WO2002003319A1 - Photoprinter access to remote data - Google Patents

Photoprinter access to remote data Download PDF

Info

Publication number
WO2002003319A1
WO2002003319A1 PCT/US2001/020789 US0120789W WO0203319A1 WO 2002003319 A1 WO2002003319 A1 WO 2002003319A1 US 0120789 W US0120789 W US 0120789W WO 0203319 A1 WO0203319 A1 WO 0203319A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoprinter
computer
printer
digital photographs
stand
Prior art date
Application number
PCT/US2001/020789
Other languages
French (fr)
Inventor
Galen Arthur Rasche
Timothy John Rademacher
Christine Ann Trinkle
Barry Richard Cavill
William Henry Reed
Original Assignee
Lexmark International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lexmark International, Inc. filed Critical Lexmark International, Inc.
Priority to JP2002507312A priority Critical patent/JP2004501810A/en
Priority to AU2001271654A priority patent/AU2001271654A1/en
Priority to EP01950686A priority patent/EP1317731A4/en
Publication of WO2002003319A1 publication Critical patent/WO2002003319A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00132Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture in a digital photofinishing system, i.e. a system where digital photographic images undergo typical photofinishing processing, e.g. printing ordering
    • H04N1/00137Transmission
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1202Dedicated interfaces to print systems specifically adapted to achieve a particular effect
    • G06F3/1203Improving or facilitating administration, e.g. print management
    • G06F3/1205Improving or facilitating administration, e.g. print management resulting in increased flexibility in print job configuration, e.g. job settings, print requirements, job tickets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1223Dedicated interfaces to print systems specifically adapted to use a particular technique
    • G06F3/1237Print job management
    • G06F3/1253Configuration of print job parameters, e.g. using UI at the client
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1278Dedicated interfaces to print systems specifically adapted to adopt a particular infrastructure
    • G06F3/128Direct printing, e.g. sending document file, using memory stick, printing from a camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1278Dedicated interfaces to print systems specifically adapted to adopt a particular infrastructure
    • G06F3/1285Remote printer device, e.g. being remote from client or server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00132Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture in a digital photofinishing system, i.e. a system where digital photographic images undergo typical photofinishing processing, e.g. printing ordering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00204Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00204Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server
    • H04N1/00236Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server using an image reading or reproducing device, e.g. a facsimile reader or printer, as a local input to or local output from a computer
    • H04N1/00238Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a digital computer or a digital computer system, e.g. an internet server using an image reading or reproducing device, e.g. a facsimile reader or printer, as a local input to or local output from a computer using an image reproducing device as a local output from a computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1223Dedicated interfaces to print systems specifically adapted to use a particular technique
    • G06F3/1237Print job management
    • G06F3/1253Configuration of print job parameters, e.g. using UI at the client
    • G06F3/1256User feedback, e.g. print preview, test print, proofing, pre-flight checks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1223Dedicated interfaces to print systems specifically adapted to use a particular technique
    • G06F3/1237Print job management
    • G06F3/1253Configuration of print job parameters, e.g. using UI at the client
    • G06F3/1258Configuration of print job parameters, e.g. using UI at the client by updating job settings at the printer

