WO2002006872A1 - Optical waveguide device having wavelength selectivity - Google Patents

Optical waveguide device having wavelength selectivity Download PDF

Info

Publication number
WO2002006872A1
WO2002006872A1 PCT/JP2001/006011 JP0106011W WO0206872A1 WO 2002006872 A1 WO2002006872 A1 WO 2002006872A1 JP 0106011 W JP0106011 W JP 0106011W WO 0206872 A1 WO0206872 A1 WO 0206872A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
multilayer filter
light
waveguide device
substrate
Prior art date
Application number
PCT/JP2001/006011
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Toyoshima
Toshiaki Anzaki
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Publication of WO2002006872A1 publication Critical patent/WO2002006872A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12123Diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter

Definitions

  • the present invention relates to an optical waveguide device used for optical communication such as wavelength division multiplexing communication, and more particularly, to a wavelength selectivity suitable for multiplexing light having different wavelengths and dividing the multiplexed light for each wavelength.
  • the present invention relates to an optical waveguide device having: Background art
  • Optical communication requires a demultiplexing technique for selectively transmitting or reflecting light of a predetermined wavelength.
  • a demultiplexing optical filter a multilayer filter in which high-refractive-index dielectric layers and low-refractive-index dielectric layers are alternately laminated, such as an edge filter and a narrow-band filter, are known.
  • FIG. 6 shows a conventional optical communication device 60 using an optical filter.
  • the optical communication device 60 includes a glass substrate 62 having an optical waveguide 61. From the fiber array 66 on the left side, mixed light enters the channel 63 of the optical communication equipment 60. The mixed light is divided into two mixed lights including a light having a wavelength of 1 and a light having a wavelength of ⁇ 2 by a primary optical filter 67. One of the mixed lights is guided toward the secondary optical filter 68, and is divided into light having a wavelength of ⁇ 1 by the secondary optical filter 68, and the light is emitted to the fiber array 70 through the channel 64. . Also, the other mixed light is guided toward the secondary optical filter 68 and is divided by the secondary optical filter 69 into light having a wavelength of I 2, and the light is transmitted through the channel 65 to the fiber array 70. It is emitted to
  • the optical communication device 60 shown in FIG. 6 requires three optical filters 67, 68, and 69 to split the mixed light. Therefore, the optical filters 67, 68, 69 Grooves 7 1 and 7 2 are required to be arranged at predetermined positions of the waveguide 61. Therefore, in the manufacturing process of the optical communication equipment 60, the machining for forming the grooves 71, 72 in the substrate 62, and the optical filters 67, 68, 69 corresponding to the grooves 71, This requires the work to assemble in 72, and there is a problem that the number of manufacturing processes is relatively large. In particular, as the number of channels of the optical waveguide 61 increases, the number of optical filters also increases, and accordingly, the manufacturing operation becomes more complicated and the manufacturing time becomes longer. Moreover, assembling the relatively small optical filters 67, 68, 69 to the relatively small optical communication equipment 60 (glass substrate 62) is a very detailed operation. The production of 60 was difficult. Disclosure of the invention
  • An object of the present invention is to provide an optical waveguide device having wavelength selectivity, which is easily manufactured at a relatively low cost.
  • a substrate having: one end face; and an optical waveguide including a plurality of channels each having a plurality of first openings formed in the one end face;
  • An optical waveguide element having wavelength selectivity comprising: a multilayer filter formed on one end surface of a substrate. The thickness of the multilayer filter changes continuously according to the position of each of the plurality of first openings.
  • the plurality of first openings are arranged in a line from a first end to a second end of one end surface of the substrate, and a film thickness of the multilayer filter is a second thickness from the first end. It preferably changes linearly toward the end.
  • the optical waveguide includes at least one channel having a second opening formed on the other end surface of the substrate.
  • the optical waveguide element is further formed integrally with the multilayer filter, and further includes an optical signal generation unit that emits parallel light to the multilayer filter.
  • the optical signal generation unit includes: a lens array having a plurality of lenses respectively corresponding to the plurality of first openings; and an optical signal to the multilayer filter via the plurality of lenses. And a plurality of light sources that emit light.
  • the optical signal generation unit is an aperture lens array having a plurality of aperture lenses.
  • An optical waveguide element is formed integrally with a multilayer filter, and an optical signal for detecting light obtained by dividing mixed light obtained by multiplexing light having different wavelengths into wavelengths using a multilayer filter. It is preferable to further include a detection unit. ⁇
  • the optical signal detection unit includes a plurality of photoelectric conversion elements.
  • a method for manufacturing an optical waveguide device having wavelength selectivity includes the steps of: preparing a substrate having one end face; and an optical waveguide including a plurality of channels each having a plurality of first openings on the one end face. A step of directly forming a multilayer filter whose one end surface continuously changes in accordance with each position of the plurality of first openings. It is preferable that the manufacturing method further includes, prior to the step of forming the multilayer filter, arranging the substrate such that one end surface of the substrate is inclined with respect to an evaporation source or a target.
  • FIG. 1 is a plan view of an optical waveguide device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a film forming apparatus used for manufacturing the optical waveguide device of FIG.
  • Figure 3a shows a Darraf showing the incident light without wavelength dependence.
  • FIG. 3B is a diagram showing the wavelength of the split outgoing light.
  • FIG. 4 is a plan view showing an optical waveguide device according to a second embodiment of the present invention.
  • FIG. 5 is a perspective view of the optical waveguide device of FIG.
  • FIG. 6 is a perspective view of a conventional optical waveguide device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the optical waveguide element 11 has a glass substrate 18 having a first end face 17 and a second end face 20, a multilayer filter 19 formed on the first end face 17, and It is equipped with.
  • an optical waveguide 12 including a plurality (four) of channels 13, 14, 15, and 16 is formed inside the glass substrate 18.
  • the four channels 13 to 16 have openings 13a, 14a, 15a, and 16a on the first end face 17, respectively.
  • the four channels 13 to 16 join one channel 21.
  • the channel 21 has an opening 21 a in the second end face 20 of the glass substrate 18.
  • the first end face 17 is flattened.
  • Multi-layer filter 19th It is formed on the entire end face 17.
  • the film thickness of the multilayer filter 19 at positions corresponding to the four openings 13a, 14a, 15a, and 16a is different.
  • the four lights supplied to the multilayer filter 19 from the apertures 13 a, 14 a, 15 a, 16 a of the four channels 13 to 16 are converted into the multilayer filter 19.
  • the light is converted into four lights with different central wavelengths.
  • the light transmitted through the thinner multilayer filter 19 has a shorter central wavelength. .
  • the multilayer filter 19 is a narrow-band filter manufactured by alternately laminating high-refractive-index dielectric layers and low-refractive-index dielectric layers. It is formed directly on the first end face 17. Tantalum oxide is preferably used for the material of the high refractive index dielectric layer, and silicon oxide is preferably used for the material of the low refractive index dielectric layer.
  • the multilayer filter 19 is formed, for example, by using a film forming apparatus 22 as shown in FIG. 2 and according to a physical vapor phase method such as a sputtering method.
  • the film forming apparatus 22 includes a vacuum chamber 23 having a target electrode 25.
  • a target 24 is mounted on the target electrode 25 in the vacuum chamber 23.
  • a negative voltage is applied to the target electrode 25 from a DC power supply or a high-frequency power supply (not shown).
  • the vacuum chamber 23 is connected to a vacuum exhaust system (not shown).
  • the rotating drum 26 is provided in the vacuum chamber 23.
  • the rotating drum 26 has at least one glass
  • the substrate 18 is attached via a jig or the like (not shown). In FIG. 2, one glass substrate 18 is shown.
  • the glass substrate 18 is rotated so that the longitudinal direction of the first end face 17 and the longitudinal direction of the target 24 are in the same direction, and the first end face 17 is inclined with respect to the target 24. Fixed to 6.
  • the vacuum chamber 23 is evacuated to a high vacuum by an evacuation system. Thereafter, an inert gas such as Ar is introduced into the vacuum chamber 23, and a negative voltage is applied to the target electrode 25. As a result, the gas phase near the surface of the target electrode 25 becomes a plasma state. Due to the sputtering phenomenon, target atoms are released from the surface of the target electrode 25, and the target atoms are deposited on the first end face 17 of the glass substrate 18 and deposited, whereby a thin film is formed on the first end face 17 It is formed.
  • an inert gas such as Ar
  • the first end face 17 of the glass substrate 18 passes in an inclined position in front of the target 24 by rotating the rotating drum 26 at a predetermined speed. I do. For this reason, the distance between the first end face 17 and the target 24 is the longest at the first end 17 a in the longitudinal direction of the first end face 17, and the distance becomes shorter toward the second end 17. I'm sorry. Therefore, a relatively thin film is formed on the first end 17a side of the first end face 17, and a relatively thick film is formed toward the second end 17b. In other words, the film thickness of the multilayer filter 19 is linear along the longitudinal direction of the first end face 17 from the opening 13 a of the channel 13 toward the opening 16 a of the channel 16. Increase (see Figure 1).
  • the multilayer filter 19 may be formed according to a physical vapor phase method such as a vacuum evaporation method or another sputtering method.
  • the multilayer filter 19 may be formed by a magnetron sputtering method, an ion beam sputtering method, an ion-assisted evaporation method, or the like. In this case, a multilayer filter 19 having improved weather resistance is obtained. Further, the film thickness of the multilayer filter 19 can be made gradient by processing the deposition shield into an appropriate shape and making the opening through which the sputtered particles fly through an inclined opening.
  • the center wavelengths of the four transmitted lights supplied from the four channels 13 to 16 of the optical waveguide 12 are different from each other. More specifically, when a mixed light including light having a plurality of wavelengths, for example, incident light having no wavelength dependence as shown in FIG. 3A is incident on the channel 21 of the optical waveguide 12, the mixed light Is applied to the multilayer filter 19 from the openings 13a to 16a of the channels 13 to 16 (Fig. 3b).
  • four outgoing lights A, B, C, and D having different center wavelengths (the wavelengths are ⁇ , ⁇ 2, ⁇ 3 ⁇ 4, respectively) are obtained. That is, the incident light including light having a center wavelength of lambda. 1 to 4 (the optical signal having two fourth information amount), the multilayer filter 1 9, each central wavelength; L. 1 to 4 single output light 4 A, B, C, D are divided.
  • the optical waveguide element 11 is manufactured by continuously forming the multilayer filter 19 having a different thickness on the first end face 17 of the glass substrate 18. Therefore, in the conventional manufacturing process of the optical communication equipment 60, there are very many processes such as the process of forming the filter grooves 71 and 72 in the substrate 62 and the process of assembling the filter in the grooves 71 and 72. Precise work is omitted, and the number of manufacturing steps and labor of the optical waveguide element 11 are reduced.
