WO2002017041A2 - Capacity scaling and functional element redistribution within an in-building coax cable internet access system - Google Patents

Capacity scaling and functional element redistribution within an in-building coax cable internet access system Download PDF

Info

Publication number
WO2002017041A2
WO2002017041A2 PCT/US2001/026068 US0126068W WO0217041A2 WO 2002017041 A2 WO2002017041 A2 WO 2002017041A2 US 0126068 W US0126068 W US 0126068W WO 0217041 A2 WO0217041 A2 WO 0217041A2
Authority
WO
WIPO (PCT)
Prior art keywords
diplexer
modem
network
modems
central
Prior art date
Application number
PCT/US2001/026068
Other languages
French (fr)
Other versions
WO2002017041A3 (en
WO2002017041A9 (en
Inventor
John B. Terry
Jeffrey A. Hales
Original Assignee
Coaxmedia, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coaxmedia, Inc. filed Critical Coaxmedia, Inc.
Priority to KR10-2003-7002601A priority Critical patent/KR20030026350A/en
Priority to EP01966036A priority patent/EP1323012A2/en
Priority to AU2001286580A priority patent/AU2001286580A1/en
Priority to MXPA03001490A priority patent/MXPA03001490A/en
Priority to JP2002521669A priority patent/JP2004507915A/en
Priority to CA002419571A priority patent/CA2419571A1/en
Publication of WO2002017041A2 publication Critical patent/WO2002017041A2/en
Publication of WO2002017041A3 publication Critical patent/WO2002017041A3/en
Publication of WO2002017041A9 publication Critical patent/WO2002017041A9/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/21Server components or server architectures
    • H04N21/214Specialised server platform, e.g. server located in an airplane, hotel, hospital
    • H04N21/2143Specialised server platform, e.g. server located in an airplane, hotel, hospital located in a single building, e.g. hotel, hospital or museum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/462Content or additional data management, e.g. creating a master electronic program guide from data received from the Internet and a Head-end, controlling the complexity of a video stream by scaling the resolution or bit-rate based on the client capabilities
    • H04N21/4622Retrieving content or additional data from different sources, e.g. from a broadcast channel and the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • H04N21/4782Web browsing, e.g. WebTV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6118Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving cable transmission, e.g. using a cable modem
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • H04N21/6168Network physical structure; Signal processing specially adapted to the upstream path of the transmission network involving cable transmission, e.g. using a cable modem
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • H04N7/106Adaptations for transmission by electrical cable for domestic distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications

Definitions

  • HSIA High-Speed Internet Access
  • MDUs Multiple Dwelling Units
  • MDUs Multiple Dwelling Units
  • Such approaches usually require selective identification and disconnection of each telephone pair and the insertion of a modem function at the central end of the telephone loop.
  • Such intrusive installation is both costly and time consuming.
  • a second modem is required at the user end of the telephone pair to connect to the user's PC ("Personal Computer") or in-home network.
  • PC Personal Computer
  • MDU telephone wiring generally has a worse inter-pair crosstalk performance than that of outside wiring and suffers considerable electrical ingress interference
  • data is usually inserted on the telephone loop within the building to ensure adequate performance.
  • the high frequency loss of longer telephone loops between the central office and the MDU considerably limits potential two-way transmission speed for longer telephone loops.
  • the use of low-cost wireless data transmission works well where the distances are short and spectrum is abundant. However, for densely populated MDUs, this is not usually the case.
  • Both cable modem and telephone loop data modems are usually interfaced to the PC using an Ethernet lObaseT connection.
  • NIC Network Interface Card
  • USB Universal Serial Bus standard
  • Coax distribution systems such as those found in MDUs, hotels, hospitals, and university campus facilities, which can be served by Cable, Satellite or Broadcast network operators, are usually configured as passive "tree and branch" systems using splitters and/or relatively long coax runs with taps or couplers arranged to serve the apartments or rooms. Such passive distribution arrangements frequently serve from 30 to 100 rooms or apartments and are arranged such that the TV signal levels fed to each apartment or hotel room are typically within a 10 dB range.
  • These coax distribution systems typically have losses in the range of 15 dB to 45 dB (at typical MDU TV service frequencies) and are usually fed from a centralized one-way broadband TV channel amplifier to ensure adequate signal levels for the users.
  • Larger high-rise MDUs and hotels usually have a number of centralized amplifiers each feeding a passive coax distribution sub-system serving separate areas or floors of the building.
  • the spectrum utilized for MDU TV services usually lies below 750 MHz, whereas the components used in the distribution of these services, such as coax cable, can handle frequencies beyond 1 GHz.
  • Passive splitters and couplers (collectively called “joiner devices”), although usually only rated for use in the TV bands, generally perform adequately in terms of loss and/or port isolation when carrying robust digital signals of up to 1 GHz.
  • the loss per unit length of the in-building coax wiring rather than being a problem, helps attenuate echoes thus permitting the use of much simpler equalization in digital receivers.'
  • ingress interference is very much less at frequencies above those of TV channels, and being contained by the one-way characteristic of the central TV channel amplifiers — at least at the TV downstream channel frequencies and higher, any ingress interference is nreventerl from exiting the MDTT and interfering with the HFC cable frequencies of 1 GHz and below.
  • This available 100 MHz of available spectrum is plenty to serve the statistical two-way Internet access needs of 50 to 100 users or client modems. If higher capacity is needed, additional downstream spectra can be allocated in bands between 1 GHz and about 1.6 GHz provided that higher frequency specified splitters are substituted; higher capacity can also be obtained by moving down in the frequency spectrum.
  • Such higher uni-directional capacity can provide for additional digital video- on-demand (VOD) services, in either Internet Protocol (IP) format or in native MPEG2 format.
  • IP Internet Protocol
  • IP Internet Protocol
  • IP native MPEG2 format.
  • IP Internet Protocol
  • the frequencies within the range of 850 MHz to 950 MHz are useful in most preferred embodiments for upstream transmission.
  • the use of this single upstream spectrum provides adequate traffic capacity and simplifies control.
  • This disclosure builds on the teachings of the '378 and the '836 applications referenced above which takes advantage of the topology and performance of a in-building coax distribution to provide HSIA services. More specifically, this disclosure adds to the previous disclosures by identifying a number of shared coax distribution Internet access configurations to promote economical capacity scaling and topological re-distribution of functions aimed at extending the breadth of application and economical deployment of Internet access and other data/telephony and video services within hotels, large and small multi-dwelling/multi-tenant environments.
  • a multipoint network such as coaxial tree and branch cable television distribution network
  • FIGURE 1 is provided for reference purposes and illustrates the basic system as described in co-pending U.S. patent application Serial No. 09/818,378 for Architecture and Method for Automatic Distributed Gain Control for Modem Communications.
  • FIGURE 2 is a simplified version of a portion of FIGURE 1 whose functional drawing elements are re-used within FIGURES 3 to 12.
  • FIGURE 3 shows how the hub 328 can be connected via a splitter 506 to three separate diplexers (316, 317, and 318).
  • the diplexers combines the output of the hub 328 and the output from the TV channel amplifier 312 to provide Internet service from the single hub 328 and CATV service from the amplifier 312 to a number of separate passive coax distribution networks (320, 321, and 322).
  • FIGURE 4 shows a very high capacity configuration in which the Internet backhaul service is provided via three pairs of cable modems and hubs (324/328, 325/329, and
  • each of the three small distribution networks (320, 321, and 322) has it's own cable modem and hub (324/328, 325/329, and 326/330).
  • FIGURE 5 shows a configuration where the combination of functions performed by the hub 328 (FIGURES 1-4) can be divided across a central server 512 and multiple server- modems (520, 524, and 528) through use of a router or switch 516 connecting the central server to the server modems.
  • FIGURE 6 uses a configuration similar to FIGURE 5 but has independent sources for TV and Internet backhaul services. Rather than have one source that provides both, as shown by cable 304 in FIGURES 1-5, FIGURE 6 receives the TV signal from source 532 and connects with the Internet via fiber interface 536.
  • FIGURE 7 uses a configuration similar to FIGURE 5 but has independent sources for TV and Internet backhaul. Rather than have one source that provides both as shown by cable 304 in FIGURES 1-5, FIGURE 7 receives the TV signal from source 532 and connects with the Internet via wireless interface 540.
  • FIGURE 8 illustrates a cable head-end containing a coaXmedia server, which has been migrated from a small hotel or small MDU system in order to reduce costs and maintenance trips.
  • FIGURE 9 shows a serverless configuration that may be used in conjunction with the head-end shown in FIGURE 8.
  • FIGURE 9 uses a splitter 506 as shown in FIGURE 3 in order to use a single central modem 520 to service several sparsely loaded networks (320, 321, and 322).
  • FIGURE 10 illustrates an alternative configuration for use with a cable head-end such as shown in FIGURE 8, using a router or switch to connect the Internet backhaul to several central modems.
  • FIGURE 11 illustrates that multiple cable modems (324, 325, and 326) maybe used to increase backhaul capacity.
  • FIGURE 12 illustrates that the backhaul may be achieved by a mix of cable modem 324, fiber interface 536, and wireless interface 540.
  • FIGURE 12 also illustrates that the system may be attached to a Local Area Network 568.
  • FIGURE 1 illustrates the overall architecture.
  • FIGURE 1 can be subdivided into four clusters of components.
  • the first cluster is Cable-TV (CATV) head-end equipment 100.
  • the second cluster is the Hybrid Fiber-coax (HFC) Distribution Network 200.
  • the third cluster is the premises coax distribution equipment 300 which could exist in either an MDU or an analogous situation such as a hotel.
  • the final cluster is the cluster of equipment in the user's room 400.
  • Clusters 300 and 400 contain elements of the present invention.
  • the CATV head-end and the Internet are the upstream end of FIGURE 1 for cable TV and IP data respectively.
  • the television set or computer in the user's room are the downstream points. Upstream data transmissions travel upstream towards the upstream end. Downstream transmissions travel downstream towards the downstream end.
  • a component on a data path receives a downstream data transmission from its upstream end and an upstream data transmission from its downstream end.
  • a cable TV signal is provided to the HFC distribution network 200 via connection 104.