Definitions

  • This invention relates to the field of printer apparatuses and methods for using the same, and will be specifically disclosed in the context of stand-alone printers adapted to print digital photographs.
  • an object of the invention is to provide an improved stand-alone printer. Additional objectives, advantages and novel features of the invention will be set forth in the description that follows and, in part, will become apparent to those skilled in the art upon examining or practicing the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
  • a printer configuration A computer readable medium comprises data, such as digital photographs or other files.
  • a computer has access to the data on the computer readable medium.
  • a communication link is connected to the computer.
  • a photoprinter is also connected to the communication link and is in communication with the computer.
  • the photoprinter has a selection mechanism and access to the data over the communication link in response to a user's input to the selection mechanism on the photoprinter.
  • Another aspect of the present invention is a printer configuration.
  • a computer has a plurality of digital photographs on a computer readable medium.
  • a communication link is connected to the computer.
  • a photoprinter is connected to the computer via the communication link. The photoprinter has mean for accessing the digital photographs.
  • Yet another aspect of the present invention is a method for accessing digital photographs.
  • One or more digital photographs are placed on the computer.
  • a communication link is established between the photoprinter and the computer.
  • a request is inputted to the photoprinter by a user.
  • the digital photographs are accessed by the photoprinter in response to the request.
  • Still another aspect of the present invention is a method for diagnosing a printer.
  • a stand-alone printer such as a photoprinter, is obtained.
  • a communication link is established between the stand-alone printer and a computer.
  • Instructions are transmitted over the communication link from the computer to the stand-alone printer.
  • One or more functions of the stand-alone printer are diagnosed in accordance with the transmitted instructions.
  • Fig. 1 depicts a photoprinter communicating with a variety of external components
  • Fig. 2 depicts an operational block diagram for the photoprinter of Fig. 1; and Fig. 3 depicts a schematic diagram of a photoprinter configuration.
  • Fig. 1 illustrates one embodiment of a photoprinter 10.
  • a photoprinter refers to a stand-alone appliance for printing digital photographs onto a printable medium.
  • a "digital photograph D is a photographic image captured by a light sensing electronic device (e.g., CCD, CMOS, CID, or the like) and converted into a digital file capable of being stored on a computer readable medium.
  • a light sensing electronic device e.g., CCD, CMOS, CID, or the like
  • stand-alone means that the printer is capable of processing and printing digital files independent of external host device, such as a computer, wherein processing means calculating a pixel pattern to be printed on the printable medium that represents the corresponding digital file (sometimes referred to as ripping or generating printing code).
  • a printer is considered stand-alone if an external device merely passes a digital photograph to the printer and the printer contains the logic for processing and printing the digital photograph.
  • the foregoing definitions are inclusive and open- ended.
  • a stand-alone printer may additionally be capable of receiving printing code from an external device.
  • a photoprinter may additionally be capable of processing and printing digital files other than digital photographs, such as text files, word processing files, HTML files, and the like.
  • the photoprinter 10 is operative to print digital photographs on printable media (e.g., paper, glossy film or photo paper, index cards, labels, envelopes, transparencies, coated paper, cloth, etc.).
  • printable media e.g., paper, glossy film or photo paper, index cards, labels, envelopes, transparencies, coated paper, cloth, etc.
  • the photoprinter 10 works by transferring an ink (e.g., toner, dye, pigment, wax, carbon, etc.) onto a printable medium.
  • the photoprinter 10 can employ conventional thermal ink jet technology, however, it is contemplated that the present invention can be adapted for use with other types of ink jet technologies, such as piezo ink jet. In addition, the present invention can be adapted for use with other printer technologies, such as electrophotography, dye diffusion, thermal transfer, and the like. While the photoprinter 10 operates as a stand-alone printer, it can nevertheless communicate with a variety of external components, only a portion of which are illustrated in Fig. 1.
  • the photoprinter 10 can communicate to a computer 12 using any one of a variety of different communication links, such as parallel cables, serial cables, telephone lines, universal serial bus USB, Firewire, Bluetooth, fiber optics, infrared IR, radio frequency RF, network interface cards (e.g., Ethernet, token ring, etc.), and the like.
  • the computer 12 can be any conventional or special purpose computer, such as a desktop computer, a tower computer, a micro-computer, a mini-computer, server, workstation, palmtop computer, notebook computer, PDA, or the like.
  • the photoprinter 10 can receive digital photographs from the computer 12 for processing and printing.
  • the computer 12 is programmed to generate printing code (e.g., via locally loaded print drivers) and the photoprinter 10 is capable of receiving the externally processed printing code for direct printing.
  • the photoprinter 10 would have dual functionality: a stand-alone printer as well as a more conventional printer for receiving commands from an external device.
  • the photoprinter 10 can also communicate with an external display 14 (e.g., a television, monitor, LCD, or the like) using an appropriate communication link.
  • the photoprinter 10 can generate and send appropriate signals to present a user interface to operate the photoprinter 10 or preview digital photographs on the display 14.
  • the photoprinter 10 also can communicate with a digital camera 16 using an appropriate communication link.
  • a digital camera 16 includes one or more lenses that focus light into an image on a light sensing electronic device, and stores the image as a digital photograph.
  • the photoprinter 10 can retrieve, process and print digital photographs stored in the camera 16.
  • the photoprinter 10 can also communicate with a computer readable medium 18, shown here as a floppy diskette.
  • a computer readable medium stores information readable by a computer, such as programs, data files, etc.
  • a computer readable medium can take a variety of forms, including magnetic storage (such as hard drives, floppy diskettes, tape, etc.), optical storage (such as laser disks, compact disks, digital video disks DVD, etc.), electronic storage (such as random access memory RAM, read only memory "ROM”, programmable read only memory PROM, flash memory, memory sticks, etc.), and the like.
  • Some types of computer readable media which are sometimes described as being non- volatile, can retain data in the absence of power so that the information is available when power is restored.
  • the photoprinter 10 preferably interfaces with the computer readable medium 18 using an internal or external drive.
  • the term drive is intended to mean a structure which is capable of interfacing with (e.g., reading from and/or writing to) a computer readable medium.
  • suitable drives will vary depending upon the specific computer readable medium 18 being employed.
  • the photoprinter includes first and second drives each adapted to receive a solid state flash memory card.
  • the first and second drives are preferably both internal drives. Flash memory cards, due to their very small size and lightweight, are a highly portable computer readable medium which are electrically re- writable and are non- volatile.
  • the first and second drives are adapted to receive different types of flash memory cards, such as a NAND type of flash memory card (e.g., a SMART MEDIA card developed by Toshiba, Inc.) or a PCMCIA type of flash memory card (e.g., the COMPACTFLASH developed by SanDisk, Inc.).
  • Fig. 2 depicts a preferred operational block diagram 20 for the photoprinter 10.
  • One or more digital photographs 21 are input to the image processing block 22, located internal to the photoprinter 10.
  • the digital photographs 21 can be received from a variety of different sources, whether internal to the photoprinter 10 or from an external source via a drive, communications link, or the like.
  • the digital photographs 21 can take any one of a variety of different file formats, whether raster, vector, or other format (e.g.,
  • the image processing block 22 is responsible for calculating a pixel pattern to be printed on the printable medium 26 that represents the corresponding digital photographs 21, sometimes referred to in the art as generating printing code.
  • the image processing block 22 may optionally enhance the digital photographs 21.
  • photo enhancement software such as the PICTURE IQ software by Digital Intelligence, may be incorporated into the image processing 22.
  • image processing 22 may optionally include a variety of different resources to modify the printed rendition of the digital photographs 21, such as the addition of text, frames, templates, scaling, etc. Enhancements or resources may be implemented before and/or after the digital photographs 21 are converted to printing code.
  • a user interface 23 is provided to allow a user to interact with and/or direct the image processing block 22 (e.g., controlling the enhancements and/or resources).
  • the user interface 23 may be integral to the photoprinter 10 or located on an external component.
  • the photoprinter 10 includes an LCD display with one or more buttons or other input devices.
  • the user interface 23 may take the form of a series of instructions accompanying the digital photographs 21, such as a digital print order format DPOF.
  • the print code generated during image processing 22 is passed to the print control 24.
  • printing code is generated from an external source (e.g., computer 12)
  • Such printing code can be input 25 directly to the print control 24, thus bypassing the image processing block 22.
  • the print control 24 is responsible for directing the physical transference of the pixel pattern represented by the printing code to the printable medium 26.
  • the photoprinter 10 is preferably in the form of a thermal ink jet printer having one or more conventional thermal ink jet print heads.
  • the print control 24 directs one or more motors to move the printable medium 26 longitudinally relative to the photoprinter 10 so that it is properly positioned for deposition of an ink pattern or swath.
  • the print control 24 directs the print head to move along a conventional print head carriage in a direction transverse to the longitudinal direction while firing droplets of ink onto the surface of the printable medium 26.
  • the print head may make one or more of these transverse passes to complete printing for the swath.
  • the printable medium's 26 position is adjusted longitudinally for the printing of the next swath.
  • Fig. 3 depicts a schematic diagram of photoprinter configuration.
  • the photoprinter 30 is connected to the computer 50, which can be any conventional or special purpose computer or a network of computers, via the communication link 40.
  • the photoprinter 30 includes an input/output I/O module 31 which allows the photoprinter 30 can receive and/or send information across the communications link 40.
  • the I/O module 31 can take the form of protocol software and drivers compatible with the particular type of communication link 40.
  • the photoprinter 30 also includes a software module 32, which in cooperation with the I/O module 40, provides the logic for the photoprinter 30 to request, receive and process information over the communication link 40.
  • the software module 32 can comprise one or more programs compatible with the resident operating system to perform various functions on the photoprinter 30.
  • the remote computer 50 includes an I/O module 51 and a software module 52, which work in cooperation with the I/O module 31 and software module 32.
  • the remote computer 50 has access to computer readable medium 53, which may be local or remote to the computer
  • the photoprinter 30 includes a display 33, such as textual or graphical LCD, for presenting information to the user. Based on the instructions embodied in the software module 32, a user interface (e.g. menus, icons, GUI, or the like) is presented on the display 33, a user interface (e.g. menus, icons, GUI, or the like) is presented on the display 33, a user interface (e.g. menus, icons, GUI, or the like) is presented on the display
  • a directional toggle pad 34 allows a user to interact with items presented on the display 33. For instance, using the pad
  • the photoprinter 30 also includes other buttons 35 as selections mechanisms, which may be used independently or in cooperation with the display 33. A variety of other selection mechanisms are also contemplated, including a keyboard, mouse, track ball, touch pad, joy stick, touch sensitive screens, audible input devices, and the like. Based on a user's input to the selection mechanisms, the software module 32 processes the user's selected option. Using this photoprinter configuration, the photoprinter 30 can access data on the computer readable medium 53 via the communication link 40 for a variety of purposes. Consider the following examples, which serve to illustrate several embodiments of the present invention. Many other embodiments are also contemplated.
  • the photoprinter 30 can upload files to a personal computer PC 50, as well as download, view and print files (e.g. digital photographs or other data files) contained the computer readable medium 53 (e.g. the PC's hard drive, Zip drive, CD/DVD drive, floppy drive, and the like), allowing a user to move files to and from the PC 50 using only the selection mechanisms on the photoprinter 30.
  • the communications link 40 preferably takes the form of a traditional PC/printer connection, such as USB or parallel cable, but other communication links may also be employed.
  • the software module 32 presents a user interface on the display 33, such as a graphical user interface similar to Windows Explorer, a textual user interface, or other types of user interfaces.
  • the software module 52 running on the PC 50 is responsible for detecting and responding to data-request interrupts generated by the software module 32 on the photoprinter 30.
  • the file names are displayed on the photoprinter's display 33. Further, thumbnail renditions of files 53, including digital photographs, may be presented on the display 33.
  • the logic and user interface encoded in the software module 32 maybe used to upload, download, view and print files from other computer readable medium, including flash memory drives integral with the photoprinter 30 and external drives independent of the PC 50, such as a stand-alone Zip drive.
  • the user can be printed or copied to any of the available computer readable media.
  • software on the PC 50 which can be integral with or separate from the software module 52, can convert the file into printing code necessary for printing.
  • this printing code not the file itself, is then sent to the photoprinter 30 for printing.
  • the software program will recognize the format of the file and generate the printing code for the file. The printing code will be transferred directly to the print control 24 for printing.
  • Another feature is an upload option encoded in the software module 32, which is presented on the user interface on the display 33.
  • the user can choose to upload either selected files (e.g. digital photographs) or the entire contents of a local removable storage media to a chosen location on the PC 50 (e.g. on the PC's hard drive). This makes it extremely easy to move files to the PC 50, enabling the user to clear the removable storage media card and reuse the space.
  • the photoprinter 30 is capable of creating a remote connection directly to the 50 PC via the communication link 40, and use this remote connection to download, upload, view, and print files located on the PC's memory.
  • a telephone modem communication link 40 can be established between the photoprinter 30 and the PC 50 using a modem integral to the photoprinter 30.
  • the photoprinter 30 could use a type II CompactFlash modem inserted in an drive integral to the photoprinter 30.
  • an external modem can be connected to the photoprinter 30, such a USB modem device where the photoprinter 30 is a USB host, to establish the communication link 40.
  • a variety of other communication links can also be employed.
  • the modem is connected to the photoprinter 30, based on a user interface programed in the software module 32, the user selects a dial-up option from the menu on the display 33.
  • the software module 32 stores the telephone number to be called in memory, and further requires the user to enter a password.
  • a second modem device is connected to the PC 50, and the I/O module 51 running on the PC 50 is responsible for controlling the PC's modem and answering incoming calls.
  • the software module 52 checks the entered password once a connection is established to determine whether the photoprinter 30 will have access to the PC 50. Once access is permitted, the software module 52 allows the photoprinter 30 to explore the computer's computer readable medium 53 and download, upload, view and print files, in much the same way as example 1 , above.
  • the film processor may place the digital photographs in a database that customers can access with a PC on the Internet or other network connection (e.g. Kodak PictureVision, PhotoNet, and the like).
  • digital photographs captured on digital cameras can also be uploaded to a network.
  • customers open an online account and pay a monthly fee to store, access, e-mail, and download their digital photographs.
  • a variety of services are provided where digital photographs can be printed on traditional silver halide photo prints or on a variety of specialty items like T-shirts, mouse pads, posters, and mugs. Once an image file is stored on a network, the customer has the option of ordering these specialty services or downloading the digital photograph for printing.
  • the photoprinter 30 can access files (e.g. digital photographs) on the computer readable medium 53 (e.g. hard drive) of a remote server 50 participating in a network.
  • files on the network may be scanned from film or captured by digital cameras and stored on the server database.
  • the software module 32 presents a user interface on the display 33, providing options for a user to access an online account managed by the software module 52.
  • the photoprinter 30 can access on-line accounts on the server 50, and download thumbnails and/or files on the computer readable medium 53 for printing, manipulation, local storage, or other uses.
  • the customer enters account information (e.g. phone numbers, web page addresses, account numbers, passwords, and the like) on the photoprinter 33 setup menu so that access is automated and printing of files appears functionally equal to printing files stored locally on camera card or disk. It is contemplated that some service providers will charge separately for each scanned file that is downloaded, so each download would be recorded for billing purposes. To minimize unneeded expense and time, thumbnails of files stored on the computer readable medium 53 can be shown on the display 33 or downloaded to print an index print from which files may be selected for high-resolution printing.
  • account information e.g. phone numbers, web page addresses, account numbers, passwords, and the like
  • the communication link 40 between the photoprinter 30 and the server 50 can be implemented in a variety of different ways, including a modem or network adapter integrated with the circuits of the photoprinter 30, a connector for type II CompactFlash cards could support optional (and easily installed) modem or network cards, an external modem or network adapter connected to the photoprinter 30 via photoprinter ports (e.g. parallel, USB, Firewire, com port, etc.), a host computer attached to the Internet or a network could be the link to the target files, and the like. In addition, other configurations can be used.
  • Example 4 The photoprinter 30 uses the commumcation line 40 to perform diagnostic and troubleshooting tests under the direction of a remote server 50.
  • the server 50 performs most of the required processing, making it possible to add this functionality without using much of the photoprinter's 30 resources.
  • new versions of photoprinter 30 code stored on the computer readable medium 53 e.g. software module 32, image processing software, print control software, or other code or data
  • the customer would connect a USB modem to the USB host port of the photoprinter 30.
  • a diagnostic mode could then be chosen form one of the photoprinter's menus presented on the display 33.
  • the server 50 would do most of the work.
  • the software module 32 within the photoprinter 30 would be as simple as possible, thus saving valuable memory space.
  • the software module 32 would allow the software module 52 in the server 50 to write to the display 33, read the inputs from the selection mechanisms 34, 35, read the photoprinter 30 memory, send data to the print control, and the like.
  • the server 50 would initially check the photoprinter 30 code version and determine whether or not an upgrade is available.
  • the server 50 could instruct the photoprinter 30 to formfeed and eject a sheet of paper, then ask the user if the function was performed correctly. If the photoprinter 30 fails, the server 50 would then display suggestions on how to fix the problem.
  • the software module 32 could collect usage statistics on the printing habits/history of photoprinter 30. These statistics could include things such as page count, image count, ink drop counts, image size counts, and the like. The software module 32 could also keep track of which templates and photo functions were used the most. Once the photoprinter 30 is connected to the server 50, this statistical data could be easily relayed from the photoprinter 30 to the server 50. In addition, deals could be offered to entice customers to log in periodically (for the collection of this data). For example, the customer could download and print out a different coupon every three months if he/she logs in. The software module 32 would simply have to keep track of which serial numbers have taken advantage of which deals.

Abstract

A photoprinter accesses remote digital photographs and files. A computer readable medium has one or more files, such as digital photographs. A computer has access to the files on the computer readable medium. A communication link connects the computer to a photoprinter. The photoprinter has a selection mechanism and access to the computer readable medium over the communication link in response to a user's input to the selection mechanism.

Description

PHOTOPRINTER ACCESS TO REMOTE DATA
Technical Field
This invention relates to the field of printer apparatuses and methods for using the same, and will be specifically disclosed in the context of stand-alone printers adapted to print digital photographs.
Background of the Invention
The advent of computers have fundamentally changed the way images can be stored, manipulated, and printed. Images can now be captured by digital devices, such as digital cameras and scanners, and stored digitally. A digitally stored image can then be transmitted, enhanced, and manipulated through computer programs. Moreover, as digital technology has improved and associated costs fallen, the resolution of the images captured by these devices continues to improve, and in many cases approaches or exceeds the quality of traditional film photography. Traditionally, to use a digital image one needed a computer. The computer would be loaded with a variety of different programs to transmit, enhance and manipulate the digital images. To obtain a hard copy of the digital image, the user would direct the computer with an appropriate series of commands to send a print job from the computer to a traditional printer. While the traditional model works, it does have attendant shortcomings, such as being expensive, complicated, non-portable, etc. To combat such shortcomings, various manufacturers began offering stand-alone printers designed to print digital images. One example of a stand-alone printer is disclosed in U.S. Patent Application S/N 09/164,500, filed on October 1, 1998. While stand-alone printers have proven to have remarkable benefits over the traditional model, the present invention offers even more benefits and improvements for stand-alone printers.
Summary of the Invention
Accordingly, an object of the invention is to provide an improved stand-alone printer. Additional objectives, advantages and novel features of the invention will be set forth in the description that follows and, in part, will become apparent to those skilled in the art upon examining or practicing the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
One aspect of the present invention is a printer configuration. A computer readable medium comprises data, such as digital photographs or other files. A computer has access to the data on the computer readable medium. A communication link is connected to the computer. A photoprinter is also connected to the communication link and is in communication with the computer. The photoprinter has a selection mechanism and access to the data over the communication link in response to a user's input to the selection mechanism on the photoprinter. Another aspect of the present invention is a printer configuration. A computer has a plurality of digital photographs on a computer readable medium. A communication link is connected to the computer. A photoprinter is connected to the computer via the communication link. The photoprinter has mean for accessing the digital photographs.
Yet another aspect of the present invention is a method for accessing digital photographs. One or more digital photographs are placed on the computer. A communication link is established between the photoprinter and the computer. A request is inputted to the photoprinter by a user. The digital photographs are accessed by the photoprinter in response to the request.
Still another aspect of the present invention is a method for diagnosing a printer. A stand-alone printer, such as a photoprinter, is obtained. A communication link is established between the stand-alone printer and a computer. Instructions are transmitted over the communication link from the computer to the stand-alone printer. One or more functions of the stand-alone printer are diagnosed in accordance with the transmitted instructions. Still other aspects of the present invention will become apparent to those skilled in the art from the following description of a preferred embodiment, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions are illustrative in nature and not restrictive. Brief Description of the Drawings
The accompanying drawings, incorporated in and forming part of the specification, illustrate several aspects of the present invention and, together with their descriptions, serve to explain the principles of the invention. In the drawings: Fig. 1 depicts a photoprinter communicating with a variety of external components;
Fig. 2 depicts an operational block diagram for the photoprinter of Fig. 1; and Fig. 3 depicts a schematic diagram of a photoprinter configuration.
Detailed Description Reference will now be made to the present preferred embodiment of the invention, an example of which is illustrated in the accompanying drawings, wherein like numerals indicate the same element throughout the views. Fig. 1 illustrates one embodiment of a photoprinter 10. As used herein, a "photoprinter" refers to a stand-alone appliance for printing digital photographs onto a printable medium. A "digital photograph D is a photographic image captured by a light sensing electronic device (e.g., CCD, CMOS, CID, or the like) and converted into a digital file capable of being stored on a computer readable medium. The term "stand-alone" means that the printer is capable of processing and printing digital files independent of external host device, such as a computer, wherein processing means calculating a pixel pattern to be printed on the printable medium that represents the corresponding digital file (sometimes referred to as ripping or generating printing code). For instance, a printer is considered stand-alone if an external device merely passes a digital photograph to the printer and the printer contains the logic for processing and printing the digital photograph. The foregoing definitions are inclusive and open- ended. For example, a stand-alone printer may additionally be capable of receiving printing code from an external device. As a further example, a photoprinter may additionally be capable of processing and printing digital files other than digital photographs, such as text files, word processing files, HTML files, and the like.
The photoprinter 10 is operative to print digital photographs on printable media (e.g., paper, glossy film or photo paper, index cards, labels, envelopes, transparencies, coated paper, cloth, etc.). In one preferred embodiment, the photoprinter 10 works by transferring an ink (e.g., toner, dye, pigment, wax, carbon, etc.) onto a printable medium.
For instance, the photoprinter 10 can employ conventional thermal ink jet technology, however, it is contemplated that the present invention can be adapted for use with other types of ink jet technologies, such as piezo ink jet. In addition, the present invention can be adapted for use with other printer technologies, such as electrophotography, dye diffusion, thermal transfer, and the like. While the photoprinter 10 operates as a stand-alone printer, it can nevertheless communicate with a variety of external components, only a portion of which are illustrated in Fig. 1. In the present example, the photoprinter 10 can communicate to a computer 12 using any one of a variety of different communication links, such as parallel cables, serial cables, telephone lines, universal serial bus USB, Firewire, Bluetooth, fiber optics, infrared IR, radio frequency RF, network interface cards (e.g., Ethernet, token ring, etc.), and the like. The computer 12 can be any conventional or special purpose computer, such as a desktop computer, a tower computer, a micro-computer, a mini-computer, server, workstation, palmtop computer, notebook computer, PDA, or the like. Through the communication link, the photoprinter 10 can receive digital photographs from the computer 12 for processing and printing. In one embodiment, the computer 12 is programmed to generate printing code (e.g., via locally loaded print drivers) and the photoprinter 10 is capable of receiving the externally processed printing code for direct printing. As such, the photoprinter 10 would have dual functionality: a stand-alone printer as well as a more conventional printer for receiving commands from an external device. In the present example, the photoprinter 10 can also communicate with an external display 14 (e.g., a television, monitor, LCD, or the like) using an appropriate communication link. In such a configuration, the photoprinter 10 can generate and send appropriate signals to present a user interface to operate the photoprinter 10 or preview digital photographs on the display 14. The photoprinter 10 also can communicate with a digital camera 16 using an appropriate communication link. Typically, a digital camera 16 includes one or more lenses that focus light into an image on a light sensing electronic device, and stores the image as a digital photograph. In one embodiment, the photoprinter 10 can retrieve, process and print digital photographs stored in the camera 16.
The photoprinter 10 can also communicate with a computer readable medium 18, shown here as a floppy diskette. A computer readable medium stores information readable by a computer, such as programs, data files, etc. As one with ordinary skill in the art will readily appreciate, a computer readable medium can take a variety of forms, including magnetic storage (such as hard drives, floppy diskettes, tape, etc.), optical storage (such as laser disks, compact disks, digital video disks DVD, etc.), electronic storage (such as random access memory RAM, read only memory "ROM", programmable read only memory PROM, flash memory, memory sticks, etc.), and the like. Some types of computer readable media, which are sometimes described as being non- volatile, can retain data in the absence of power so that the information is available when power is restored.
The photoprinter 10 preferably interfaces with the computer readable medium 18 using an internal or external drive. As used herein, the term drive is intended to mean a structure which is capable of interfacing with (e.g., reading from and/or writing to) a computer readable medium. Naturally, suitable drives will vary depending upon the specific computer readable medium 18 being employed. In a preferred embodiment, the photoprinter includes first and second drives each adapted to receive a solid state flash memory card. The first and second drives are preferably both internal drives. Flash memory cards, due to their very small size and lightweight, are a highly portable computer readable medium which are electrically re- writable and are non- volatile. More preferably, the first and second drives are adapted to receive different types of flash memory cards, such as a NAND type of flash memory card (e.g., a SMART MEDIA card developed by Toshiba, Inc.) or a PCMCIA type of flash memory card (e.g., the COMPACTFLASH developed by SanDisk, Inc.). Fig. 2 depicts a preferred operational block diagram 20 for the photoprinter 10. One or more digital photographs 21 are input to the image processing block 22, located internal to the photoprinter 10. The digital photographs 21 can be received from a variety of different sources, whether internal to the photoprinter 10 or from an external source via a drive, communications link, or the like. Furthermore, the digital photographs 21 can take any one of a variety of different file formats, whether raster, vector, or other format (e.g.,
GIF, TIFF, PCX, JPEG, EXIF, CIFF, JFTF, etc.).
The image processing block 22 is responsible for calculating a pixel pattern to be printed on the printable medium 26 that represents the corresponding digital photographs 21, sometimes referred to in the art as generating printing code. The image processing block 22 may optionally enhance the digital photographs 21. For instance, photo enhancement software, such as the PICTURE IQ software by Digital Intelligence, may be incorporated into the image processing 22. Further, image processing 22 may optionally include a variety of different resources to modify the printed rendition of the digital photographs 21, such as the addition of text, frames, templates, scaling, etc. Enhancements or resources may be implemented before and/or after the digital photographs 21 are converted to printing code. A user interface 23 is provided to allow a user to interact with and/or direct the image processing block 22 (e.g., controlling the enhancements and/or resources). The user interface 23 may be integral to the photoprinter 10 or located on an external component. Preferably, however, the photoprinter 10 includes an LCD display with one or more buttons or other input devices. Optionally, the user interface 23 may take the form of a series of instructions accompanying the digital photographs 21, such as a digital print order format DPOF.
The print code generated during image processing 22 is passed to the print control 24. In the cases where printing code is generated from an external source (e.g., computer 12), such printing code can be input 25 directly to the print control 24, thus bypassing the image processing block 22. The print control 24 is responsible for directing the physical transference of the pixel pattern represented by the printing code to the printable medium 26. The photoprinter 10 is preferably in the form of a thermal ink jet printer having one or more conventional thermal ink jet print heads. During printing, the print control 24 directs one or more motors to move the printable medium 26 longitudinally relative to the photoprinter 10 so that it is properly positioned for deposition of an ink pattern or swath. Once the printable medium 26 is in position, the print control 24 directs the print head to move along a conventional print head carriage in a direction transverse to the longitudinal direction while firing droplets of ink onto the surface of the printable medium 26. The print head may make one or more of these transverse passes to complete printing for the swath.
After the swath is complete, the printable medium's 26 position is adjusted longitudinally for the printing of the next swath.
Fig. 3 depicts a schematic diagram of photoprinter configuration. The photoprinter 30 is connected to the computer 50, which can be any conventional or special purpose computer or a network of computers, via the communication link 40. The photoprinter 30 includes an input/output I/O module 31 which allows the photoprinter 30 can receive and/or send information across the communications link 40. For instance, the I/O module 31 can take the form of protocol software and drivers compatible with the particular type of communication link 40. The photoprinter 30 also includes a software module 32, which in cooperation with the I/O module 40, provides the logic for the photoprinter 30 to request, receive and process information over the communication link 40. For instance, the software module 32 can comprise one or more programs compatible with the resident operating system to perform various functions on the photoprinter 30. Similarly, the remote computer 50 includes an I/O module 51 and a software module 52, which work in cooperation with the I/O module 31 and software module 32. The remote computer 50 has access to computer readable medium 53, which may be local or remote to the computer 50.
The photoprinter 30 includes a display 33, such as textual or graphical LCD, for presenting information to the user. Based on the instructions embodied in the software module 32, a user interface (e.g. menus, icons, GUI, or the like) is presented on the display
33 providing one or options to the user. A variety of selection mechanisms are provided for a user to interact with the photoprinter 30. In this example, a directional toggle pad 34 allows a user to interact with items presented on the display 33. For instance, using the pad
34 the user can traverse menu or icon options presented on the display 33. The photoprinter 30 also includes other buttons 35 as selections mechanisms, which may be used independently or in cooperation with the display 33. A variety of other selection mechanisms are also contemplated, including a keyboard, mouse, track ball, touch pad, joy stick, touch sensitive screens, audible input devices, and the like. Based on a user's input to the selection mechanisms, the software module 32 processes the user's selected option. Using this photoprinter configuration, the photoprinter 30 can access data on the computer readable medium 53 via the communication link 40 for a variety of purposes. Consider the following examples, which serve to illustrate several embodiments of the present invention. Many other embodiments are also contemplated.
Example 1 :
The photoprinter 30 can upload files to a personal computer PC 50, as well as download, view and print files (e.g. digital photographs or other data files) contained the computer readable medium 53 (e.g. the PC's hard drive, Zip drive, CD/DVD drive, floppy drive, and the like), allowing a user to move files to and from the PC 50 using only the selection mechanisms on the photoprinter 30. The communications link 40 preferably takes the form of a traditional PC/printer connection, such as USB or parallel cable, but other communication links may also be employed. Once the photoprinter 30 is connected, the software module 32 presents a user interface on the display 33, such as a graphical user interface similar to Windows Explorer, a textual user interface, or other types of user interfaces. Using the pad 34 and/or buttons 35, the user may navigate through files and folders on the PC's 50 computer readable medium 53. The software module 52 running on the PC 50 is responsible for detecting and responding to data-request interrupts generated by the software module 32 on the photoprinter 30. The file names are displayed on the photoprinter's display 33. Further, thumbnail renditions of files 53, including digital photographs, may be presented on the display 33. Similarly, the logic and user interface encoded in the software module 32 maybe used to upload, download, view and print files from other computer readable medium, including flash memory drives integral with the photoprinter 30 and external drives independent of the PC 50, such as a stand-alone Zip drive.
Once the user has chosen a file, it can be printed or copied to any of the available computer readable media. If the user wishes to print a file from the PC 50 that is not a digital photograph, software on the PC 50, which can be integral with or separate from the software module 52, can convert the file into printing code necessary for printing. Preferably, this printing code, not the file itself, is then sent to the photoprinter 30 for printing. For instance, if the user selects a spreadsheet document, the software program will recognize the format of the file and generate the printing code for the file. The printing code will be transferred directly to the print control 24 for printing.
Another feature is an upload option encoded in the software module 32, which is presented on the user interface on the display 33. The user can choose to upload either selected files (e.g. digital photographs) or the entire contents of a local removable storage media to a chosen location on the PC 50 (e.g. on the PC's hard drive). This makes it extremely easy to move files to the PC 50, enabling the user to clear the removable storage media card and reuse the space.
Example 2:
The photoprinter 30 is capable of creating a remote connection directly to the 50 PC via the communication link 40, and use this remote connection to download, upload, view, and print files located on the PC's memory. For instance, a telephone modem communication link 40 can be established between the photoprinter 30 and the PC 50 using a modem integral to the photoprinter 30. Alternatively, the photoprinter 30 could use a type II CompactFlash modem inserted in an drive integral to the photoprinter 30. In another alternative, an external modem can be connected to the photoprinter 30, such a USB modem device where the photoprinter 30 is a USB host, to establish the communication link 40. Naturally, a variety of other communication links can also be employed.
Once the modem is connected to the photoprinter 30, based on a user interface programed in the software module 32, the user selects a dial-up option from the menu on the display 33. Preferably, the software module 32 stores the telephone number to be called in memory, and further requires the user to enter a password. A second modem device is connected to the PC 50, and the I/O module 51 running on the PC 50 is responsible for controlling the PC's modem and answering incoming calls. The software module 52 checks the entered password once a connection is established to determine whether the photoprinter 30 will have access to the PC 50. Once access is permitted, the software module 52 allows the photoprinter 30 to explore the computer's computer readable medium 53 and download, upload, view and print files, in much the same way as example 1 , above.
One scenario in which this example is useful is someone traveling on vacation. Travelers often find themselves disappointed in having left an important file on their PC 50, or wishing they could store the contents of the removable storage media somewhere else in order to reuse the space. By taking a modem, photoprinter 30, and their digital camera, the user is able to print digital photographs as soon as they are taken, and also able to free up valuable memory space on their camera's removable storage media by dialing home and uploading the digital photographs to their PC 50. This allows the user to spend much less money on expensive storage media.
Example 3:
Many film processors offer a service of scanning of photographic film to create digital photographs. When exposed film is submitted for developing and prints, the customer may have the option of requesting that their negatives be scanned (typically for an additional fee) and the digital photographs returned on diskette or compact disk (e.g. Picture CD from Kodak, Pictures on Disk from Seattle Fihnworks, and the like).
Alternatively, the film processor may place the digital photographs in a database that customers can access with a PC on the Internet or other network connection (e.g. Kodak PictureVision, PhotoNet, and the like). In addition, digital photographs captured on digital cameras can also be uploaded to a network. Typically, customers open an online account and pay a monthly fee to store, access, e-mail, and download their digital photographs. A variety of services are provided where digital photographs can be printed on traditional silver halide photo prints or on a variety of specialty items like T-shirts, mouse pads, posters, and mugs. Once an image file is stored on a network, the customer has the option of ordering these specialty services or downloading the digital photograph for printing.
Through the communication link 40, the photoprinter 30 can access files (e.g. digital photographs) on the computer readable medium 53 (e.g. hard drive) of a remote server 50 participating in a network. For instance, the files on the network may be scanned from film or captured by digital cameras and stored on the server database. The software module 32 presents a user interface on the display 33, providing options for a user to access an online account managed by the software module 52. Via the communication link 40, the photoprinter 30 can access on-line accounts on the server 50, and download thumbnails and/or files on the computer readable medium 53 for printing, manipulation, local storage, or other uses.
In one embodiment, the customer enters account information (e.g. phone numbers, web page addresses, account numbers, passwords, and the like) on the photoprinter 33 setup menu so that access is automated and printing of files appears functionally equal to printing files stored locally on camera card or disk. It is contemplated that some service providers will charge separately for each scanned file that is downloaded, so each download would be recorded for billing purposes. To minimize unneeded expense and time, thumbnails of files stored on the computer readable medium 53 can be shown on the display 33 or downloaded to print an index print from which files may be selected for high-resolution printing.
The communication link 40 between the photoprinter 30 and the server 50 can be implemented in a variety of different ways, including a modem or network adapter integrated with the circuits of the photoprinter 30, a connector for type II CompactFlash cards could support optional (and easily installed) modem or network cards, an external modem or network adapter connected to the photoprinter 30 via photoprinter ports (e.g. parallel, USB, Firewire, com port, etc.), a host computer attached to the Internet or a network could be the link to the target files, and the like. In addition, other configurations can be used.
Example 4: The photoprinter 30 uses the commumcation line 40 to perform diagnostic and troubleshooting tests under the direction of a remote server 50. Preferably, the server 50 performs most of the required processing, making it possible to add this functionality without using much of the photoprinter's 30 resources. Further, once the communication link 40 is established, new versions of photoprinter 30 code stored on the computer readable medium 53 (e.g. software module 32, image processing software, print control software, or other code or data) can be downloaded directly to the photoprinter 30.
In one embodiment, the customer would connect a USB modem to the USB host port of the photoprinter 30. A diagnostic mode could then be chosen form one of the photoprinter's menus presented on the display 33. Once the communication link 40 is established, the server 50 would do most of the work. Preferably, the software module 32 within the photoprinter 30 would be as simple as possible, thus saving valuable memory space. For instance, the software module 32 would allow the software module 52 in the server 50 to write to the display 33, read the inputs from the selection mechanisms 34, 35, read the photoprinter 30 memory, send data to the print control, and the like. The server 50 would initially check the photoprinter 30 code version and determine whether or not an upgrade is available. It would then perform a hardware check on the photocontroller as well as the electronic hardware of the photoprinter 30. Optionally, it could then begin an interactive check of the photoprinter's functions. For example, the server 50 could instruct the photoprinter 30 to formfeed and eject a sheet of paper, then ask the user if the function was performed correctly. If the photoprinter 30 fails, the server 50 would then display suggestions on how to fix the problem.
Additional functions could also be performed. For instance, the software module 32 could collect usage statistics on the printing habits/history of photoprinter 30. These statistics could include things such as page count, image count, ink drop counts, image size counts, and the like. The software module 32 could also keep track of which templates and photo functions were used the most. Once the photoprinter 30 is connected to the server 50, this statistical data could be easily relayed from the photoprinter 30 to the server 50. In addition, deals could be offered to entice customers to log in periodically (for the collection of this data). For example, the customer could download and print out a different coupon every three months if he/she logs in. The software module 32 would simply have to keep track of which serial numbers have taken advantage of which deals. The foregoing description of the preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive nor to limit the invention to the precise form disclosed. Many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the above teaching. Accordingly, this invention is intended to embrace all alternatives, modifications, and variations that fall within the spirit and broad scope of the amended claims.

Claims

Claims:We Claim:
1. A printer configuration", comprising: a) a computer readable medium comprising data;
b) a computer having access to the data on the computer readable medium; c) a communication link connected to the computer; d) a photoprinter connected to the communication link and in
communication with the computer, the photoprinter having a selection mechanism and having access to the data over the communication link in
response to a user's input to the selection mechanism on the photoprinter.
2. The printer configuration of claim 1 , further comprising a user interface on the photoprinter having a plurality of options selectable by a user with the selection
mechanism.
3. The printer configuration of claim 2, wherein the options include downloading files
from the computer, uploading files to the computer, or printing files.
4. The printer configuration of claim 2, wherein the one or more files are presented on
the user interface.
5. The printer configuration of claim 1, wherein the data comprises digital
photographs.
6. The printer configuration of claim 1 , wherein the data comprises executable code
for running on the photoprinter.
7. The printer configuration of claim 1 , wherein the computer is connected locally to
the photoprinter.
8. The printer configuration of claim 1 , wherein the communications link is a modem connection.
9. The printer configuration of claim 1 , wherein the computer is a server.
10. The printer configuration of claim 9, wherein the data is accessible on an online account.
11. A printer configuration, comprising: a) a computer having a plurality of digital photographs on a computer readable medium; b) a communication link connected to the computer; and c) a photoprinter connected to the computer via the communication link, the photoprinter having means for accessing the digital photographs.
12. A method for accessing digital photographs, the method comprising the steps of: a) placing one or more digital photographs on a computer; b) establishing a communication link between a photoprinter and the computer; c) inputting a request to the photoprinter by a user; and d) accessing the digital photographs by the photoprinter in response to the request.
13. The method of claim 12, wherein the step of accessing comprises downloading the digital photographs.
14. The method of claim 12, wherein the step of accessing comprises downloading thumbnail representations of the digital photographs.
15. A method for diagnosing a printer, the method comprising the steps of: a) obtaining a stand-alone printer; b) establishing a commumcation link between the stand-alone printer and a computer; and c) transmitting instructions over the communication link from the computer to the stand-alone printer; and d) diagnosing one or more functions of the stand-alone printer in accordance with the transmitted instructions.
16. The method of claim 15, wherein the instructions comprise content to be presented on a display of the stand-alone printer.
17. The method of claim 15, further comprising the step of the computer processing user inputs to the stand-alone printer.
18. The method of claim 15, wherein the stand-alone printer is a photoprinter.
19. The method of claim 15, further comprising the step of the computer receiving usage statistics of the stand-alone printer.
PCT/US2001/020789 2000-07-05 2001-06-29 Photoprinter access to remote data WO2002003319A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002507312A JP2004501810A (en) 2000-07-05 2001-06-29 Accessing Photoprinter Remote Data
AU2001271654A AU2001271654A1 (en) 2000-07-05 2001-06-29 Photoprinter access to remote data
EP01950686A EP1317731A4 (en) 2000-07-05 2001-06-29 Photoprinter access to remote data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/610,129 US7262873B1 (en) 2000-07-05 2000-07-05 Photoprinter access to remote data
US09/610,129 2000-07-05

Publications (1)

Publication Number Publication Date
WO2002003319A1 true WO2002003319A1 (en) 2002-01-10

Family

ID=24443785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/020789 WO2002003319A1 (en) 2000-07-05 2001-06-29 Photoprinter access to remote data

Country Status (5)

Country Link
US (3) US7262873B1 (en)
EP (1) EP1317731A4 (en)
JP (1) JP2004501810A (en)
AU (1) AU2001271654A1 (en)
WO (1) WO2002003319A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626334A3 (en) * 2004-08-09 2008-01-30 Samsung Electronics Co, Ltd System and method for printing out image data and text data
US8699053B2 (en) 2002-01-24 2014-04-15 Hewlett-Packard Development Company, L.P. System and method for mobile printing from a desktop operating system using a portable computing device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10860290B2 (en) 2000-11-01 2020-12-08 Flexiworld Technologies, Inc. Mobile information apparatuses that include a digital camera, a touch sensitive screen interface, support for voice activated commands, and a wireless communication chip or chipset supporting IEEE 802.11
US11204729B2 (en) 2000-11-01 2021-12-21 Flexiworld Technologies, Inc. Internet based digital content services for pervasively providing protected digital content to smart devices based on having subscribed to the digital content service
US10915296B2 (en) * 2000-11-01 2021-02-09 Flexiworld Technologies, Inc. Information apparatus that includes a touch sensitive screen interface for managing or replying to e-mails
AU2002226948A1 (en) 2000-11-20 2002-06-03 Flexiworld Technologies, Inc. Tobile and pervasive output components
US20020097408A1 (en) 2001-01-19 2002-07-25 Chang William Ho Output device for universal data output
JP4007052B2 (en) * 2002-05-07 2007-11-14 セイコーエプソン株式会社 Image processing control data update device
JP2004088726A (en) * 2002-06-26 2004-03-18 Casio Comput Co Ltd Network printing system
JP3809403B2 (en) * 2002-07-16 2006-08-16 キヤノン株式会社 Imaging device, external processing device, control program for imaging device, control program for external processing device
US8102558B2 (en) * 2002-08-05 2012-01-24 Canon Kabushiki Kaisha Image supply apparatus, control method therefor, and printing system
US20040039932A1 (en) * 2002-08-23 2004-02-26 Gidon Elazar Apparatus, system and method for securing digital documents in a digital appliance
US7979700B2 (en) * 2002-08-23 2011-07-12 Sandisk Corporation Apparatus, system and method for securing digital documents in a digital appliance
US8027054B2 (en) * 2002-10-31 2011-09-27 Samsung Electronics Co., Ltd. Apparatus and method of scanning and/or printing an image
FR2850181B1 (en) * 2003-01-16 2005-07-08 Canon Europa Nv IMAGE MANAGEMENT METHOD AND DEVICE
JP3578160B2 (en) * 2003-01-30 2004-10-20 セイコーエプソン株式会社 Printing equipment
WO2004086363A2 (en) * 2003-03-27 2004-10-07 M-Systems Flash Disk Pioneers Ltd. Data storage device with full access by all users
CN1864127A (en) * 2003-07-28 2006-11-15 桑迪士克防护内容解决公司 System, apparatus and method for controlling a storage device
US8014012B2 (en) * 2003-10-30 2011-09-06 Xerox Corporation Software upgrades from a printer module with on-board intelligence
US7561289B2 (en) * 2003-11-20 2009-07-14 Hewlett-Packard Development Company, L.P. Method for editing a printed page
KR100571957B1 (en) * 2003-12-26 2006-04-17 삼성전자주식회사 Method and device for selectively printing file
DE602005017369D1 (en) * 2004-02-03 2009-12-10 Sandisk Secure Content Solutio PROTECTION OF DIGITAL DATA CONTENT
US8078788B2 (en) 2005-12-08 2011-12-13 Sandisk Technologies Inc. Media card command pass through methods
US8839005B2 (en) * 2006-09-13 2014-09-16 Sandisk Technologies Inc. Apparatus for transferring licensed digital content between users
US8488211B2 (en) * 2006-11-07 2013-07-16 Colin Mark Ruskin Device, system and method for portable data scanning and transmission
US9032154B2 (en) 2007-12-13 2015-05-12 Sandisk Technologies Inc. Integration of secure data transfer applications for generic IO devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759053A (en) * 1983-11-11 1988-07-19 Murata Kikai Kabushiki Kaisha Facsimile/character communication system
US5682441A (en) * 1995-11-08 1997-10-28 Storm Technology, Inc. Method and format for storing and selectively retrieving image data
US5699494A (en) * 1995-02-24 1997-12-16 Lexmark International, Inc. Remote replication of printer operator panel
US5797061A (en) * 1997-05-12 1998-08-18 Lexmark International, Inc. Method and apparatus for measuring and displaying a toner tally for a printer
US6034785A (en) * 1997-04-21 2000-03-07 Fuji Photo Film Co., Ltd. Image synthesizing method
US6061665A (en) * 1997-06-06 2000-05-09 Verifone, Inc. System, method and article of manufacture for dynamic negotiation of a network payment framework

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282583A (en) * 1977-06-10 1981-08-04 Dataproducts Corporation Microprogrammable processor control printer system
JPS58136473A (en) 1982-02-08 1983-08-13 Hitachi Ltd Printer
JPS5957328A (en) * 1982-09-27 1984-04-02 Canon Inc Character processor
US4825405A (en) * 1982-10-16 1989-04-25 Brother Kogyo Kabushiki Kaisha Printer capable of printing the same data repeatedly on a plurality of copies
JPS5999576A (en) 1982-11-30 1984-06-08 Toshiba Corp Storage and retrieval system device for picture information
DE3340831A1 (en) * 1983-11-11 1985-05-23 Olympia Werke Ag, 2940 Wilhelmshaven METHOD AND ARRANGEMENT FOR MACHINE LABELING A FORM
US4591997A (en) * 1983-11-28 1986-05-27 Polaroid Corporation Method of storing and printing image with non-reentrant basic disk operating system
US4630198A (en) * 1984-02-21 1986-12-16 Yuan Houng I Intelligent stand-alone printfile buffer with paging control
JPS6181258U (en) * 1984-10-30 1986-05-29
DE3750206C5 (en) 1986-09-13 2019-11-14 Philips Gmbh Method and circuit arrangement for bit rate reduction.
JPS6382490A (en) * 1986-09-27 1988-04-13 Minolta Camera Co Ltd Image editing system
JPH0737155B2 (en) * 1986-10-07 1995-04-26 シチズン時計株式会社 Printer
US4885609A (en) * 1986-12-01 1989-12-05 Minolta Camera Kabushiki Kaisha Automatic image duplicating apparatus
JPH0673972B2 (en) 1987-01-24 1994-09-21 株式会社日立製作所 Laser printer controller
US4734789A (en) * 1987-02-02 1988-03-29 Xerox Corporation Editing copying machine
DE3729097A1 (en) * 1987-09-01 1989-03-09 Olympia Aeg METHOD FOR SETTING THE OPERATING PARAMETERS IN A MICROPROCESSOR-CONTROLLED TYPEWRITER OR OTHER OFFICE MACHINE
US5297246A (en) 1988-03-11 1994-03-22 Hitachi, Ltd. Printer system and operating method therefor
JPH066386B2 (en) * 1988-04-18 1994-01-26 キヤノン株式会社 Output device
US5045880A (en) 1988-10-03 1991-09-03 Xerox Corporation Pre-programming during job run
JPH02121465A (en) 1988-10-28 1990-05-09 Canon Inc Image receiver
US4994986A (en) 1989-01-27 1991-02-19 International Business Machines Corporation Online performance monitoring and fault diagnosis technique for direct current motors as used in printer mechanisms
JPH0325523A (en) 1989-06-22 1991-02-04 Ricoh Co Ltd Computer peripheral device
JPH03145259A (en) * 1989-10-31 1991-06-20 Canon Inc Composite electronic device
JP2972775B2 (en) 1990-02-14 1999-11-08 株式会社東芝 Data processing device
US5481742A (en) 1990-05-04 1996-01-02 Reed Elsevier Inc. Printer control apparatus for remotely modifying local printer by configuration signals from remote host to produce customized printing control codes
US5696894A (en) 1990-11-05 1997-12-09 Canon Kabushiki Kaisha Printing system
US5303067A (en) 1990-11-28 1994-04-12 Sindo Ricoh Co., Ltd. Computer connection circuit in facsimile
US5175821A (en) 1991-02-26 1992-12-29 Oki America Inc. Printer interface with memory bus arbitration
US5410641A (en) * 1991-10-23 1995-04-25 Seiko Epson Corporation Intelligent cartridge for attachment to a printer to perform image processing tasks in a combination image processing system and method of image processing
DE69223735T2 (en) * 1991-10-24 1998-04-23 Canon Kk printer
JP2821296B2 (en) 1991-12-06 1998-11-05 キヤノン株式会社 Printing method and apparatus
US5845144A (en) 1991-12-25 1998-12-01 Canon Kabushiki Kaisha Information processing apparatus with internal printer
US5592595A (en) * 1991-12-30 1997-01-07 Seiko Epson Corporation Intelligent cartridge for attachment to a printer to perform image processing tasks in a combination image processing system and method of image processing
EP0574657B1 (en) * 1992-03-11 2000-11-15 Chinon Industries Inc. Label printing apparatus and wordprocessor
JP3002056B2 (en) 1992-06-23 2000-01-24 キヤノン株式会社 Printer device and print control method in the device
TW272270B (en) 1992-08-28 1996-03-11 Compaq Computer Corp
EP0592704B1 (en) 1992-10-12 1998-06-03 LEUNIG GmbH Apparatus for selectively transfering data and files
US5452094A (en) * 1992-11-05 1995-09-19 Xerox Corporation Method and apparatus for storage and printing of logos using a storage medium capable of storing multiple logos
US5581669A (en) 1992-12-18 1996-12-03 Microsoft Corporation System and method for peripheral data transfer
US5461701A (en) 1992-12-18 1995-10-24 Microsoft Corporation System and method for peripheral data transfer
JP2741325B2 (en) * 1993-02-01 1998-04-15 スター精密株式会社 Printing device
JP3156888B2 (en) * 1993-03-29 2001-04-16 ブラザー工業株式会社 Printing device
US5483653A (en) 1993-04-02 1996-01-09 Xerox Corporation Printing system with file specification parsing capability
US5864652A (en) * 1993-05-14 1999-01-26 Dataproducts Corporation Image storage and retrieval for a printer
JP3507102B2 (en) 1993-09-10 2004-03-15 キヤノン株式会社 Facsimile machine and print control method thereof
US5619623A (en) 1993-09-21 1997-04-08 Brother Kogyo Kabushiki Kaisha Method and device for transmitting and processing print data used for printer
EP0674283A3 (en) 1994-03-24 1996-03-27 At & T Global Inf Solution Ordering and downloading resources from computerized repositories.
IE69673B1 (en) 1994-04-06 1996-10-02 Offset Studios Ltd An image processing method
JP3201141B2 (en) 1994-06-02 2001-08-20 セイコーエプソン株式会社 Data receiving method
US5561528A (en) * 1994-08-03 1996-10-01 Lexmark International, Inc. Forms on demand printing
US5502797A (en) * 1994-10-04 1996-03-26 Lexmark International, Inc. Apparatus with flash memory control for revision
US5636333A (en) 1994-12-20 1997-06-03 Lexmark International, Inc. Multi-protocol network interface
EP0718784B1 (en) 1994-12-20 2003-08-27 Sun Microsystems, Inc. Method and system for the retrieval of personalized information
US5579449A (en) 1994-12-21 1996-11-26 Pitney Bowes Inc. Method for downloading and printing bitmapped graphics
US5764918A (en) 1995-01-23 1998-06-09 Poulter; Vernon C. Communications node for transmitting data files over telephone networks
US5500717A (en) * 1995-03-03 1996-03-19 Eastman Kodak Company Job storage/retrieval system and method for reproduction apparatus
US5727135A (en) 1995-03-23 1998-03-10 Lexmark International, Inc. Multiple printer status information indication
DE69629071T2 (en) 1995-03-29 2004-04-22 Eastman Kodak Co. Device for printing, storing and retrieving a recorded image
JP3710518B2 (en) * 1995-06-01 2005-10-26 東芝テック株式会社 Network printing system
US5742845A (en) 1995-06-22 1998-04-21 Datascape, Inc. System for extending present open network communication protocols to communicate with non-standard I/O devices directly coupled to an open network
US5699493A (en) 1995-06-23 1997-12-16 Lexmark International, Inc. Method and apparatus for providing job accounting information to a host computer from a printer
IL116243A (en) 1995-06-25 1999-12-31 Scitex Corp Ltd System and method for on-demand printing
US5963641A (en) 1995-09-12 1999-10-05 Markzware, Inc. Device and method for examining, verifying, correcting and approving electronic documents prior to printing, transmission or recording
US5687301A (en) 1995-09-15 1997-11-11 Hewlett-Packard Company Field correction of application specific printer driver problems
KR100193809B1 (en) 1995-11-16 1999-06-15 윤종용 How to notify error status in fax
US5724070A (en) 1995-11-20 1998-03-03 Microsoft Corporation Common digital representation of still images for data transfer with both slow and fast data transfer rates
US5694528A (en) 1995-11-22 1997-12-02 Xerox Corporation Apparatus and method for diagnosing printing machine operation with facsimile transmitted dialog screens
KR100195833B1 (en) 1995-12-07 1999-06-15 윤종용 Self checking method for facsimile
US5791790A (en) * 1996-03-13 1998-08-11 Lexmark International, Inc. Method and apparatus for providing print job buffering for a printer on a fast data path
JP3428284B2 (en) 1996-03-27 2003-07-22 富士ゼロックス株式会社 Printer control system
US5720015A (en) 1996-04-22 1998-02-17 Lexmark International, Inc. Method and apparatus for providing remote printer resource management
JP3617723B2 (en) 1996-05-14 2005-02-09 富士写真フイルム株式会社 Digital print creation method and digital print creation apparatus
US5768528A (en) 1996-05-24 1998-06-16 V-Cast, Inc. Client-server system for delivery of online information
US5870769A (en) 1996-06-07 1999-02-09 At&T Corp. Internet access system and method with active link status indicators
US5729666A (en) 1996-08-05 1998-03-17 Hewlett-Packard Company Efficient method and apparatus for downloading of fonts from a processor to a printer
US5845074A (en) 1996-11-22 1998-12-01 E-Parcel, Llc Smart internet information delivery system having a server automatically detects and schedules data transmission based on status of clients CPU
US5790977A (en) 1997-02-06 1998-08-04 Hewlett-Packard Company Data acquisition from a remote instrument via the internet
US6184996B1 (en) * 1997-06-18 2001-02-06 Hewlett-Packard Company Network printer with remote print queue control procedure
JPH11119955A (en) * 1997-10-17 1999-04-30 Minolta Co Ltd Printing processor
JPH11127323A (en) 1997-10-21 1999-05-11 Canon Inc Image memory device, digital camera, image processing system, data processing method for image processing system, and storage medium storing computer-readable program
US6552743B1 (en) 1998-04-08 2003-04-22 Hewlett Packard Development Company, L.P. Digital camera-ready printer
JP3997504B2 (en) * 1998-05-29 2007-10-24 リコープリンティングシステムズ株式会社 Document printing method, document processing method, and printer
JP4194133B2 (en) * 1998-06-24 2008-12-10 キヤノン株式会社 Image processing method and apparatus, and storage medium
US6356357B1 (en) 1998-06-30 2002-03-12 Flashpoint Technology, Inc. Method and system for a multi-tasking printer capable of printing and processing image data
US6426801B1 (en) * 1998-10-01 2002-07-30 Lexmark International, Inc. Printer apparatuses and methods for using the same
US6417937B1 (en) * 1999-03-30 2002-07-09 Hewlett-Packard Company Integrated automatic document feeder and active transparency adapter
EP1107573B1 (en) 1999-12-03 2011-01-19 Canon Kabushiki Kaisha Image-forming system, control method therefor, image-forming apparatus, data processing method, and storage medium
US6473498B1 (en) * 1999-12-21 2002-10-29 Pitney Bowes Inc. Method and system for maximizing use of a communication line

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759053A (en) * 1983-11-11 1988-07-19 Murata Kikai Kabushiki Kaisha Facsimile/character communication system
US5699494A (en) * 1995-02-24 1997-12-16 Lexmark International, Inc. Remote replication of printer operator panel
US5682441A (en) * 1995-11-08 1997-10-28 Storm Technology, Inc. Method and format for storing and selectively retrieving image data
US6034785A (en) * 1997-04-21 2000-03-07 Fuji Photo Film Co., Ltd. Image synthesizing method
US5797061A (en) * 1997-05-12 1998-08-18 Lexmark International, Inc. Method and apparatus for measuring and displaying a toner tally for a printer
US6061665A (en) * 1997-06-06 2000-05-09 Verifone, Inc. System, method and article of manufacture for dynamic negotiation of a network payment framework

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699053B2 (en) 2002-01-24 2014-04-15 Hewlett-Packard Development Company, L.P. System and method for mobile printing from a desktop operating system using a portable computing device
EP1626334A3 (en) * 2004-08-09 2008-01-30 Samsung Electronics Co, Ltd System and method for printing out image data and text data
US7605938B2 (en) 2004-08-09 2009-10-20 Samsung Electronics Co., Ltd. System and method for printing out image data and text data

Also Published As

Publication number Publication date
US20080239360A1 (en) 2008-10-02
US7262873B1 (en) 2007-08-28
EP1317731A4 (en) 2006-02-08
JP2004501810A (en) 2004-01-22
EP1317731A1 (en) 2003-06-11
US20020186392A1 (en) 2002-12-12
US7808660B2 (en) 2010-10-05
AU2001271654A1 (en) 2002-01-14
US7068387B2 (en) 2006-06-27

Similar Documents

Publication Publication Date Title
US7262873B1 (en) Photoprinter access to remote data
TW552792B (en) Combination scanner and image data reader system including image management software and internet based image management method
US7057648B2 (en) Capturing digital images to be transferred to a service provider for storage
EP0860980B1 (en) Electronic camera with "utilization" selection capability
US6912060B1 (en) Photoprinter control of peripheral devices
US20050254089A1 (en) System and method for producing print order files customized for a particular printer
US7304754B1 (en) Image inputting and outputting apparatus which judges quality of an image
US20020063889A1 (en) Printing system, image capturing apparatus, print service reception processing apparatus, print service administration apparatus, print processing apparatus, memory media, print service method, print service reception processing method, print service administration method and print processing method
JP2009507419A (en) System and method for forming border prints
US7190473B1 (en) Printer apparatus with integrated graphical user interface and method for using the same
US7733521B1 (en) Printer apparatus with selectable photo enhancement project and settings storage dynamically definable user interface and functions and template definition
JP2001249990A (en) Image service system and computer readable storage medium
JP2002358184A (en) Picture processing system
JP2006025240A (en) Relevance information adding device, image forming apparatus, relevance information adding method, image forming method, and program
EP1328896A2 (en) Photographic film scanning and pringting apparatus and method
JP2002358172A (en) Image processing method and image processing system
JP2002357873A (en) Image processing method and image processing system
JP2004040271A (en) Photographic print system
JP2004289358A (en) Image recorder and image recording method
JP2002197177A (en) Image input device and photo service system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001950686

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001950686

Country of ref document: EP