WO2002026353A1 - Multi-layer structure honeycomb filter and method of manufacturing the filter - Google Patents

Multi-layer structure honeycomb filter and method of manufacturing the filter Download PDF

Info

Publication number
WO2002026353A1
WO2002026353A1 PCT/JP2001/008283 JP0108283W WO0226353A1 WO 2002026353 A1 WO2002026353 A1 WO 2002026353A1 JP 0108283 W JP0108283 W JP 0108283W WO 0226353 A1 WO0226353 A1 WO 0226353A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
honeycomb
thickness
substrate
pressure loss
Prior art date
Application number
PCT/JP2001/008283
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Sakon
Hiroyuki Manabe
Original Assignee
Ngk Insulators,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators,Ltd. filed Critical Ngk Insulators,Ltd.
Priority to AU2001288112A priority Critical patent/AU2001288112A1/en
Publication of WO2002026353A1 publication Critical patent/WO2002026353A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters

Definitions

  • the present invention relates to a multi-layered honeycomb filter for collecting dust that captures dust in a gas to be treated and a method for producing the same.
  • dust collectors mainly used bag filters made of paper, fiber, or polymer resin.However, in recent years, environmental protection measures such as pollution prevention, product recovery from high-temperature gas, and clean high-temperature energy recovery have been required. Markets that require dust collection in temperatures above 250 ° C, where molecular materials cannot be used, have increased.
  • ceramics have excellent heat resistance and corrosion resistance, and have favorable characteristics as a filter material in a high-temperature, corrosive gas atmosphere.
  • the ceramic filter made of this ceramic include a tubular filter and a candle-like filter having a closed tubular shape on one side.
  • the honeycomb filter for dust collection is It is used in a wide variety of fields, such as the chemical, electric power, steel, and industrial waste treatment industries, for the purpose of collecting products from high-temperature gas and removing dust from exhaust gas for environmental measures.
  • such a honeycomb fill has a structure in which the ends of a large number of through holes 9 of the honeycomb are sealed on a square basis for the upstream side B and the downstream side C in reverse.
  • the high-temperature gas that has entered passes through the porous partition 8 and passes through the hole on the downstream side C, and at that time, dust in the high-temperature gas is captured by the filter layer of the partition.
  • the filtering area of the filter is smaller than that of the bag filter, and it is necessary to use a honeycomb filter to secure the same filtering area as a dust collector incorporating a bag filter.
  • the size of the dust collector itself increases.
  • Japanese Utility Model Application Laid-Open No. 6-63415 discloses that a ceramic powder called a precoat material is sprayed and fixed on a filtration surface of a filter in advance to form a precoat layer.
  • an exhaust gas purifying apparatus is disclosed in which a mechanism for trapping dust in a dust-containing gas on the pre-coated material and removing the dust together with the pre-coated material is introduced.
  • the honeycomb structure having a relatively large average pore diameter is usually disposed on the surface of the honeycomb structure.
  • a filter layer having a small average pore diameter is provided.
  • a dynamic pressure vacuum method in which one end of a porous substrate having pores saturated with a liquid is decompressed and a slurry containing ceramic particles is supplied from the other end.
  • An air flow coating method in which a powder composed of ceramic particles is adhered to the surface of a porous substrate in an air stream, and then moisture is imparted and adsorbed (Japanese Unexamined Patent Publication No.
  • a slurry containing ceramic particles is brought into contact with and held on the surface of a porous substrate, and then discharged.
  • a dipping method in which the slurry is made of ceramic particles is supplied to each cell of the porous honeycomb structure, and moisture in the slurry is removed by permeating the inside of the porous material.
  • a slurry direct filtration method in which ceramic particles are attached to the surface of a honeycomb structure is known.
  • the ceramic particles penetrate into pores of the base material, and a dense structure is formed between the base material and the filter layer.
  • a mixed layer of the two is formed and the pressure loss increases.
  • Japanese Patent No. 29266187 discloses a gas filter in which diatomaceous earth or rice husk ash is fixed on the surface of a base material so as to fill pores on the surface of the filter base material, and a filter layer is formed. The manufacturing method is disclosed.
  • honeycomb filter for dust collection that sufficiently satisfies both high trapping efficiency and small pressure loss has not yet been obtained, and development of such a honeycomb filter has been awaited.
  • the fixing method of the 82-cam filter to the dust collector is a canning tie
  • the filtration fluid flows to the outside of the honeycomb filter through the outer wall of the 82-cam outer periphery. If there is a lot of leakage, there is a possibility that the original sealing performance of Canning may be reduced.
  • the honeycomb filter is displaced by the stress generated during backwashing, and contacts with the casing metal used for cleaning the honeycomb filter, causing defects such as chipping or damage at the corner of the honeycomb filter. There is a risk of occurrence. Disclosure of the invention
  • the present invention has been made in view of the above-mentioned problems of the prior art, and aims to provide a high trapping efficiency, a small pressure loss, and a sufficient use in a dust collector.
  • Multilayer honeycomb filter having high strength, and a multilayer structure capable of easily manufacturing such a multilayer honeycomb filter with a simple device and without causing a quality variation between filters.
  • An object of the present invention is to provide a method for manufacturing a honeycomb filter.
  • a dust collecting multilayer filter having one or two or more filter layers on the surface of a porous substrate having an 82-cam structure,
  • the pressure loss of the substrate is 150 to 700 Pa when the filtration flow rate of the filter is 1 mZmin, and the pressure loss of at least one filter layer is 50 to 300 Pa.
  • a honeycomb filter having a multilayer structure, which is characterized by Pa.
  • the difference between the thinnest part and the thickest part of the filter layer is preferably within 35%, and the base material and the filter layer are preferably made of the same material.
  • the thickness of the outer wall of the outer peripheral portion of the honeycomb is preferably 1.3 to 2.0 times the thickness of the partition wall of each honeycomb cell constituted by the base material. Is preferably cordierite.
  • one or two or more filter layers are provided on the surface of a porous substrate having an 82-cam structure, and when the filtration flow rate of the filter is 1 mZmin, A method for producing a honeycomb filter having a multilayer structure in which the pressure loss of the base material is 150 to 700 Pa and the pressure loss of at least one or more of the filter layers is 50 to 300 Pa.
  • each cell of a substrate having a honeycomb structure has the same material as the substrate.
  • a slurry of porous ceramic particles removing components in the slurry by permeating the pores of the substrate, attaching the ceramic particles to the surface of the substrate, and then firing. Forming a filter layer by using the method described above.
  • the difference between the thinnest part and the thickest part of the thickness of the filler layer is preferably within 35%.
  • the base material and the filler layer are preferably made of the same material, and the thickness of the outer wall of the outer periphery of the 82 cam is determined by the thickness of the partition wall of each honeycomb cell constituted by the base material. It is preferably 1.3 to 2.0 times.
  • the material is preferably cordierite.
  • FIG. 1 is a schematic view illustrating an example of a method for manufacturing a multilayer honeycomb filter of the present invention.
  • FIG. 2 is a perspective view showing a general configuration of a honeycomb filter. BEST MODE FOR CARRYING OUT THE INVENTION
  • the multilayer honeycomb filter of the present invention is mainly used as a dust-collecting filter, and is provided with one or two or more filter layers on the surface of a porous substrate having a honeycomb structure.
  • the pressure loss of the substrate at a filtration flow rate of lm / min is preferably 150 to 700 Pa, more preferably 300 to 500 Pa, and 350 to 450 Pa.
  • the pressure loss of at least one or more filter layers is preferably from 50 to 300 Pa, more preferably from 70 to 250 Pa, and 100 It is particularly preferred that it is ⁇ 200 Pa. The details will be described below.
  • the pressure loss of the base material and the filter layer By setting the values of the pressure loss of the base material and the filter layer in the above-mentioned range, it is possible to obtain a multilayer filter having a characteristic such as a high trapping rate.
  • the pressure loss of the substrate under the above conditions is less than 150 Pa, the strength of the honeycomb filter itself is likely to be reduced, and when the pressure loss exceeds 700 Pa, the bag filter It is not preferable because it cannot use the same suction blower as the standard suction blower.
  • the pressure loss of at least one or more filter layers is less than 50 Pa, the filter layer cannot be partially secured, and if it exceeds 300 Pa, it is the same as the base material. It is not preferable because a blower equivalent to the standard suction blower used in the filter cannot be used.
  • the strength of the honeycomb filter required for use as a filter for dust collection is sufficient if the cell bending strength of the honeycomb structure is about 4 MPa, which is 6 MPa. preferable.
  • the average pore diameter of the base material is set to 10 to 50 m,
  • the porosity must be within the range of 40 to 60%.
  • the average pore diameter of the filter layer is required. Must be within a range of 2 to 10 m, a porosity of 30 to 50%, and a layer thickness of 20 to 50 m.
  • the pressure loss of the entire honeycomb filter is 10 when the filtration flow rate of the filter is 1 mZmin. It is preferably at most 000 Pa, more preferably at most 800 Pa. If it exceeds 10 O OPa, it is not preferable because a standard suction blower cannot be used.
  • the pressure loss of the entire honeycomb filter is limited to about 200 Pa.
  • the difference between the thinnest portion and the thickest portion of the filter layer is preferably within 35%, more preferably within 27%, and more preferably 20%. % Is particularly preferable. If the difference between the thinnest part and the thickest part of the filter layer is more than 35%, the trapping efficiency of the multilayer honeycomb filter is not sufficient, and the pressure loss also increases. Therefore, the multilayered honeycomb filter according to the present invention, which is specified within the above numerical values, has characteristics such that sufficient trapping efficiency is secured and pressure loss is reduced.
  • the above-described 82-cam filter having a multilayer structure in which the difference between the thinnest portion and the thickest portion of the filter layer described above is 35% or less can be specifically manufactured as follows. That is, the ceramic particles having a predetermined average particle diameter to be a filter layer are adjusted to a slurry liquid having a predetermined concentration, and the slurry liquid is injected from below the previously dried substrate, and the surface of the substrate is subjected to a direct filtration method. The thickness of the filler layer is adjusted by attaching ceramic particles to the substrate, and then turning the substrate upside down, thereby making it possible to produce a multilayer honeycomb filter.
  • the base material and the filter layer are preferably made of the same material.
  • the filter layer does not peel off or fall off due to a difference in thermal expansion between the layers. It has such excellent characteristics.
  • the thickness of the outer wall of the outer peripheral portion of the honeycomb is 1.3 to 2.0 times the thickness of the partition wall of each honeycomb cell constituted by the base material. More preferably, it is 1.4 to 2.0 times, and particularly preferably 1.5 to 2.0 times.
  • the thickness of the outer wall of the outer peripheral portion of the honeycomb is less than 1.3 times the thickness of the partition wall of each honeycomb cell constituted by the base material, the necessary strength of the honeycomb structure itself can be secured.
  • the filtration resistance of the outer wall becomes the same level as the filtration resistance of the partition walls of each 82-cam cell. Therefore, the filtration fluid may leak from the outer wall, and the sealing performance of the canning may be impaired.
  • the thickness of the outer wall of the outer peripheral portion of the honeycomb is more than 2.0 times the thickness of the partition wall of each honeycomb cell composed of the base material, the extrudability is reduced, and the would be difficult to do.
  • the thickness of the outer wall of the outer peripheral portion of the honeycomb is within the above numerical range with respect to the thickness of the partition wall of each honeycomb cell formed by the base material.
  • the material of the multilayer honeycomb filter of the present invention is cordierite.
  • Cordylite is a ceramic material that has a small coefficient of thermal expansion and excellent thermal shock resistance, and also has excellent mechanical strength.
  • the honeycomb filter having a multilayer structure of the present invention made of cordierite since it has characteristics suitable as a ceramic material constituting the honeycomb filter, the characteristics can be utilized and the desired size can be obtained. ⁇ It can be manufactured into shapes.
  • the multilayered honeycomb filter according to the present invention described above supplies slurry of ceramic particles of the same material as the base material to each cell of the porous base material having the honeycomb structure. It is manufactured by removing the moisture therein by passing through the pores of the substrate, attaching the ceramic particles to the surface of the substrate, and then firing to form a filter layer.
  • the concentration (w / w) of the ceramic particles in the slurry used for forming the filter layer should be 0.5% or more and less than 2.0% if the precipitation property of the slurry and the particle Although it is preferable from the viewpoint of balance with adhesion, it is more preferably 0.8% or more and less than 1.5%.
  • the volume of the slurry is preferably at least three times and at most six times the total volume of the coated cell. If the thickness is less than three times, a difference in film thickness occurs between the upper and lower parts of the cell.If the thickness exceeds six times, a large amount of slurry is required to balance the thickness and concentration of the fill layer and to form the fill layer.
  • the second and subsequent filter layers are formed after firing the first filter layer. Perform in the same manner as described above. (Examples) Hereinafter, specific implementation results of the present invention will be described.
  • a 50 m thick single filter layer was provided to manufacture a honeycomb filter having a multilayer structure. 'The details of the embodiment will be described below.
  • a honeycomb structure having a predetermined cell pitch was manufactured by a general extrusion molding method.
  • the ends of the many through holes 9 of the honeycomb are sealed on the upstream side B and the downstream side C with the same material for each square, and dried.
  • the substrate was manufactured by firing at a predetermined firing temperature (Examples 1 to 14).
  • Table 1 shows the cell pitch, cell thickness, outer wall thickness, ratio of outer wall thickness to cell thickness (outer wall thickness Z cell thickness), firing temperature, cell bending strength, and average pore diameter of the base material manufactured by such a process. Show.
  • the porosity at this time was 47%
  • the production of the filter layer was performed by the processing apparatus 4 shown in FIG.
  • the processing apparatus 4 is provided with a slurry tank 6 on a magnetizer 5, and supplies the slurry in the slurry tank 6 to the substrate 1 by the pressure of the air A.
  • the slurry tank 6 is for preparing a slurry of ceramic particles having a predetermined concentration, and a slurry having a uniform concentration is prepared by the stirring action of the magnetic stirrer 15, and the prepared slurry is attached to the slurry injection tool 3. It is supplied to one end side of the base material 1 connected via the metal fitting 2, and is introduced into the inside of one of the cells through the opening. The supply amount of the slurry is monitored by a liquid level gauge 7 provided in the slurry tank 6, and the supply of the slurry is stopped when the supply amount reaches a predetermined value. Then, the substrate 1 is inverted, and the filtered water in the substrate is discharged.
  • the water in the introduced slurry gradually permeates through the partition walls of each cell and flows out to the outside. During this time, the particles in the slurry gradually adhere to one side surface of the partition walls to form a layer of particles.
  • the slurry was prepared by adding an organic binder in advance and stirring and mixing with a homomixer in a plastic container.
  • Examples 1 to 10 After forming the layer composed of the ceramic particles in this way, the base material on which the layer was provided was dried and fired at a predetermined firing temperature for 2 hours to produce a filter layer (Examples 1 to 10).
  • Table 1 shows the slurry concentration, the average particle diameter, and the firing temperature of the ceramic particles used in the above step, and the thickness of the filter layer produced by such a step.
  • “substantial strength” refers to the breaking load when a three-point bending stress is applied to a 150 ⁇ 150 ⁇ 500 mm entity, and the case where the safety factor for the design strength is 8 or more is “large”. A safety factor of 4 to 7 was judged as “medium”, and a safety factor of 1 to 3 was judged as “small”.
  • Table 1 shows the cell pitch, cell thickness, outer wall thickness, ratio of outer wall thickness to cell thickness (outer wall thickness Z cell thickness), firing temperature, and average pore diameter of the base material manufactured by such a process.
  • the porosity was 47%.
  • Filter layers were manufactured in the same manner as in Examples 1 to 10 described above (Comparative Examples 1 to 5).
  • Example 1 10 1.3 1.95 1.5 1413 9.8 15 400 1 10 50 1350 300 700 Large Example 2 6 0.65 1.3 2.0 1 13 7.7 14 350 0.9 10 30 1350 130 480 Medium Example 3 6 0.65 1.3 2.0 413 413 7 7 14 350 0,6 10 20 ⁇ j 350 120 470 Medium Example 4 6 0.65 1.3 2.0 1 13 F.7 14 350 0.3 10 10 1350 50 400 Medium Example 5 6 0.9 1.7 1.9 1420 8 16 5 380 0.6 10 20 1350 100 480 Large Example 6 6 0.9 1.7 1.9 1410 10 15 430 1.5 10 50 1350 300 730 Large Example 7 6 0.9 1.7 1.9 1410 10 15 430 0.9 10 30 1350 150 580 Large Example 8 6 0.9 1.7 1.9 1410 10 15 430 0.9 10 30 1410 135 565 Large example 9 6 0.9 1.7 1.9 1410 10 15 430 0.6 10 20 1350 100 530 Large example 10 6 0.9 1.7 1.9 1390 '11.6 11.5 690 0.9 10 30 1350 140 830 Large
  • Table 1 shows that the honeycomb filters of the examples all had a ventilation differential pressure (pressure loss) of not more than a predetermined value, and the evaluation of the actual strength was all medium to large.
  • the ventilation differential pressure (pressure loss) of the honeycomb filter of the comparative example was equal to or higher than the predetermined value. Also, in the comparative examples, even when the ventilation differential pressure (pressure loss) was equal to or less than a predetermined value, the evaluations of the body strength were all small, and the excellent effects of the present invention could be confirmed.
  • the honeycomb filter having a multilayer structure of the present invention, since the trapping efficiency is good and the pressure loss is small, the honeycomb filter is used in various fields such as the chemical, electric power, and industrial waste treatment industries. It can be suitably used as a dust collecting filter for capturing dust.
  • a honeycomb filter having a multilayer structure having no variation in quality between filters can be easily manufactured with a simple apparatus. It is possible to provide a honeycomb filter for dust collection that contributes to improvement and reduction of production cost and has excellent performance.