  • the manufacturing process of the optical communication equipment 60 is more complicated, and the manufacturing time becomes longer.
  • the manufacturing process of the optical waveguide element 11 is hardly affected by the increase in the number of channels. Therefore, the optical waveguide element 11 is easily manufactured, and its manufacturing cost is reduced.
  • the thickness of the multilayer filter 19 changes linearly from the first end 17a of the first end face 17 to the second end 17b. Therefore, the center wavelength of light passing through the multilayer filter 19 is uniquely determined at positions corresponding to the openings 13 a to 16 a of the channels 13 to 16. That is, the center wavelength of light passing through the multilayer filter 19 via the channels 13 to 16 is expressed by a linear expression. Therefore, it is easy to change the design such as changing the positions of the plurality of channels 13 to 16 and changing the number of channels, and even if such a design change occurs, the optical waveguide element 11 can be It is easily manufactured.
  • the thickness of the multilayer filter 19 is uniquely determined according to the increased channel opening position.
  • the center wavelength of the light passing through the filter 19 is uniquely determined. Therefore, the number of channels can be easily increased without increasing the number of groove forming steps and filter assembling steps as in the prior art.
  • a multilayer filter 19 and an optical signal generator 30 that emits parallel light to the multilayer filter 19 are integrally formed.
  • An optical waveguide 12 is formed on the glass substrate 18.
  • the optical waveguide 12 has openings 3 la, 32 a, 33 a, 34 a, 35 a, 36 a, 37 a, and 38 a on the first end face 17 of the glass substrate 18, respectively.
  • the optical signal generator 30 includes eight lens elements L1 to L8 arranged in parallel Rod lens array 40 and parallel And a laser diode array 41 including eight laser diodes LD 1 to LD 8 arranged in a matrix.
  • the rod lens array 40 is filled with a plurality of (eight in this example) refractive index distributed optical elements, rod lenses L 1 L 8, and gaps between the open lenses L 1 to L 8 and their surroundings. Resin (not shown) and a holding plate (not shown).
  • the open lenses L 1 to L 8 function as collimator lenses, and the optical axes of the open lenses L 1 to L 8 are arranged so as to be parallel to each other. Both end surfaces of the open lens array 40, that is, the surface on the multilayer filter 19 side and the surface on the laser diode array 41 side are flattened.
  • the optical axes of the rod lenses L1 to L8 substantially coincide with the openings of the channels 31 to 38 on the first end face 17 side, respectively.
  • the laser diode array 41 is formed integrally with the rod lens array 40 such that the centers of the laser diodes LD 1 to LD 8 substantially coincide with the optical axes of the rod lenses L 1 to L 8, respectively. .
  • each of the laser diodes LD1 to LD8 for example, one that outputs laser light of the same wavelength is used.
  • the half width of the laser beam output from each of the laser diodes LD1 to LD8 may be wide.
  • the eight types of wavelengths; the light of 1 to 8 are divided by the multilayer filter 19 so that the half value width is in the range of the half value width of the laser light of each laser diode LD1 to LD8. And sent to each channel 31-38. That is, the laser light emitted from the laser diode LD1 is incident on the multilayer filter 19 via the rod lens L1. The laser light passes through the multilayer filter 19, and the light having the center wavelength of ⁇ 1 is incident on the channel 31.
  • the laser beams respectively output from the laser diodes LD2 to LD8 are transmitted through the multilayer lenses L2 to L8. To the data 19 respectively.
  • Each laser beam passes through the multilayer filter 19, and light having a center wavelength of ⁇ 2 to 8 enters the channels 32 to 38, respectively.
  • the light output from the laser diode that is selectively turned on is sent to the corresponding channels 31 to 38 via the multilayer filter 19. This is explained with reference to Table 1 below.
  • the laser diode LD 2 when only the laser diode LD 2 is turned on, light of the wavelength ⁇ 2 selected by the multilayer filter 19 enters the channel 32.
  • the laser diode when only one of the laser diodes LD3 to LD8 is turned on, the laser diode is turned on within the half-value width of the laser beam output from the turned on laser diode. The light of the corresponding wavelength is selected by the multilayer filter 19, and the light enters the corresponding channels 33-38.
  • Control circuit converts the electrical signals to optical signals that have a data amount of 2 8 outputs having an information amount of 2 8. Therefore, the optical waveguide device 11 of the second embodiment has a wavelength Mixed light obtained by multiplexing different lights can be emitted.
  • the first and second embodiments may be changed as follows.
  • the number of channels of the optical waveguide 12 may be arbitrarily changed.
  • the method of forming the multilayer filter 19 is not limited to the method of FIG.
  • the opening width of the surface of the target 24 exposed to the first end face 17 is increased in the longitudinal direction of the first end face 17. You may make it change gradually from one end side to the other end side.
  • the glass substrate 18 is moved horizontally with respect to the target 24 so that the surface of the target 24 and the first end face 17 face each other.
  • a multilayer filter having a thickness corresponding to the opening width of the surface of the target 24 is formed on the first end face 17.
  • a thinner multilayer filter is formed as the opening width on the surface of the target 24 becomes narrower, and a thicker multilayer filter is formed as the opening width becomes wider.
  • the multilayer filter 19 whose film thickness changes linearly can be formed on the first end face 17 of the glass substrate 18.
  • the rod lenses mixed light for example, an optical signal that have a data amount of 2 8
  • the rod lenses mixed light for example, an optical signal that have a data amount of 2 8
  • an optical signal generation unit that allows the light to enter the multilayer filter 19 in parallel via 1 to L8.
  • an optical signal generating unit that makes the mixed light incident on the multilayer filter 19 in parallel without using the rod lenses L1 to L8 may be used.
  • the optical waveguide device 1 Even when adopting any of the optical signal generating unit, the optical waveguide device 1 1, an optical signal having an information amount of 2 8 multilayer filter 1 9 by light of different wavelengths for each channel 3 1 to 3 8 (lambda divided into light) of I ⁇ 8, then, ⁇ ⁇ ; by the multiplexing of the light L 8 to regenerate the optical signal having an information amount of 2 8, and is capable of emitting the optical signal.
  • a photoelectric conversion element such as a photodetector may be used instead of the laser diodes LD1 to LD8.
  • Rodren The optical signal detecting section 30a is composed of the optical elements L1 to L8 and the photoelectric conversion element units 41a including the same number of photodetectors PD1 to PD8 (see FIG. 4).
  • mixed light obtained by multiplexing lights having different wavelengths is applied to the multilayer filter 19 from each of the channels 31 to 38.
  • the mixed light is divided into lights having different center wavelengths ( ⁇ to 18) by the multilayer filter 19 and received by the photodetectors PD 1 to PD 8 via the rod lenses L 1 to L 8. (See Table 2 below).
  • the same optical signal detection unit 30a can detect light having different wavelengths contained in the mixed light separately for each wavelength.
  • the mixed light is an optical signal having an information amount of 2 n
  • the mixed light is divided by the multilayer filter 19 into lights of ⁇ 1 to ⁇ n having different center wavelengths.
  • optical signal detection unit 3 0 a can be converted from the optical signals having the information amount of 2 n to an electric signal having an information amount of 2 n.
  • the film thickness of the multilayer filter 19 changes continuously according to each position of the plurality of channels. Different for each of a plurality of channels. Therefore, when mixed light including light having different wavelengths enters the multilayer filter 19 through a plurality of channels of the optical waveguide 12, the mixed light is centered for each channel by the multilayer filter 19. It can be divided into lights with different wavelengths. For example, when Table waveguide 1 2 number of channels (the numerical aperture) in eta,. 1 to the center wavelength of lambda; mixed light including light of I eta (No.
  • Mitsunobu having an information amount of 2 eta is a respective channel
  • the mixed light passes through the multilayer filter, the mixed light is divided into light having a central wavelength of 1 to L ⁇ .
  • the mixed light including light having a center wavelength of ⁇ 1 to L ⁇ is applied to the channel from the multilayer filter 19, the mixed light passes through the multilayer filter 19, and the mixed light becomes the center wavelength.
  • the mixed light is divided by the multilayer filter 19 into light having a center wavelength of 1 to L ⁇ , and each light enters each corresponding channel. That is, an optical signal having an information amount of 2 ⁇ is divided into lights having different center wavelengths for each channel.
  • the optical waveguide element 11 having wavelength selectivity of the present invention can be manufactured only by forming the multilayer filter 19 having a continuously changing film thickness on one end face 17 of the substrate 18. That is, the optical waveguide element 11 is manufactured in two steps: a step of forming the optical waveguide 12 on the substrate 18 and a step of forming the multilayer filter 19 on one end face 17 of the substrate 18. Therefore, the optical waveguide element 11 is easily manufactured, and the manufacturing cost is reduced. Further, even when the number of channels of the optical waveguide 12 is relatively large, it is possible to avoid an increase in manufacturing work and an increase in manufacturing time.
  • the optical waveguide element 11 can receive light from either of the two end faces 17 and 20 of the substrate 18, so that the optical waveguide element 11 has versatility as a bidirectional optical waveguide element 11. Can be used.
  • the optical signal generator 30 integrated with the multilayer filter 19 supplies light parallel to the multilayer filter 19, the light is appropriately divided by the multilayer filter 19 and transmitted to each channel. Can be By combining the divided lights having different center wavelengths, it is possible to produce a mixed light in which lights having different wavelengths are multiplexed.
  • Light that includes a lens array 40 having a plurality of lenses L1 to L8, and a plurality of light sources LD1 to LD8 that emit light to the multilayer filter 19 via the plurality of lenses L1 to L8, respectively.
  • the light emitted from the plurality of light sources LD 1 to LD 8 by the signal generator 30 is divided by the multilayer filter 19 into light having different center wavelengths. Therefore, by controlling ON and OFF of a plurality of light sources individually and by combining the lights separated by the multilayer filter 19, mixed light including lights having different center wavelengths can be produced. For example, if the number of light sources, lenses, and channels is represented by n, A mixed light having an information content of 2 ⁇ including a light having a center wavelength of ⁇ 1 to L ⁇ can be produced.
  • the optical signal generation section 30 includes an open lens array 40 having a plurality of rod lenses L1 to L8, a substrate 18 on which an optical waveguide 12 and a multilayer filter 19 are formed, and a rod lens array By combining with the ray 40, a small-sized optical waveguide element 11 having wavelength selectivity can be obtained. '
  • the light separated by the multilayer filter 19 is detected for each wavelength by the optical signal detector 30a integrated with the multilayer filter 19. Therefore, for example, a mixed optical signal having an information amount of 2 n is divided by the multilayer filter 19 into lights of different central wavelengths for each channel; L 1 to n. Therefore, the optical signal having the information amount of 2 n detected by the optical signal detection unit 30 a can be converted into an electric signal having the information amount of 2 n .