  • the source of the cable TV signal may be from conventional equipment represented by CATV Service Elements 108 connected to one leg of joiner device 106.
  • Digital communication signals from Internet 504 travel through Internet connector cable 112. to Router 116, which is in communication with Internet Service Management 120.
  • the digital communication signals pass through the Cable Modem Termination System 124 and joiner device 106 when moving downstream from the Router 116 to the connection 104 to the HFC Distribution Network 200.
  • the description of selected elements of the CATV head-end is to provide context for the present invention and does not constitute a limitation or required elements for the present invention.
  • the incoming signal from the HFC Distribution Network 200 is carried on cable 304 to joiner device 308 such as a directional coupler.
  • joiner device 308 is connected to the input of TV Channel Amplifier 312.
  • the Output of TV Channel Amplifier 312 is passed to the low pass port of a diplexer 316 and then to set of one or more joiner devices forming the tree and branch distribution network 320 terminating at a series of TV coax Receptacles 404. Note that care must be taken in selecting diplexers so that the operating range of the diplexer includes the relevant range above the frequencies normally used for cable television channels.
  • the technology for tree and branch networks suitable to distribute Cable TV signals is well known to those of skill in the art.
  • the tree and branch network 320 is shown with just a few joiner devices and connecting cables rather than the full set of components for a tree and branch network.
  • the tree and branch network 320 would be connected to 50 or more coax receptacles 404.
  • Joiner device 308 and diplexer 316 form a parallel path around the TV Channel Amp 312.
  • This parallel path has a cable modem 324 at the upstream end and data hub 328 ("hub") at the downstream end of the parallel path.
  • the splitter and combiner allows signal to go to the TV Channel amp 312 and the cable modem 324.
  • 316 is used to combine the amplified CATV signal and the data signal to pass them together down to the distribution network.
  • the data hub 328 performs several functions for the various client modems 408.
  • NIC Network Interface Card
  • Protocol Converter 336 Protocol Converter
  • RF Modem 332 RF Modem
  • the hub 328 handles the buffering for both the upstream and downstream communications as well as managing the various client modems so that there is not bus contention on the upstream channel.
  • a client modem 408 connects to a diplexer 406.
  • a diplexer 406 is connected to the coax receptacle 404.
  • a conventional TV coax cable 412 to connects a television 416 to the low pass port on the diplexer 406.
  • a client modem 408 is connected to the high pass port on the diplexer 406.
  • the client modem 408 is shown as a sand dollar in deference to the assignee's name for this device.
  • the user may connect a downstream device 420 to the data cord 424 of client modem 408 with the appropriate port connector for connection to the user's downstream device 420 such as a personal computer ("PC") as shown in FIGURE 1.
  • the downstream device 420 is likely to be either a desktop or laptop personal computer, it could be some other device capable of interfacing with an external source of digital data.
  • PDAs Personal Digital Assistants
  • the present invention allows for communication between the downstream device 420 and the Internet 504 through substantial use of existing infrastructure used to deliver cable TV signals to user's television 416.
  • a single DOCSIS-compliant off-shelf cable modem 324 is used to serve the statistical data needs of multiple users connected via a passive in- building coax distribution system.
  • PPP Point-to-Point Protocol
  • a protocol converter 336 is provided between this central RF modem 332 and the shared DOCSIS-compliant cable modem 324.
  • This protocol converter 336 translates the data format between the Point-to-Point Protocol (or some other protocol) used by the PC and the IP used by the DOCSIS Cable modem's Ethernet port.
  • any IP protocol such as TCP/IP, UDP/IP, etc., is carried transparently to and from the Internet 504. Special prioritization is available for low-latency requirement traffic, such as IP voice or multimedia, in both directions of transmission.
  • the protocol converter 336 also acts as a proxy server (if required) in order to connect the many client modems and their PCs to one or a few DOCSIS-compliant cable modems (to avoid clutter, FIGURE 1 shows a single cable modem). This involves providing IP addresses to the PCs in response to PPP connection requests.
  • the protocol converter 336 translates single or multiple socket addresses that uniquely identify multiple sessions or windows running within each PC, in order to present unique socket addresses to servers that exist on the IP network 504. If desired, the many client-PC's can be made to appear, from a head-end service management perspective, as though they are connected via individual cable modems. Thus a function is provided in the head-end that collects associated user-PC MAC and assigned IP address information from the protocol converter and presents this as an interface to Internet head-end service management 120 that also manages single-user cable Modem services.
  • One embodiment uses 15 Msymbol/sec Binary Phase Shift Keying (“BPSK”) or Quadrature Phase Shift Keying (“QPSK”) modulation in a single downstream "channel” with a center frequency of approximately 970 MHz. Higher symbol rates are planned which could offer at least 30 Mb/s net downstream data capacity. Current embodiments use center frequency of 980 MHz to 985 MHz. The specific center frequency is not critical as long as it is in the band of frequencies set forth in this description and is not subject to interference from other sources.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • the downstream signal is transmitted continuously and formatted in a standard MPEG2/DVB structure.
  • the MPEG2 frames comprise a framing (47 hex) / super- framing (inverted 47 hex) byte, 187 information bytes and 16 forward error correcting (FEC) bytes - a total of 204 bytes.
  • FEC forward error correcting
  • Certain reserved MPEG2 "Packet IDentification" (PJJD) codes are used to indicate that the following information bytes are data of a particular type rather than digital video or idle frames. Conventional synchronized scrambling is employed for spectral reasons and the
  • 16-byte FEC field is always used or reserved for error correction.
  • upstream transmission in the in-building coax uses a BPSK modulated 915 MHz RF signal carrying a 15 Mb/s digital stream.
  • Upstream transmission is only permitted from one client modem at a time as specified by downstream "polling" contained in the downstream data control envelope. Thus, there is no collision of upstream signals.
  • the upstream signal comprises a preamble signal that is ramped up in level followed by a sync byte.
  • the length of the data field is dependent on how much is requested by the central modem or the remaining amount of upstream data buffered in the client modem.
  • special provision is made for the needs of low-latency traffic.
  • Path losses between each client modem 408 and the central RF modem 332 will have a wide variation due to the coax distribution topology and loading variations.
  • the system is designed to accept losses of 40 dB or more.
  • AGC automatic gain control
  • the upstream AGC method involves adjusting each of the client modem transmitters such that their signals, upon arrival at the upstream receiver in the central modem, are approximately equal.
  • One embodiment of the present invention uses available low-cost, commercial RF and digital technologies.
  • Alternative embodiments include a client modem receiver that uses tuner/demodulator chipsets commonly used in satellite set-top boxes.
  • One alternative embodiment calls for moving most functions into a pair of custom chips; one a small RF analog chip, the other a semi-custom chip containing the digital functions. This technology evolution will result in a client modem the size of a small cellular phone that may become part of a coax cord assembly and consume very little power.
  • the hub 328 is presently constructed using a normally rack-mounted, low cost, PC motherboard equipped with an RF/protocol board 336 and one or more lObaseT NIC interfaces 340. This may be mounted, together with one or more off-shelf cable modems 324, on a wall adjacent to the existing building TV distribution amplifier 312.
  • a variety of server platforms choices exist, which can be configured with or without disks.
  • the central installation requires only the addition of two coax joiner devices 308 and 312 to which are attached a conventional cable modem 324 and the hub 328.
  • the client modems are simply introduced, by the end-user, between the TV coax receptacle 404 and TV set 416 (if any).
  • An associated transformer cube (not show in FIGURE 1) is then plugged into a convenient power receptacle and the data cord 424 plugged into the user's PC. No network-stack configuration of the PC is required, thus offering a real plug-and-play high-speed Internet access service.
  • the system presents an economic approach for MDU or hotel high-speed Internet access that works well over existing in-building coax.
  • This system is DOCSIS-compliant as seen from the head-end networking elements, consistent with existing cable modem operation and service practices and yet offers easy end-user attachment without PC reconfiguration or installation of an Ethernet NIC card in the user's PC.
  • the per-MDU common equipment installation is extremely simple and there is no need for a .truck-roll, or appointment to provide service to each customer. Indeed, client modems can be mailed and are easier to hook-up than a VCR.
  • Multi-megabit Internet access is achieved via the PC's existing parallel or USB port using a simple "enabler” that places a connection icon on its desktop and activates the PC's existing PPP direct connection facility.
  • the "enabler” can be loaded from the hub 328 via the PC's existing serial connector — no floppy disks or CDs.
  • FIGURE 2 is a simplified version of the relevant portion of FIGURE 1. Note that the multiple levels of splitters found in tree and branch network 320 are shown simply as a single element with 50 terminal branches.
  • the coax distribution network 320 is shown with branches 1, 2, 3, 48, 49, and 50 labeled. Subsequent depictions of coax distribution networks will merely show lines representing the multitude of terminal branches.
  • the specific number 50 is provided simply to illustrate the environment and does not form a limitation of the present invention.
  • FIGURE 3 shows how the hub 328 can be connected via a splitter 506 to three separate diplexers (316, 317, and 318).
  • the diplexers connect the hub 328 and the output from the TV channel amplifier 312 to provide Internet service from the single hub 328 to a number of separate passive coax distribution networks (320, 321, and 322).
  • This arrangement provide a very economical distribution to a large number of rooms or living units when the percentage subscription is low or where the capacity of service per user is managed to a lower data rate - with a potentially lower tariff. Note that the use of three diplexers and three passive coax distribution networks is for purposes of illustration.
  • FIGURE 4 shows a very high capacity configuration in which the incoming
  • Ethernet signal transmission are distributed to three pairs of cable modems and hubs (324/328, 325/329, and 326/330) by splitter 508.
  • each of the three small networks (320, 321, and 322) has its own cable modem and hub (324/328, 325/329, and 326/330).
  • FIGURE 4 might be appropriate for a relatively high usage rate such as 20 users per 50 port network.
  • FIGURE 4 could be combined with the configuration of FIGURE 3 to allow several low usage/low quality of service networks to share one hub while other high usage/high quality of service networks operate off a separate modem/hub pair.
  • FIGURE 5 shows a configuration where the combination of functions performed by the hub 328 (FIGURES 1-4) can be divided across a central server 512 and multiple server-modems (520, 524, and 528) through use of a router 516 connecting the central server to the server modems.
  • the allocation of functions is as follows.
  • the central server 512 performs the conversion of Ethernet to PPP over Ethernet (PPPoE), when required, and other local value-add functions.
  • the individual server-modems (520, 524, and 528) perform the tasks associated with polling the client modems and buffering the data in addition to the modulating and demodulating tasks.
  • An acceptable piece of equipment for use as the router 516 is a Linksys Router Model BEFSR41 (manufactured by Linksys of Irvine, CA 92614). Those of skill in the art can substitute other routers or suitable switches.
  • FIGURE 5 offers an economical approach and allows, for example, local communication between users served from separate passive coax distribution systems. While the system illustrated in FIGURE 3 intrinsically provides local communication between passive coax distribution networks, the system illustrated in FIGURE 5 offers much higher capacity for local communications.
  • FIGURE 6 uses a configuration similar to FIGURE 5 but has independent sources for TV and Internet backhauls. Rather than have one source that provides both as shown by cable 304 in FIGURES 1-5, FIGURE 6 receives the TV signal from source 532 and connects with the Internet via fiber interface 536.
  • FIGURE 7 uses a configuration similar to FIGURE 5 but has a split source of TV and Internet. Rather than have one source that provides both as shown by cable 304 in FIGURES 1-5, FIGURE 7 receives the TV signal from source 532 and connects with the Internet via wireless interface 540.
  • FIGURE 8 illustrates a cable head-end that contains a central server 512 that has been migrated from a small hotel or small MDU system in order to reduce costs and maintenance trips. This has particular value in garden-home MDU environments where each building has perhaps only 8 or so living units.
  • the protocol carried via the cable modem can be PPP over Ethernet or Ethernet. This PPPoE protocol is a public standard. More specifically, FIGURE 8 shows a hybrid fiber-coax CATV network 200 connected to coupler 544. One port of the coupler 544 is connected to a TV channel modulator bank 548 that is connected to an antenna 552. Another port on the coupler 544 is connected to a cable modem termination system (CMTS) 124.
  • CMTS cable modem termination system
  • the CMTS 124 is connected to router 116 that is connected to Internet 504.
  • a second parallel path between the CMTS 124 and the router 116 runs through the central server 512 that performs the conversions between Ethernet and PPP over Ethernet and other value-add functions.
  • the description of selected elements of the CATV head-end is to provide context for the present invention and does not constitute a limitation or required elements for the present invention, but provides context for the placement of the central server at the CATV head- end.
  • FIGURE 9 shows a serverless configuration that may be used in conjunction with the head-end shown in FIGURE 8.
  • FIGURE 9 uses a splitter 506 as shown in FIGURE 3 in order to use a single central server 520 to service several sparsely loaded networks (320, 321, and 322).
  • FIGURE 10 illustrates an alternative configuration for use with a Cable head-end such as shown in FIGURE 8.
  • FIGURE 10 can be modified to include a local MPEG-2 video server (not shown) whose traffic may be interleaved with that of Internet data.
  • Such an application justifies very high local capacity in a situation where the access backhaul is of limited capacity, such as that provided by a single cable modem.
  • FIGURE 11 illustrates that multiple cable modems may be used to increase backhaul capacity.
  • a bank of aggregation routers 560 and 564 lie between the set of cable modems (324, 325, and 326) and the set of central modems (520, 524, and 528).
  • each user's traffic may be aggregated across multiple cable modems or, alternatively, groups of users may be assigned to particular modems - either automatically according to usage or under the control of a traffic manager. Note that the ratio of cable modems to central modems does not need to be one to one under this configuration.
  • FIGURE 12 illustrates that the backhaul may be achieved by a mix of: a cable modem 324, a fiber interface 536, and a wireless interface 540.
  • FIGURE 12 also illustrates that the system may be attached to a Local Area Network 568.
  • An example of this configuration could be that of a university dormitory application in which the users require access to their university laboratory/office network and Internet access for web browsing, web entertainment services or perhaps video teleconference services.
  • an alternative embodiment of the disclosed topologies can use Ethernet or some other communication protocol for the communications with the user's computer 420.
  • PPP over Ethernet PPPoE
  • PPPoE PPP over Ethernet
  • element 512 in FIGURE 5 might not perform a conversion from Ethernet to PPPoE but would still perform the local value add functions.
  • FIGURE 5 shows elements 512, 516, 520, 524, and 528 as separate elements. These elements may be part of a common box with some elements existing as cards in the box.
  • the invention was disclosed in context of one or more passive distribution networks. Those of skill in the art will recognize that the present invention can be applied to a. network with certain active devices by bypassing the active devices in a matter analogous to what was done to effectively route the data transmissions around the television channel amplifier 312.

Abstract

A set of system configurations adapted to provide data communications to and from a set of client modems (408) connected to one or more central modems (520, 524, 528) through one or more tree and branch networks (320, 321, 322) such as found in buildings, hotels, multiple dwelling units and the like to distribute cable television signals to individual rooms. The set of one or more central modems is connected directly or indirectly to one or more networks such as the Internet. Optionally, some components of this system can be placed at the cable television head-end 100 for ease of access for maintenance.

Description

CAPACITY SCALING AND FUNCTIONAL ELEMENT REDISTRIBUTION WITHIN AN IN-BUILDING COAX CABLE INTERNET ACCESS SYSTEM
The present application claims priority from co-pending U.S. Provisional
Application Serial No. 60/226,505 filed on August 21, 2000.
The present application builds on concepts described in co-pending U.S. patent application Serial No. 09/818,378 for Architecture and Method for Automatic Distributed Gain Control for Modem Communications based upon U.S. Provisional Application Serial No. 60/193,855 filed on March 30, 2000.
This application also builds upon concepts described in co-pending U.S. Patent Application Serial No. 09/482,836 for High Speed Data Communications Over Local Coaxial Cable based upon U.S. Provisional Application Serial No. 60/115,646 filed on January 13, 1999. For the convenience of the reader, applicant has added a number of topic headings to make the internal organization of this specification apparent and to facilitate location of certain discussions. These topic headings are merely convenient aids and not limitations on the text found within that particular topic. In order to promote clarity in the description, common terminology for components is used. The use of a specific term for a component suitable for carrying out some purpose within the disclosed invention should be construed as including all technical equivalents which operate to achieve the same purpose, whether or not the internal operation of the named component and the alternative component use the same principles. The use of such specificity to provide clarity should not be misconstrued as limiting the scope of the disclosure to the named component unless the limitation is made explicit in the description or the claims that follow.
BACKGROUND
The demand for High-Speed Internet Access (HSIA) is driving the telecommunications industry like few forces have in the past. While the Cable and Telephone industry position their networks for the future, ever-changing technology has previously made it both costly and risky to invest in new delivery systems.
Most current approaches for delivery of Internet services in MDUs ("Multiple Dwelling Units") utilize telephone wiring in "data above voice" configurations. Such approaches usually require selective identification and disconnection of each telephone pair and the insertion of a modem function at the central end of the telephone loop. Such intrusive installation is both costly and time consuming. A second modem is required at the user end of the telephone pair to connect to the user's PC ("Personal Computer") or in-home network. Since MDU telephone wiring generally has a worse inter-pair crosstalk performance than that of outside wiring and suffers considerable electrical ingress interference, data is usually inserted on the telephone loop within the building to ensure adequate performance. The high frequency loss of longer telephone loops between the central office and the MDU considerably limits potential two-way transmission speed for longer telephone loops. The use of low-cost wireless data transmission works well where the distances are short and spectrum is abundant. However, for densely populated MDUs, this is not usually the case.
THE PRESENT CABLE ENVIRONMENT
Cable modem Internet service has now penetrated well over one million residences and has become extremely popular due to its exceptional speed. However, the introduction of cable modem service in MDUs is problematic due to the complex and irregular topology of the TV coax wiring and the sharing of limited available upstream bandwidth. In addition, points of ingress interference in MDU coax distribution and home wiring are very difficult to locate and particularly difficult to isolate. Such ingress interference can cause failure of two-way services to all users in an MDU and potentially other users upstream of the MDU on the Hybrid Fiber-Coax (HFC) network.
Both cable modem and telephone loop data modems are usually interfaced to the PC using an Ethernet lObaseT connection. This requires that a Network Interface Card (NIC) be installed in each PC and the PC network software configured. Since average PC users are not usually technically skilled, this installation and/or configuration is frequently performed by the Cable or Telephone network provider. In this way, the network provider becomes potentially liable for problems in the PC, often when the trouble is not related to the network provider's work. While this issue can be alleviated in some cases by use of USB ("Universal Serial Bus standard") ports, a large proportion of PCs are not so equipped. In hotel/motel situations, users do not generally require networking between themselves and are rarely adept or willing to reconfigure their PCs each time they rent a room or return to their home or office. Coax distribution systems such as those found in MDUs, hotels, hospitals, and university campus facilities, which can be served by Cable, Satellite or Broadcast network operators, are usually configured as passive "tree and branch" systems using splitters and/or relatively long coax runs with taps or couplers arranged to serve the apartments or rooms. Such passive distribution arrangements frequently serve from 30 to 100 rooms or apartments and are arranged such that the TV signal levels fed to each apartment or hotel room are typically within a 10 dB range. These coax distribution systems typically have losses in the range of 15 dB to 45 dB (at typical MDU TV service frequencies) and are usually fed from a centralized one-way broadband TV channel amplifier to ensure adequate signal levels for the users. Larger high-rise MDUs and hotels usually have a number of centralized amplifiers each feeding a passive coax distribution sub-system serving separate areas or floors of the building.
THE OPPORTUNITY
The spectrum utilized for MDU TV services usually lies below 750 MHz, whereas the components used in the distribution of these services, such as coax cable, can handle frequencies beyond 1 GHz. Passive splitters and couplers (collectively called "joiner devices"), although usually only rated for use in the TV bands, generally perform adequately in terms of loss and/or port isolation when carrying robust digital signals of up to 1 GHz. When operating at these frequencies, the loss per unit length of the in-building coax wiring, rather than being a problem, helps attenuate echoes thus permitting the use of much simpler equalization in digital receivers.'
In addition, ingress interference is very much less at frequencies above those of TV channels, and being contained by the one-way characteristic of the central TV channel amplifiers — at least at the TV downstream channel frequencies and higher, any ingress interference is nreventerl from exiting the MDTT and interfering with the HFC cable frequencies of 1 GHz and below. This available 100 MHz of available spectrum is plenty to serve the statistical two-way Internet access needs of 50 to 100 users or client modems. If higher capacity is needed, additional downstream spectra can be allocated in bands between 1 GHz and about 1.6 GHz provided that higher frequency specified splitters are substituted; higher capacity can also be obtained by moving down in the frequency spectrum. Such higher uni-directional capacity can provide for additional digital video- on-demand (VOD) services, in either Internet Protocol (IP) format or in native MPEG2 format. The frequencies within the range of 850 MHz to 950 MHz are useful in most preferred embodiments for upstream transmission. The use of this single upstream spectrum provides adequate traffic capacity and simplifies control.
BRIEF SUMMARY OF DISCLOSURE
This disclosure builds on the teachings of the '378 and the '836 applications referenced above which takes advantage of the topology and performance of a in-building coax distribution to provide HSIA services. More specifically, this disclosure adds to the previous disclosures by identifying a number of shared coax distribution Internet access configurations to promote economical capacity scaling and topological re-distribution of functions aimed at extending the breadth of application and economical deployment of Internet access and other data/telephony and video services within hotels, large and small multi-dwelling/multi-tenant environments. It is an object of the present invention to distribute data to a set of local modems at the distal end of a multipoint network such as coaxial tree and branch cable television distribution network to allow for the two way communication between devices connected to the local modems and a set of one or more central modems while making use of existing distribution network components used for the distribution of cable television signals.
It is a further object of this invention to provide options for efficient capacity scaling to compensate for increases in one or more types of data over the multipoint network.
It is a further object of this invention to provide options for moving one or more functions from the building with the distribution network to the cable head-end in order to reduce costs and maintenance trips to the individual building. These and other advantages of the present invention are apparent from the detailed description that follows.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is provided for reference purposes and illustrates the basic system as described in co-pending U.S. patent application Serial No. 09/818,378 for Architecture and Method for Automatic Distributed Gain Control for Modem Communications.
FIGURE 2 is a simplified version of a portion of FIGURE 1 whose functional drawing elements are re-used within FIGURES 3 to 12.
FIGURE 3 shows how the hub 328 can be connected via a splitter 506 to three separate diplexers (316, 317, and 318). The diplexers combines the output of the hub 328 and the output from the TV channel amplifier 312 to provide Internet service from the single hub 328 and CATV service from the amplifier 312 to a number of separate passive coax distribution networks (320, 321, and 322).
FIGURE 4 shows a very high capacity configuration in which the Internet backhaul service is provided via three pairs of cable modems and hubs (324/328, 325/329, and
326/330) by splitter 508. Thus, each of the three small distribution networks (320, 321, and 322) has it's own cable modem and hub (324/328, 325/329, and 326/330).
FIGURE 5 shows a configuration where the combination of functions performed by the hub 328 (FIGURES 1-4) can be divided across a central server 512 and multiple server- modems (520, 524, and 528) through use of a router or switch 516 connecting the central server to the server modems.
FIGURE 6 uses a configuration similar to FIGURE 5 but has independent sources for TV and Internet backhaul services. Rather than have one source that provides both, as shown by cable 304 in FIGURES 1-5, FIGURE 6 receives the TV signal from source 532 and connects with the Internet via fiber interface 536.
FIGURE 7 uses a configuration similar to FIGURE 5 but has independent sources for TV and Internet backhaul. Rather than have one source that provides both as shown by cable 304 in FIGURES 1-5, FIGURE 7 receives the TV signal from source 532 and connects with the Internet via wireless interface 540. FIGURE 8 illustrates a cable head-end containing a coaXmedia server, which has been migrated from a small hotel or small MDU system in order to reduce costs and maintenance trips. FIGURE 9 shows a serverless configuration that may be used in conjunction with the head-end shown in FIGURE 8. FIGURE 9 uses a splitter 506 as shown in FIGURE 3 in order to use a single central modem 520 to service several sparsely loaded networks (320, 321, and 322). FIGURE 10 illustrates an alternative configuration for use with a cable head-end such as shown in FIGURE 8, using a router or switch to connect the Internet backhaul to several central modems.
FIGURE 11 illustrates that multiple cable modems (324, 325, and 326) maybe used to increase backhaul capacity. FIGURE 12 illustrates that the backhaul may be achieved by a mix of cable modem 324, fiber interface 536, and wireless interface 540. FIGURE 12 also illustrates that the system may be attached to a Local Area Network 568.
DETAILED DESCRIPTION OF THE DISCLOSED EMBODIMENT
ARCHITECTURE FIGURE 1 illustrates the overall architecture. FIGURE 1 can be subdivided into four clusters of components. The first cluster is Cable-TV (CATV) head-end equipment 100. The second cluster is the Hybrid Fiber-coax (HFC) Distribution Network 200. The third cluster is the premises coax distribution equipment 300 which could exist in either an MDU or an analogous situation such as a hotel. The final cluster is the cluster of equipment in the user's room 400. Clusters 300 and 400 contain elements of the present invention. In keeping with industry conventions, the CATV head-end and the Internet are the upstream end of FIGURE 1 for cable TV and IP data respectively. The television set or computer in the user's room are the downstream points. Upstream data transmissions travel upstream towards the upstream end. Downstream transmissions travel downstream towards the downstream end. Thus a component on a data path receives a downstream data transmission from its upstream end and an upstream data transmission from its downstream end.
The contents of the individual clusters are described below. In cluster 100, a cable TV signal is provided to the HFC distribution network 200 via connection 104. The source of the cable TV signal may be from conventional equipment represented by CATV Service Elements 108 connected to one leg of joiner device 106. Digital communication signals from Internet 504 travel through Internet connector cable 112. to Router 116, which is in communication with Internet Service Management 120. The digital communication signals pass through the Cable Modem Termination System 124 and joiner device 106 when moving downstream from the Router 116 to the connection 104 to the HFC Distribution Network 200. The description of selected elements of the CATV head-end is to provide context for the present invention and does not constitute a limitation or required elements for the present invention.
In cluster 300, the incoming signal from the HFC Distribution Network 200 is carried on cable 304 to joiner device 308 such as a directional coupler. The joiner device 308 is connected to the input of TV Channel Amplifier 312. The Output of TV Channel Amplifier 312 is passed to the low pass port of a diplexer 316 and then to set of one or more joiner devices forming the tree and branch distribution network 320 terminating at a series of TV coax Receptacles 404. Note that care must be taken in selecting diplexers so that the operating range of the diplexer includes the relevant range above the frequencies normally used for cable television channels. The technology for tree and branch networks suitable to distribute Cable TV signals is well known to those of skill in the art. Thus, in order to avoid unnecessary clutter, the tree and branch network 320 is shown with just a few joiner devices and connecting cables rather than the full set of components for a tree and branch network. In a typical application the tree and branch network 320 would be connected to 50 or more coax receptacles 404.
Joiner device 308 and diplexer 316 form a parallel path around the TV Channel Amp 312. This parallel path has a cable modem 324 at the upstream end and data hub 328 ("hub") at the downstream end of the parallel path. Thus the use of the splitter and combiner allows signal to go to the TV Channel amp 312 and the cable modem 324. 316 is used to combine the amplified CATV signal and the data signal to pass them together down to the distribution network. As described in the '836 application referenced above and in the text below, the data hub 328 performs several functions for the various client modems 408. Several major functions of the hub are represented in FIGURE 1 as Network Interface Card ("NIC") 340, Protocol Converter 336, and RF Modem 332. The hub 328 handles the buffering for both the upstream and downstream communications as well as managing the various client modems so that there is not bus contention on the upstream channel. Within cluster 400, a client modem 408 connects to a diplexer 406. A diplexer 406 is connected to the coax receptacle 404. A conventional TV coax cable 412 to connects a television 416 to the low pass port on the diplexer 406. A client modem 408 is connected to the high pass port on the diplexer 406. In subsequent figures the client modem 408 is shown as a sand dollar in deference to the assignee's name for this device. The user may connect a downstream device 420 to the data cord 424 of client modem 408 with the appropriate port connector for connection to the user's downstream device 420 such as a personal computer ("PC") as shown in FIGURE 1. While the downstream device 420 is likely to be either a desktop or laptop personal computer, it could be some other device capable of interfacing with an external source of digital data. One such example is the range of devices known as PDAs ("Personal Digital Assistants"). Thus, the present invention allows for communication between the downstream device 420 and the Internet 504 through substantial use of existing infrastructure used to deliver cable TV signals to user's television 416. In this arrangement, a single DOCSIS-compliant off-shelf cable modem 324 is used to serve the statistical data needs of multiple users connected via a passive in- building coax distribution system.
At the user or client ends of the system a very simple modem interface is used to interface to the user's computer 420 via its existing serial, parallel or USB port. In this way, no NIC card or network configuration is required in the users PC. Point-to-Point Protocol (PPP) is carried on RF channels on the in-building coax distribution 320 to a central RF modem 332 within the hub 328. Note that PPP is the current preferred embodiment but other protocols can be used in lieu of PPP.
A protocol converter 336 is provided between this central RF modem 332 and the shared DOCSIS-compliant cable modem 324. This protocol converter 336 translates the data format between the Point-to-Point Protocol (or some other protocol) used by the PC and the IP used by the DOCSIS Cable modem's Ethernet port. Thus any IP protocol, such as TCP/IP, UDP/IP, etc., is carried transparently to and from the Internet 504. Special prioritization is available for low-latency requirement traffic, such as IP voice or multimedia, in both directions of transmission.
The protocol converter 336 also acts as a proxy server (if required) in order to connect the many client modems and their PCs to one or a few DOCSIS-compliant cable modems (to avoid clutter, FIGURE 1 shows a single cable modem). This involves providing IP addresses to the PCs in response to PPP connection requests. The protocol converter 336 translates single or multiple socket addresses that uniquely identify multiple sessions or windows running within each PC, in order to present unique socket addresses to servers that exist on the IP network 504. If desired, the many client-PC's can be made to appear, from a head-end service management perspective, as though they are connected via individual cable modems. Thus a function is provided in the head-end that collects associated user-PC MAC and assigned IP address information from the protocol converter and presents this as an interface to Internet head-end service management 120 that also manages single-user cable Modem services.
RF TRANSMISSION
One embodiment uses 15 Msymbol/sec Binary Phase Shift Keying ("BPSK") or Quadrature Phase Shift Keying ("QPSK") modulation in a single downstream "channel" with a center frequency of approximately 970 MHz. Higher symbol rates are planned which could offer at least 30 Mb/s net downstream data capacity. Current embodiments use center frequency of 980 MHz to 985 MHz. The specific center frequency is not critical as long as it is in the band of frequencies set forth in this description and is not subject to interference from other sources.
The downstream signal is transmitted continuously and formatted in a standard MPEG2/DVB structure. The MPEG2 frames comprise a framing (47 hex) / super- framing (inverted 47 hex) byte, 187 information bytes and 16 forward error correcting (FEC) bytes - a total of 204 bytes. Certain reserved MPEG2 "Packet IDentification" (PJJD) codes are used to indicate that the following information bytes are data of a particular type rather than digital video or idle frames. Conventional synchronized scrambling is employed for spectral reasons and the
16-byte FEC field is always used or reserved for error correction. These structures facilitate the use of the same industry-standard off-shelf set-top technologies in both data and digital TV applications. Frame interleaving, while available, is not used in in- building passive coax distribution as this would delay latency-sensitive traffic and is not necessary for error protection purposes.
In one embodiment, upstream transmission in the in-building coax uses a BPSK modulated 915 MHz RF signal carrying a 15 Mb/s digital stream. Upstream transmission is only permitted from one client modem at a time as specified by downstream "polling" contained in the downstream data control envelope. Thus, there is no collision of upstream signals. The upstream signal comprises a preamble signal that is ramped up in level followed by a sync byte. A scrambled client modem source address, a length field and then data follow this preamble. The length of the data field is dependent on how much is requested by the central modem or the remaining amount of upstream data buffered in the client modem. As in the downstream direction, special provision is made for the needs of low-latency traffic.
COAX PATH LOSS COMPENSATION
Path losses between each client modem 408 and the central RF modem 332 will have a wide variation due to the coax distribution topology and loading variations. The system is designed to accept losses of 40 dB or more.
Loss variations in the downstream direction are compensated by an automatic gain control ("AGC") function contained in each client modem receiver.
The upstream AGC method involves adjusting each of the client modem transmitters such that their signals, upon arrival at the upstream receiver in the central modem, are approximately equal.
Each time a data burst is sent to a client modem 408 an extra bit is included which indicates if the previous transmitted burst from that client modem was above or below the ideal level required at the receiver within the central RF modem 332. This bit is used by the client modem 408 to slightly adjust, either upward or downward, the level of its next transmitted burst. Thus all signals received by the central RF modem 332 from every client modem become aligned in level and cycle upward and downward by a small amount. This is an ideal situation since the upstream BPSK receiver has a much wider acceptable input signal range than the small level variations received. Control systems of this type are fast to react to changes in transmission path attenuation and are intrinsically stable.
TECHNOLOGIES
One embodiment of the present invention uses available low-cost, commercial RF and digital technologies. Alternative embodiments include a client modem receiver that uses tuner/demodulator chipsets commonly used in satellite set-top boxes. One alternative embodiment calls for moving most functions into a pair of custom chips; one a small RF analog chip, the other a semi-custom chip containing the digital functions. This technology evolution will result in a client modem the size of a small cellular phone that may become part of a coax cord assembly and consume very little power.
The hub 328 is presently constructed using a normally rack-mounted, low cost, PC motherboard equipped with an RF/protocol board 336 and one or more lObaseT NIC interfaces 340. This may be mounted, together with one or more off-shelf cable modems 324, on a wall adjacent to the existing building TV distribution amplifier 312. Those of skill in the art recognize that a variety of server platforms choices exist, which can be configured with or without disks.
INSTALLATION
As illustrated in FIGURE 1, the central installation requires only the addition of two coax joiner devices 308 and 312 to which are attached a conventional cable modem 324 and the hub 328. The client modems are simply introduced, by the end-user, between the TV coax receptacle 404 and TV set 416 (if any). An associated transformer cube (not show in FIGURE 1) is then plugged into a convenient power receptacle and the data cord 424 plugged into the user's PC. No network-stack configuration of the PC is required, thus offering a real plug-and-play high-speed Internet access service.
SUMMARY OF BASIC CONFIGURATION
The system presents an economic approach for MDU or hotel high-speed Internet access that works well over existing in-building coax.
This system is DOCSIS-compliant as seen from the head-end networking elements, consistent with existing cable modem operation and service practices and yet offers easy end-user attachment without PC reconfiguration or installation of an Ethernet NIC card in the user's PC. The per-MDU common equipment installation is extremely simple and there is no need for a .truck-roll, or appointment to provide service to each customer. Indeed, client modems can be mailed and are easier to hook-up than a VCR.
The approach isolates internal MDU ingress interference from the main HFC network and provides improved bandwidth management and efficiency, particularly in the upstream or return direction. Multi-megabit Internet access is achieved via the PC's existing parallel or USB port using a simple "enabler" that places a connection icon on its desktop and activates the PC's existing PPP direct connection facility. The "enabler" can be loaded from the hub 328 via the PC's existing serial connector — no floppy disks or CDs.
ALTERNATIVE CONFIGURATIONS
In order to highlight the differences between the base configuration described above and a variety of alternative configurations, FIGURE 2 is a simplified version of the relevant portion of FIGURE 1. Note that the multiple levels of splitters found in tree and branch network 320 are shown simply as a single element with 50 terminal branches. In FIGURE 2, the coax distribution network 320 is shown with branches 1, 2, 3, 48, 49, and 50 labeled. Subsequent depictions of coax distribution networks will merely show lines representing the multitude of terminal branches. The specific number 50 is provided simply to illustrate the environment and does not form a limitation of the present invention.
FIGURE 3 shows how the hub 328 can be connected via a splitter 506 to three separate diplexers (316, 317, and 318). The diplexers connect the hub 328 and the output from the TV channel amplifier 312 to provide Internet service from the single hub 328 to a number of separate passive coax distribution networks (320, 321, and 322). This arrangement provide a very economical distribution to a large number of rooms or living units when the percentage subscription is low or where the capacity of service per user is managed to a lower data rate - with a potentially lower tariff. Note that the use of three diplexers and three passive coax distribution networks is for purposes of illustration. This arrangement would work with two or more diplexers/distribution networks as long as the aggregate use of the hub 328 was within the engineering limits of the hub and an acceptable quality of service for the end users. Note further, that the invention does not rely on the use of a single TV channel amplifier 312. The amplification could be performed by a series of amplifiers or by a set of parallel amplifies such that not all diplexers receive an amplified television signal from the same TV channel amplifier. FIGURE 4 shows a very high capacity configuration in which the incoming
Ethernet signal transmission are distributed to three pairs of cable modems and hubs (324/328, 325/329, and 326/330) by splitter 508. Thus, each of the three small networks (320, 321, and 322) has its own cable modem and hub (324/328, 325/329, and 326/330). FIGURE 4 might be appropriate for a relatively high usage rate such as 20 users per 50 port network.
Note again that the invention is not limited to configurations with only three pairs of cable modems and hubs. There could be any number of two or more. The configuration of FIGURE 4 could be combined with the configuration of FIGURE 3 to allow several low usage/low quality of service networks to share one hub while other high usage/high quality of service networks operate off a separate modem/hub pair.
FIGURE 5 shows a configuration where the combination of functions performed by the hub 328 (FIGURES 1-4) can be divided across a central server 512 and multiple server-modems (520, 524, and 528) through use of a router 516 connecting the central server to the server modems. In one preferred embodiment the allocation of functions is as follows. The central server 512 performs the conversion of Ethernet to PPP over Ethernet (PPPoE), when required, and other local value-add functions. The individual server-modems (520, 524, and 528) perform the tasks associated with polling the client modems and buffering the data in addition to the modulating and demodulating tasks. An acceptable piece of equipment for use as the router 516 is a Linksys Router Model BEFSR41 (manufactured by Linksys of Irvine, CA 92614). Those of skill in the art can substitute other routers or suitable switches.
The configuration in FIGURE 5 offers an economical approach and allows, for example, local communication between users served from separate passive coax distribution systems. While the system illustrated in FIGURE 3 intrinsically provides local communication between passive coax distribution networks, the system illustrated in FIGURE 5 offers much higher capacity for local communications.
FIGURE 6 uses a configuration similar to FIGURE 5 but has independent sources for TV and Internet backhauls. Rather than have one source that provides both as shown by cable 304 in FIGURES 1-5, FIGURE 6 receives the TV signal from source 532 and connects with the Internet via fiber interface 536.
FIGURE 7 uses a configuration similar to FIGURE 5 but has a split source of TV and Internet. Rather than have one source that provides both as shown by cable 304 in FIGURES 1-5, FIGURE 7 receives the TV signal from source 532 and connects with the Internet via wireless interface 540.
FIGURE 8 illustrates a cable head-end that contains a central server 512 that has been migrated from a small hotel or small MDU system in order to reduce costs and maintenance trips. This has particular value in garden-home MDU environments where each building has perhaps only 8 or so living units. It should be noted that the protocol carried via the cable modem (or other means) can be PPP over Ethernet or Ethernet. This PPPoE protocol is a public standard. More specifically, FIGURE 8 shows a hybrid fiber-coax CATV network 200 connected to coupler 544. One port of the coupler 544 is connected to a TV channel modulator bank 548 that is connected to an antenna 552. Another port on the coupler 544 is connected to a cable modem termination system (CMTS) 124. The CMTS 124 is connected to router 116 that is connected to Internet 504. A second parallel path between the CMTS 124 and the router 116 runs through the central server 512 that performs the conversions between Ethernet and PPP over Ethernet and other value-add functions. The description of selected elements of the CATV head-end is to provide context for the present invention and does not constitute a limitation or required elements for the present invention, but provides context for the placement of the central server at the CATV head- end.
FIGURE 9 shows a serverless configuration that may be used in conjunction with the head-end shown in FIGURE 8. FIGURE 9 uses a splitter 506 as shown in FIGURE 3 in order to use a single central server 520 to service several sparsely loaded networks (320, 321, and 322). FIGURE 10 illustrates an alternative configuration for use with a Cable head-end such as shown in FIGURE 8. FIGURE 10 can be modified to include a local MPEG-2 video server (not shown) whose traffic may be interleaved with that of Internet data. Such an application justifies very high local capacity in a situation where the access backhaul is of limited capacity, such as that provided by a single cable modem. FIGURE 11 illustrates that multiple cable modems may be used to increase backhaul capacity. In contrast to FIGURE 4, a bank of aggregation routers 560 and 564 lie between the set of cable modems (324, 325, and 326) and the set of central modems (520, 524, and 528). Depending on the type of router used each user's traffic may be aggregated across multiple cable modems or, alternatively, groups of users may be assigned to particular modems - either automatically according to usage or under the control of a traffic manager. Note that the ratio of cable modems to central modems does not need to be one to one under this configuration. FIGURE 12 illustrates that the backhaul may be achieved by a mix of: a cable modem 324, a fiber interface 536, and a wireless interface 540. Those of skill in the art will recognize that other interfaces may be used within the scope of this invention. For example the cable modem could be replaced by one or more xDSL modems. FIGURE 12 also illustrates that the system may be attached to a Local Area Network 568. An example of this configuration could be that of a university dormitory application in which the users require access to their university laboratory/office network and Internet access for web browsing, web entertainment services or perhaps video teleconference services.
CONCLUDING REMARKS
Those skilled in the art will recognize that the methods and apparatus of the present invention has many applications and that the present invention is not limited to the specific examples given to promote understanding of the present invention. Moreover, the scope of the present invention covers the range of variations, modifications, and substitutes for the system components described herein, as would be known to those of skill in the art. For example, an alternative embodiment of the disclosed topologies can use Ethernet or some other communication protocol for the communications with the user's computer 420. PPP over Ethernet (PPPoE) is the current preferred protocol but this will vary over time as the functionality present in laptop computers evolves. Thus, for example, element 512 in FIGURE 5 might not perform a conversion from Ethernet to PPPoE but would still perform the local value add functions.
The figures described above are designed to illustrate at a high-level the functional elements in system layouts. The drawings are not intended to set forth which components exist in separate boxes and which are combined in a common box. For example, FIGURE 5 shows elements 512, 516, 520, 524, and 528 as separate elements. These elements may be part of a common box with some elements existing as cards in the box.
The invention was disclosed in context of one or more passive distribution networks. Those of skill in the art will recognize that the present invention can be applied to a. network with certain active devices by bypassing the active devices in a matter analogous to what was done to effectively route the data transmissions around the television channel amplifier 312.
The legal limitations of the scope of the claimed invention are set forth in the claims that follow and extend to cover their legal equivalents.

Claims

Claims:
1. An architecture of components to provide for two-way data communication between at least one central modem and a set of client modems attached at the distal ends of a in-building coax distribution network, the distribution network adapted to distribute cable television signals, the architecture comprising: a) At least one signal amplifier for amplifying television signals in a first frequency band; b) at least one central modem for transmitting data to the set of client modems for receiving upstream transmissions from individual client modems, the upstream and downstream transmissions occurring in frequency bands above the first frequency band; c) at least one network access device for a. transmitting data upstream from one of the at least one central modem to a network, the central modem having received the data transmission from one of the client modems and the client modem having received the data from a device downstream of the client modem, and b. receiving downstream transmissions of data from the network for conveying to the central modem which in turn conveys the data to the client modems for use by at least one device downstream of a client modem; and d) at least one diplexer for combining an output from one of the at least one signal amplifiers with the upstream and downstream transmissions between the at least one central modem and the client modems.
2. The architecture of claim 1 wherein the transmission conveyed downstream from the at least one network access device to the at least one central modem undergoes a protocol conversion between the network access device and the central modem.
3. The architecture of claim 1 wherein a first network access device is in communication with a first central modem which is in communication with a first diplexer and a second diplexer, the first diplexer connected to an output of one of the at least one signal amplifier and to a first distribution network with a first set of client modems, the second diplexer connected to an output of one of the at least one signal amplifiers and to a second distribution network with a second set of client modems.
4. The architecture of claim 1 wherein a first network access device is in communication with: a) a first central modem which is connected to a first diplexer, the first diplexer connected to an output of one of the at least one signal amplifiers and to a first distribution network with a first set of client modems; and b) a second central modem which is connected to a second diplexer, the second diplexer connected to an output of one of the at least one signal amplifiers and to a second distribution network with a second set of client modems.
5. The architecture of claim 4 wherein the first network access device and the second network access device are cable modems which access the Internet through a connection located at the cable head-end.
6. The architecture of claim 1 wherein a first network access device is in communication with a central server, the central server is in communication with a) a first central modem which is connected to a first diplexer, the first diplexer connected to an output of one of the at least one signal amplifiers and to a first distribution network with a first set of client modems; and b) a second central modem which is connected to a second diplexer, the second diplexer connected to an output of one of the at least one signal amplifiers and to a second distribution network with a second set of client modems; such that one central server serves at least two distribution networks.
7. The architecture of claim 6 wherein the central server performs protocol conversions so that downstream transmissions are converted from Internet Protocol into a Point-to-Point Protocol.
8. The architecture of claim 1 wherein a central server is placed with the cable headend equipment and connected with the cable head-end equipment such that the downstream output from the cable head-end includes cable television channels, data communications to third party cable modems, and data communications from the central server to at least one network access device.
9. The architecture of claim 8 wherein the data communications from the central server are in a point-to-point protocol.
10. The architecture of claim 1 wherein at least two network access devices are connected to a first router, the first router is connected to a second router, and the second router is connected to: a) a first central modem which is connected to a first diplexer, the first diplexer connected to an output of one of the at least one signal amplifiers and to a first distribution network with a first set of client modems; and b) a second central modem which is connected to a second diplexer, the second diplexer connected to an output of one of the at least one signal amplifiers and to a second distribution network with a second set of client modems.
11. The architecture of claim 10 wherein the first network access device is connected to a first network and the second network access device is connected to a second network.
12. The invention as described and illustrated in the specification and referenced figures.
PCT/US2001/026068 2000-08-21 2001-08-21 Capacity scaling and functional element redistribution within an in-building coax cable internet access system WO2002017041A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR10-2003-7002601A KR20030026350A (en) 2000-08-21 2001-08-21 Capacity scaling and functional element redistribution within an in-building coax cable internet access system
EP01966036A EP1323012A2 (en) 2000-08-21 2001-08-21 Capacity scaling and functional element redistribution within an in-building coax cable internet access system
AU2001286580A AU2001286580A1 (en) 2000-08-21 2001-08-21 Capacity scaling and functional element redistribution within an in-building coax cable internet access system
MXPA03001490A MXPA03001490A (en) 2000-08-21 2001-08-21 Capacity scaling and functional element redistribution within an in-building coax cable internet access system.
JP2002521669A JP2004507915A (en) 2000-08-21 2001-08-21 Scaling of capacity and redistribution of functional elements within in-building coaxial cable Internet access systems
CA002419571A CA2419571A1 (en) 2000-08-21 2001-08-21 Capacity scaling and functional element redistribution within an in-building coax cable internet access system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22650500P 2000-08-21 2000-08-21
US60/226,505 2000-08-21

Publications (3)

Publication Number Publication Date
WO2002017041A2 true WO2002017041A2 (en) 2002-02-28
WO2002017041A3 WO2002017041A3 (en) 2002-04-25
WO2002017041A9 WO2002017041A9 (en) 2002-05-16

Family

ID=22849190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/026068 WO2002017041A2 (en) 2000-08-21 2001-08-21 Capacity scaling and functional element redistribution within an in-building coax cable internet access system

Country Status (8)

Country Link
EP (1) EP1323012A2 (en)
JP (1) JP2004507915A (en)
KR (1) KR20030026350A (en)
CN (1) CN1448027A (en)
AU (1) AU2001286580A1 (en)
CA (1) CA2419571A1 (en)
MX (1) MXPA03001490A (en)
WO (1) WO2002017041A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040015997A1 (en) * 2002-07-22 2004-01-22 Ahmad Ansari Centralized in-home unit to provide video and data to multiple locations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642155A (en) * 1994-09-14 1997-06-24 Cheng; Alexander L. Method and apparatus for supporting two-way telecommunications on CATV networks
US5805591A (en) * 1996-02-28 1998-09-08 Ericsson Raynet Subscriber network interface
US5935209A (en) * 1996-09-09 1999-08-10 Next Level Communications System and method for managing fiber-to-the-curb network elements
US5959658A (en) * 1996-11-12 1999-09-28 At&T Corp Network apparatus and method to provide compressed digital video over mini-fiber nodes
US6151559A (en) * 1997-06-21 2000-11-21 Williams; Thomas H. System and method for characterizing undesirable noise of a signal path within a selected frequency band

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408259A (en) * 1993-12-30 1995-04-18 Northern Telecom Limited Data modulation arrangement for selectively distributing data
US6282189B1 (en) * 1997-04-14 2001-08-28 Next Level Communications, L.L.P. Unified access platform for simultaneously delivering voice and cell-based services
US6481013B1 (en) * 1998-11-09 2002-11-12 Peracom Networks, Inc. Entertainment and computer coaxial network and method of distributing signals therethrough
US6581208B1 (en) * 1999-02-19 2003-06-17 Masprodenkoh Kabushikikaisha Up-converter and down-converter for in-building CATV system
US6418149B1 (en) * 1999-12-07 2002-07-09 Next Level Communications, L.P. Bi-directional premises wiring system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642155A (en) * 1994-09-14 1997-06-24 Cheng; Alexander L. Method and apparatus for supporting two-way telecommunications on CATV networks
US5805591A (en) * 1996-02-28 1998-09-08 Ericsson Raynet Subscriber network interface
US5935209A (en) * 1996-09-09 1999-08-10 Next Level Communications System and method for managing fiber-to-the-curb network elements
US5959658A (en) * 1996-11-12 1999-09-28 At&T Corp Network apparatus and method to provide compressed digital video over mini-fiber nodes
US6151559A (en) * 1997-06-21 2000-11-21 Williams; Thomas H. System and method for characterizing undesirable noise of a signal path within a selected frequency band

Also Published As

Publication number Publication date
WO2002017041A3 (en) 2002-04-25
EP1323012A2 (en) 2003-07-02
AU2001286580A1 (en) 2002-03-04
CA2419571A1 (en) 2002-02-28
CN1448027A (en) 2003-10-08
KR20030026350A (en) 2003-03-31
JP2004507915A (en) 2004-03-11
MXPA03001490A (en) 2004-12-13
WO2002017041A9 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
US7036140B2 (en) Capacity scaling and functional element redistribution within an in-building coax cable internet access system
US20010036199A1 (en) Architecture and method for automatic distributed gain control for modem communications over passive multipoint networks
EP1404057B1 (en) A distributed cable modem termination system (CMTS) architecture implementing a MAC chip
US7127734B1 (en) System and methods for home network communications
EP1394991B1 (en) A distributed cable modem termination system (CMTS) architecture
US7551610B2 (en) MiniMAC implementation of a distributed cable modem termination system (CMTS) architecture
US6011548A (en) System for integrating satellite boardband data distributed over a cable TV network with legacy corporate local area networks
US6493875B1 (en) In-home wireless
US7428238B2 (en) Broadband network bridging various wiring channels
US20080193137A1 (en) Method and apparatus for extending broadband communication services over a wireless link while protecting the network from performance degradations caused by the wireless link
US20030099228A1 (en) Local area and multimedia network using radio frequency transceivers and coaxial cable
WO2001080030A1 (en) System and methods for home network communications
EP1099349B1 (en) Method and apparatus for data communication
WO2001089123A9 (en) Data transmission system and method
JP2004526354A (en) Multi-band coaxial extender for in-building digital communication systems
US20060117361A1 (en) Data communications system using CATV network with wireless return path
EP1394989B1 (en) A distributed cable modem termination system (CMTS) architecture implementing a media access control chip
EP1323012A2 (en) Capacity scaling and functional element redistribution within an in-building coax cable internet access system
WO2000039948A1 (en) Wiring architecture for providing combined voice and vdsl service to residential buildings
Kos et al. CATV broadband technologies
Kos et al. New services over CATV network
Picker Design considerations for a hybrid fiber coax high-speed data access network
CA2413118A1 (en) Local area and multimedia network using radio frequency transceivers and coaxial cable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C2

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGE 3, DESCRIPTION, REPLACED BY CORRECT PAGE 3

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2419571

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/001490

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020037002601

Country of ref document: KR

Ref document number: 018144519

Country of ref document: CN

Ref document number: 2002521669

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001966036

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037002601

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001966036

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001966036

Country of ref document: EP