Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationWO2002019932 A1
Type de publicationDemande
Numéro de demandePCT/GB2001/003939
Date de publication14 mars 2002
Date de dépôt3 sept. 2001
Date de priorité5 sept. 2000
Autre référence de publicationEP1339338A1
Numéro de publicationPCT/2001/3939, PCT/GB/1/003939, PCT/GB/1/03939, PCT/GB/2001/003939, PCT/GB/2001/03939, PCT/GB1/003939, PCT/GB1/03939, PCT/GB1003939, PCT/GB103939, PCT/GB2001/003939, PCT/GB2001/03939, PCT/GB2001003939, PCT/GB200103939, WO 0219932 A1, WO 0219932A1, WO 2002/019932 A1, WO 2002019932 A1, WO 2002019932A1, WO-A1-0219932, WO-A1-2002019932, WO0219932 A1, WO0219932A1, WO2002/019932A1, WO2002019932 A1, WO2002019932A1
InventeursColin Charles Owen Goble, Nigel Mark Goble, Francis Amoah
DéposantGyrus Medical Limited
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes:  Patentscope, Espacenet
Electrosurgery system
WO 2002019932 A1
Résumé
An electrosurgery system for electrosurgically cutting or vaporising living tissue comprises an electrosurgical generator (10) having a pair of output terminals and an electrosurgical instrument (12) containing an electrode assembly (16). The electrode assembly has at least one treatment electrode (16A) and an adjacent return electrode (16B). the generator and the assembly are arranged to deliver to the treatment and return electrodes radio frequency (r.f.) energy simultaneously at at least two frequencies, one of which is in a lower frequency range of from 50kHz to 50MHz and the other of which is greater than 300MHz. The r.f. current delivered at the lower frequency is limited in order to restrict dissipation of power in the tissue at that frequency and to permit tissue cutting or vaporisation using energy delivered at the higher frequency.
Revendications  (Le texte OCR peut contenir des erreurs.)
1. An electrosurgery system for electrosurgically cutting or vaporising living tissue, comprising an electrosurgical generator and an electrode assembly having at least one treatment electrode and an adjacent return electrode, wherein the generator and the assembly are arranged to deliver to the treatment and return electrodes radio frequency (r.f.) energy simultaneously at at least two frequencies, one of which is in a lower frequency range of from 50kHz to 50MHz and the other of which is greater than 300MHz, the r.f. current delivered in the lower frequency range being limited such that the current-to-frequency ratio of energy delivered in the lower frequency range remains below a value of 17mA rms per 100kHz.
2. A system according to claim 1, arranged to deliver the said r.f energy to the electrode assembly at both of the two frequencies along a single feeder between the generator and the electrodes.
3. A system according to claim 1, comprising a generator unit having a pair of r.f. output terminals, an electrosurgical instrument which includes a handpiece, a shaft mounted in the handpiece and the electrode assembly located at a distal end of the shaft, and a feeder cable arranged to connect the generator unit output terminals to the handpiece, wherein the instrument includes a current limiting capacitor connected in series between the feeder cable and the treatment electrode for limiting the current at the lower frequency to the said current range.
4. A system according to claim 3, wherein the capacitor is located at the distal end of the shaft.
5. A system according to claim 4, wherein the shaft comprises at least a pair of supply conductors for delivering the r.f. energy to the electrode assembly, and wherein the capacitor is formed as the coaxial combination of an elongate inner conductor, a tubular heat-resistant dielectric tube around the inner conductor, and a tubular outer conductor around the dielectric tube, one of the said inner and outer conductors of the combination being connected to one of the supply conductors of the shaft and the other being connected to the treatment electrode.
6. A system according to claim 5, wherein the treatment electrode is monolithically integral with the capacitor inner conductor.
7. A system according to any of claims 3 to 6, wherein the capacitor has a value of 5pF or less.
8. A system according to claim 3, wherein the capacitor is located in the handpiece and has a value in the range of from 20pF to lOOpF.
9. A system according to claim 1 or claim 2, comprising a generator unit having a pair of output terminals, an electrosurgical instrument which includes a handpiece, a shaft mounted in the handpiece, and the electrode assembly located at the distal end of the shaft, and a feeder cable arranged to connect the generator unit output terminals to the handpiece, wherein the system includes a low frequency source to generate r.f. energy in the said lower frequency range, and a current limiting impedance coupled in series between the low frequency source and the feeder cable.
10. A system according to claim 9, wherein the current limiting impedance is a capacitor the value of the which is in the range of from 300pF to InF.
11. A system according to any preceding claim, including a balun associated with the electrode assembly, the balun being configured to operate at the said frequency greater than 300MHz.
12. A system according to claim 1 or claim 2, having a handheld electrosurgical instrument which includes an elongate shaft mounted in the handpiece, and the electrode assembly located at a distal end of the shaft wherein: the shaft comprises at least a pair of supply conductors forming a coaxial feeder structure for delivering electrosurgical r.f. energy from the generator to the electrode assembly; the treatment electrode is electrically coupled to an inner supply conductor of the shaft; the return electrode is electrically coupled to an outer supply conductor of the shaft and is set back from the treatment electrode; the shaft carries a balun adjacent the electrode assembly, the balun being electrically coupled to the outer supply conductor; and the shaft, the return electrode and the balun are covered in an insulative material.
13. A system according to claim 12, wherein the electrode assembly includes a current limiting capacitor in series between the inner supply conductor and the treatment electrode for limiting the current supplied to the electrodes at the lower frequency such that the said ratio remains within the said range.
14. A system according to claim 1, wherein the source impedance at the treatment electrode at an operating frequency in the lower frequency range is greater than 100 kilohm.
15. A system according to claim 1, wherein the current at an operating frequency in the lower frequency range is limited by means for increasing the source impedance at that frequency.
16. A system according to claim 15, wherein the current limiting means comprises a capacitance in series with the treatment electrode.
17. A system according to claim 16, wherein the current limiting means comprises a resonant impedance converter associated with an output of the generator.
18. A system according to claim 17, wherein the impedance converter comprises a parallel resonant circuit.
19. A system according to claim 17, including a coaxial feeder between the generator output and the electrode assembly, and wherein the impedance converter comprises an inductance associated with the generator output which resonates with the capacitance of the feeder at the operating frequency in the lower frequency range.
20. A system according to claim 19, wherein the generator is arranged such that the r.f. energy in the lower frequency range is pulse modulated.
21. A system according to claim 20, wherein the pulse duty cycle is at least 10%.
22. A system according to any preceding claim arranged such that the peak voltage in the lower frequency range when in a cutting/vaporisation mode is in excess of 500N.
23. A system according to any preceding claim, wherein the energy in the said lower frequency range is delivered at a frequency of 100kHz or higher.
24. A system according to any preceding claim, wherein the energy in the said lower frequency range is delivered at a frequency of 5MHz or below.
25. A system according to any preceding claim, wherein the r.f. current delivered in the lower frequency range remains below 50mA rms.
26. A method of operating an electrosurgical tissue cutting or vaporising system using an electrosurgical instrument having an active electrode and an adjacent return electrode, wherein the method comprises supplying to the electrodes radio frequency energy simultaneously at at least two frequencies, one of which is in a lower frequency range of 50kHz to 50MHz and the other of which is greater than 300MHz, the current in the lower frequency range whilst the instrument is set to operate in a tissue cutting or vaporising mode being such that the current-to-frequency ratio of energy delivered in the lower frequency range remains below a value of 17mA rms per 100kHz.
27. A method according to claim 26, including maintaining the current-to-frequency ratio below the said value by driving the active electrode from a source impedance which is between lOOkilohm and 500kilohm at the operating frequency in the lower frequency range.
28. A method according to claim 26 or claim 27, wherein the tissue cutting or vaporising mode is characterised by a peak voltage in the lower frequency range between 500N and 2000N.
29. A method of electrosurgically treating tissue using an electrosurgical instrument having an active electrode and an adjacent return electrode, comprising successively (a) cutting or vaporising tissue, and (b) coagulating tissue, wherein both steps (a) and (b) are performed by delivering radio frequency energy to the electrodes at a frequency greater than 300MHz, and wherein step (a) is characterised by simultaneously supplying r.f. energy at a frequency within a lower frequency range of from 50kHz to 50MHz, the r.m.s. current in the lower frequency range being limited to a value such that the current-to-frequency ratio of energy delivered in the lower frequency range remains below 17mA rms per 100kHz.
30. A method according to claim 29, wherein the r.f. energy delivered in the lower frequency range is pulsed, and the current-to-frequency ratio of energy delivered within each r.f. pulse burst in the lower frequency range remains below the said current-to-frequency ratio value.
31. A system according to claim 30, wherein the r.f. current in the lower frequency range during the pulse bursts remains below 50mA rms.
32. A method of electrosurgically cutting or vaporising tissue using an electrosurgery system which comprises an electrosurgical generator and an electrode assembly having at least a treatment electrode and an adjacent return electrode, wherein the method comprises bringing the treatment electrode to a position on or adjacent the tissue to be cut or vaporised, applying to the electrodes a first radio frequency (r.f.) signal component at at least one frequency in the range of from 50kHz to 50MHz to establish an arc between the treatment electrode and the tissue, and simultaneously applying to the electrodes a second r.f. signal component at at least one second frequency which is greater than 300MHz to cause a current at the second frequency to flow along the arc established by the first r.f. signal component, the level of the average current above 300MHz being at least on order of magnitude greater than the average current in the frequency range of from 50kHz to 50MHz during a cutting or vaporisation operation.
33. A method according to claim 32, wherein the average current in the frequency range of from 50kHz to 50MHz is small enough to have no clinical effect or negligible clinical effect on the patient in the absence of the second r.f. signal component.
Description  (Le texte OCR peut contenir des erreurs.)

Electrosurgery System

This invention relates to a radio frequency electrosurgery system and associated methods of operation.

It is known to use a needle or narrow rod electrode for cutting tissue in monopolar electrosurgery at frequencies in the range of 300kHz to 3MHz. An electrosurgical signal in this frequency range is applied to the electrode, and the electrical current path is completed by conduction through tissue to an earthing plate secured to the patient's body elsewhere. The voltage applied to the electrode must be sufficiently high to cause arcing and consequent thermal rupture so that tissue adjacent the needle is ablated or vaporised.

One problem with such a system is that the return path via the earthing plate can cause effects well beyond the treatment site. One of the objects of this invention is to provide for cutting or vaporisation of tissue without substantial effects of this kind.

According to a first aspect of' this invention, an electrosurgery system for electrosurgically cutting or vaporising tissue comprises an electrosurgical generator and an electrode assembly having at least one treatment electrode and an adjacent return electrode, wherein the generator and the assembly are arranged to deliver to the treatment and return electrodes radio frequency (r.f) energy simultaneously at at least two frequencies, one of which is in a lower frequency range of from 50kHz to 50MHz and the other of which is greater than 300MHz, the r.f. current delivered in the lower frequency range being limited such that the current-to-frequency ratio of energy delivered in the lower frequency range remains below a value of 17mA mis per 100kHz. In this way it is possible to strike an arc between the treatment electrode and the tissue to be treated using the r.f. energy in the lower frequency range, this arc providing a low impedance pathway for energy at a frequency greater than 300MHz to cause cell rupture and, as a result, cutting or vaporisation of the tissue. The return path for energy at the higher frequency is predominantly through the stray capacitance between the tissue and the return electrode. This is particularly the case for current at the frequency greater than 300MHz. One of the effects of this is that tissue outside the treatment site is substantially unaffected.

Since the arc is established using low frequency energy, the components for generating and transmitting energy at the higher frequency, i.e. above 300MHz, may be designed solely to drive a low impedance. Furthermore, since coagulation of tissue generally requires high current, and the tissue presents a low impedance to the source, the electrode assembly may be constructed to provide UHF matching into a low impedance load, the system thereby providing efficient operation in both cutting/ vaporisation and coagulation modes using the single electrode assembly. Since the capacitive pathway from tissue to return electrode is of considerably lower impedance than at the lower frequency, high current can be delivered at UHF, the current density necessary for tissue treatment being confined to the treatment area. Tissue effects due to the low frequency energy are minimal due to the restriction of low frequency currents to low levels.

One of the ways of restricting low frequency current is to ensure that the source impedance at the operating frequency in the lower frequency range is comparatively high. The preferred system comprises a generator unit having a pair of r.f. output terminals, an instrument which includes a handpiece, a shaft mounted on the handpiece and the electrode assembly generally located at a distal end of the shaft, and a feeder cable arranged to connect the generator unit output terminals to the handpiece. The preferred lower frequency range is 100kHz to 5MHz. The high source impedance may be achieved by connecting a low value capacitor in series in the low frequency current path, e.g. between the feeder cable and the treatment electrode for restricting the current at the lower operating frequency such that the current-to-frequency ratio remains within the range referred to above. Preferably, the capacitor is located at the distal end of the shaft, immediately adjacent the treatment electrode. The instrument shaft may comprise a pair of supply conductors for delivering the r.f. energy to the electrode assembly, the capacitor being formed as the coaxial combination of a elongate inner conductor which is integrally formed with the treatment electrode, and a tubular outer conductor spaced from the inner conductor by a tubular heat resistant dielectric tube, this tubular outer conductor being connected to one of the supply conductors of the shaft. Typically, in this case, the capacitor has a value of 5pF or less.

At UHF, the reactance of the capacitor is low and, therefore, has little effect on the transmission of UHF power to the treatment electrode.

The instrument shaft preferably includes a balun, advantageously mounted close to the electrode assembly. Such a balun, being configured to operate at the higher operating frequency serves to improve efficiency and to minimise tissue effects outside the treatment area.

It is also possible to raise the source impedance and hence limit the low frequency output current by arranging for the low frequency source in the generator unit to drive a resonant load, e.g. in the form of a shunt parallel resonant circuit with a Q in the region of 100 or greater. The parallel capacitance may be the capacitance of the feeder between the generator unit and the handpiece, while the parallel inductance, tuning the capacitance to the lower of the operating frequencies is preferably situated inside the generator unit and upstream of the stage performing combination of the high and low frequency signals. The resonant circuit allows voltages in excess of 700N to be generated, allowing formation of an arc between the treatment electrode and the tissue being treated. When the arc is struck or the treatment electrode touches tissue, the Q of the resonant circuit is reduced, and the output voltage collapses to prevent current delivery beyond the range specified above. The low frequency signal may be pulsed. This allows the driving impedance of the low frequency source into the resonant circuit to be reduced without exceeding the average current-to-frequency ratio. This in turn allows the rise time of the low frequency output voltage to be increased, despite the presence of the resonant circuit.

Whether the low frequency signal is continuous or pulsed, the maximum r.f. power delivered, continuously or during each r.f. burst, respectively, is preferably limited to 10W or less. The output voltage of the low frequency source may also be limited. As a further alternative, the low frequency source impedance may be increased by inserting a series impedance such as a resistance in the low frequency output current path in a low frequency part of the generator unit.

According to another aspect of the invention, a method of operating an electrosurgical tissue cutting or vaporisation system which comprises an electrosurgical instrument having an active electrode and an adjacent return electrode, comprises supplying to the electrodes radio frequency (r.f.) energy simultaneously at at least two frequencies, one of which is in a lower frequency range of 50kHz to 50MHz and the other of which is greater than 300MHz, the current in the lower frequency range whilst the instrument is set to operate in a tissue cutting or vaporising mode being such that the current-to-frequency ratio of energy delivered in the lower frequency range remains below a value of 17mA rms per 100kHz.

According to yet a further aspect of the invention, a method of electrosurgically cutting or vaporising tissue using an electrosurgery system which comprises an electrosurgical generator and an electrode assembly having at least a treatment electrode and an adjacent return electrode, comprises bringing the treatment electrode to a position on or adjacent the tissue to be cut or vaporised, applying to the electrodes a first radio frequency (r.f.) signal component at at least one frequency in the range of from 50kHz to 50MHz to establish an arc between the treatment electrode and the tissue, and simultaneously applying to the electrodes a second r.f. signal component at at least one second frequency which is greater than 300MHz to cause a current at the second frequency to flow along the arc established by the first r.f. signal component, the level of the average current above 300MHz being at least an order of magnitude greater than the average current in the frequency range of from 50kHz to 50MHz during a cutting or vaporisation operation.

Preferably, the average current in the frequency range of from 50kHz to 50MHz is small enough to have no clinical effect or negligible total effect in the absence of the second r.f. signal component. A maximum value below 50mA is typical. The invention will now be described by way of example with reference to the drawings in which: -

Figure 1 is a block diagram showing a electrosurgical system in accordance with the invention; Figures 2A and 2B are perspective views of a UHF tissue vaporising instrument,

Figure 2A being partly cut away;

Figures 3A and 3B are perspective views of a UHF tissue cutting instrument, Figure 3 A being partly cut away;

Figure 4 is an equivalent circuit diagram of the instruments of Figures 2 A, 2B, 3 A and 3B;

Figure 5 is a low frequency load curve; and

Figures 6A and 6B are simplified circuit diagrams of the low frequency energy supply circuit in alternative electrosurgical systems in accordance with the invention.

The preferred embodiments of the present invention are applicable mainly to the performance of the laporscopic electrosurgery upon tissue in a gaseous environment (e.g. air) using a dual-electrode instrument having active and return electrodes situated at a distal end of an instrument shaft. The active electrode is applied either directly to the tissue or closely adjacent the tissue, while the return electrode is spaced from the tissue being treated where it is capacitively coupled to the tissue.

The apparatus described below, particularly the electrosurgical generator, has features in common with the apparatus described in our International Application No.WO 00/53112. The contents of this application is incorporated in the disclosure of the present application by reference.

Referring to Figure 1, an electrosurgical system in accordance with the invention comprises a dual-frequency generator unit 10 having output terminals 10C providing a radio frequency (r.f.) output to an electrosurgical instrument 12 via a flexible coaxial cable 14. The instrument 12 is in the form of a handpiece (not shown) with an instrument shaft having an electrode assembly 16 at its distal end, the assembly comprising the combination of an active or treatment electrode 16A and a return electrode 16B. The construction of the electrode assembly will be described hereinafter. It will be appreciated that in some embodiments of the invention, all or part of the generator unit may be incorporated within the handpiece. Whether it is in the handpiece or separate, the generator may be activated by a switch in the handpiece or a foot switch separately connected to the generator unit 10. The mode of operation, e.g. between coagulation, cutting and vaporisation modes, is selected by controls also not shown in Figure 1.

The generator unit 10 contains separate 300kHz and 2.45GHz synthesisers 20, 22 the output signals of which are summed in adder 24 having low- and high-pass filters coupled to inputs arranged to receive the 300kHz and 2.45GHz signals respectively as shown. A circulator 26 connected in series between the 2.45GHz synthesiser 22 and the adder 24 serves to provide a 50ohm source impedance for synthesiser 22 under conditions of varying load impedance, with effective power being dissipated in a 50ohm reflective energy sink or dump 28, also connected to the circulator 26.

At the output of the adder 24, a composite signal consisting principally of the two frequency components at 300kHz and 2.45GHz is delivered to the output terminals 10T of the generator unit 10 and fed via a cable 14, which is typically in the region of 3m long, to the handheld instrument 12 and thereafter to the tissue under treatment. Both low and high frequency components are, consequently, fed via a single feeder structure to the electrodes 16 A, 16B The instrument 12 also includes a UHF balun 30 for converting the high frequency (i.e. 2.45GHz or UHF) component from a single-ended signal, as present at the output terminals 10T of the generator unit 10, to a balanced signal at the active and return electrodes 16A and 16B. During operation of the system, r.f. energy is delivered by the generator unit 10 along the inner conductor of the feeder cable 14 via balun 30 to the active electrode 16 A. The current then passes from active electrode 16A through the tissue being treated and via the capacitance between the tissue and the return electrode 16B, to the generator along the outer conductor of the feeder cable 14. Included in this current path is a current limiting capacitor 32 which raises the source impedance in respect of the low frequency (300kHz) component as seen at the electrodes. In the present embodiment, this capacitor has a value in the region of 1.5pF and is located immediately adjacent the active electrode 16A at the distal end of the instrument shaft. In other embodiments it may be located elsewhere in the current path between the low frequency source 20 and the electrodes 16A, 16B, but the position at the distal end of the shaft is preferred to avoid the shunt capacitive loading of the instrument shaft and/or the feeder cable 14.

A distal end portion of the instrument shaft is shown in Figures 2 A and 2B. Referring to these figures, shaft 12S takes the form of a rigid stainless steel tube mounted at its proximal end in a handpiece body (not shown). The shaft 12S constitutes a coaxial feed structure, with the stainless tube 12T acting as an outer supply conductor 12T. An inner wire 12W, insulated from the tube 12T via an insulating sleeve (not shown) forms an inner conductor. This inner conductor is tubular at the distal end of the shaft, where it is in the form of metallisation on a narrow ceramic tube 40, part of which is exposed beyond the distal end of outer conductor 12T, as shown as Figures 2 A and 2B. Fixed within tube 40 is a central wire 42 the end of which, in this embodiment, is coiled to form an active electrode 16A suitable for tissue vaporisation. The ceramic material of tube 40 constitutes a low loss ceramic dielectric of a tubular capacitor formed by the metallisation on the tube 40 and the central wire 42. This capacitor has a value of about 1.5pF and, as such, represents a significant series impedance at the low operating frequency of 300kHz but at the upper frequency of 2.45GHz its impedance is comparable to or lower than the typical load impedance represented by the tissue under treatment and the capacitative return path.

Balun 30 takes the form of a conductive sleeve having an electrical length of λ/4 which is connected at its proximal end 30T to the outer supply conductor formed by tube 12T.

The return electrode 16B is in the form of a similar conductive sleeve, also connected at its proximal end 16B to the outer supply conductor. Both the balun 30 and the return conductor are quarter-wave resonant structures located on the distal end portion of the shaft 12S. The complete shaft and these sleeves are covered by an insulating layer which is not shown in Figures 2 A and 2B. An alternative configuration for the distal end of the shaft 12S is shown in Figures 3 A and 3B. In this case, the current limiting capacitor (shown as element 32 in Figure 1) has an air dielectric, being formed by the combination of an axial conductive rod 46 and the inner metallisation 48 of a rigid insulative tube 50 which is also metallised on the outside to form the outer supply conductor 12TD of the shaft distal end portion. Inner rod 46 is held in its axial position by insulative spacers 52, 54. At its distal end, the inner rod 46 is connected to a wire electrode 16A which, in this case is somewhat smaller than the active electrode of the embodiment of Figures 2A and 2B, and is more suitable for tissue cutting. The rod 46 terminates at the proximal spacer 54 and the inner metallisation of tube 50 is connected to the inner supply conductor of a coaxial connector 60, while the outer metallisation on tube 50 is connected to the connector outer shield so that the shaft portion shown in Figures 3A and 3B may be connected to a proximal coaxial shaft portion, or directly to a handpiece body (neither shown). The balun 30 and the return electrode 16B are similarly constructed and connected as the equivalent components of the embodiments of Figures 2 A and 2B and, again, the complete assembly is covered with an insulative coating, with the exception of electrode 16 A.

As an aid to understanding the operation of the system, attention is directed to the equivalent circuit of Figure 4, the cutaway sleeve that is the quarter wave balun 30 being represented by a lumped inductor and capacitor combination connected to the outer supply conductor of the shaft 12S, here designated the "return" conductor 70.

This balun matches inner and outer UHF currents. The return electrode sleeve 16B is also shown as a lumped resonant structure. This operates in a similar fashion to the balun but provides the predominant return path for r.f. energy at UHF, the resonant structure amplifying the return voltage due to its resonance at the upper operating frequency of 2.45GHz. The inductance of the return electrode sleeve 16B has a value such that it resonates with the combination of the stray return capacitance CR and sleeve-to-shaft capacitance CL at 2.45GHz. The return electrode is dimensioned accordingly. It will be appreciated that the circuit elements due to the balun and return electrode sleeves 30, 16B are effectively invisible at the lower operating frequency. However, the current limiting capacitance 32 and the feeder capicitance Cc, which appears as a lumped capacitance at the lower frequency, have a significant effect. The value of capacitor 32 is typically 1.5pF, this value being appropriate for a lower operating frequency of about 300kHz. Alternative values having an equivalent series impedance may be selected for different lower operating frequencies. The effect of capacitor 32 is to limit the lower frequency current delivery to inconsequential values in terms of clinical effect.

When the system is used for tissue vaporisation, the active tissue 16A can become hot. In such circumstances, it is possible for thermionic rectification to occur, causing a charge build-up on any coupling capacitance such that intermittent contact with tissue subsequently causes alternate charging and discharging of the coupling capacitor. Positioning the capacitor 32 directly adjacent active electrode 16A allows it to remain small in value so that nerve stimulation due to thermionic rectification is virtually absent.

The capicitance Cc of the cable represents a low impedance source at the lower operating frequency and in this context coupling capacitor 32 has the advantage of reducing any high current discharge through an arc established between the active electrode tip 16A and the target tissue 72 due to the feeder capacitance Cc.

The raising of the source impedance at the lower operating frequency due to the coupling capacitor 32 is illustrated in the power/impedance load curve of Figure 5 which indicates maximum power occurring at about 250kilohms, the effective source impedance.

As mentioned above, the effect of the coupling capacitance 32 allows a high voltage low frequency signal to be applied across the electrodes 16A 16B without giving rise to corresponding currents at the lower frequency which have the potential to cause tissue effects both at the treatment site and at other sites on the patent's body, e.g. along luminal structures such as blood vessels or adjacent an earthed structure such as an operating table. Accordingly, in a tissue cutting or vaporisation mode of the system, the 300kHz synthesiser 20 (Figure 1) can be activated to provide sufficient voltage across the electrodes 16A, 16B to cause arcing when the active electrode 16A is close to the target tissue 72. Simultaneous application of the 2.45GHz and 300kHz components to the tissue 72 allows UHF current to flow from the active electrode 16A along the arc to the tissue. Return currents of both components are coupled to the return electrode 16B by the stray tissue-to-electrode capacitance CR. The current path provided by the arc constitutes a comparatively low impedance at UHF which means that the load impedance in the cutting or vaporisation mode is comparable to that in the coagulation mode. Accordingly, the same system may be used for both coagulation and cutting/vaporisation, taking advantage of the localisation of effect which can be achieved at UHF when driving impedances below 1 kilohm.

The level of voltage applied at the lower operating frequency to initiate an arc may be as low as 300N peak. A voltage in excess of 1000N peak may be used for tissue vaporisation. Once initiated, it is possible to sustain an arc with a voltage of less than 100N peak. The low impedance pathway created by the arc exists only for a very short time, but this is sufficient for coupling of UHF energy along the same pathway, high UHF currents being possible due to the considerably lower impedance of the return pathway at UHF. Should the active electrode 16A contact the target tissue 72, the applied voltage at the lower operating frequency will collapse so that a very small maximum current is delivered. Formation of the arc causes instantaneous discharge of the coupling capacitor 32 resulting in a very brief high current impulse which has a peak power much higher than the peak power available from the UHF source and which is capable of exciting the resonance of the resonant circuits represented by the return electrode 16B and balun 30 located at the distal end of the instrument shaft. These factors ensure that low frequency arcing provides a conductive pathway for the UHF component.

Naporisation can be initiated in two ways. If the active electrode 16A is brought into close proximity with the tissue 72 such that the low frequency component initiates an arc, the ionised pathway is then the preferred path for UHF current. Since the ionised pathway is extremely narrow at any instant, the subsequent delivery of UHF is with very high power density, which is capable of vaporising tissue. The ionised pathway moves towards the closest conduction point, with the result that all tissue within the arc strike distance of the active electrode 16A is vaporised. The second method of arc initiation is with the active electrode 16A already in contact with the tissue. Initially, the low frequency component is stalled by low impedance contact, but the delivery of UHF power through the low impedance contact results in tissue coagulation and desiccation. Desiccation proceeds when the electrode-to-tissue impedance rises sufficiently to allow a low frequency voltage gradient between the electrode and the tissue for creating the arc (the impedance at that point being greater than 50 kilohm.

The advantages of this method of operation are that all r.f. power is localised to the treatment zone, and the structure of the electrode assembly need be configured only for low impedance (high current) UHF power delivery. Such UHF power delivery may be optimised for tissue contact coagulation, cutting and vaporisation being achieved by addition of the low frequency component. Further advantages are the ability to use only low power low frequency drivers, much reduced radio frequency emissions due to the avoidance of currents through an earth return pad, and the ability to adjust the effect (e.g. between cutting and different degrees of vaporisation) by adjusting the low frequency peak voltage and the consequent arc striking distance. The ability to provide low frequency coupling by a comparatively small capacitance yields the advantage that stray return capacitance effects are negligible.

While some of the advantageous effects of situating the coupling capacitor in an electrode assembly may be lost, it is possible to achieve arc initiation with alternative capacitor positioning. For instance, the capacitor can be located in the handpiece body, i.e. at the proximal end of the instrument shaft, in which placed a capacitance value in the range of from 20pF to lOOpF is appropriate. It is also possible to locate the capacitor in the generator unit. In this case, where a feeder cable is present, an appropriate capacitor value would be of the range of 300pF to InF. Current limiting at the lower operating frequency may be achieved by alternative means. As an example, current limiting may be performed by the combination of low power delivery at the lower operating frequency in conjunction with resonant impedance transformation. The coupling capacitor 32 of the above-described embodiment may be omitted. Referring, then, to Figure 6A, the capacitance C of the feeder between the generator unit 10 and the active and return electrodes 16A, 16B is typically in the region of 300pF. This typically sets the low frequency source impedance as seen at the electrodes 16 A, 16B to a value below 10 kilohms. At 300kHz, 300pF represents an impedance of 1.77 kilohms. To achieve similar steady state limiting as with the coupling capacitor embodiment described above, the impedance may be converted to a value above 100 kilohms, typically 250 kilohms, by use of a matching inductor 80 (see Figure 1 as well as Figure 6 A) which forms a resonant circuit with the feeder capacitance Cc at the lower operating frequency, it being understood that in this case, capacitor 32 is omitted. At 300kHz, the value of the matching inductance required to match out the 300pF capacitance Cc of the feeder is about 800μH. The Q of the resonant circuit is preferably greater than 100 and typically greater than 140. This yields a source impedance of about 250kilohms and has a similar effect on current delivery as that produced by the coupling capacitor 32 of the previous embodiment. Power delivery at the lower operating frequency is limited to 20W or less, typically less than 5W, by a series impedance 84 in the low frequency part of the generator unit upstream of the combiner 24 (see Figure 1). Again, only a low power low frequency driver is necessary. Potentially, the peak energy associated with arc initiation is higher in this embodiment due to shunt capacitance Cc of the feeder being directly coupled to the electrodes 16A, 16B, with the result that the arc pathway has a lower impedance. To maintain the operating frequency of the lower frequency component at or near the resonant frequency of the combination of the cable capacitance CC and the inductance 80, the 300kHz synthesiser 20 is configured to track the resonance of the resonant circuit by self-tuning oscillation, as disclosed in GB2214430A, or by means of a closed loop control system using current and voltage phase relationships to alter frequency, as disclosed in EP0949886A. The contents of these applications are incorporated in the disclosure of the present application by reference. Other methods of achieving frequency tracking are known in the art. The rapidity with which arc strikes can be initiated using the resonant circuit technique of lower frequency current limiting may be increased by modulating the 300kHz synthesiser output. For instance, if the output of this synthesiser is pulse modulated with a 50% duty cycle, the driving impedance of the r.f. source into the resonant network (inductor 80 and the feeder capacitance Cc) may be halved, since the average low frequency current compared with continuous delivery at the higher drive impedance is maintained. Consequently, the low frequency output voltage is correspondingly higher than required to initiate arcing, with the effect that an arcing voltage is reached more quickly. Limiting of the voltage may be performed by a voltage clamp shown in Figure 1 by element 86 using either zener diodes, varistors, or a variable active clamp such as well known in the art. The modulation duty cycle is preferably greater than 10% to reduce the likelihood of the maximum peak current reaching a value liable to cause the peak voltage developed between the patient and the ground to rise above 300N.

The series impedance 84 and resonating inductor 80 may be used in conjunction with the coupling capacitor in the electrode assembly, as shown in Figure 6B.

Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
WO1997024074A1 *30 déc. 199610 juil. 1997Microgyn, Inc.Apparatus and method for electrosurgery
WO2001012089A1 *14 août 200022 févr. 2001Somnus Medical Technologies, Inc.Nerve stimulation and tissue ablation apparatus and method
US5484400 *23 mars 199416 janv. 1996Vidamed, Inc.Dual channel RF delivery system
US6030383 *26 oct. 199829 févr. 2000Benderev; Theodore V.Electrosurgical instrument and method of use
US6264650 *21 mai 199924 juil. 2001Arthrocare CorporationMethods for electrosurgical treatment of intervertebral discs
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
EP2359765B1 *8 févr. 201113 sept. 2017Erbe Elektromedizin GmbHHigh frequency surgical device
US806616723 mars 200929 nov. 2011Ethicon Endo-Surgery, Inc.Circular surgical stapling instrument with anvil locking system
US808312018 sept. 200827 déc. 2011Ethicon Endo-Surgery, Inc.End effector for use with a surgical cutting and stapling instrument
US81134109 févr. 201114 févr. 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US813671210 déc. 200920 mars 2012Ethicon Endo-Surgery, Inc.Surgical stapler with discrete staple height adjustment and tactile feedback
US814176219 nov. 200927 mars 2012Ethicon Endo-Surgery, Inc.Surgical stapler comprising a staple pocket
US815714531 mai 200717 avr. 2012Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US81571534 févr. 201117 avr. 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197723 sept. 200824 avr. 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US816718518 nov. 20101 mai 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721244 févr. 20118 mai 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 janv. 200629 mai 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656016 oct. 200929 mai 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 août 201012 juin 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US81967963 févr. 201112 juin 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US82057813 juin 201126 juin 2012Ethicon Endo-Surgery, Inc.Surgical stapler with apparatus for adjusting staple height
US821041123 sept. 20083 juil. 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument
US821553129 janv. 201010 juil. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US822068824 déc. 200917 juil. 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US826730030 déc. 200918 sept. 2012Ethicon Endo-Surgery, Inc.Dampening device for endoscopic surgical stapler
US82921552 juin 201123 oct. 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US830804022 avr. 201013 nov. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US831707028 févr. 200727 nov. 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US832245527 juin 20064 déc. 2012Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US83225892 juil. 20104 déc. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US83333133 juin 201118 déc. 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US834812919 nov. 20098 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapler having a closure mechanism
US834813129 sept. 20068 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US83534371 févr. 201015 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US835343819 nov. 200915 janv. 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid cap assembly configured for easy removal
US835343919 nov. 200915 janv. 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with radially-openable distal end portion
US83602969 sept. 201029 janv. 2013Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US836029729 sept. 200629 janv. 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836597629 sept. 20065 févr. 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US837149115 févr. 200812 févr. 2013Ethicon Endo-Surgery, Inc.Surgical end effector having buttress retention features
US839351430 sept. 201012 mars 2013Ethicon Endo-Surgery, Inc.Selectively orientable implantable fastener cartridge
US83979715 févr. 200919 mars 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US841457719 nov. 20099 avr. 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US84247404 nov. 201023 avr. 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US844403629 juil. 201021 mai 2013Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US845390729 juil. 20104 juin 2013Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with cutting member reversing mechanism
US845390812 août 20104 juin 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US845391429 mai 20124 juin 2013Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US845952010 janv. 200711 juin 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952514 févr. 200811 juin 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 janv. 201018 juin 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US847467730 sept. 20102 juil. 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and a cover
US84799699 févr. 20129 juil. 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 sept. 200616 juil. 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US84854135 févr. 200916 juil. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising an articulation joint
US849999312 juin 20126 août 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US85172395 févr. 200927 août 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
US851724314 févr. 201127 août 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US85172449 juil. 201227 août 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US852960030 sept. 201010 sept. 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix
US85345281 mars 201117 sept. 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US854012811 janv. 200724 sept. 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US854012926 juil. 201024 sept. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US85401308 févr. 201124 sept. 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854013115 mars 201124 sept. 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US854013317 mars 201024 sept. 2013Ethicon Endo-Surgery, Inc.Staple cartridge
US856187028 févr. 201122 oct. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US856765628 mars 201129 oct. 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US85734619 févr. 20125 nov. 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 févr. 20125 nov. 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US858491914 févr. 200819 nov. 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 juin 200726 nov. 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 juin 201210 déc. 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 févr. 201210 déc. 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804415 févr. 200817 déc. 2013Ethicon Endo-Surgery, Inc.Feedback and lockout mechanism for surgical instrument
US860804510 oct. 200817 déc. 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86080467 janv. 201017 déc. 2013Ethicon Endo-Surgery, Inc.Test device for a surgical tool
US86164319 févr. 201231 déc. 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 févr. 20087 janv. 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US862227519 nov. 20097 janv. 2014Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US863198717 mai 201021 janv. 2014Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US863246213 juil. 201121 janv. 2014Ethicon Endo-Surgery, Inc.Trans-rectum universal ports
US86361873 févr. 201128 janv. 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863673614 févr. 200828 janv. 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US865212010 janv. 200718 févr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 févr. 200825 févr. 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US865717629 avr. 201125 févr. 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler
US86571789 janv. 201325 févr. 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866813024 mai 201211 mars 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US867220730 juil. 201018 mars 2014Ethicon Endo-Surgery, Inc.Transwall visualization arrangements and methods for surgical circular staplers
US86722085 mars 201018 mars 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US868425327 mai 20111 avr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US86958661 oct. 201015 avr. 2014Ethicon Endo-Surgery, Inc.Surgical instrument having a power control circuit
US873361329 sept. 201027 mai 2014Ethicon Endo-Surgery, Inc.Staple cartridge
US873447813 juil. 201127 mai 2014Ethicon Endo-Surgery, Inc.Rectal manipulation devices
US874003430 sept. 20103 juin 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with interchangeable staple cartridge arrangements
US874003730 sept. 20103 juin 2014Ethicon Endo-Surgery, Inc.Compressible fastener cartridge
US874003829 avr. 20113 juin 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising a releasable portion
US87465292 déc. 201110 juin 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 sept. 201210 juin 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874653529 avr. 201110 juin 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising detachable portions
US874723828 juin 201210 juin 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875269930 sept. 201017 juin 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising bioabsorbable layers
US875274720 mars 201217 juin 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 mai 201117 juin 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US875746530 sept. 201024 juin 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and an alignment matrix
US87638756 mars 20131 juil. 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US876387730 sept. 20101 juil. 2014Ethicon Endo-Surgery, Inc.Surgical instruments with reconfigurable shaft segments
US87638791 mars 20111 juil. 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US877700429 avr. 201115 juil. 2014Ethicon Endo-Surgery, Inc.Compressible staple cartridge comprising alignment members
US87835419 févr. 201222 juil. 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878354230 sept. 201022 juil. 2014Ethicon Endo-Surgery, Inc.Fasteners supported by a fastener cartridge support
US878354330 juil. 201022 juil. 2014Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US87897396 sept. 201129 juil. 2014Ethicon Endo-Surgery, Inc.Continuous stapling instrument
US878974030 juil. 201029 juil. 2014Ethicon Endo-Surgery, Inc.Linear cutting and stapling device with selectively disengageable cutting member
US878974123 sept. 201129 juil. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US879449718 déc. 20125 août 2014Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US88008389 févr. 201212 août 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US880084115 mars 201112 août 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges
US880173430 juil. 201012 août 2014Ethicon Endo-Surgery, Inc.Circular stapling instruments with secondary cutting arrangements and methods of using same
US880173530 juil. 201012 août 2014Ethicon Endo-Surgery, Inc.Surgical circular stapler with tissue retention arrangements
US881402430 sept. 201026 août 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of connected retention matrix elements
US88206031 mars 20112 sept. 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US88206059 févr. 20122 sept. 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US882790313 juil. 20119 sept. 2014Ethicon Endo-Surgery, Inc.Modular tool heads for use with circular surgical instruments
US88336326 sept. 201116 sept. 2014Ethicon Endo-Surgery, Inc.Firing member displacement system for a stapling instrument
US884000330 sept. 201023 sept. 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with compact articulation control arrangement
US88406033 juin 201023 sept. 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 févr. 201230 sept. 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US885135424 déc. 20097 oct. 2014Ethicon Endo-Surgery, Inc.Surgical cutting instrument that analyzes tissue thickness
US885769315 mars 201114 oct. 2014Ethicon Endo-Surgery, Inc.Surgical instruments with lockable articulating end effector
US885769429 avr. 201114 oct. 2014Ethicon Endo-Surgery, Inc.Staple cartridge loading assembly
US885859013 juil. 201114 oct. 2014Ethicon Endo-Surgery, Inc.Tissue manipulation devices
US886400730 sept. 201021 oct. 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge having a non-uniform arrangement
US886400929 avr. 201121 oct. 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US887597215 févr. 20114 nov. 2014Ethicon Endo-Surgery, Inc.End effector coupling arrangements for a surgical cutting and stapling instrument
US889394923 sept. 201125 nov. 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US889946330 sept. 20102 déc. 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
US88994655 mars 20132 déc. 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US889946619 nov. 20092 déc. 2014Ethicon Endo-Surgery, Inc.Devices and methods for introducing a surgical circular stapling instrument into a patient
US89059771 juin 20059 déc. 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US891147114 sept. 201216 déc. 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US892578230 sept. 20106 janv. 2015Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising multiple layers
US89257883 mars 20146 janv. 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US892659815 mars 20116 janv. 2015Ethicon Endo-Surgery, Inc.Surgical instruments with articulatable and rotatable end effector
US893168227 mai 201113 janv. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US897380418 mars 201410 mars 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 avr. 201117 mars 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US897895513 juil. 201117 mars 2015Ethicon Endo-Surgery, Inc.Anvil assemblies with collapsible frames for circular staplers
US897895630 sept. 201017 mars 2015Ethicon Endo-Surgery, Inc.Jaw closure arrangements for surgical instruments
US89798424 juin 201217 mars 2015Medtronic Advanced Energy LlcWire electrode devices for tonsillectomy and adenoidectomy
US899167629 juin 200731 mars 2015Ethicon Endo-Surgery, Inc.Surgical staple having a slidable crown
US899167721 mai 201431 mars 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 mai 201131 mars 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899805820 mai 20147 avr. 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 janv. 201314 avr. 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US901654229 avr. 201128 avr. 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising compressible distortion resistant components
US902849428 juin 201212 mai 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 févr. 201112 mai 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US903320330 sept. 201019 mai 2015Ethicon Endo-Surgery, Inc.Fastening instrument for deploying a fastener system comprising a retention matrix
US903320413 juil. 201119 mai 2015Ethicon Endo-Surgery, Inc.Circular stapling devices with tissue-puncturing anvil features
US904422730 sept. 20102 juin 2015Ethicon Endo-Surgery, Inc.Collapsible fastener cartridge
US904422830 sept. 20102 juin 2015Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of fastener cartridges
US904422915 mars 20112 juin 2015Ethicon Endo-Surgery, Inc.Surgical fastener instruments
US904423013 févr. 20122 juin 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 sept. 20089 juin 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 sept. 20119 juin 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 sept. 201116 juin 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 mai 201123 juin 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 juin 20147 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 mai 20117 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 juin 20127 juil. 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US907865326 mars 201214 juil. 2015Ethicon Endo-Surgery, Inc.Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US908460115 mars 201321 juil. 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US908933013 juil. 201128 juil. 2015Ethicon Endo-Surgery, Inc.Surgical bowel retractor devices
US909533919 mai 20144 août 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 juin 201211 août 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 juin 201211 août 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US91076636 sept. 201118 août 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising resettable staple drivers
US911386230 sept. 201025 août 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a variable staple forming system
US911386430 sept. 201025 août 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US911386529 avr. 201125 août 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a layer
US911387424 juin 201425 août 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911388313 juil. 201125 août 2015Ethicon Endo-Surgery, Inc.Collapsible anvil plate assemblies for circular surgical stapling devices
US911388413 juil. 201125 août 2015Ethicon Endo-Surgery, Inc.Modular surgical tool systems
US911965728 juin 20121 sept. 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912565413 juil. 20118 sept. 2015Ethicon Endo-Surgery, Inc.Multiple part anvil assemblies for circular surgical stapling devices
US912566228 juin 20128 sept. 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913194021 févr. 201315 sept. 2015Ethicon Endo-Surgery, Inc.Staple cartridge
US913822526 févr. 201322 sept. 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US914927417 févr. 20116 oct. 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US916803829 avr. 201127 oct. 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a tissue thickness compensator
US917991123 mai 201410 nov. 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 mai 201110 nov. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 juin 201417 nov. 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US91986616 sept. 20111 déc. 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising a plurality of staple cartridges stored therein
US919866226 juin 20121 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 août 20148 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 juin 20128 déc. 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 mars 20128 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 mars 201215 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 janv. 201515 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921112213 juil. 201115 déc. 2015Ethicon Endo-Surgery, Inc.Surgical access devices with anvil introduction and specimen retrieval structures
US921601923 sept. 201122 déc. 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 mars 201229 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 mars 201229 déc. 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 juin 20125 janv. 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 mars 201212 janv. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US92329457 juil. 201412 janv. 2016Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US923789127 mai 201119 janv. 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 mars 201226 janv. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US927179925 juin 20141 mars 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 févr. 20131 mars 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 mars 20128 mars 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US92829628 févr. 201315 mars 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 févr. 201415 mars 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 juin 201215 mars 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 août 201315 mars 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 déc. 201422 mars 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928921021 mai 201222 mars 2016Ethicon Endo-Surgery, LlcSurgical stapler with apparatus for adjusting staple height
US928921217 sept. 201022 mars 2016Ethicon Endo-Surgery, Inc.Surgical instruments and batteries for surgical instruments
US928925628 juin 201222 mars 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US929546429 avr. 201129 mars 2016Ethicon Endo-Surgery, Inc.Surgical stapler anvil comprising a plurality of forming pockets
US930175228 mars 20125 avr. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 mars 20125 avr. 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US930175529 avr. 20115 avr. 2016Ethicon Endo-Surgery, LlcCompressible staple cartridge assembly
US93017599 févr. 20125 avr. 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 juin 201212 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 mars 201312 avr. 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798725 sept. 201412 avr. 2016Ethicon Endo-Surgery, LlcSurgical cutting instrument that analyzes tissue thickness
US930798828 oct. 201312 avr. 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 juin 201212 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 juin 201219 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 juin 201219 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 juin 201226 avr. 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 août 201526 avr. 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 oct. 201226 avr. 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 mars 201226 avr. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 mars 20133 mai 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 mars 20133 mai 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 mars 20133 mai 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 mars 20133 mai 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267714 mars 20113 mai 2016Ethicon Endo-Surgery, LlcStaple cartridge
US933297428 mars 201210 mai 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 mars 201310 mai 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 mars 201310 mai 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US934547725 juin 201224 mai 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 mars 201324 mai 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US935172614 mars 201331 mai 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 mars 201331 mai 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 mars 201231 mai 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 mars 20137 juin 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 juin 20157 juin 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US936423028 juin 201214 juin 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 mars 201214 juin 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 oct. 201221 juin 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US93703645 mars 201321 juin 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US938698327 mai 201112 juil. 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 févr. 201312 juil. 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698515 oct. 201212 juil. 2016Ethicon Endo-Surgery, LlcSurgical cutting instrument
US938698828 mars 201212 juil. 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US939301510 mai 201319 juil. 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 mars 201326 juil. 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US940262618 juil. 20122 août 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940860428 févr. 20149 août 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860628 juin 20129 août 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 mars 201216 août 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US943341928 mars 20126 sept. 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of layers
US943964912 déc. 201213 sept. 2016Ethicon Endo-Surgery, LlcSurgical instrument having force feedback capabilities
US944581323 août 201320 sept. 2016Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US94519585 août 201327 sept. 2016Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US94684381 mars 201318 oct. 2016Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US948047628 mars 20121 nov. 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising resilient members
US948621420 mai 20138 nov. 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US949216714 mars 201315 nov. 2016Ethicon Endo-Surgery, LlcArticulatable surgical device with rotary driven cutting member
US949821930 juin 201522 nov. 2016Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US951082823 août 20136 déc. 2016Ethicon Endo-Surgery, LlcConductor arrangements for electrically powered surgical instruments with rotatable end effectors
US951083023 oct. 20146 déc. 2016Ethicon Endo-Surgery, LlcStaple cartridge
US951706328 mars 201213 déc. 2016Ethicon Endo-Surgery, LlcMovable member for use with a tissue thickness compensator
US95170685 août 201313 déc. 2016Ethicon Endo-Surgery, LlcSurgical instrument with automatically-returned firing member
US952202912 mars 201320 déc. 2016Ethicon Endo-Surgery, LlcMotorized surgical cutting and fastening instrument having handle based power source
US95497325 mars 201324 janv. 2017Ethicon Endo-Surgery, LlcMotor-driven surgical cutting instrument
US954973523 déc. 201324 janv. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a firing member including fastener transfer surfaces
US95547941 mars 201331 janv. 2017Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US956103213 août 20137 févr. 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising a staple driver arrangement
US956103828 juin 20127 févr. 2017Ethicon Endo-Surgery, LlcInterchangeable clip applier
US95660618 févr. 201314 févr. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasably attached tissue thickness compensator
US957257422 juin 201521 févr. 2017Ethicon Endo-Surgery, LlcTissue thickness compensators comprising therapeutic agents
US957257727 mars 201321 févr. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a tissue thickness compensator including openings therein
US957464430 mai 201321 févr. 2017Ethicon Endo-Surgery, LlcPower module for use with a surgical instrument
US95856578 févr. 20137 mars 2017Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US95856587 avr. 20167 mars 2017Ethicon Endo-Surgery, LlcStapling systems
US958566011 nov. 20137 mars 2017Ethicon Endo-Surgery, LlcMethod for testing a surgical tool
US958566223 déc. 20137 mars 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising an extendable firing member
US95856638 mars 20167 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument configured to apply a compressive pressure to tissue
US95920508 févr. 201314 mars 2017Ethicon Endo-Surgery, LlcEnd effector comprising a distal tissue abutment member
US959205212 mars 201414 mars 2017Ethicon Endo-Surgery, LlcStapling assembly for forming different formed staple heights
US959205322 mai 201414 mars 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising multiple regions
US95920544 nov. 201514 mars 2017Ethicon Endo-Surgery, LlcSurgical stapler with stationary staple drivers
US95970759 juin 201421 mars 2017Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US960359528 févr. 201428 mars 2017Ethicon Endo-Surgery, LlcSurgical instrument comprising an adjustable system configured to accommodate different jaw heights
US960359830 août 201328 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling device with a curved end effector
US960399129 juil. 201328 mars 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument having a medical substance dispenser
US96158268 févr. 201311 avr. 2017Ethicon Endo-Surgery, LlcMultiple thickness implantable layers for surgical stapling devices
US962962314 mars 201325 avr. 2017Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US96296297 mars 201425 avr. 2017Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US962981420 mars 201425 avr. 2017Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US964262023 déc. 20139 mai 2017Ethicon Endo-Surgery, LlcSurgical cutting and stapling instruments with articulatable end effectors
US96491109 avr. 201416 mai 2017Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US964911128 juin 201216 mai 2017Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US965561411 mars 201323 mai 2017Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US965562430 août 201323 mai 2017Ethicon LlcSurgical stapling device with a curved end effector
US966211015 sept. 201530 mai 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument with an articulatable end effector
US967535530 août 201313 juin 2017Ethicon LlcSurgical stapling device with a curved end effector
US967537224 mai 201313 juin 2017Ethicon LlcMotor-driven surgical cutting instrument with electric actuator directional control assembly
US968187023 déc. 201320 juin 2017Ethicon LlcArticulatable surgical instruments with separate and distinct closing and firing systems
US968723014 mars 201327 juin 2017Ethicon LlcArticulatable surgical instrument comprising a firing drive
US968723121 oct. 201327 juin 2017Ethicon LlcSurgical stapling instrument
US968723624 févr. 201427 juin 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a power control circuit
US96872378 juin 201527 juin 2017Ethicon Endo-Surgery, LlcStaple cartridge including collapsible deck arrangement
US969036226 mars 201427 juin 2017Ethicon LlcSurgical instrument control circuit having a safety processor
US969377724 févr. 20144 juil. 2017Ethicon LlcImplantable layers comprising a pressed region
US97003091 mars 201311 juil. 2017Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US970031023 août 201311 juil. 2017Ethicon LlcFiring member retraction devices for powered surgical instruments
US97003178 févr. 201311 juil. 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasable tissue thickness compensator
US970032128 mai 201411 juil. 2017Ethicon LlcSurgical stapling device having supports for a flexible drive mechanism
US970699119 févr. 201418 juil. 2017Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples including a lateral base
US972409129 août 20138 août 2017Ethicon LlcSurgical stapling device
US972409223 déc. 20138 août 2017Ethicon LlcModular surgical instruments
US97240945 sept. 20148 août 2017Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
US972409813 nov. 20148 août 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising an implantable layer
US973069212 mars 201315 août 2017Ethicon LlcSurgical stapling device with a curved staple cartridge
US973069517 sept. 201515 août 2017Ethicon Endo-Surgery, LlcPower management through segmented circuit
US973069723 avr. 201515 août 2017Ethicon Endo-Surgery, LlcSurgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US973366326 mars 201415 août 2017Ethicon LlcPower management through segmented circuit and variable voltage protection
US97373015 sept. 201422 août 2017Ethicon LlcMonitoring device degradation based on component evaluation
US97373028 mars 201622 août 2017Ethicon LlcSurgical stapling instrument having a restraining member
US973730310 sept. 201522 août 2017Ethicon LlcArticulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US974392825 mars 201429 août 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US974392926 mars 201429 août 2017Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US975049828 sept. 20155 sept. 2017Ethicon Endo Surgery, LlcDrive systems for surgical instruments
US975049926 mars 20145 sept. 2017Ethicon LlcSurgical stapling instrument system
US975050124 mai 20165 sept. 2017Ethicon Endo-Surgery, LlcSurgical stapling devices having laterally movable anvils
US97571237 mars 201312 sept. 2017Ethicon LlcPowered surgical instrument having a transmission system
US975712424 févr. 201412 sept. 2017Ethicon LlcImplantable layer assemblies
US97571285 sept. 201412 sept. 2017Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US975713012 mars 201412 sept. 2017Ethicon LlcStapling assembly for forming different formed staple heights
US976366223 déc. 201319 sept. 2017Ethicon LlcFastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US97702458 févr. 201326 sept. 2017Ethicon LlcLayer arrangements for surgical staple cartridges
US977560824 févr. 20143 oct. 2017Ethicon LlcFastening system comprising a firing member lockout
US977560923 août 20133 oct. 2017Ethicon LlcTamper proof circuit for surgical instrument battery pack
US977561330 août 20133 oct. 2017Ethicon LlcSurgical stapling device with a curved end effector
US977561425 janv. 20163 oct. 2017Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotatable staple deployment arrangements
US97821691 mars 201310 oct. 2017Ethicon LlcRotary powered articulation joints for surgical instruments
US97888348 févr. 201317 oct. 2017Ethicon LlcLayer comprising deployable attachment members
US97888365 sept. 201417 oct. 2017Ethicon LlcMultiple motor control for powered medical device
US97953817 avr. 201624 oct. 2017Ethicon Endo-Surgery, LlcRobotically-controlled shaft based rotary drive systems for surgical instruments
US979538220 août 201324 oct. 2017Ethicon LlcFastener cartridge assembly comprising a cam and driver arrangement
US979538322 sept. 201624 oct. 2017Ethicon LlcTissue thickness compensator comprising resilient members
US979538427 mars 201324 oct. 2017Ethicon LlcFastener cartridge comprising a tissue thickness compensator and a gap setting element
US98016269 avr. 201431 oct. 2017Ethicon LlcModular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US980162726 sept. 201431 oct. 2017Ethicon LlcFastener cartridge for creating a flexible staple line
US980162826 sept. 201431 oct. 2017Ethicon LlcSurgical staple and driver arrangements for staple cartridges
US980163420 oct. 201431 oct. 2017Ethicon LlcTissue thickness compensator for a surgical stapler
US980461826 mars 201431 oct. 2017Ethicon LlcSystems and methods for controlling a segmented circuit
US980824414 mars 20137 nov. 2017Ethicon LlcSensor arrangements for absolute positioning system for surgical instruments
US98082466 mars 20157 nov. 2017Ethicon Endo-Surgery, LlcMethod of operating a powered surgical instrument
US980824730 juin 20157 nov. 2017Ethicon LlcStapling system comprising implantable layers
US980824923 août 20137 nov. 2017Ethicon LlcAttachment portions for surgical instrument assemblies
US98144609 avr. 201414 nov. 2017Ethicon LlcModular motor driven surgical instruments with status indication arrangements
US981446223 juin 201414 nov. 2017Ethicon LlcAssembly for fastening tissue comprising a compressible layer
USD6500741 oct. 20106 déc. 2011Ethicon Endo-Surgery, Inc.Surgical instrument
Classifications
Classification internationaleA61B18/12, A61B18/14
Classification coopérativeA61B2018/128, A61B18/1206, A61B18/1402, A61B18/12, A61B2018/0066, A61B2018/1213
Classification européenneA61B18/12G, A61B18/12, A61B18/14B
Événements juridiques
DateCodeÉvénementDescription
14 mars 2002AKDesignated states
Kind code of ref document: A1
Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW
14 mars 2002ALDesignated countries for regional patents
Kind code of ref document: A1
Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG
26 sept. 2002DFPERequest for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
4 févr. 2003WWEWipo information: entry into national phase
Ref document number: 2001963215
Country of ref document: EP
17 juil. 2003REGReference to national code
Ref country code: DE
Ref legal event code: 8642
3 sept. 2003WWPWipo information: published in national office
Ref document number: 2001963215
Country of ref document: EP
1 avr. 2005WWWWipo information: withdrawn in national office
Ref document number: 2001963215
Country of ref document: EP
13 sept. 2005NENPNon-entry into the national phase in:
Ref country code: JP