Abstract

An optical waveguide device (11) having a wavelength selectivity comprises a glass substrate (18) including an optical waveguide (12) having a plurality of channels (13 to 16) having a plurality of apertures in a first end face (17); and a multi-layer filter (19) formed on the first end face. The multi-layer filter has a film thickness varying continuously depending on the positions of the apertures of the channels. The light transmitted through the multi-layer filter has a center wavelength different with the position of the channel. When a mixed light comes from the channels into the multi-layer filter, it is divided into beams of different center wavelengths by the multi-layer filter having different thicknesses. This multi-layer filter is formed directly on the first end face of the substrate by a physical gas deposition method, so that the optical waveguide device is easily manufactured.

Description

明細書  Specification
波長選択性を有する光導波路素子 技術分野  Optical waveguide device with wavelength selectivity
本発明は、 例えば波長多重通信等の光通信に用いられる光導波路素子に関し、 特に、 波長の異なる光を多重化したり、 多重化された光を波長毎に分けたりする のに好適な波長選択性を有する光導波路素子に関する。 背景技術  The present invention relates to an optical waveguide device used for optical communication such as wavelength division multiplexing communication, and more particularly, to a wavelength selectivity suitable for multiplexing light having different wavelengths and dividing the multiplexed light for each wavelength. The present invention relates to an optical waveguide device having: Background art
従来より、 光導波路を有する部材が光通信用器材として用いられている。 今後 、 光通信の普及に伴い、 より小型化され集積化された光通信用器材の需要が高ま る。 光通信には、 所定波長の光を選択的に透過或いは反射させる分波技術が必要 である。 分波用の光学フィルタとして、 高屈折率誘電体層と低屈折率誘電体層と を交互に積層した多層膜フィルタ、 例えば、 エッジフィルタ、 狭帯域フィルタ等 が知られている。  Conventionally, members having an optical waveguide have been used as optical communication equipment. In the future, with the spread of optical communication, the demand for smaller and more integrated optical communication equipment will increase. Optical communication requires a demultiplexing technique for selectively transmitting or reflecting light of a predetermined wavelength. As a demultiplexing optical filter, a multilayer filter in which high-refractive-index dielectric layers and low-refractive-index dielectric layers are alternately laminated, such as an edge filter and a narrow-band filter, are known.
図 6は光学フィルタを用いた従来の光通信用器材 6 0を示す。 光通信用器材 6 0は光導波路 6 1を有するガラス基板 6 2を含む。 左側のファイバーアレイ 6 6 から、 光通信用器材 6 0のチャンネル 6 3に混合光が入射される。 その混合光は 、 一次光学フィルタ 6 7により波長が; 1の光と λ 2の光を含む 2つの混合光に 分けられる。 一方の混合光は二次光学フィルタ 6 8に向かって導かれ、 二次光学 フイノレタ 6 8により λ 1の波長を有する光に分けられ、 その光はチャンネル 6 4 を通してファイバーアレイ 7 0へ出射される。 また、 他方の混合光は二次光学フ ィルタ 6 8に向かって導かれ、 二次光学フィルタ 6 9により; I 2の波長を有する 光に分けられ、 その光はチャンネル 6 5を通してファイバーアレイ 7 0へ出射さ れる。  FIG. 6 shows a conventional optical communication device 60 using an optical filter. The optical communication device 60 includes a glass substrate 62 having an optical waveguide 61. From the fiber array 66 on the left side, mixed light enters the channel 63 of the optical communication equipment 60. The mixed light is divided into two mixed lights including a light having a wavelength of 1 and a light having a wavelength of λ2 by a primary optical filter 67. One of the mixed lights is guided toward the secondary optical filter 68, and is divided into light having a wavelength of λ1 by the secondary optical filter 68, and the light is emitted to the fiber array 70 through the channel 64. . Also, the other mixed light is guided toward the secondary optical filter 68 and is divided by the secondary optical filter 69 into light having a wavelength of I 2, and the light is transmitted through the channel 65 to the fiber array 70. It is emitted to
図 6の光通信用器材 6 0には、 混合光を分波するために、 3つの光学フィルタ 6 7、 6 8、 6 9が必要である。 そのため、 光学フィルタ 6 7, 6 8, 6 9を光 導波路 6 1の所定箇所に配置するための溝 7 1 , 7 2が必要である。 従って、 光 通信用器材 6 0の製造工程には、 基板 6 2に溝 7 1 , 7 2を形成するための機械 加工と、 光学フィルタ 6 7, 6 8, 6 9を対応する溝 7 1, 7 2に組み付ける作 業とが必要となり、 製造工程数が比較的多いという問題があった。 特に、 光導波 路 6 1のチャンネル数が多くなるほど、 光学フィルタの数も多くなり、 その分だ け製造作業がより煩雑になって製造時間が長くなつてしまう。 しかも、 比較的小 型の光通信用器材 6 0 (ガラス基板 6 2 ) に、 比較的小型の光学フィルタ 6 7 , 6 8, 6 9を組み付けるのは非常に細かい作業であり、 光通信用器材 6 0の製造 は難しいという問題があつた。 発明の開示 The optical communication device 60 shown in FIG. 6 requires three optical filters 67, 68, and 69 to split the mixed light. Therefore, the optical filters 67, 68, 69 Grooves 7 1 and 7 2 are required to be arranged at predetermined positions of the waveguide 61. Therefore, in the manufacturing process of the optical communication equipment 60, the machining for forming the grooves 71, 72 in the substrate 62, and the optical filters 67, 68, 69 corresponding to the grooves 71, This requires the work to assemble in 72, and there is a problem that the number of manufacturing processes is relatively large. In particular, as the number of channels of the optical waveguide 61 increases, the number of optical filters also increases, and accordingly, the manufacturing operation becomes more complicated and the manufacturing time becomes longer. Moreover, assembling the relatively small optical filters 67, 68, 69 to the relatively small optical communication equipment 60 (glass substrate 62) is a very detailed operation. The production of 60 was difficult. Disclosure of the invention
本発明の目的は、 比較的低コストで容易に製造される、 波長選択性を有する光 導波路素子を提供することにある。  An object of the present invention is to provide an optical waveguide device having wavelength selectivity, which is easily manufactured at a relatively low cost.
上記目的を達成するために、 本発明の第 1の態様では、 一端面と、 前記一端面 にそれぞれ形成された複数の第 1開口を有する複数のチヤンネルを含む光導波路 とを有する基板と、 前記基板の一端面に形成された多層膜フィルタとを備える波 長選択性を有する光導波路素子が提供される。 多層膜フィルタの膜厚は複数の第 1開口の各々の位置に応じて連続的に変化している。  In order to achieve the above object, according to a first aspect of the present invention, there is provided a substrate having: one end face; and an optical waveguide including a plurality of channels each having a plurality of first openings formed in the one end face; An optical waveguide element having wavelength selectivity, comprising: a multilayer filter formed on one end surface of a substrate. The thickness of the multilayer filter changes continuously according to the position of each of the plurality of first openings.
複数の第 1開口は前記基板の一端面の第 1の端から第 2の端に向けて一列に配 列されており、 前記多層膜フィルタの膜厚は、 前記第 1の端から第 2の端に向か つて直線的に変化していることが好ましい。  The plurality of first openings are arranged in a line from a first end to a second end of one end surface of the substrate, and a film thickness of the multilayer filter is a second thickness from the first end. It preferably changes linearly toward the end.
光導波路は基板の他端面に形成された第 2開口を有する少なくとも一つのチヤ ンネルを含むことが好ましい。  Preferably, the optical waveguide includes at least one channel having a second opening formed on the other end surface of the substrate.
光導波路素子は、 多層膜フィルタに一体的に形成され、 多層膜フィルタに平行 光を出射する光信号発生部をさらに備えることが好ましい。  It is preferable that the optical waveguide element is further formed integrally with the multilayer filter, and further includes an optical signal generation unit that emits parallel light to the multilayer filter.
光信号発生部は、 前記複数の第 1開口にそれぞれ対応する複数のレンズを有す るレンズアレイと、 前記複数のレンズをそれぞれ介して前記多層膜フィルタへ光 を出射する複数の光源とを含むことが好ましい。 The optical signal generation unit includes: a lens array having a plurality of lenses respectively corresponding to the plurality of first openings; and an optical signal to the multilayer filter via the plurality of lenses. And a plurality of light sources that emit light.
光信号発生部は複数の口ッドレンズを有する口ッドレンズァレイであることが 好ましい。  It is preferable that the optical signal generation unit is an aperture lens array having a plurality of aperture lenses.
光導波路素子は、 多層膜フィルタに一体的に形成され、 波長の異なる光を多重 化した混合光を、 多層膜フィルタを用レ、て波長毎に分けることにより得られた光 を検出する光信号検出部を更に備えることが好ましい。 ·  An optical waveguide element is formed integrally with a multilayer filter, and an optical signal for detecting light obtained by dividing mixed light obtained by multiplexing light having different wavelengths into wavelengths using a multilayer filter. It is preferable to further include a detection unit. ·
光信号検出部は複数の光電変換素子を含むことが好ましい。  Preferably, the optical signal detection unit includes a plurality of photoelectric conversion elements.
本発明の第 2の態様では、 波長選択性を有する光導波路素子の製造方法が提供 される。 その製造方法は、 一端面と、 前記一端面にそれぞれ複数の第 1開口を有 する複数のチャンネルを含む光導波路とを有する基板を用意する工程と、 物理的 気相堆積法に従って、 前記基板の一端面に、 その膜厚が前記複数の第 1開口の各 々の位置に応じて連続的に変化する多層膜フィルタを直接的に形成する工程とを 備える。 製造方法は更に、 前記多層膜フィルタの形成工程に先だって、 前記基板 の一端面が蒸発源或いはターゲットに対し傾斜するように前記基板を配置するェ 程を備えることが好ましい。 図面の簡単な説明  According to a second aspect of the present invention, there is provided a method for manufacturing an optical waveguide device having wavelength selectivity. The manufacturing method includes the steps of: preparing a substrate having one end face; and an optical waveguide including a plurality of channels each having a plurality of first openings on the one end face. A step of directly forming a multilayer filter whose one end surface continuously changes in accordance with each position of the plurality of first openings. It is preferable that the manufacturing method further includes, prior to the step of forming the multilayer filter, arranging the substrate such that one end surface of the substrate is inclined with respect to an evaporation source or a target. BRIEF DESCRIPTION OF THE FIGURES
'図 1は本発明の第 1実施形態に係る光導波路素子の平面図。  FIG. 1 is a plan view of an optical waveguide device according to a first embodiment of the present invention.
図 2は図 1の光導波路素子の製造に用いる成膜装置の概略的斜視図。  FIG. 2 is a schematic perspective view of a film forming apparatus used for manufacturing the optical waveguide device of FIG.
図 3 aは波長依存性のない入射光を示すダラフ、  Figure 3a shows a Darraf showing the incident light without wavelength dependence.
図 3 bは分波された出射光の波長を示す図。  FIG. 3B is a diagram showing the wavelength of the split outgoing light.
図 4は本発明の第 2実施形態に係る光導波路素子を示す平面図。  FIG. 4 is a plan view showing an optical waveguide device according to a second embodiment of the present invention.
図 5は図 4の光導波路素子の斜視図。  FIG. 5 is a perspective view of the optical waveguide device of FIG.
図 6は従来の光導波路素子の斜視図。 発明を実施するための最良の形態  FIG. 6 is a perspective view of a conventional optical waveguide device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の第 1実施形態に係る波長選択性を有する光導波路素子 1 1につ いて図 1〜図 3参照して説明する。 Hereinafter, an optical waveguide device 11 having wavelength selectivity according to the first embodiment of the present invention will be described. This will be described with reference to FIGS.
図 1に示すように、 光導波路素子 1 1は第 1端面 1 7と第 2端面 2 0とを有す るガラス基板 1 8と、 第 1端面 1 7に形成された多層膜フィルタ 1 9とを備えて いる。 ガラス基板 1 8の内部には、 複数 (4つ) のチャンネル 1 3, 1 4, 1 5 , 1 6を含む光導波路 1 2が形成される。 4つのチャンネル 1 3〜1 6は第 1端 面 1 7にそれぞれ開口 1 3 a, 1 4 a , 1 5 a, 1 6 aを有する。 4つのチャン ネル 1 3〜1 6は 1つのチャンネル 2 1に合流する。 チャンネル 21はガラス基 板 1 8の第 2端面 20に開口 2 1 aを有する。  As shown in FIG. 1, the optical waveguide element 11 has a glass substrate 18 having a first end face 17 and a second end face 20, a multilayer filter 19 formed on the first end face 17, and It is equipped with. Inside the glass substrate 18, an optical waveguide 12 including a plurality (four) of channels 13, 14, 15, and 16 is formed. The four channels 13 to 16 have openings 13a, 14a, 15a, and 16a on the first end face 17, respectively. The four channels 13 to 16 join one channel 21. The channel 21 has an opening 21 a in the second end face 20 of the glass substrate 18.
第 1端面 1 7は平坦加工されている。 多層膜フィルタ 1 9は第;!端面 1 7の全 面に形成されている。 4つの開口 1 3 a, 1 4 a, 1 5 a , 1 6 aに対応する位 '置における多層膜フィルタ 1 9の膜厚は異なっている。 言い換えると、 4つのチ ヤンネル 1 3〜 1 6の開口 1 3 a , 1 4 a, 1 5 a , 1 6 a力 ら多層膜フィルタ 1 9に供給された 4つの光は、 多層膜フィルタ 1 9を通過することによって、 中 心波長の異なる 4つの光に変換される。 詳しくは、 より薄い多層膜フィルタ 1 9 を透過した光ほど、 その中心波長は短くなる。 .  The first end face 17 is flattened. Multi-layer filter 19th; It is formed on the entire end face 17. The film thickness of the multilayer filter 19 at positions corresponding to the four openings 13a, 14a, 15a, and 16a is different. In other words, the four lights supplied to the multilayer filter 19 from the apertures 13 a, 14 a, 15 a, 16 a of the four channels 13 to 16 are converted into the multilayer filter 19. By passing through, the light is converted into four lights with different central wavelengths. Specifically, the light transmitted through the thinner multilayer filter 19 has a shorter central wavelength. .
多層膜フィルタ 1 9は、 高屈折率誘電体層と低屈折率誘電体層とを交互に積層 して作製された狭帯域フィルタであり、 真空中で物理的気相法によりガラス基板 1 8の第 1端面 1 7に直接形成される。 高屈折率誘電体層の素材には好ましくは 酸化タンタルが用いられており、 低屈折率誘電体層の素材には好ましくは酸化シ リコンが用いられている。  The multilayer filter 19 is a narrow-band filter manufactured by alternately laminating high-refractive-index dielectric layers and low-refractive-index dielectric layers. It is formed directly on the first end face 17. Tantalum oxide is preferably used for the material of the high refractive index dielectric layer, and silicon oxide is preferably used for the material of the low refractive index dielectric layer.
多層膜フィルタ 1 9は、 例えば図 2に示すような成膜装置 2 2を使い、 スパッ タリング法のような物理的気相法に従って形成される。 成膜装置 22はターゲッ ト電極 25を有する真空チャンバ 2 3を含む。 真空チャンバ 2 3内において、 タ ーゲット電極 2 5上にターゲット 24が取り付けられている。 ターゲット電極 2 5には、 図示しない直流電源或いは高周波電源から負電圧が印加される。 真空チ ヤンバ 2 3は図示しない真空排気系に接続されている。 回転ドラム 2 6は真空チ ヤンパ 2 3内に設けられている。 回転ドラム 26には、 少なくとも 1枚のガラス 基板 1 8が図示しない治具等を介して取付けられる。 図 2では、 一枚のガラス基 板 1 8が示されている。 ガラス基板 1 8は、 第 1端面 1 7の長手方向とターゲッ ト 2 4の長手方向とが同方向に、 かつ、 第 1端面 1 7がターゲット 2 4に対して 傾斜するように、 回転ドラム 2 6に固定されている。 The multilayer filter 19 is formed, for example, by using a film forming apparatus 22 as shown in FIG. 2 and according to a physical vapor phase method such as a sputtering method. The film forming apparatus 22 includes a vacuum chamber 23 having a target electrode 25. A target 24 is mounted on the target electrode 25 in the vacuum chamber 23. A negative voltage is applied to the target electrode 25 from a DC power supply or a high-frequency power supply (not shown). The vacuum chamber 23 is connected to a vacuum exhaust system (not shown). The rotating drum 26 is provided in the vacuum chamber 23. The rotating drum 26 has at least one glass The substrate 18 is attached via a jig or the like (not shown). In FIG. 2, one glass substrate 18 is shown. The glass substrate 18 is rotated so that the longitudinal direction of the first end face 17 and the longitudinal direction of the target 24 are in the same direction, and the first end face 17 is inclined with respect to the target 24. Fixed to 6.
真空チャンバ 2 3は真空排気系により高真空に減圧される。 その後、 真空チヤ ンバ 2 3に A r等の不活性ガスが導入され、 ターゲット電極 2 5に負電圧が印加 される。 これにより、 ターゲット電極 2 5の表面近傍の気相がプラズマ状態とな る。 スパッタリング現象によりターゲット電極 2 5の表面からターゲット原子が 放出され、 そのターゲット原子が、 ガラス基板 1 8の第 1端面 1 7に被着し、 堆 積することにより、 第 1端面 1 7に薄膜が形成される。  The vacuum chamber 23 is evacuated to a high vacuum by an evacuation system. Thereafter, an inert gas such as Ar is introduced into the vacuum chamber 23, and a negative voltage is applied to the target electrode 25. As a result, the gas phase near the surface of the target electrode 25 becomes a plasma state. Due to the sputtering phenomenon, target atoms are released from the surface of the target electrode 25, and the target atoms are deposited on the first end face 17 of the glass substrate 18 and deposited, whereby a thin film is formed on the first end face 17 It is formed.
第 1端面 1 7に薄膜を形成する工程中、 回転ドラム 2 6を所定の速度で回転さ せることにより、 ガラス基板 1 8の第 1端面 1 7がターゲット 2 4の前を傾いた 姿勢で通過する。 このため、 第 1端面 1 7とターゲット 2 4との間の距離は、 第 1端面 1 7の長手方向の第一端 1 7 aでは最も長く、 その距離は第二端 1 7 に 向かうにつれて短くなつている。 そのため、 第 1端面 1 7の第一端 1 7 a側では 比較的薄い膜が形成され、 第二端 1 7 b へ向かうにつれて比較的厚い膜が形成さ れる。 言い換えると、 多層膜フィルタ 1 9の膜厚は、 第 1端面 1 7の長手方向に 沿って、 チヤンネル 1 3の開口 1 3 a位置からチヤンネル 1 6の開口 1 6 a位置 に向かって直線的に増加する (図 1参照) 。  During the process of forming a thin film on the first end face 17, the first end face 17 of the glass substrate 18 passes in an inclined position in front of the target 24 by rotating the rotating drum 26 at a predetermined speed. I do. For this reason, the distance between the first end face 17 and the target 24 is the longest at the first end 17 a in the longitudinal direction of the first end face 17, and the distance becomes shorter toward the second end 17. I'm sorry. Therefore, a relatively thin film is formed on the first end 17a side of the first end face 17, and a relatively thick film is formed toward the second end 17b. In other words, the film thickness of the multilayer filter 19 is linear along the longitudinal direction of the first end face 17 from the opening 13 a of the channel 13 toward the opening 16 a of the channel 16. Increase (see Figure 1).
なお、 多層膜フィルタ 1 9は、 真空蒸着法や他のスパッタリング法のような物 理的気相法に従って形成されてもよい。 多層膜フィルタ 1 9はマグネトロンスパ ッタ法、 イオンビームスパッタリング法、 イオンアシスト蒸着法等に従って形成 されてもよい。 この場合、 向上された耐候性を有する多層膜フィルタ 1 9が得ら れる。 また、 多層膜フィルタ 1 9の膜厚の傾斜化は、 防着シールドを適当な形状 に加工し、 スパッタリング粒子が飛行通過する開口部を傾斜開口とすることでも 実現できる。  The multilayer filter 19 may be formed according to a physical vapor phase method such as a vacuum evaporation method or another sputtering method. The multilayer filter 19 may be formed by a magnetron sputtering method, an ion beam sputtering method, an ion-assisted evaporation method, or the like. In this case, a multilayer filter 19 having improved weather resistance is obtained. Further, the film thickness of the multilayer filter 19 can be made gradient by processing the deposition shield into an appropriate shape and making the opening through which the sputtered particles fly through an inclined opening.
第 1実施形態によれば、 以下の効果が得られる。 ( 1 ) 多層膜フィルタ 1 9を通過することにより、 光導波路 1 2の 4つのチヤ ンネル 1 3〜1 6からそれぞれ供給される 4つの透過光の中心波長は互いに異な る。 詳しくは、 複数の波長を有する光を含む混合光、 例えば図 3 aに示すような 波長依存性を持たない入射光が、 光導波路 1 2のチャンネル 2 1に入射された場 合、 その混合光はチャンネル 1 3〜 1 6の開口 1 3 a〜 1 6 aから多層膜フィル タ 1 9に照射される (図 3 b ) 。 多層膜フィルタ 1 9の通過により、 中心波長の 異なる 4つの出射光 A、 B、 C、 D (波長はそれぞれ ΐ , λ 2 , λ 3 λ 4 ) が得られる。 即ち、 λ 1〜 4の中心波長を有する光を含む入射光 (2 4の情報 量を有する光信号) が、 多層膜フィルタ 1 9により、 中心波長がそれぞれ; L 1〜 4の 4つの出射光 A、 B、 C、 Dに分けられる。 According to the first embodiment, the following effects can be obtained. (1) By passing through the multilayer filter 19, the center wavelengths of the four transmitted lights supplied from the four channels 13 to 16 of the optical waveguide 12 are different from each other. More specifically, when a mixed light including light having a plurality of wavelengths, for example, incident light having no wavelength dependence as shown in FIG. 3A is incident on the channel 21 of the optical waveguide 12, the mixed light Is applied to the multilayer filter 19 from the openings 13a to 16a of the channels 13 to 16 (Fig. 3b). By passing through the multilayer filter 19, four outgoing lights A, B, C, and D having different center wavelengths (the wavelengths are ΐ, λ 2, λ 3 λ 4, respectively) are obtained. That is, the incident light including light having a center wavelength of lambda. 1 to 4 (the optical signal having two fourth information amount), the multilayer filter 1 9, each central wavelength; L. 1 to 4 single output light 4 A, B, C, D are divided.
逆に、 λ 1〜え 4の中心波長をそれぞれ有する 4つの光 A、 B、 C、 Dを含む 混合光 (2 4の情報量を有する光信号) 、 多層膜フィルタ 1 9からチャンネル 1 3〜 1 6の開口 1 3 a〜 1 6 aに入射された場合、 その混合光は多層膜フィル タ 1 9により λ 1〜; L 4の中心波長をそれぞれ有する 4つの光 A、 B、 C、 Dに 分けられる。 4つの光 A、 B、 C、 Dは対応するチャンネル 1 3〜1 6にそれぞ れ入る。 すなわち、 λ 1〜 4の中心波長を有する光のみが多層膜フィルタ 1 9 を通過し、 その光がチャンネル 1 3〜1 6に入り、 チャンネル 2 1で合流する。 こうして、 異なる波長を有する多重化された混合光、 即ち 2 4の情報量を有する 光信号が、 ガラス基板 1 8の第 2端面 2 0から出射される。 このような波長選択 性を有する光導波路素子 1 1の構成は比較的簡単である。 Conversely, four light A with lambda. 1 to example 4 of the central wavelengths, B, C, (an optical signal having two fourth information amount) mixed light including D, channel 1 3 from multilayer filter 1 9 When the light enters the apertures 13 a to 16 a of 16, the mixed light is converted into four lights A, B, C, and D each having a center wavelength of λ 1 to L 4 by the multilayer filter 19. Can be divided into The four lights A, B, C, and D enter the corresponding channels 13 to 16, respectively. That is, only light having a center wavelength of λ 1 to 4 passes through the multilayer filter 19, and the light enters channels 13 to 16 and joins in channel 21. Thus, it multiplexed mixed light having a different wavelength, i.e. an optical signal having two 4 amount of information is emitted from the second end face 2 0 of the glass substrate 1 8. The configuration of the optical waveguide element 11 having such wavelength selectivity is relatively simple.
( 2 ) 連続的に厚みの異なる多層膜フィルタ 1 9をガラス基板 1 8の第 1端面 1 7に形成することにより、 光導波路素子 1 1は製造される。 従って、 従来の光 通信用器材 6 0の製造工程における、 基板 6 2にフィルタ用の溝 7 1, 7 2を形 成する工程及び溝 7 1, 7 2にフィルタを組み付ける工程のような非常に精密な 作業は省略され、 光導波路素子 1 1の製造工程数と手間は低減される。  (2) The optical waveguide element 11 is manufactured by continuously forming the multilayer filter 19 having a different thickness on the first end face 17 of the glass substrate 18. Therefore, in the conventional manufacturing process of the optical communication equipment 60, there are very many processes such as the process of forming the filter grooves 71 and 72 in the substrate 62 and the process of assembling the filter in the grooves 71 and 72. Precise work is omitted, and the number of manufacturing steps and labor of the optical waveguide element 11 are reduced.
特に、 従来技術では、 光導波路 6 1のチャンネル数が多くなるほど、 多くの光 学フィルタが使用されるため、 フィルタ用の溝の形成ェ工程の数は増加し、 また 、 光学フィルタの組み付け工程の数も増加する。 そのため、 光通信用器材 6 0の 製造工程はより煩雑であり、 製造時間が長くなる。 これに対して、 本実施形態に よれば、 光導波路 1 2のチャンネル数が多くなつた場合でも、 チャンネル数の増 加に対応する膜厚を有する多層膜フィルタ 1 9を形成するだけでよい。 このため 、 光導波路素子 1 1の製造工程はチャンネル数の増加の影響をほとんど受けない 。 したがって、 光導波路素子 1 1は容易に製造され、 その製造コストは低減され る。 In particular, in the prior art, as the number of channels in the optical waveguide 61 increases, more optical filters are used, so the number of steps for forming the filter grooves increases, and However, the number of optical filter assembly steps is also increased. Therefore, the manufacturing process of the optical communication equipment 60 is more complicated, and the manufacturing time becomes longer. On the other hand, according to the present embodiment, even when the number of channels of the optical waveguide 12 is increased, it is only necessary to form the multilayer filter 19 having a film thickness corresponding to the increase in the number of channels. Therefore, the manufacturing process of the optical waveguide element 11 is hardly affected by the increase in the number of channels. Therefore, the optical waveguide element 11 is easily manufactured, and its manufacturing cost is reduced.
(3) 多層膜フィルタ 1 9の膜厚は、 第 1端面 1 7の第一端 1 7 aから第二端 1 7 bに向けて直線的に変化する。 このため、 チャンネル 1 3〜1 6の開口 1 3 a〜l 6 aに対応する位置において、 多層膜フィルタ 1 9を通過する光の中心波 長は一義的に決定される。 すなわち、 チャンネル 1 3〜1 6を介して多層膜フィ ルタ 1 9を通過する光の中心波長は一次式で表される。 したがって、 複数のチヤ ンネル 1 3〜 1 6の位置の変更やチヤンネル数の変更のような設計変更は容易で あり、 そのような設計変更が生じた場合であっても、 光導波路素子 1 1は容易に 製造される。  (3) The thickness of the multilayer filter 19 changes linearly from the first end 17a of the first end face 17 to the second end 17b. Therefore, the center wavelength of light passing through the multilayer filter 19 is uniquely determined at positions corresponding to the openings 13 a to 16 a of the channels 13 to 16. That is, the center wavelength of light passing through the multilayer filter 19 via the channels 13 to 16 is expressed by a linear expression. Therefore, it is easy to change the design such as changing the positions of the plurality of channels 13 to 16 and changing the number of channels, and even if such a design change occurs, the optical waveguide element 11 can be It is easily manufactured.
(4) 情報量を増やすためにチャンネル 1 3〜1 6の数を増加させる場合、 増 えたチャンネルの開口位置に応じて、 多層膜フィルタ 1 9の膜厚は一義的に決ま るので、 多層膜フィルタ 1 9を通過する光の中心波長は一義的に決まる。 したが つて、 従来技術のように、 溝形成工程やフィルタ組付け工程を増加させずに、 チ ャンネル数を容易に増加させることができる。  (4) When the number of channels 13 to 16 is increased to increase the amount of information, the thickness of the multilayer filter 19 is uniquely determined according to the increased channel opening position. The center wavelength of the light passing through the filter 19 is uniquely determined. Therefore, the number of channels can be easily increased without increasing the number of groove forming steps and filter assembling steps as in the prior art.
次に、 本発明の第 2実施形態に係る光導波路素子 1 1について図 4及ぴ図 5を 参照して説明する。  Next, an optical waveguide device 11 according to a second embodiment of the present invention will be described with reference to FIG. 4 and FIG.
光導波路素子 1 1では、 多層膜フィルタ 1 9と、 多層膜フィルタ 1 9に平行光 を出射する光信号発生部 3 0とが一体的に形成されている。 ガラス基板 1 8には 、 光導波路 1 2が形成されている。 光導波路 1 2は、 ガラス基板 1 8の第 1端面 1 7に開口 3 l a, 32 a, 3 3 a , 34 a, 3 5 a, 3 6 a , 3 7 a, 3 8 a をそれぞれ有する 8つのチャンネル 3 1 , 3 2, 3 3, 34, 3 5, 3 6, 3 7 , 3 8と、 ガラス基板 1 8の第 2端面 2 0に開口 2 1 aを有する 1つのチャンネ ル 2 1 とを含む。 8つのチャンネル 3 :!〜 3 8はそのチャンネル 2 1に合流する 光信号発生部 3 0は、 並行に配列された 8個の口ッドレンズ L 1〜L 8を含む ロッドレンズアレイ 4 0と、 並行に配列された 8個のレーザーダイォード L D 1 〜L D 8を含むレーザーダイォードアレイ 4 1とから構成されている。 In the optical waveguide element 11, a multilayer filter 19 and an optical signal generator 30 that emits parallel light to the multilayer filter 19 are integrally formed. An optical waveguide 12 is formed on the glass substrate 18. The optical waveguide 12 has openings 3 la, 32 a, 33 a, 34 a, 35 a, 36 a, 37 a, and 38 a on the first end face 17 of the glass substrate 18, respectively. One channel 3 1, 3 2, 3 3, 34, 3 5, 3 6, 3 7 , 38 and one channel 21 having an opening 21 a in the second end face 20 of the glass substrate 18. Eight channels 3:! To 38 join the channel 21 1 The optical signal generator 30 includes eight lens elements L1 to L8 arranged in parallel Rod lens array 40 and parallel And a laser diode array 41 including eight laser diodes LD 1 to LD 8 arranged in a matrix.
ロッドレンズアレイ 4 0は、 複数の (本例では 8個の) 屈折率分布型光学素子 であるロッドレンズ L 1 L 8と.、 口ッドレンズ L 1〜L 8間の隙間やその周囲 に充填された樹脂 (図示せず) と、 保持板 (図示せず) とを一体に有している。 口ッドレンズ L 1〜L 8はコリメータレンズとして機能し、 口ッドレンズ L 1〜 L 8の光軸は互いに平行になるように配置されている。 口ッドレンズアレイ 4 0 の両端面、 すなわち、 多層膜フィルタ 1 9側の面とレーザーダイォードアレイ 4 1側の面は平坦加工されている。 ロッドレンズ L 1〜L 8の光軸は、 第 1端面 1 7側のチャンネル 3 1〜3 8の開口とそれぞれ略一致している。 レーザーダイォ 一ドアレイ 4 1は、 レーザーダイォード L D 1〜L D 8の中心がロッ ドレンズ L 1〜L 8の光軸とそれぞれ略一致するように、 ロッ ドレンズアレイ 4 0と一体的 に形成されている。  The rod lens array 40 is filled with a plurality of (eight in this example) refractive index distributed optical elements, rod lenses L 1 L 8, and gaps between the open lenses L 1 to L 8 and their surroundings. Resin (not shown) and a holding plate (not shown). The open lenses L 1 to L 8 function as collimator lenses, and the optical axes of the open lenses L 1 to L 8 are arranged so as to be parallel to each other. Both end surfaces of the open lens array 40, that is, the surface on the multilayer filter 19 side and the surface on the laser diode array 41 side are flattened. The optical axes of the rod lenses L1 to L8 substantially coincide with the openings of the channels 31 to 38 on the first end face 17 side, respectively. The laser diode array 41 is formed integrally with the rod lens array 40 such that the centers of the laser diodes LD 1 to LD 8 substantially coincide with the optical axes of the rod lenses L 1 to L 8, respectively. .
各レーザーダイオード L D 1〜L D 8として、 例えば、 同じ波長のレーザー光 を出力するものが使用されている。 各レーザーダイォード L D 1〜L D 8から出 力されるレーザー光の半値幅は広くてもよい。 第 2実施形態では、 その半値幅が 各レーザーダイオード L D 1〜L D 8のレーザー光の半値幅の範囲になるように 、 8種類の波長; 1〜え 8の光が多層膜フィルタ 1 9により分けられて各チャン ネル 3 1〜3 8に送られる。 即ち、 レーザーダイオード L D 1から出力されるレ 一ザ一光は、 ロッドレンズ L 1を介して多層膜フィルタ 1 9に入射される。 レー ザ一光は多層膜フィルタ 1 9を通過し、 こうして λ 1の中心波長を有する光がチ ヤンネル 3 1に入射される。 同様に、 レーザーダイオード L D 2〜L D 8からそ れぞれ出力されるレーザー光は、 口ッドレンズ L 2〜L 8を介して多層膜フィル タ 1 9にそれぞれ入射される。 各レーザー光は多層膜フィルタ 1 9を通過し、 こ うして λ 2〜 8の中心波長を有する光がチャンネル 32〜38にそれぞれ入射 される。 As each of the laser diodes LD1 to LD8, for example, one that outputs laser light of the same wavelength is used. The half width of the laser beam output from each of the laser diodes LD1 to LD8 may be wide. In the second embodiment, the eight types of wavelengths; the light of 1 to 8 are divided by the multilayer filter 19 so that the half value width is in the range of the half value width of the laser light of each laser diode LD1 to LD8. And sent to each channel 31-38. That is, the laser light emitted from the laser diode LD1 is incident on the multilayer filter 19 via the rod lens L1. The laser light passes through the multilayer filter 19, and the light having the center wavelength of λ1 is incident on the channel 31. Similarly, the laser beams respectively output from the laser diodes LD2 to LD8 are transmitted through the multilayer lenses L2 to L8. To the data 19 respectively. Each laser beam passes through the multilayer filter 19, and light having a center wavelength of λ2 to 8 enters the channels 32 to 38, respectively.
第 2実施形態によれば、 以下の効果が得られる。  According to the second embodiment, the following effects can be obtained.
(5) レーザーダイオード LD 1〜LD 8のうち、 選択的に ONされたレーザ 一ダイオードから出力される光が多層膜フィルタ 1 9を介して対応するチャンネ ル 3 1〜38に送られる。 このことを、 下記の表 1を参照して説明する。  (5) Of the laser diodes LD 1 to LD 8, the light output from the laser diode that is selectively turned on is sent to the corresponding channels 31 to 38 via the multilayer filter 19. This is explained with reference to Table 1 below.
表 1  table 1
Figure imgf000011_0001
例えば、 レーザーダイオード LD 1のみが ONされたときには、 レーザーダイ オードから出力されるレーザー光の半値幅の範囲内で多層膜フィルタ 1 9により 選択される波長; L 1の光がチャンネル 3 1に入る。 他方、 レーザーダイオード L D 2のみが ONされたときには、 多層膜フィルタ 1 9により選択される波長 λ 2 の光がチャンネル 32に入る。 以下同様にして、 レーザーダイオード LD 3〜L D 8のいずれか 1つのみが ONされたときには、 ONになったレーザーダイォー ドから出力されるレーザー光の半値幅の範囲内で、 そのレーザーダイォードに対 応する波長の光が多層膜フィルタ 1 9により選択され、 その光が対応するチャン ネル 33〜38に入る。
Figure imgf000011_0001
For example, when only the laser diode LD 1 is turned on, the wavelength selected by the multilayer filter 19 within the half width of the laser light output from the laser diode; the light of L 1 enters the channel 31 . On the other hand, when only the laser diode LD 2 is turned on, light of the wavelength λ 2 selected by the multilayer filter 19 enters the channel 32. Similarly, when only one of the laser diodes LD3 to LD8 is turned on, the laser diode is turned on within the half-value width of the laser beam output from the turned on laser diode. The light of the corresponding wavelength is selected by the multilayer filter 19, and the light enters the corresponding channels 33-38.
レーザーダイォード LD 1〜LD8の ON、 〇 F Fは図示しない制御回路によ り制御される。 制御回路は、 28の情報量を有する電気信号を 28の情報量を有す る光信号に変換して出力する。 従って、 第 2実施形態の光導波路素子 1 1は波長 の異なる光を多重化した混合光を出射することができる。 ON and OFF of the laser diodes LD1 to LD8 are controlled by a control circuit (not shown). Control circuit converts the electrical signals to optical signals that have a data amount of 2 8 outputs having an information amount of 2 8. Therefore, the optical waveguide device 11 of the second embodiment has a wavelength Mixed light obtained by multiplexing different lights can be emitted.
第 1及び第 2実施形態は、 以下のように変更してもよレ、。  The first and second embodiments may be changed as follows.
•第 1実施形態において、 光導波路 1 2のチャンネル数は任意に変更してもよ レ、。  • In the first embodiment, the number of channels of the optical waveguide 12 may be arbitrarily changed.
'第 1実施形態において、 多層膜フィルタ 1 9の形成方法は図 2の方法に限定 されない。 例えば、 ターゲット 2 4の表面の一部を補正板を用いて遮蔽すること により、 前記第 1端面 1 7に対して露出するターゲット 2 4表面の開口幅が、 第 1端面 1 7の長手方向の一端側からその他端側へ向かって次第に変化するように してもよい。 ターゲット 2 4表面と第 1端面 1 7とが正対するように、 ガラス基 板 1 8をターゲット 2 4に対して水平移動させる。 これによつて、 第 1端面 1 7 には、 ターゲット 2 4表面の開口幅に応じた膜厚の多層膜フィルタが形成される 。 即ち、 ターゲット 2 4表面の開口幅が狭くなるほど薄い多層膜フィルタが形成 され、 逆に、 その開口幅が広くなるほど厚い多層膜フィルタが形成される。 この 方法によっても、 膜厚が直線的に変化した多層膜フィルタ 1 9をガラス基板 1 8 の第 1端面 1 7に形成することができる。  'In the first embodiment, the method of forming the multilayer filter 19 is not limited to the method of FIG. For example, by blocking a part of the surface of the target 24 using a correction plate, the opening width of the surface of the target 24 exposed to the first end face 17 is increased in the longitudinal direction of the first end face 17. You may make it change gradually from one end side to the other end side. The glass substrate 18 is moved horizontally with respect to the target 24 so that the surface of the target 24 and the first end face 17 face each other. Thus, a multilayer filter having a thickness corresponding to the opening width of the surface of the target 24 is formed on the first end face 17. That is, a thinner multilayer filter is formed as the opening width on the surface of the target 24 becomes narrower, and a thicker multilayer filter is formed as the opening width becomes wider. According to this method as well, the multilayer filter 19 whose film thickness changes linearly can be formed on the first end face 17 of the glass substrate 18.
•第 2実施形態において、 レーザーダイオードアレイ 4 1とレンズアレイ 4 0 の代わりに、 例えば、 波長の異なる光を含む混合光 (例えば 2 8の情報量を有す る光信号) を各ロッドレンズ L 1〜L 8を介して平行に多層膜フィルタ 1 9に入 射させる光信号発生部を用いてもよい。 或いは、 その混合光をロッドレンズ L 1 〜L 8を使わずに平行に多層膜フィルタ 1 9に入射させる光信号発生部を用いて もよい。 いずれの光信号発生部を採用した場合でも、 光導波路素子 1 1は、 2 8 の情報量を有する光信号を多層膜フィルタ 1 9により各チャンネル 3 1〜3 8毎 に波長の異なる光 (λ ΐ〜 8の光) に分け、 その後、 λ ΐ〜; L 8の光の多重化 により 2 8の情報量を有する光信号を再生成し、 そして同光信号を出射すること ができる。 • In the second embodiment, in place of the laser diode array 4 1 and the lens array 4 0, for example, the rod lenses mixed light (for example, an optical signal that have a data amount of 2 8) containing light of different wavelengths L It is also possible to use an optical signal generation unit that allows the light to enter the multilayer filter 19 in parallel via 1 to L8. Alternatively, an optical signal generating unit that makes the mixed light incident on the multilayer filter 19 in parallel without using the rod lenses L1 to L8 may be used. Even when adopting any of the optical signal generating unit, the optical waveguide device 1 1, an optical signal having an information amount of 2 8 multilayer filter 1 9 by light of different wavelengths for each channel 3 1 to 3 8 (lambda divided into light) of I~ 8, then, λ ΐ~; by the multiplexing of the light L 8 to regenerate the optical signal having an information amount of 2 8, and is capable of emitting the optical signal.
'第 2実施形態において、 レーザーダイオード L D 1〜L D 8に代えて、 フォ トディテクターのような光電変換素子を使用してもよい。 この場合、 ロッドレン ズ L 1〜L 8と、 これらと同数のフォトディテクター P D 1〜P D 8を含む光電 変換素子ュニット 4 1 aとにより、 光信号検出部 3 0 aが構成される (図 4参照 ) 。 この場合、 波長の異なる光を多重化した混合光が各チャンネル 3 1〜3 8か ら多層膜フィルタ 1 9に照射される。 その混合光は多層膜フィルタ 1 9により中 心波長の異なる光 (λ ΐ〜; 1 8 ) に分けられ、 ロッドレンズ L 1〜L 8を介して 各フォトディテクター P D 1〜P D 8で受光される (下記の表 2を参照) 。 この ため、 同光信号検出部 3 0 aでは、 混合光に含まれる波長の異なる光を波長毎に 分けて検出することができる。 例えば、 混合光を 2 nの情報量を有する光信号と 仮定する、 その混合光が多層膜フィルタ 1 9により中心波長の異なる λ 1〜λ n の光に分けられる。 従って、 光信号検出部 3 0 aは、 2 nの情報量を有する光信 号から 2 nの情報量を有する電気信号に変換することができる。 'In the second embodiment, a photoelectric conversion element such as a photodetector may be used instead of the laser diodes LD1 to LD8. In this case, Rodren The optical signal detecting section 30a is composed of the optical elements L1 to L8 and the photoelectric conversion element units 41a including the same number of photodetectors PD1 to PD8 (see FIG. 4). In this case, mixed light obtained by multiplexing lights having different wavelengths is applied to the multilayer filter 19 from each of the channels 31 to 38. The mixed light is divided into lights having different center wavelengths (λΐ to 18) by the multilayer filter 19 and received by the photodetectors PD 1 to PD 8 via the rod lenses L 1 to L 8. (See Table 2 below). For this reason, the same optical signal detection unit 30a can detect light having different wavelengths contained in the mixed light separately for each wavelength. For example, assuming that the mixed light is an optical signal having an information amount of 2 n , the mixed light is divided by the multilayer filter 19 into lights of λ 1 to λ n having different center wavelengths. Thus, optical signal detection unit 3 0 a can be converted from the optical signals having the information amount of 2 n to an electric signal having an information amount of 2 n.
表 2  Table 2
Figure imgf000013_0001
Figure imgf000013_0001
本発明の光導波路素子 1 1によれば、 多層膜フィルタ 1 9の膜厚が前記複数の チヤンネルの各位置に応じて連続的に変化しているので、 多層膜フィルタの透過 光の中心波長が複数のチャンネル毎に異なる。 このため、 波長の異なる光を含む 混合光が光導波路 1 2の複数のチャンネルを通って多層膜フィルタ 1 9に入射す る場合には、 混合光は多層膜フィルタ 1 9により各チャンネル毎に中心波長の異 なる光に分けられる。 例えば、 光導波路 1 2のチャンネル数 (開口数) を ηで表 した場合、 中心波長が λ 1〜; I ηの光を含む混合光 (2 ηの情報量を有する光信 号) が各チャンネルを通って多層膜フィルタに入射することにより、 その混合光 は中心波長がえ 1〜; L ηの光に分けられる。 これとは逆に、 中心波長が λ 1〜; L ηの光を含む混合光が多層膜フィルタ 1 9 からチャンネルに照射される場合、 多層膜フィルタ 1 9の通過により、 その混合 光は中心波長の異なる光に分けられる。 例えば、 混合光は多層膜フィルタ 1 9に より中心波長がん 1〜 L ηの光に分けられて、 各光が対応する各チャンネルに入 る。 即ち、 2 ηの情報量を有する光信号が、 各チャンネル毎に中心波長の異なる 光に分けられる。 According to the optical waveguide element 11 of the present invention, the film thickness of the multilayer filter 19 changes continuously according to each position of the plurality of channels. Different for each of a plurality of channels. Therefore, when mixed light including light having different wavelengths enters the multilayer filter 19 through a plurality of channels of the optical waveguide 12, the mixed light is centered for each channel by the multilayer filter 19. It can be divided into lights with different wavelengths. For example, when Table waveguide 1 2 number of channels (the numerical aperture) in eta,. 1 to the center wavelength of lambda; mixed light including light of I eta (No. Mitsunobu having an information amount of 2 eta) is a respective channel When the mixed light passes through the multilayer filter, the mixed light is divided into light having a central wavelength of 1 to L η. Conversely, when mixed light including light having a center wavelength of λ 1 to L η is applied to the channel from the multilayer filter 19, the mixed light passes through the multilayer filter 19, and the mixed light becomes the center wavelength. Is divided into different lights. For example, the mixed light is divided by the multilayer filter 19 into light having a center wavelength of 1 to Lη, and each light enters each corresponding channel. That is, an optical signal having an information amount of is divided into lights having different center wavelengths for each channel.
このように、 本発明の波長選択性を有する光導波路素子 1 1は基板 1 8の一端 面 1 7に、 膜厚の連続的に変化する多層膜フィルタ 1 9を形成するだけで作製さ れる。 即ち、 基板 1 8に光導波路 1 2を形成する工程と、 同基板 1 8の一端面 1 7に多層膜フィルタ 1 9を形成する工程の 2つの工程で光導波路素子 1 1が作製 される。 したがって、 光導波路素子 1 1は容易に製造され、 その製造コス トは低 減される。 また、 光導波路 1 2のチャンネル数が比較的多い場合でも、 製造作業 の増加及ぴ製造時間の延長は避けられる。  As described above, the optical waveguide element 11 having wavelength selectivity of the present invention can be manufactured only by forming the multilayer filter 19 having a continuously changing film thickness on one end face 17 of the substrate 18. That is, the optical waveguide element 11 is manufactured in two steps: a step of forming the optical waveguide 12 on the substrate 18 and a step of forming the multilayer filter 19 on one end face 17 of the substrate 18. Therefore, the optical waveguide element 11 is easily manufactured, and the manufacturing cost is reduced. Further, even when the number of channels of the optical waveguide 12 is relatively large, it is possible to avoid an increase in manufacturing work and an increase in manufacturing time.
光導波路素子 1 1には、 基板 1 8の 2つの端面 1 7 , 2 0のいずれの側からで も光を入射させることができるので、 双方向性を持つ光導波路素子 1 1として多 用途に使用することができる。  The optical waveguide element 11 can receive light from either of the two end faces 17 and 20 of the substrate 18, so that the optical waveguide element 11 has versatility as a bidirectional optical waveguide element 11. Can be used.
多層膜フィルタ 1 9に一体化された光信号発生部 3 0が、 多層膜フィルタ 1 9 に平行な光を供給するので、 その光は多層膜フィルタ 1 9により適切に分けられ 、 各チャンネルに送られる。 こうして分けられた中心波長の異なる光を合流させ ることにより、 波長の異なる光を多重化した混合光を作ることができる。  Since the optical signal generator 30 integrated with the multilayer filter 19 supplies light parallel to the multilayer filter 19, the light is appropriately divided by the multilayer filter 19 and transmitted to each channel. Can be By combining the divided lights having different center wavelengths, it is possible to produce a mixed light in which lights having different wavelengths are multiplexed.
複数のレンズ L 1 〜 L 8を有するレンズアレイ 4 0と、 複数のレンズ L 1 〜 L 8をそれぞれ介して多層膜フィルタ 1 9 へ光を出射する複数の光源 L D 1 〜 L D 8とを含む光信号発生部 3 0により、 複数の光源 L D 1 〜 L D 8から出射される 光は、 多層膜フィルタ 1 9により中心波長の異なる光に分けられる。 このため、 複数の光源の O N, O F Fを個別に制御するとともに、 多層膜フィルタ 1 9で分 けられた光を合流させることにより、 中心波長の異なる光を含む混合光を作るこ とができる。 例えば、 光源、 レンズ及びチャンネルの数をそれぞれ nで表すと、 中心波長が λ 1〜; L ηの光を含む 2 ηの情報量を有する混合光を作ることができ る。 Light that includes a lens array 40 having a plurality of lenses L1 to L8, and a plurality of light sources LD1 to LD8 that emit light to the multilayer filter 19 via the plurality of lenses L1 to L8, respectively. The light emitted from the plurality of light sources LD 1 to LD 8 by the signal generator 30 is divided by the multilayer filter 19 into light having different center wavelengths. Therefore, by controlling ON and OFF of a plurality of light sources individually and by combining the lights separated by the multilayer filter 19, mixed light including lights having different center wavelengths can be produced. For example, if the number of light sources, lenses, and channels is represented by n, A mixed light having an information content of 2 η including a light having a center wavelength of λ 1 to L η can be produced.
光信号発生部 3 0は複数のロッドレンズ L 1〜 L 8を有する口ッドレンズァレ ィ 4 0を含むので、 光導波路 1 2と多層膜フィルタ 1 9とが形成された基板 1 8 と、 ロッドレンズァレイ 4 0との組み合わせにより、 波長選択性を有する小型の 光導波路素子 1 1が得られる。 '  Since the optical signal generation section 30 includes an open lens array 40 having a plurality of rod lenses L1 to L8, a substrate 18 on which an optical waveguide 12 and a multilayer filter 19 are formed, and a rod lens array By combining with the ray 40, a small-sized optical waveguide element 11 having wavelength selectivity can be obtained. '
多層膜フィルタ 1 9と一体化された光信号検出部 3 0 aにより、 多層膜フィル タ 1 9により分けられた光は、 波長毎に検出される。 そのため、 例えば、 2 nの 情報量を有する混合光信号は多層膜フィルタ 1 9により各チャンネル毎に中心波 長の異なる; L 1〜 nの光に分けられる。 従って、 光信号検出部 3 0 aにより検 出された 2 nの情報量を有する光信号は、 2 nの情報量を有する電気信号に変換さ れ得る。 The light separated by the multilayer filter 19 is detected for each wavelength by the optical signal detector 30a integrated with the multilayer filter 19. Therefore, for example, a mixed optical signal having an information amount of 2 n is divided by the multilayer filter 19 into lights of different central wavelengths for each channel; L 1 to n. Therefore, the optical signal having the information amount of 2 n detected by the optical signal detection unit 30 a can be converted into an electric signal having the information amount of 2 n .

Claims

請求の範囲 The scope of the claims
1 . 波長選択性を有する光導波路素子において、 1. In an optical waveguide device having wavelength selectivity,
一端面と、 前記一端面にそれぞれ形成された複数の第 1開口を有する複数のチ ャンネルを含む光導波路とを有する基板と、  A substrate having one end face, and an optical waveguide including a plurality of channels each having a plurality of first openings formed in the one end face;
前記基板の一端面に形成された多層膜フィルタであって、 その膜厚が前記複数 の第 1開口の各々の位置に応じて連続的に変化している前記多層膜フィルタとを 備えることを特徴とする光導波路素子。  A multilayer filter formed on one end surface of the substrate, the multilayer filter having a thickness that continuously changes according to the position of each of the plurality of first openings. An optical waveguide element.
2 . 前記複数の第 1開口は前記基板の一端面の第 1の端から第 2の端に向けて一 列に配列されており、 前記多層膜フィルタの膜厚は、 前記第 1の端から第 2の端 に向かって直線的に変化していることを特徴とする請求項 1に記載の波長選択性 を有する光導波路素子。 2. The plurality of first openings are arranged in a line from a first end to a second end of one end surface of the substrate, and the thickness of the multilayer filter is from the first end. 2. The wavelength-selective optical waveguide device according to claim 1, wherein the optical waveguide device changes linearly toward the second end.
3 . 前記基板はさらに他端面を有し、 前記光導波路は前記他端面に形成された第 2開口を有する少なくとも一つのチャンネルを含むことを特徴とする請求項 1又 は 2に記載の波長選択性を有する光導波路素子。 3. The wavelength selection device according to claim 1, wherein the substrate further has another end surface, and the optical waveguide includes at least one channel having a second opening formed in the other end surface. An optical waveguide element having a property.
4 . 前記多層膜フィルタに一体的に形成され、 前記多層膜フィルタに平行光を出 射する光信号発生部をさらに備えることを特徴とする請求項 1〜 3のいずれか一 項に記載の波長選択性を有する光導波路素子。 4. The wavelength according to any one of claims 1 to 3, further comprising an optical signal generation unit formed integrally with the multilayer filter and emitting parallel light to the multilayer filter. An optical waveguide device having selectivity.
5 . 前記光信号発生部は、 前記複数の第 1開口にそれぞれ対応する複数のレンズ を有するレンズアレイと、 前記複数のレンズをそれぞれ介して前記多層膜フィル タへ光を出射する複数の光源とを含むことを特徴とする請求項 4に記載の波長選 択性を有する光導波路素子。 5. The optical signal generation unit includes: a lens array having a plurality of lenses respectively corresponding to the plurality of first openings; and a plurality of light sources that emit light to the multilayer filter via the plurality of lenses. 5. The optical waveguide device having wavelength selectivity according to claim 4, comprising:
6 . 前記複数のレンズは複数の口ッドレンズであり、 前記レンズァレイは口ッド レンズァレイであることを特徴とする請求項 5に記載の波長選択性を有する光導 波路素子。 6. The optical waveguide device having wavelength selectivity according to claim 5, wherein the plurality of lenses are a plurality of aperture lenses, and the lens array is an aperture lens array.
7 . 前記多層膜フィルタに一体的に形成された光信号検出部であって、 波長の異 なる光を多重化した混合光を、 前記多層膜フィルタを用いて波長毎に分けること により得られた光を検出する光信号検出部をさらに備えることを特徴とする請求 項 1〜 3のいずれか一項に記載の波長選択性を有する光導波路素子。 7. An optical signal detection unit integrally formed with the multilayer filter, which is obtained by dividing mixed light obtained by multiplexing lights having different wavelengths into respective wavelengths using the multilayer filter. The optical waveguide device having wavelength selectivity according to any one of claims 1 to 3, further comprising an optical signal detection unit that detects light.
8 . 前記光信号検出部は複数の光電変換素子を含むことを特徴とする請求項 7に 記載の波長選択性を有する光導波路素子。 8. The optical waveguide device having wavelength selectivity according to claim 7, wherein the optical signal detection unit includes a plurality of photoelectric conversion elements.
9 . 波長選択性を有する光導波路素子の製造方法であって、 9. A method for manufacturing an optical waveguide device having wavelength selectivity,
一端面と、 前記一端面にそれぞれ複数の第 1開口を有する複数のチヤンネルを 含む光導波路とを有する基板を用意する工程と、  Preparing a substrate having one end face, and an optical waveguide including a plurality of channels each having a plurality of first openings on the one end face;
物理的気相堆積法に従って、 前記基板の一端面に、 その膜厚が前記複数の第 1 開口の各々の位置に応じて連続的に変化する多層膜フィルタを直接的に形成する 工程とを備えることを特徴とする光導波路素子の製造方法。  Directly forming, on one end surface of the substrate, a multilayer filter whose thickness continuously changes according to the position of each of the plurality of first openings according to a physical vapor deposition method. A method for manufacturing an optical waveguide device, comprising:
1 0 . 請求項 9に記載の光導波路素子の製造方法は更に、 10. The method of manufacturing an optical waveguide device according to claim 9, further comprising:
前記多層膜フィルタの形成工程に先だって、 前記基板の一端面が蒸発源或いは ターゲットに対し傾斜するように前記基板を配置する工程を備えることを特徴と する光導波路素子の製造方法。  A method for manufacturing an optical waveguide element, comprising a step of arranging the substrate such that one end surface of the substrate is inclined with respect to an evaporation source or a target, prior to the step of forming the multilayer filter.
PCT/JP2001/006011 2000-07-14 2001-07-11 Optical waveguide device having wavelength selectivity WO2002006872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000214378A JP2002031728A (en) 2000-07-14 2000-07-14 Optical waveguide element having wavelength selectivity
JP2000-214378 2000-07-14

Publications (1)

Publication Number Publication Date
WO2002006872A1 true WO2002006872A1 (en) 2002-01-24

Family

ID=18709964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006011 WO2002006872A1 (en) 2000-07-14 2001-07-11 Optical waveguide device having wavelength selectivity

Country Status (2)

Country Link
JP (1) JP2002031728A (en)
WO (1) WO2002006872A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506960A1 (en) 2003-08-07 2005-02-16 National Health Research Institutes Indole compounds as inhibitors of tubulin polymerisation for the treatment of angiogenesis-related disorders

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269979B2 (en) * 2004-03-04 2009-05-27 日立電線株式会社 Wavelength multiplexed optical transmitter module
JP4504935B2 (en) * 2006-03-23 2010-07-14 日立電線株式会社 Optical multiplexing / demultiplexing module
JP5134028B2 (en) * 2010-03-16 2013-01-30 日本電信電話株式会社 Optical parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846593A (en) * 1994-07-26 1996-02-16 Matsushita Electric Ind Co Ltd Wavelength multiplex light emitting and light receiving devices
JPH08110282A (en) * 1994-10-11 1996-04-30 Furukawa Electric Co Ltd:The Method for monitoring optical fiber line
JPH0990147A (en) * 1995-09-28 1997-04-04 Canon Inc Wavelength variable filter and optical branching filter
US5696859A (en) * 1995-02-23 1997-12-09 Fujitsu Limited Optical-filter array, optical transmitter and optical transmission system
EP0848270A1 (en) * 1996-12-10 1998-06-17 Mitsubishi Gas Chemical Company, Inc. Optical transmitter and receiver device
JPH10221550A (en) * 1997-02-06 1998-08-21 Oki Electric Ind Co Ltd Optical wavelength filter and optical wavelength selecting router

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846593A (en) * 1994-07-26 1996-02-16 Matsushita Electric Ind Co Ltd Wavelength multiplex light emitting and light receiving devices
JPH08110282A (en) * 1994-10-11 1996-04-30 Furukawa Electric Co Ltd:The Method for monitoring optical fiber line
US5696859A (en) * 1995-02-23 1997-12-09 Fujitsu Limited Optical-filter array, optical transmitter and optical transmission system
JPH0990147A (en) * 1995-09-28 1997-04-04 Canon Inc Wavelength variable filter and optical branching filter
EP0848270A1 (en) * 1996-12-10 1998-06-17 Mitsubishi Gas Chemical Company, Inc. Optical transmitter and receiver device
JPH10221550A (en) * 1997-02-06 1998-08-21 Oki Electric Ind Co Ltd Optical wavelength filter and optical wavelength selecting router

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506960A1 (en) 2003-08-07 2005-02-16 National Health Research Institutes Indole compounds as inhibitors of tubulin polymerisation for the treatment of angiogenesis-related disorders

Also Published As

Publication number Publication date
JP2002031728A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US20030190126A1 (en) Optical element having wavelength selectivity
US6819871B1 (en) Multi-channel optical filter and multiplexer formed from stacks of thin-film layers
US5905827A (en) Optical multiplexer/demultiplexer and wavelength division multiplexing module
US9952392B2 (en) Optical module and method for manufacturing optical module
US20160187585A1 (en) Optical fitler subassembly for compact wavelength demultiplexing device
JP2017090766A (en) Wavelength multiplexer/demultiplexer and optical module
US20020135878A1 (en) Optical element having wavelength selectivity
WO2002006872A1 (en) Optical waveguide device having wavelength selectivity
JP5983479B2 (en) Optical element
JP2002022938A (en) Wavelength selective filter and wavelength controlling module
JP2002311236A (en) Variable wavelength interference optical filter, production method therefor and variable wavelength interference optical filter device
JP2003084168A (en) Lens with multilayer film and optical fiber collimator
JP3242332B2 (en) Optical demultiplexer
JP3556187B2 (en) Tunable wavelength multiplexer / demultiplexer
US6816643B2 (en) Wavelength tunable demultiplexing filter device, wavelength tunable multiplexing filter device, and wavelength routing device
JP2001021755A (en) Multiple wavelength signal transmitting device
JP2001264572A (en) Interference light filter module device
JP2004177761A (en) Wavelength variable filter module
JP2003014423A (en) Multiple thin film forming device
JPH04361208A (en) Optical multiplexer/demultiplexer and manufacture of the same
JP4329980B2 (en) Multilayer optical filter and manufacturing method thereof
JP2004177762A (en) Wavelength variable filter module
US20170351030A1 (en) Filter assemblies
JPS62280702A (en) Optical element
JP2009069747A (en) Composite prism

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase