WO2002010091A2 - Method and article of manufacture for identifying and tracking rough gemstones - Google Patents

Method and article of manufacture for identifying and tracking rough gemstones Download PDF

Info

Publication number
WO2002010091A2
WO2002010091A2 PCT/US2001/023669 US0123669W WO0210091A2 WO 2002010091 A2 WO2002010091 A2 WO 2002010091A2 US 0123669 W US0123669 W US 0123669W WO 0210091 A2 WO0210091 A2 WO 0210091A2
Authority
WO
WIPO (PCT)
Prior art keywords
identifier
group
mined object
mined
article
Prior art date
Application number
PCT/US2001/023669
Other languages
French (fr)
Other versions
WO2002010091A3 (en
Inventor
Jayant Neogi
Original Assignee
Norsam Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsam Technologies, Inc. filed Critical Norsam Technologies, Inc.
Priority to US10/343,255 priority Critical patent/US20040112087A1/en
Priority to AU2001286399A priority patent/AU2001286399A1/en
Publication of WO2002010091A2 publication Critical patent/WO2002010091A2/en
Publication of WO2002010091A3 publication Critical patent/WO2002010091A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4572Partial coating or impregnation of the surface of the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps

Definitions

  • the present invention relates to the field of marking, identifying, and tracking objects extracted by mining such as uncut or "rough" gemstones or precious metals. More specifically, the present invention relates to a novel method and article of manufacture for encasing an uncut, unpolished, or rough mined object, gemstone, precious metal, or similar materials, within a removable material. Identifiers are branded onto the mined object or applied to the removable material. Identifiers may represent or be encoded with various types of information relating to, for example, the gemstone, gemstone attributes, chain of custody, the owner, or other related information.
  • Mined obj ects such as gemstones and precious metals (generally referred to as gemstones for simplicity) are highly valued commodities in both rough (i.e. uncut or unpolished) form and finished form. These objects may be easily transported, sequestered and exchanged. Thus, a method to secure a gemstone and document information such as its genealogy, origin, chain of custody, quality attributes, ownership information, and other types of information, which does not degrade the gemstone, by accepted standards, would be useful and desirable.
  • a viable rough gemstone identification system to become accepted by a large part of the industry should accomplish the following goals: a. MINIMAL COST: The coding or identification of the rough gemstones, on a per stone basis, should be inexpensive because the code will be removed when the stone is cut and polished. b. ACCOMMODATES SURFACE IRREGULARITIES: Unlike finished stones cut to somewhat uniform and recognizable shapes, rough gemstones arrive in a plethora of irregular shapes and sizes. A marking and tracking system should tolerate these variables. c. SPEED: Because grading occurs downstream from the extraction of the mined objects such as gemstones, all the rough extracted gemstones should be coded. Considering the volume of rough gemstones which are mined, a time efficient coding process is desirable. d.
  • SIMPLICITY Again, the volume of extracted rough gemstones may require multiple coding sites or protocols. It is preferable that the coding or identification system be easy to set-up and operate. Also, the maintenance of marking equipment should be within the abilities of employees in the mining industry. e. AVOIDANCE OF DEGRADATION: Those familiar with mining industries will recognize that known processes, including laser engraving of a mark directly onto a mined object or gemstone, such as that taught in U.S. Patent No. 4,392,476 issued to Gessler, photo-etching of a metallic mark taught in U.S. Patent No. 4,056,952 issued to Okuda, or ionized-gas etching of a mark taught in U.S. Patent No.4,425,769 issued to Hakoune, may damage part of the rough gemstone, decrease the value of the rough gemstone, and preclude cuts along the desired or optimum crystal planes.
  • the information may indicate, for example, the source of the gemstone (in the form of a trademark or logo), the grade of the gemstone, the mine from which the gemstone was extracted, the processing which has occurred, the chain of possession, serial number associated with a particular stone, or other related information.
  • gemstones are encased in a removable substance, preferably a polymer.
  • the encasement may be fingerprinted with micro-tags and/or macro-tags and may also be encoded with a laser, ion beam, printer, or other marking device.
  • the encasement substrate is removable and may be re-applied without degrading the encased gemstone. This process can be automated and lends itself to the high speed processing of a large number of mined objects with relatively inexpensive unsophisticated equipment.
  • rough objects and gemstones are first sorted according to pre-determined criteria, weighed, and placed within a compartment of a tray.
  • the tray may be configured to match with a coordinate transfer system or conveyer belt.
  • a curable polymer is added to each compartment to cover the rough gemstone.
  • micro-tags such as metal oxides or fluorescing dyes may be added to the polymer to create a unique chemical fingerprint.
  • macro-tags such as holograms, logos or other easily seen labels may be added to the compartment and embedded in the polymer along with the encased rough gemstone.
  • the encased gemstone can take the form of a hemisphere or other predetermined shape that permits the location of recorded information to be readily determined.
  • the encased rough gemstones may be separated from the tray and sorted or placed in the coordinate transfer system for encoding. Encoding of the polymer encasements may be accomplished with a logo, bar-code, or matrix such as those taught in U.S. Patent No. 5,124,536 issued to Priddy, et al, and U.S. Patent No. 5,773,806 issued to Longacre, Jr., et al.
  • a matrix or bar-code may be encoded as a two-dimensional bar-code, a two-dimensional matrix, or a three-dimensional matrix.
  • FIG. 1 is a flow diagram describing encasement of a gemstone
  • FIGS. 2A-E are diagrams illustrating one manner of encapsulating gemstones
  • FIGS. 3A-B are diagrams illustrating another manner of encapsulating gemstones
  • FIGS. 4A-B are diagrams illustrating logos or labels affixed to gemstone encasements
  • FIG. 5 is a diagram illustrating encoding of gemstone identifiers
  • FIGS. 6A-C are diagrams of encapsulated gemstones removed from tray compartments; and FIGS.7A-B are diagrams illustrating reading of the identifier and removal of encasement material surrounding a gemstone.
  • a rough mined object or gemstone is selected from a mine or point of extraction.
  • the rough gemstone is encased.
  • An identifier is applied to the rough gemstone or to the encasement material in block 120.
  • an identifier is encoded with information relating to the gemstone source, attributes of the gemstone, transaction data, user data, and/or other types of information.
  • the rough gemstone is identified in block 140 by, for example, a reader or scanner, further processing may be necessary.
  • the encasement may be removed resulting in a free rough gemstone in block 150.
  • the methods and articles described herein are applicable to a wide range of mined objects of different shapes and sizes.
  • the present invention is applicable to rough gemstones, diamonds, emeralds, rubies, sapphires, crystals (e.g., crystals for watches), pearls, ores, semi-precious stones, minerals, crystals, and other similar materials.
  • this specification refers to the processing of rough gemstones, and specifically, rough diamonds.
  • the present invention is not so limited and may be applied to many other objects and materials.
  • the present invention is not limited to encasing rough gemstones. Finished or cut gemstones may be encased and similarly processed.
  • a first encasement material 200 is provided to compartments 210 of a tray 220 into which rough gemstones will be placed.
  • the tray 220 may be of a size and shape to match a coordinate transfer system, such as a conveyer belt, to facilitate efficient rough gemstone processing from the mine, point of extraction, or distribution point.
  • the encasement materials may be transparent or translucent to enable the rough gemstone to be visible.
  • the first encasement material 200 is provided to any number of tray compartments 210, depending on the number of rough gemstones to be processed.
  • first encasement material 200 is a curable polymer.
  • One example curable polymer that may be utilized results from a combination of a resin and a curing agent such as a hardener or other curing agent such as heat or ultraviolet light.
  • a resin and a hardener manufactured by Tap Plastics, Incorporated, Dublin, California can be combined to form a curable polymer which forms an encasement.
  • the resin used may be a resin with the product name "Tap Plastics Epoxy Resin” or the common name "general purpose 1:1 epoxy”.
  • the hardener may be a hardener with the product name "Tap Plastics Epoxy Hardener”. The polymer will not degrade the rough gemstone and is added to the tray compartments 210.
  • first encasement material 200 examples include various thermoplastics. Many different thermoplastics may be utilized, including but not limited to polyethylene, polybutylene, polycyclohexane, polyphenylene, polycarbonate, polystyrene, polypropylene, polyamide, polyvinylchloride, polyacetal, fluroresins, acrylic resins, and polysulfones, all of which are well known and commercially available from numerous different companies.
  • the first encasement material 200 is cured resulting in a first cured material 202.
  • the previously described polymers may be cured with heat.
  • the first encasement material 200 may be heated at about 100 degrees Centigrade for about 30 minutes. After curing, the polymer hardens to the shape of the bottom of the compartment 210.
  • many different polymers may be cured at different temperatures for different lengths of time resulting in cured encasements.
  • Curing may also be performed by removing heat or permitting first encasement material 200 to cool.
  • first encasement materials 200 may be cured with radiation or light, e.g.,
  • photo-polymers can be cured with infrared, ultraviolet, or other forms of radiation. After curing, the liquid photo-polymer forms a solid polymer. Indeed, some of the previously mentioned thermoplastics may be used as a photo-polymer with the addition of a photo-initiator. Of course, other curing techniques may be utilized.
  • the first encasement material 200 is cured 202, referring to Figure 2C, the rough gemstones 230 are placed into compartments 210 of the tray 220. If the cured material 202 is completely cured and solid, the rough gemstone 230 rests on top of the cured material 202. If the cured material 202 is partially cured, then the rough gemstone 230 may settle partially into the partially cured material 202.