Abstract

A multi-layer structure honeycomb filter for dust collection, comprising one or more filter layers formed on the surface of a porous base material having a honeycomb structure, wherein the pressure loss of the base material is 150 to 700 Pa when the filtration flow velocity of the filter is 1 m/min, and the pressure loss of the filter layers of at least one layer is 50 to 300 Pa, whereby a capture efficiency can be increased and the pressure loss can also be reduced.

Description

明 細 書 複層構造ハニカムフィル夕及びその製造方法 技術分野  Description Multilayer honeycomb filter and manufacturing method
本発明は、 被処理ガス中のダストを捕捉する集塵用の複層構造ハニカムフィル 夕及びその製造方法に関する。 背景技術  The present invention relates to a multi-layered honeycomb filter for collecting dust that captures dust in a gas to be treated and a method for producing the same. Background art
従来、 集塵装置は紙や繊維、 高分子樹脂を使用したバグフィルタが主流であつ たが、 近年、 公害防止等の環境対策、 高温ガスからの製品回収、 クリーンな高温 エネルギー回収のため、 高分子材料が使用不可能である 2 5 0 °C以上の温度域に おける集塵が必要な市場が増えてきた。  In the past, dust collectors mainly used bag filters made of paper, fiber, or polymer resin.However, in recent years, environmental protection measures such as pollution prevention, product recovery from high-temperature gas, and clean high-temperature energy recovery have been required. Markets that require dust collection in temperatures above 250 ° C, where molecular materials cannot be used, have increased.
このような状況下、 セラミックスは、 耐熱性、 耐食性に優れ、 高温、 腐食性ガ ス雰囲気でのフィルタ材料として好ましい特性を有している。 このセラミックス を材料としたセラミックスフィル夕としては、 例えば管状のもの、 或いは、 一方 が閉じた管状であるキャンドルタイプと呼ばれる形状のもの等を挙げることがで き、 現在、 集塵用ハニカムフィルタは、 高温ガスからの製品の回収、 環境対策を 狙いとした排ガスからのダストの除去等を目的として、 化学、 電力、 鉄鋼、 産業 廃棄物処理産業等多岐に渡る分野において用いられている。  Under these circumstances, ceramics have excellent heat resistance and corrosion resistance, and have favorable characteristics as a filter material in a high-temperature, corrosive gas atmosphere. Examples of the ceramic filter made of this ceramic include a tubular filter and a candle-like filter having a closed tubular shape on one side. At present, the honeycomb filter for dust collection is It is used in a wide variety of fields, such as the chemical, electric power, steel, and industrial waste treatment industries, for the purpose of collecting products from high-temperature gas and removing dust from exhaust gas for environmental measures.
かかるハニカムフィル夕は、 図 2に示すように、 ハニカムの多数の貫通孔 9の 端部を上流側 Bと下流側 Cとを逆に 1マスごとに封じた構造を有し、 上流側 Bか ら入った高温ガスは、 多孔質の隔壁 8を通って下流側 Cの穴より抜けていくが、 その際に、 高温ガス中のダストは隔壁のフィルタ層に捕捉される。  As shown in Fig. 2, such a honeycomb fill has a structure in which the ends of a large number of through holes 9 of the honeycomb are sealed on a square basis for the upstream side B and the downstream side C in reverse. The high-temperature gas that has entered passes through the porous partition 8 and passes through the hole on the downstream side C, and at that time, dust in the high-temperature gas is captured by the filter layer of the partition.
従来のキャンドルタイプ等のセラミックスフィルタに関しては、 バグフィルタ に比してフィルタの濾過面積が小さく、 バグフィルタを組み込んでなる集塵装置 と同等の濾過面積の確保を、 ハニカムフィルタを用いて図ろうとすると、 セラミ ックスフィルタの使用本数が増加するとともに集塵装置自体が大型化してしまい 、 装置コストが大幅にアップするといつた問題がある。 また、 他にもフィル夕の 圧力損失が大きい等の問題をも有している。 For conventional ceramic filters such as candle filters, the filtering area of the filter is smaller than that of the bag filter, and it is necessary to use a honeycomb filter to secure the same filtering area as a dust collector incorporating a bag filter. However, as the number of ceramic filters used increases, the size of the dust collector itself increases. However, there is a problem when the equipment cost is significantly increased. There are also other problems, such as a large pressure loss at the Philippines.
これらの問題を解消するためには、 捕捉効率を上げる観点からは隔壁を厚くし 、 隔壁の気孔径を小さくすることが有利であるが、 圧力損失の増大といった不具 合を招いてしまう。 一方、 圧力損失を低くする観点からは、 隔壁を薄くし、 隔壁 の気孔径を大きくすることが有利であるが、 反面、 捕捉効率の低下といった事態 を生じ易くなるとともに、 フィルタ自体の強度低下が問題となる。  In order to solve these problems, it is advantageous to increase the thickness of the partition wall and reduce the pore diameter of the partition wall from the viewpoint of increasing the trapping efficiency, but this disadvantageously causes an increase in pressure loss. On the other hand, from the viewpoint of reducing the pressure loss, it is advantageous to make the partition wall thinner and increase the pore diameter of the partition wall. It becomes a problem.
上記問題点を解消するため、 実開昭 6 1 - 6 4 3 1 5号公報においては、 予め フィル夕の濾過面にプレコート材と称するセラミックス粉体を吹き付けて固着し 、 プレコート層を形成しておき、 当該プレコート材上において含塵ガス中の塵を 捕捉した後、 プレコート材とともに除去するといつた仕組みが導入された排ガス 浄化用装置が開示されている。  In order to solve the above problem, Japanese Utility Model Application Laid-Open No. 6-63415 discloses that a ceramic powder called a precoat material is sprayed and fixed on a filtration surface of a filter in advance to form a precoat layer. In addition, an exhaust gas purifying apparatus is disclosed in which a mechanism for trapping dust in a dust-containing gas on the pre-coated material and removing the dust together with the pre-coated material is introduced.
しかし、 上記の仕組みが導入された前記公報記載の排ガス浄化用装置において は、 運転とともにプレコート材が消費されるために、 定期的にプレコート材を追 加する手間がかかる。 また、 捕捉した塵にプレコート材が混入するために、 廃棄 物が増大するといった問題点がある。  However, in the exhaust gas purifying apparatus described in the above-mentioned publication in which the above-described mechanism is introduced, since the precoat material is consumed during operation, it takes time to add the precoat material periodically. In addition, there is a problem that waste is increased because the pre-coated material is mixed with the captured dust.
このため、 現在の一般的なハニカムフィルタにおいては、 捕捉効率を上げつつ 、 小圧力損失を実現すべく、 通常、 比較的大きな平均気孔径を有するハニカム構 造の基材の表面に、 基材よりも平均気孔径の小さいフィルタ層を設けている。 かかるフィルタ層を形成する方法としては、 従来から、 気孔を液体で飽和させ た多孔質基材の一端側を減圧し、 他端側よりセラミックス粒子を含むスラリーを 供給する動加圧真空法 (特開昭 6 1 - 2 3 8 3 1 5号公報) 、 セラミックス粒子 からなる粉末を気流中で多孔質基材の表面に付着させた後、 水分を付与して吸着 させる気流コート法 (特開平 1 0— 2 4 9 1 2 4号公報) 、 セラミックス粒子を 含むスラリーを多孔質基材の表面に接触 ·保持した後、 排出するスラリー注入 - 排出法、 多孔質基材をセラミックス粒子粉末からなるスラリ一に浸漬するディッ ピング法、 セラミックス粒子粉末からなるスラリーを多孔質ハニカム構造体の各 セルに供給し、 スラリー中の水分を多孔質内を透過させて除去することにより、 セラミックス粒子をハニカム構造体の表面に付着させるスラリー直濾過法等が知 られている。 For this reason, in the current general honeycomb filter, in order to increase the trapping efficiency and to realize a small pressure loss, the honeycomb structure having a relatively large average pore diameter is usually disposed on the surface of the honeycomb structure. Also, a filter layer having a small average pore diameter is provided. As a method for forming such a filter layer, there has been conventionally known a dynamic pressure vacuum method in which one end of a porous substrate having pores saturated with a liquid is decompressed and a slurry containing ceramic particles is supplied from the other end. An air flow coating method in which a powder composed of ceramic particles is adhered to the surface of a porous substrate in an air stream, and then moisture is imparted and adsorbed (Japanese Unexamined Patent Publication No. No. 0-24991 24), a slurry containing ceramic particles is brought into contact with and held on the surface of a porous substrate, and then discharged. A dipping method in which the slurry is made of ceramic particles is supplied to each cell of the porous honeycomb structure, and moisture in the slurry is removed by permeating the inside of the porous material. A slurry direct filtration method in which ceramic particles are attached to the surface of a honeycomb structure is known.
しかしながら、 動加圧真空法は、 ハニカム構造のような複雑な形状を有する基 材に適用することは困難であり、 適用しょうとすれば複雑な装置が必要となり、 生産効率、 製造コスト上好ましくない。  However, it is difficult to apply the dynamic pressure vacuum method to a substrate having a complex shape such as a honeycomb structure, and if it is applied, complicated equipment is required, which is not preferable in terms of production efficiency and manufacturing cost. .
また、 気流コート法では、 セラミックス粒子が凝集状態となって基材に付着す るため、 コート層の平均気孔径が大きくなり、 高い捕捉効率を実現することが困 難であるとともに、 目詰まりが発生することにより、'圧損上昇率が高くなるとい う問題があった。  In addition, in the airflow coating method, since the ceramic particles adhere to the base material in an aggregated state, the average pore diameter of the coating layer becomes large, and it is difficult to achieve high trapping efficiency, and clogging is prevented. Due to the occurrence, there was a problem that the pressure loss rise rate was increased.
さらに、 スラリー注入 ·排出法及びディッビング法では、 コート厚の制御が困 難であり、 そのため、 フィルタ間で捕捉効率や圧力損失の程度にパラツキが生じ るという問題があった。  Furthermore, in the slurry injection / discharge method and the diving method, it is difficult to control the coat thickness, and therefore, there is a problem that the capture efficiency and the degree of pressure loss between filters vary.
また、 スラリー直濾過法では、 平均粒子径の小さいセラミックス粒子を用いて フィルタ層を形成しょうとすると、 セラミックス粒子が基材の気孔内に侵入して 、 基材とフィルタ層の間に緻密な構造を有する両者の混合層を形成し、 圧力損失 が大きくなるという問題があつた。  Also, in the slurry direct filtration method, if it is attempted to form a filter layer using ceramic particles having a small average particle diameter, the ceramic particles penetrate into pores of the base material, and a dense structure is formed between the base material and the filter layer. However, there is a problem that a mixed layer of the two is formed and the pressure loss increases.
特許第 2 9 2 6 1 8 7号公報においては、 基材の表面に、 フィルタ基材表面の 気孔を埋めるように珪藻土または籾殻灰が固着され、 フィル夕層が形成されたガ ス用フィルタとその製造方法が開示されている。  Japanese Patent No. 29266187 discloses a gas filter in which diatomaceous earth or rice husk ash is fixed on the surface of a base material so as to fill pores on the surface of the filter base material, and a filter layer is formed. The manufacturing method is disclosed.
しかしながら、 前記公報記載のガス用フィルタに関しては、 フィルタ基材とフ ィル夕層の材質が異なる場合においては、 高温条件下で長期間に渡って使用する に際し、 両材質の熱膨張率の差異に起因するフィルタ層の剥離や脱落が発生する おそれがある。  However, regarding the gas filter described in the above-mentioned publication, when the material of the filter substrate and the material of the filter layer are different, the difference in thermal expansion coefficient between the two materials when used for a long time under a high temperature condition is considered. This may cause the filter layer to peel off or fall off.
したがって、 これまでに、 高捕捉効率、 小圧力損失の両方を十分に満足させる 集塵用ハニカムフィルタは未だ得られておらず、 このようなハニカムフィルタの 開発が待たれていた。  Therefore, a honeycomb filter for dust collection that sufficiently satisfies both high trapping efficiency and small pressure loss has not yet been obtained, and development of such a honeycomb filter has been awaited.
一方、 集塵装置への八二カムフィル夕の固定方法がキヤニングタイブである場 合、 八二カム外周部の外壁を通じてハニカムフィルタの外部方向への濾過流体の 漏れが多いと、 キヤニング本来のシール性が低下する可能性がある。 また、 逆洗 時に発生する応力により、 ハニカムフィルタがずれ、 ハニカムフィルタをキヤ二 ングするために用いられているケ一シング金属との接触により、 ハニカムフィル 夕のコーナー部において欠けや損壊等の不良が発生する危険性がある。 発明の開示 On the other hand, if the fixing method of the 82-cam filter to the dust collector is a canning tie, the filtration fluid flows to the outside of the honeycomb filter through the outer wall of the 82-cam outer periphery. If there is a lot of leakage, there is a possibility that the original sealing performance of Canning may be reduced. In addition, the honeycomb filter is displaced by the stress generated during backwashing, and contacts with the casing metal used for cleaning the honeycomb filter, causing defects such as chipping or damage at the corner of the honeycomb filter. There is a risk of occurrence. Disclosure of the invention
本発明は、 このような従来技術の有する問題点に鑑みてなされたものであり、 その目的とするところは、 高捕捉効率、 小圧力損失であるとともに、 集塵装置と しての使用に際して十分な強度を有する複層構造ハニカムフィルタ、 及び、 その ような複層構造ハニカムフィルタを簡単な装置にて容易に、 かつ、 フィルタ間で 品質のバラツキが生じないように製造することができる複層構造ハニカムフィル タの製造方法を提供することにある。  The present invention has been made in view of the above-mentioned problems of the prior art, and aims to provide a high trapping efficiency, a small pressure loss, and a sufficient use in a dust collector. Multilayer honeycomb filter having high strength, and a multilayer structure capable of easily manufacturing such a multilayer honeycomb filter with a simple device and without causing a quality variation between filters. An object of the present invention is to provide a method for manufacturing a honeycomb filter.
即ち、 本発明によれば、 八二カム構造を有する多孔質の基材の表面に、 1層ま たは 2層以上のフィルタ層を備えた集塵用の複層構造ハニカムフィルタであって 、 フィル夕の濾過流速が 1 mZm i nの場合における該基材の圧力損失が 1 5 0 〜7 0 0 P aであるとともに、 少なくとも 1層以上の該フィルタ層の圧力損失が 5 0〜3 0 0 P aであることを特徴とする複層構造ハニカムフィルタが提供され る。  That is, according to the present invention, there is provided a dust collecting multilayer filter having one or two or more filter layers on the surface of a porous substrate having an 82-cam structure, The pressure loss of the substrate is 150 to 700 Pa when the filtration flow rate of the filter is 1 mZmin, and the pressure loss of at least one filter layer is 50 to 300 Pa. Provided is a honeycomb filter having a multilayer structure, which is characterized by Pa.
本発明においては、 フィルタ層の厚さの最薄部と最厚部の差が 3 5 %以内であ ることが好ましく、 基材とフィルタ層が同材質であることが好ましい。  In the present invention, the difference between the thinnest part and the thickest part of the filter layer is preferably within 35%, and the base material and the filter layer are preferably made of the same material.
また、 本発明においては、 ハニカム外周部の外壁の厚さが、 基材によって構成 される各ハニカムセルの隔壁の厚さに対して 1 . 3〜2 . 0倍であることが好ま しく、 材質がコーディライトであることが好ましい。  Further, in the present invention, the thickness of the outer wall of the outer peripheral portion of the honeycomb is preferably 1.3 to 2.0 times the thickness of the partition wall of each honeycomb cell constituted by the base material. Is preferably cordierite.
一方、 本発明によれば、 八二カム構造を有する多孔質の基材の表面に、 1層ま たは 2層以上のフィルタ層を備え、 フィルタの濾過流速が l mZm i nの場合に おける該基材の圧力損失が 1 5 0〜7 0 0 P aであるとともに、 少なくとも 1層 以上の該フィルタ層の圧力損失が 5 0〜3 0 0 P aである複層構造ハニカムフィ ルタの製造方法であって、 ハニカム構造を有する基材の各セルに、 該基材と同材 質であるセラミックス粒子のスラリーを供給し、 該スラリー中の成分を、 該基材 の気孔を透過させることにより除去して、 該セラミックス粒子を該基材の表面に 付着させ、 次いで、 焼成することによりフィルタ層を形成することを特徴とする 複層構造八二力ムフィル夕の製造方法が提供される。 On the other hand, according to the present invention, one or two or more filter layers are provided on the surface of a porous substrate having an 82-cam structure, and when the filtration flow rate of the filter is 1 mZmin, A method for producing a honeycomb filter having a multilayer structure in which the pressure loss of the base material is 150 to 700 Pa and the pressure loss of at least one or more of the filter layers is 50 to 300 Pa. Wherein each cell of a substrate having a honeycomb structure has the same material as the substrate. A slurry of porous ceramic particles, removing components in the slurry by permeating the pores of the substrate, attaching the ceramic particles to the surface of the substrate, and then firing. Forming a filter layer by using the method described above.
本発明においては、 フィル夕層の厚さの最薄部と最厚部の差が 35%以内であ ることが好ましい。  In the present invention, the difference between the thinnest part and the thickest part of the thickness of the filler layer is preferably within 35%.
また、 本発明においては、 基材とフィル夕層が同材質であることが好ましく、 八二カム外周部の外壁の厚さが、 基材によって構成される各ハニカムセルの隔壁 の厚さに対して 1. 3〜2. 0倍であることが好ましい。  Further, in the present invention, the base material and the filler layer are preferably made of the same material, and the thickness of the outer wall of the outer periphery of the 82 cam is determined by the thickness of the partition wall of each honeycomb cell constituted by the base material. It is preferably 1.3 to 2.0 times.
さらに、 本発明においては、 材質がコーディライトであることが好ましい。 図面の簡単な説明  Further, in the present invention, the material is preferably cordierite. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の複層構造ハニカムフィルタの製造方法の一例を示す模式図で ある。  FIG. 1 is a schematic view illustrating an example of a method for manufacturing a multilayer honeycomb filter of the present invention.
図 2は、 ハニカムフィル夕の一般的構成を示す斜視図である。 発明を実施するための最良の形態  FIG. 2 is a perspective view showing a general configuration of a honeycomb filter. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について説明するが、 本発明は以下の実施の形態に 限定されるものではなく、 本発明の趣旨を逸脱しない範囲で、 当業者の通常の知 識に基づいて、 適宜、 設計の変更、 改良等が加えられることが理解されるべきで ある。  Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and based on ordinary knowledge of a person skilled in the art without departing from the spirit of the present invention. It should be understood that design changes, improvements, etc. are made as appropriate.
本発明の複層構造ハユカムフィルタは、 主に集塵用フィルタとして使用され、 ハニカム構造を有する多孔質の基材の表面に、 1層または 2層以上のフィルタ層 を備えてなるものであり、 フィル夕の濾過流速が lm/m i nの場合における基" 材の圧力損失が 150〜700 P aであることが好ましく、 300~500 Pa であることがさらに好ましく、 350〜450 P aであることが特に好ましい。 また、 同時に、 少なくとも 1層以上のフィルタ層の圧力損失が 50〜300 P a であることが好ましく、 70〜250 P aであることがさらに好ましく、 100 〜2 0 0 P aであることが特に好ましい。 以下、 さらにその詳細について説明す る。 The multilayer honeycomb filter of the present invention is mainly used as a dust-collecting filter, and is provided with one or two or more filter layers on the surface of a porous substrate having a honeycomb structure. The pressure loss of the substrate at a filtration flow rate of lm / min is preferably 150 to 700 Pa, more preferably 300 to 500 Pa, and 350 to 450 Pa. At the same time, the pressure loss of at least one or more filter layers is preferably from 50 to 300 Pa, more preferably from 70 to 250 Pa, and 100 It is particularly preferred that it is ~ 200 Pa. The details will be described below.
基材、 並びにフィルタ層の圧力損失の値を上記数値の範囲とすることにより、 同時に高捕捉率といった特性をも有する複層構造ハニカムフィルタを得ることが 可能となる。 前記条件下における基材の圧力損失が 1 5 0 P a未満である場合は 、 ハニカムフィルタ自体の強度低下に繋がり易く、 また、 7 0 0 P aを超える圧 力損失である場合は、 バグフィル夕で使用される標準の吸引ブロアと同等のプロ ァが使用できなくなり好ましくない。 同様に、 少なくとも 1層以上のフィルタ層 の圧力損失が 5 0 P a未満である場合は部分的にフィルタ層が確保できなくなり 、 また、 3 0 0 P a超である場合は基材と同様バグフィルタで使用される標準の 吸引ブロアと同等のブロアが使用できなくなり好ましくない。  By setting the values of the pressure loss of the base material and the filter layer in the above-mentioned range, it is possible to obtain a multilayer filter having a characteristic such as a high trapping rate. When the pressure loss of the substrate under the above conditions is less than 150 Pa, the strength of the honeycomb filter itself is likely to be reduced, and when the pressure loss exceeds 700 Pa, the bag filter It is not preferable because it cannot use the same suction blower as the standard suction blower. Similarly, if the pressure loss of at least one or more filter layers is less than 50 Pa, the filter layer cannot be partially secured, and if it exceeds 300 Pa, it is the same as the base material. It is not preferable because a blower equivalent to the standard suction blower used in the filter cannot be used.
なお、 集塵用フィルタとして使用するために必要なハニカムフィルタの強度と は、 ハニカム構造体のセル曲げ強度の数値にして 4 M P a程度であれば十分であ り、 6 M P aであることが好ましい。  The strength of the honeycomb filter required for use as a filter for dust collection is sufficient if the cell bending strength of the honeycomb structure is about 4 MPa, which is 6 MPa. preferable.
フィルタの濾過流速が l mZm i nの場合における基材の圧力損失が 1 5 0〜 7 0 0 P aであることを満足するためには、 基材の平均気孔径を 1 0〜5 0 m 、 気孔率を 4 0〜6 0 %の範囲内とすることが必要である。  In order to satisfy that the pressure loss of the base material is 150 to 700 Pa when the filtration flow rate of the filter is 1 mZm in, the average pore diameter of the base material is set to 10 to 50 m, The porosity must be within the range of 40 to 60%.
また、 フィル夕の濾過流速が l mZm i nの場合における少なくとも 1層以上 のフィルタ層の圧力損失が 5 0〜3 0 0 P aであることを満足するためには、 フ ィルタ層の平均気孔径を 2〜 1 0 m、 気孔率を 3 0〜 5 0 %、 層厚を 2 0〜5 0 mの範囲内とすることが必要である。  In addition, in order to satisfy that the pressure loss of at least one filter layer is 50 to 300 Pa when the filtration flow rate at the filter is 1 mZmin, the average pore diameter of the filter layer is required. Must be within a range of 2 to 10 m, a porosity of 30 to 50%, and a layer thickness of 20 to 50 m.
さらに、 同じく集塵装置用のフィルタとして使用されているバグフィル夕と同 等以上の性能を得るためには、 フィルタの濾過流速が l mZm i nの場合におけ るハニカムフィルタ全体の圧力損失が 1 0 0 0 P aであることが好ましく、 8 0 0 P a以下であることがさらに好ましい。 1 0 O O P a超の場合は、 標準の吸引 ブロアが使用できないため好ましくない。  Furthermore, in order to obtain a performance equal to or higher than that of a bag filter which is also used as a filter for a dust collector, the pressure loss of the entire honeycomb filter is 10 when the filtration flow rate of the filter is 1 mZmin. It is preferably at most 000 Pa, more preferably at most 800 Pa. If it exceeds 10 O OPa, it is not preferable because a standard suction blower cannot be used.
なお、 その一方では、 ハニカムフィルタの最低限の強度を確保するためには、 ハニカムフィル夕全体の圧力損失は 2 0 0 P a程度とすることが限界である。 本発明の複層構造ハニカムフィルタにおいては、 フィルタ層の厚さの最薄部と 最厚部の差が 3 5 %以内であることが好ましく、 2 7 %以内とすることがさらに 好ましく、 2 0 %以内とすることが特に好ましい。 フィルタ層の厚さの最薄部と 最厚部の差が 3 5 %超である場合は、 複層構造ハニカムフィル夕の捕捉効率が十 分ではなく、 また、 圧力損失も増大してしまう。 したがって、 当該数値以内に規 定された、 本発明に係る複層構造ハニカムフィルタは十分な捕捉効率が確保され ているとともに、 圧力損失が低減されているといった特性を有している。 On the other hand, in order to ensure the minimum strength of the honeycomb filter, the pressure loss of the entire honeycomb filter is limited to about 200 Pa. In the multilayer honeycomb filter of the present invention, the difference between the thinnest portion and the thickest portion of the filter layer is preferably within 35%, more preferably within 27%, and more preferably 20%. % Is particularly preferable. If the difference between the thinnest part and the thickest part of the filter layer is more than 35%, the trapping efficiency of the multilayer honeycomb filter is not sufficient, and the pressure loss also increases. Therefore, the multilayered honeycomb filter according to the present invention, which is specified within the above numerical values, has characteristics such that sufficient trapping efficiency is secured and pressure loss is reduced.
上述したフィルタ層の厚さの最薄部と最厚部の差が 3 5 %以内である複層構造 八二カムフィルタは、 具体的には、 以下のように製造することができる。 すなわ ち、 フィルタ層となる所定の平均粒子径を有するセラミックス粒子を所定濃度の スラリー液に調整し、 該スラリー液を予め乾燥した基材の下方より注入し、 直濾 過方式で基材表面にセラミックス粒子を付着させ、 次いで基材を上下反転するこ とによりフィル夕層の厚さを調整し、 複層構造ハニカムフィル夕を製造すること ができる。  The above-described 82-cam filter having a multilayer structure in which the difference between the thinnest portion and the thickest portion of the filter layer described above is 35% or less can be specifically manufactured as follows. That is, the ceramic particles having a predetermined average particle diameter to be a filter layer are adjusted to a slurry liquid having a predetermined concentration, and the slurry liquid is injected from below the previously dried substrate, and the surface of the substrate is subjected to a direct filtration method. The thickness of the filler layer is adjusted by attaching ceramic particles to the substrate, and then turning the substrate upside down, thereby making it possible to produce a multilayer honeycomb filter.
本発明の複層構造ハニカムフィルタは、 基材とフィル夕層が同材質であること が好ましい。 同材質とすることによって、 高温条件下においても熱膨張差が発生 することがない。 したがって、 本発明に係る複層構造ハニカムフィルタは、 例え ば、 9 0 0 °Cまでの高温条件下においても、 層間の熱膨張差に起因するフィルタ 層の剥離や脱落等が発生することがないといった優れた特性を有している。 本発明の複層構造ハニカムフィルタは、 ハニカム外周部の外壁の厚さが、 基材 によって構成される各ハニカムセルの隔壁の厚さに対して 1 . 3〜2 . 0倍であ ることが好ましく、 1 . 4〜2 . 0倍であることがさらに好ましく、 1 . 5〜2 . 0倍であることが特に好ましい。  In the multilayer filter of the present invention, the base material and the filter layer are preferably made of the same material. By using the same material, no difference in thermal expansion occurs even under high temperature conditions. Therefore, in the multilayered honeycomb filter according to the present invention, for example, even under a high temperature condition of up to 900 ° C., the filter layer does not peel off or fall off due to a difference in thermal expansion between the layers. It has such excellent characteristics. In the honeycomb filter having a multilayer structure of the present invention, the thickness of the outer wall of the outer peripheral portion of the honeycomb is 1.3 to 2.0 times the thickness of the partition wall of each honeycomb cell constituted by the base material. More preferably, it is 1.4 to 2.0 times, and particularly preferably 1.5 to 2.0 times.
このとき、 ハニカム外周部の外壁の厚さが、 基材によって構成される各ハニカ ムセルの隔壁の厚さに対して 1 . 3倍未満である場合は、 ハニカム構造自体の必 要強度が確保できなくなるとともに、 外壁の濾過抵抗が各八二カムセルの隔壁の 濾過抵抗と同レベルとなる。 したがって、 外壁から濾過流体が漏れてしまい、 キ ャニングのシール性が損なわれるおそれがある。 一方、 ハニカム外周部の外壁の厚さが、 基材によって構成される各ハニカムセ ルの隔壁の厚さに対して 2 . 0倍超である場合は、 押出し成形性が低下してしま い、 製造することが困難になってしまう。 したがって、 本発明に係る複層構造ハ 二カムフィルタは、 ハニカム外周部の外壁の厚さが、 基材によって構成される各 ハニカムセル.の隔壁の厚さに対して前記数値範囲内であることから、 ハニカムフ イ^/夕としての十分な強度が確保されるとともに、 ハニカム外周部の外壁を通じ てハニカムフィル夕の外部方向への濾過流体の漏れを低減することができる。 本発明の複層構造ハニカムフィルタは、 材質がコ一ディライ卜であることが好 ましい。 コ一ディライトは、 熱膨張係数が小さく、 耐熱衝撃性に優れたセラミツ クス材料であり、 また、 機械的強度にも優れている。 すなわち、 ハニカムフィル 夕を構成するセラミックス材料として好適な特性を有しているために、 コーディ ライ卜からなる本発明の複層構造ハニカムフィル夕は、 これらの特性が生かされ るとともに、 所望の寸法 ·形状へと製造することが可能である。 At this time, if the thickness of the outer wall of the outer peripheral portion of the honeycomb is less than 1.3 times the thickness of the partition wall of each honeycomb cell constituted by the base material, the necessary strength of the honeycomb structure itself can be secured. At the same time, the filtration resistance of the outer wall becomes the same level as the filtration resistance of the partition walls of each 82-cam cell. Therefore, the filtration fluid may leak from the outer wall, and the sealing performance of the canning may be impaired. On the other hand, if the thickness of the outer wall of the outer peripheral portion of the honeycomb is more than 2.0 times the thickness of the partition wall of each honeycomb cell composed of the base material, the extrudability is reduced, and the Would be difficult to do. Therefore, in the honeycomb filter having the multilayer structure according to the present invention, the thickness of the outer wall of the outer peripheral portion of the honeycomb is within the above numerical range with respect to the thickness of the partition wall of each honeycomb cell formed by the base material. Thus, sufficient strength as the honeycomb filter / evening is secured, and leakage of the filtered fluid to the outside of the honeycomb filter through the outer wall of the honeycomb outer peripheral portion can be reduced. It is preferable that the material of the multilayer honeycomb filter of the present invention is cordierite. Cordylite is a ceramic material that has a small coefficient of thermal expansion and excellent thermal shock resistance, and also has excellent mechanical strength. In other words, since the honeycomb filter having a multilayer structure of the present invention made of cordierite has these characteristics, since it has characteristics suitable as a ceramic material constituting the honeycomb filter, the characteristics can be utilized and the desired size can be obtained. · It can be manufactured into shapes.
これまでに述べてきた本発明に係る複層構造ハニカムフィル夕は、 ハニカム構 造を有する多孔質の基材の各セルに、 基材と同材質であるセラミックス粒子のス ラリーを供給し、 スラリー中の水分を、 基材の気孔を透過させることにより除去 して、 セラミックス粒子を基材の表面に付着させ、 次いで、 焼成してフィルタ層 を形成することにより製造される。  The multilayered honeycomb filter according to the present invention described above supplies slurry of ceramic particles of the same material as the base material to each cell of the porous base material having the honeycomb structure. It is manufactured by removing the moisture therein by passing through the pores of the substrate, attaching the ceramic particles to the surface of the substrate, and then firing to form a filter layer.
なお、 フィルタ層を形成するに際して使用するスラリー中のセラミックス粒子 の濃度 (w/w) は、 0 . 5 %以上、 2 . 0 %未満であることがスラリーの沈殿 性と基材への粒子の付着性とのバランスという観点より好ましいが、 0 . 8 %以 上、 1 . 5 %未満であることがより好ましい。  The concentration (w / w) of the ceramic particles in the slurry used for forming the filter layer should be 0.5% or more and less than 2.0% if the precipitation property of the slurry and the particle Although it is preferable from the viewpoint of balance with adhesion, it is more preferably 0.8% or more and less than 1.5%.
また、 スラリーの容積は、 被.コートセル総容積の 3倍以上、 6倍以下であるこ とが好ましい。 3倍未満の場合はセルの上方と下方で膜厚差が生じ、 6倍を超え る場合は、 フィル夕層の厚さと濃度との兼ね合い、 及びフィル夕層の形成に必要 なスラリ一が多量になるため、 作業がし難くなるという不都合があるからである なお、 第 2層目以降のフィルタ層の形成は、 1層目のフィルタ層を焼成した後 、 上記と同様の方法にて行う。 (実施例) 以下、 本発明の具体的な実施結果を説明する。 The volume of the slurry is preferably at least three times and at most six times the total volume of the coated cell. If the thickness is less than three times, a difference in film thickness occurs between the upper and lower parts of the cell.If the thickness exceeds six times, a large amount of slurry is required to balance the thickness and concentration of the fill layer and to form the fill layer. The second and subsequent filter layers are formed after firing the first filter layer. Perform in the same manner as described above. (Examples) Hereinafter, specific implementation results of the present invention will be described.
端面が一辺 1 5 0 mmの正方形状を有する長さ 5 0 0 mmのハニカム構造を有 する基材に、 スラリー直濾過法により、 平均粒子径が 1 0 i mのセラミックス粒 子よりなる、 平均フィルタ層厚 5 0 mの単一フィル夕層を設け、 複層構造のハ 二カムフィルタを製造した。'以下、 その実施例の詳細を説明する。  An average filter made of ceramic particles with an average particle size of 10 im by a slurry direct filtration method on a substrate having a honeycomb structure with a length of 500 mm and a square shape with a side of 150 mm on each side. A 50 m thick single filter layer was provided to manufacture a honeycomb filter having a multilayer structure. 'The details of the embodiment will be described below.
(実施例 1〜1 4 )  (Examples 1 to 14)
1 . 基材の製造  1. Production of base material
原材料としてコーディライトを使用し、 一般的な押出し成形法により、 所定の セルピッチを有するハニカム構造体を製造した。 次いで、 図 2に示すように、 ハ 二カムの多数の貫通穴 9の端部を上流側 Bと下流側 Cとを逆に 1マスごとに同材 質の原料を用いて封じ、 乾燥後、 所定の焼成温度にて焼成を行って、 基材を製造 した (実施例 1〜1 4 ) 。 なお、 このような工程により製造した基材のセルピッ チ、 セル厚、 外壁厚、 外壁厚とセル厚の比 (外壁厚 Zセル厚) 、 焼成温度、 セル 曲げ強度、 平均気孔径を表 1に示す。 また、 このときの気孔率は 4 7 %であった  Using cordierite as a raw material, a honeycomb structure having a predetermined cell pitch was manufactured by a general extrusion molding method. Next, as shown in FIG. 2, the ends of the many through holes 9 of the honeycomb are sealed on the upstream side B and the downstream side C with the same material for each square, and dried. The substrate was manufactured by firing at a predetermined firing temperature (Examples 1 to 14). Table 1 shows the cell pitch, cell thickness, outer wall thickness, ratio of outer wall thickness to cell thickness (outer wall thickness Z cell thickness), firing temperature, cell bending strength, and average pore diameter of the base material manufactured by such a process. Show. The porosity at this time was 47%
2 . フィルタ層の製造 2. Manufacturing of filter layer
フィルタ層の製造は、 図 1に示す処理装置 4により行った。 処理装置 4は、 マ グネットス夕一ラー 5上にスラリータンク 6を備え、 スラリータンク 6内のスラ リーをエア Aの圧力により基材 1に供給するものである。  The production of the filter layer was performed by the processing apparatus 4 shown in FIG. The processing apparatus 4 is provided with a slurry tank 6 on a magnetizer 5, and supplies the slurry in the slurry tank 6 to the substrate 1 by the pressure of the air A.
スラリータンク 6は、 所定濃度のセラミツクス粒子のスラリーを調製するため のもので、 マグネットスターラ一5の攪拌作用により、 均一濃度のスラリーが調 製され、 調製されたスラリーは、 スラリー注入具 3に取付金具 2を介して接続さ れた基材 1の一端側に供給され、 一方のセルの開口部からその内部へ導入される 。 スラリーの供給量は、 スラリータンク 6に設けた液面計 7により監視され、 供 給量が所定の値に達した時点でスラリーの供給は停止される。 その後、 基材 1を 反転させて、 基材内の濾過水を排出する。 導入されたスラリー中の水分は、 各セルの隔壁を漸次透過して、 外部へ流出し 、 この間にスラリー中の粒子が隔壁の一側面に漸次付着して、 粒子からなる層を 形成する。 なお、 スラリーの調製は、 予め有機バインダーを添加し、 ポリ容器内 でホモミキサーにて攪拌 ·混合して行った。 The slurry tank 6 is for preparing a slurry of ceramic particles having a predetermined concentration, and a slurry having a uniform concentration is prepared by the stirring action of the magnetic stirrer 15, and the prepared slurry is attached to the slurry injection tool 3. It is supplied to one end side of the base material 1 connected via the metal fitting 2, and is introduced into the inside of one of the cells through the opening. The supply amount of the slurry is monitored by a liquid level gauge 7 provided in the slurry tank 6, and the supply of the slurry is stopped when the supply amount reaches a predetermined value. Then, the substrate 1 is inverted, and the filtered water in the substrate is discharged. The water in the introduced slurry gradually permeates through the partition walls of each cell and flows out to the outside. During this time, the particles in the slurry gradually adhere to one side surface of the partition walls to form a layer of particles. The slurry was prepared by adding an organic binder in advance and stirring and mixing with a homomixer in a plastic container.
このようにしてセラミックス粒子よりなる層を形成した後、 層を設けた基材を 乾燥し、 所定の焼成温度にて 2時間焼成を行い、 フィルタ層を製造した (実施例 1〜10) 。 なお、 前記工程において使用したセラミックス粒子のスラリー濃度 と平均粒子径、 及び焼成温度と、 このような工程により作製したフィルタ層の層 厚を表 1に示す。 なお、 表 1において、 「実体強度」 とは、 150X 150X 5 00mmの実体品で 3点曲げ応力をかけたときの破壊荷重であり、 設計強度に対 する安全率が 8以上の場合を 「大」 、 安全率が 4〜 7の場合を 「中」 、 安全率が 1〜3の場合を 「小」 として判定した。  After forming the layer composed of the ceramic particles in this way, the base material on which the layer was provided was dried and fired at a predetermined firing temperature for 2 hours to produce a filter layer (Examples 1 to 10). Table 1 shows the slurry concentration, the average particle diameter, and the firing temperature of the ceramic particles used in the above step, and the thickness of the filter layer produced by such a step. In Table 1, “substantial strength” refers to the breaking load when a three-point bending stress is applied to a 150 × 150 × 500 mm entity, and the case where the safety factor for the design strength is 8 or more is “large”. A safety factor of 4 to 7 was judged as “medium”, and a safety factor of 1 to 3 was judged as “small”.
(比較例 1〜 5 )  (Comparative Examples 1 to 5)
1. 基材の製造  1. Production of base material
前述した実施例 1〜14の場合と同様の操作により、 基材を製造した (比較例 1〜5) 。 なお、 このような工程により製造した基材のセルピッチ、 セル厚、 外 壁厚、 外壁厚とセル厚の比 (外壁厚 Zセル厚) 、 焼成温度、 平均気孔径を表 1に 示す。 また、 気孔率は 47 %であった。  Substrates were manufactured in the same manner as in Examples 1 to 14 described above (Comparative Examples 1 to 5). Table 1 shows the cell pitch, cell thickness, outer wall thickness, ratio of outer wall thickness to cell thickness (outer wall thickness Z cell thickness), firing temperature, and average pore diameter of the base material manufactured by such a process. The porosity was 47%.
2. フィルタ層の製造  2. Production of filter layer
前述した実施例 1〜10の場合と同様の操作により、 フィルタ層を製造した ( 比較例 1〜5) 。  Filter layers were manufactured in the same manner as in Examples 1 to 10 described above (Comparative Examples 1 to 5).
(圧力損失 (通気差圧) の測定)  (Measurement of pressure loss (aeration differential pressure))
上記各工程により製造した実施例 1〜14、 比較例 1〜5の基材、 フィルタ層 、 並びに全体 (基材 +フィルタ層) について、 流速 lm/分'(流量換算では lm ノ分 X 2. 6m2=2. 6m3/分) で常温空気を透過させたときの入口と出口の 圧力を測定し、 その差を算出した。 結果を表 1に示す。 【表 ]-】 基材 (支持体層) フィルタ層 全体 セルビッチ セル厚 外壁厚 比 焼成温度 セル曲げ強度 平均気孔怪 通気 fell: スラリ-濃度 平均粒子径 層厚 焼成温度 通気差圧 通 5ί¾ 土実体強度 nmノ (mm) (mm; (°C) (MPa) ( μ m) (Pa) (%) ( m) ( μ m) (°C) (Pa) (Pa) With respect to the base material, filter layer, and the whole (base material + filter layer) of Examples 1 to 14 and Comparative Examples 1 to 5 manufactured by the above steps, the flow rate was lm / min '(in terms of flow rate, lm / min. (6 m 2 = 2.6 m 3 / min), the pressure at the inlet and outlet when air at normal temperature was permeated was measured, and the difference was calculated. Table 1 shows the results. [Table]-] Base material (support layer) Filter layer Whole cell bitch Cell thickness Outer wall thickness ratio Firing temperature Cell bending strength Average pore size Vent fell: Slurry-concentration Average particle size Layer thickness Firing temperature Ventilation differential pressure 5ί¾ Soil body strength nm (mm) (mm; (° C) (MPa) (μm) (Pa) (%) (m) (μm) (° C) (Pa) (Pa)
実施例 1 10 1.3 1.95 1.5 1413 9.8 15 400 1 10 50 1350 300 700 大 実施例 2 6 0.65 1.3 2.0 1 13 7.7 14 350 0.9 10 30 1350 130 480 中 実施例 3 6 0.65 1.3 2.0 Ί 413 7 7 14 350 0,6 10 20 ■j 350 120 470 中 実施例 4 6 0.65 1.3 2.0 1 13 フ.7 14 350 0.3 10 10 1350 50 400 中 実施例 5 6 0.9 1.7 1.9 1420 8 16 5 380 0.6 10 20 1350 100 480 大 実施例 6 6 0.9 1.7 1.9 1410 10 15 430 1.5 10 50 1350 300 730 大 実施例 7 6 0.9 1.7 1.9 1410 10 15 430 0.9 10 30 1350 150 580 大 実施例 8 6 0.9 1.7 1.9 1410 10 15 430 0.9 10 30 1410 135 565 大 実施例 9 6 0.9 1.7 1.9 1410 10 15 430 0.6 10 20 1350 100 530 大 実施例 10 6 0.9 1.7 1.9 1390 ' 11.6 11.5 690 0.9 10 30 1350 140 830 大 実施例 1 1 10 1.3 1.95 1.5 1420 7.8 15 400 大 実施例 1 2 10 1.3 1.95 1.5 1400 9.5 14 500 大 実施例 1 3 10 1.3 1.95 1.5 1413 7.5 30 200 中 実施例 14 6 0.65 1.3 2.0 1420 7.3 15 365 中 比較例 1 10 1.3 1.95 1.5 1370 10.1 6.5 1450 大 比較例 2 10 1.3 1.95 1.5 1430 6.7 17 300 小 比較例 3 6 0.65 0.8 1.2 1410 10 15 400 小 比較例 4 6 0.65 0.8 1.2 1400 10.9 13 450 小 比較例 5 6 0.65 0.8 1.2 1390 1 1.2 1 1 490 小 Example 1 10 1.3 1.95 1.5 1413 9.8 15 400 1 10 50 1350 300 700 Large Example 2 6 0.65 1.3 2.0 1 13 7.7 14 350 0.9 10 30 1350 130 480 Medium Example 3 6 0.65 1.3 2.0 413 413 7 7 14 350 0,6 10 20 ■ j 350 120 470 Medium Example 4 6 0.65 1.3 2.0 1 13 F.7 14 350 0.3 10 10 1350 50 400 Medium Example 5 6 0.9 1.7 1.9 1420 8 16 5 380 0.6 10 20 1350 100 480 Large Example 6 6 0.9 1.7 1.9 1410 10 15 430 1.5 10 50 1350 300 730 Large Example 7 6 0.9 1.7 1.9 1410 10 15 430 0.9 10 30 1350 150 580 Large Example 8 6 0.9 1.7 1.9 1410 10 15 430 0.9 10 30 1410 135 565 Large example 9 6 0.9 1.7 1.9 1410 10 15 430 0.6 10 20 1350 100 530 Large example 10 6 0.9 1.7 1.9 1390 '11.6 11.5 690 0.9 10 30 1350 140 830 Large example 1 1 10 1.3 1.95 1.5 1420 7.8 15 400 Large Example 1 2 10 1.3 1.95 1.5 1400 9.5 14 500 Large Example 1 3 10 1.3 1.95 1.5 1413 7.5 30 200 Medium Example 14 6 0.65 1.3 2.0 1420 7.3 15 365 Medium Comparative Example 1 10 1.3 1.95 1.5 1370 10.1 6.5 1450 Large Comparative Example 2 10 1.3 1.95 1.5 1430 6.7 17 300 Small Comparative Examples 3 6 0.65 0.8 1.2 1410 10 15 400 Small Comparative Example 4 6 0.65 0.8 1.2 1400 10.9 13 450 Small Comparative Example 5 6 0.65 0.8 1.2 1390 1 1.2 1 1 490 Small
表 1より、 実施例のハニカムフィルタについては、 いずれも通気差圧 (圧力損 失) が所定値以下であるとともに、 実体強度の評価も全て中〜大であった。 これ に対し、 比較例のハニカムフィル夕については基材の焼成温度が所定温度よりも 低い場合 (比較例 1 ) には通気差圧 (圧力損失) が所定値以上となった。 また、 比較例については、 通気差圧 (圧力損失) が所定値以下であった場合であっても 、 実体強度の評価も全て小であり、 本発明の優れた効果を確認することができた Table 1 shows that the honeycomb filters of the examples all had a ventilation differential pressure (pressure loss) of not more than a predetermined value, and the evaluation of the actual strength was all medium to large. On the other hand, when the firing temperature of the substrate was lower than the predetermined temperature (Comparative Example 1), the ventilation differential pressure (pressure loss) of the honeycomb filter of the comparative example was equal to or higher than the predetermined value. Also, in the comparative examples, even when the ventilation differential pressure (pressure loss) was equal to or less than a predetermined value, the evaluations of the body strength were all small, and the excellent effects of the present invention could be confirmed.
産業上の利用可能性 Industrial applicability
以上説明したように、 本発明の複層構造ハニカムフィルタによれば、 捕捉効率 が良好であるとともに、 圧力損失も小さいために、 化学、 電力、 産業廃棄物処理 産業等の各分野において、 ガス中のダストを捕捉する集塵用フィル夕として好適 に用いることができる。  As described above, according to the honeycomb filter having a multilayer structure of the present invention, since the trapping efficiency is good and the pressure loss is small, the honeycomb filter is used in various fields such as the chemical, electric power, and industrial waste treatment industries. It can be suitably used as a dust collecting filter for capturing dust.
また、 本発明の複層構造ハニカムフィルタの製造方法によれば、 簡単な装置に て容易に、 かつフィルタ間で品質のバラツキがない複層構造ハニカムフィルタを 製造することができるため、 製造効率の向上及び生産コストの低減に寄与すると ともに、 優れた性能を有する集塵用のハニカムフィルタを提供することができる  Further, according to the method for manufacturing a honeycomb filter having a multilayer structure of the present invention, a honeycomb filter having a multilayer structure having no variation in quality between filters can be easily manufactured with a simple apparatus. It is possible to provide a honeycomb filter for dust collection that contributes to improvement and reduction of production cost and has excellent performance.

Claims

請 求 の 範 囲 The scope of the claims
1 . ハニカム構造を有する多孔質の基材の表面に、 1層または 2層以上のフィ ル夕層を備えた集塵用の複層構造ハニカムフィル夕であって、 1. A multi-layer honeycomb filter for dust collection, comprising one or more filter layers on the surface of a porous substrate having a honeycomb structure,
フィルタの濾過流速が 1 m/m i nの場合における該基材の圧力損失が 1 5 0 〜7 0 0 P aであるとともに、 少なくとも 1層以上の該フィルタ層の圧力損失が 5 0〜3 0 0 P aであることを特徴とする複層構造ハニカムフィルタ。  When the filtration flow rate of the filter is 1 m / min, the pressure loss of the substrate is 150 to 700 Pa, and the pressure loss of at least one filter layer is 50 to 300 Pa. A honeycomb filter having a multilayer structure, wherein the honeycomb filter is Pa.
2 . フィル夕層の厚さの最薄部と最厚部の差が 3 5 %以内である請求項 1記載 の複層構造ハニカムフィルタ。  2. The multilayer filter according to claim 1, wherein the difference between the thinnest portion and the thickest portion of the thickness of the filler layer is within 35%.
3 . 基材とフィルタ層が同材質である請求項 1または 2に記載の複層構造ハニ カムフィルタ。  3. The honeycomb filter having a multilayer structure according to claim 1, wherein the base material and the filter layer are made of the same material.
4. ハニカム外周部の外壁の厚さが、 基材によって構成される各ハニカムセル の隔壁の厚さに対して 1 . 3〜2 . 0倍である請求項 1〜3のいずれか一項に記 載の複層構造ハニカムフィルタ。  4. The thickness of the outer wall of the outer peripheral portion of the honeycomb is 1.3 to 2.0 times the thickness of the partition wall of each honeycomb cell constituted by the base material, according to any one of claims 1 to 3. The multi-layered honeycomb filter described.
5 . 材質がコーディライトである請求項 1〜4のいずれか一項に記載の複層構 造ハニカムフィルタ。  5. The multilayered honeycomb filter according to any one of claims 1 to 4, wherein the material is cordierite.
6 . ハニカム構造を有する多孔質の基材の表面に、 1層または 2層以上のフィ ルタ層を備え、 フィル夕の濾過流速が 1 m/m i nの場合における該基材の圧力 損失が 1 5 0〜7 0 0 P aであるとともに、 少なくとも 1層以上の該フィルタ層 の圧力損失が 5 0〜3 0 O P aである複層構造ハニカムフィルタの製造方法であ つて、  6. One or two or more filter layers are provided on the surface of a porous substrate having a honeycomb structure, and the pressure loss of the substrate is 15 when the filtration flow rate at the filter is 1 m / min. 0 to 700 Pa, and a pressure loss of at least one or more of the filter layers is 50 to 30 OPa.
ハニカム構造を有する基材の各セルに、 該基材と同材質であるセラミックス粒 子のスラリーを供給し、  A slurry of ceramic particles of the same material as the substrate is supplied to each cell of the substrate having the honeycomb structure,
該スラリー中の成分を、 該基材の気孔を透過させることにより除去して、 該セ ラミックス粒子を該基材の表面に付着させ、  Removing the components in the slurry by permeating the pores of the substrate, adhering the ceramic particles to the surface of the substrate,
次いで、 焼成することによりフィルタ層を形成することを特徴とする複層構造 ハニカムフィルタの製造方法。  Next, a filter layer is formed by baking, and a method for manufacturing a honeycomb filter having a multilayer structure.
7 . フィルタ層の厚さの最薄部と最厚部の差が 3 5 %以内である請求項 6記載 の複層構造ハニカムフィルタの製造方法。 7. The difference between the thinnest part and the thickest part of the filter layer thickness is within 35%. A method for manufacturing a honeycomb filter having a multilayer structure.
8 . 基材とフィル夕層が同材質である請求項 6または 7に記載の複層構造ハニ カムフィル夕の製造方法。  8. The method according to claim 6, wherein the base material and the filler layer are made of the same material.
9 . ハニカム外周部の外壁の厚さが、 基材によって構成される各ハニカムセル の隔壁の厚さに対して 1 . 3〜2 . 0倍である請求項 6〜 8のいずれか一項に記 載の複層構造ハニカムフィル夕の製造方法。  9. The method according to any one of claims 6 to 8, wherein the thickness of the outer wall of the outer peripheral portion of the honeycomb is 1.3 to 2.0 times the thickness of the partition wall of each honeycomb cell constituted by the base material. The method of manufacturing the multilayer honeycomb fill described above.
1 0 . 材質がコ一ディライトである請求項 6〜 9のいずれか一項に記載の複層 構造ハニカムフィル夕の製造方法。  10. The method for producing a multilayered honeycomb filter according to any one of claims 6 to 9, wherein the material is cordierite.
PCT/JP2001/008283 2000-09-26 2001-09-25 Multi-layer structure honeycomb filter and method of manufacturing the filter WO2002026353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001288112A AU2001288112A1 (en) 2000-09-26 2001-09-25 Multi-layer structure honeycomb filter and method of manufacturing the filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-292983 2000-09-26
JP2000292983 2000-09-26
JP2001-270854 2001-09-06
JP2001270854A JP2002172304A (en) 2000-09-26 2001-09-06 Multi-layer structure honeycomb filter and method for producing the same

Publications (1)

Publication Number Publication Date
WO2002026353A1 true WO2002026353A1 (en) 2002-04-04

Family

ID=26600771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008283 WO2002026353A1 (en) 2000-09-26 2001-09-25 Multi-layer structure honeycomb filter and method of manufacturing the filter

Country Status (3)

Country Link
JP (1) JP2002172304A (en)
AU (1) AU2001288112A1 (en)
WO (1) WO2002026353A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229564A (en) * 2006-02-28 2007-09-13 Ngk Insulators Ltd Manufacturing method of ceramic filter
EP2853303A4 (en) * 2012-05-21 2016-03-02 Ibiden Co Ltd Honeycomb filter, exhaust gas purification device, and exhaust gas purification method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129016A (en) * 1984-11-28 1986-06-17 Kiyataraa Kogyo Kk Honeycomb shaped particulate collection filter, honeycomb shaped catalyst filter and preparation thereof
JPH02102707A (en) * 1988-10-07 1990-04-16 Riken Corp Filter for purifying exhaust gas
JPH0360714A (en) * 1989-07-28 1991-03-15 Toyota Motor Corp Filter for collecting particulates
JPH05146617A (en) * 1991-12-02 1993-06-15 Ibiden Co Ltd Silicon carbide filter and production thereof
US5750026A (en) * 1995-06-02 1998-05-12 Corning Incorporated Device for removal of contaminants from fluid streams
JP2000202220A (en) * 1999-01-13 2000-07-25 Ngk Insulators Ltd Double-layered structural honeycomb filter and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228823A (en) * 1996-02-21 1997-09-02 Ngk Insulators Ltd High temperature dust collector
JP3612943B2 (en) * 1997-06-20 2005-01-26 松下電器産業株式会社 Manufacturing method of exhaust gas filter
JP3126697B2 (en) * 1998-03-31 2001-01-22 日本碍子株式会社 High strength thin-walled honeycomb structure
JP3394449B2 (en) * 1998-06-18 2003-04-07 日本碍子株式会社 Thin-walled honeycomb structure and method of reinforcing the same
JP3844898B2 (en) * 1999-01-26 2006-11-15 日本碍子株式会社 Incinerator exhaust gas dust collector and dust collection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129016A (en) * 1984-11-28 1986-06-17 Kiyataraa Kogyo Kk Honeycomb shaped particulate collection filter, honeycomb shaped catalyst filter and preparation thereof
JPH02102707A (en) * 1988-10-07 1990-04-16 Riken Corp Filter for purifying exhaust gas
JPH0360714A (en) * 1989-07-28 1991-03-15 Toyota Motor Corp Filter for collecting particulates
JPH05146617A (en) * 1991-12-02 1993-06-15 Ibiden Co Ltd Silicon carbide filter and production thereof
US5750026A (en) * 1995-06-02 1998-05-12 Corning Incorporated Device for removal of contaminants from fluid streams
JP2000202220A (en) * 1999-01-13 2000-07-25 Ngk Insulators Ltd Double-layered structural honeycomb filter and its production

Also Published As

Publication number Publication date
AU2001288112A1 (en) 2002-04-08
JP2002172304A (en) 2002-06-18

Similar Documents

Publication Publication Date Title
EP1541216B1 (en) Honeycomb structure body
WO2006106785A1 (en) Honeycomb structure body
EP2832410B1 (en) Honeycomb filter and production method for honeycomb filter
EP1674144A1 (en) Turbine air-intake filter
KR101425496B1 (en) Ceramic honeycomb filter and exhaust gas purifier
WO2007010643A1 (en) Honeycomb structure and exhaust gas clean-up apparatus
WO2004050214A1 (en) Method for producing multi-layered ceramic filter and ceramic filter using the same
US11607650B2 (en) Thin metal/ceramic hybrid membrane sheet and filter
JP2007253144A (en) Honeycomb structured body and exhaust gas purifying device
JP5714568B2 (en) Honeycomb filter
JP3698906B2 (en) Multi-layer honeycomb filter and manufacturing method thereof
WO2002012687A1 (en) Ceramic filter and method for manufacture thereof
US20210107838A1 (en) Inorganic membrane filtration articles and methods thereof
WO2002026353A1 (en) Multi-layer structure honeycomb filter and method of manufacturing the filter
CN212283588U (en) Fe-Al series metal film
JP4610716B2 (en) Honeycomb filter and manufacturing method thereof
JP5863950B2 (en) Honeycomb filter and method for manufacturing honeycomb filter
JP3435103B2 (en) Dust collection honeycomb filter and manufacturing method thereof
JP3442411B2 (en) Silicon carbide filter and method of manufacturing the same
JP3784314B2 (en) Ceramic filter for dust collection and manufacturing method thereof
JP4685444B2 (en) Manufacturing method of honeycomb filter
JPH0910527A (en) Dust collecting ceramic filter
JP2013139022A (en) Honeycomb structure and apparatus for cleaning exhaust gas
JP4699596B2 (en) Honeycomb filter coating equipment
CN115228284B (en) Ceramic membrane filtration equipment for high-temperature flue gas waste heat collection and dust removal catalysis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase