound, method and composition for the treatment of pestiviruses and flaviviruses in humans and other host animals, that includes the administration of an effective flavivirus or pestivirus treatment amount of an /3-D- or β-L- nucleoside as described herein or a pharmaceutically acceptable salt or prodrug thereof, optionally in a pharmaceutically acceptable carrier. The compounds of this invention either possess antiviral (i.e., anti-flavivirus or pestivirus) activity, or are metabolized to a compound that exhibits such activity. hi summary, the present invention includes the following features:
(a) /3-D- and /3-L-nucleosides, as described herein, and pharmaceutically acceptable salts and prodrugs thereof; (b) /3-D- and /3-L-nucleosides as described herein, and pharmaceutically acceptable salts and prodrugs thereof for use in the treatment or prophylaxis of a flavivirus or pestivirus infection, especially in individuals diagnosed as having a flavivirus or pestivirus infection or being at risk for becoming infected by flavivirus or pestivirus;
(c) use of these /3-D- and /3-L-nucleosides, and pharmaceutically acceptable salts and prodrugs thereof in the manufacture of a medicament for treatment of a flavivirus or pestivirus infection;
(d) pharmaceutical formulations comprising the /3-D- and /3-L-nucleosides or pharmaceutically acceptable salts or prodrugs thereof together with a pharmaceutically acceptable carrier or diluent;
(e) /3-D- and /3-L-nucleosides as described herein substantially in the absence of enantiomers of the described nucleoside, or substantially isolated from other chemical entities;
(f) processes for the preparation of /3-D- and /3-L-nucleosides, as described in more detail below; and
(g) processes for the preparation of /3-D- and /3-L-nucleosides substantially in the absence of enantiomers of the described nucleoside, or substantially isolated from other chemical entities.
Flaviviruses included within the scope of this invention are discussed generally in Fields Virology, Editors: Fields, B. N., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, Chapter 31, 1996. Specific flaviviruses include, without limitation: Absettarov, Alfuy, Apoi, Aroa, Bagaza, Banzi, Bouboui, Bussuquara, Cacipacore, Carey Island, Dakar bat, Dengue 1, Dengue 2, Dengue 3, Dengue 4, Edge Hill, Entebbe bat, Gadgets Gully, Hanzalova, Hypr, Ilheus, Israel turkey meningoencephalitis, Japanese encephalitis, Jugra, Jutiapa, Kadam, Karshi, Kedougou, Kokobera, Koutango, Kumlinge, Kunjin, Kyasanur Forest disease, Langat, Louping ill, Meaban, Modoc, Montana myotis leukoencephalitis, Murray valley encephalitis, Naranjal, Negishi, Ntaya, Omsk hemorrhagic fever, Phnom-Penh bat, Powassan, Rio Bravo, Rocio, Royal Farm, Russian spring-summer encephalitis, Saboya, St. Louis encephalitis, Sal Vieja, San Perlita, Sau arez Reef, Sepik, Sokuluk, Spondweni, Stratford, Tembusu, Tyuleniy, Uganda S, Usutu, Wesselsbron, West Nile, Yaounde, Yellow fever, and Zika. Pestiviruses included within the scope of this invention are discussed generally in Fields Virology, Editors: Fields, B. N., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, PA, Chapter 33, 1996. Specific pestiviruses include, without limitation: bovine viral diarrhea virus ("BVDV"), classical swine fever virus ("CSFV," also called hog cholera virus), and border disease virus ("BDV").
I. Active Compound, and Physiologically Acceptable Salts and Prodrugs Thereof
In a first principal embodiment, a compound of Formula I, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000020_0001
(I) wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 or R3 is independently H or phosphate;
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). In a preferred subembodiment, a compound of Formula I, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
R1, R2 and R3 are independently H or phosphate (preferably H);
X1 is H;
X2 is H orNH2; and
Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.
In a second principal embodiment, a compound of Formula II, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000021_0001
(II) wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
1 9 group which when administered in vivo is capable of providing a compound wherein R , R or R3 is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). In a preferred subembodiment, a compound of Formula II, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
R1, R2 and R3 are independently H or phosphate (preferably H);
X1 is H;
X2 is H or NH2; and
Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.
In a third principal embodiment, a compound of Formula III, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000022_0001
(III) wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
• • 1 9 group which when admimstered in vivo is capable of providing a compound wherein R , R or R3 is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are mdependently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). In a preferred subembodiment, a compound of Formula III, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
R1, R2 and R3 are independently H or phosphate (preferably H);
X1 is H;
X2 is H or NH2; and
Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH.
In a fourth principal embodiment, a compound of Formula IV, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000023_0001
(TV) wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group
1 " which when administered in vivo is capable of providing a compound wherein R , R or R is independently H or phosphate;
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). In a preferred subembodiment, a compound of Formula IV, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
1 9 "
R , R and R are independently H or phosphate (preferably H);
X1 is H or CH3; and
Y is hydrogen, bromo, chloro, fluoro, iodo, NH2 or OH. hi a fifth principal embodiment, a compound of Formula V, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000024_0001
(V) wherein:
1 9 "
R , R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
1 9 group which when administered in vivo is capable of providing a compound wherein R , R or R3 is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
In a preferred subembodiment, a compound of Formula V, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein: R1, R2 and R3 are independently H or phosphate (preferably H);
X1 is H or CH3; and
Y is hydrogen, bromo, chloro, fluoro, iodo, NH or OH.
In a sixth principal embodiment, a compound of Formula VI, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000025_0001
(VI) wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 or R3 is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO- alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR5; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
In a preferred subembodiment, a compound of Formula VI, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
R1, R2 and R3 are independently H or phosphate (preferably H);
X1 is H or CH3; and Y is hydrogen, bromo, chloro, fluoro, iodo, NH or OH.
In a seventh principal embodiment, a compound selected from Formulas VII, VIII and IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000026_0001
(VII) (VIII) (IX) wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving
1 9 group which when administered in vivo is capable of providing a compound wherein R , R or R is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), CF3) chloro, bromo, fluoro, iodo, NO2, NH , -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2, or CH2.
In a first preferred subembodiment, a compound of Formula VII, VIII or IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently hydrogen or phosphate;
R6 is alkyl; and
X is O, S, SO2 or CH2. hi a second preferred subembodiment, a compound of Formula VII, VIII or IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are hydrogens;
R6 is alkyl; and
X is O, S, SO2 or CH2.
In a third preferred subembodiment, a compound of Formula VII, NIII or IX, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently hydrogen or phosphate;
R is alkyl; and
X is O.
In a eighth principal embodiment, a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000027_0001
(X) (XI) (XII) wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 or R3 is independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl)2;
R7 is hydrogen, OR3, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH , -NH(lower alkyl), -NH(acyl), - N(loweralkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
In a first preferred subembodiment, a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently hydrogen or phosphate;
R6 is alkyl; and
X is O, S, SO2 or CH2.
In a second preferred subembodiment, a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are hydrogens;
R6is alkyl; and
X is O, S, SO2 or CH2. hi a third preferred subembodiment, a compound of Formula X, XI or XII, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H or phosphate;
R6 is alkyl; and
X is O. In even more preferred subembodfments, a compound of Formula XI, or its pharmaceutically acceptable salt or prodrug, is provided:
Figure imgf000029_0001
(XI) wherein:
Base is a purine or pyrimidine base as defined herein; optionally substituted with an amine or cyclopropyl (e.g., 2-amino, 2,6-diamino or cyclopropyl guanosine); and
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo i ■s capable of provi •ding a compound wherein R 1 or R9 is independently H or phosphate.
In a ninth principal embodiment a compound selected from Formula XIII, XIV or XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided:
Figure imgf000029_0002
(XIII) (XIV) (XV) wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 or R is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO , NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl) ; and
X is O, S, SO2 or CH2.
In a first preferred subembodiment, a compound of Formula XIII, XIN or XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently hydrogen or phosphate;
R6 is alkyl; and
X is O, S, SO2 or CH2.
In a second preferred subembodiment, a compound of Formula XIII, XIV or XV, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are hydrogens;
R6 is alkyl; and
X is O, S, SO2 or CH2.
In a third preferred subembodiment, a compound of Formula XIII, XIV or XN, or a pharmaceutically acceptable salt or prodrug thereof, is provided wherein:
Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently hydrogen or phosphate;
R6 is alkyl; and
X is O. In a tenth principal embodiment the invention provides a compound of Formula XVI, or a pharmaceutically acceptable salt or prodrug thereof:
Figure imgf000031_0001
(XVI) wherein:
Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO , NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl) , -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10 can come together to form a pi bond; and
X is O, S, SO2 or CH2. In a first preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl; (4) R7 and R9 are independently OR2, alkyl, alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(loweralkyl)amino; (5) R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O, S, SO2 or CH2. hi a second preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl, alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O, S, SO2 or CH2.
In a third preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl, alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R9 are independently OR2, alkyl, alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(loweralkyl)amino; (5) R8 and R10 are H; and (6) X is O, S, SO2 or CH2.
In a fourth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl, alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently OR2, alkyl, alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (5) R and R are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.
In a fifth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R
Figure imgf000034_0001
is alkyl; (4) R7 and R9 are independently OR1; (5) R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O, S, SO2 or CH .
In a sixth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R is alkyl; (4) R7 and R9 are independently OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (5) R8 and R10 are H; and (6) X is O, S, SO2, or CH2.
In a seventh preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl; (4) R7 and R9 are independently OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(loweralkyl)amino; (5) R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O. hi a eighth prefened subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when admimstered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R8 and R10 are hydrogen; and (6) X is O, S, SO2 or CH2.
In a ninth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O.
In a tenth prefened subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R are independently OR , alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O- alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (5) R8 and R10 are hydrogen; and (6) X is O. hi an eleventh preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO , amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R8 and R10 are hydrogen; and (6) X is O, S, SO2 or CH2.
In a twelfth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate; (3) R6 is alkyl; (4) R7 and R9 are independently OR2; (5) R8 and R10 are hydrogen; and (6) X is O, S, SO2, or CH2. hi a thirteenth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or
1 f pyrimidine base as defined herein; (2) R is independently H or phosphate; (3) R is alkyl; (4) R7 and R9 are independently OR2; (5) R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.
In a fourteenth preferred subembodiment, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate; (3) R6 is alkyl; (4) R7 and R9 are independently OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(loweralkyl)amino; (5) R8 and R10 are hydrogen; and (6) X is O.
In even more prefened subembodiments, a compound of Formula XVI, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is guanine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is cytosine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is thymine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is uracil; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is phosphate; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is ethyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) Rδ is propyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is butyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 is hydrogen and R9 is hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is S;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is SO2;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 and R10 are hydrogen; and (6) X is CH2;
In a eleventh principal embodiment the invention provides a compound of Formula XVII, or a pharmaceutically acceptable salt or prodrug thereof:
Figure imgf000038_0001
(XVII) wherein:
Base is a purine or pyrimidine base as defined herein;
R1 is H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl) , -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, - NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl) ;
R10 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a pi bond; and
X is O, S, SO2 or CH2.
In a first preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br- vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(loweralkyl)- amino; (5) R10 is H; and (6) X is O, S, SO2, or CH2.
In a second preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R10 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O, S, SO2 or CH2. hi a third preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br- vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(loweralkyl)- amino; (5) R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O.
In a fourth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO , amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R10 is H; and (6) X is O, S, SO2 or CH2.
In a fifth preferred subembodiment, a compound of Formula XVII, or its pharaiaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O.
In a sixth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is mdependently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7
0 9 and R are independently hydrogen, OR , alkyl (including lower alkyl), alkenyl, alkynyl, Br- vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (5) R10 is H; and (6) X is O.
In a seventh preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R10 is H; and (6) X is O.
In an eighth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate; (3) R6 is alkyl; (4) R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(loweralkyl)-amino; (5) R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O, S, SO2, or CH2.
In a ninth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R10 is H; and (6) X is O, S, SO2, or CH2.
In a tenth preferred subembodiment, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate; (3) R6 is alkyl; (4) R7 and R9 are independently OR2; (5) R10 is H; and (6) X is O, S, SO2, or CH2. hi even more preferred subembodiments, a compound of Formula XVII, or its pharmaceutically acceptable salt or prodrug, is provided in which:
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O;
(1) Base is guanine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O;
(1) Base is cytosine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O;
(1) Base is thymine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O;
(1) Base is uracil; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is phosphate; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is ethyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O; (1) Base is adenine; (2) R1 is hydrogen; (3) R6 is propyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is butyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is S;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is SO2; or
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R10 is hydrogen; and (6) X is CH2.
In an twelfth principal embodiment the invention provides a compound of Formula XVIII, or a pharmaceutically acceptable salt or prodrug thereof:
Figure imgf000043_0001
(XVIII) wherein:
Base is a purine or pyrimidine base as defined herein;
R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br- vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -NH(acyl), - N(lower alkyl)2, -N(acyl)2;
R and R are independently hydrogen, OR , alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, lower alkylamino, or di(loweralkyl)amino;
R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a pi bond;
X is O, S, SO2 or CH2.
In a first preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl; (4) R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino or di(loweralkyl)amino; (5) R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; and (6) X is O, S, SO2 or CH2. hi a second preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino or di-(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R8 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O, S, SO2 or CH2. hi a third preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(lower-alkyl)amino; (4) R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br- vinyl, O-alkenyl, chlorine, bromine, iodine, NO , amino, loweralkylamino, or di(loweralkyl)amino; (5) R8 is H; and (6) X is O, S, SO2 or CH2.
In a fourth preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br- vinyl, O-alkenyl, chlorine, bromine, iodine, NO , amino, loweralkylamino, or di(loweralkyl)amino; (5) R8 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.
In a fifth preferred subembodiment, a compound of Formula XNTfl, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, ΝO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R8 is H; and (6) X is O, S, SO2, or CH2.
In a sixth prefened subembodiment, a compound of Formula XVIII, or its pharaiaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R8 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; and (6) X is O.
In a seventh preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (4) R7
0 9 and R are independently hydrogen, OR , alkyl (including lower alkyl), alkenyl, alkynyl, Br- vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino; (5) R8 is H; and (6) X is O.
In an eighth prefened subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate; (3) R6 is alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, hydroxy, O-alkyl, O-alkenyl, chloro, bromo, fluoro, iodo, NO2, amino, loweralkylamino or di(loweralkyl)amino; (4) R7 and R9 are independently OR2; (5) R8 is H; and (6) X is O, S, SO2 or CH2.
In a ninth preferred subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R1 is independently H or phosphate; (3) R6 is alkyl; (4) R7 and R9 are independently OR2; (5) R8 is H; and (6) X is O, S, SO2, or CH2.
In a tenth prefened subembodiment, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which: (1) Base is a purine or pyrimidine base as defined herein; (2) R is independently H or phosphate; (3) R is alkyl; (4) R7 and R9 are independently OR2; (5) R8 is H; and (6) X is O. i even more prefened subembodiments, a compound of Formula XVIII, or its pharmaceutically acceptable salt or prodrug, is provided in which:
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is O;
(1) Base is guanine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is O; (1) Base is cytosine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is O;
(1) Base is thymine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is O;
(1) Base is uracil; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5)
R is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is phosphate; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is ethyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is propyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is butyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is O;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is S;
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is SO2; or
(1) Base is adenine; (2) R1 is hydrogen; (3) R6 is methyl; (4) R7 and R9 are hydroxyl; (5) R8 is hydrogen; and (6) X is CH2.
The /3-D- and /3-L-nucleosides of this invention belong to a class, of anti-flavivirus or pestivirus agents that may inhibit flavivirus or pestivirus polymerase activity. Nucleosides can be screened for their ability to inhibit flavivirus or pestivirus polymerase activity in vitro according to screening methods set forth more particularly herein. One can readily determine the spectrum of activity by evaluating the compound in the assays described herein or with another confirmatory assay.
In one embodiment the efficacy of the anti-flavivirus or pestivirus compound is measured according to the concentration of compound necessary to reduce the plaque number ofthe virus in vitro, according to methods set forth more particularly herein, by 50% (i.e. the compound's EC50). hi preferred embodiments the compound exhibits an EC50 of less than 15 or 10 micromolar. HCV is a member ofthe Flaviviridae family; however, now, HCV has been placed in a new monotypic genus, hepacivirus. Therefore, in one embodiment, the flavivirus or pestivirus is not HCV.
The active compound can be administered as any salt or prodrug that upon administration to the recipient is capable of providing directly or indirectly the parent compound, or that exhibits activity itself. Nonlimiting examples are the pharmaceutically acceptable salts (alternatively refened to as "physiologically acceptable salts"), and a compound, which has been alkylated or acylated at the 5 '-position, or on the purine or pyrimidine base (a type of "pharmaceutically acceptable prodrug"). Further, the modifications can affect the biological activity ofthe compound, in some cases increasing the activity over the parent compound. This can easily be assessed by preparing the salt or prodrug and testing its antiviral activity according to the methods described herein, or other methods known to those skilled in the art.
II. Definitions
The term alkyl, as used herein, unless otherwise specified, refers to a saturated straight, branched, or cyclic, primary, secondary, or tertiary hydrocarbon of typically to C10, and specifically includes methyl, trifluoromethyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl. The term includes both substituted and unsubstituted alkyl groups. Moieties with which the alkyl group can be substituted are selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al, Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, hereby incorporated by reference.
The term lower alkyl, as used herein, and unless otherwise specified, refers to a to C4 saturated straight, branched, or if appropriate, a cyclic (for example, cyclopropyl) alkyl group, including both substituted and unsubstituted forms. Unless otherwise specifically stated in this application, when alkyl is a suitable moiety, lower alkyl is preferred. Similarly, when alkyl or lower alkyl is a suitable moiety, unsubstituted alkyl or lower alkyl is prefened.
The term alkylamino or arylamino refers to an amino group that has one or two alkyl or aryl substituents, respectively. The term "protected" as used herein and unless otherwise defined refers to a group that is added to an oxygen, nitrogen, or phosphorus atom to prevent its further reaction or for other purposes. A wide variety of oxygen and nitrogen protecting groups are known to those skilled in the art of organic synthesis.
The term aryl, as used herein, and unless otherwise specified, refers to phenyl, biphenyl, or naphthyl, and preferably phenyl. The term includes both substituted and unsubstituted moieties. The aryl group can be substituted with one or more moieties selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al, Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
The temi alkaryl or alkylaryl refers to an alkyl group with an aryl substituent. The term aralkyl or arylalkyl refers to an aryl group with an alkyl substituent.
The term halo, as used herein, includes chloro, bromo, iodo, and fluoro.
The term purine or pyrimidine base includes, but is not limited to, adenine, N - alkylpurines, N6-acylpurines (wherein acyl is C(O)(alkyl, aryl, alkylaryl, or arylalkyl), N6- benzylpurine, N6-halopurine, N6-vinylpurine, N6-acetylenic purine, N6-acyl purine,
N -hydroxyalkyl purine, N -thioalkyl purine, N -alkylpurines, N -alkyl-6-thiopurines, thymine, cytosine, 5-fluorocytosine, 5-methylcytosine, 6-azapyrimidine, including 6- azacytosine, 2- and/or 4-mercaptopyrmidine, uracil, 5-halouracil, including 5-fluorouracil, C5-alkylpyrimidines, C5-benzylpyrimidines, C5-halopyrimidines, C5-vinylpyrimidine, C5- acetylenic pyrimidine, C5-acyl pyrimidine, C5-hydroxyalkyl purine, C5-amidoρyrimidine, C5- cyanopyrimidine, C5-nitropyrimidine, C5-aminopyrimidine, N2-alkylpurines, N2-alkyl-6- thiopurines, 5-azacytidinyl, 5-azauracilyl, triazolopyridinyl, imidazolopyridinyl, pynolopyrimidinyl, and pyrazolo-pyrimidinyl. Purine bases include, but are not limited to, guanine, adenine, hypoxanthine, 2,6-diaminopurine, and 6-chloropurine. Functional oxygen and nitrogen groups on the base can be protected as necessary or desired. Suitable protecting groups are well known to those skilled in the art, and include tnmethylsilyl, dimethylhexylsilyl, t-butyldimethylsilyl and t-butyldiphenylsilyl, trityl, alkyl groups, and acyl groups such as acetyl and propionyl, methanesulfonyl, and p-toluenesulfonyl. Alternatively, the purine or pyrimidine base can optionally substituted such that it forms a viable prodrug, which can be cleaved in vivo. Examples of appropriate substituents include acyl moiety, an amine or cyclopropyl (e.g., 2-amino, 2,6-diamino or cyclopropyl guanosine).
The term acyl refers to a carboxylic acid ester in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic alkyl or lower alkyl, alkoxyalkyl including methoxymethyl, aralkyl including benzyl, aryloxyalkyl such as phenoxymethyl, aryl including phenyl optionally substituted with halogen, to C4 alkyl or C\ to C alkoxy, sulfonate esters such as alkyl or aralkyl sulphonyl including methanesulfonyl, the mono, di or triphosphate ester, trityl or monomethoxytrityl, substituted benzyl, trialkylsilyl (e.g. dimethyl- t-butylsilyl) or diphenylmethylsilyl. Aryl groups in the esters optimally comprise a phenyl group. The term "lower acyl" refers to an acyl group in which the non-carbonyl moiety is lower alkyl.
As used herein, the term "substantially free of or "substantially in the absence of refers to a nucleoside composition that includes at least 85 or 90% by weight, preferably 95% to 98 % by weight, and even more preferably 99% to 100% by weight, of the designated enantiomer of that nucleoside. In a preferred embodiment, in the methods and compounds of this invention, the compounds are substantially free of enantiomers.
Similarly, the term "isolated" refers to a nucleoside composition that includes at least 85 or 90% by weight, preferably 95% to 98 % by weight, and even more preferably 99% to 100% by weight, of the nucleoside, the remainder comprising other chemical species or enantiomers.
The term "independently" is used herein to indicate that the variable, which is independently applied, varies independently from application to application. Thus, in a compound such as R"XYR", wherein R" is "independently carbon or nitrogen," both R" can be carbon, both R" can be nitrogen, or one R" can be carbon and the other R" nitrogen.
The terai host, as used herein, refers to an unicellular or multicellular organism in which the virus can replicate, including cell lines and animals, and preferably a human. Alternatively, the host can be carrying a part of the flavivirus or pestivirus genome, whose replication or function can be altered by the compounds of the present invention. The term host specifically refers to infected cells, cells transfected with all or part of the flavivirus or pestivirus genome and animals, in particular, primates (including chimpanzees) and humans. In most animal applications ofthe present invention, the host is a human patient. Veterinary applications, in certain indications, however, are clearly anticipated by the present invention (such as chimpanzees).
The term "pharmaceutically acceptable salt or prodrug" is used throughout the specification to describe any pharmaceutically acceptable form (such as an ester, phosphate ester, salt of an ester or a related group) of a nucleoside compound which, upon administration to a patient, provides the nucleoside compound. Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic or organic bases and acids. Suitable salts include those derived from alkali metals such as potassium and sodium, alkaline earth metals such as calcium and magnesium, among numerous other acids well known in the pharmaceutical art. Pharmaceutically acceptable prodrugs refer to a compound that is metabolized, for example hydrolyzed or oxidized, in the host to form the compound of the present invention. Typical examples of prodrugs include compounds that have biologically labile protecting groups on a functional moiety of the active compound. Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, dephosphorylated to produce the active compound. The compounds of this invention possess antiviral activity against flavivirus or pestivirus, or are metabolized to a compound that exhibits such activity.
III. Nucleotide Salt or Prodrug Formulations
In cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compound as a pharmaceutically acceptable salt may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids, which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, - ketoglutarate, and α-glycerophosphate. Suitable inorganic salts may also be formed, including, sulfate, nitrate, bicarbonate, and carbonate salts.
Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made. Any of the nucleosides described herein can be administered as a nucleotide prodrug to increase the activity, bioavailabihty, stability or otherwise alter the properties of the nucleoside. A number of nucleotide prodrug ligands are known. In general, alkylation, acylation or other lipophilic modification of the mono, di or triphosphate of the nucleoside will increase the stability of the nucleotide. Examples of substituent groups that can replace one or more hydrogens on the phosphate moiety are alkyl, aryl, steroids, carbohydrates, including sugars, 1,2-diacylglycerol and alcohols. Many are described in R. Jones and N. Bischofberger, Antiviral Research, 27 (1995) 1-17. Any of these can be used in combination with the disclosed nucleosides to achieve a desired effect.
The active nucleoside can also be provided as a 5'-phosphoether lipid or a 5 '-ether lipid, as disclosed in the following references, which are incorporated by reference herein: Kucera, L.S., N. Iyer, E. Leake, A. Raben, Modest E.K., D.L.W., and C. Piantadosi, "Novel membrane-interactive ether lipid analogs that inhibit infectious H1N-1 production and induce defective virus formation," AIDS Res. Hum. Retro Viruses, 1990, 6, 491-501; Piantadosi, C, J. Marasco C.J., S.L. Morris-Νatschke, K.L. Meyer, F. Gumus, J.R. Surles, K.S. Ishaq, L.S. Kucera, Ν. Iyer, CA. Wallen, S. Piantadosi, and E.J. Modest, "Synthesis and evaluation of novel ether lipid nucleoside conjugates for anti-HIV activity," J. Med. Chem., 1991, 34, 1408-1414; Hosteller, K.Y., D.D. Richman, D.A. Carson, L.M. Stuhmiller, G.M. T. van Wijk, and H. van den Bosch, "Greatly enhanced inhibition of human immunodeficiency virus type 1 replication in CEM and HT4-6C cells by 3'-deoxythymidine diphosphate dimyristoylglycerol, a lipid prodrug of 3,-deoxythymidine," Antimicrob. Agents Chemother., 1992, 36, 2025-2029; Hosetler, K.Y., L.M. Stuhmiller, H.B. Lenting, H. van den Bosch, and D.D. Richman, "Synthesis and antiretroviral activity of phospholipid analogs of azidothymidine and other antiviral nucleosides." J. Biol. Chem., 1990, 265, 61127.
Nonlimiting examples of U.S. patents that disclose suitable lipophilic substituents that can be covalently incorporated into the nucleoside, preferably at the 5' -OH position of the nucleoside or lipophilic preparations, include U.S. Patent Nos. 5,149,794 (Sep. 22, 1992, Yatvin et al); 5,194,654 (Mar. 16, 1993, Hostetler et al, 5,223,263 (June 29, 1993, Hostetler et al.); 5,256,641 (Oct. 26, 1993, Yatvin et al.); 5,411,947 (May 2, 1995, Hostetler et al.); 5,463,092 (Oct. 31, 1995, Hostetler et al); 5,543,389 (Aug. 6, 1996, Yatvin et al.); 5,543,390 (Aug. 6, 1996, Yatvin et al); 5,543,391 (Aug. 6, 1996, Yatvin et al.); and 5,554,728 (Sep. 10, 1996; Basava et al.), all of which are incorporated herein by reference. Foreign patent applications that disclose lipophilic substituents that can be attached to the nucleosides ofthe present invention, or lipophilic preparations, include WO 89/02733, WO 90/00555, W0 91/16920, W0 91/18914, W0 93/00910, W0 94/26273, WO 96/15132, EP 0 350 287, EP 93917054.4, and WO 91/19721.
IV. Combination and Alternation Therapy
It has been recognized that drug-resistant variants of viruses can emerge after prolonged treatment with an antiviral agent. Drug resistance most typically occurs by mutation of a gene that encodes for an enzyme used in viral replication. The efficacy of a drug against flavivirus or pestivirus infection can be prolonged, augmented, or restored by administering the compound in combination or alternation with a second, and perhaps third, antiviral compound that induces a different mutation from that caused by the principle drug. Alternatively, the pharmacokinetics, biodistribution or other parameter of the drug can be altered by such combination or alternation therapy. In general, combination therapy is typically preferred over alternation therapy because it induces multiple simultaneous stresses on the virus.
Nonlimiting examples of antiviral agents that can be used in combination or alternation with the compounds disclosed herein include:
(1) an interferon and/or ribavirin (Battaglia, A.M. et al, Ann. Pharmacother. 34:487- 494, 2000); Berenguer, M. et al. Antivir. Ther. 3(Suppl. 3):125-136, 1998);
(2) Substrate-based NS3 protease inhibitors (Attwood et al, Antiviral peptide derivatives, PCT WO 98/22496, 1998; Attwood et al, Antiviral Chemistry and Chemotherapy 10.259-273, 1999; Attwood et al, Preparation and use of amino acid derivatives as anti-viral agents, German Patent Publication DE 19914474; Tung et al. Inhibitors of serine proteases, particularly hepatitis C virus NS3 protease, PCT WO 98/17679), including alphaketoamides and hydrazinoureas, and inhibitors that terminate in an electrophile such as a boronic acid or phosphonate. Llinas-Brunet et al, Hepatitis C inhibitor peptide analogues, PCT WO 99/07734.
(3) Non-substrate-based inhibitors such as 2,4,6-trihydroxy-3-nitro-benzamide derivatives(Sudo K. et al, Biochemical and Biophysical Research Communications, 238:643- 647, 1997; Sudo K. et al. Antiviral Chemistry and Chemotherapy 9:186, 1998), including RD3-4082 and RD3-4078, the former substituted on the amide with a 14 carbon chain and the latter processing a αr -phenoxyphenyl group;
(4) Thiazolidine derivatives which show relevant inhibition in a reverse-phase HPLC assay with an NS3/4A fusion protein and NS5A/5B substrate (Sudo K. et al, Antiviral Research 32:9-18, 1996), especially compound RD-1-6250, possessing a fused cinnamoyl moiety substituted with a long alkyl chain, RD4 6205 and RD4 6193;
(5) Thiazolidines and benzanilides identified in Kakiuchi N. et al. J. EBS Letters 421:217-220; TakeshitaN. et al Analytical Biochemistry 24 -.242-246, 1997;
(6) A phenan-threnequinone possessing activity against protease in a SDS-PAGE and autoradiography assay isolated from the fermentation culture broth of Streptomyces sp., Sch 68631 (Chu M. et al, Tetrahedron Letters 37:7229-7232, 1996), and Sch 351633, isolated from the fungus Penicillium griscofuluum, which demonstrates activity in a scintillation proximity assay (Chu M. et al, Bioorganic and Medicinal Chemistry Letters 9:1949-1952);
(7) Selective NS3 inhibitors based on the macromolecule elgin c, isolated from leech (Qasim M.A. et al, Biochemistry 36:1598-1607, 1997);
(8) Helicase inhibitors (Diana G.D. et al, Compounds, compositions and methods for treatment of hepatitis C, U.S. Patent No. 5,633,358; Diana G.D. et al, Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis C, PCT WO 97/36554);
(9) Polymerase inhibitors such as nucleotide analogues, gliotoxin (Fenari R. et al. Journal of Virology 73:1649-1654, 1999), and the natural product cerulenin (Lohmann V. et al, Virology 249:108-118, 1998);
(10) Antisense phosphorothioate oligodeoxynucleotides (S-ODN) complementary to sequence stretches in the 5' non-coding region (NCR) of the virus (Alt M. et al, Hepatology 22:707-717, 1995), or nucleotides 326-348 comprising the 3' end ofthe NCR and nucleotides 371-388 located in the core coding region of the IICV RNA (Alt M. et al, Archives of Virology 142:589-599, 1997; Galderisi U et al, Journal of Cellular Physiology 181:251-257, 1999);
(11) Inhibitors of IRES-dependent translation (Ikeda N et al, Agent for the prevention and treatment of hepatitis C, Japanese Patent Publication JP-08268890; Kai Y. et al. Prevention and treatment of viral diseases, Japanese Patent Publication JP-10101591); (12) Nuclease-resistant ribozymes. (Maccjak D.J. et al, Hepatology 30 abstract 995, 1999); and
(13) Other miscellaneous compounds including 1-amino-alkylcyclohexanes (U.S. Patent No. 6,034,134 to Gold et al), alkyl lipids (U.S. Patent No. 5,922,757 to Chojkier et al), vitamin E and other antioxidants (U.S. Patent No. 5,922,757 to Chojkier et al), squalene, amantadine, bile acids (U.S. Patent No. 5,846,964 to Ozeki et al), N- (phosphonoacetyl)-L-aspartic acid, (U.S. Patent No. 5,830,905 to Diana et al), benzenedicarboxamides (U.S. Patent No. 5,633,388 to Diana et al), polyadenylic acid derivatives (U.S. Patent No. 5,496,546 to Wang et al), 2',3'-dideoxyinosine (U.S. Patent No. 5,026,687 to Yarchoan et al), and benzimidazoles (U.S. Patent No. 5,891,874 to Colacino et al).
V. Pharmaceutical Compositions
Host, including humans, infected with flavivirus or pestivirus, or a gene fragment thereof can be treated by administering to the patient an effective amount of the active compound or a pharmaceutically acceptable prodrug or salt thereof in the presence of a pharmaceutically acceptable carrier or diluent. The active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid or solid form.
A prefened dose of the compound for flavivirus or pestivirus infection will be in the range from about 1 to 50 mg/kg, preferably 1 to 20 mg/kg, of body weight per day, more generally 0.1 to about 100 mg per kilogram body weight of the recipient per day. The effective dosage range of the pharmaceutically acceptable salts and prodrugs can be calculated based on the weight ofthe parent nucleoside to be delivered. If the salt or prodrug exhibits activity in itself, the effective dosage can be estimated as above using the weight of the salt or prodrug, or by other means known to those skilled in the art.
The compound is conveniently administered in unit any suitable dosage form, including but not limited to one containing 7 to 3000 mg, preferably 70 to 1400 mg of active ingredient per unit dosage form. A oral dosage of 50-1000 mg is usually convenient.
Ideally the active ingredient should be administered to achieve peak plasma concentrations ofthe active compound of from about 0.2 to 70 μM, preferably about 1.0 to 10 μM. This may be achieved, for example, by the intravenous injection of a 0.1 to 5% solution of the active ingredient, optionally in saline, or administered as a bolus of the active ingredient.
The concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment ofthe person administering or supervising the administration ofthe compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
A prefened mode of administration of the active compound is oral. Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part ofthe composition.
The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. When the dosage unit form is a capsule, it can contain, in addition to material ofthe above type, a liquid carrier such as a fatty oil. hi addition, dosage unit forms can contain various other materials which modify the physical form ofthe dosage unit, for example, coatings of sugar, shellac, or other enteric agents.
The compound can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. The compound or a pharmaceutically acceptable prodrug or salts thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, anti-inflammatories, or other antivirals, including other nucleoside compounds. Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
If administered intravenously, prefened carriers are physiological saline or phosphate buffered saline (PBS).
In a prefened embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation.
Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) are also prefened as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives is then introduced into the container. The container is then swirled by hand to free lipid material from the sides ofthe container and to disperse lipid aggregates, thereby forming the liposomal suspension. VI. Processes for the Preparation of Active Compounds
The nucleosides of the present invention can be synthesized by any means known in the art. In particular, the synthesis of the present nucleosides can be achieved by either alkylating the appropriately modified sugar, followed by glycosylation or glycosylation followed by alkylation of the nucleoside. The following non-limiting embodiments illustrate some general methodology to obtain the nucleosides ofthe present invention.
A. General Synthesis of 1 '-C-Branched Nucleosides
l'-C-Branched ribonucleosides ofthe following structure:
Figure imgf000059_0001
wherein BASE is a purine or pyrimidine base as defined herein;
7 0 9
R and R are independently hydrogen, OR , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl) , -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10can come together to form a pi bond;
1 9
R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate;
R6 is an alkyl, halogeno-alkyl (i.e. CF3), alkenyl, or alkynyl (i.e. allyl); and X is O, S, SO2 or CH2 can be prepared by one ofthe following general methods.
1) Modification from the lactone
The key starting material for this process is an appropriately substituted lactone. The lactone can be purchased or can be prepared by any known means including standard epimerization, substitution and cyclization techniques. The lactone can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991. The protected lactone can then be coupled with a suitable coupling agent, such as an organometallic carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R6-SiMe3 in TBAF with the appropriate non-protic solvent at a suitable temperature, to give the l'-alkylated sugar.
The optionally activated sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994. For example, an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature.
Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
In a particular embodiment, the l'-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in Scheme 1. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction. Scheme 1
Figure imgf000061_0001
1) Coupling
2) Optional Deprotection
Figure imgf000061_0002
Optional Deprotection
Figure imgf000061_0003
2. Alternative method for the preparation of 1 '-C-branched nucleosides
The key starting material for this process is an appropriately substituted hexose. The hexose can be purchased or can be prepared by any known means including standard epimerization (e.g. via alkaline treatment), substitution and coupling techniques. The hexose can be selectively protected to give the appropriate hexa-furanose, as taught by Townsend Chemistry of Nucleosides and Nucleotides. Plenum Press, 1994.
The 1 '-hydroxyl can be optionally activated to a suitable leaving group such as an acyl group or a halogen via acylation or halogenation, respectively. The optionally activated sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994. For example, an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature. Alternatively, a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate. The l'-CH2-OH, if protected, can be selectively deprotected by methods well known in the art. The resultant primary hydroxyl can be functionalized to yield various C-branched nucleosides. For example, the primary hydroxyl can be reduced to give the methyl, using a suitable reducing agent. Alternatively, the hydroxyl can be activated prior to reduction to facilitate the reaction; i.e. via the Barton reduction. In an alternate embodiment, the primary hydroxyl can be oxidized to the aldehyde, then coupled with a carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R6-SiMe3 in TBAF with the appropriate non-protic solvent at a suitable temperature.
In a particular embodiment, the 1 '-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in Scheme 2. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent. Optionally, the 2 '-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
Scheme 2
Figure imgf000062_0001
hi addition, the L-enantiomers conesponding to the compounds of the invention can be prepared following the same general methods (1 or 2), beginning with the conesponding L-sugar or nucleoside L-enantiomer as starting material. B . General Synthesis of 2 ' -C-Branched Nucleosides
2'-C-Branched ribonucleosides ofthe following structure:
Figure imgf000063_0001
wherein BASE is a purine or pyrimidine base as defined herein;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a pi bond;
1 9
R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate;
R6 is an alkyl, halogeno-alkyl (i.e. CF3), alkenyl, or alkynyl (i.e. allyl); and
X is O, S, SO2 or CH2 can be prepared by one ofthe following general methods.
1. Glycosylation ofthe nucleobase with an appropriately modified sugar
The key starting material for this process is an appropriately substituted sugar with a 2' -OH and 2'-H, with the appropriate leaving group (LG), for example an acyl group or a halogen. The sugar can be purchased or can be prepared by any known means including standard epimerization, substitution, oxidation and reduction techniques. The substituted sugar can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2'-modified sugar. Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins 's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO2, ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl2-pyridine, H2O2- ammonium molybdate, NaBrO2-CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and N-bromosuccinimide.
Then coupling of an organometallic carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R6-SiMe3 in TBAF with the ketone with the appropriate non-protic solvent at a suitable temperature, yields the 2'-alkylated sugar. The alkylated sugar can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
The optionally protected sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994. For example, an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature. Alternatively, a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate.
Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991. hi a particular embodiment, the 2'-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in Scheme 3. Altematively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis. John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
Scheme 3
Figure imgf000065_0001
1) Coupling
2) Optional Deprotection
Figure imgf000065_0002
2. Modification of a pre-formed nucleoside
The key starting material for this process is an appropriately substituted nucleoside with a 2'-OH and 2'-H. The nucleoside can be purchased or can be prepared by any known means including standard coupling techniques. The nucleoside can be optionally protected with suitable protecting groups, preferably with acyl or silyl groups, by methods well known to those skilled in the art, as taught by Greene et al Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
The appropriately protected nucleoside can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2'-modified sugar. Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins 's reagent (dipyridine Cr(NI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO2, ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl2-pyridine, H O2-ammonium molybdate, ΝaBrO -CAΝ, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and iV-bromosuccinimide.
Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by GreeneGreene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
In a particular embodiment, the 2 '-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in Scheme 4. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
Scheme 4
Figure imgf000067_0001
Optional Deprotection
Figure imgf000067_0002
Optional Deprotection
Figure imgf000067_0003
In another embodiment of the invention, the L-enantiomers are desired. Therefore, the L-enantiomers can be conesponding to the compounds of the invention can be prepared following the same foregoing general methods, beginning with the conesponding L-sugar or nucleoside L-enantiomer as starting material.
C. General Synthesis of 3 '-C-Branched Nucleosides
3'-C-Branched ribonucleosides ofthe following structure:
Figure imgf000067_0004
wherein BASE is a purine or pyrimidine base as defined herein;
"7 Q 9
R and R are independently hydrogen, OR , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R is H, alkyl (including lower alkyl), chlonne, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a pi bond;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 is independently H or phosphate;
R6 is an alkyl, halogeno-alkyl (i.e. CF3), alkenyl, or alkynyl (i.e. allyl); and
X is O, S, SO2 or CH2 can be prepared by one ofthe following general methods.
1 Glycosylation ofthe nucleobase with an appropriately modified sugar
The key starting material for this process is an appropriately substituted sugar with a 3' -OH and 3'-H, with the appropriate leaving group (LG), for example an acyl group or a halogen. The sugar can be purchased or can be prepared by any known means including standard epimerization, substitution, oxidation and reduction techniques. The substituted sugar can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 3 '-modified sugar. Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO2, ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl2-pyridine, H2O2- ammonium molybdate, NaBrO2-CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and N-bromosuccinimide.
Then coupling of an organometallic carbon nucleophile, such as a Grignard reagent, an organolithium, lithium dialkylcopper or R -SiMe3 in TBAF with the ketone with the appropriate non-protic solvent at a suitable temperature, yields the 3 '-C-branched sugar. The 3 '-C-branched sugar can be optionally protected with a suitable protecting group, preferably with an acyl or silyl group, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
The optionally protected sugar can then be coupled to the BASE by methods well known to those skilled in the art, as taught by Townsend Chemistry of Nucleosides and Nucleotides, Plenum Press, 1994. For example, an acylated sugar can be coupled to a silylated base with a lewis acid, such as tin tetrachloride, titanium tetrachloride or trimethylsilyltriflate in the appropriate solvent at a suitable temperature. Alternatively, a halo-sugar can be coupled to a silylated base with the presence of trimethylsilyltriflate.
Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
In a particular embodiment, the 3 '-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in Scheme 5. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent. Optionally, the 2'-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
Scheme 5
Figure imgf000070_0001
1) Coupling
2) Optional Deprotection
1) Optional Protection
2) Optional
Figure imgf000070_0003
Figure imgf000070_0002
Reduction tion
Figure imgf000070_0004
2. Modification of a pre-formed nucleoside
The key starting material for this process is an appropriately substituted nucleoside with a 3'-OH and 3'-H. The nucleoside can be purchased or can be prepared by any known means including standard coupling techniques. The nucleoside can be optionally protected with suitable protecting groups, preferably with acyl or silyl groups, by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
The appropriately protected nucleoside can then be oxidized with the appropriate oxidizing agent in a compatible solvent at a suitable temperature to yield the 2 '-modified sugar. Possible oxidizing agents are Jones reagent (a mixture of chromic acid and sulfuric acid), Collins 's reagent (dipyridine Cr(VI) oxide, Corey's reagent (pyridinium chlorochromate), pyridinium dichromate, acid dichromate, potassium permanganate, MnO2, ruthenium tetroxide, phase transfer catalysts such as chromic acid or permanganate supported on a polymer, Cl2-pyridine, H2O2-ammonium molybdate, NaBrO2-CAN, NaOCl in HOAc, copper chromite, copper oxide, Raney nickel, palladium acetate, Meerwin-Pondorf-Verley reagent (aluminum t-butoxide with another ketone) and 7V-bromosuccinimide.
Subsequently, the nucleoside can be deprotected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991.
In a particular embodiment, the 3 '-C-branched ribonucleoside is desired. The synthesis of a ribonucleoside is shown in Scheme 6. Alternatively, deoxyribo-nucleoside is desired. To obtain these nucleosides, the formed ribonucleoside can optionally be protected by methods well known to those skilled in the art, as taught by Greene et al. Protective Groups in Organic Synthesis, John Wiley and Sons, Second Edition, 1991, and then the 2'- OH can be reduced with a suitable reducing agent. Optionally, the 2 '-hydroxyl can be activated to facilitate reduction; i.e. via the Barton reduction.
Scheme 6
Figure imgf000071_0001
Optional Deprotection
Figure imgf000071_0002
Optional Deprotection
Figure imgf000071_0003
hi another embodiment of the invention, the L-enantiomers are desired. Therefore, the L-enantiomers can be conesponding to the compounds of the invention can be prepared following the same foregoing general methods, beginning with the conesponding L-sugar or nucleoside L-enantiomer as starting material.
EXAMPLES
Example 1: Preparation of l'-C-methylriboadenine via 6-amino-9-(l-deoxy-β-D- psicofuranosvDpurine
The title compound could also be prepared according to a published procedure (J. Farkas, and F. Sonn, "Nucleic acid components and their analogues. XCIV. Synthesis of 6- amino-9-(l-deoxy-β-D-psicofuranosyl)purine" Collect. Czech. Chem. Commun. 1967, 32, 2663-2667; J. Farkas", Collect. Czech. Chem. Commun. 1966, 31, 1535) (Scheme 7).
Scheme 7
6-Benzamidopurine chloromercuri salt
Figure imgf000072_0002
Figure imgf000072_0001
Figure imgf000072_0003
In a similar manner, but using the appropriate sugar and pyrimidine or purine bases, the following nucleosides of Formula I are prepared.
Figure imgf000073_0001
(I) wherein:
Figure imgf000073_0002
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0002
Alternatively, the following nucleosides of Formula IN are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000086_0001
(TV) wherein:
Figure imgf000086_0003
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0002
Alternatively, the following nucleosides of Formula VII are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000090_0001
(Nil) wherein:
Figure imgf000090_0003
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
Figure imgf000094_0001
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
Figure imgf000098_0001
Alternatively, the following nucleosides of Fonnula NIII are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000099_0001
(NIII) wherein
Figure imgf000099_0002
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0002
Alternatively, the following nucleosides of Formula IX are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000105_0001
(IX) wherein:
Figure imgf000105_0003
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0002
Alternatively, the following nucleosides of Formula XVI are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000108_0001
(XVI) wherein:
Figure imgf000108_0003
Figure imgf000109_0001
Figure imgf000110_0001
Figure imgf000111_0001
Example 2: Preparation of 2'-C-methylriboadenine
The title compound was prepared according to a published procedure (R.E. Harry- O'kuru, J.M. Smith, and M.S. Wolfe, "A short, flexible route toward 2 '-C-branched ribonucleosides", J.Org. Chem. 1991, 62, 1754-1759) (Scheme 8). Scheme 8
Figure imgf000112_0001
(a) Dess-Martin periodinane; (b) MeMgBr / TiCl4; (c) BzCl, DMAP, Et3N; (d) bis(trimethylsilyl)acetamide, N6-benzoyl adenine, TMSOTf; (e) NH3 / MeOH
In a similar manner, but using the appropriate sugar and pyrimidine or purine bases, the following nucleosides of Formula II are prepared.
Figure imgf000112_0002
(II) wherein:
Figure imgf000112_0003
ill
Figure imgf000113_0001
Figure imgf000114_0001
Figure imgf000115_0001
Figure imgf000116_0001
Figure imgf000117_0001
Figure imgf000118_0001
Figure imgf000119_0001
Figure imgf000120_0001
Figure imgf000121_0001
Figure imgf000122_0001
Figure imgf000123_0001
Figure imgf000124_0001
Figure imgf000125_0001
Alternatively, the following nucleosides of Formula V are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000126_0001
(V) wherein:
Figure imgf000126_0002
Figure imgf000127_0001
Figure imgf000128_0001
Figure imgf000129_0002
Alternatively, the following nucleosides of Formula X are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000129_0001
(X) wherein:
Figure imgf000129_0003
Figure imgf000130_0001
Figure imgf000131_0001
Figure imgf000132_0001
Figure imgf000133_0001
Figure imgf000134_0001
Figure imgf000135_0001
Figure imgf000136_0001
Figure imgf000137_0001
Figure imgf000138_0002
Alternatively, the following nucleosides of Formula XI are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000138_0001
(XI) wherein:
Figure imgf000138_0003
Figure imgf000139_0001
Figure imgf000140_0001
Figure imgf000141_0002
Alternatively, the following nucleosides of Formula XII are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000141_0001
(XII) wherein:
Figure imgf000142_0001
Figure imgf000143_0001
Figure imgf000144_0002
Alternatively, the following nucleosides of Formula XVII are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000144_0001
(XVII) wherein:
Figure imgf000145_0001
Figure imgf000146_0001
Figure imgf000147_0001
Example 3: Preparation of 3'-C-methylriboadenine
The title compound can be prepared according to a published procedure (R.F. Nutt, M. J. Dickinson, F.W. Holly, and E. Walton, "Branched-chain sugar nucleosides. in. 3 '-C- methyladenine ", J.Org. Chem. 1968, 33, 1789-1795) (Scheme 9). Scheme 9
Figure imgf000148_0001
(a) RuO2 / NaIO4; (b) MeMgl / TiCl4; (c) HCl / MeOH / H2O; (d) BzCl / pyridine; (e) AcBr, HBr / AcOH; (f) chloromercuri-6-benzamidopurine; (g) NH3 / MeOH.
In a similar manner, but using the appropriate sugar and pyrimidine or purine bases, the following nucleosides of Formula III are prepared.
Figure imgf000148_0002
(III) wherein:
Figure imgf000148_0003
Figure imgf000149_0001
Figure imgf000150_0001
Figure imgf000151_0001
Figure imgf000152_0001
Figure imgf000153_0001
Figure imgf000154_0001
Figure imgf000155_0001
Figure imgf000156_0001
Figure imgf000157_0001
Figure imgf000158_0001
Figure imgf000159_0001
Figure imgf000160_0001
Figure imgf000161_0001
Alternatively, the following nucleosides of Formula VI are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000162_0001
(Ni) wherein:
Figure imgf000162_0002
Figure imgf000163_0001
Figure imgf000164_0001
Figure imgf000165_0002
Alternatively, the following nucleosides of Formula XIII are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000165_0001
(XIII) wherein:
Figure imgf000165_0003
Figure imgf000166_0001
Figure imgf000167_0001
Figure imgf000168_0001
Figure imgf000169_0001
Figure imgf000170_0001
Figure imgf000171_0001
Figure imgf000172_0001
Figure imgf000173_0001
Figure imgf000174_0002
Alternatively, the following nucleosides of Formula XIN are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000174_0001
(XIN) wherein:
Figure imgf000174_0003
Figure imgf000175_0001
Figure imgf000176_0001
Figure imgf000177_0002
Alternatively, the following nucleosides of Formula XV are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000177_0001
(XN) wherein:
Figure imgf000177_0003
Figure imgf000178_0001
Figure imgf000179_0001
Figure imgf000180_0002
Alternatively, the following nucleosides of Formula XVIII are prepared, using the appropriate sugar and pyrimidine or purine bases.
Figure imgf000180_0001
(XVIII) wherein:
Figure imgf000180_0003
Figure imgf000181_0001
Figure imgf000182_0001
Figure imgf000183_0001
VII. Anti-Flavivirus or Pestivirus Activity
Compounds can exhibit anti-flavivirus or pestivirus activity by inhibiting flavivirus or pestivirus polymerase, by inhibiting other enzymes needed in the replication cycle, or by other pathways.
EXAMPLES
The test compounds were dissolved in DMSO at an initial concentration of 200 μM and then were serially diluted in culture medium.
Unless otherwise stated, baby hamster kidney (BHK-21) (ATCC CCL- 10) and Bos Taurus (BT) (ATCC CRL 1390) cells were grown at 37°C in a humidified CO2 (5%) atmosphere. BHK-21 cells were passaged in Eagle MEM additioned of 2 mM L-glutamine, 10% fetal bovine serum (FBS, Gibco) and Earle's BSS adjusted to contain 1.5 g/L sodium bicarbonate and 0.1 mM non-essential amino acids. BT cells were passaged in Dulbecco's modified Eagle's medium with 4 mM L-glutamine and 10% horse serum (HS, Gibco), adjusted to contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose and 1.0 mM sodium pyruvate. The vaccine strain 17D (YFV-17D) (Stamaril®, Pasteur Merieux) and Bovine Viral Dianhea virus (BVDN) (ATCC NR-534) were used to infect BHK and BT cells, respectively, in 75 cm2 bottles. After a 3 day incubation period at 37°C, extensive cytopathic effect was observed. Cultures were freeze-thawed three times, cell debris were removed by centrifugation and the supernatant was aliquoted and stored at -70°C. YFN-17D and BVDV were titrated in BHK-21 and BT cells, respectively, that were grown to confluency in 24-well plates.
Example 4; Phosphorylation Assay of Nucleoside to Active Triphosphate
To determine the cellular metabolism of the compounds, HepG2 cells were obtained from the American Type Culture Collection (Rockville, MD), and were grown in 225 cm2 tissue culture flasks in minimal essential medium supplemented with non-essential amino acids, 1% penicillin-streptomycin. The medium was renewed every three days, and the cells were subcultured once a week. After detachment ofthe adherent monolayer with a 10 minute exposure to 30 mL of trypsin-EDTA and three consecutive washes with medium, confluent HepG2 cells were seeded at a density of 2.5 x 106 cells per well in a 6-well plate and exposed to 10 μM of [3H] labeled active compound (500 dpm/pmol) for the specified time periods. The cells were maintained at 37°C under a 5% CO2 atmosphere. At the selected time points, the cells were washed three times with ice-cold phosphate-buffered saline (PBS). Intracellular active compound and its respective metabolites were extracted by incubating the cell pellet overnight at -20°C with 60% methanol followed by extraction with an additional 20 μL of cold methanol for one hour in an ice bath. The extracts were then combined, dried under gentle filtered air flow and stored at -20°C until HPLC analysis. The preliminary results ofthe HPLC analysis are tabulated in Table 1. Table 1
Figure imgf000185_0001
Example 5: Bioavailability Assay in Cynomolgus Monkeys
Within 1 week prior to the study initiation, the cynomolgus monkey was surgically implanted with a chronic venous catheter and subcutaneous venous access port (VAP) to facilitate blood collection and underwent a physical examination including hematology and serum chemistry evaluations and the body weight was recorded. Each monkey (six total), received approximately 250 uCi of 3H activity with each dose of active compound, namely β- D-2'-CH -riboG at a dose level of 10 mg/kg at a dose concentration of 5 mg/mL, either via an intravenous bolus (3 monkeys, IN), or via oral gavage (3 monkeys, PO). Each dosing syringe was weighed before dosing to gravimetrically detennine the quantity of formulation administered. Urine samples were collected via pan catch at the designated intervals (approximately 18-0 hours pre-dose, 0-4, 4-8 and 8-12 hours post-dosage) and processed. Blood samples were collected as well (pre-dose, 0.25, 0.5, 1, 2, 3, 6, 8, 12 and 24 hours post- dosage) via the chronic venous catheter and NAP or from a peripheral vessel if the chronic venous catheter procedure should not be possible. The blood and urine samples were analyzed for the maximum concentration (Cmax), time when the maximum concentration was achieved (Tmax), area under the curve (AUC), half life of the dosage concentration (T>/2), clearance (CL), steady state volume and distribution (Nss) and bioavailability (F), which are tabulated in Tables 2 and 3, and graphically illustrated in Figures 2 and 3, respectively. Table 2: Oral Bioavailability in Monkeys
Figure imgf000186_0002
Table 3: Experimental Pharmacokinetics of β-D-2'-CH3-riboG in Cynomolgus Monkeys
Figure imgf000186_0001
Example 6: Bone Marrow Toxicity Assay
Human bone marrow cells were collected from normal healthy volunteers and the mononuclear population was separated by Ficoll-Hypaque gradient centrifugation as described previously by Sommadossi J-P, Carlisle R. "Toxicity of 3'-azido-3'- deoxythymidine and 9-(l,3-dihydroxy-2-propoxymethyl)guanine for nonnal human hematopoietic progenitor cells in vitro" Antimicrobial Agents and Chemotherapy 1987; 31:452-454; and Sommadossi J-P, Schinazi RF, Chu CK, Xie M-Y. "Comparison of cytotoxicity of the (-)- and (+)-enantiomer of 2',3'-dideoxy-3'-thiacytidine in normal human bone manow progenitor cells" Biochemical Pharmacology 1992; 44:1921-1925. The culture assays for CFU-GM and BFU-E were performed using a bilayer soft agar or methylcellulose method. Drugs were diluted in tissue culture medium and filtered. After 14 to 18 days at 37°C in a humidified atmosphere of 5% CO2 in air, colonies of greater than 50 cells were counted using an inverted microscope. The results in Table 4 are presented as the percent inhibition of colony formation in the presence of drug compared to solvent control cultures. Table 4: Human Bone Marrow Toxicity CFU-GM and BFU-E Clonogenic Assays
IC50 in μM
Treatment CFU-GM BFU-E ribavirin ~ 5 ~ 1 β-D-2'-CH3-riboA > 100 > 100 β-D-2'-CH3-riboU > 100 > 100 β-D-2'-CH3-riboC > 10 > 10 β-D-2'-CH3-riboG > 10 > 100
Example 7; Mitochondria Toxicity Assay
HepG2 cells were cultured in 12-well plates as described above and exposed to various concentrations of drugs as taught by Pan-Zhou X-R, Cui L, Zhou X-J, Sommadossi J- P, Darley-Usmer NM. "Differential effects of antiretroviral nucleoside analogs on mitochondrial function in HepG2 cells" Antimicrob Agents Chemother 2000; 44:496-503. Lactic acid levels in the culture medium after 4 day drug exposure was measured using a Boehringer lactic acid assay kit. Lactic acid levels were nonnalized by cell number as measured by hemocytometer count. The prehrmnary results from this assay are tabulated in Table 5.
Table 5: Mitochondrial Toxicity Study (L-lactic acid assay)
Figure imgf000187_0002
Figure imgf000187_0001
Example 8; Cytotoxicity Assay
Cells were seeded at a rate of between 5 x 103 and 5 x 104/well into 96-well plates in growth medium overnight at 37°C in a humidified CO2 (5%) atmosphere. New growth medium containing serial dilutions ofthe drugs was then added. After incubation for 4 days, cultures were fixed in 50% TCA and stained with sulforhodamineB. The optical density was read at 550 nm. The cytotoxic concentration was expressed as the concentration required to reduce the cell number by 50% (CC50). The data is tabulated in Table 6.
Table 6: MDBK versus Human Hepatoma
Figure imgf000188_0001
Example 9; Cell Protection Assay (CPA)
The assay was performed essentially as described by Baginski, S. G.; Pevear, D. C; Seipel, M.; Sun, S. C. C; Benetatos, C. A.; Chunduru, S. K.; Rice, C. M. and M. S. Collett "Mechanism of action of a pestivirus antiviral compound" PNAS USA 2000, 97(14), 7981- 7986. MDBK cells (ATCC) were seeded onto 96-well culture plates (4,000 cells per well) 24 hours before use. After infection with BVDV (strain NADL, ATCC) at a multiplicity of infection (MOI) of 0.02 plaque forming units (PFU) per cell, serial dilutions of test compounds were added to both infected and uninfected cells in a final concentration of 0.5% DMSO in growth medium. Each dilution was tested in quadruplicate. Cell densities and virus inocula were adjusted to ensure continuous cell growth throughout the experiment and to achieve more than 90% virus-induced cell destruction in the untreated controls after four days post-infection. After four days, plates were fixed with 50% TCA and stained with sulforhodamine B. The optical density ofthe wells was read in a microplate reader at 550 nm. The 50% effective concentration (EC50) values were defined as the compound concentration that achieved 50% reduction of cytopathic effect of the virus. The results are tabulated in Table 7. Figures 4 and 5 provide a graphical illustration of the methodology used to arrive at the 50% effective concentration (EC50) values for β-D-2'-CH3-riboG and ribavirin. Figure 6 compares the results of the CPA for β-D-2'-CH3-riboG, β-D-2'-CH3-riboC, β-D-2'-CH3- riboU, β-D-2'-CH -riboA and ribavirin
Table 7: Cell Protection Assay
Figure imgf000189_0001
Example 10: Plaque Reduction Assay
For each compound the effective concentration was determined in duplicate 24-well plates by plaque reduction assays. Cell monolayers were infected with 100 PFU/well of virus. Then, serial dilutions of test compounds in MEM supplemented with 2% inactivated serum and 0.75% of methyl cellulose were added to the monolayers. Cultures were further incubated at 37°C for 3 days, then fixed with 50% ethanol and 0.8% Crystal Violet, washed and air-dried. Then plaques were counted to determine the concentration to obtain 90% virus suppression and tabulated in Table 8. Figure 7 is a graphical illustration ofthe results from the Plaque Reduction Assay. Figure 8 is an image of BVDV plaque formation in the presence of increasing concentrations of β-D-2'-CH3-riboU.
Table 8: Viral Suppression via Plaque Reduction Assay
Figure imgf000189_0002
Example 11: Yield Reduction Assay
For each compound the concentration to obtain a 6-log reduction in viral load was determined in duplicate 24-well plates by yield reduction assays. The assay was performed as described by Baginski, S. G.; Pevear, D. C; Seipel, M.; Sun, S. C. C; Benetatos, C. A.; Chunduru, S. K.; Rice, C. M. and M. S. Collett "Mechanism of action of a pestivirus antiviral compound" PNAS USA 2000, 97(14), 7981-7986, with minor modifications. Briefly, MDBK cells were seeded onto 24-well plates (2 x 105 cells per well) 24 hours before infection with BVDV (NADL strain) at a multiplicity of infection (MOI) of 0.1 PFU per cell. Serial dilutions of test compounds were added to cells in a final concentration of 0.5% DMSO in growth medium. Each dilution was tested in triplicate. After three days, cell cultures (cell monolayers and supernatants) were lysed by three freeze-thaw cycles, and virus yield was quantified by plaque assay. Briefly, MDBK cells were seeded onto 6-well plates (5 x 105 cells per well) 24 h before use. Cells were inoculated with 0.2 mL of test lysates for 1 hour, washed and overlaid with 0.5% agarose in growth medium. After 3 days, cell monolayers were fixed with 3.5% formaldehyde and stained with 1% crystal violet (w/v in 50% ethanol) to visualize plaques. The plaques were counted to determine the concentration to obtain a 6- log reduction in viral load as tabulated in Table 9. Figure 9 is a graphical illustration ofthe results from the Yield Reduction Assay. Figure 8 is an image of BVDV yield reduction in the presence of increasing concentrations of β-D-2'-CH3-riboC.
Table 9: Concentration to Obtain 6-log Reduction
Cone, for 6-log Reduction (μM) β-D-2'-CH3-riboU 120 β-D-2'-CH3-riboG 20 β-D-2'-CH3-riboC 20 β-D-2'-CH3-riboA 9
Example 12: Comparative Cytotoxicity
Table 10 summarizes the cytoxicity of two compounds of this invention, β-D-l'-CH3- riboA and β-D-2'-CH -riboA, in comparison to RBV ("ribavirin"), in various cell systems. Table 10: Comparative Cytotoxicity* (CC50)
Figure imgf000191_0002
* Compound concentration (μM) required to reduce the viability of cells by 50%.
The chemical structures for β-D-F-CH3-riboA and β-D-2'-CH3-riboA are as follows:
Figure imgf000191_0001
β-D-l'-CH3-riboA β-D-2'-CH3-riboA
Table 11 summarizes the antiviral activity of β-D-l'-CH3-riboA and β-D-2'-CH3- riboA against several viruses within the flavivirus and pestivirus genuses.
Table 11: Comparative Antiviral Activity* (EC50)
Figure imgf000191_0003
* Compound concentration (μM) required to reduce the plaque number by 50%. The following virus-cell system were used: BNDC-BT, YFN-BHK, PICO (Cosxackie Bl and Polio SabinVVSV - Vero.
Table 12 summarizes the antiviral activity and toxicity of β-D-2'-methyl-riboG, β-D- 2'-methyl-riboC and β-D-2'-methyl-riboU, against a couple of viruses within the flavivirus and pestivirus genuses. Table 12: Comparative Antiviral Activity* (EC50)
BVDV YFV
EC50* CC50** EC50* CC50** β-D-2'-CH3-riboG 2 >100 1.2 20 β-D-2'-CH3-riboC 3.7 >100 70 >100 β-D-2'-CH3-riboU 20 >100 33 >100
* Compound concentration (μM) required to reduce the plaque number by 50%. The following virus-cell system were used: BVDC-BT and YFV-BHK.
* Compound concentration (μM) required to reduce the viability of cells by 50%.
The chemical structures for β-D-2'-CH3-riboG, β-D-2'-CH3-riboC and β-D-2'-CH3- riboU are as follows:
Figure imgf000192_0001
β-D-2'-CH3-riboG β-D-2'-CH3-riboC β-D-2'-CH3-riboU
Table 13 summarizes the anti-viral activity of several compounds of this invention against BVDV in three different assays.
Table 13: for BVDV
Figure imgf000192_0002
This invention has been described with reference to its prefened embodiments. Variations and modifications ofthe invention, will be obvious to those skilled in the art from the foregoing detailed description ofthe invention.

Claims

We Claim:
1. A compound of Formula I:
Figure imgf000194_0001
(I) or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
2. A compound of Formula II:
Figure imgf000194_0002
or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
3. A compound of Formula III:
Figure imgf000195_0001
or a pharmaceutically acceptable salt thereof, wherein:
1 "
R , R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
4. A compound of Formula IV:
Figure imgf000196_0001
(IN) or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable
1 T of providing a compound wherein R , R and R are independently H or phosphate;
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
5. A compound of Formula N:
Figure imgf000197_0001
(V) or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 ^ capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
6. A compound of Formula NI:
Figure imgf000197_0002
or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharaiaceutically acceptable leaving group which when administered in vivo is
1 9 • capable of providing a compound wherein R , R and R are mdependently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
7. A compound selected from Formulas Nil, NIII and IX:
Figure imgf000198_0001
(VII) (NIII) (IX) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl),
-O(alkyl), -O(lower alkyl), -O(alkenyl), CF3> chloro, bromo, fluoro, iodo, NO2, NH2, -
NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2, or CH2.
8. A compound of Formulas X, XI and XII:
Figure imgf000199_0001
(X) (XI) (XII) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 is hydrogen, OR3, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, - NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and X is O, S, S02 or CH2.
9. A compound selected from Formulas XIII, XIV and XV:
Figure imgf000200_0001
(XIII) (XIN) (XN) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
• 1 9 " capable of providing a compound wherein R , R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, ΝO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
10. A compound of Formula XVI:
Figure imgf000200_0002
(XVI) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 capable of providing a compound wherein R and R are mdependently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl),
-O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2,
NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10 can come together to form a bond; and
X is O, S, SO2 or CH2.
11. A compound of Formula XVII:
Figure imgf000201_0001
(xvπ) or a pharmaceutically acceptable salt thereof, wherein:
Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 capable of providing a compound wherein R and R are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; R10 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a bond; and X is O, S, SO2 or CH2.
12. A compound of Formula XVIII:
Figure imgf000202_0001
(XVIII) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 capable of providing a compound wherein R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino;
R is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a bond; and
X is O, S, SO2 or CH2.
13. A compound ofthe structure:
Figure imgf000203_0001
or a pharmaceutically acceptable salt thereof.
14. A compound ofthe structure:
Figure imgf000203_0002
or a pharmaceutically acceptable salt thereof.
15. A compound ofthe structure:
Figure imgf000204_0001
or a pharmaceutically acceptable salt thereof.
16. A compound ofthe structure:
Figure imgf000204_0002
or a pharmaceutically acceptable salt thereof.
17. A compound ofthe structure:
Figure imgf000204_0003
or a pharmaceutically acceptable salt thereof.
18. A compound ofthe structure:
Figure imgf000204_0004
or a pharmaceutically acceptable salt thereof.
19. A compound ofthe structure:
Figure imgf000205_0001
or a pharmaceutically acceptable salt thereof.
20. A compound ofthe structure:
Figure imgf000205_0002
or a pharmaceutically acceptable salt thereof.
21. A compound ofthe structure:
Figure imgf000205_0003
or a pharmaceutically acceptable salt thereof.
22. A compound ofthe structure:
Figure imgf000205_0004
or a pharmaceutically acceptable salt thereof.
23. A compound ofthe structure:
Figure imgf000206_0001
or a pharmaceutically acceptable salt thereof.
24. A compound ofthe structure:
Figure imgf000206_0002
or a pharmaceutically acceptable salt thereof.
25. The compound as described in any of the preceding claims 1-24, wherein the said compound is in the form of a dosage unit.
26. The compound as described in claim 187, wherein the dosage unit contains 10 to 1500 mg of said compound.
27. The compound as described in claim 187 or 188, wherein said dosage unit is a tablet or capsule.
28. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula I:
Figure imgf000207_0001
(I) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are mdependently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
29. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula II:
Figure imgf000207_0002
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
30. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula III:
Figure imgf000208_0001
(III) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R2 and R3 are independently H or phosphate; and Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
1 9
X and X are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
31. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula IN:
Figure imgf000209_0001
(IN) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4; X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
32. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula V:
Figure imgf000210_0001
(N) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
33. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula NI:
Figure imgf000211_0001
(NI) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
34. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formulas VII, VIII or IX:
Figure imgf000212_0001
(VH) (VIII) (IX) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein: Base is a purine or pyrimidine base as defined herein;
1 9 ^
R , R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF3; chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and X is O, S, SO2 or CH2.
35. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula X, XI or XII:
Figure imgf000212_0002
(X) (XI) (XII) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R2 and R3 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 is hydrogen, OR3, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl),
-O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -
NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
36. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XIII, XIV or XV:
Figure imgf000213_0001
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:
Base is a purine or pyrimidine base as defined herein;
1 9 ^
R , R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 "3 capable of providing a compound wherein R , R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
37. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVI:
Figure imgf000214_0001
(XVI) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 capable of providing a compound wherein R and R are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl),
-O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2,
NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2 or -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10 can come together to form a bond; and
X is O, S, SO2 or CH2.
38. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVII:
Figure imgf000215_0001
(XVII) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(0)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl),
-O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2,
NH , -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a bond; and
X is O, S, SO2 or CH2.
39. A phannaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVIII:
Figure imgf000216_0001
(XVIII) or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein: Base is a purine or pyrimidine base as defined herein;
1 9
R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when admimstered in vivo is ι 9 capable of providing a compound wherein R and R are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2; R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl) amino;
R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R and R9 can come together to form a bond; and
X is O, S, SO2 or CH2.
40. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000217_0001
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
41. A pharmaceutical composition for the freatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000217_0002
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
42. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000218_0001
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
43. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000218_0002
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
44. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000218_0003
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
45. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000219_0001
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
46. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000219_0002
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
47. A pharmaceutical composition for the freatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of stmcture:
Figure imgf000219_0003
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
48. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000220_0001
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
49. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000220_0002
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
50. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000220_0003
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
51. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000221_0001
or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.
52. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula I:
Figure imgf000221_0002
(I) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4; X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
53. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula II:
Figure imgf000222_0001
(II) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
4. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula III:
Figure imgf000223_0001
(ni) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
1 9
X and X are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
5. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula IN:
Figure imgf000224_0001
(IN) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4; X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
6. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula N:
Figure imgf000225_0001
(V) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
57. A phannaceutical composition for the freatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula VI:
Figure imgf000226_0001
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
58. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula VII, VIII or IX:
Figure imgf000227_0001
(VTJ) (VIII) (IX) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 ^ capable of providing a compound wherein R , R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl),
-O(alkyl), -0(lower alkyl), -O(alkenyl), CF3) chloro, bromo, fluoro, iodo, NO2, NH2, -
NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2, or CH2.
59. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula X, XI or XII:
Figure imgf000227_0002
(X) (XI) (XII) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 " capable of providing a compound wherein R , R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 is hydrogen, OR3, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl),
-O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -
NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2, or CH2.
60. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Fonnula XIII, XIN or XV:
Figure imgf000228_0001
(XIII) (XIV) (XV) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl) , -N(acyl)2; and X is O, S, SO2 or CH2. 61. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVI:
Figure imgf000229_0001
(XVI) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO , NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl),
-O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2,
NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine;
*7 0 7 IΠ R Q R I D alternatively, R and R , R and R , R and R , or R and R can come together to form a bond; and
X is O, S, SO2, or CH2.
62. A phannaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVII:
Figure imgf000230_0001
(XVII) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
1 9
R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a bond; and X is O, S, SO2 or CH2. 63. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of Formula XVIII:
Figure imgf000231_0001
(XVIII) or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2; R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl) amino;
R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a bond; and
X is O, S, SO2 or CH2.
64. A pharmaceutical composition for the freatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000232_0001
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
65. A pharmaceutical composition for the freatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000232_0002
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
66. A phannaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000233_0001
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
67. A pharmaceutical composition for the freahnent or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000233_0002
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
68. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000233_0003
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
69. A pharmaceutical composition for the freatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000234_0001
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
70. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000234_0002
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
71. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000234_0003
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
72. A phannaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000235_0001
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
73. A pharmaceutical composition for the freatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000235_0002
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
74. A pharmaceutical composition for the treatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000235_0003
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
75. A pharmaceutical composition for the freatment or prophylaxis of a flavivirus or pestivirus in a host, comprising an effective amount of a compound of structure:
Figure imgf000236_0001
or a pharmaceutically acceptable salt thereof, in combination with one or more other antivirally effective agents.
76. The pharmaceutical composition as described in any of the preceding claims 28-75, wherein the said compound is in the form of a dosage unit.
77. The pharmaceutical composition as described in claim 76, wherein the dosage unit contains 10 to 1500 mg of said compound.
78. The pharmaceutical composition as described in claim 75 or 76, wherein said dosage unit is a tablet or capsule.
79. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula I:
Figure imgf000236_0002
(I) or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable
1 9 ^ ■ of providing a compound wherein R , R and R are independently H or phosphate;
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X and X are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
80. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula II:
Figure imgf000237_0001
or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R and R are independently H or phosphate; and Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
81. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula III:
Figure imgf000238_0001
(III) or a pharmaceutically acceptable salt thereof, wherein:
R , R and R are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
82. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula IN:
Figure imgf000239_0001
(IN) or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4; X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
83. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula N:
Figure imgf000240_0001
(V) or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
• 1 9 ^ capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR R5 or SR ;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, ΝR4ΝR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
84. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula VI:
Figure imgf000241_0001
(Ni) or a pharmaceutically acceptable salt thereof, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
85. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula NIL NIII or IX:
Figure imgf000242_0001
(Nil) (NIII) (IX) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R2 and R3 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF3j chloro, bromo, fluoro, iodo, ΝO2, NH2, - NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and X is O, S, SO2, or CH2.
86. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula X, XI or XII:
Figure imgf000242_0002
(X) (XI) (XII) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein; R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 is hydrogen, OR3, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH , - NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and X is O, S, SO2 or CH2.
87. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Fonnula XIII, XIN or XV:
Figure imgf000243_0001
(XIII) (XIN) (XN) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R2 and R3 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2; and X is O, S, S02 or CH2.
88. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XNI:
Figure imgf000244_0001
(xvi) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, ΝO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl) , -N(acyl)2; R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl),
-O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2,
NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10 can come together to form a bond; and
X is O, S, SO2 or CH2.
89. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVII:
Figure imgf000245_0001
(XVII) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2; R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl) , -N(acyl)2; R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; i o i in alternatively, R and R , or R and R can come together to form a bond; and X is O, S, S02 or CH2.
90. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVIII:
Figure imgf000246_0001
(XVIII) or a pharmaceutically acceptable salt thereof, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 capable of providing a compound wherein R and R are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2;
1 9
R and R are independently hydrogen, OR , alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino; R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a bond; and X is O, S, SO2 or CH2.
91. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising admimstering an antivirally effective amount of a compound of the structure:
Figure imgf000247_0001
or a pharmaceutically acceptable salt thereof.
92. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000247_0002
or a pharmaceutically acceptable salt thereof.
93. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000247_0003
or a pharmaceutically acceptable salt thereof.
94. A method for the freahnent or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000248_0001
or a pharmaceutically acceptable salt thereof.
95. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000248_0002
or a pharmaceutically acceptable salt thereof.
96. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000248_0003
or a pharmaceutically acceptable salt thereof.
97. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000249_0001
or a pharmaceutically acceptable salt thereof.
98. A method for the freahnent or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000249_0002
or a pharmaceutically acceptable salt thereof.
99. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000249_0003
or a pharmaceutically acceptable salt thereof.
100. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000250_0001
or a pharmaceutically acceptable salt thereof.
101. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000250_0002
or a pharmaceutically acceptable salt thereof.
102. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000250_0003
or a pharmaceutically acceptable salt thereof.
. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula I:
Figure imgf000251_0001
(I) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
1 9
X and X are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula II:
Figure imgf000252_0001
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
• 1 9 " capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula III:
Figure imgf000253_0001
(III) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 ^ capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula IN:
Figure imgf000254_0001
(TV) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable
1 9 " of providing a compound wherein R , R and R are independently H or phosphate;
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula V:
Figure imgf000255_0001
(V) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
108. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula VI:
Figure imgf000256_0001
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 ^ ■ capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
109. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula VII, VIII or IX:
Figure imgf000257_0001
(VII) (VIII) (IX) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharaiaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF3; chloro, bromo, fluoro, iodo, NO2, NH2, - NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and X is O, S, SO2, or CH2. . A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising admimstering an anti-virally effective amount of a compound of Formula X, XI or XII:
Figure imgf000257_0002
(X) (XI) (xπ) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 "\ capable of providing a compound wherein R , R and R are independently H or phosphate;
R is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl) ;
R7 is hydrogen, OR3, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl),
-O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -
NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
111. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XIII, XIV or XV:
Figure imgf000258_0001
(XIII) (XIV) (XV) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
1 9 ^ •
R , R and R are mdependently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 " capable of providing a compound wherein R , R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
112. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVI:
Figure imgf000259_0001
(XVI) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl),
-O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2,
NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10 can come together to form a bond; and
X is O, S, S02 or CH2. . A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVII:
Figure imgf000260_0001
(XVII) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 capable of providing a compound wherein R and R are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; R10 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a bond; and X is O, S, SO2 or CH2. . A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an anti-virally effective amount of a compound of Formula XVIII:
Figure imgf000261_0001
(XVIII) or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more other antivirally effective agents, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl) , -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino;
R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a bond; and
X is O, S, S02 or CH2.
115. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000262_0001
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
116. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000262_0002
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
117. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000263_0001
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
118. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000263_0002
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
119. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000263_0003
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
120. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000264_0001
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
121. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000264_0002
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
122. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000264_0003
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
123. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000265_0001
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
124. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000265_0002
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
125. A method for the treatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000265_0003
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
126. A method for the freatment or prophylaxis of a flavivirus or pestivirus infection in a host, comprising administering an antivirally effective amount of a compound of the structure:
Figure imgf000266_0001
or a pharmaceutically acceptable salt thereof, in combination or alternation with one or more antivirally effective agents.
127. Method of treatment as described in any ofthe preceding claims 79-126, wherein the said compound is in the form of a dosage unit.
128. Method of treatment as described in claim 127, wherein the dosage unit contains 10 to 1500 mg of said compound.
129. Method of treatment as described in claim 127 or 128, wherein said dosage unit is a tablet or capsule.
130. A use of a compound of Fonnula I:
Figure imgf000266_0002
(I) or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). . A use of a compound of Formula II:
Figure imgf000267_0001
(II) or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR , NR4R5 or SR ; X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). . A use of a compound of Formula III:
Figure imgf000268_0001
(III) or a pharmaceutically acceptable salt thereof, for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 ^ capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
133. A use of a compound of Formula IN:
Figure imgf000269_0001
(IN) or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:
R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower allcyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R , R and R are independently H or phosphate;
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
134. A use of a compound of Formula V:
Figure imgf000269_0002
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 ^ capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
135. A use of a compound of Formula VI:
Figure imgf000270_0001
(NI) or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein:
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). . A use of a compound selected from Fonnulas VII, VIII and IX:
Figure imgf000271_0001
(VII) (VIII) (DC) or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), CF3> chloro, bromo, fluoro, iodo, NO2, NH2, - NH(lower alkyl), -NH(acyl), -N(lower alkyl) , -N(acyl)2; and X is O, S, SO2, or CH2. . A use of a compound of Formulas X, XI and XII:
Figure imgf000272_0001
(X) (XI) (XII) or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 " capable of providing a compound wherein R , R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R is hydrogen, OR , hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl),
-O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -
NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
138. A use of a compound selected from Formulas XIII, XIV and XV:
Figure imgf000273_0001
(XIII) (XIN) (XN) or a pharaiaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, ΝO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2; and X is O, S, S02 or CH2.
139. A use of a compound of Formula XNI:
Figure imgf000273_0002
(XNI) or a pharmaceutically acceptable salt thereof, for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl),
-O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO ,
NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10 can come together to form a bond; and
X is O, S, SO2 or CH2. . A use of a compound of Formula XVII:
Figure imgf000274_0001
(XVII) or a pharmaceutically acceptable salt thereof, for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein; R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 capable of providing a compound wherein R and R are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO , NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; R10 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a bond; and X is O, S, SO2 or CH2.
141. A use of a compound of Formula XNIII:
Figure imgf000275_0001
(XNIII) or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R and R are independently H or phosphate;
Rδ is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(0)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl)amino;
R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a bond; and
X is O, S, SO2 or CH2.
142. A use of a compound ofthe structure:
Figure imgf000276_0001
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
143. A use of a compound ofthe structure:
Figure imgf000276_0002
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
144. A use of a compound ofthe structure:
Figure imgf000277_0001
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
145. A use of a compound of the structure:
Figure imgf000277_0002
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
146. A use of a compound ofthe structure:
Figure imgf000277_0003
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
147. A use of a compound ofthe structure:
Figure imgf000278_0001
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
148. A use of a compound ofthe structure:
Figure imgf000278_0002
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
149. A use of a compound ofthe structure:
Figure imgf000278_0003
or a pharmaceutically acceptable salt thereof, for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus.
150. A use of a compound of the structure:
Figure imgf000279_0001
or a pharmaceutically acceptable salt thereof, for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus.
151. A use of a compound of the structure:
Figure imgf000279_0002
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
152. A use of a compound of the structure:
Figure imgf000279_0003
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
153. A use of a compound ofthe structure:
Figure imgf000280_0001
or a pharmaceutically acceptable salt thereof, for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
154. A use of a compound of Formula I:
Figure imgf000280_0002
(I) or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: R1, R2 and R3 are mdependently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when admimstered in vivo is capable
1 9 ' • of providing a compound wherein R , R and R are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4; X and X are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). . A use of a compound of Formula II:
Figure imgf000281_0001
(II) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are is independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
. A use of a compound of Formula III:
Figure imgf000282_0001
(III) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 9 " capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 and X2 are independently selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
157. A use of a compound of Formula IN:
Figure imgf000283_0001
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: R1, R2 and R3 are independently H, phosphate (including mono-, di- or triphosphate and a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, ΝR4R5 or SR4; X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl, CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
158. A use of a compound of Formula V:
Figure imgf000283_0002
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 *\ capable of providing a compound wherein R , R and R are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl).
159. A use of a compound of Formula VI:
Figure imgf000284_0001
(VI) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1, R2 and R3 are independently H or phosphate; and
Y is hydrogen, bromo, chloro, fluoro, iodo, OR4, NR4R5 or SR4;
X1 is selected from the group consisting of H, straight chained, branched or cyclic alkyl,
CO-alkyl, CO-aryl, CO-alkoxyalkyl, chloro, bromo, fluoro, iodo, OR4, NR4NR5 or SR4; and
R4 and R5 are independently hydrogen, acyl (including lower acyl), or alkyl (including but not limited to methyl, ethyl, propyl and cyclopropyl). . A use of a compound selected from Formulas VII, VIII and IX:
Figure imgf000285_0001
(VII) (VIII) (IX) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituex ts as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherei •n R 1 , R 9 and R ^ are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, 2-Br-ethyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl),
-O(alkyl), -O(lower alkyl), -O(alkenyl), CF3; chloro, bromo, fluoro, iodo, NO2, NH2, -
NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2, or CH2.
. A use of a compound of Formulas X, XI and XII:
Figure imgf000286_0001
(X) (XI) (XII) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other phannaceutically acceptable leaving group which when administered in vivo is
1 9 ' capable of providing a compound wherein R , R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 is hydrogen, OR3, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl),
-O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH2, -
NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
162. A use of a compound selected from Formulas XIII, XIV and XV
Figure imgf000287_0001
(XIII) (XIN) (XN) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1, R2 and R3 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is
1 ^ capable of providing a compound wherein R , R and R are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, ΝO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2; and
X is O, S, SO2 or CH2.
163. A use of a compound of Formula XNI:
Figure imgf000287_0002
(XNI) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the freahnent or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl
(including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(0)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl),
-O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2,
NH2, -NH(lower alkyl), -NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R8 and R10 are independently H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, R7 and R10, R8 and R9, or R8 and R10 can come together to form a bond; and
X is O, S, SO2 or CH2.
164. A use of a compound of Formula XVII:
Figure imgf000288_0001
(XVII) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein; R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered in vivo is capable of providing a compound wherein R and R are independently H or phosphate; R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), - O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), - NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl, Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), chlorine, bromine, iodine, NO2, NH , -NH(lower alkyl), -NH(acyl), -N(lower alkyl) , -N(acyl)2; R10 is H, alkyl (including lower alkyl), chlorine, bromine, or iodine; alternatively, R7 and R9, or R7 and R10 can come together to form a bond; and X is O, S, SO2 or CH2.
. A use of a compound of Formula XVIII:
Figure imgf000289_0001
(XVIII) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus, wherein: Base is a purine or pyrimidine base as defined herein;
R1 and R2 are independently H; phosphate (including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given herein; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharaiaceutically acceptable leaving group which when admimstered in vivo is capable of providing a compound wherein R1 and R2 are independently H or phosphate;
R6 is hydrogen, hydroxy, alkyl (including lower alkyl), azido, cyano, alkenyl, alkynyl,
Br-vinyl, -C(O)O(alkyl), -C(O)O(lower alkyl), -O(acyl), -O(lower acyl), -O(alkyl), -
O(lower alkyl), -O(alkenyl), chloro, bromo, fluoro, iodo, NO2, NH2, -NH(lower alkyl), -
NH(acyl), -N(lower alkyl)2, -N(acyl)2;
R7 and R9 are independently hydrogen, OR2, alkyl (including lower alkyl), alkenyl, alkynyl, Br-vinyl, O-alkenyl, chlorine, bromine, iodine, NO2, amino, loweralkylamino, or di(loweralkyl) amino;
R8 is H, alkyl (including lower alkyl), chlorine, bromine or iodine; alternatively, R7 and R9, or R8 and R9 can come together to form a bond; and
X is O, S, SO2 or CH2.
166. A use of a compound ofthe structure:
Figure imgf000290_0001
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
167. A use of a compound of the structure:
Figure imgf000290_0002
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
168. A use of a compound ofthe structure:
Figure imgf000291_0001
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
169. A use of a compound of the structure:
Figure imgf000291_0002
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
170. A use of a compound of the structure:
Figure imgf000291_0003
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus.
171. A use of a compound of the structure:
Figure imgf000292_0001
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
172. A use of a compound ofthe structure:
Figure imgf000292_0002
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
173. A use of a compound ofthe structure:
Figure imgf000292_0003
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
174. A use of a compound of the structure:
Figure imgf000293_0001
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
175. A use of a compound of the structure:
Figure imgf000293_0002
or a phannaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
176. A use of a compound of the structure:
Figure imgf000293_0003
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment or prophylaxis of a host infected with the flavivirus or pestivirus.
177. A use of a compound ofthe structure:
Figure imgf000294_0001
or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the freatment or prophylaxis of a host infected with the flavivirus or pestivirus.
178. Use of the compound as described in any of the preceding claims 130-177, wherein the said compound is in the form of a dosage unit.
179. Use of the compound of claim 101, wherein the dosage unit contains 178 to 1500 mg of said compound.
180. Use of the compound of claim 178 or 179, wherein said dosage unit is a tablet or capsule.
PCT/US2001/016687 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses WO2001092282A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP01952131A EP1294735A2 (en) 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses
BR0111196-5A BR0111196A (en) 2000-05-26 2001-05-23 Compositions and use thereof for treatment of flaviviruses and pestiviruses
APAP/P/2002/002705A AP1727A (en) 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses.
IL15302001A IL153020A0 (en) 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses
EA200201262A EA007867B1 (en) 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses
JP2002500895A JP5230052B2 (en) 2000-05-26 2001-05-23 Methods and compositions for the treatment of flaviviruses and pestiviruses
CA2410579A CA2410579C (en) 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses
AU2001272923A AU2001272923A1 (en) 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses
AP2006003708A AP2006003708A0 (en) 2000-05-26 2001-05-23 Methods and compositions for treating flavivirusesand pestiviruses
MXPA02011691A MXPA02011691A (en) 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses.
NO20025600A NO327249B1 (en) 2000-05-26 2002-11-21 Pharmaceutical preparations for the treatment of flaviviruses and pestiviruses, and the use of certain beta-nucleosides for the preparation of such pharmaceutical preparations

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US20767400P 2000-05-26 2000-05-26
US60/207,674 2000-05-26
US28327601P 2001-04-11 2001-04-11
US60/283,276 2001-04-11

Publications (2)

Publication Number Publication Date
WO2001092282A2 true WO2001092282A2 (en) 2001-12-06
WO2001092282A3 WO2001092282A3 (en) 2002-05-02

Family

ID=26902464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/016687 WO2001092282A2 (en) 2000-05-26 2001-05-23 Methods and compositions for treating flaviviruses and pestiviruses

Country Status (24)

Country Link
US (9) US6812219B2 (en)
EP (2) EP1736478B1 (en)
JP (2) JP5230052B2 (en)
KR (2) KR20030036189A (en)
CN (2) CN101099745A (en)
AP (2) AP1727A (en)
AR (1) AR032883A1 (en)
AU (2) AU2001272923A1 (en)
BR (1) BR0111196A (en)
CA (1) CA2410579C (en)
CZ (1) CZ301182B6 (en)
EA (2) EA007867B1 (en)
IL (1) IL153020A0 (en)
MA (1) MA26916A1 (en)
MX (1) MXPA02011691A (en)
NO (1) NO327249B1 (en)
NZ (2) NZ547204A (en)
OA (1) OA12382A (en)
PE (1) PE20020051A1 (en)
PL (1) PL359169A1 (en)
TW (1) TW200425898A (en)
WO (1) WO2001092282A2 (en)
YU (1) YU92202A (en)
ZA (2) ZA200210112B (en)

Cited By (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051898A1 (en) * 2001-12-17 2003-06-26 Ribapharm Inc. Unusual nucleoside libraries, compounds, and preferred uses as antiviral and anticancer agents
WO2003062256A1 (en) * 2002-01-17 2003-07-31 Ribapharm Inc. 2'-beta-modified-6-substituted adenosine analogs and their use as antiviral agents
WO2003062255A2 (en) * 2002-01-17 2003-07-31 Ribapharm Inc. Sugar modified nucleosides as viral replication inhibitors
WO2003068244A1 (en) * 2002-02-13 2003-08-21 Merck & Co., Inc. Methods of inhibiting orthopoxvirus replication with nucleoside compounds
WO2003093290A2 (en) * 2002-05-06 2003-11-13 Genelabs Technologies, Inc. Nucleoside derivatives for treating hepatitis c virus infection
WO2004003000A2 (en) 2002-06-28 2004-01-08 Idenix (Cayman) Limited 1’-, 2'- and 3'- modified nucleoside derivatives for treating flaviviridae infections
WO2004046331A2 (en) 2002-11-15 2004-06-03 Idenix (Cayman) Limited 2’-branched nucleosides and flaviviridae mutation
EP1438054A1 (en) * 2001-09-28 2004-07-21 Idenix (Cayman) Limited Methods and compositions for treating flaviviruses and pestiviruses using 4'-modified nucleoside
WO2004002999A3 (en) * 2002-06-28 2004-08-12 Idenix Cayman Ltd Modified 2' and 3' -nucleoside produgs for treating flaviridae infections
US6777395B2 (en) 2001-01-22 2004-08-17 Merck & Co., Inc. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase of hepatitis C virus
WO2005003147A2 (en) 2003-05-30 2005-01-13 Pharmasset, Inc. Modified fluorinated nucleoside analogues
EP1536804A2 (en) * 2002-06-28 2005-06-08 Idenix (Cayman) Limited 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
US6914054B2 (en) 2000-05-23 2005-07-05 Idenix Pharmaceuticals, Inc. Methods and compositions for treating hepatitis C virus
US6949522B2 (en) 2001-06-22 2005-09-27 Pharmasset, Inc. β-2′- or 3′-halonucleosides
WO2005123087A2 (en) 2004-06-15 2005-12-29 Merck & Co., Inc. C-purine nucleoside analogs as inhibitors of rna-dependent rna viral polymerase
WO2006000922A2 (en) * 2004-06-23 2006-01-05 Idenix (Cayman) Limited 5-aza-7-deazapurine derivatives for treating infections with flaviviridae
US7034167B2 (en) 2002-12-06 2006-04-25 Merck & Co., Inc. Process to ribofuranose sugar derivatives as intermediates to branched-chain nucleosides
US7101861B2 (en) 2000-05-26 2006-09-05 Indenix Pharmaceuticals, Inc. Methods and compositions for treating flaviviruses and pestiviruses
US7105499B2 (en) 2001-01-22 2006-09-12 Merck & Co., Inc. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
US7148349B2 (en) 2002-10-31 2006-12-12 Metabasis Therapeutics, Inc. Cyclic phosphate diesters of 1,3-propane-1-aryl diols and their use in preparing prodrugs
WO2006138507A1 (en) 2005-06-17 2006-12-28 Novartis Ag Use of sanglifehrin in hcv
US7192936B2 (en) 2002-06-28 2007-03-20 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
US7217815B2 (en) 2002-01-17 2007-05-15 Valeant Pharmaceuticals North America 2-beta -modified-6-substituted adenosine analogs and their use as antiviral agents
JP2007522237A (en) * 2004-02-13 2007-08-09 メタバシス・セラピューティクス・インコーポレイテッド Novel 2'-C-methyl nucleoside derivative
CN100335492C (en) * 2002-12-23 2007-09-05 埃迪尼克斯(开曼)有限公司 Process for the production of 3'-nucleoside prodrugs
US7268119B2 (en) 2003-08-27 2007-09-11 Biota Scientific Management Pty Ltd Tricyclic nucleosides or nucleotides as therapeutic agents
WO2007113159A1 (en) * 2006-04-04 2007-10-11 F. Hoffmann-La Roche Ag 3',5'-di-o-acylated nucleosides for hcv treatment
US7323449B2 (en) 2002-07-24 2008-01-29 Merck & Co., Inc. Thionucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
US7339054B2 (en) 2003-02-12 2008-03-04 Merck & Co., Inc. Process for preparing branched ribonucleosides from 1,2-anhydroribofuranose intermediates
WO2008085508A2 (en) 2007-01-05 2008-07-17 Merck & Co., Inc. Nucleoside aryl phosphoramidates for the treatment of rna-dependent rna viral infection
WO2008106166A2 (en) 2007-02-28 2008-09-04 Conatus Pharmaceuticals, Inc. Methods for the treatment of liver diseases using specified matrix metalloproteinase (mmp) inhibitors
US7524831B2 (en) 2005-03-02 2009-04-28 Schering Corporation Treatments for Flaviviridae virus infection
WO2010014134A1 (en) * 2008-07-02 2010-02-04 Idenix Pharamaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US7666856B2 (en) 2006-10-10 2010-02-23 Medivir Ab Antiviral nucleosides
US7754699B2 (en) 2005-12-09 2010-07-13 Roche Palo Alto Llc Antiviral nucleosides
WO2010082050A1 (en) 2009-01-16 2010-07-22 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Macrocyclic and 7-aminoalkyl-substituted benzoxazocines for treatment of hepatitis c infections
WO2010084115A2 (en) 2009-01-20 2010-07-29 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Antiviral agents
US7767660B2 (en) 2006-12-20 2010-08-03 Istituto Di Richerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
US7772208B2 (en) 2002-08-01 2010-08-10 Pharmasset, Inc. 2′,3′-dideoxynucleoside analogues for the treatment or prevention of Flaviviridae infections
US7781422B2 (en) 2006-12-20 2010-08-24 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
US7786110B2 (en) 2006-11-09 2010-08-31 Roche Palo Alto Llc Thiazole and oxazole-substituted arylamides as P2X3 and P2X2/3 antagonists
WO2010101967A2 (en) 2009-03-04 2010-09-10 Idenix Pharmaceuticals, Inc. Phosphothiophene and phosphothiazole hcv polymerase inhibitors
WO2010116248A1 (en) 2009-04-10 2010-10-14 Novartis Ag Organic compounds and their uses
WO2010115981A1 (en) 2009-04-10 2010-10-14 Novartis Ag 7-azadispiro [3.0.4.1] decane-8-carboxamides as hepatitis c virus inhibitors
US7858654B2 (en) 2007-12-17 2010-12-28 Roche Palo Alto Llc Imidazole-substituted arylamides as P2X3 and P2X2/3 antagonists
EP2265626A2 (en) * 2008-03-18 2010-12-29 Institut De Recherches Cliniques De Montreal Nucleotide analogues with quaternary carbon stereogenic centers and methods of use
US7879797B2 (en) 2005-05-02 2011-02-01 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2011014487A1 (en) 2009-07-30 2011-02-03 Merck Sharp & Dohme Corp. Hepatitis c virus ns3 protease inhibitors
WO2011017389A1 (en) 2009-08-05 2011-02-10 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors useful against viral infections, particularly hcv
US7902202B2 (en) 2006-12-28 2011-03-08 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
WO2011058084A1 (en) 2009-11-14 2011-05-19 F. Hoffmann-La Roche Ag Biomarkers for predicting rapid response to hcv treatment
WO2011063076A1 (en) 2009-11-19 2011-05-26 Itherx Pharmaceuticals, Inc. Methods of treating hepatitis c virus with oxoacetamide compounds
WO2011067195A1 (en) 2009-12-02 2011-06-09 F. Hoffmann-La Roche Ag Biomarkers for predicting sustained response to hcv treatment
WO2011075615A1 (en) 2009-12-18 2011-06-23 Idenix Pharmaceuticals, Inc. 5,5-fused arylene or heteroarylene hepatitis c virus inhibitors
US7973040B2 (en) 2008-07-22 2011-07-05 Merck Sharp & Dohme Corp. Macrocyclic quinoxaline compounds as HCV NS3 protease inhibitors
US7989438B2 (en) 2007-07-17 2011-08-02 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Therapeutic compounds
US7989637B2 (en) 2007-12-17 2011-08-02 Roche Palo Alto Llc Triazole-substituted arylamides as P2X3 and P2X2/3 antagonists
EP2351560A1 (en) 2005-01-04 2011-08-03 Novartis AG Treatment Of HCV infections with FTY720
WO2011123586A1 (en) 2010-04-01 2011-10-06 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US8048905B2 (en) 2007-12-17 2011-11-01 Roche Palo Alto Llc Tetrazole-substituted arylamides as P2X3 and P2X2/3 antagonists
US8093380B2 (en) 2002-08-01 2012-01-10 Pharmasset, Inc. Compounds with the bicyclo[4.2.1]nonane system for the treatment of Flaviviridae infections
US8093275B2 (en) 2009-06-22 2012-01-10 Roche Palo Alto Llc Oxazolone and pyrrolidinone-substituted pryidine amides as P2X3 and P2X2/3 antagonists
US8101595B2 (en) 2006-12-20 2012-01-24 Istituto di Ricerche di Biologia Molecolare P. Angletti SpA Antiviral indoles
US8138164B2 (en) 2006-10-24 2012-03-20 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2012048235A1 (en) 2010-10-08 2012-04-12 Novartis Ag Vitamin e formulations of sulfamide ns3 inhibitors
US8178520B2 (en) 2006-05-15 2012-05-15 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Macrocyclic compounds as antiviral agents
WO2012080050A1 (en) 2010-12-14 2012-06-21 F. Hoffmann-La Roche Ag Solid forms of a phenoxybenzenesulfonyl compound
WO2012092484A2 (en) 2010-12-29 2012-07-05 Inhibitex, Inc. Substituted purine nucleosides, phosphoroamidate and phosphorodiamidate derivatives for treatment of viral infections
US8216999B2 (en) 2005-07-20 2012-07-10 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2012109398A1 (en) 2011-02-10 2012-08-16 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating hcv infections
US8278322B2 (en) 2005-08-01 2012-10-02 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2012135581A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
US8283383B2 (en) 2009-06-22 2012-10-09 Roche Palo Alto Llc Biphenyl amides as P2X3 and P2X2/3 antagonists
EP2518079A2 (en) 2006-04-11 2012-10-31 Novartis AG HCV/HIV inhibitors and their uses
US8309540B2 (en) 2006-10-24 2012-11-13 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2012154321A1 (en) 2011-03-31 2012-11-15 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US8314062B2 (en) 2006-06-23 2012-11-20 Instituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Macrocyclic compounds as antiviral agents
US8349792B2 (en) 2006-12-19 2013-01-08 Cyclacel Limited Combination comprising CNDAC (2′-cyano-2′-deoxy-N4-palmitoyl-1-beta-D-arabinofuranosyl-cytosine) and a cytotoxic agent
US8377874B2 (en) 2006-10-27 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8377873B2 (en) 2006-10-24 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2013039920A1 (en) 2011-09-12 2013-03-21 Idenix Pharmaceuticals, Inc. Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections
WO2013039855A1 (en) 2011-09-12 2013-03-21 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
WO2013056046A1 (en) 2011-10-14 2013-04-18 Idenix Pharmaceuticals, Inc. Substituted 3',5'-cyclic phosphates of purine nucleotide compounds and pharmaceutical compositions for the treatment of viral infections
US8440673B2 (en) 2007-12-17 2013-05-14 Roche Palo Alto Llc Pyrazole-substituted arylamides as P2X3 and P2X2/3 antagonists
WO2013074386A2 (en) 2011-11-15 2013-05-23 Merck Sharp & Dohme Corp. Hcv ns3 protease inhibitors
US8461107B2 (en) 2008-04-28 2013-06-11 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8470870B2 (en) 2008-03-27 2013-06-25 Idenix Pharmaceuticals, Inc. Solid forms of an anti-HIV phosphoindole compound
US8476457B2 (en) 2009-06-22 2013-07-02 Roche Palo Alto Llc Indole, indazole and benzimidazole arylamides as P2X3 and P2X2/3 antagonists
US8481712B2 (en) 2001-01-22 2013-07-09 Merck Sharp & Dohme Corp. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
WO2013106344A1 (en) 2012-01-12 2013-07-18 Ligand Pharmaceuticals, Inc. 2 '-c-methyl nucleosides containing a cyclic phosphate diester of 1, 3-propanediol (2-oxo-[1, 3, 2]-dioxaphosphorinane) at position 5'
US8501699B2 (en) 2008-07-03 2013-08-06 Biota Scientific Management Pty Ltd Bicyclic nucleosides and nucleotides as therapeutic agents
WO2013133927A1 (en) 2012-02-13 2013-09-12 Idenix Pharmaceuticals, Inc. Pharmaceutical compositions of 2'-c-methyl-guanosine, 5'-[2-[(3-hydroxy-2,2-dimethyl-1-oxopropyl)thio]ethyl n-(phenylmethyl)phosphoramidate]
US8551973B2 (en) 2008-12-23 2013-10-08 Gilead Pharmasset Llc Nucleoside analogs
US8580765B2 (en) 2007-03-30 2013-11-12 Gilead Pharmasset Llc Nucleoside phosphoramidate prodrugs
WO2013177219A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. D-amino acid compounds for liver disease
WO2013177195A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. 3',5'-cyclic phosphate prodrugs for hcv infection
WO2013177188A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. 3',5'-cyclic phosphoramidate prodrugs for hcv infection
US8629263B2 (en) 2009-05-20 2014-01-14 Gilead Pharmasset Llc Nucleoside phosphoramidates
WO2014058801A1 (en) 2012-10-08 2014-04-17 Idenix Pharmaceuticals, Inc. 2'-chloro nucleoside analogs for hcv infection
WO2014063019A1 (en) 2012-10-19 2014-04-24 Idenix Pharmaceuticals, Inc. Dinucleotide compounds for hcv infection
WO2014066239A1 (en) 2012-10-22 2014-05-01 Idenix Pharmaceuticals, Inc. 2',4'-bridged nucleosides for hcv infection
US8716263B2 (en) 2008-12-23 2014-05-06 Gilead Pharmasset Llc Synthesis of purine nucleosides
US8716262B2 (en) 2008-12-23 2014-05-06 Gilead Pharmasset Llc Nucleoside phosphoramidates
WO2014078436A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-alanine ester of sp-nucleoside analog
WO2014078427A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-alanine ester of rp-nucleoside analog
WO2014099941A1 (en) 2012-12-19 2014-06-26 Idenix Pharmaceuticals, Inc. 4'-fluoro nucleosides for the treatment of hcv
US8802840B2 (en) 2005-03-08 2014-08-12 Biota Scientific Management Pty Ltd. Bicyclic nucleosides and nucleotides as therapeutic agents
WO2014123794A1 (en) 2013-02-07 2014-08-14 Merck Sharp & Dohme Corp. Tetracyclic heterocycle compounds and methods of use thereof for the treatment of hepatitis c
WO2014123795A2 (en) 2013-02-07 2014-08-14 Merck Sharp & Dohme Corp. Tetracyclic heterocycle compounds and methods of use thereof for the treatment of hepatitis c
WO2014137926A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. 3'-deoxy nucleosides for the treatment of hcv
WO2014137930A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. Thiophosphate nucleosides for the treatment of hcv
WO2014148949A1 (en) 2013-03-22 2014-09-25 Асави, Ллс Alkyl 2-{[(2r,3s,5r)-5-(4-amino-2-oxo-2н-pyrimidin-1-yl)-3-hydroxy- tetrahydro-furan-2-yl-methoxy]-phenoxy-phosphoryl-amino}-propionates, nucleoside inhibitors of hcv ns5b rna-polymerase, and methods for producing and use thereof
WO2014165542A1 (en) 2013-04-01 2014-10-09 Idenix Pharmaceuticals, Inc. 2',4'-fluoro nucleosides for the treatment of hcv
US8859756B2 (en) 2010-03-31 2014-10-14 Gilead Pharmasset Llc Stereoselective synthesis of phosphorus containing actives
US8877905B2 (en) 2008-06-11 2014-11-04 Lasergen, Inc. Nucleotides and nucleosides and methods for their use in DNA sequencing
US8889159B2 (en) 2011-11-29 2014-11-18 Gilead Pharmasset Llc Compositions and methods for treating hepatitis C virus
US8895531B2 (en) 2006-03-23 2014-11-25 Rfs Pharma Llc 2′-fluoronucleoside phosphonates as antiviral agents
WO2014197578A1 (en) 2013-06-05 2014-12-11 Idenix Pharmaceuticals, Inc. 1',4'-thio nucleosides for the treatment of hcv
US8912321B2 (en) 2006-10-10 2014-12-16 Gilead Pharmasset Llc Preparation of nucleosides ribofuranosyl pyrimidines
US8927569B2 (en) 2007-07-19 2015-01-06 Merck Sharp & Dohme Corp. Macrocyclic compounds as antiviral agents
WO2015017713A1 (en) 2013-08-01 2015-02-05 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease
WO2015042375A1 (en) 2013-09-20 2015-03-26 Idenix Pharmaceuticals, Inc. Hepatitis c virus inhibitors
WO2015061683A1 (en) 2013-10-25 2015-04-30 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate and d-alanine thiophosphoramidate pronucleotides of nucleoside compounds useful for the treatment of hcv
WO2015066370A1 (en) 2013-11-01 2015-05-07 Idenix Pharmaceuticals, Inc. D-alanine phosphoramidate pronucleotides of 2'-methyl 2'-fluoro guanosine nucleoside compounds for the treatment of hcv
WO2015081297A1 (en) 2013-11-27 2015-06-04 Idenix Pharmaceuticals, Inc. 2'-dichloro and 2'-fluoro-2'-chloro nucleoside analogues for hcv infection
US9061041B2 (en) 2011-04-13 2015-06-23 Merck Sharp & Dohme Corp. 2′-substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
WO2015095419A1 (en) 2013-12-18 2015-06-25 Idenix Pharmaceuticals, Inc. 4'-or nucleosides for the treatment of hcv
WO2015134780A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Solid prodrug forms of 2'-chloro-2'-methyl uridine for hcv
WO2015134561A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Pharmaceutical compositions comprising a 5,5-fused heteroarylene flaviviridae inhibitor and their use for treating or preventing flaviviridae infection
WO2015134560A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Solid forms of a flaviviridae virus inhibitor compound and salts thereof
US9150603B2 (en) 2011-04-13 2015-10-06 Merck Sharp & Dohme Corp. 2′-cyano substituted nucleoside derivatives and methods of use thereof useful for the treatment of viral diseases
US9156872B2 (en) 2011-04-13 2015-10-13 Merck Sharp & Dohme Corp. 2′-azido substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
WO2015161137A1 (en) 2014-04-16 2015-10-22 Idenix Pharmaceuticals, Inc. 3'-substituted methyl or alkynyl nucleosides for the treatment of hcv
US9284342B2 (en) 2009-05-20 2016-03-15 Gilead Pharmasset Llc Nucleoside phosphoramidates
EP3043803A1 (en) * 2013-09-11 2016-07-20 Emory University Nucleotide and nucleoside compositions and uses related thereto
US9408863B2 (en) 2011-07-13 2016-08-09 Merck Sharp & Dohme Corp. 5′-substituted nucleoside analogs and methods of use thereof for the treatment of viral diseases
US9416154B2 (en) 2011-07-13 2016-08-16 Merck Sharp & Dohme Corp. 5′-substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
US9676797B2 (en) 2015-09-02 2017-06-13 Abbvie Inc. Anti-viral compounds
US9738661B2 (en) 2006-10-27 2017-08-22 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US9828410B2 (en) 2015-03-06 2017-11-28 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-α-fluoro-2′-β-C-substituted-2-modified-N6-substituted purine nucleotides for HCV treatment
WO2018031818A3 (en) * 2016-08-12 2018-05-11 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US9994600B2 (en) 2014-07-02 2018-06-12 Ligand Pharmaceuticals, Inc. Prodrug compounds and uses therof
US10039779B2 (en) 2013-01-31 2018-08-07 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
US10100076B2 (en) 2000-10-18 2018-10-16 Gilead Pharmasset Llc Modified nucleosides for the treatment of viral infections and abnormal cellular proliferation
US10202412B2 (en) 2016-07-08 2019-02-12 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-substituted-4′-substituted-2-substituted-N6-substituted-6-aminopurinenucleotides for the treatment of paramyxovirus and orthomyxovirus infections
US10449210B2 (en) 2014-02-13 2019-10-22 Ligand Pharmaceuticals Inc. Prodrug compounds and their uses
US10456414B2 (en) 2011-09-16 2019-10-29 Gilead Pharmasset Llc Methods for treating HCV
US10577359B2 (en) 2004-09-14 2020-03-03 Gilead Pharmasset Llc Preparation of 2′-fluoro-2′-alkyl-substituted or other optionally substituted ribofuranosyl pyrimidines and purines and their derivatives
EP3750544A2 (en) 2011-11-30 2020-12-16 Emory University Jak inhibitors for use in the prevention or treatment of viral infection
US10874687B1 (en) 2020-02-27 2020-12-29 Atea Pharmaceuticals, Inc. Highly active compounds against COVID-19
US10946033B2 (en) 2016-09-07 2021-03-16 Atea Pharmaceuticals, Inc. 2′-substituted-N6-substituted purine nucleotides for RNA virus treatment
US11116783B2 (en) 2013-08-27 2021-09-14 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
EP3866932A4 (en) * 2018-10-17 2022-11-30 Xibin Liao 6-mercaptopurine nucleoside analogues
US11660307B2 (en) 2020-01-27 2023-05-30 Gilead Sciences, Inc. Methods for treating SARS CoV-2 infections
US11690860B2 (en) 2018-04-10 2023-07-04 Atea Pharmaceuticals, Inc. Treatment of HCV infected patients with cirrhosis
US11701372B2 (en) 2020-04-06 2023-07-18 Gilead Sciences, Inc. Inhalation formulations of 1'-cyano substituted carba-nucleoside analogs
US11780844B2 (en) 2022-03-02 2023-10-10 Gilead Sciences, Inc. Compounds and methods for treatment of viral infections
US11814406B2 (en) 2020-08-27 2023-11-14 Gilead Sciences, Inc. Compounds and methods for treatment of viral infections
US11903953B2 (en) 2020-05-29 2024-02-20 Gilead Sciences, Inc. Remdesivir treatment methods
US11939347B2 (en) 2020-06-24 2024-03-26 Gilead Sciences, Inc. 1′-cyano nucleoside analogs and uses thereof

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444652B1 (en) * 1998-08-10 2002-09-03 Novirio Pharmaceuticals Limited β-L-2'-deoxy-nucleosides for the treatment of hepatitis B
CN100387237C (en) * 1998-08-10 2008-05-14 艾丹尼克斯(开曼)有限公司 Beta-L-2'deoxy-nucleosides for the treatment of hepatitis B
US20020056123A1 (en) * 2000-03-09 2002-05-09 Gad Liwerant Sharing a streaming video
GB0114286D0 (en) * 2001-06-12 2001-08-01 Hoffmann La Roche Nucleoside Derivatives
US7247621B2 (en) * 2002-04-30 2007-07-24 Valeant Research & Development Antiviral phosphonate compounds and methods therefor
WO2004003138A2 (en) * 2002-06-27 2004-01-08 Merck & Co., Inc. Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
CN101172993A (en) * 2002-06-28 2008-05-07 埃迪尼克斯(开曼)有限公司 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
US20060264389A1 (en) * 2002-07-16 2006-11-23 Balkrishen Bhat Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
CA2509687C (en) * 2002-12-12 2012-08-14 Idenix (Cayman) Limited Process for the production of 2'-branched nucleosides
WO2004084796A2 (en) * 2003-03-28 2004-10-07 Pharmasset Ltd. Compounds for the treatment of flaviviridae infections
US20040259934A1 (en) * 2003-05-01 2004-12-23 Olsen David B. Inhibiting Coronaviridae viral replication and treating Coronaviridae viral infection with nucleoside compounds
KR20060084845A (en) 2003-07-25 2006-07-25 이데닉스 (케이만) 리미티드 Purin nucleoside analogues for treating flaviviridae including hepatitis c
WO2005018330A1 (en) * 2003-08-18 2005-03-03 Pharmasset, Inc. Dosing regimen for flaviviridae therapy
EP1773355B1 (en) * 2004-06-24 2014-06-25 Merck Sharp & Dohme Corp. Nucleoside aryl phosphoramidates for the treatment of rna-dependent rna viral infection
CN101023094B (en) * 2004-07-21 2011-05-18 法莫赛特股份有限公司 Preparation of alkyl-substituted 2-deoxy-2-fluoro-d-ribofuranosyl pyrimidines and purines and their derivatives
WO2006130217A2 (en) * 2005-04-01 2006-12-07 The Regents Of The University Of California Substituted phosphate esters of nucleoside phosphonates
WO2007025043A2 (en) * 2005-08-23 2007-03-01 Idenix Pharmaceuticals, Inc. Seven-membered ring nucleosides
WO2007044468A2 (en) * 2005-10-05 2007-04-19 The Cbr Institute For Biomedical Research, Inc. Method to treat flavivirus infection with sirna
WO2007075876A2 (en) * 2005-12-23 2007-07-05 Idenix Pharmaceuticals, Inc. Process for preparing a synthetic intermediate for preparation of branched nucleosides
US8058260B2 (en) * 2006-05-22 2011-11-15 Xenoport, Inc. 2′-C-methyl-ribofuranosyl cytidine prodrugs, pharmaceutical compositions and uses thereof
GB0623493D0 (en) 2006-11-24 2007-01-03 Univ Cardiff Chemical compounds
US7897737B2 (en) 2006-12-05 2011-03-01 Lasergen, Inc. 3′-OH unblocked, nucleotides and nucleosides, base modified with photocleavable, terminating groups and methods for their use in DNA sequencing
CN101611046A (en) * 2007-01-12 2009-12-23 拜奥克里斯特制药公司 Antiviral nucleoside analogs
ES2426684T3 (en) 2007-03-23 2013-10-24 To-Bbb Holding B.V. Conjugates for the targeted delivery of drugs through the blood brain barrier
EP2268642B1 (en) 2008-04-23 2015-02-25 Gilead Sciences, Inc. 1' -substituted carba-nucleoside analogs for antiviral treatment
WO2009150405A1 (en) 2008-06-09 2009-12-17 Cyclacel Limited Combination of spacitabine (cndac) and dna methyltransferase inhibitors such as decitabine and procaine
US8173621B2 (en) * 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
SG193821A1 (en) * 2008-08-29 2013-10-30 Boehringer Ingelheim Vetmed West nile virus vaccine
EP2385951A4 (en) * 2009-01-09 2013-05-29 Univ Cardiff Phosphoramidate derivatives of guanosine nucleoside compounds for treatment of viral infections
BRPI1009324A2 (en) * 2009-03-20 2015-11-24 Alios Biopharma Inc and / or pharmaceutically acceptable compounds thereof, pharmaceutical composition and their uses
US20100297079A1 (en) * 2009-05-20 2010-11-25 Chimerix, Inc. Compounds, compositions and methods for treating viral infection
PT2480559E (en) 2009-09-21 2013-10-02 Gilead Sciences Inc Processes and intermediates for the preparation of 1'-cyano-carbanucleoside analogs
PL3290428T3 (en) 2010-03-31 2022-02-07 Gilead Pharmasset Llc Tablet comprising crystalline (s)-isopropyl 2-(((s)-(((2r,3r,4r,5r)-5-(2,4-dioxo-3,4-dihydropyrimidin-1 (2h)-yl)-4-fluoro-3-hydroxy-4-methyltetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)amino)propanoate
KR20200052384A (en) 2010-07-19 2020-05-14 길리애드 사이언시즈, 인코포레이티드 Methods for the preparation of diasteromerically pure phosphoramidate prodrugs
ME01924B (en) 2010-07-22 2015-05-20 Gilead Sciences Inc Methods and compounds for treating Paramyxoviridae virus infections
SG188497A1 (en) 2010-09-22 2013-05-31 Alios Biopharma Inc Substituted nucleotide analogs
TW201242974A (en) 2010-11-30 2012-11-01 Gilead Pharmasset Llc Compounds
WO2012125525A2 (en) 2011-03-14 2012-09-20 Boehringer Ingelheim Vetmedica, Inc. Equine rhinitis vaccine
WO2012140436A1 (en) 2011-04-14 2012-10-18 Cyclacel Limited Dosage regimen for sapacitabine and decitabine in combination for treating acute myeloid leukemia
CN102775458B (en) * 2011-05-09 2015-11-25 中国人民解放军军事医学科学院毒物药物研究所 The preparation of β-D-(2 ' R)-2 '-deoxidation-2 '-fluoro-2'CmeC derivative and purposes
AU2012308518B2 (en) 2011-09-13 2017-08-17 Agilent Technologies, Inc. 5-methoxy, 3'-oh unblocked, fast photocleavable terminating nucleotides and methods for nucleic acid sequencing
EP2794630A4 (en) 2011-12-22 2015-04-01 Alios Biopharma Inc Substituted phosphorothioate nucleotide analogs
BR112014019897A8 (en) 2012-02-14 2017-07-11 Univ Georgia SPIRO[2.4]HEPTANES FOR THE TREATMENT OF FLAVIVIRID INFECTIONS
US8916538B2 (en) 2012-03-21 2014-12-23 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
WO2013142157A1 (en) 2012-03-22 2013-09-26 Alios Biopharma, Inc. Pharmaceutical combinations comprising a thionucleotide analog
ES2597757T3 (en) 2012-05-25 2017-01-20 Janssen Sciences Ireland Uc Uraciles pyroxexetane nucleosides
US9206412B2 (en) 2012-05-31 2015-12-08 Colorado State University Research Foundation Thioxothiazolidine inhibitors
WO2014052638A1 (en) 2012-09-27 2014-04-03 Idenix Pharmaceuticals, Inc. Esters and malonates of sate prodrugs
EA201590943A1 (en) 2012-12-21 2016-01-29 Алиос Биофарма, Инк. SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND THEIR ANALOGUES
US10034893B2 (en) 2013-02-01 2018-07-31 Enanta Pharmaceuticals, Inc. 5, 6-D2 uridine nucleoside/tide derivatives
WO2014160484A1 (en) 2013-03-13 2014-10-02 Idenix Pharmaceuticals, Inc. Amino acid phosphoramidate pronucleotides of 2'-cyano, azido and amino nucleosides for the treatment of hcv
ES2623287T3 (en) 2013-04-12 2017-07-10 Achillion Pharmaceuticals, Inc. Highly active nucleoside derivative for HCV treatment
US9675632B2 (en) 2014-08-26 2017-06-13 Enanta Pharmaceuticals, Inc. Nucleoside and nucleotide derivatives
TWI698444B (en) 2014-10-29 2020-07-11 美商基利科學股份有限公司 Methods for the preparation of ribosides
US9718851B2 (en) 2014-11-06 2017-08-01 Enanta Pharmaceuticals, Inc. Deuterated nucleoside/tide derivatives
US9732110B2 (en) 2014-12-05 2017-08-15 Enanta Pharmaceuticals, Inc. Nucleoside and nucleotide derivatives
KR20230130175A (en) 2014-12-26 2023-09-11 에모리 유니버시티 N4-hydroxycytidine and derivatives and anti-viral uses related thereto
EP3349758B1 (en) 2015-09-16 2022-04-06 Gilead Sciences, Inc. Methods for treating arenaviridae virus infections
WO2017197055A1 (en) 2016-05-10 2017-11-16 C4 Therapeutics, Inc. Heterocyclic degronimers for target protein degradation
EP3454862A4 (en) 2016-05-10 2020-02-12 C4 Therapeutics, Inc. Spirocyclic degronimers for target protein degradation
CN109641874A (en) 2016-05-10 2019-04-16 C4医药公司 C for target protein degradation3The glutarimide degron body of carbon connection
LU100724B1 (en) 2016-07-14 2018-07-31 Atea Pharmaceuticals Inc Beta-d-2'-deoxy-2'-alpha-fluoro-2'-beta-c-substituted-4'-fluoro-n6-substituted-6-amino-2-substituted purine nucleotides for the treatment of hepatitis c virus infection
SG11201906163TA (en) 2017-02-01 2019-08-27 Atea Pharmaceuticals Inc Nucleotide hemi-sulfate salt for the treatment of hepatitis c virus
KR102460968B1 (en) 2017-03-14 2022-11-01 길리애드 사이언시즈, 인코포레이티드 Methods of treating feline coronavirus infections
CA3059777C (en) 2017-05-01 2023-02-21 Gilead Sciences, Inc. Crystalline forms of (s)-2-ethylbutyl 2-(((s)-(((2r,3s,4r,5r)-5-(4-aminopyrrolo[2,1-f] [1,2,4]triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(phenoxy) phosphoryl)amino)propanoate
US11066923B2 (en) 2017-06-26 2021-07-20 Hrl Laboratories, Llc System and method for generating output of a downhole inertial measurement unit
EP3651734A1 (en) 2017-07-11 2020-05-20 Gilead Sciences, Inc. Compositions comprising an rna polymerase inhibitor and cyclodextrin for treating viral infections
KR102248165B1 (en) 2017-12-07 2021-05-06 에모리 유니버시티 N4-hydroxycytidine and derivatives and related anti-viral uses
US11613553B2 (en) 2020-03-12 2023-03-28 Gilead Sciences, Inc. Methods of preparing 1′-cyano nucleosides
US20240002442A1 (en) * 2020-11-25 2024-01-04 Northeastern University Cyclic peptides with antimicrobial properties

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026687A (en) 1990-01-03 1991-06-25 The United States Of America As Represented By The Department Of Health And Human Services Treatment of human retroviral infections with 2',3'-dideoxyinosine alone and in combination with other antiviral compounds
US5496546A (en) 1993-02-24 1996-03-05 Jui H. Wang Compositions and methods of application of reactive antiviral polyadenylic acid derivatives
JPH08268890A (en) 1995-03-31 1996-10-15 Eisai Co Ltd Prophylactic and remedy for hepatitis c
US5633358A (en) 1994-09-14 1997-05-27 Huels Aktiengesellschaft Process for bleaching aqueous surfactant solutions
US5633388A (en) 1996-03-29 1997-05-27 Viropharma Incorporated Compounds, compositions and methods for treatment of hepatitis C
WO1997036554A1 (en) 1996-03-29 1997-10-09 Viropharma Incorporated Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis c
JPH10101591A (en) 1996-09-27 1998-04-21 Eisai Co Ltd Preventing and therapeutic agent for viral infectious disease
US5846964A (en) 1993-07-19 1998-12-08 Tokyo Tanabe Company Limited Hepatitis C virus proliferation inhibitor
US5891874A (en) 1996-06-05 1999-04-06 Eli Lilly And Company Anti-viral compound
US5922757A (en) 1996-09-30 1999-07-13 The Regents Of The University Of California Treatment and prevention of hepatic disorders
US5977325A (en) 1988-11-15 1999-11-02 Merrell Pharmaceuticals Inc. 2'-halomethylidene, 2'-ethenylidene and 2'-ethynyl cytidine, uridine and guanosine derivatives
US6034134A (en) 1997-06-30 2000-03-07 Merz + Co. Gmbh & Co. 1-Amino-alkylcyclohexane NMDA receptor antagonists

Family Cites Families (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US87873A (en) * 1869-03-16 Perry prettyman
US83307A (en) * 1868-10-20 Improvement in wash-boilehs
US8841A (en) * 1852-03-30 Sice-httxieb
US28013A (en) * 1860-04-24 Improved bullet-ladle
US6458772B1 (en) * 1909-10-07 2002-10-01 Medivir Ab Prodrugs
US3074929A (en) * 1955-08-11 1963-01-22 Burroughs Wellcome Co Glycosides of 6-mercaptopurine
GB924246A (en) 1958-12-23 1963-04-24 Wellcome Found Purine derivatives and their preparation
US3116282A (en) * 1960-04-27 1963-12-31 Upjohn Co Pyrimidine nucleosides and process
GB984877A (en) 1962-08-16 1965-03-03 Waldhof Zellstoff Fab Improvements in and relating to 6-halonucleosides
GB1163103A (en) 1965-11-15 1969-09-04 Merck & Co Inc Ribofuranosyl Purine Derivatives
FR1498856A (en) 1965-11-15 1968-01-10
FR1521076A (en) * 1966-05-02 1968-04-12 Merck & Co Inc Substituted purine nucleosides
DE1695411A1 (en) 1966-05-02 1971-04-15 Merck & Co Inc Substituted purine nucleosides and processes for their preparation
US3480613A (en) * 1967-07-03 1969-11-25 Merck & Co Inc 2-c or 3-c-alkylribofuranosyl - 1-substituted compounds and the nucleosides thereof
DE2122991C2 (en) * 1971-05-04 1982-06-09 Schering Ag, 1000 Berlin Und 4619 Bergkamen Process for the preparation of cytosine and 6-azacytosine nucleosides
US3798209A (en) * 1971-06-01 1974-03-19 Icn Pharmaceuticals 1,2,4-triazole nucleosides
USRE29835E (en) 1971-06-01 1978-11-14 Icn Pharmaceuticals 1,2,4-Triazole nucleosides
JPS4848495A (en) 1971-09-21 1973-07-09
US4022889A (en) * 1974-05-20 1977-05-10 The Upjohn Company Therapeutic compositions of antibiotic U-44,590 and methods for using the same
DE2508312A1 (en) 1975-02-24 1976-09-02 Schering Ag NEW PROCESS FOR THE PRODUCTION OF NUCLEOSIDES
US4058602A (en) * 1976-08-09 1977-11-15 The United States Of America As Represented By The Department Of Health, Education And Welfare Synthesis, structure, and antitumor activity of 5,6-dihydro-5-azacytidine
DE2757365A1 (en) * 1977-12-20 1979-06-21 Schering Ag NEW PROCESS FOR THE PRODUCTION OF NUCLEOSIDES
DD140254A1 (en) 1978-12-04 1980-02-20 Dieter Baerwolff METHOD OF PREPARING 4-SUBSTITUTED PYRIMIDIN NUCLEOSIDES
DE2852721A1 (en) * 1978-12-06 1980-06-26 Basf Ag METHOD FOR REPRESENTING POTASSIUM RIBONATE AND RIBONOLACTONE
US4239753A (en) 1978-12-12 1980-12-16 The Upjohn Company Composition of matter and process
US4522811A (en) * 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
FR2562543B1 (en) * 1984-04-10 1987-09-25 Elf Aquitaine NOVEL CYCLIC PHOSPHONITES, THEIR PREPARATION AND APPLICATIONS
NL8403224A (en) * 1984-10-24 1986-05-16 Oce Andeno Bv DIOXAPHOSPHORINANS, THEIR PREPARATION AND THE USE FOR SPLITTING OF OPTICALLY ACTIVE COMPOUNDS.
KR880000094B1 (en) 1984-12-07 1988-02-23 보령제약 주식회사 Preparation process for nucleoside derivative
JPS61204193A (en) * 1985-03-05 1986-09-10 Takeda Chem Ind Ltd Production of cytosine nuceoside
US5223263A (en) * 1988-07-07 1993-06-29 Vical, Inc. Liponucleotide-containing liposomes
US6448392B1 (en) * 1985-03-06 2002-09-10 Chimerix, Inc. Lipid derivatives of antiviral nucleosides: liposomal incorporation and method of use
JPS61212592A (en) 1985-03-19 1986-09-20 Tokyo Tanabe Co Ltd Production of d-ribose
US4605659A (en) * 1985-04-30 1986-08-12 Syntex (U.S.A.) Inc. Purinyl or pyrimidinyl substituted hydroxycyclopentane compounds useful as antivirals
JPS61263995A (en) 1985-05-16 1986-11-21 Takeda Chem Ind Ltd Production of cytosine nucleoside
US4754026A (en) * 1985-06-04 1988-06-28 Takeda Chemical Industries, Ltd. Conversion of uracil derivatives to cytosine derivatives
US5455339A (en) 1986-05-01 1995-10-03 University Of Georgia Research Foundation, Inc. Method for the preparation of 2',3'-dideoxy and 2',3'-dideoxydide-hydro nucleosides
JPH0699467B2 (en) 1987-03-04 1994-12-07 ヤマサ醤油株式会社 2 ▲ '▼ -Deoxy-2 ▲' ▼ (S) -alkylpyrimidine nucleoside derivative
JPS63215894A (en) 1987-03-04 1988-09-08 Hitachi Ltd Motor pump with intensifier
DE3714473A1 (en) 1987-04-30 1988-11-10 Basf Ag CONTINUOUS PROCESS FOR EPIMERIZING SUGAR, ESPECIALLY FROM D-ARABINOSE TO D-RIBOSE
GB8719367D0 (en) * 1987-08-15 1987-09-23 Wellcome Found Therapeutic compounds
US5246924A (en) * 1987-09-03 1993-09-21 Sloan-Kettering Institute For Cancer Research Method for treating hepatitis B virus infections using 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-ethyluracil
EP0380558A4 (en) 1987-09-22 1991-07-31 The Regents Of The University Of California Liposomal nucleoside analogues for treating aids
US4880784A (en) * 1987-12-21 1989-11-14 Brigham Young University Antiviral methods utilizing ribofuranosylthiazolo[4,5-d]pyrimdine derivatives
US4996308A (en) * 1988-03-25 1991-02-26 Merrell Dow Pharmaceuticals Inc. Derivatives with unsaturated substitutions for the 5'-hydroxymethyl group
NZ229453A (en) 1988-06-10 1991-08-27 Univ Minnesota & Southern Rese A pharmaceutical composition containing purine derivatives with nucleosides such as azt, as antiviral agents
US5122517A (en) * 1988-06-10 1992-06-16 Regents Of The University Of Minnesota Antiviral combination comprising nucleoside analogs
GB8815265D0 (en) * 1988-06-27 1988-08-03 Wellcome Found Therapeutic nucleosides
US6599887B2 (en) * 1988-07-07 2003-07-29 Chimerix, Inc. Methods of treating viral infections using antiviral liponucleotides
US6252060B1 (en) * 1988-07-07 2001-06-26 Nexstar Pharmaceuticals, Inc. Antiviral liponucleosides: treatment of hepatitis B
SE8802687D0 (en) 1988-07-20 1988-07-20 Astra Ab NUCLEOSIDE DERIVATIVES
US5744600A (en) * 1988-11-14 1998-04-28 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Phosphonomethoxy carbocyclic nucleosides and nucleotides
US5705363A (en) * 1989-03-02 1998-01-06 The Women's Research Institute Recombinant production of human interferon τ polypeptides and nucleic acids
US5194654A (en) * 1989-11-22 1993-03-16 Vical, Inc. Lipid derivatives of phosphonoacids for liposomal incorporation and method of use
US5411947A (en) * 1989-06-28 1995-05-02 Vestar, Inc. Method of converting a drug to an orally available form by covalently bonding a lipid to the drug
US5118672A (en) 1989-07-10 1992-06-02 University Of Georgia Research Foundation 5'-diphosphohexose nucleoside pharmaceutical compositions
US5463092A (en) * 1989-11-22 1995-10-31 Vestar, Inc. Lipid derivatives of phosphonacids for liposomal incorporation and method of use
US6060592A (en) * 1990-01-11 2000-05-09 Isis Pharmaceuticals, Inc. Pyrimidine nucleoside compounds and oligonucleoside compounds containing same
US5200514A (en) * 1990-01-19 1993-04-06 University Of Georgia Research Foundation, Inc. Synthesis of 2'-deoxypyrimidine nucleosides
US5204466A (en) * 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
WO1991016920A1 (en) 1990-05-07 1991-11-14 Vical, Inc. Lipid prodrugs of salicylate and nonsteroidal anti-inflammatory drugs
FR2662165B1 (en) * 1990-05-18 1992-09-11 Univ Paris Curie BRANCHED NUCLEOSIDE DERIVATIVES, THEIR PREPARATION PROCESS AND THEIR USE AS MEDICAMENTS.
CA2083961A1 (en) * 1990-05-29 1991-11-30 Henk Van Den Bosch Synthesis of glycerol di- and triphosphate derivatives
EP0531452A4 (en) 1990-05-29 1993-06-09 Vical, Inc. Synthesis of glycerol di- and triphosphate derivatives
JP3347723B2 (en) 1990-06-13 2002-11-20 グラツィエル,アーノルド Phosphorus-containing prodrug
US5627165A (en) * 1990-06-13 1997-05-06 Drug Innovation & Design, Inc. Phosphorous prodrugs and therapeutic delivery systems using same
JP2559917B2 (en) * 1990-06-15 1996-12-04 三共株式会社 Pyrimidine nucleoside derivative
US5372808A (en) 1990-10-17 1994-12-13 Amgen Inc. Methods and compositions for the treatment of diseases with consensus interferon while reducing side effect
US5256641A (en) 1990-11-01 1993-10-26 State Of Oregon Covalent polar lipid-peptide conjugates for immunological targeting
US5827819A (en) * 1990-11-01 1998-10-27 Oregon Health Sciences University Covalent polar lipid conjugates with neurologically active compounds for targeting
US5149794A (en) * 1990-11-01 1992-09-22 State Of Oregon Covalent lipid-drug conjugates for drug targeting
US5543390A (en) * 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
US5543389A (en) * 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University, A Non Profit Organization Covalent polar lipid-peptide conjugates for use in salves
IL100502A (en) 1991-01-03 1995-12-08 Iaf Biochem Int Pharmaceutical compositions containing cis-4-amino-1(hydroxymethyl-1,3-oxathiolan-5-yl)-1H-pyrimid-2-one nucleoside or its derivatives
JPH04266880A (en) 1991-02-22 1992-09-22 Japan Tobacco Inc Production of 3-dpa-lactone
WO1992015308A1 (en) 1991-03-06 1992-09-17 The Wellcome Foundation Limited Use of 5-fluoro-2'-deoxy-3'-thiacytidine for the treatment of hepatitis b
WO1992018517A1 (en) 1991-04-17 1992-10-29 Yale University Method of treating or preventing hepatitis b virus
US5157027A (en) * 1991-05-13 1992-10-20 E. R. Squibb & Sons, Inc. Bisphosphonate squalene synthetase inhibitors and method
EP0594677A4 (en) 1991-07-12 1997-09-17 Vical Inc Antiviral liponucleosides: treatment of hepatitis b
JPH0525152A (en) 1991-07-22 1993-02-02 Japan Tobacco Inc Production of 3-dpa-lactone
US5554728A (en) * 1991-07-23 1996-09-10 Nexstar Pharmaceuticals, Inc. Lipid conjugates of therapeutic peptides and protease inhibitors
TW224053B (en) 1991-09-13 1994-05-21 Paul B Chretien
US5676942A (en) * 1992-02-10 1997-10-14 Interferon Sciences, Inc. Composition containing human alpha interferon species proteins and method for use thereof
DE4207363A1 (en) 1992-03-04 1993-09-09 Max Delbrueck Centrum ANTIVIRAL NUCLEOSIDE ANALOGS, THEIR PRODUCTION AND THEIR PHARMACEUTICAL USE
US5821357A (en) * 1992-06-22 1998-10-13 Eli Lilly And Company Stereoselective glycosylation process for preparing 2'-deoxy-2',2'-difluoropurine and triazole nucleosides
US5256797A (en) 1992-06-22 1993-10-26 Eli Lilly And Company Process for separating 2-deoxy-2,2-difluoro-D-ribofuranosyl alkylsulfonate anomers
US5606048A (en) * 1992-06-22 1997-02-25 Eli Lilly And Company Stereoselective glycosylation process for preparing 2'-Deoxy-2', 2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides
US5371210A (en) 1992-06-22 1994-12-06 Eli Lilly And Company Stereoselective fusion glycosylation process for preparing 2'-deoxy-2',2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides
US5401861A (en) * 1992-06-22 1995-03-28 Eli Lilly And Company Low temperature process for preparing alpha-anomer enriched 2-deoxy-2,2-difluoro-D-ribofuranosyl sulfonates
WO1994001117A1 (en) 1992-07-02 1994-01-20 The Wellcome Foundation Limited Therapeutic nucleosides
DE4224737A1 (en) 1992-07-27 1994-02-03 Herbert Prof Dr Schott New cytosine analogues with lipophilic protected amino gps. - for treatment of cancer and virus diseases e.g. AIDS, are more protected against enzymatic des-amination and can be used in higher doses than unprotected cpds.
US5256924A (en) * 1992-08-10 1993-10-26 Allied-Signal Inc. Superconducting commutator for DC machines
HU214980B (en) 1992-09-01 1998-08-28 Eli Lilly And Co. A process for anomerizing nucleosides
EP0662157B1 (en) 1992-09-10 2001-06-20 Isis Pharmaceuticals, Inc. Compositions and methods for treatment of hepatitis c virus-associated diseases
US6174868B1 (en) 1992-09-10 2001-01-16 Isis Pharmaceuticals, Inc. Compositions and methods for treatment of hepatitis C virus-associated diseases
US6391542B1 (en) 1992-09-10 2002-05-21 Isis Pharmaceuticals, Inc. Compositions and methods for treatment of Hepatitis C virus-associated diseases
US6423489B1 (en) 1992-09-10 2002-07-23 Isis Pharmaceuticals, Inc. Compositions and methods for treatment of Hepatitis C virus-associated diseases
US6433159B1 (en) 1992-09-10 2002-08-13 Isis Pharmaceuticals, Inc. Compositions and methods for treatment of Hepatitis C virus associated diseases
JPH06135988A (en) 1992-10-22 1994-05-17 Toagosei Chem Ind Co Ltd Nucleotide derivative
GB9226729D0 (en) * 1992-12-22 1993-02-17 Wellcome Found Therapeutic combination
JPH06211890A (en) 1993-01-12 1994-08-02 Yamasa Shoyu Co Ltd 2'-deoxy-2'@(3754/24)s)-substituted alkylcytidine derivative
JPH06228186A (en) 1993-01-29 1994-08-16 Yamasa Shoyu Co Ltd 2'-deoxy-@(3754/24)2's)-alkylpyrimidine nucleoside derivative
GB9307043D0 (en) * 1993-04-05 1993-05-26 Norsk Hydro As Chemical compounds
JP3312951B2 (en) 1993-04-08 2002-08-12 三菱化学株式会社 Olefin-based thermoplastic resin composition
WO1994026273A1 (en) 1993-05-12 1994-11-24 Hostetler Karl Y Acyclovir derivatives for topical use
US6156501A (en) 1993-10-26 2000-12-05 Affymetrix, Inc. Arrays of modified nucleic acid probes and methods of use
US5587362A (en) 1994-01-28 1996-12-24 Univ. Of Ga Research Foundation L-nucleosides
US5908821A (en) 1994-05-11 1999-06-01 Procter & Gamble Company Dye transfer inhibiting compositions with specifically selected metallo catalysts
KR100290132B1 (en) 1994-07-01 2001-05-15 마이클 바마트 Pyrimidine nucleotide precursors for systemic inflammation and inflammatory hepatitis
US5696277A (en) 1994-11-15 1997-12-09 Karl Y. Hostetler Antiviral prodrugs
NZ297100A (en) 1994-12-13 1997-10-24 Akira Matsuda 3'-substituted nucleoside derivatives; medicaments
GB9505025D0 (en) 1995-03-13 1995-05-03 Medical Res Council Chemical compounds
DE19513330A1 (en) * 1995-04-03 1996-10-10 Schering Ag New process for the production of nucleosides
US5977061A (en) * 1995-04-21 1999-11-02 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic N6 - substituted nucleotide analagues and their use
JPH0959292A (en) 1995-08-25 1997-03-04 Yamasa Shoyu Co Ltd Production of 4-aminopyrimidine nucleoside
AU709345B2 (en) * 1995-09-07 1999-08-26 Emory University Therapeutic azide compounds
JP4191797B2 (en) 1995-09-27 2008-12-03 エモリー ユニバーシティー Recombinant hepatitis C virus RNA replicase
US5908621A (en) * 1995-11-02 1999-06-01 Schering Corporation Polyethylene glycol modified interferon therapy
US5980884A (en) * 1996-02-05 1999-11-09 Amgen, Inc. Methods for retreatment of patients afflicted with Hepatitis C using consensus interferon
GB9609932D0 (en) * 1996-05-13 1996-07-17 Hoffmann La Roche Use of IL-12 and IFN alpha for the treatment of infectious diseases
EP0961775B1 (en) * 1996-10-16 2004-07-14 ICN Pharmaceuticals, Inc. Purine l-nucleosides, analogs and uses thereof
UA63915C2 (en) * 1996-10-16 2004-02-16 Ай-Сі-Ен Фармасьютикалз, Інк. Monocyclic l-nucleosides, analogues and use thereof
HU227742B1 (en) 1996-10-18 2012-02-28 Vertex Pharma Inhibitors of serine proteases, particularly hepatitis c virus ns3 protease
EP0948256A4 (en) * 1996-10-28 2007-10-24 Univ Washington Induction of viral mutation by incorporation of miscoding ribonucleoside analogs into viral rna
GB9623908D0 (en) 1996-11-18 1997-01-08 Hoffmann La Roche Amino acid derivatives
US6248878B1 (en) * 1996-12-24 2001-06-19 Ribozyme Pharmaceuticals, Inc. Nucleoside analogs
YU61598A (en) 1997-01-17 2003-02-28 Icn Pharmaceuticals Inc. Cytokine related treatments of disease
AU739240B2 (en) 1997-03-19 2001-10-04 Emory University Synthesis, anti-human immunodeficiency virus and anti-hepatitis B virus activities of 1,3-oxaselenolane nucleosides
JP4452401B2 (en) 1997-08-11 2010-04-21 ベーリンガー インゲルハイム (カナダ) リミテッド Hepatitis C virus inhibitory peptide analog
US6472373B1 (en) * 1997-09-21 2002-10-29 Schering Corporation Combination therapy for eradicating detectable HCV-RNA in antiviral treatment naive patients having chronic hepatitis C infection
EP1317929A3 (en) 1997-09-21 2003-07-02 Schering Corporation Combination therapy for eradicating detectable HCV-RNA in patients having chronic hepatitis c infection
US6172046B1 (en) * 1997-09-21 2001-01-09 Schering Corporation Combination therapy for eradicating detectable HCV-RNA in patients having chronic Hepatitis C infection
JP2001522034A (en) 1997-10-30 2001-11-13 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ, リプレゼンテッド バイ ザ セクレタリー オブ ヘルス アンド ヒューマン サービシーズ Nucleosides for imaging and treatment applications
AU762125B2 (en) 1998-02-12 2003-06-19 G.D. Searle & Co. Use of (N)-substituted-1,5-dideoxy-1,5-imino-D-glucitol compounds for treating hepatitis virus infections
WO1999043690A1 (en) 1998-02-25 1999-09-02 Rational Drug Design Laboratories L-4'-arabinofuranonucleoside compound and medicine composition comprising the same
EP1058686B1 (en) * 1998-02-25 2006-11-02 Emory University 2'-fluoronucleosides
KR100389853B1 (en) * 1998-03-06 2003-08-19 삼성전자주식회사 Method for recording and reproducing catalog information
US6312662B1 (en) * 1998-03-06 2001-11-06 Metabasis Therapeutics, Inc. Prodrugs phosphorus-containing compounds
ES2401070T3 (en) 1998-03-06 2013-04-16 Metabasis Therapeutics, Inc. New prodrugs for phosphorus-containing compounds
GB9806815D0 (en) 1998-03-30 1998-05-27 Hoffmann La Roche Amino acid derivatives
TW466112B (en) 1998-04-14 2001-12-01 Lilly Co Eli Novel use of 2'-deoxy-2',2'-difluorocytidine for immunosuppressive therapy and pharmaceutical composition comprising the same
CN1230198C (en) 1998-05-15 2005-12-07 先灵公司 Combination therapy comprising ribavirin and interferon alpha in antiviral treatment naive patients having G chronic hepatitis C infection
US6833361B2 (en) 1998-05-26 2004-12-21 Ribapharm, Inc. Nucleosides having bicyclic sugar moiety
HU228218B1 (en) 1998-06-08 2013-02-28 Hoffmann La Roche Use of peg-ifn-alpha and ribavirin for the treatment of chronic hepatitis c
US6444652B1 (en) 1998-08-10 2002-09-03 Novirio Pharmaceuticals Limited β-L-2'-deoxy-nucleosides for the treatment of hepatitis B
CN100387237C (en) * 1998-08-10 2008-05-14 艾丹尼克斯(开曼)有限公司 Beta-L-2'deoxy-nucleosides for the treatment of hepatitis B
CA2252144A1 (en) 1998-10-16 2000-04-16 University Of Alberta Dual action anticancer prodrugs
US6277830B1 (en) * 1998-10-16 2001-08-21 Schering Corporation 5′-amino acid esters of ribavirin and the use of same to treat hepatitis C with interferon
WO2000026225A2 (en) * 1998-11-05 2000-05-11 Centre National De La Recherche Scientifique Nucleosides with anti-hepatitis b virus activity
ATE321561T1 (en) 1998-11-05 2006-04-15 Centre Nat Rech Scient ACIDO DERIVATIVES OF BETA-L-2'-NUCLEOSIDES FOR HIV INFECTION TREATMENT
JP2003507322A (en) 1998-12-18 2003-02-25 シェリング・コーポレーション Ribavirin-PEGylated interferon-α-induced HCV combination therapy
AU3213200A (en) 1999-01-21 2000-08-07 Board Of Regents, The University Of Texas System Inhibitors of intestinal apical membrane na/phosphate co-transportation
AU3858600A (en) 1999-02-12 2001-02-19 G.D. Searle & Co. Glucamine compounds for treating hepatitis virus infections
EP1150988B1 (en) 1999-02-12 2003-05-28 Glaxo Group Limited Phosphoramidate, and mono-, di-, and tri-phosphate esters of (1r, cis)-4-(6-amino-9h-purin-9-yl)-2-cyclopentene-1-methanol as antiviral agents
ATE231149T1 (en) * 1999-02-22 2003-02-15 Shire Biochem Inc (1,8)-NAPHTHYRIDINE DERIVATIVES DERIVATIVES WITH ANTIVIRAL EFFECT
PT1165570E (en) 1999-03-05 2007-01-31 Metabasis Therapeutics Inc Novel phosphorus-containing prodrugs
US6831069B2 (en) * 1999-08-27 2004-12-14 Ribapharm Inc. Pyrrolo[2,3-d]pyrimidine nucleoside analogs
CN1224872C (en) 1999-09-01 2005-10-26 松下电器产业株式会社 Digital data copyright protection system
US6752981B1 (en) * 1999-09-08 2004-06-22 Metabasis Therapeutics, Inc. Prodrugs for liver specific drug delivery
EP1225899A2 (en) 1999-11-04 2002-07-31 Virochem Pharma Inc. Method for the treatment or prevention of flaviviridae viral infection using nucleoside analogues
NZ519219A (en) 1999-12-22 2004-03-26 Metabasis Therapeutics Inc Novel bisamidate phosphonate prodrugs
US20020061896A1 (en) 1999-12-30 2002-05-23 Arshad Siddiqul Imidazopyrimidine nucleoside analogues with anti-HIV activity
AU2001236938A1 (en) 2000-02-14 2001-08-27 Pharmacia Corporation Use of n-substituted-1,5-dideoxy-1,5-imino-d-glucitol compounds for treating hepatitis virus infections
US6495677B1 (en) 2000-02-15 2002-12-17 Kanda S. Ramasamy Nucleoside compounds
US7056895B2 (en) * 2000-02-15 2006-06-06 Valeant Pharmaceuticals International Tirazole nucleoside analogs and methods for using same
US6455508B1 (en) 2000-02-15 2002-09-24 Kanda S. Ramasamy Methods for treating diseases with tirazole and pyrrolo-pyrimidine ribofuranosyl nucleosides
CZ20022825A3 (en) * 2000-02-18 2003-05-14 Shire Biochem Inc. Nucleoside analogs intended for use when treating or prophylaxis infections induced by flavivirus
FR2806095A1 (en) 2000-03-10 2001-09-14 Gentech New polynucleotides for producing transgenic plants resistant to geminivirus infection comprising polynucleotides encoding proteins which interact with at least one of the products of the geminivirus genome
ES2319732T3 (en) 2000-04-13 2009-05-12 Pharmasset, Inc. DERIVATIVES OF NUCLEOSIDE 3'- OR 2'-HYDROXIMETHYL REPLACED FOR THE TREATMENT OF VIRAL INFECTIONS.
WO2001081359A1 (en) 2000-04-20 2001-11-01 Schering Corporation Ribavirin-interferon alfa combination therapy for eradicating detectable hcv-rna in patients having chronic hepatitis c infection
MY164523A (en) 2000-05-23 2017-12-29 Univ Degli Studi Cagliari Methods and compositions for treating hepatitis c virus
ES2227203T3 (en) 2000-05-26 2005-04-01 Idenix (Cayman) Limited METHODS TO TREAT INFECTION WITH THE DELTA HEPATITIS VIRUS WITH BETA-1-2'-DEOXINUCLEOSIDS.
US6787526B1 (en) * 2000-05-26 2004-09-07 Idenix Pharmaceuticals, Inc. Methods of treating hepatitis delta virus infection with β-L-2′-deoxy-nucleosides
WO2001092282A2 (en) * 2000-05-26 2001-12-06 Idenix (Cayman) Limited Methods and compositions for treating flaviviruses and pestiviruses
MY141594A (en) 2000-06-15 2010-05-14 Novirio Pharmaceuticals Ltd 3'-PRODRUGS OF 2'-DEOXY-ß-L-NUCLEOSIDES
US6875751B2 (en) * 2000-06-15 2005-04-05 Idenix Pharmaceuticals, Inc. 3′-prodrugs of 2′-deoxy-β-L-nucleosides
US6815542B2 (en) * 2000-06-16 2004-11-09 Ribapharm, Inc. Nucleoside compounds and uses thereof
EP1299538A2 (en) 2000-06-20 2003-04-09 Incyte Genomics, Inc. Secreted proteins
JP3629187B2 (en) * 2000-06-28 2005-03-16 株式会社東芝 ELECTRIC FUSE, SEMICONDUCTOR DEVICE HAVING THE ELECTRIC FUSE, AND METHOD FOR MANUFACTURING THE SAME
UA72612C2 (en) 2000-07-06 2005-03-15 Pyrido[2.3-d]pyrimidine and pyrimido[4.5-d]pyrimidine nucleoside analogues, prodrugs and method for inhibiting growth of neoplastic cells
US6316174B1 (en) * 2000-08-24 2001-11-13 Eastman Kodak Company Color negative film
US20030008841A1 (en) 2000-08-30 2003-01-09 Rene Devos Anti-HCV nucleoside derivatives
SV2003000617A (en) 2000-08-31 2003-01-13 Lilly Co Eli INHIBITORS OF PROTEASA PEPTIDOMIMETICA REF. X-14912M
WO2002018405A2 (en) 2000-09-01 2002-03-07 Ribozyme Pharmaceuticals, Incorporated Methods for synthesizing nucleosides, nucleoside derivatives and non-nucleoside derivatives
EP2180064A3 (en) 2000-10-18 2010-08-11 Pharmasset, Inc. Multiplex quantification of nucleic acids in diseased cells
JP2004511513A (en) 2000-10-18 2004-04-15 シェリング・コーポレーション Ribavirin-PEGylated interferon alpha HCV combination therapy
EP2251015B1 (en) 2000-10-18 2013-02-20 Gilead Pharmasset LLC Modified nucleosides for the treatment of viral infections and abnormal cellular proliferation
CA2429352A1 (en) 2000-12-15 2002-06-20 Lieven Stuyver Antiviral agents for treatment of flaviviridae infections
SI1355916T1 (en) 2001-01-22 2007-04-30 Merck & Co Inc Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
US7105499B2 (en) 2001-01-22 2006-09-12 Merck & Co., Inc. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
IL157478A0 (en) 2001-03-01 2004-03-28 Pharmasset Ltd Method for the synthesis of 2', 3'-didehydronucleosides
GB0112617D0 (en) 2001-05-23 2001-07-18 Hoffmann La Roche Antiviral nucleoside derivatives
GB0114286D0 (en) * 2001-06-12 2001-08-01 Hoffmann La Roche Nucleoside Derivatives
US6949522B2 (en) 2001-06-22 2005-09-27 Pharmasset, Inc. β-2′- or 3′-halonucleosides
WO2003024461A1 (en) 2001-09-20 2003-03-27 Schering Corporation Hcv combination therapy
US20030070752A1 (en) 2001-09-27 2003-04-17 Kevin Bergevin Method of manufacture for fluid handling barrier ribbon with polymeric tubes
WO2003026589A2 (en) 2001-09-28 2003-04-03 Idenix (Cayman) Limited Methods and compositions for treating hepatitis c virus using 4'-modified nucleosides
US20040006002A1 (en) 2001-09-28 2004-01-08 Jean-Pierre Sommadossi Methods and compositions for treating flaviviruses and pestiviruses using 4'-modified nucleoside
WO2003039523A2 (en) 2001-11-05 2003-05-15 Exiqon A/S OLIGONUCLEOTIDES MODIFIED WITH NOVEL α-L-RNA ANALOGUES
BR0214944A (en) * 2001-12-14 2005-06-07 Pharmasset Ltd N4-Acylcytosine Nucleosides for the Treatment of Viral Infections
AU2002353165A1 (en) 2001-12-17 2003-06-30 Ribapharm Inc. Deazapurine nucleoside libraries and compounds
US6965066B1 (en) 2002-01-16 2005-11-15 Actodyne General, Inc. Elongated string support for a stringed musical instrument
WO2003061385A1 (en) 2002-01-17 2003-07-31 Ribapharm Inc. Tricyclic nucleoside library compounds, synthesis, and use as antiviral agents
WO2003062256A1 (en) 2002-01-17 2003-07-31 Ribapharm Inc. 2'-beta-modified-6-substituted adenosine analogs and their use as antiviral agents
AU2002341942A1 (en) 2002-01-17 2003-09-02 Ribapharm Inc. Sugar modified nucleosides as viral replication inhibitors
US7323453B2 (en) 2002-02-13 2008-01-29 Merck & Co., Inc. Methods of inhibiting orthopoxvirus replication with nucleoside compounds
WO2003068162A2 (en) * 2002-02-14 2003-08-21 Pharmasset Ltd. Modified fluorinated nucleoside analogues
US7285658B2 (en) * 2002-02-28 2007-10-23 Biota, Inc. Nucleotide mimics and their prodrugs
AU2003214199A1 (en) 2002-03-18 2003-10-08 Massachusetts Institute Of Technology Event-driven charge-coupled device design and applications therefor
AU2003225181A1 (en) * 2002-04-26 2003-11-10 Rolls-Royce Corporation Fuel premixing module for gas turbine engine combustor
US7247621B2 (en) * 2002-04-30 2007-07-24 Valeant Research & Development Antiviral phosphonate compounds and methods therefor
US20040063658A1 (en) 2002-05-06 2004-04-01 Roberts Christopher Don Nucleoside derivatives for treating hepatitis C virus infection
WO2003099840A1 (en) 2002-05-24 2003-12-04 Isis Pharmaceuticals, Inc. Oligonucleotides having modified nucleoside units
AU2003241621A1 (en) 2002-05-24 2003-12-12 Isis Pharmaceuticals, Inc. Oligonucleotides having modified nucleoside units
WO2003105770A2 (en) 2002-06-17 2003-12-24 Merck & Co., Inc. Carbocyclic nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
DE10226932A1 (en) 2002-06-17 2003-12-24 Bayer Ag Radiation-curing coating agents
SE0201940D0 (en) 2002-06-20 2002-06-20 Astrazeneca Ab New combination II
WO2004000858A2 (en) 2002-06-21 2003-12-31 Merck & Co., Inc. Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
WO2004003138A2 (en) 2002-06-27 2004-01-08 Merck & Co., Inc. Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
CN101172993A (en) * 2002-06-28 2008-05-07 埃迪尼克斯(开曼)有限公司 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
KR20050035194A (en) 2002-06-28 2005-04-15 이데닉스 (케이만) 리미티드 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
CA2490200C (en) 2002-06-28 2012-01-03 Idenix (Cayman) Limited 2' and 3'-nucleoside prodrugs for treating flaviviridae infections
US7608600B2 (en) 2002-06-28 2009-10-27 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
ES2469569T3 (en) 2002-06-28 2014-06-18 Idenix Pharmaceuticals, Inc. 2 'and 3' modified nucleoside prodrugs for the treatment of Flaviviridae infections
US20040003476A1 (en) * 2002-07-08 2004-01-08 Albert Bierria Portable power driven scarifying tool for pipe ends
US20060264389A1 (en) 2002-07-16 2006-11-23 Balkrishen Bhat Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
US7323449B2 (en) 2002-07-24 2008-01-29 Merck & Co., Inc. Thionucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
US20040067877A1 (en) 2002-08-01 2004-04-08 Schinazi Raymond F. 2', 3'-Dideoxynucleoside analogues for the treatment or prevention of Flaviviridae infections
JP4085742B2 (en) * 2002-08-22 2008-05-14 株式会社ニコン Lens barrel and camera system provided with the lens barrel
WO2004023921A1 (en) 2002-09-16 2004-03-25 Kyeong Ho Kim Decoration band
KR20050059199A (en) 2002-09-30 2005-06-17 제네랩스 테크놀로지스, 인코포레이티드 Nucleoside derivatives for treating hepatitis c virus infection
US7094768B2 (en) * 2002-09-30 2006-08-22 Genelabs Technologies, Inc. Nucleoside derivatives for treating hepatitis C virus infection
US20040229840A1 (en) 2002-10-29 2004-11-18 Balkrishen Bhat Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
WO2004041203A2 (en) 2002-11-04 2004-05-21 Xenoport, Inc. Gemcitabine prodrugs, pharmaceutical compositions and uses thereof
WO2004044136A2 (en) 2002-11-05 2004-05-27 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2’-modified nucleosides for use in gene modulation
AU2003295388A1 (en) 2002-11-05 2004-06-03 Isis Pharmaceuticals, Inc. 2'-substituted oligomeric compounds and compositions for use in gene modulations
KR20050088079A (en) 2002-11-15 2005-09-01 이데닉스 (케이만) 리미티드 2'-branched nucleosides and flaviviridae mutation
TWI332507B (en) 2002-11-19 2010-11-01 Hoffmann La Roche Antiviral nucleoside derivatives
CA2509687C (en) 2002-12-12 2012-08-14 Idenix (Cayman) Limited Process for the production of 2'-branched nucleosides
WO2004058792A1 (en) 2002-12-23 2004-07-15 Idenix (Cayman) Limited Process for the production of 3'-nucleoside prodrugs
WO2004065398A2 (en) 2003-01-15 2004-08-05 Ribapharm Inc. Synthesis and use of 2'-substituted-n6-modified nucleosides
AR043006A1 (en) 2003-02-12 2005-07-13 Merck & Co Inc PROCESS TO PREPARE RAMIFIED RIBONUCLEOSIDS
WO2004080466A1 (en) 2003-03-07 2004-09-23 Ribapharm Inc. Cytidine analogs and methods of use
CN101415719A (en) 2003-03-20 2009-04-22 微生物化学及药品有限公司 Methods of manufacture of 2 -deoxy-beta-L-nucleosides
WO2004084796A2 (en) 2003-03-28 2004-10-07 Pharmasset Ltd. Compounds for the treatment of flaviviridae infections
US7452901B2 (en) 2003-04-25 2008-11-18 Gilead Sciences, Inc. Anti-cancer phosphonate analogs
CN1812995A (en) 2003-04-28 2006-08-02 艾登尼科斯(开曼)有限公司 Industrially scalable nucleoside synthesis
US20040259934A1 (en) 2003-05-01 2004-12-23 Olsen David B. Inhibiting Coronaviridae viral replication and treating Coronaviridae viral infection with nucleoside compounds
US20040229839A1 (en) 2003-05-14 2004-11-18 Biocryst Pharmaceuticals, Inc. Substituted nucleosides, preparation thereof and use as inhibitors of RNA viral polymerases
WO2005020884A2 (en) 2003-05-14 2005-03-10 Idenix (Cayman) Limited Nucleosides for treatment of infection by corona viruses, toga viruses and picorna viruses
WO2005020885A2 (en) 2003-05-21 2005-03-10 Isis Pharmaceuticals, Inc. Compositions and methods for the treatment of severe acute respiratory syndrome (sars)
WO2004106356A1 (en) 2003-05-27 2004-12-09 Syddansk Universitet Functionalized nucleotide derivatives
LT2604620T (en) 2003-05-30 2016-09-12 Gilead Pharmasset Llc Modified fluorinated nucleoside analogues
KR20060026426A (en) 2003-06-19 2006-03-23 에프. 호프만-라 로슈 아게 Processes for preparing 4'-azido nucleoside derivatives
GB0317009D0 (en) 2003-07-21 2003-08-27 Univ Cardiff Chemical compounds
CA2537140A1 (en) 2003-08-29 2005-03-10 The Nottingham Trent University Gastric and prostate cancer associated antigens
WO2005030258A2 (en) 2003-09-22 2005-04-07 Acidophil Llc Small molecule compositions and methods for increasing drug efficiency using compositions thereof
US7144868B2 (en) 2003-10-27 2006-12-05 Genelabs Technologies, Inc. Nucleoside compounds for treating viral infections
US20050137141A1 (en) 2003-10-24 2005-06-23 John Hilfinger Prodrug composition
CA2542776A1 (en) * 2003-10-27 2005-05-12 Genelabs Technologies, Inc. Nucleoside compounds for treating viral infections
US7244713B2 (en) 2003-10-27 2007-07-17 Genelabs Technologies, Inc. Nucleoside compounds for treating viral infections
US6908824B2 (en) * 2003-11-06 2005-06-21 Chartered Semiconductor Manufacturing Ltd. Self-aligned lateral heterojunction bipolar transistor
JP2005302670A (en) 2004-04-16 2005-10-27 Matsushita Electric Ind Co Ltd Electronic device
WO2006016930A2 (en) 2004-05-14 2006-02-16 Intermune, Inc. Methods for treating hcv infection
AU2005254057B2 (en) 2004-06-15 2011-02-17 Isis Pharmaceuticals, Inc. C-purine nucleoside analogs as inhibitors of RNA-dependent RNA viral polymerase
WO2006002231A1 (en) 2004-06-22 2006-01-05 Biocryst Pharmaceuticals, Inc. Aza nucleosides, preparation thereof and use as inhibitors of rna viral polymerases
BRPI0512360A (en) 2004-06-23 2008-03-11 Idenix Cayman Ltd 5-aza-7-deazapurine derivatives for the treatment of flaviviridae
EP1773355B1 (en) 2004-06-24 2014-06-25 Merck Sharp & Dohme Corp. Nucleoside aryl phosphoramidates for the treatment of rna-dependent rna viral infection
MX2007000803A (en) 2004-07-21 2007-04-02 Pharmasset Inc Preparation of alkyl-substituted 2-deoxy-2-fluoro-d-ribofuranosyl pyrimidines and purines and their derivatives.
CN101023094B (en) 2004-07-21 2011-05-18 法莫赛特股份有限公司 Preparation of alkyl-substituted 2-deoxy-2-fluoro-d-ribofuranosyl pyrimidines and purines and their derivatives
WO2006021341A1 (en) 2004-08-23 2006-03-02 F. Hoffmann-La Roche Ag Antiviral 4’-azido-nucleosides
BRPI0515896A (en) 2004-09-24 2008-08-12 Idenix Cayman Ltd E Ct Nat De a compound or a pharmaceutically acceptable salt or ester thereof, a method for treating or prophylaxis a host infected with a flavivirus, pestivirus or hepacivirus infection, and a pharmaceutical composition for treating a host infected with a flavivirus, pestivirus or hepacivirus
EA200700718A1 (en) 2004-10-06 2007-12-28 Мидженикс Инк. COMBINED ANTI-VIRAL COMPOSITIONS CONTAINING KASTANOSPERMIN AND METHODS OF THEIR APPLICATION
WO2006065335A2 (en) 2004-10-21 2006-06-22 Merck & Co., Inc. Fluorinated pyrrolo[2,3-d]pyrimidine nucleosides for the treatment of rna-dependent rna viral infection
US7414031B2 (en) 2004-11-22 2008-08-19 Genelabs Technologies, Inc. 5-nitro-nucleoside compounds for treating viral infections
EP1828217A2 (en) 2004-12-16 2007-09-05 Febit Biotech GmbH Polymerase-independent analysis of the sequence of polynucleotides
JP2008530124A (en) 2005-02-09 2008-08-07 ミジェニックス インコーポレイテッド Compositions and methods for treating or preventing flavivirus infections
CA2600359A1 (en) 2005-03-09 2006-09-09 Idenix (Cayman) Limited Nucleosides with non-natural bases as anti-viral agents
DE102005012681A1 (en) 2005-03-18 2006-09-21 Weber, Lutz, Dr. New 1,5-dihydro-pyrrol-2-one compounds are HDM2 inhibitors, useful for treating e.g. stroke, heart infarct, ischemia, multiple sclerosis, Alzheimer's disease, degenerative disease, viral infection and cancer
WO2006097323A1 (en) 2005-03-18 2006-09-21 Lutz Weber TETRAHYDRO-ISOQUINOLIN-l-ONES FOR THE TREATMENT OF CANCER
GT200600119A (en) 2005-03-24 2006-10-25 PHARMACEUTICAL COMPOSITIONS
WO2006116557A1 (en) 2005-04-25 2006-11-02 Genelabs Technologies, Inc. Nucleoside compounds for treating viral infections
WO2006121820A1 (en) 2005-05-05 2006-11-16 Valeant Research & Development Phosphoramidate prodrugs for treatment of viral infection
WO2006130532A2 (en) 2005-05-31 2006-12-07 Novartis Ag Treatment of liver diseases in which iron plays a role in pathogenesis
JP2009501546A (en) 2005-07-18 2009-01-22 ノバルティス アーゲー A small animal model for HCV replication
AU2006279720A1 (en) 2005-08-12 2007-02-22 Merck & Co., Inc. Novel 2'-C-methyl and 4'-C-methyl nucleoside derivatives
AR057096A1 (en) 2005-08-26 2007-11-14 Chancellors Masters And Schola PROCESS TO PREPARE SACARINIC ACIDS AND LACTONS
CN101336247B (en) 2005-12-09 2013-01-23 豪夫迈·罗氏有限公司 Antiviral nucleosides
WO2007075876A2 (en) 2005-12-23 2007-07-05 Idenix Pharmaceuticals, Inc. Process for preparing a synthetic intermediate for preparation of branched nucleosides
WO2007095269A2 (en) 2006-02-14 2007-08-23 Merck & Co., Inc. Nucleoside aryl phosphoramidates for the treatment of rna-dependent rna viral infection
US20080261913A1 (en) 2006-12-28 2008-10-23 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of liver disorders
US7964580B2 (en) 2007-03-30 2011-06-21 Pharmasset, Inc. Nucleoside phosphoramidate prodrugs
BRPI0811633A2 (en) 2007-05-14 2017-06-06 Univ Emory compounds of formulas (i) and (ii), method of treating hiv-1, hiv-2, hbv or hcv infected host, method of preventing hiv-1, hiv-2, hbv or hcv infection, method for reduce biological activity of hiv-1, hiv-2, hbv or hcv infection and pharmaceutical composition
GB0718575D0 (en) 2007-09-24 2007-10-31 Angeletti P Ist Richerche Bio Nucleoside derivatives as inhibitors of viral polymerases
US20090318380A1 (en) 2007-11-20 2009-12-24 Pharmasset, Inc. 2',4'-substituted nucleosides as antiviral agents
EP2268642B1 (en) 2008-04-23 2015-02-25 Gilead Sciences, Inc. 1' -substituted carba-nucleoside analogs for antiviral treatment
CA2729168A1 (en) 2008-07-02 2010-02-04 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
GB0815968D0 (en) 2008-09-03 2008-10-08 Angeletti P Ist Richerche Bio Antiviral agents
GB0900914D0 (en) 2009-01-20 2009-03-04 Angeletti P Ist Richerche Bio Antiviral agents
US7973013B2 (en) 2009-09-21 2011-07-05 Gilead Sciences, Inc. 2'-fluoro substituted carba-nucleoside analogs for antiviral treatment
AR094621A1 (en) 2010-04-01 2015-08-19 Idenix Pharmaceuticals Inc PHARMACEUTICAL COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF VIRAL INFECTIONS
EP2654900A1 (en) 2010-12-20 2013-10-30 Gilead Sciences, Inc. Combinations for treating hcv
US9243025B2 (en) 2011-03-31 2016-01-26 Idenix Pharmaceuticals, Llc Compounds and pharmaceutical compositions for the treatment of viral infections
EA201391519A1 (en) 2011-04-13 2014-03-31 Мерк Шарп И Доум Корп. 2'-SUBSTITUTED NUCLEOSIDE DERIVATIVES AND METHODS OF THEIR USE FOR THE TREATMENT OF VIRAL DISEASES
CA2832449A1 (en) 2011-04-13 2012-10-18 Vinay GIRIJAVALLABHAN 2'-cyano substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
EP2697242B1 (en) * 2011-04-13 2018-10-03 Merck Sharp & Dohme Corp. 2'-azido substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
RU2013125713A (en) 2011-05-19 2015-06-27 Рфс Фарма, Ллк PURINMONOPHOSPHATE MEDICINES FOR TREATING VIRAL INFECTIONS
EP2755983B1 (en) 2011-09-12 2017-03-15 Idenix Pharmaceuticals LLC. Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections
WO2013056046A1 (en) 2011-10-14 2013-04-18 Idenix Pharmaceuticals, Inc. Substituted 3',5'-cyclic phosphates of purine nucleotide compounds and pharmaceutical compositions for the treatment of viral infections
WO2013177195A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. 3',5'-cyclic phosphate prodrugs for hcv infection
AU2013266393B2 (en) 2012-05-22 2017-09-28 Idenix Pharmaceuticals Llc D-amino acid compounds for liver disease
EP2852604B1 (en) 2012-05-22 2017-04-12 Idenix Pharmaceuticals LLC 3',5'-cyclic phosphoramidate prodrugs for hcv infection
WO2014052638A1 (en) 2012-09-27 2014-04-03 Idenix Pharmaceuticals, Inc. Esters and malonates of sate prodrugs
US10513534B2 (en) 2012-10-08 2019-12-24 Idenix Pharmaceuticals Llc 2′-chloro nucleoside analogs for HCV infection
US9242988B2 (en) 2012-10-17 2016-01-26 Merck Sharp & Dohme Corp. 2′-cyano substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
AR092959A1 (en) 2012-10-17 2015-05-06 Merck Sharp & Dohme DERIVATIVES OF NUCLEOSIDS 2-METHYL SUBSTITUTED AND METHODS OF USE OF THE SAME FOR THE TREATMENT OF VIRAL DISEASES
EP2909210A4 (en) 2012-10-17 2016-04-06 Merck Sharp & Dohme 2'-disubstituted substituted nucleoside derivatives and methods of use thereof for treatment of viral diseases
WO2014063019A1 (en) 2012-10-19 2014-04-24 Idenix Pharmaceuticals, Inc. Dinucleotide compounds for hcv infection
WO2014066239A1 (en) 2012-10-22 2014-05-01 Idenix Pharmaceuticals, Inc. 2',4'-bridged nucleosides for hcv infection
US20140140951A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-Alanine Ester of Rp-Nucleoside Analog
WO2014078436A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-alanine ester of sp-nucleoside analog
US9211300B2 (en) 2012-12-19 2015-12-15 Idenix Pharmaceuticals Llc 4′-fluoro nucleosides for the treatment of HCV
WO2014137930A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. Thiophosphate nucleosides for the treatment of hcv
WO2014160484A1 (en) 2013-03-13 2014-10-02 Idenix Pharmaceuticals, Inc. Amino acid phosphoramidate pronucleotides of 2'-cyano, azido and amino nucleosides for the treatment of hcv
US9187515B2 (en) 2013-04-01 2015-11-17 Idenix Pharmaceuticals Llc 2′,4′-fluoro nucleosides for the treatment of HCV
US10005779B2 (en) 2013-06-05 2018-06-26 Idenix Pharmaceuticals Llc 1′,4′-thio nucleosides for the treatment of HCV
US9765107B2 (en) 2013-06-18 2017-09-19 Merck Sharp & Dohme Corp. Cyclic phosphonate substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
US20150037282A1 (en) 2013-08-01 2015-02-05 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977325A (en) 1988-11-15 1999-11-02 Merrell Pharmaceuticals Inc. 2'-halomethylidene, 2'-ethenylidene and 2'-ethynyl cytidine, uridine and guanosine derivatives
US5026687A (en) 1990-01-03 1991-06-25 The United States Of America As Represented By The Department Of Health And Human Services Treatment of human retroviral infections with 2',3'-dideoxyinosine alone and in combination with other antiviral compounds
US5496546A (en) 1993-02-24 1996-03-05 Jui H. Wang Compositions and methods of application of reactive antiviral polyadenylic acid derivatives
US5846964A (en) 1993-07-19 1998-12-08 Tokyo Tanabe Company Limited Hepatitis C virus proliferation inhibitor
US5633358A (en) 1994-09-14 1997-05-27 Huels Aktiengesellschaft Process for bleaching aqueous surfactant solutions
JPH08268890A (en) 1995-03-31 1996-10-15 Eisai Co Ltd Prophylactic and remedy for hepatitis c
US5633388A (en) 1996-03-29 1997-05-27 Viropharma Incorporated Compounds, compositions and methods for treatment of hepatitis C
WO1997036554A1 (en) 1996-03-29 1997-10-09 Viropharma Incorporated Piperidine derivatives, pharmaceutical compositions thereof and their use in the treatment of hepatitis c
US5830905A (en) 1996-03-29 1998-11-03 Viropharma Incorporated Compounds, compositions and methods for treatment of hepatitis C
US5891874A (en) 1996-06-05 1999-04-06 Eli Lilly And Company Anti-viral compound
JPH10101591A (en) 1996-09-27 1998-04-21 Eisai Co Ltd Preventing and therapeutic agent for viral infectious disease
US5922757A (en) 1996-09-30 1999-07-13 The Regents Of The University Of California Treatment and prevention of hepatic disorders
US6034134A (en) 1997-06-30 2000-03-07 Merz + Co. Gmbh & Co. 1-Amino-alkylcyclohexane NMDA receptor antagonists

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ALT M. ET AL., ARCHIVES OF VIROLOGY, vol. 142, 1997, pages 589 - 599
ALT M. ET AL., HEPATOLOGY, vol. 22, 1995, pages 707 - 717
CHU M., BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, vol. 9, pages 1949 - 1952
FERRARI R. ET AL., JOURNAL OF VIROLOGY, vol. 73, 1999, pages 1649 - 1654
GALDERISI U. ET AL., JOURNAL OF CELLULAR PHYSIOLOGY, vol. 181, 1999, pages 251 - 257
LOHMANN V. ET AL., VIROLOGY, vol. 249, 1998, pages 108 - 118
MACCJAK, D. J. ET AL., HEPATOLOGY, vol. 30, 1999
QASIM M.A. ET AL., BIOCHEMISTRY, vol. 36, 1997, pages 1598 - 1607

Cited By (280)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758557B2 (en) 2000-05-23 2020-09-01 Idenix Pharmaceuticals Llc Methods and compositions for treating hepatitis C virus
EP1669364A3 (en) * 2000-05-23 2006-09-13 Idenix (Cayman) Limited Methods and compositions for treating hepatitis C virus
US7157441B2 (en) 2000-05-23 2007-01-02 Idenix Pharmaceuticals, Inc. Methods and compositions for treating hepatitis C virus
US7169766B2 (en) 2000-05-23 2007-01-30 Idenix Pharmaceuticals, Inc. Methods and compositions for treating hepatitis C virus
US6914054B2 (en) 2000-05-23 2005-07-05 Idenix Pharmaceuticals, Inc. Methods and compositions for treating hepatitis C virus
US10363265B2 (en) 2000-05-23 2019-07-30 Idenix Pharmaceuticals Llc Methods and compositions for treating hepatitis C virus
US7105493B2 (en) 2000-05-26 2006-09-12 Idenix Pharmaceuticals, Inc. Methods and compositions for treating flaviviruses and pestiviruses
US7101861B2 (en) 2000-05-26 2006-09-05 Indenix Pharmaceuticals, Inc. Methods and compositions for treating flaviviruses and pestiviruses
US7163929B2 (en) 2000-05-26 2007-01-16 Idenix Pharmaceuticals, Inc. Methods and compositions for treating flaviviruses and pestiviruses
US7148206B2 (en) 2000-05-26 2006-12-12 Idenix Pharmaceuticals, Inc. Methods and compositions for treating flaviviruses and pestiviruses
US9968628B2 (en) 2000-05-26 2018-05-15 Idenix Pharmaceuticals Llc Methods and compositions for treating flaviviruses and pestiviruses
US10100076B2 (en) 2000-10-18 2018-10-16 Gilead Pharmasset Llc Modified nucleosides for the treatment of viral infections and abnormal cellular proliferation
US7202224B2 (en) 2001-01-22 2007-04-10 Merck & Co., Inc. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
US6777395B2 (en) 2001-01-22 2004-08-17 Merck & Co., Inc. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase of hepatitis C virus
US7125855B2 (en) 2001-01-22 2006-10-24 Merck & Co., Inc. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
US8481712B2 (en) 2001-01-22 2013-07-09 Merck Sharp & Dohme Corp. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
US7105499B2 (en) 2001-01-22 2006-09-12 Merck & Co., Inc. Nucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
US6949522B2 (en) 2001-06-22 2005-09-27 Pharmasset, Inc. β-2′- or 3′-halonucleosides
EP1438054A1 (en) * 2001-09-28 2004-07-21 Idenix (Cayman) Limited Methods and compositions for treating flaviviruses and pestiviruses using 4'-modified nucleoside
EP1438054A4 (en) * 2001-09-28 2006-07-26 Idenix Cayman Ltd Methods and compositions for treating flaviviruses and pestiviruses using 4'-modified nucleoside
WO2003051898A1 (en) * 2001-12-17 2003-06-26 Ribapharm Inc. Unusual nucleoside libraries, compounds, and preferred uses as antiviral and anticancer agents
US7217815B2 (en) 2002-01-17 2007-05-15 Valeant Pharmaceuticals North America 2-beta -modified-6-substituted adenosine analogs and their use as antiviral agents
WO2003062256A1 (en) * 2002-01-17 2003-07-31 Ribapharm Inc. 2'-beta-modified-6-substituted adenosine analogs and their use as antiviral agents
WO2003062257A1 (en) * 2002-01-17 2003-07-31 Ribapharm Inc. Deazapurine nucleoside analogs and their use as therapeutic agents
WO2003062255A2 (en) * 2002-01-17 2003-07-31 Ribapharm Inc. Sugar modified nucleosides as viral replication inhibitors
WO2003062255A3 (en) * 2002-01-17 2006-09-08 Ribapharm Inc Sugar modified nucleosides as viral replication inhibitors
WO2003061576A2 (en) * 2002-01-17 2003-07-31 Ribapharm Inc. Deazapurine nucleoside analogs and their use as therapeutic agents
WO2003061576A3 (en) * 2002-01-17 2004-04-01 Ribapharm Inc Deazapurine nucleoside analogs and their use as therapeutic agents
EP1476169A4 (en) * 2002-02-13 2009-06-03 Merck & Co Inc Methods of inhibiting orthopoxvirus replication with nucleoside compounds
JP2005527499A (en) * 2002-02-13 2005-09-15 メルク エンド カムパニー インコーポレーテッド Methods for inhibiting orthopoxvirus replication using nucleoside compounds
US7323453B2 (en) 2002-02-13 2008-01-29 Merck & Co., Inc. Methods of inhibiting orthopoxvirus replication with nucleoside compounds
WO2003068244A1 (en) * 2002-02-13 2003-08-21 Merck & Co., Inc. Methods of inhibiting orthopoxvirus replication with nucleoside compounds
EP1476169A1 (en) * 2002-02-13 2004-11-17 Merck & Co., Inc. Methods of inhibiting orthopoxvirus replication with nucleoside compounds
WO2003093290A2 (en) * 2002-05-06 2003-11-13 Genelabs Technologies, Inc. Nucleoside derivatives for treating hepatitis c virus infection
WO2003093290A3 (en) * 2002-05-06 2004-03-18 Genelabs Tech Inc Nucleoside derivatives for treating hepatitis c virus infection
AU2003247084B9 (en) * 2002-06-28 2018-07-26 Centre National De La Recherche Scientifique Modified 2' and 3'-nucleoside prodrugs for treating flaviridae infections
WO2004002999A3 (en) * 2002-06-28 2004-08-12 Idenix Cayman Ltd Modified 2' and 3' -nucleoside produgs for treating flaviridae infections
EP2332952A1 (en) 2002-06-28 2011-06-15 IDENIX Pharmaceuticals, Inc. Modified 2' and 3'-nucleoside prodrugs for treating flaviridae infections
JP2015205885A (en) * 2002-06-28 2015-11-19 イデニクス(ケイマン)リミテツド Modified 2' and 3'-nucleoside prodrugs for treating flaviviridae virus infections
JP2011251983A (en) * 2002-06-28 2011-12-15 Idenix (Cayman) Ltd Modified 2' and 3' nucleoside prodrug for treating flaviviridae infection
CN102424698A (en) * 2002-06-28 2012-04-25 埃迪尼克斯(开曼)有限公司 Modified 2' and 3' -nucleoside produgs for treating flaviridae infections
WO2004003000A2 (en) 2002-06-28 2004-01-08 Idenix (Cayman) Limited 1’-, 2'- and 3'- modified nucleoside derivatives for treating flaviviridae infections
US7192936B2 (en) 2002-06-28 2007-03-20 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
RU2483075C2 (en) * 2002-06-28 2013-05-27 Айденикс (Кайман) Лимитед Modified 2'- and 3'-nucleosides and use thereof for preparing drug for treating flaviviridae infections
JP2005537242A (en) * 2002-06-28 2005-12-08 イデニクス(ケイマン)リミテツド 2 'and 3'-nucleoside prodrugs for the treatment of flavivirus infection
JP2010280660A (en) * 2002-06-28 2010-12-16 Idenix (Cayman) Ltd Modified 2' and 3'-nucleoside prodrugs for treating flavivirivae infections
CN103275159A (en) * 2002-06-28 2013-09-04 埃迪尼克斯医药公司 Modified 2' and 3' -nucleoside produgs for treating flaviridae infections
CN103319554A (en) * 2002-06-28 2013-09-25 埃迪尼克斯医药公司 Modified 2' and 3' -nucleoside produgs for treating flaviridae infections
EP2332952B1 (en) 2002-06-28 2015-04-29 IDENIX Pharmaceuticals, Inc. Modified 2' and 3'-nucleoside prodrugs for treating flaviridae infections
EP1536804A4 (en) * 2002-06-28 2007-10-31 Idenix Cayman Ltd 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
JP2005533817A (en) * 2002-06-28 2005-11-10 イデニクス(ケイマン)リミテツド Modified 2 'and 3'-nucleoside prodrugs for the treatment of Flaviviridae virus infection
US8637475B1 (en) 2002-06-28 2014-01-28 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′ nucleoside prodrugs for treating flaviviridae infections
JP2014058537A (en) * 2002-06-28 2014-04-03 Idenix (Cayman) Ltd Modified 2'- and 3'-nucleoside prodrug for flaviviridae viral infection treatment
US7365057B2 (en) 2002-06-28 2008-04-29 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flavivridae infections
US7384924B2 (en) 2002-06-28 2008-06-10 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
WO2004003000A3 (en) * 2002-06-28 2004-11-04 Idenix Cayman Ltd 1’-, 2'- and 3'- modified nucleoside derivatives for treating flaviviridae infections
CN104193791A (en) * 2002-06-28 2014-12-10 埃迪尼克斯医药公司 Modified 2' and 3'-nucleoside produgs for treating flaviridae infections
AU2003247084B8 (en) * 2002-06-28 2010-03-11 Centre National De La Recherche Scientifique Modified 2' and 3'-nucleoside prodrugs for treating flaviridae infections
EP2799442A1 (en) 2002-06-28 2014-11-05 IDENIX Pharmaceuticals, Inc. Modified 2' and 3' -nucleoside prodrugs for treating flaviridae infections
JP2005533824A (en) * 2002-06-28 2005-11-10 イデニクス(ケイマン)リミテツド 2'-C-methyl-3'-OL-valine ester ribofuranosyl cytidine for the treatment of Flaviviridae infections
US7547704B2 (en) 2002-06-28 2009-06-16 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
JP2018076342A (en) * 2002-06-28 2018-05-17 イデニクス・ファーマシューティカルズ・エル・エル・シー Modified 2' and 3'-nucleoside prodrugs for treating flaviviridae infections
CN104163841B (en) * 2002-06-28 2016-08-24 埃迪尼克斯医药公司 For treating 2 ' and 3 '-nucleoside prodrugs of the modification of flaviviridae infections
US7608600B2 (en) 2002-06-28 2009-10-27 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
US7625875B2 (en) 2002-06-28 2009-12-01 Idenix Pharmaceuticals, Inc. 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
US7635689B2 (en) 2002-06-28 2009-12-22 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
JP2017061480A (en) * 2002-06-28 2017-03-30 イデニクス・ファーマシューティカルズ・エル・エル・シー Modified 2' and 3'-nucleoside prodrugs for treating flaviviridae infections
EP1536804A2 (en) * 2002-06-28 2005-06-08 Idenix (Cayman) Limited 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
US7662798B2 (en) 2002-06-28 2010-02-16 Idenix Pharmaceuticals, Inc. 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
US7323449B2 (en) 2002-07-24 2008-01-29 Merck & Co., Inc. Thionucleoside derivatives as inhibitors of RNA-dependent RNA viral polymerase
US8093380B2 (en) 2002-08-01 2012-01-10 Pharmasset, Inc. Compounds with the bicyclo[4.2.1]nonane system for the treatment of Flaviviridae infections
US7772208B2 (en) 2002-08-01 2010-08-10 Pharmasset, Inc. 2′,3′-dideoxynucleoside analogues for the treatment or prevention of Flaviviridae infections
US7498320B2 (en) 2002-10-31 2009-03-03 Metabasis Therapeutics, Inc. Cyclic phosphate diesters of 1,3-propane-1-aryl diols and their use in preparing prodrugs
US7151092B2 (en) 2002-10-31 2006-12-19 Metabasis Therapeutics, Inc. Cytarabine monophosphate prodrugs
US7553826B2 (en) 2002-10-31 2009-06-30 Metabasis Therapeutics, Inc. Cytarabine monophosphate prodrugs
US7148349B2 (en) 2002-10-31 2006-12-12 Metabasis Therapeutics, Inc. Cyclic phosphate diesters of 1,3-propane-1-aryl diols and their use in preparing prodrugs
US10525072B2 (en) 2002-11-15 2020-01-07 Idenix Pharmaceuticals Llc 2′-branched nucleosides and flaviviridae mutation
WO2004046331A2 (en) 2002-11-15 2004-06-03 Idenix (Cayman) Limited 2’-branched nucleosides and flaviviridae mutation
US7824851B2 (en) 2002-11-15 2010-11-02 Idenix Pharmaceuticals, Inc. 2′-branched nucleosides and Flaviviridae mutation
US7034167B2 (en) 2002-12-06 2006-04-25 Merck & Co., Inc. Process to ribofuranose sugar derivatives as intermediates to branched-chain nucleosides
CN100335492C (en) * 2002-12-23 2007-09-05 埃迪尼克斯(开曼)有限公司 Process for the production of 3'-nucleoside prodrugs
US7339054B2 (en) 2003-02-12 2008-03-04 Merck & Co., Inc. Process for preparing branched ribonucleosides from 1,2-anhydroribofuranose intermediates
US10287311B2 (en) 2003-05-30 2019-05-14 Gilead Pharmasset Llc Modified fluorinated nucleoside analogues
EP3521297A1 (en) 2003-05-30 2019-08-07 Gilead Pharmasset LLC Modified fluorinated nucleoside analogues
EP2604620B1 (en) 2003-05-30 2016-06-29 Gilead Pharmasset LLC Modified fluorinated nucleoside analogues
EP4032897A1 (en) 2003-05-30 2022-07-27 Gilead Pharmasset LLC Modified fluorinated nucleoside analogues
EP2345661A1 (en) 2003-05-30 2011-07-20 Pharmasset, Inc. Modified fluorinated nucleoside analogues
EP2604620A1 (en) 2003-05-30 2013-06-19 Gilead Pharmasset LLC Modified fluorinated nucleoside analogues
WO2005003147A2 (en) 2003-05-30 2005-01-13 Pharmasset, Inc. Modified fluorinated nucleoside analogues
EP2345659A1 (en) 2003-05-30 2011-07-20 Pharmasset, Inc. Modified fluorinated nucleoside analogues
EP2345658A1 (en) 2003-05-30 2011-07-20 Pharmasset, Inc. Modified fluorinated nucleoside analogues
EP2345657A1 (en) 2003-05-30 2011-07-20 Pharmasset, Inc. Modified fluorinated nucleoside analogues
US7268119B2 (en) 2003-08-27 2007-09-11 Biota Scientific Management Pty Ltd Tricyclic nucleosides or nucleotides as therapeutic agents
US7713941B2 (en) 2003-08-27 2010-05-11 Biota Scientific Management Pty Ltd Tricyclic nucleosides or nucleotides as therapeutic agents
JP2007522237A (en) * 2004-02-13 2007-08-09 メタバシス・セラピューティクス・インコーポレイテッド Novel 2'-C-methyl nucleoside derivative
WO2005123087A2 (en) 2004-06-15 2005-12-29 Merck & Co., Inc. C-purine nucleoside analogs as inhibitors of rna-dependent rna viral polymerase
WO2006000922A3 (en) * 2004-06-23 2006-05-26 Idenix Cayman Ltd 5-aza-7-deazapurine derivatives for treating infections with flaviviridae
WO2006000922A2 (en) * 2004-06-23 2006-01-05 Idenix (Cayman) Limited 5-aza-7-deazapurine derivatives for treating infections with flaviviridae
US10577359B2 (en) 2004-09-14 2020-03-03 Gilead Pharmasset Llc Preparation of 2′-fluoro-2′-alkyl-substituted or other optionally substituted ribofuranosyl pyrimidines and purines and their derivatives
EP2351560A1 (en) 2005-01-04 2011-08-03 Novartis AG Treatment Of HCV infections with FTY720
US7816339B2 (en) 2005-03-02 2010-10-19 Schering Corporation Treatments for Flaviviridae virus infection
US7524831B2 (en) 2005-03-02 2009-04-28 Schering Corporation Treatments for Flaviviridae virus infection
US8802840B2 (en) 2005-03-08 2014-08-12 Biota Scientific Management Pty Ltd. Bicyclic nucleosides and nucleotides as therapeutic agents
US7879797B2 (en) 2005-05-02 2011-02-01 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2006138507A1 (en) 2005-06-17 2006-12-28 Novartis Ag Use of sanglifehrin in hcv
US8216999B2 (en) 2005-07-20 2012-07-10 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8278322B2 (en) 2005-08-01 2012-10-02 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US7754699B2 (en) 2005-12-09 2010-07-13 Roche Palo Alto Llc Antiviral nucleosides
US8895531B2 (en) 2006-03-23 2014-11-25 Rfs Pharma Llc 2′-fluoronucleoside phosphonates as antiviral agents
WO2007113159A1 (en) * 2006-04-04 2007-10-11 F. Hoffmann-La Roche Ag 3',5'-di-o-acylated nucleosides for hcv treatment
US7645745B2 (en) 2006-04-04 2010-01-12 Roche Palo Alto Llc Antiviral nucleosides
JP2009532411A (en) * 2006-04-04 2009-09-10 エフ.ホフマン−ラ ロシュ アーゲー 3 ', 5'-di-O-acylated nucleosides for HCV treatment
EP2518079A2 (en) 2006-04-11 2012-10-31 Novartis AG HCV/HIV inhibitors and their uses
US8178520B2 (en) 2006-05-15 2012-05-15 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Macrocyclic compounds as antiviral agents
US8314062B2 (en) 2006-06-23 2012-11-20 Instituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Macrocyclic compounds as antiviral agents
US7935681B2 (en) 2006-10-10 2011-05-03 Medivir Ab Antiviral nucleosides
US7666856B2 (en) 2006-10-10 2010-02-23 Medivir Ab Antiviral nucleosides
EP2361922A1 (en) 2006-10-10 2011-08-31 Medivir AB Intermediate to HCV-Nucleoside Inhibitors
US8158779B2 (en) 2006-10-10 2012-04-17 Medivir Ab Antiviral nucleosides
US7825239B2 (en) 2006-10-10 2010-11-02 Medivir Ab Antiviral nucleosides
US8912321B2 (en) 2006-10-10 2014-12-16 Gilead Pharmasset Llc Preparation of nucleosides ribofuranosyl pyrimidines
US8138164B2 (en) 2006-10-24 2012-03-20 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8309540B2 (en) 2006-10-24 2012-11-13 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8377873B2 (en) 2006-10-24 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US9738661B2 (en) 2006-10-27 2017-08-22 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8377874B2 (en) 2006-10-27 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US7786110B2 (en) 2006-11-09 2010-08-31 Roche Palo Alto Llc Thiazole and oxazole-substituted arylamides as P2X3 and P2X2/3 antagonists
US8349792B2 (en) 2006-12-19 2013-01-08 Cyclacel Limited Combination comprising CNDAC (2′-cyano-2′-deoxy-N4-palmitoyl-1-beta-D-arabinofuranosyl-cytosine) and a cytotoxic agent
US8101595B2 (en) 2006-12-20 2012-01-24 Istituto di Ricerche di Biologia Molecolare P. Angletti SpA Antiviral indoles
US7767660B2 (en) 2006-12-20 2010-08-03 Istituto Di Richerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
US7781422B2 (en) 2006-12-20 2010-08-24 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
US7951789B2 (en) 2006-12-28 2011-05-31 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US8691788B2 (en) 2006-12-28 2014-04-08 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US7902202B2 (en) 2006-12-28 2011-03-08 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
WO2008085508A2 (en) 2007-01-05 2008-07-17 Merck & Co., Inc. Nucleoside aryl phosphoramidates for the treatment of rna-dependent rna viral infection
WO2008106166A2 (en) 2007-02-28 2008-09-04 Conatus Pharmaceuticals, Inc. Methods for the treatment of liver diseases using specified matrix metalloproteinase (mmp) inhibitors
US10183037B2 (en) 2007-03-30 2019-01-22 Gilead Pharmasset Llc Nucleoside phosphoramidate prodrugs
US8580765B2 (en) 2007-03-30 2013-11-12 Gilead Pharmasset Llc Nucleoside phosphoramidate prodrugs
US9085573B2 (en) 2007-03-30 2015-07-21 Gilead Pharmasset Llc Nucleoside phosphoramidate prodrugs
US11642361B2 (en) 2007-03-30 2023-05-09 Gilead Sciences, Inc. Nucleoside phosphoramidate prodrugs
US8906880B2 (en) 2007-03-30 2014-12-09 Gilead Pharmasset Llc Nucleoside phosphoramidate prodrugs
US8735372B2 (en) 2007-03-30 2014-05-27 Gilead Pharmasset Llc Nucleoside phosphoramidate prodrugs
US7989438B2 (en) 2007-07-17 2011-08-02 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Therapeutic compounds
US8927569B2 (en) 2007-07-19 2015-01-06 Merck Sharp & Dohme Corp. Macrocyclic compounds as antiviral agents
US7858654B2 (en) 2007-12-17 2010-12-28 Roche Palo Alto Llc Imidazole-substituted arylamides as P2X3 and P2X2/3 antagonists
US8440673B2 (en) 2007-12-17 2013-05-14 Roche Palo Alto Llc Pyrazole-substituted arylamides as P2X3 and P2X2/3 antagonists
US8048905B2 (en) 2007-12-17 2011-11-01 Roche Palo Alto Llc Tetrazole-substituted arylamides as P2X3 and P2X2/3 antagonists
US7989637B2 (en) 2007-12-17 2011-08-02 Roche Palo Alto Llc Triazole-substituted arylamides as P2X3 and P2X2/3 antagonists
US8846636B2 (en) 2008-03-18 2014-09-30 Lcb Pharma Inc. Nucleoside analogues with quaternary carbon stereogenic centers and methods of use
EP2265626A2 (en) * 2008-03-18 2010-12-29 Institut De Recherches Cliniques De Montreal Nucleotide analogues with quaternary carbon stereogenic centers and methods of use
EP2265626A4 (en) * 2008-03-18 2014-01-15 Inst Rech S Cliniques De Montreal Nucleotide analogues with quaternary carbon stereogenic centers and methods of use
US8470870B2 (en) 2008-03-27 2013-06-25 Idenix Pharmaceuticals, Inc. Solid forms of an anti-HIV phosphoindole compound
US8461107B2 (en) 2008-04-28 2013-06-11 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8877905B2 (en) 2008-06-11 2014-11-04 Lasergen, Inc. Nucleotides and nucleosides and methods for their use in DNA sequencing
US9200319B2 (en) 2008-06-11 2015-12-01 Lasergen, Inc. Nucleotides and nucleosides and methods for their use in DNA sequencing
WO2010014134A1 (en) * 2008-07-02 2010-02-04 Idenix Pharamaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
EP2476690A1 (en) 2008-07-02 2012-07-18 IDENIX Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
AU2009277172B2 (en) * 2008-07-02 2014-05-29 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US8501699B2 (en) 2008-07-03 2013-08-06 Biota Scientific Management Pty Ltd Bicyclic nucleosides and nucleotides as therapeutic agents
EP2540350A1 (en) 2008-07-22 2013-01-02 Merck Sharp & Dohme Corp. Combinations of a macrocyclic quinoxaline compound which is an HCV NS3 protease inhibitors with other HCV agents
US8080654B2 (en) 2008-07-22 2011-12-20 Insituto di Ricerche di Biologia Molecolare P. Angeletti SpA Macrocyclic quinoxaline compounds as HCV NS3 protease inhibitors
EP2540349A1 (en) 2008-07-22 2013-01-02 Merck Sharp & Dohme Corp. Pharmaceutical compositions comprising a macrocyclic quinoxaline compound which is an HCV NS3 protease inhibitor
US7973040B2 (en) 2008-07-22 2011-07-05 Merck Sharp & Dohme Corp. Macrocyclic quinoxaline compounds as HCV NS3 protease inhibitors
US8957045B2 (en) 2008-12-23 2015-02-17 Gilead Pharmasset Llc Nucleoside phosphoramidates
US8716262B2 (en) 2008-12-23 2014-05-06 Gilead Pharmasset Llc Nucleoside phosphoramidates
US8551973B2 (en) 2008-12-23 2013-10-08 Gilead Pharmasset Llc Nucleoside analogs
US8716263B2 (en) 2008-12-23 2014-05-06 Gilead Pharmasset Llc Synthesis of purine nucleosides
WO2010082050A1 (en) 2009-01-16 2010-07-22 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Macrocyclic and 7-aminoalkyl-substituted benzoxazocines for treatment of hepatitis c infections
WO2010084115A2 (en) 2009-01-20 2010-07-29 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Antiviral agents
WO2010101967A2 (en) 2009-03-04 2010-09-10 Idenix Pharmaceuticals, Inc. Phosphothiophene and phosphothiazole hcv polymerase inhibitors
WO2010115981A1 (en) 2009-04-10 2010-10-14 Novartis Ag 7-azadispiro [3.0.4.1] decane-8-carboxamides as hepatitis c virus inhibitors
WO2010116248A1 (en) 2009-04-10 2010-10-14 Novartis Ag Organic compounds and their uses
US9637512B2 (en) 2009-05-20 2017-05-02 Gilead Pharmasset Llc Nucleoside phosphoramidates
US8642756B2 (en) 2009-05-20 2014-02-04 Gilead Pharmasset Llc Nucleoside phosphoramidates
US8633309B2 (en) 2009-05-20 2014-01-21 Gilead Pharmasset Llc Nucleoside phosphoramidates
US8629263B2 (en) 2009-05-20 2014-01-14 Gilead Pharmasset Llc Nucleoside phosphoramidates
US9206217B2 (en) 2009-05-20 2015-12-08 Gilead Pharmasset Llc Nucleoside phosphoramidates
US9284342B2 (en) 2009-05-20 2016-03-15 Gilead Pharmasset Llc Nucleoside phosphoramidates
US8283383B2 (en) 2009-06-22 2012-10-09 Roche Palo Alto Llc Biphenyl amides as P2X3 and P2X2/3 antagonists
US8476457B2 (en) 2009-06-22 2013-07-02 Roche Palo Alto Llc Indole, indazole and benzimidazole arylamides as P2X3 and P2X2/3 antagonists
US8093275B2 (en) 2009-06-22 2012-01-10 Roche Palo Alto Llc Oxazolone and pyrrolidinone-substituted pryidine amides as P2X3 and P2X2/3 antagonists
US8828930B2 (en) 2009-07-30 2014-09-09 Merck Sharp & Dohme Corp. Hepatitis C virus NS3 protease inhibitors
WO2011014487A1 (en) 2009-07-30 2011-02-03 Merck Sharp & Dohme Corp. Hepatitis c virus ns3 protease inhibitors
WO2011017389A1 (en) 2009-08-05 2011-02-10 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors useful against viral infections, particularly hcv
WO2011058084A1 (en) 2009-11-14 2011-05-19 F. Hoffmann-La Roche Ag Biomarkers for predicting rapid response to hcv treatment
WO2011063076A1 (en) 2009-11-19 2011-05-26 Itherx Pharmaceuticals, Inc. Methods of treating hepatitis c virus with oxoacetamide compounds
WO2011067195A1 (en) 2009-12-02 2011-06-09 F. Hoffmann-La Roche Ag Biomarkers for predicting sustained response to hcv treatment
WO2011075615A1 (en) 2009-12-18 2011-06-23 Idenix Pharmaceuticals, Inc. 5,5-fused arylene or heteroarylene hepatitis c virus inhibitors
US8859756B2 (en) 2010-03-31 2014-10-14 Gilead Pharmasset Llc Stereoselective synthesis of phosphorus containing actives
WO2011123586A1 (en) 2010-04-01 2011-10-06 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US8680071B2 (en) 2010-04-01 2014-03-25 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
WO2012048235A1 (en) 2010-10-08 2012-04-12 Novartis Ag Vitamin e formulations of sulfamide ns3 inhibitors
WO2012080050A1 (en) 2010-12-14 2012-06-21 F. Hoffmann-La Roche Ag Solid forms of a phenoxybenzenesulfonyl compound
EP2658857A4 (en) * 2010-12-29 2014-06-18 Inhibitex Inc Substituted purine nucleosides, phosphoroamidate and phosphorodiamidate derivatives for treatment of viral infections
EP2658857A2 (en) * 2010-12-29 2013-11-06 Inhibitex, Inc. Substituted purine nucleosides, phosphoroamidate and phosphorodiamidate derivatives for treatment of viral infections
WO2012092484A2 (en) 2010-12-29 2012-07-05 Inhibitex, Inc. Substituted purine nucleosides, phosphoroamidate and phosphorodiamidate derivatives for treatment of viral infections
WO2012109398A1 (en) 2011-02-10 2012-08-16 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating hcv infections
WO2012135581A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
WO2012154321A1 (en) 2011-03-31 2012-11-15 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US9061041B2 (en) 2011-04-13 2015-06-23 Merck Sharp & Dohme Corp. 2′-substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
US9156872B2 (en) 2011-04-13 2015-10-13 Merck Sharp & Dohme Corp. 2′-azido substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
US9150603B2 (en) 2011-04-13 2015-10-06 Merck Sharp & Dohme Corp. 2′-cyano substituted nucleoside derivatives and methods of use thereof useful for the treatment of viral diseases
US9416154B2 (en) 2011-07-13 2016-08-16 Merck Sharp & Dohme Corp. 5′-substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
US9408863B2 (en) 2011-07-13 2016-08-09 Merck Sharp & Dohme Corp. 5′-substituted nucleoside analogs and methods of use thereof for the treatment of viral diseases
US8951985B2 (en) 2011-09-12 2015-02-10 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
WO2013039920A1 (en) 2011-09-12 2013-03-21 Idenix Pharmaceuticals, Inc. Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections
WO2013039855A1 (en) 2011-09-12 2013-03-21 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
US10456414B2 (en) 2011-09-16 2019-10-29 Gilead Pharmasset Llc Methods for treating HCV
WO2013056046A1 (en) 2011-10-14 2013-04-18 Idenix Pharmaceuticals, Inc. Substituted 3',5'-cyclic phosphates of purine nucleotide compounds and pharmaceutical compositions for the treatment of viral infections
WO2013074386A2 (en) 2011-11-15 2013-05-23 Merck Sharp & Dohme Corp. Hcv ns3 protease inhibitors
US9328138B2 (en) 2011-11-15 2016-05-03 Msd Italia S.R.L. HCV NS3 protease inhibitors
US8889159B2 (en) 2011-11-29 2014-11-18 Gilead Pharmasset Llc Compositions and methods for treating hepatitis C virus
EP3750544A2 (en) 2011-11-30 2020-12-16 Emory University Jak inhibitors for use in the prevention or treatment of viral infection
WO2013106344A1 (en) 2012-01-12 2013-07-18 Ligand Pharmaceuticals, Inc. 2 '-c-methyl nucleosides containing a cyclic phosphate diester of 1, 3-propanediol (2-oxo-[1, 3, 2]-dioxaphosphorinane) at position 5'
WO2013133927A1 (en) 2012-02-13 2013-09-12 Idenix Pharmaceuticals, Inc. Pharmaceutical compositions of 2'-c-methyl-guanosine, 5'-[2-[(3-hydroxy-2,2-dimethyl-1-oxopropyl)thio]ethyl n-(phenylmethyl)phosphoramidate]
WO2013177219A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. D-amino acid compounds for liver disease
WO2013177195A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. 3',5'-cyclic phosphate prodrugs for hcv infection
WO2013177188A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. 3',5'-cyclic phosphoramidate prodrugs for hcv infection
WO2014058801A1 (en) 2012-10-08 2014-04-17 Idenix Pharmaceuticals, Inc. 2'-chloro nucleoside analogs for hcv infection
WO2014063019A1 (en) 2012-10-19 2014-04-24 Idenix Pharmaceuticals, Inc. Dinucleotide compounds for hcv infection
WO2014066239A1 (en) 2012-10-22 2014-05-01 Idenix Pharmaceuticals, Inc. 2',4'-bridged nucleosides for hcv infection
WO2014078436A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-alanine ester of sp-nucleoside analog
WO2014078427A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-alanine ester of rp-nucleoside analog
WO2014099941A1 (en) 2012-12-19 2014-06-26 Idenix Pharmaceuticals, Inc. 4'-fluoro nucleosides for the treatment of hcv
US10039779B2 (en) 2013-01-31 2018-08-07 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
WO2014123795A2 (en) 2013-02-07 2014-08-14 Merck Sharp & Dohme Corp. Tetracyclic heterocycle compounds and methods of use thereof for the treatment of hepatitis c
WO2014123794A1 (en) 2013-02-07 2014-08-14 Merck Sharp & Dohme Corp. Tetracyclic heterocycle compounds and methods of use thereof for the treatment of hepatitis c
WO2014137930A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. Thiophosphate nucleosides for the treatment of hcv
WO2014137926A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. 3'-deoxy nucleosides for the treatment of hcv
WO2014148949A1 (en) 2013-03-22 2014-09-25 Асави, Ллс Alkyl 2-{[(2r,3s,5r)-5-(4-amino-2-oxo-2н-pyrimidin-1-yl)-3-hydroxy- tetrahydro-furan-2-yl-methoxy]-phenoxy-phosphoryl-amino}-propionates, nucleoside inhibitors of hcv ns5b rna-polymerase, and methods for producing and use thereof
WO2014165542A1 (en) 2013-04-01 2014-10-09 Idenix Pharmaceuticals, Inc. 2',4'-fluoro nucleosides for the treatment of hcv
WO2014197578A1 (en) 2013-06-05 2014-12-11 Idenix Pharmaceuticals, Inc. 1',4'-thio nucleosides for the treatment of hcv
WO2015017713A1 (en) 2013-08-01 2015-02-05 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease
US11707479B2 (en) 2013-08-27 2023-07-25 Gilead Sciences, Inc. Combination formulation of two antiviral compounds
US11116783B2 (en) 2013-08-27 2021-09-14 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
EP3043803A4 (en) * 2013-09-11 2017-03-29 Emory University Nucleotide and nucleoside compositions and uses related thereto
US11857560B2 (en) 2013-09-11 2024-01-02 Emory University Pharmaceutical compositions comprising substituted nucleotides and nucleosides for treating viral infections
EP3043803A1 (en) * 2013-09-11 2016-07-20 Emory University Nucleotide and nucleoside compositions and uses related thereto
US11166973B2 (en) 2013-09-11 2021-11-09 Emory University Substituted nucleotides and nucleosides for treating viral infections
US10149859B2 (en) 2013-09-11 2018-12-11 Emory University Nucleotide and nucleoside therapeutic compositions and uses related thereto
WO2015042375A1 (en) 2013-09-20 2015-03-26 Idenix Pharmaceuticals, Inc. Hepatitis c virus inhibitors
WO2015061683A1 (en) 2013-10-25 2015-04-30 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate and d-alanine thiophosphoramidate pronucleotides of nucleoside compounds useful for the treatment of hcv
WO2015066370A1 (en) 2013-11-01 2015-05-07 Idenix Pharmaceuticals, Inc. D-alanine phosphoramidate pronucleotides of 2'-methyl 2'-fluoro guanosine nucleoside compounds for the treatment of hcv
WO2015081297A1 (en) 2013-11-27 2015-06-04 Idenix Pharmaceuticals, Inc. 2'-dichloro and 2'-fluoro-2'-chloro nucleoside analogues for hcv infection
WO2015095419A1 (en) 2013-12-18 2015-06-25 Idenix Pharmaceuticals, Inc. 4'-or nucleosides for the treatment of hcv
US10683321B2 (en) 2013-12-18 2020-06-16 Idenix Pharmaceuticals Llc 4′-or nucleosides for the treatment of HCV
US11278559B2 (en) 2014-02-13 2022-03-22 Ligand Pharmaceuticals Incorporated Prodrug compounds and their uses
US10449210B2 (en) 2014-02-13 2019-10-22 Ligand Pharmaceuticals Inc. Prodrug compounds and their uses
WO2015134561A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Pharmaceutical compositions comprising a 5,5-fused heteroarylene flaviviridae inhibitor and their use for treating or preventing flaviviridae infection
WO2015134780A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Solid prodrug forms of 2'-chloro-2'-methyl uridine for hcv
WO2015134560A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Solid forms of a flaviviridae virus inhibitor compound and salts thereof
WO2015161137A1 (en) 2014-04-16 2015-10-22 Idenix Pharmaceuticals, Inc. 3'-substituted methyl or alkynyl nucleosides for the treatment of hcv
US10150788B2 (en) 2014-07-02 2018-12-11 Ligand Pharmaceuticals, Inc. Prodrug compounds and uses thereof
US9994600B2 (en) 2014-07-02 2018-06-12 Ligand Pharmaceuticals, Inc. Prodrug compounds and uses therof
US10239911B2 (en) 2015-03-06 2019-03-26 Atea Pharmaceuticals, Inc. Beta-D-2′-deoxy-2′-alpha-fluoro-2′-beta-C-substituted-2-modified-N6-substituted purine nucleotides for HCV treatment
US10000523B2 (en) 2015-03-06 2018-06-19 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-α-fluoro-2′-β-C-substituted-2-modified-N6-substituted purine nucleotides for HCV treatment
US10870673B2 (en) 2015-03-06 2020-12-22 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-α-fluoro-2′-β-C-substituted-2-modified-N6-substituted purine nucleotides for HCV treatment
US10870672B2 (en) 2015-03-06 2020-12-22 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-α-fluoro-2′-β-C-substituted-2-modified-N6-substituted purine nucleotides for HCV treatment
US10875885B2 (en) 2015-03-06 2020-12-29 Atea Pharmaceuticals, Inc. β-d-2′-deoxy-2′-α-fluoro-2′-β-c-substituted-2-modified-n6-substituted purine nucleotides for HCV treatment
US10815266B2 (en) 2015-03-06 2020-10-27 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-α-fluoro-2′-β-C-substituted-2-modified-N6-substituted purine nucleotides for HCV treatment
US9828410B2 (en) 2015-03-06 2017-11-28 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-α-fluoro-2′-β-C-substituted-2-modified-N6-substituted purine nucleotides for HCV treatment
US10005811B2 (en) 2015-03-06 2018-06-26 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-α-fluoro-2′β-C-substituted-2-modified-N6-substituted purine nucleotides for HCV treatment
US10053474B2 (en) 2015-09-02 2018-08-21 Abbvie Inc. Anti-viral compounds
US9676797B2 (en) 2015-09-02 2017-06-13 Abbvie Inc. Anti-viral compounds
US10202412B2 (en) 2016-07-08 2019-02-12 Atea Pharmaceuticals, Inc. β-D-2′-deoxy-2′-substituted-4′-substituted-2-substituted-N6-substituted-6-aminopurinenucleotides for the treatment of paramyxovirus and orthomyxovirus infections
WO2018031818A3 (en) * 2016-08-12 2018-05-11 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
US10946033B2 (en) 2016-09-07 2021-03-16 Atea Pharmaceuticals, Inc. 2′-substituted-N6-substituted purine nucleotides for RNA virus treatment
US11690860B2 (en) 2018-04-10 2023-07-04 Atea Pharmaceuticals, Inc. Treatment of HCV infected patients with cirrhosis
EP3866932A4 (en) * 2018-10-17 2022-11-30 Xibin Liao 6-mercaptopurine nucleoside analogues
US11660307B2 (en) 2020-01-27 2023-05-30 Gilead Sciences, Inc. Methods for treating SARS CoV-2 infections
US11707480B2 (en) 2020-02-27 2023-07-25 Atea Pharmaceuticals, Inc. Highly active compounds against COVID-19
US11738038B2 (en) 2020-02-27 2023-08-29 Atea Pharmaceuticals, Inc. Highly active compounds against COVID-19
US11813278B2 (en) 2020-02-27 2023-11-14 Atea Pharmaceuticals, Inc. Highly active compounds against COVID-19
US10874687B1 (en) 2020-02-27 2020-12-29 Atea Pharmaceuticals, Inc. Highly active compounds against COVID-19
US11701372B2 (en) 2020-04-06 2023-07-18 Gilead Sciences, Inc. Inhalation formulations of 1'-cyano substituted carba-nucleoside analogs
US11903953B2 (en) 2020-05-29 2024-02-20 Gilead Sciences, Inc. Remdesivir treatment methods
US11939347B2 (en) 2020-06-24 2024-03-26 Gilead Sciences, Inc. 1′-cyano nucleoside analogs and uses thereof
US11814406B2 (en) 2020-08-27 2023-11-14 Gilead Sciences, Inc. Compounds and methods for treatment of viral infections
US11926645B2 (en) 2020-08-27 2024-03-12 Gilead Sciences, Inc. Compounds and methods for treatment of viral infections
US11780844B2 (en) 2022-03-02 2023-10-10 Gilead Sciences, Inc. Compounds and methods for treatment of viral infections

Also Published As

Publication number Publication date
CA2410579A1 (en) 2001-12-06
CZ20024225A3 (en) 2003-10-15
US20130315863A1 (en) 2013-11-28
PL359169A1 (en) 2004-08-23
NO20025600L (en) 2003-01-17
CZ301182B6 (en) 2009-12-02
JP2013079257A (en) 2013-05-02
US20130310336A1 (en) 2013-11-21
JP2004510698A (en) 2004-04-08
US8343937B2 (en) 2013-01-01
US20040102414A1 (en) 2004-05-27
EP1294735A2 (en) 2003-03-26
TW200425898A (en) 2004-12-01
US9968628B2 (en) 2018-05-15
JP5230052B2 (en) 2013-07-10
NZ536570A (en) 2006-08-31
US20040063622A1 (en) 2004-04-01
CN1468249A (en) 2004-01-14
EA007867B1 (en) 2007-02-27
BR0111196A (en) 2004-04-06
AU2001272923A1 (en) 2001-12-11
AP2006003708A0 (en) 2006-08-31
AU2007202602A1 (en) 2007-07-19
EP1736478B1 (en) 2015-07-22
YU92202A (en) 2006-01-16
MXPA02011691A (en) 2004-05-17
CA2410579C (en) 2010-04-20
CN1315862C (en) 2007-05-16
OA12382A (en) 2006-04-17
EA200601591A1 (en) 2007-02-27
US6812219B2 (en) 2004-11-02
KR20030036189A (en) 2003-05-09
KR20080021797A (en) 2008-03-07
US7148206B2 (en) 2006-12-12
PE20020051A1 (en) 2002-02-16
US7105493B2 (en) 2006-09-12
CN101099745A (en) 2008-01-09
MA26916A1 (en) 2004-12-20
US20030060400A1 (en) 2003-03-27
US20070037773A1 (en) 2007-02-15
NO327249B1 (en) 2009-05-18
WO2001092282A3 (en) 2002-05-02
AR032883A1 (en) 2003-12-03
US20060166865A1 (en) 2006-07-27
AP1727A (en) 2007-03-06
ZA200210112B (en) 2004-06-23
US20180235993A1 (en) 2018-08-23
EP1736478A1 (en) 2006-12-27
ZA200404307B (en) 2008-04-30
US20040097462A1 (en) 2004-05-20
US7101861B2 (en) 2006-09-05
AP2002002705A0 (en) 2002-12-31
IL153020A0 (en) 2003-06-24
US7163929B2 (en) 2007-01-16
EA200201262A1 (en) 2003-08-28
NO20025600D0 (en) 2002-11-21
NZ547204A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
EP1736478B1 (en) Methods and compositions for treating flaviviruses and pestiviruses
US20040006002A1 (en) Methods and compositions for treating flaviviruses and pestiviruses using 4'-modified nucleoside
US20080280850A1 (en) Methods and Compositions for Treating Flaviviruses, Pestiviruses and Hepacivirus
CA2910995A1 (en) Methods and compositions for treating hepatitis c virus
WO2006000922A2 (en) 5-aza-7-deazapurine derivatives for treating infections with flaviviridae
WO2004096197A2 (en) 5-aza-7-deazapurine nucleosides for treating flaviviridae
MX2007003039A (en) Methods and compositions for treating flaviviruses, pestiviruses and hepacivirus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P-922/02

Country of ref document: YU

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 153020

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1020027015794

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/011691

Country of ref document: MX

Ref document number: 2410579

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 522864

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/01187/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002/10112

Country of ref document: ZA

Ref document number: 200210112

Country of ref document: ZA

REEP Request for entry into the european phase

Ref document number: 2001952131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001952131

Country of ref document: EP

Ref document number: 2001272923

Country of ref document: AU

Ref document number: 1200201164

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: PV2002-4225

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 200201262

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 018131824

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001952131

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027015794

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2002-4225

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 195930

Country of ref document: IL