  • a second encasement material 240 is added to the compartments 210.
  • the second encasement material 240 partially or completely fills the remaining space in each compartment 210.
  • the second encasement material 240 may be the same as the first encasement materials 200 previously described.
  • the second encasement material 240 is cured, resulting in a second cured material 242.
  • the second encasement material 240 may be cured with the curing techniques described with respect to the first cured material 202.
  • the first and second cured material sections 202, 242 form an encasement or casing 244 surrounding the rough gemstone 230.
  • Figures 3A-B illustrate an alternative encapsulation technique.
  • a rough gemstone 330 is surface coated with an encasement material 300.
  • the outer shape of the encasement 310 reflects the topography of the rough gemstone 300 within.
  • an encasement material 310 is cured 302 resulting in an encased rough gemstone 344.
  • various types of information such as a gemstone's genealogy, origin, chain of custody, quality attributes, ownership information, etc. may be embedded into, branded onto, and/or associated with the rough gemstone through chemical fingerprints/identification, affixing labels, logos, or other identification tags to the gemstone or gemstone casing, or encoding identifiers with specific data. The manner in which these identifiers are utilized is described in further detail below.
  • a chemical identification tag, fingerprint, impurity, or additive may be added to encasement materials 200, 240.
  • These chemical additives result in a unique encasement composition or chemical identifier for the rough gemstone 230 encased within the material 244. Duplicating the composition may be difficult, thus providing a further anti-counterfeiting measure.
  • metal-oxides including, but not limited to, TiO2, Cr2O3, and (TiO2 +
  • fluorescing dyes may provide a unique chemical fingerprint.
  • fluorescing dyes include metal powders grown under infrared radiation and graphite powders grown under ultraviolet radiation.
  • Other wavelength specific chemical additives may also be incorporated into the encasement materials. For example, ultraviolet or infrared polymers that will glow under specific types or wavelengths of radiation may be deposited within the encasement.
  • a "logo” or “macro-tag” 450 may be incorporated into the encasement 444 formed within compartments 410 of the tray 420.
  • the macro-tag 450 may be applied during or after curing 422.
  • the logo 450 may include many different types of information listed above in the form of a physical label, logo, transponder, micro-chip, nano-chip, hologram, text, a mark, a trademark, a number, a serial number, an identification number, a name, a company, an icon, or various other marks or labels.
  • Figures 4A-B illustrate a "logo" macro-tag 450, other "macro-tags” 450, including those listed above, may be utilized.
  • Some macro-tags 450 may store information and require a reading device to interpret the stored information. For example, an infrared or radio-frequency reader may read a transponder, micro-chip, or nano-chip, and display the data stored within the macro-tag 450. Thus, with these macro-tags 450, identification of a gemstone 430 or presentation of related information is simple, fast, and provides a further anti-counterfeiting measure.
  • identifier 560 may be branded directly onto a gemstone or affixed to the casing or encasement 544.
  • Identifiers 560 may be used instead of, or in addition to, macro-tags 550.
  • Identifiers 560 may be encoded with various types of information as previously described using different devices including, but not limited to, a laser, broad or focused ion beams, reactive ion etching, or a printer.
  • a laser system such as a Nd: YAG or CO 2 laser may be used to inscribe an identifier 560 onto a gemstone or an encasement 544 without damaging the rough gemstone.
  • Laser encoding is also beneficial since it enables automated or semi-automated encoding that may be accomplished by aligning the tray compartments with a transport equipment.
  • such encoding devices 570 can process a large volume of gemstones in an efficient, automated manner.
  • an identifier may be applied to a gemstone or an encasement using reactive ion etching or a broad ion beam. These devices may also be utilized through a mask at the encased gemstone.
  • direct write marking utilizes a high speed laser or focused ion beam which is directed to galvo-scanning mirrors, controlled by a computer-aided design (CAD) software program. The galvo-based system directs the light such that may be utilized. For example, serial numbers or bar-codes can be applied with a direct write marking system. Alternatively, the beam may be stationary and the rough diamond is translated with a stage to produce the desired pattern.
  • CAD computer-aided design
  • the same marking or identifier may be applied to a plurality of encasements using projection marking or hallmarking by directing light through a mask.
  • the mask can be generated with, for example, CAD programs, and applied to many encasements at a time.
  • the mask used in projection marking may be a non-contact type mask or a contact mask applied to the rough gemstone or encasement.
  • Contact masks may include a metal mask, a chrome on quartz mask, and a dielectric mask.
  • may also be utilized including, but not limited to, a broad ion beam, x-rays, electron beam, plasma, and wet/dry chemistry.
  • printers may be used to mark encasements of gemstones. Indeed, various other encoding or marking devices may be utilized.
  • marks or identifiers may be used for various purposes.
  • marks may be used to provide different types of information including information relating to the origin, identify, chain of possession, and owner of the gemstone.
  • the identifier 560 may be placed at a predetermined location on the encasement 544.
  • an identifier 560 reader may be directed to the predetermined location without consuming time locating the identifier 560.
  • a reader which interprets the identifier 560 may be positioned at the same location of an encasement 544, even if the identifier 560 is not visible to the human eye.
  • the identifier 560 is placed at the center of a round, flat bottom face 546 of a hemispherical encasement 544.
  • encased gemstones are positioned such that a reader is applied to the center of the round, flat bottom face 546.
  • a mark is applied directly to a gemstone, and the marked gemstone is encased.
  • the encasement may be made of the same materials and predetermined shapes as previously described. Further, with the predetermined shape serving as a magnifying glass, the mark may be viewed through the encasement / magnifying glass.
  • Additional enhancements to the automated processing of gemstones may include using a low power focusing laser to target the placement of the encoder 570. This type of machine vision alignment is well known in the art and thus, is not described in detail.
  • mined objects and various types of gemstones may be encased, encased and encoded, encased and tagged, or encased, tagged and encoded. After encasing gemstones and applying the desired identifiers to the gemstone or casing, encased gemstones are removed from the tray.
  • the tray 520 is constructed of a smooth flexible material from which the encasements 544 may be easily removed by bending or twisting the tray 520.
  • the encasements 644 removed from the tray 520 assume the form of tray compartments, e.g., a hemisphere shape 646.
  • the gemstones 630 are encased in encasements 644, along with desired identifiers such as an encoded identifier 660 or a logo 650.
  • the identifiers branded onto gemstones 630 or onto the encasements 644 may be read by a reader or scanner. The information can be used for purposes of identification, tracking, chain of custody, user data, or other applications.
  • the encoded identifiers may be decoded or read such that the desired information is retrieved.
  • encoded identifier readers include, but are not limited to, a magnifying lens, a bar code reader or scanner, and a matrix reader, depending on the type of identifier used.
  • the shape of an encasement may facilitate the use of different readers.
  • identifiers 760 may be read by various other types of readers 770, depending on the identifier 760 code used. For example, if the identifier 760 is a bar-code, then a bar-code reader or scanner 770 may be used. If the identifier 760 is a matrix, then a matrix reader or scanner 770 may be used. Other readers 770 which may be used include a digital camera connected to a portable computing device or a laser beam scanner.
  • a magnifying glass, formed by the encasement, may also serve as a reader.
  • the tray compartment, and thus, the resulting shape of gemstone encasement 644 may form a hemisphere 646.
  • the hemisphere 646 may act as a magnifying lens reader to facilitate viewing of an encased rough gemstone 630.
  • the radius of hemispherical compartment 646 may be preselected with a larger radius yielding a lower power magnification or a smaller radius yielding a greater magnification, depending on the requirements of the user.
  • the encasement 644 is also useful because it is both durable and selectively degradable or removable without damaging the gemstone 630.
  • compartments of the tray may assume other geometric shapes including but not limited to elliptical, frustoconical, polyconical or pyramidal shapes. These other shapes may also serve to magnify information like a hemisphere.
  • placing the identifier 760 at a predetermined location enables the identifier 760 to be quickly located and read by a reader or scanner 770.
  • the efficiency of reading an identifier 760 is further enhanced by placing the encasement 744 into a base 772 which positions the identifier 760 in the proper orientation for automated reading.
  • the gemstone will eventually be removed from the casing.
  • the encasements may be removed such that the rough gemstone can be cut into a number of finished gemstones.
  • further processing of the rough gemstones 730 may require the encasement 744 to be stripped from the rough gemstone 730.
  • encasements 744 are removed by applying a solvent or stripping agent 780 to the encasement 744 or submerging the encased rough gemstone 730 in the solvent 780.
  • the solvent 780 should remove or dissolve the encasement 744 material without damaging the gemstone 730.
  • One example solvent for decapsulation of cured epoxy resins is Master Bond MB6 A manufactured by Master Bond, Incorporated of Hackensack, New Jersey. This solvent dissolves the epoxy resin encasement material previously described. For example, a beaker of MB6A is heated to about 100°C, and an encased gemstone is placed in the solvent for about 10 minutes. Thereafter, the encasement will begin to break down, and the gemstone may be removed from the beaker after all of the encasement material is removed. The solvent should not affect the gemstone. If necessary, the gemstone may be re-encased at a future time.

Abstract

A method, system, and article of manufacture for marking and identifying gemstones, mined materials or objects, precious metals, or other similar valuable materials by encasing selected gemstones within removable casing. Identifiers may be included within the casing or actually branded directly onto mined objects. The identifier may be a chemical composition of the casing, a tag, logo, or similar mark, or an encoded identifier such as a bar-code, matrix, or data glyph. Information within the identifiers provide different types of information including information relating to the origin, identify, chain of possession, and owner of the gemstone.

Description

METHOD AND ARTICLE OF MANUFACTURE FOR
IDENTIFYING AND TRACKING ROUGH GEMSTONES
FIELD OF THE INVENTION The present invention relates to the field of marking, identifying, and tracking objects extracted by mining such as uncut or "rough" gemstones or precious metals. More specifically, the present invention relates to a novel method and article of manufacture for encasing an uncut, unpolished, or rough mined object, gemstone, precious metal, or similar materials, within a removable material. Identifiers are branded onto the mined object or applied to the removable material. Identifiers may represent or be encoded with various types of information relating to, for example, the gemstone, gemstone attributes, chain of custody, the owner, or other related information.
BACKGROUND OF THE INVENTION Mined obj ects such as gemstones and precious metals (generally referred to as gemstones for simplicity) are highly valued commodities in both rough (i.e. uncut or unpolished) form and finished form. These objects may be easily transported, sequestered and exchanged. Thus, a method to secure a gemstone and document information such as its genealogy, origin, chain of custody, quality attributes, ownership information, and other types of information, which does not degrade the gemstone, by accepted standards, would be useful and desirable.
A discussion of the geo-political issues concerning the critical need to document the chain of custody and origin of "Conflict Diamonds," i.e., diamonds which have been mined or otherwise obtained by insurgency movements to finance the purchase of arms and supplies, may be found in a publication entitled "Conflict Diamonds: Possibilities for the Identification, Certification and Control of Diamonds," published in June 2000 by the organization Global Witness. This article describes the structure of the international diamond market, the difficulties which exist in determining the origin of diamonds and the currently known technology for the identification of diamonds. Although certain identification methods are known, they primarily require an expert examination of the diamond in question. Such an examination typically involves considerable time and expertise and may well yield inconclusive results. Additionally, a reliable, relatively tamper-proof, cost-effective method, which does not degrade the diamond, by accepted standards, is currently available for identifying rough gemstones.
A viable rough gemstone identification system, to become accepted by a large part of the industry should accomplish the following goals: a. MINIMAL COST: The coding or identification of the rough gemstones, on a per stone basis, should be inexpensive because the code will be removed when the stone is cut and polished. b. ACCOMMODATES SURFACE IRREGULARITIES: Unlike finished stones cut to somewhat uniform and recognizable shapes, rough gemstones arrive in a plethora of irregular shapes and sizes. A marking and tracking system should tolerate these variables. c. SPEED: Because grading occurs downstream from the extraction of the mined objects such as gemstones, all the rough extracted gemstones should be coded. Considering the volume of rough gemstones which are mined, a time efficient coding process is desirable. d. SIMPLICITY: Again, the volume of extracted rough gemstones may require multiple coding sites or protocols. It is preferable that the coding or identification system be easy to set-up and operate. Also, the maintenance of marking equipment should be within the abilities of employees in the mining industry. e. AVOIDANCE OF DEGRADATION: Those familiar with mining industries will recognize that known processes, including laser engraving of a mark directly onto a mined object or gemstone, such as that taught in U.S. Patent No. 4,392,476 issued to Gessler, photo-etching of a metallic mark taught in U.S. Patent No. 4,056,952 issued to Okuda, or ionized-gas etching of a mark taught in U.S. Patent No.4,425,769 issued to Hakoune, may damage part of the rough gemstone, decrease the value of the rough gemstone, and preclude cuts along the desired or optimum crystal planes.
Accordingly, a method and article of manufacture which accomplishes the above-detailed goals by providing a fast, inexpensive system, which is simple to operate and maintain, accepts a wide variety of types, shapes and sizes of mined objects and does so without degradation to the mined object is desirable.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a simple, inexpensive method and article of manufacture for associating information with mined objects such as rough gemstones and precious metals (generally referred to as rough gemstones). The information may indicate, for example, the source of the gemstone (in the form of a trademark or logo), the grade of the gemstone, the mine from which the gemstone was extracted, the processing which has occurred, the chain of possession, serial number associated with a particular stone, or other related information. For this purpose, gemstones are encased in a removable substance, preferably a polymer. The encasement may be fingerprinted with micro-tags and/or macro-tags and may also be encoded with a laser, ion beam, printer, or other marking device. The encasement substrate is removable and may be re-applied without degrading the encased gemstone. This process can be automated and lends itself to the high speed processing of a large number of mined objects with relatively inexpensive unsophisticated equipment.
According to one aspect of the invention, rough objects and gemstones are first sorted according to pre-determined criteria, weighed, and placed within a compartment of a tray. The tray may be configured to match with a coordinate transfer system or conveyer belt. A curable polymer is added to each compartment to cover the rough gemstone. Prior to or during curing, micro-tags such as metal oxides or fluorescing dyes may be added to the polymer to create a unique chemical fingerprint. Also, prior to or during curing, macro-tags such as holograms, logos or other easily seen labels may be added to the compartment and embedded in the polymer along with the encased rough gemstone.
According to another aspect of the invention, the encased gemstone can take the form of a hemisphere or other predetermined shape that permits the location of recorded information to be readily determined. Once cured, the encased rough gemstones may be separated from the tray and sorted or placed in the coordinate transfer system for encoding. Encoding of the polymer encasements may be accomplished with a logo, bar-code, or matrix such as those taught in U.S. Patent No. 5,124,536 issued to Priddy, et al, and U.S. Patent No. 5,773,806 issued to Longacre, Jr., et al. A matrix or bar-code may be encoded as a two-dimensional bar-code, a two-dimensional matrix, or a three-dimensional matrix.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flow diagram describing encasement of a gemstone;
FIGS. 2A-E are diagrams illustrating one manner of encapsulating gemstones; FIGS. 3A-B are diagrams illustrating another manner of encapsulating gemstones;
FIGS. 4A-B are diagrams illustrating logos or labels affixed to gemstone encasements;
FIG. 5 is a diagram illustrating encoding of gemstone identifiers;
FIGS. 6A-C are diagrams of encapsulated gemstones removed from tray compartments; and FIGS.7A-B are diagrams illustrating reading of the identifier and removal of encasement material surrounding a gemstone.
DETAILED DESCRIPTION
The general encasement and processing techniques are illustrated in Figure 1. In block 100, a rough mined object or gemstone is selected from a mine or point of extraction. In block 110, the rough gemstone is encased. An identifier is applied to the rough gemstone or to the encasement material in block 120. In block 130, if necessary, an identifier is encoded with information relating to the gemstone source, attributes of the gemstone, transaction data, user data, and/or other types of information. When the rough gemstone is identified in block 140 by, for example, a reader or scanner, further processing may be necessary. The encasement may be removed resulting in a free rough gemstone in block 150. Each of these tasks will be described in further detail below with reference to Figures 2-7. The methods and articles described herein are applicable to a wide range of mined objects of different shapes and sizes. For example, the present invention is applicable to rough gemstones, diamonds, emeralds, rubies, sapphires, crystals (e.g., crystals for watches), pearls, ores, semi-precious stones, minerals, crystals, and other similar materials. However, for simplicity and purposes of illustration, this specification refers to the processing of rough gemstones, and specifically, rough diamonds. Indeed, the present invention is not so limited and may be applied to many other objects and materials. Additionally, the present invention is not limited to encasing rough gemstones. Finished or cut gemstones may be encased and similarly processed.
Encasing Rough Gemstones
Referring to Figures 2A-B, after selecting or retrieving rough gemstones from a mine or point of extraction in block 100, a first encasement material 200 is provided to compartments 210 of a tray 220 into which rough gemstones will be placed. The tray 220 may be of a size and shape to match a coordinate transfer system, such as a conveyer belt, to facilitate efficient rough gemstone processing from the mine, point of extraction, or distribution point. If necessary, the encasement materials may be transparent or translucent to enable the rough gemstone to be visible. The first encasement material 200 is provided to any number of tray compartments 210, depending on the number of rough gemstones to be processed.
One example of a first encasement material 200 is a curable polymer. One example curable polymer that may be utilized results from a combination of a resin and a curing agent such as a hardener or other curing agent such as heat or ultraviolet light. For example, a resin and a hardener manufactured by Tap Plastics, Incorporated, Dublin, California can be combined to form a curable polymer which forms an encasement. The resin used may be a resin with the product name "Tap Plastics Epoxy Resin" or the common name "general purpose 1:1 epoxy". The hardener may be a hardener with the product name "Tap Plastics Epoxy Hardener". The polymer will not degrade the rough gemstone and is added to the tray compartments 210.
Other examples of a first encasement material 200 include various thermoplastics. Many different thermoplastics may be utilized, including but not limited to polyethylene, polybutylene, polycyclohexane, polyphenylene, polycarbonate, polystyrene, polypropylene, polyamide, polyvinylchloride, polyacetal, fluroresins, acrylic resins, and polysulfones, all of which are well known and commercially available from numerous different companies.
Continuing with reference to Figure 2C, the first encasement material 200 is cured resulting in a first cured material 202. As previously explained, different curing techniques may be utilized depending oh the encasement material 200 used. The previously described polymers may be cured with heat. For example, the first encasement material 200 may be heated at about 100 degrees Centigrade for about 30 minutes. After curing, the polymer hardens to the shape of the bottom of the compartment 210. Of course, many different polymers may be cured at different temperatures for different lengths of time resulting in cured encasements.
Curing may also be performed by removing heat or permitting first encasement material 200 to cool. For example, when thermoplastics cool, they assume the form and shape of their respective molds or tray compartments 210. Additionally, first encasement materials 200 may be cured with radiation or light, e.g.,
"photo-polymers" can be cured with infrared, ultraviolet, or other forms of radiation. After curing, the liquid photo-polymer forms a solid polymer. Indeed, some of the previously mentioned thermoplastics may be used as a photo-polymer with the addition of a photo-initiator. Of course, other curing techniques may be utilized. After the first encasement material 200 is cured 202, referring to Figure 2C, the rough gemstones 230 are placed into compartments 210 of the tray 220. If the cured material 202 is completely cured and solid, the rough gemstone 230 rests on top of the cured material 202. If the cured material 202 is partially cured, then the rough gemstone 230 may settle partially into the partially cured material 202. After placing a gemstone 230 into the compartments 210, in Figure 2D, a second encasement material 240 is added to the compartments 210. The second encasement material 240 partially or completely fills the remaining space in each compartment 210. The second encasement material 240 may be the same as the first encasement materials 200 previously described. In Figure 2E, the second encasement material 240 is cured, resulting in a second cured material 242. The second encasement material 240 may be cured with the curing techniques described with respect to the first cured material 202. The first and second cured material sections 202, 242 form an encasement or casing 244 surrounding the rough gemstone 230.
. Figures 3A-B illustrate an alternative encapsulation technique. In this alternative embodiment, a rough gemstone 330 is surface coated with an encasement material 300. The outer shape of the encasement 310 reflects the topography of the rough gemstone 300 within. As in the previously described technique, an encasement material 310 is cured 302 resulting in an encased rough gemstone 344.
As described in further detail below, various types of information such as a gemstone's genealogy, origin, chain of custody, quality attributes, ownership information, etc. may be embedded into, branded onto, and/or associated with the rough gemstone through chemical fingerprints/identification, affixing labels, logos, or other identification tags to the gemstone or gemstone casing, or encoding identifiers with specific data. The manner in which these identifiers are utilized is described in further detail below.
Chemical Identifiers
If desired, prior to or during curing, a chemical identification tag, fingerprint, impurity, or additive may be added to encasement materials 200, 240. These chemical additives result in a unique encasement composition or chemical identifier for the rough gemstone 230 encased within the material 244. Duplicating the composition may be difficult, thus providing a further anti-counterfeiting measure. For example, metal-oxides including, but not limited to, TiO2, Cr2O3, and (TiO2 +
Cr2O3) may be added to the encasement materials 200, 240 to create a chemical fingerprint or "micro-tag". Alternatively, fluorescing dyes may provide a unique chemical fingerprint. Examples of fluorescing dyes include metal powders grown under infrared radiation and graphite powders grown under ultraviolet radiation. Other wavelength specific chemical additives may also be incorporated into the encasement materials. For example, ultraviolet or infrared polymers that will glow under specific types or wavelengths of radiation may be deposited within the encasement.
Logo Identifiers Referring to Figures 4A-B, if desired, a "logo" or "macro-tag" 450 may be incorporated into the encasement 444 formed within compartments 410 of the tray 420. The macro-tag 450 may be applied during or after curing 422. The logo 450 may include many different types of information listed above in the form of a physical label, logo, transponder, micro-chip, nano-chip, hologram, text, a mark, a trademark, a number, a serial number, an identification number, a name, a company, an icon, or various other marks or labels. Although Figures 4A-B illustrate a "logo" macro-tag 450, other "macro-tags" 450, including those listed above, may be utilized.
Some macro-tags 450 may store information and require a reading device to interpret the stored information. For example, an infrared or radio-frequency reader may read a transponder, micro-chip, or nano-chip, and display the data stored within the macro-tag 450. Thus, with these macro-tags 450, identification of a gemstone 430 or presentation of related information is simple, fast, and provides a further anti-counterfeiting measure.
Encoded Identifiers
Referring to Figure 5, other data related to the rough gemstone (not illustrated) may be incorporated into an inscribed or identifier 560 with an encoder. The identifier 560 may be branded directly onto a gemstone or affixed to the casing or encasement 544. Identifiers 560 may be used instead of, or in addition to, macro-tags 550. There are various types of identifiers 560 including, but not limited to, a bar-code, a two-dimensional bar-code, a data-glyph, a matrix, and a two-dimensional matrix. Identifiers 560 may be encoded with various types of information as previously described using different devices including, but not limited to, a laser, broad or focused ion beams, reactive ion etching, or a printer. For example, a laser system such as a Nd: YAG or CO2 laser may be used to inscribe an identifier 560 onto a gemstone or an encasement 544 without damaging the rough gemstone. Laser encoding is also beneficial since it enables automated or semi-automated encoding that may be accomplished by aligning the tray compartments with a transport equipment. Thus, such encoding devices 570 can process a large volume of gemstones in an efficient, automated manner.
As another example, an identifier may be applied to a gemstone or an encasement using reactive ion etching or a broad ion beam. These devices may also be utilized through a mask at the encased gemstone. For more complicated, unique, or individualized encoding, direct write marking may be used. Direct write marking utilizes a high speed laser or focused ion beam which is directed to galvo-scanning mirrors, controlled by a computer-aided design (CAD) software program. The galvo-based system directs the light such that may be utilized. For example, serial numbers or bar-codes can be applied with a direct write marking system. Alternatively, the beam may be stationary and the rough diamond is translated with a stage to produce the desired pattern.
Further, the same marking or identifier may be applied to a plurality of encasements using projection marking or hallmarking by directing light through a mask. The mask can be generated with, for example, CAD programs, and applied to many encasements at a time. The mask used in projection marking may be a non-contact type mask or a contact mask applied to the rough gemstone or encasement. Contact masks may include a metal mask, a chrome on quartz mask, and a dielectric mask.
Also, other exposure or emissions systems may also be utilized including, but not limited to, a broad ion beam, x-rays, electron beam, plasma, and wet/dry chemistry. Further, printers may be used to mark encasements of gemstones. Indeed, various other encoding or marking devices may be utilized.
The marks or identifiers may be used for various purposes. For example, marks may be used to provide different types of information including information relating to the origin, identify, chain of possession, and owner of the gemstone.
To facilitate locating and reading an identifier 560, the identifier 560 may be placed at a predetermined location on the encasement 544. To enable efficient automated processing of gemstones, an identifier 560 reader may be directed to the predetermined location without consuming time locating the identifier 560. As a result, a reader which interprets the identifier 560 may be positioned at the same location of an encasement 544, even if the identifier 560 is not visible to the human eye. For example, in one embodiment, the identifier 560 is placed at the center of a round, flat bottom face 546 of a hemispherical encasement 544. In this embodiment, encased gemstones are positioned such that a reader is applied to the center of the round, flat bottom face 546. In an alternative embodiment, a mark is applied directly to a gemstone, and the marked gemstone is encased. With this embodiment, the encasement may be made of the same materials and predetermined shapes as previously described. Further, with the predetermined shape serving as a magnifying glass, the mark may be viewed through the encasement / magnifying glass.
Additional enhancements to the automated processing of gemstones may include using a low power focusing laser to target the placement of the encoder 570. This type of machine vision alignment is well known in the art and thus, is not described in detail.
Thus, mined objects and various types of gemstones may be encased, encased and encoded, encased and tagged, or encased, tagged and encoded. After encasing gemstones and applying the desired identifiers to the gemstone or casing, encased gemstones are removed from the tray.
Removing Encased Gemstones From Tray After the encasements 544 are cured, they can be removed from the tray 520. To facilitate quick removal, the tray 520 is constructed of a smooth flexible material from which the encasements 544 may be easily removed by bending or twisting the tray 520.
Referring to Figures 6A-C, the encasements 644 removed from the tray 520 assume the form of tray compartments, e.g., a hemisphere shape 646. The gemstones 630 are encased in encasements 644, along with desired identifiers such as an encoded identifier 660 or a logo 650. Before or after the encasements 644 are removed from the tray, the identifiers branded onto gemstones 630 or onto the encasements 644 may be read by a reader or scanner. The information can be used for purposes of identification, tracking, chain of custody, user data, or other applications.
Reading Identifiers In Gemstone Casing
Before or after the encasements are removed from the tray, the encoded identifiers may be decoded or read such that the desired information is retrieved. Examples of encoded identifier readers include, but are not limited to, a magnifying lens, a bar code reader or scanner, and a matrix reader, depending on the type of identifier used. The shape of an encasement may facilitate the use of different readers.
Referring to Figure 7A, identifiers 760 may be read by various other types of readers 770, depending on the identifier 760 code used. For example, if the identifier 760 is a bar-code, then a bar-code reader or scanner 770 may be used. If the identifier 760 is a matrix, then a matrix reader or scanner 770 may be used. Other readers 770 which may be used include a digital camera connected to a portable computing device or a laser beam scanner.
A magnifying glass, formed by the encasement, may also serve as a reader. Referring back to Figures 6A-B, the tray compartment, and thus, the resulting shape of gemstone encasement 644, may form a hemisphere 646. The hemisphere 646 may act as a magnifying lens reader to facilitate viewing of an encased rough gemstone 630. The radius of hemispherical compartment 646 may be preselected with a larger radius yielding a lower power magnification or a smaller radius yielding a greater magnification, depending on the requirements of the user.
The encasement 644 is also useful because it is both durable and selectively degradable or removable without damaging the gemstone 630.
Of course, other encasement 644 shapes may be utilized. Although the hemispheric shape
646 of one embodiment provides the useful function of serving as a magnifying lens, compartments of the tray may assume other geometric shapes including but not limited to elliptical, frustoconical, polyconical or pyramidal shapes. These other shapes may also serve to magnify information like a hemisphere.
Referring now to Figures 7A-B, as previously explained, placing the identifier 760 at a predetermined location enables the identifier 760 to be quickly located and read by a reader or scanner 770. The efficiency of reading an identifier 760 is further enhanced by placing the encasement 744 into a base 772 which positions the identifier 760 in the proper orientation for automated reading.
Stripping Agent Referring now to Figure 7B, after the encased gemstones are processed and their respective information is decoded or read for identification, tracking, chain of custody, customer data, or other purposes, the gemstone will eventually be removed from the casing. For example, if the rough gemstone arrives at a diamond processing center, the encasements may be removed such that the rough gemstone can be cut into a number of finished gemstones. Thus, further processing of the rough gemstones 730 may require the encasement 744 to be stripped from the rough gemstone 730. In one embodiment, encasements 744 are removed by applying a solvent or stripping agent 780 to the encasement 744 or submerging the encased rough gemstone 730 in the solvent 780. The solvent 780 should remove or dissolve the encasement 744 material without damaging the gemstone 730. One example solvent for decapsulation of cured epoxy resins is Master Bond MB6 A manufactured by Master Bond, Incorporated of Hackensack, New Jersey. This solvent dissolves the epoxy resin encasement material previously described. For example, a beaker of MB6A is heated to about 100°C, and an encased gemstone is placed in the solvent for about 10 minutes. Thereafter, the encasement will begin to break down, and the gemstone may be removed from the beaker after all of the encasement material is removed. The solvent should not affect the gemstone. If necessary, the gemstone may be re-encased at a future time.
Indeed, there are many combinations of encasement materials and solvents that may be utilized that do not damage encased gemstones. Thus, the particular example encasement materials and solvents are merely illustrative of many possible combinations.
Certain presently preferred embodiments of apparatus and methods for practicing the invention have been described herein in some detail and some potential modifications and additions have been suggested. Other modifications, improvements and additions not described in this document may also be made without departing from the principles of the invention.

Claims

1 WHAT IS CLAIMED IS :
1. A method of identifying an object extracted by mining, comprising: applying a coating to the mined object;
5 adding an identifier to the coated mined object; and curing the coating, wherein the mined object and the identifier are included in the coating.
2. The method of claim 1, wherein the curable coating comprises a polymer.
, 0 3. The method of claim 2, wherein the polymer comprises a combination of a resin and a hardener.
4. The method of claim 3, wherein the polymer is cured with heat.
5. The method of claim 2, wherein the curable coating comprises a thermoplastic.
15
6. The method of claim 5, wherein the thermoplastic is cured by cooling.
7. The method of claim 2, wherein the curable coating comprises a photo-activated polymer. 0
8. The method of claim 7, wherein the photo-activated polymer is cured with infrared or ultra-violet radiation.
9. The method of claim 1, further comprising adding an impurity to the curable material. 5
10. The method of claim 1 , wherein the impurity comprises a chemical additive.
11. The method of claim 10, wherein the chemical additive comprises a metal-oxide.
30 12. The method of claim 11, wherein the metal oxide is selected from the group comprising TiO2, Cr2O3, and (TiO2 + Cr2O3).
13. The method of claim 10, wherein the chemical additive comprises a fluorescing dye.
14. The method of claim 13, wherein the fluorescing dye comprises a metal powder
35 grown under infrared radiation.
1 15. The method of claim 13 , wherein the fluorescing dye comprises a graphite powder grown under ultra-violet radiation.
16. The method of claim 1, wherein the identifier comprises a tag embedded in the coating.
17. The method of claim 16, wherein the tag is selected from the group comprising a label, a logo, a transponder, a micro-chip, a nano-chip, a hologram, a holograph, a text section, a mark, a trademark, a number, a serial number, an identification number, a name, a company, and an icon.
10
18. The method of claim 1 , wherein the identifier comprises an encodable identifier.
19. The method of claim 18, wherein the encodable identifier is encoded using a device selected from the group comprising a broad ion beam, a focused ion beam, a laser, a Nd: YAG ι c laser, a CO2 laser, direct write marking, projection marking, and reactive ion etching.
20. The method of claim 18, wherein the identifier is selected form the group comprising a bar-code, a two-dimensional bar-code, a matrix, a two-dimensional matrix, a three- dimensional matrix, and a data glyph.
20
21. The method of claim 1 , wherein the identifier is applied to the coating surrounding the mined object.
22. The method of claim 1, wherein the coating surrounding the mined object is transparent.
25
23. The method of claim 1, wherein the coating surrounding the mined object is a predetermined shape.
24. The method of claim 23, wherein the predetermined shape is selected from the group comprising hemispherical, elliptical, frustoconical, polyconical and pyramidal shapes.
30
25. The method of claim 23 , wherein the identifier is placed at a predetermined location on the predetermined shape.
26. The method of claim 23 , wherein the predetermined location comprises a center of ir a base of the predetermined shape.
27. The method of claim 23, wherein the predetermined shape of the coating surrounding the mined object serves as a magnifying glass.
28. The method of claim 1, further comprising reading the identifier.
29. The method of claim 28, wherein the identifier is read with a reader selected from the group comprising a magnifying glass, a bar-code reader, and a matrix scanner reader.
30. The method of claim 1, wherein applying the coating to the mined object further 0 comprises: filling a first section of a compartment with a first portion of a curable material; curing the first portion of the curable material in the compartment; placing the mined object onto the cured first portion; filling a second section of the compartment with a second portion of the curable material; 5 and curing the second portion of the curable material, wherein the mined object is encased in the cured first and second portions.
31. The method of claim 1, further comprising removing the mined object from the 0 compartment holding the encased mined object.
32. The method of claim 31 , further comprising removing the coating from the encased mined object.
33. The method of claim 32, wherein the coating is removed with a solvent. 5
34. The method of claim 33, wherein the solvent removes the coating without degrading the mined object.
35. The method of claim 1, wherein the mined object is selected from the group Q comprising a gemstone, a diamond, an emerald, a ruby, a sapphire, a crystal, a pearl, an ore, a precious metal, and a mineral.
36. A method of identifying a mined object, comprising: placing the mined object in a compartment of a container, wherein compartment has a c predetermined shape; filling the compartment with a curable material; curing the curable material resulting in an encasement surrounding the mined object, 1 wherein the encasement assumes the predetermined shape; selecting an identifier to be associated with the mined object; and applying the selected identifier to the encased mined object.
~ 37. The method of claim 36, further comprising reading the identifier embedded in the encasement.
38. The method of claim 37, further comprising removing the encasement from the mined object without damaging the mined object.
10 39. The method of claim 37, wherein filling the compartment further comprises, filling a first section of the compartment with a first portion of the curable material; curing the first portion of the curable material in the compartment; placing the mined object onto the first cured portion of the curable material; filling a second section of the compartment with a second portion of the curable material; 15 and curing the second portion of the curable material, wherein the cured first and second portions form the encasement surrounding the mined object.
40. The method of claim 36, wherein the curable material comprises a polymer. 0
41. The method of claim 36, wherein the curable material comprises a thermoplastic.
42. The method of claim 36, wherein the curable material comprises a photo-activated curable material.
5 .
43. The method of claim 36, wherein the identifier comprises a chemical impurity.
44. The method of claim 36, wherein the identifier comprises a tag embedded in the encasement material.
45. The method of claim 44, wherein the tag is selected from the group comprising a 30 label, a logo, a transponder, a micro-chip, a nano-chip, a hologram, a holograph, a text section, a mark, a trademark, a number, a serial number, an identification number, a name, a company, and an icon.
46. The method of claim 36, wherein the identifier comprises an encodable identifier. 5
47. The method of claim 46, wherein the encodable identifier is encoded using a device selected from the group comprising a broad ion beam, a focused ion beam, a laser, a Nd: YAG laser, a CO2 laser, direct write marking, projection marking, and reactive ion etching.
48. The method of claim 46, wherein the encodable identifier is selected form the group comprising a bar-code, a two-dimensional bar-code, a matrix, a two-dimensional matrix, a three- dimensional matrix, and a data glyph.
49. The method of claim 36, wherein the identifier is applied to the encasement surrounding the mined object.
0 50. The method of claim 36, wherein the predetermined shape is selected from the group comprising hemispherical, elliptical, frustoconical, polyconical and pyramidal shapes.
51. The method of claim 50, wherein the identifier is placed at a center of a base of the predetermined shape.
5 52. The method of claim 36, wherein the identifier is read with a reader selected from the group comprising a magnifying glass, a bar-code reader, and a matrix reader.
53. The method of claim 36, wherein the mined object is selected from the group comprising a gemstone, a diamond, an emerald, a ruby, a sapphire, a crystal, a pearl, an ore, a precious metal, and a mineral.
54. An article of manufacture comprising: a mined object; and a removable encasement surrounding the mined object; and <r a mark affixed to the casing identifying the mined object.
55. The article of manufacture of claim 54, wherein the mined object comprises a gemstone, a diamond, an emerald, a ruby, a sapphire, a crystal, a pearl, an ore, a precious metal, and a mineral. 0
56. The article of manufacture of claim 54, wherein the removable casing is selected from the group comprising a polymer, a thermoplastic, and a photo-initiated curable material.
57. The article of manufacture of claim 54, wherein the removable casing has a predetermined shape, and wherein the predetermined shape is selected from the group comprising 5 hemispherical, elliptical, frustoconical, polyconical and pyramidal shapes.
1 58. The article of manufacture of claim 54, wherein the mark is affixed to a center of a base of the removable casing.
59. The article of manufacture of claim 54, wherein the mark is affixed to a ^ predetermined location of the removable casing.
60. The article of manufacture of claim 54, wherein a curvature of the removable casing with the predetermined shape serves as a magnifying glass.
61. The article of manufacture of claim 54, wherein the mark comprises a chemical 1.0 composition of the removable casing.
62. The article of manufacture of claim 54, wherein the mark comprises a physical tag selected from the group comprising a label, a logo, a transponder, a micro-chip, a nano-chip, a hologram, a holograph, a text section, a mark, a trademark, a number, a serial number, an
, - identification number, a name, a company, and an icon.
63. The article of manufacture of claim 54, wherein the mark comprises a bar-code, a two-dimensional bar-code, a matrix, a two-dimensional matrix, a three-dimensional matrix, or a data glyph.
20 64. The article of manufacture of claim 63, wherein the mark is applied with an encoding device selected from the group comprising a broad ion beam, a focused ion beam, a laser, aNd:YAG laser, a CO2 laser, direct write marking, projection marking, and reactive ion etching.
65. The article of manufacture of claim 54, wherein the mark is read with a reader
25 selected from the group comprising a magnifying glass, a bar-code reader, and a matrix reader.
66. An article of manufacture comprising: a mined object, wherein a mark identifying the mined object is applied to the mined object; and a removable encasement surrounding the mined object. 30
67. The article of manufacture of claim 66, wherein the mined object comprises a gemstone, a diamond, an emerald, a ruby, a sapphire, a crystal, a pearl, an ore, a precious metal, and a mineral.
35 68. The article of manufacture of claim 66, wherein the removable encasement is selected from the group comprising a polymer, a thermoplastic, and a photo-initiated curable material.
1 69. The article of manufacture of claim 66, wherein the removable encasement has a predetermined shape, the predetermined shape is selected from the group comprising hemispherical, elliptical, frustoconical, polyconical and pyramidal shapes.
5 70. The article of manufacture of claim 66, wherein a curvature of the removable casing with the predetermined shape serves as a magnifying glass to view the mark on the mined object.
71. The article of manufacture of claim 66, wherein the mark comprises aphysical tag selected from the group comprising a label, a logo, a transponder, a micro-chip, a nano-chip, a ι hologram, a holograph, a text section, a mark, a trademark, a number, a serial number, an identification number, a name, a company, and an icon.
72. The article of manufacture of claim 66, wherein the mark comprises a bar-code, a two-dimensional bar-code, a matrix, a two-dimensional matrix, a three-dimensional matrix, or a data glyph.
15
73. A system for identifying a mined object, comprising, a casing surrounding the mined object; an identifier embedded in the casing; an encoder which configures the identifier with data about the mined object;
20 a reader which determines the data content of the identifier; and a solvent, which removes the casing surrounding the mined object.
74. The system of claim 73, wherein the casing is selected from the group comprising a polymer, a thermoplastic, and a photo-activated polymer. 5
75. The system of claim 73 , wherein the identifier comprises a chemical composition of the casing.
76. The system of claim 73, wherein the identifier comprises a tag embedded in the encasement material.
30
77. The system of claim 76, wherein the tag is selected from the group comprising a label, a logo, a transponder, a micro-chip, a nano-chip, a hologram, a holograph, a text section, a mark, a trademark, a number, a serial number, an identification number, a name, a company, and an icon.
35
1 78. The system of claim 73, wherein the identifier is an encoded identifier.
79. The system of claim 78, wherein the encoded identifier is selected from the group comprising a bar-code, a two-dimensional bar-code, a matrix, a two-dimensional matrix, a three- c dimensional matrix, and a data glyph.
80. The system of claim 73, wherein the encoder is selected from the group comprising a broad ion beam, a focused ion beam, a laser, a Nd: YAG laser, a CO2 laser, direct write marking, projection marking, and reactive ion etching.
10
81. The system of claim 73 wherein the reader is selected from the group comprising a magnifying glass, a bar-code reader, and a matrix-reader.
82. The system of claim 73, wherein the identifier is applied to the material encasing the mined object.
15
83. The system of claim 73, wherein the casing is transparent.
84. The system of claim 73, wherein the casing is a predetermined shape.
85. The system of claim 84, wherein the predetermined shape is selected from the
20 group comprising hemispherical, elliptical, frustoconical, polyconical and pyramidal shapes.
86. The system of claim 85, wherein the identifier is placed at a predetermined location on the predetermined shape.
2 87. The system of claim 86, wherein the predetermined location comprises a center of a base of the predetermined shape.
88. The system of claim 84, wherein the predetermined shape of the material encasing the mined object serves as a magnifying glass.
30 89. The system of claim 73, wherein the solvent removes the casing without damaging the mined object.
90. The system of claim 73, wherein the mined object is selected from the group comprising a gemstone, a diamond, an emerald, a ruby, a sapphire, a crystal, a pearl, an ore, a or precious metal, and a mineral.
PCT/US2001/023669 2000-07-28 2001-07-28 Method and article of manufacture for identifying and tracking rough gemstones WO2002010091A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/343,255 US20040112087A1 (en) 2001-07-28 2001-07-28 Method and article of manufacture for identifying and tracking rough gemstones
AU2001286399A AU2001286399A1 (en) 2000-07-28 2001-07-28 Method and article of manufacture for identifying and tracking rough gemstones

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US22145300P 2000-07-28 2000-07-28
US60/221,453 2000-07-28
US24467100P 2000-10-31 2000-10-31
US60/244,671 2000-10-31

Publications (2)

Publication Number Publication Date
WO2002010091A2 true WO2002010091A2 (en) 2002-02-07
WO2002010091A3 WO2002010091A3 (en) 2002-04-25

Family

ID=26915801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/023669 WO2002010091A2 (en) 2000-07-28 2001-07-28 Method and article of manufacture for identifying and tracking rough gemstones

Country Status (2)

Country Link
AU (1) AU2001286399A1 (en)
WO (1) WO2002010091A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047073A (en) * 2015-08-20 2015-11-11 朱家佳 Dual-three-dimensional-anti-fake film
WO2016014350A1 (en) * 2014-07-21 2016-01-28 Avery Dennison System, method, and apparatus for displaying proprietary information within a quick response (qr) code
WO2018158444A1 (en) 2017-03-02 2018-09-07 Gübelin Gem Lab Ltd. Method for making a gemstone traceable
CN111367508A (en) * 2020-03-13 2020-07-03 西安博兰科技发展有限公司 AI identification equipment tracking system based on laser marking machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056952A (en) 1976-01-23 1977-11-08 Kazumi Okuda Diamond bearing microscopic certificate of appraisal
US4392476A (en) 1980-12-23 1983-07-12 Lazare Kaplan & Sons, Inc. Method and apparatus for placing identifying indicia on the surface of precious stones including diamonds
US4425769A (en) 1981-05-07 1984-01-17 Maurice Hakoune Method for treating a gem and gem treated with this method
US5124536A (en) 1988-05-05 1992-06-23 International Data Matrix, Inc. Dynamically variable machine readable binary code and method for reading and producing thereof
US5773806A (en) 1995-07-20 1998-06-30 Welch Allyn, Inc. Method and apparatus for capturing a decodable representation of a 2D bar code symbol using a hand-held reader having a 1D image sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1902830A (en) * 1932-05-17 1933-03-28 Bulova Watch Co Inc Seal for gems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056952A (en) 1976-01-23 1977-11-08 Kazumi Okuda Diamond bearing microscopic certificate of appraisal
US4392476A (en) 1980-12-23 1983-07-12 Lazare Kaplan & Sons, Inc. Method and apparatus for placing identifying indicia on the surface of precious stones including diamonds
US4425769A (en) 1981-05-07 1984-01-17 Maurice Hakoune Method for treating a gem and gem treated with this method
US5124536A (en) 1988-05-05 1992-06-23 International Data Matrix, Inc. Dynamically variable machine readable binary code and method for reading and producing thereof
US5773806A (en) 1995-07-20 1998-06-30 Welch Allyn, Inc. Method and apparatus for capturing a decodable representation of a 2D bar code symbol using a hand-held reader having a 1D image sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014350A1 (en) * 2014-07-21 2016-01-28 Avery Dennison System, method, and apparatus for displaying proprietary information within a quick response (qr) code
US11037217B2 (en) 2014-07-21 2021-06-15 Avery Dennison Retail Information Services, Llc System, method, and apparatus for displaying proprietary information within a quick response (QR) code
CN105047073A (en) * 2015-08-20 2015-11-11 朱家佳 Dual-three-dimensional-anti-fake film
CN105047073B (en) * 2015-08-20 2017-09-05 南通立方新材料科技有限公司 Dual 3D anti false films
WO2018158444A1 (en) 2017-03-02 2018-09-07 Gübelin Gem Lab Ltd. Method for making a gemstone traceable
CH713538A1 (en) * 2017-03-02 2018-09-14 Guebelin Gem Lab Ltd Procedure for tracing a gemstone.
US11103036B2 (en) 2017-03-02 2021-08-31 Gübelin Gem Lab Ltd. Method for rendering a gemstone traceable
CN111367508A (en) * 2020-03-13 2020-07-03 西安博兰科技发展有限公司 AI identification equipment tracking system based on laser marking machine

Also Published As

Publication number Publication date
AU2001286399A1 (en) 2002-02-13
WO2002010091A3 (en) 2002-04-25

Similar Documents

Publication Publication Date Title
US20040112087A1 (en) Method and article of manufacture for identifying and tracking rough gemstones
US11875501B2 (en) Information coding in dendritic structures and tags
AU706619B2 (en) Coded items for labelling objects
CA2848106C (en) System and method for identification and authentication of precious metals and small jewelry items using radio frequency identification (&#34;rfid&#34;) technology
EP3002744B1 (en) Image processing of dendritic structures used in tags as physical unclonable function for anti-counterfeiting
US11430233B2 (en) Polarized scanning of dendritic identifiers
US20030120613A1 (en) Customizing objects and materials with digital identifiers
EP2248067B1 (en) A reading device for identifying a tag or an object adapted to be identified, related methods and systems
US20020084329A1 (en) Coded items for labeling objects
CN107486627B (en) Method of forming identification mark and identification mark formed by the method
KR20200133774A (en) Recycling method and taggant for recyclable products
CN101351812A (en) Method of coded marking of a small-size product, and marked product obtained according to said method
US20180374103A1 (en) Three-dimensional authentication and identification methods, devices, and systems
US20160027022A1 (en) Consumer Authentication Systems and Methods
CN107316075A (en) Jewelry identity reviews the integral multidimensional binding method for anti-counterfeit of material evidence and external member
WO2002010091A2 (en) Method and article of manufacture for identifying and tracking rough gemstones
US20070005486A1 (en) Process for verifying, labeling and rating diamonds and other gemstones from mine to market
CN208521535U (en) Holographic RFID electronic label with tamper-evident function
CN202150125U (en) Two-dimensional bar code safety certification device
CN109906474A (en) Equipment for manufacturing, confirming, identify, read and tracking method, seal or the label of seal or label and for confirming, identifying, read and track the seal and label
JP4002939B1 (en) Laser marking method
CN1892217A (en) Process for verifying, labeling and rating diamonds and other gemstones from mine to market
EP1323090A1 (en) Customizing objects and materials with digital identifiers
JP2004086828A (en) Business model for quality certification and antitheft system for jewel
CN1942834A (en) Method for integrating at least one electronic module in or on the glass of a watch and watch glass obtained by such a method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10343255

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: JP