WO2002026400A1 - Method and apparatus for applying controlled succession of thermal spikes or shockwaves through a medium - Google Patents

Method and apparatus for applying controlled succession of thermal spikes or shockwaves through a medium Download PDF

Info

Publication number
WO2002026400A1
WO2002026400A1 PCT/US2001/027729 US0127729W WO0226400A1 WO 2002026400 A1 WO2002026400 A1 WO 2002026400A1 US 0127729 W US0127729 W US 0127729W WO 0226400 A1 WO0226400 A1 WO 0226400A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
product
shockwaves
etching
electrode
Prior art date
Application number
PCT/US2001/027729
Other languages
French (fr)
Other versions
WO2002026400A8 (en
Inventor
Sveinn Olafsson
Original Assignee
Kenney, J., Ernest
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenney, J., Ernest filed Critical Kenney, J., Ernest
Priority to AU2001292580A priority Critical patent/AU2001292580A1/en
Priority to EP01972949A priority patent/EP1345704A4/en
Priority to JP2002530221A priority patent/JP2004509747A/en
Publication of WO2002026400A1 publication Critical patent/WO2002026400A1/en
Publication of WO2002026400A8 publication Critical patent/WO2002026400A8/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation
    • B01J19/085Electron beams only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/70Cleaning, e.g. for reuse
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/145Radiation by charged particles, e.g. electron beams or ion irradiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • a growth medium (hereinafter referred to as a growth medium, even though the medium could also be used
  • the invention is a method and apparatus for applying energy to nanoscale area of
  • the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is not limited to a cryogenic medium, the invention is
  • the tip array should be movable as a unit with a precision of at least 1
  • Fig. 2 transmits energy directly towards the workpiece 9 by connecting the
  • step 24 additional material is deposited on the surface of the workpiece with the assistance of four identical pulses
  • embodiment includes three cells 30,31,32 arranged in a common growth chamber (not
  • oxide like structure made of boron and carbon fixed thereto, with a gate structure

Abstract

A method and apparatus for locally raising the temperature of a material to facilitate chemical reactions or processes related to growth or removal of the material, utilizes an electrode to apply, in the presence of a growth or removal medium, a controlled succession of thermal spikes or shockwaves (6) of varying energy, on the scale of a few nanometers to several hundred micrometers. The duration of the thermal spikes or shockwaves ranges from a few picoseconds to several hundred nanoseconds. The medium may be a cryogenic liquid. Other growth media, including liquids, solids, gases in critical or non-critical state, and mixtures of liquids/solids, solids/gases, and liquids/gases, may also be employed. The electrode may be an electrode emitter tip (1) with an anode (2) above workpiece (4) on platform (3) in the medium. Circuit (5) includes power source (7) with switch (8) controlling voltage pulse duration applied across tip and anode to produce shockwaves.

Description

METHOD AND APPARATUS FOR APPLYING CONTROLLED SUCCESSION OF THERMAL SPIKES OR SHOCKWAVES THROUGH A MEDIUM
BACKGROUND OF THE INVENTION
5 1. Field of the Invention
This invention generally relates to processing of materials, including growth or deposition of the materials, and also to removal of materials. More specifically, the
invention relates to a method and apparatus for locally raising the temperature of a
material in order to facilitate chemical reactions or changes in physical state related to
0 processing of the material by using an electrode tip, such as an electron emitter tip, to
apply a controlled succession of thermal annealing spikes (hereinafter referred to as
thermal spikes) or Shockwaves of varying energy through a growth or removal medium
(hereinafter referred to as a growth medium, even though the medium could also be used
in processes involving etching or cleaning and no "growth"). The scale of the thermal
5 spikes or Shockwaves, and the area of the material affected by the resulting energy transfer, is on the order of a few nanometers to several hundred micrometers, and the duration of the thermal spikes or Shockwaves ranges from a few picoseconds to several
hundred nanoseconds. The growth medium may be a cryogenic liquid, although it is
within the scope of the invention to use other growth media, including liquids, solids, gases in critical or non-critical state, and mixtures of liquids and solids, solids and gases,
and liquids and gases.
The method and apparatus of the invention maybe used for a variety of industrial
applications and manufacturing processes, including deposition and/or growth of thick or thin film crystalline or non-crystalline materials, etching or cleaning of materials, and
formation of nanostructures.
2. Description of Related Art
A. Introduction
The problem addressed by the present invention is the problem, common in the
field of materials processing, of how to add energy during processing of a material in
order to speed-up chemical reactions or processes, overcome energy barriers, or otherwise
impro e processing efficiency or product quality, without generating defects or damaging the material, and/or without interfering with other reactions or processes necessary to provide an acceptable end product.
The oldest and simplest way to apply energy to a material during processing is
simply to process the material in a high temperature environment as in, by way of
example, physical vapor deposition (PVD), chemical vapor deposition (CVD), or metalorganic chemical vapor deposition (MOCND). Alternatively, energy may be
applied directly to a material being deposited or transferred, as in sputter deposition and
various etching methods, by using Shockwaves as in explosive bonding methods, or by
direct application of energy using lasers or radiation. In all such materials processing methods, the objective has always been to transfer the necessary energy in the most
efficient manner while minimizing any damage that might occur as a result of the energy
transfer.
The present invention also addresses the problem of energy transfer efficiency and
damage mitigation, but utilizes a mechanism different from all other known materials
processing methods and apparatus, namely the application, in the presence of a growth
medium, of a controlled succession of thennal spikes or Shockwaves of varying energy to a nanoscale area of the material.
The term "nanoscale" as used herein refers to dimensions on the order of less than
one nanometer (including atomic dimensions of approximately 0.1 to 0.15 nm) to several
tens of micrometers, as opposed to the dimensions of the non-localized high energy Shockwaves produced by spark discharges for the purpose of vaporizing materials in
order to facilitate binding of coatings to a surface, as described for example in TJ. S . Patent
No. 3,663,788. The use of shock waves on a macroscopic scale is a variation of the
explosive bonding technique used to join otherwise incompatible metals, which is
fundamentally different than the much more controlled application of energy provided
by the present invention.
The most relevant prior art known to the inventor, which shares with the present invention localization of the energy transfer, and the use of a cryogenic growth medium (optional in the present invention), is the "cryogenic furnace'' technique disclosed in U.S.
Patent No. 3,720,598. According to this technique, an oscillating Josephson junction having "extremely small dimensions" is formed by spark erosion between capacitor electrodes made up of the materials to be vaporized, thereby concentrating as much
energy as possible on a small area.
The present invention shares with the ciyo genie furnace concept the temporal and spatial localization of energy applied to a material for the purpose of "establishing
chemical and physical state in materials" (col. 1, lines 14-27 of U.S. Patent No.
3,720,598), and in particular to facilitate growth or removal of materials, as well as the
use (in a preferred embodiment of the present invention) of a cryogenic medium through
which the energy is applied, but is distinguishable in a number of ways:
• instead of using a plasma arc discharge to temporarily vaporize the medium and
material being processed, the present invention uses electron emission (either
from an electron emitter tip, or from the workpiece or growth medium in case the
polarity of the emitter tip is reversed) to generate thermal spikes or Shockwaves that propagate in the medium in order to enable a more controllable energy
transfer, eliminating the high energy plasma ions inherent in plasma discharge
arrangements;
• The impulses are controlled to provide a succession of spikes of varying energy
rather than a steady state or oscillating field;
• The size of the area affected by the discharge is reduced even further than in the
cryogenic furnace technique to nanometer or atomic scale, thereby reducing the overall amount of energy that needs to be supplied to achieve a desired local temperature; and • The apparatus in which the growth or removal of materials takes place is adapted
to facilitate insertion and removal of materials from the growth medium, cleaning of the growth medium, as well as insertion and removal of the substrate on which
growth occurs or from which material is to be removed, so as to enable use of the
system in industrial manufacturing processes.
These differences are critical to the practicality of the present invention relative to the technique disclosed in U.S. Patent No. 3,720,598. While capable of delivering
high energy levels to a small area, the cryogenic furnace technique described in U.S.
PatentNo. 3,720,598 ultimately proved impractical for manufacturing purposes because of the inability to prevent destruction of an unacceptably high percentage of the grown
material by the high energy tail in the distribution of ions created by the plasma arc.
Furthermore, alternative techniques that were eventually implemented in the years
following the originally cryogenic furnace proposal, such as electron synchrotron
radiation, laser heating, and rapid thermal annealing, while more controllable and less
destructive, are capable of delivering only a relatively small amount of energy over a relatively large area, barely sufficient to break chemical bonds and improve mobility on
growing surfaces. To date, the most promising of these methods is electron synchrotron
radiation, but this method requires equipment costing a minimum of $100 Million, and
is not readily available or adaptable to ordinary manufacturing.
While the present invention shares with several of the above-mentioned prior arrangements the concept of applying spatially and temporally localized bursts of energy
to a material in order to change its physical or chemical state and facilitate material growth, the manner of energy delivery is fundamentally different, involving the
propagation in the growth medium, and in particular a cryogenic growth medium, of
nanoscale bursts of energy in an arrangement adapted for mass processing of the
materials to be grown or otherwise altered or formed.
The method and apparatus of the invention may be used as a replacement for a
variety of conventional systems, including CND and MOCND, as well as sputter
deposition, molecular beam epitaxy (MBE), electrical platingin electrochemical solution, and other methods too numerous to list. Although specific examples of materials are set
forth below, the invention is not intended to be limited to specific materials or groups of
materials, but rather is intended to apply to any materials capable of being grown in bulk
form or on a substrate, or of being removed from a substrate, in an appropriate growth
medium, using shock or heat impulses that propagate through the cryogenic medium in order to apply energy or heat to the medium on a nanometer scale.
SUMMARY OF THE INVENTION
It is accordingly a first objective of the invention to provide a method of applying
energy to a material for the purpose of facilitating chemical reactions or processes related
to growth or removal of an area of material, without damaging the material due to the
high temperatures normally required to facilitate such chemical reactions or processes.
It is a second objective of the invention to provide a method of facilitating chemical reactions or processes related to growth or removal of an area of material by temporally and spatially localized application of energy, without the problems of high energy tails inherent in plasma arc discharge methods.
It is a third objective of the invention to provide a method of energy enhanced
material growth or removal which utilizes readily available equipment suitable for use
in large-scale commercial manufacturing.
It is a fourth objective of the invention to provide a method of more efficiently
growing nanostractures of various shapes and for a variety of purposes.
It is a fifth objective of the invention to provide apparatus for applying energy to a material for the purpose of facilitating chemical reactions or processes related to growth
or removal of an area of material, without damaging the material due to the high
temperatures normally required to facilitate such chemical reactions or processes, and
without the problems of high energy tails inherent in plasma arc discharge methods.
It is a sixth objective of the invention to provide apparatus adapted to facilitate
insertion and removal of materials from a medium in which growth and/or a material
removal process such as etching is to occur, cleaning of the cryogenic growth medium,
as well as insertion and removal of the substrate on which growth occurs or from which
material is to be removed, so as to enable use of the apparatus in industrial manufacturing processes. It is a seventh objective of the invention to provide apparatus capable of
performing multiple processing steps, including growth of materials on a workpiece
followed by cleaning and/or etching of one or more materials, utilizing a single cell
divided into multiple subcells or sub-areas, and a single controller, without requiring
removal and transport of the workpiece from the apparatus between processing steps.
It is an eighth objective of the invention to provide an etch-transport-growth
reaction path that enables recycling of etched materials back into the growth cell.
These objectives are achieved, in accordance with the principles of a preferred
embodiment of the invention, by providing a method of applying energy to a substrate or
material on which additional material is to be grown, or from which material is to be removed, by transmitting heat or shock impulses to the substrate or material through a
cryogenic medium. The heat or shock impulses are applied by a nanometer scale
electrode tip immersed in the growth medium, which in the illustrated examples is a
cryogenic liquid, to which is applied fast, variable, voltage pulses of on the order of
picoseconds to hundreds of nanoseconds. The anode to which electrons are transmitted may either be a discrete element or a portion of the workpiece, and may consist of an
individual scannable electrode tip or an array of electrode tips. In the latter case, the
electrons are drawn from the electrode tip into the liquid and accelerated until they hit a
specific target area of the workpiece or substrate being processed, while an individual electrode tip can be used to transmit Shockwaves parallel to the workpiece and thereby indirectly transmit energy to a larger area of the workpiece. In the case of a material growth apparatus suitable for use in industrial processes, such as manufacture of thin film or semiconductor devices, the apparatus of the invention
may, according to a preferred embodiment of the invention, include any or all of the
following features:
• a growth chamber;
• a mechanism for introducing growth material into the growth chamber;
• a mechanism for cleaning the growth medium to remove growth material and
contaminants from the growth chamber;
• a single electrode tip or areay of tips arranged to operate on a nanoscale;
• a controller for controlling a discharge from the single tip or array of tips; a regulator for controlling temperature and pressure of cryogenic liquid in the chamber;
a mechanism for circulating the growth medium through the growth chamber; and
• provision of at least one chemically inert working cell surface with very low
physisorbtion energies .
Since the same basic structure may be used for both growth and removal of a
material or materials from the substrate or worlφiece, the growth chamber of an
especially preferred embodiment of the invention may utilize a single cell divided into
multiple subcells or sub-areas for sequentially processing the substrate or workpiece by deposition of materials, followed by etching or cleaning of the resulting product. In a
particularly advantageous implementation of the preferred embodiments of the invention,
growth, etching, and cleaning all occur in a single growth chamber divided into multiple cells, permitting recycling of etched materials. In the illustrated examples, the growth medium in which growth or removal of
materials occurs is a cryogenic liquid which is preferably chemically inert. Examples
include Argon and related noble elements, with the liquid serving to (i) act as a local
heating medium on a scale of a few nanometers to several hundred micrometers, (ii)
lower the growth temperature and slow down chemical reactions or kinetics, and (iii) act
as a carrier for growth or removed materials to and/or from the growth zone.
Alternatively, depending on the density and/or pressure of the growth medium and on the tip distance, the growth medium may serve primarily as a carrier for growth or
removed materials and/or to keep a growth species in place following transfer of energy
to the workpiece.
Examples of materials to which the present invention can be applied are, GaN, which is used to form blue lasers, conventionally grown at T=600-800°C using the
metalorganic chemical vapor deposition (MOCVD) method, and Al2O3 hard coating films
conventionally grown by CVD at temperatures of 1000- 1100°C in order to obtain the hard
crystalline α and β phases of Al2O3, although the invention is not to be limited to any specific materials or group of materials.
In addition to the above-described processing of materials by growth, etching,
cleaning, and/or other processing steps, the method and apparatus of the invention may be used in conjunction with auxiliary processing methods and apparatus for facilitating the processing. By way of example but not limitation, processing of a material using the
method and apparatus of the invention maybe assisted by an optional photon source of sufficient energy to lower reaction barriers or and/or to break or weaken chemical bonds
in order to further facilitate the growth, etching, cleaning, and or other processing of the
material.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a schematic view of an apparatus for applying energy to a local,
nanoscale, area of material in order to facilitate chemical reactions or processes related
to growth or removal of materials relative to or from a workpiece in accordance with the principles of a first preferred embodiment of the invention.
Fig. 2 is a schematic view of an apparatus for applying energy to a nanoscale area
of material in accordance with the principles of a second preferred embodiment of the invention.
Fig. 3 is a graph of energy distribution functions showing thermal spikes of
varying energy as used by the preferred embodiment of the present invention as compared
with the high energy tail of a conventional high temperature growth apparatus.
Fig.4 is a schematic view illustrating deliver of a shock wave pulse to a thin film
in a cryogenic liquid using the apparatus of Fig. 1. Fig. 5 is a schematic view illustrating the application of multiple heat or shock
wave impulses for the purpose of facilitate growth of materials according to the principles
of the invention.
Fig. 6 is a table illustrating properties of various cryogenic liquids which may be
used in connection with the preferred embodiments of the invention.
Fig. 7 is a schematic view of a variation of the apparatus illustrated in Fig. 2,
arranged to include multiple cells for facilitating sequential growth and etching of a workpiece.
Figs. 8A and 8B are schematic views illustrating the two stages occurring in a
growth/cleaning process according to the principles of the invention.
Figs.9A-9D are schematic views illustrating the four stages of an etching process
according to the principles of the invention.
Fig. 10 is a graph illustrating the manner in which energy is applied during sequential growth and etching using the apparatus of Fig. 7.
Fig. 11 is a schematic view illustrating the use of a scanning tunneling electron microscope tip to grow and monitor nanostructures according to a third preferred embodiment of the invention. Figs. 12-14 are schematic views illustrating examples of nanodevices constructed
in accordance with the principles of the third preferred embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention is a method and apparatus for applying energy to nanoscale area of
a workpiece, for the purpose of adding or removing materials from the workpiece. hi
particular, the invention applies the energy by transmitting heat or Shockwave impulses
tlirough a medium, referred to herein as a growth medium even though the medium may
also be used to facilitate material removal. The heat or Shockwave impulses heat the
medium adj acent the workpiece, thereby facilitating chemical reactions or processes, such
as the breaking of chemical bonds, associated with the growth or removal of materials
from the workpiece. Although not limited to a cryogenic medium, the invention is
especially suited for use in systems employing a cryogenic medium, which not only transfers heat to the workpiece or materials adjacent the workpiece, but also serves to
mediate heating and to transport material to and from the workpiece. By operating on a
nanoscale level, i. e. , an area of less than one nanometer to several hundred micrometers,
which is essentially the range of resolution of a scanning electron microscope, and in particular by using a cryogenic medium as the growth medium, heating of the workpiece
can be minimized while enabling extremely fine control of the growth or removal
process, including formation of nanostructures.
An apparatus for transmitting energy to the workpiece is illustrated in Fig. 1. h this apparatus, an electrode tip 1 and a discrete anode 2 are immersed in a growth medium (not shown in Fig. 1) and positioned above a platform 3 on which is present a
workpiece 4 on which material is being grown or removed. When a fast voltage pulse on the order of a few picoseconds to hundreds of nanoseconds is applied by a circuit 5
across the electrode tip 1 and the anode 2, electrons are drawn from the tip 1 into the
growth medium and are accelerated until they hit the anode, generating a shock wave 6
that transfers energy to the workpiece.
The circuit 5 is schematically illustrated as including a power source 7 and switch
8 for controlling the duration of the pulses. It will of course be appreciated, however, that
in practice the circuit can take a wide variety of forms, including microprocessor circuits
and/or discrete components arranged to generate voltage pulses of a desired shape and duration, depending on the requirements of the specific materials growth or removal
process to which the apparatus of the preferred embodiment is applied. Pulse generating
circuits of all types are well-known to those skilled in the electrical arts and fonn no part
of the present invention, which relates to applications of the circuit rather than to the
circuit itself, hi addition, those skilled in the art will appreciate that the form of the shock/heat waves may also be varied by varying the shape of the tips or arrays of tips, and
that focusing or guiding elements such as appropriately positioned reflectors may also be
included without departing from the scope of the invention.
As indicated by the horizontal and vertical arrows in Fig. 1, the platform 3 is arranged to be moved horizontally and vertically in order to move different areas of the workpiece under the Shockwave and to vary the distance travelled by the Shockwave or,
equivalently. The range of horizontal movement should of course be sufficient to enable scanning of the entire worlφiece while the range of vertical movement may, by way of
example, be within the range of from O.lnm to lμm, with provision for controlling the
discharge gap or distance in order to either vary the gap or to control the gap if a constant
discharge gap is required. The discharge gap or distance between the electrode tip and
anode may also be varied, byway of example, within arangeofO.lnm to lμm. Although a single scanning electrode tip may be used, in the illustrated embodiment, the number
of individually controllable tips in an array may be as many as 105 to 106 tips/cm2 of
sample area, and the tip array should be movable as a unit with a precision of at least 1
nm over a distance of 10 μm in both the x and y directions.
In contrast to the embodiment illustrated in Fig. 1, the preferred embodiment
illustrated in Fig. 2 transmits energy directly towards the workpiece 9 by connecting the
voltage supplied by circuit 10 between an electrode tip 11 and the platform 12, or
between the electrode tip and the workpiece itself, with heating of the medium being
accomplished either directly by the energy of the electrons and/or through a shock wave
13 in a manner similar to that illustrated in Fig. 1. The platform 12 may again be
horizontally and vertically movable, including provision as necessary for controlling the
discharge gap or distance to vary the gap or distance, or to maintain a constant gap as necessary, while circuit 10 may be similar to circuit 5 shown in Fig. 1, including
schematically illustrated power source 14, pulse defining switch or switching elements
15 implemented in practice in the form of discrete components and/or microprocessor based circuitry. In addition to the basic processing apparatus, Fig.2 illustrates an optional photon
source 16 for directing photons at the workpiece during processing, the photons having sufficient energy to lower reaction barriers or to break or weaken chemical bonds in order
to further facilitate processing. It will be appreciated by those skilled in the art that the
photon source may be a laser, x-ray source, or any other photon source, and that the
photon source may be omitted, used in the embodiment of Fig. 1 , or replaced by any other energy source depending on the type of processing being performed.
Fig. 3 illustrates an important principle of the present invention, namely the
transmission of energy in the form of pulse having relatively narrow spectra, indicated
by the letters "b," "c," and "d." It can be seen from Fig. 3 the total energy of each pulse
is less than the total energy of a prior art plasma arc discharge "a" used for the same
puipose, as described for example in U.S. Patent No. 3,720,598, even though the pulses
are each at a higher energy. This has at least two advantages. First, the higher energies
are provided by an electron stream mediated by the growth medium rather than high
energy ions limits damage due to collisions between the high energy ions and the workpiece. hi addition, the narrow spectra of the pulses, together with their limited
temporal and spatial extent (which is not illustrated in Fig. 3), maximizes the transfer of
energy for a specific puφose while limiting damage to the workpiece. Of course, the
energies supplied by the method and apparatus of the invention are not limited to those supplied by plasma arc discharge, but will depend solely on the specific growth or removal process to which the method and apparatus of the invention are applied. The effect of the energy transfer provided by the transverse discharge apparatus
of Fig. 1 is illustrated in Fig. 4. In the example shown in Fig. 4, the growth medium is
Argon and the workpiece is a thin film to which particles of thin film material have been
transported. In step 20, prior to arrival of an energy pulse in the form of a shock wave,
the thin material has settled non-uniformly over the surface of previously deposited layers of thin film material. In step 20, the shock wave has heated the medium and caused
thermal motion of the particles of thin film material, which in turn has caused
redistribution of the particles in a more uniform fashion over the surface of the thin film.
As illustrated in Fig. 5, variation of the energy pulses, accomplished by varying
the voltage applied to electrode tips 1,11 illustrated in Figs. 1 and 2, can be used to
enhance or regulate growth in different ways, and even to carry out multiple steps in a
manufacturing sequence without have to remove the workpiece from the apparatus or
move it to a different cell within the apparatus. In step 22 of the example schematically illustrated in Fig. 5, four identical pulses are to facilitate deposition of materials on a
surface of the workpiece. In step 23, the pulse frequency is increased and the pulses
varied both in strength and duration to anneal the deposited materials, i. e. , to redistribute
and bond the deposited materials to the workpiece. In step 24, additional material is deposited on the surface of the workpiece with the assistance of four identical pulses
corresponding to those applied in step 22, and in step 25, step 23 is repeated to anneal the
deposited additional material.
Although Argon is a particularly preferred cryogenic liquid for purposes of the invention, it will be appreciated that other chemically inert media may be substituted for Argon, including elements or compounds that are in a liquid, semi-solid, or even a solid
state at room temperature, whether subcritical or supercritical. In addition, it is possible
to use non-inert elements or compounds as the growth media so long as the elements or
compounds are compatible with the chemical reactions or processes carried out within
the medium.
Fig. 6 lists some of the properties of cryogenic liquids that may be used in the
apparatus shown in Figs. 1 and 2. The elements are all noble (closed shell) gases or
simple molecules, and most of the elements are in the liquid state at cryogenic
temperatures. Cl2 is the liquid with the highest melting temperature or 171.6 K and is one
of three elements that are liquid under standard conditions, Br and Hg being the other elements. The physical behavior of all of the listed elements is very similar since all are
Nan der Walls liquids, the only difference being the atomic mass or the structure. Any
of these elements, as well as other elements or compounds, could potentially be used in
the apparatuses of Figs. 1 and 2.
Fig. 7 shows an embodiment of the invention that has been specifically designed
to utilize a cryogenic liquid such as Argon as the growth medium. The apparatus of this
embodiment utilizes a single cell divided into multiple subcells or sub-areas for performing multiple processing steps related to manufacture of thin film structures, including growth and cleaning or etching steps. In addition, the apparatus shown in Fig.
7 includes, as will be described in more detail below, at least some of the following mechanisms and features:
a mechanism for introducing growth material into the growth chamber; • a mechanism for cleaning the cryogenic liquid to remove growth material and
contaminants from respective cells;
• individual control of a discharge from a single tip or array of tips in each of the
multiple cells; • temperature regulation and high pressure operation;
• a mechanism for circulating cryogenic liquid through the growth chamber;
• provision of chemically inert working cell surfaces with very low physisorbtion
energies.
In particular, as illustrated in Fig. 7, the multiple cell apparatus of the preferred
embodiment includes three cells 30,31,32 arranged in a common growth chamber (not
shown) through which a liquid cryogenic material such as Argon is circulated by a router/pump arrangement 33. Each cell includes a workpiece 34,35,36 undergoing various processes. Cell 30 is the deposition cell and includes a platform or mechanism
(not shown) for moving the workpiece in the direction of arrows x, y, and z representing
Cartesian coordinate axes, and an electrode tip array 37 connected in the manner
schematic illustrated in Fig. 2, to facilitate sequential deposition of materials A and B.
Cells 31 and 32 are cleaning/etching cells and also include electrode tip arrays 38,39 connected in the manner illustrated in Fig. 2. It will be appreciated that the connections
illustrated in Fig. 1 could also be used in one or more of the cells 30,31,32.
The mechanism for creation and introduction of growth species into the growth area of the apparatus illustrated in Fig. 7, and the method for cleaning the cryogenic
material, are basically the same. Using as an example element A, the growth species is actually in the form of molecules Mxy consisting of the desired element A to be deposited
and an etchant element X, which may by way of example include hydrogen (Xj), fluorine
(X2) , or chlorine (X3), chosen so that the molecules Mxy are able to physisorb and diffuse
around easily on the surface of the substrate.
In the growth process illustrated in greater detail in Figs. 8A and 8B, the adhered
molecule M consisting of the desired growth element A and the etchant X is initially
adhered, as illustrated in Fig. 9A, to the surface of the workpiece. Then, as illustrated in
Fig. IB, a low intensity micro discharge from electrode array 37 is used to disassociate
the etchant from molecules M and adhere the desired element M onto the growing
surface. Afterwards, the reactive X etchant element combines with another X molecule
and fonn unreactive molecules X2, X3, X4 which disperse in the liquid or on the growing
surface.
The growth species is created in cell 31, which maybe referred to as a "reverse
growth cell," by etching the material M with a higher concentration of the etchant
molecule X and more powerful discharges from the electrode tip array 38. initially, as
illustrated in Fig.9 A, the etchant molecules are physisorbed onto the surface to be etched,
after which as illustrated in Fig.9B a low intensity nanodischarge is applied to the surface
in order to induce chemisoφtion of the etchant molecules in preparation of electron
induced chemical etching, illustrated in Fig. 9C in response to application of high
intensity nanodischarge. After etching, as illustrated in Fig. 9D, the etchant molecules
are again physisorbed and the liquid in cell 31 must be cleaned of unreacted MXy molecules, the unreacted molecules being recycled by re-depositing the molecules in the cell 30 where the element was initially etched. The third cell, cell 32, is utilized in a
similar manner for etching and cleaning with respect to element B. As those skilled in
the art will appreciate, a similar procedure may also be used to free the liquid of initial
contaminants such as H2, O2, N2, and H2O.
A particular advantage of the apparatus functionally illustrated in Fig. 7 is that it recycles deposited material, eliminating the drawback of all conventional methods that
the material not landing on the top surface of the workpiece in the growth cell is lost from
the process forever. The micro discharges from the tip array also provide the opportunity
to control the position of the growth/etch process and entirely side step costly
lithograph/etch processes. This growth method can achieve everything that the various conventional growth methods can accomplish, in a much more efficient manner.
Fig. 10 shows the energy potentials and barriers associated with the process of
etching, the subsequent transport of etched atoms in the cryogenic liquid, and finally
growth again on the substrate in the cryogenic growth instrument illustrated in Fig. 7.
The energy plot shows how the energy levels of adsoφtion potentials and etch barriers affect the operation of the growth cell, and determine the relative high amount of energy
that needs to be applied by the electrode arrays 35 and 36 in comparison with the amount
of energy needed to be applied by electrode array 34 for the piupose of overcoming the
reaction barrier to deposition of material in cell 30. The etch energy barriers affect the etch rate of the source material in cells 31 and/or 32 while the low adsorption potential of walls and tips hinders sticking of etched atoms. In order to apply the energy plot shown in Fig. 10, it is necessary to determine the
amount of energy that actually reaches the workpiece in comparison with the amount of
energy deposited in the cryogenic growth medium, which depends on the collision cross-
section for the electrons hitting the atoms and electrons of the liquid, and is limited by
the breakdown strength of the cryogenic liquid. If 90% of the energy is deposited in the liquid and the remainder in the anode (which is a reasonable assumption since the means
free path for electrons in solids is on the order of 100A when the electron energy is a few
eN), then a 100N pulse of 500μA and duration of 1 nsec will deposit an energy of 4.5
x 10"12 J or approximately 5 x 107 eN. The electric field strength at the tip distance of 1 μm would be 108 N/m, which in the case of Argon is the maximum field strength that can
be delivered without breakdown of the cryogenic liquid. Since the volume of the
deposited energy is roughly 1.0 μm x π x 1 nm2 = 1 x 10"24m3 or 1 x 10"18cm3 or ~ 104
atoms for this field strength, the average deposited energy of each atom in the volume is
5000 eN in the 1 nsec time interval, assuming no energy is lost from the region during the heating pulse. This is a very high energy density and in a matter of nanoseconds the
deposited energy will travel in the form of a shock wave through the liquid at the speed
of 103 to 104 m/sec or 1 to 10 μm/nsec.
Depending on the duration of the pulse and the pressure in the liquid, a gas bubble may be formed in the liquid. The energy of the unfocused shock/heat wave will decrease
to a first approximation as r"2 where r is the distance from the core discharge. After one micrometer of expansion, the energy density of the shock/heat wave will be much lower,
or a few eV, which is the typical value of controlled energy enhanced growth. Since average energy of 1 eN corresponds to a temperature of close to 1200°C, there is ample opportunity to lower the pulse energy and obtain thermal impulse with lower equivalent
growth temperatures.
hi addition, since modem diamond coated silicon electrode tips of 1 μm diameter
size are able to withstand stable emission currents of 300 to 500 μA in continuous
operation, it is possible in pulsed operation to stretch the current rating much higher, and
therefore to modify the growth process by increasing the energy of the electrons in the
liquid present in the gap between the tip and anode to as high as 10 eN, in which case the
cross-section for ionization starts to increase to the point where a considerable
concentration of ionized cryogenic atoms is produced in the wake of the electron pulse.
Depending on the pulse duration length, the electrons so produced will be swept towards the anode, leaving behind more massive and slower ions. The more massive and slower
ions form a space charge which will eventually quench the micro/nano discharge. After
the discharge, the ions diffusing around the liquid will have an effect on the growth process.
In the apparatus of Fig. 7, each cell must be temperature regulated within a
particular range of temperatures and to withstand particular pressures. By way of
example but not limitation, the cell may be regulated to a temperature range of 80 to
170°K and should be able to withstand pressures of 50-100 bar. During growth, the discharges from the electrode tip array constantly heat the liquid, and thus adequate
circulation and a heat sink need to be provided. If one micro discharge dissipates energy of 1011 J as described above, and the number of discharges per second is 105, then for a
tip array consisting of 106 tips and a total area of 1 cm2, an energy of 1 J/sec or 1 Watt will be deposited into the cryogenic liquid, and which must be removed as quickly as
possible.
Among the applications of the invention described above are applications involving growth of fine nanoscale structures. In that case, temperature and pressure
requirements and the role of the cryogenic liquid in general may be different than those
described above, such applications, consideration must be given to the likelihood that
the energy deposited in the liquid is relatively small compared to the energy deposited in
the workpiece. In particular, when the distance between the tip and workpiece is smaller than lOnm, the mean free path of the electrons in the growth medium, the main role of
the growth medium is to serve as a carrier of depositing material and to keep the growth
species in place when the energy is applied in the form of high energy electrons emitted
from the electrode tip. As a result, the greater part of the heat will be generated in the
workpiece itself, and appropriate modifications to the apparatus will need to be made. In general, it will be appreciated that in all applications of the invention, the role of the
growth medium will generally vary depending on the tip distance and the density and
pressure of the growth medium.
Taking into account differences in the role of the growth medium when used in
the growth of fine nanoscale structures or "nanostructures," it is anticipated that those
skilled in the art will be capable of modifying the instrument shown in Fig. 7 to
accommodate growth of various nanostructures such as nanotubes, nanodiamonds, and insulating materials (in a mixture of liquid argon and oxygen), as well as other nanodevices, including materials selected from groups LLB to NUB of the periodic system
as well as hydrogen.
By way of example, as illustrated in Fig. 11, a mixture consisting of (i) a liquid,
critical state element, or gas such as argon, (ii) methane or another carbon-containing
molecule, and (iii) boronhydride or another boron containing molecule, may be used to
grow nanostructures made of elements carbon (C) and boron (B) on a photoconducting
material which is conductive when illuminated with light. This enables use of a scanning
tunneling microscope tip to grow and monitor the intended carbon-boron nanostructures.
If light is absent during the growth process, the photoconductor layer will function as an
insulator layer and the grown nanostructure will function as a nanoelectrical device. Such a nanostructure may, as illustrated in Fig. 12, be constructed as a DΝA probe device
using routing of charged molecules in the growth medium and electrode guiding.
Alternatively, as illustrated in Fig. 13, the structure may be formed as a used for
Nottingham cooling by emission of electrons from the tips, and as illustrated in Fig. 14, for the purpose of constructing CMOS like nanodevices including nanowires with a small
"oxide" like structure made of boron and carbon fixed thereto, with a gate structure
connected to the boron-carbon structure.
Having thus described a preferred embodiment of the invention in sufficient detail
to enable those skilled in the art to make and use the invention, it will nevertheless be appreciated that numerous variations and modifications of the illustrated embodiments may be made without departing from the spirit of the invention, including variations in
the processes and material to which the invention is applied (such as by substituting etching for growth), as well as the specific manner in which the thermal spikes or
Shockwaves are generated and transmitted through the growth medium (for example by
reversing the electric polarity of the illustrated electron emitter tip to form an anode rather than a cathode), and therefore it is intended that the invention not be limited by the above
description or accompanying drawings, but that it be defined solely in accordance with
the appended claims.

Claims

I claim:
1. A method for processing a material by locally raising the temperature of a
material in order to facilitate chemical reactions or processes related to processing of the
material, comprising the step of using an electrode to apply to the material a controlled
succession of thermal spikes or Shockwaves of varying energy through a growth medium, said thermal spikes or Shockwaves of varying energy being generated by electrons
emitted by or attracted to the electrode, wherein a dimension of said thermal spikes or
Shockwave, and an area of the material affected by the resulting energy transfer, is on the order of less than one nanometer to several tens of micrometers.
2. A method as claimed in claim 1 , wherein said electrode is an electron emitter tip.
3. A method as claimed in claim 2, wherein said thermal spikes or Shockwaves are
generated by transmitting electrons from said electron emitter tip towards the
material.
4. A method as claimed in claim 2, wherein said thermal spikes or Shockwaves are
generated by transmitting electrons from said electron emitter tip towards an
anode in a direction generally parallel to a surface of the material.
5. A method as claimed in claim 1, wherein a duration of the thermal spikes or
Shockwaves ranges from a few picoseconds to several hundred nanoseconds.
6. A method as claimed in claim 1, wherein the growth medium is a cryogenic
material in a gas, liquid, or supercritical state.
7. A method as claimed in claim 6, wherein the cryogenic material is a cryogenic liquid.
8. A method as claimed in claim 1, wherein said thermal spikes or Shockwaves are generated by supplying to the electrode fast variable voltage pulses of on the
order of a few picoseconds to hundreds of nanoseconds.
9. A method as claimed in claim 1, wherein said processing includes deposition of materials.
10. A method as claimed in claim 9, wherein said processing includes deposition of
materials, followed by cleaning of the resulting product.
11. A method as claimed in claim 10, wherein said processing includes deposition of
materials, followed by etching and cleaning of the resulting product.
12. A method as claimed in claim 1, wherein said processing includes etching.
13. A method as claimed in claim 12, wherein said etch gases used in said etching are selected from the group consisting of hydrogen, chlorine, and fluorine.
14. A method as claimed in claim 1, wherein said processing includes growth of
material in a growth subcell, and etching and cleaning of the material in
respective cleaning and etching subcells, said growth, cleaning, and etching
subcells all being in communication and situated in a single growth cell to permit
recycling of etched materials.
15. A method as claimed in claim 1, wherein said processing includes growth of
material in a growth sub-area, and etching and cleaning of the material in
respective cleaning and etching sub-areas, said growth, cleaning, and etching sub- areas all being in communication and situated in a single growth cell to permit
recycling of etched materials.
16. A method as claimed in claim 1, further comprising the step of assisting said
processing by applying photons from a photon source of sufficient energy to lower reaction barriers or to break or weaken chemical bonds.
17. Apparatus for processing a material by locally raising the temperature of the
material in order to facilitate chemical reactions or processes related to processing of the material, comprising an electrode arranged to apply, in the presence of a
growth medium, a controlled succession of thermal spikes or Shockwaves of
varying energy, said thermal spikes or Shockwaves of varying energy being
generated by electrons emitted by or attracted to the electrode, wherein a
dimension of said thermal spikes or Shockwave, and an area of the material affected by the resulting energy transfer, is on the order of less than one
nanometer to a few tens of micrometers.
18. Apparatus as claimed in claim 17, wherein said electrode is an electron emitter
tip.
19. Apparatus as claimed in claim 18, wherein said electron emitter tip is arranged
to transmit electrons directly from said electron emitter tip towards the material.
20. Apparatus as claimed in claim 18, wherein said electron emitter tip is arranged
to transmit electrons from said electron emitter tip towards an anode in a direction generally parallel to a surface of the material.
21. Apparatus as claimed in claim 17, wherein a duration of the thermal spikes or
Shockwaves ranges from a few picoseconds to several hundred nanoseconds.
22. Apparatus as claimed in claim 17, wherein the growth medium is a cryogenic
material in a gas, liquid, or supercritical state.
23. Apparatus as claimed in claim 22, wherein the cryogenic material is a cryogenic liquid.
24. Apparatus as claimed in claim 17, further comprising circuitry arranged to supply
to the electrode fast variable voltage pulses of on the order of a few picoseconds
to several hundred nanoseconds.
25. Apparatus as claimed in claim 17, further comprising a growth chamber;
a mechanism for introducing growth material and a growth medium into the
growth chamber;
a mechanism for cleaning the growth medium to remove growth material and contaminants from the growth medium;
a controller for controlling said application of thermal spikes or Shockwaves by
said at least one electrode; and a regulator for controlling temperature and pressure of cryogenic liquid placeable
in the chamber.
26. Apparatus as claimed in claim 25, further comprising a mechanism for flowing
the growth medium through or around the growth chamber.
27. Apparatus as claimed in claim 25, wherein the growth chamber includes a single
growth cell divided into multiple subcells or sub-areas for sequentially processing
a substrate or workpiece by deposition of materials, followed by etching or
cleaning of a resulting product.
28. Apparatus as claimed in claim 27, wherein said multiple subcells or sub-areas are in communication, permitting recycling of etched materials.
29. Apparatus as claimed in claim 17, further comprising a photon source of
sufficient energy to lower reaction barriers or to break or weaken chemical bonds
in order to further assist said processing.
30. A product made by using an electrode to apply to a material a controlled succession of thermal spikes or Shockwaves of varying energy through a growth
medium, said thermal spikes or Shockwaves of varying energy being generated
by electrons emitted by or attracted to the electrode, wherein a dimension of said
thermal spikes or shockwave, and an area of the material affected by the resulting energy transfer, is on the order of less than one nanometer to several tens of micrometers.
31. A product as claimed in claim 30, wherein said electrode is an electron emitter
tip.
32. A product as claimed in claim 31 , wherein said thennal spikes or Shockwaves are
generated by transmitting electrons from said electron emitter tip towards the
material.
33. A product as claimed in claim 31 , wherein said thermal spikes or Shockwaves are
generated by transmitting electrons from said electron emitter tip towards an
anode in a direction generally parallel to a surface of the material.
34. A product as claimed in claim 30, wherein a duration of the thermal spikes or
Shockwaves ranges from a few picoseconds to several hundred nanoseconds.
35. A product as claimed in claim 30, wherein the growth medium is a cryogenic
material in a gas, liquid, or supercritical state.
36. A product as claimed in claim 35, wherein said cryogenic material is a cryogenic
liquid.
37. A product as claimed in claim 30, wherein said thermal spikes or Shockwaves are
generated by supplying to the electrode fast variable voltage pulses of on the
order of a few picoseconds to hundreds of nanoseconds.
38. A product as claimed in claim 30, wherein said processing includes deposition of
materials.
39. A product as claimed in claim 30, wherein said processing includes deposition of materials, followed by cleaning of a resulting product.
40. A product, as claimed in claim 30, wherein said processing includes etching of
materials.
41. A product as claimed in claim 30, wherein said processing includes growth of
material in a growth subcell, and etching and cleaning of the material in respective cleaning and etching subcells, said growth, cleaning, and etching
subcells all being in communication and situated in a single growth cell to permit
recycling of etched materials.
42. A product as claimed in claim 30, wherein said product is a fine nanoscale structure.
43. A product as claimed in claim 42, wherein said product is further made by the
step of using light to facilitate conductance of atop substrate layer of said product during a growth process.
44. A product as claimed in claim 43, wherein said fine nanoscale structure includes
carbon and boron atoms deposited on a material which is conductive when
illuminated.
45. A product as claimed in claim 42, wherein said fine nanoscale structure includes
atoms selected from the group consisting of atoms selected from group HB to
VΠB of the periodic system as well as hydrogen.
46. A product as claimed in claim 42, wherein said fine nanoscale structure is a
structure selected from the group consisting of a DNA probe device, a
Nottingham cooling structure, and a CMOS device.
PCT/US2001/027729 2000-09-26 2001-09-24 Method and apparatus for applying controlled succession of thermal spikes or shockwaves through a medium WO2002026400A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2001292580A AU2001292580A1 (en) 2000-09-26 2001-09-24 Method and apparatus for applying controlled succession of thermal spikes or shockwaves through a medium
EP01972949A EP1345704A4 (en) 2000-09-26 2001-09-24 Method and apparatus for applying controlled succession of thermal spikes or shockwaves through a medium
JP2002530221A JP2004509747A (en) 2000-09-26 2001-09-24 Method and apparatus for applying a controlled continuous thermal spike or shockwave through a medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/670,028 2000-09-26
US09/670,028 US6730370B1 (en) 2000-09-26 2000-09-26 Method and apparatus for processing materials by applying a controlled succession of thermal spikes or shockwaves through a growth medium

Publications (2)

Publication Number Publication Date
WO2002026400A1 true WO2002026400A1 (en) 2002-04-04
WO2002026400A8 WO2002026400A8 (en) 2002-06-20

Family

ID=24688678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/027729 WO2002026400A1 (en) 2000-09-26 2001-09-24 Method and apparatus for applying controlled succession of thermal spikes or shockwaves through a medium

Country Status (5)

Country Link
US (2) US6730370B1 (en)
EP (1) EP1345704A4 (en)
JP (1) JP2004509747A (en)
AU (1) AU2001292580A1 (en)
WO (1) WO2002026400A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593666B1 (en) * 2001-06-20 2003-07-15 Ambient Systems, Inc. Energy conversion systems using nanometer scale assemblies and methods for using same
US20040238907A1 (en) * 2003-06-02 2004-12-02 Pinkerton Joseph F. Nanoelectromechanical transistors and switch systems
US7148579B2 (en) 2003-06-02 2006-12-12 Ambient Systems, Inc. Energy conversion systems utilizing parallel array of automatic switches and generators
US7199498B2 (en) * 2003-06-02 2007-04-03 Ambient Systems, Inc. Electrical assemblies using molecular-scale electrically conductive and mechanically flexible beams and methods for application of same
US7095645B2 (en) * 2003-06-02 2006-08-22 Ambient Systems, Inc. Nanoelectromechanical memory cells and data storage devices
WO2005113423A1 (en) * 2004-05-20 2005-12-01 Korea Advanced Institute Of Science And Technology Method and apparatus for manufacturing carbon nano tube
EP1805869A2 (en) 2004-07-19 2007-07-11 Ambient Systems, Inc. Nanometer-scale electrostatic and electromagnetic motors and generators
US20060275537A1 (en) * 2005-06-02 2006-12-07 The Regents Of The University Of California Method and apparatus for field-emission high-pressure-discharge laser chemical vapor deposition of free-standing structures
EP1910217A2 (en) * 2005-07-19 2008-04-16 PINKERTON, Joseph P. Heat activated nanometer-scale pump
US7839028B2 (en) * 2007-04-03 2010-11-23 CJP IP Holding, Ltd. Nanoelectromechanical systems and methods for making the same
US8314357B2 (en) * 2009-05-08 2012-11-20 Children's Hospital And Research Center At Oakland Joule heated nanowire biosensors

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343993A (en) * 1979-09-20 1982-08-10 International Business Machines Corporation Scanning tunneling microscope
US4566937A (en) * 1984-10-10 1986-01-28 The United States Of America As Represented By The United States Department Of Energy Electron beam enhanced surface modification for making highly resolved structures
US4896044A (en) * 1989-02-17 1990-01-23 Purdue Research Foundation Scanning tunneling microscope nanoetching method
US5015323A (en) * 1989-10-10 1991-05-14 The United States Of America As Represented By The Secretary Of Commerce Multi-tipped field-emission tool for nanostructure fabrication
US5038322A (en) * 1988-09-21 1991-08-06 U.S. Philips Corporation Method of and device for sub-micron processing a surface
US5043578A (en) * 1990-04-05 1991-08-27 International Business Machines Corporation Writing atomic scale features with fine tip as source of deposited atoms
US5047649A (en) * 1990-10-09 1991-09-10 International Business Machines Corporation Method and apparatus for writing or etching narrow linewidth patterns on insulating materials
US5352330A (en) * 1992-09-30 1994-10-04 Texas Instruments Incorporated Process for producing nanometer-size structures on surfaces using electron beam induced chemistry through electron stimulated desorption
US5509843A (en) * 1993-05-19 1996-04-23 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing needle shaped materials and method for manufacturing a microemitter
US5534311A (en) * 1995-05-31 1996-07-09 The United States Of America As Represented By The Secretary Of The Navy Production of structures by electrostatically-focused deposition
US6261421B1 (en) * 1998-12-22 2001-07-17 Mcgill University Particle-free cathodic arc carbon ion source

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663788A (en) 1966-06-11 1972-05-16 Inoue K Kinetic deposition of particles
US4131524A (en) 1969-11-24 1978-12-26 U.S. Philips Corporation Manufacture of semiconductor devices
US3713213A (en) 1970-01-29 1973-01-30 Western Electric Co Explosive bonding of workpieces
US3727296A (en) 1970-01-29 1973-04-17 B Cranston Explosive bonding of workpieces
US3628184A (en) 1970-03-02 1971-12-14 Ibm Superconducting oscillators and method for making the same
US3720598A (en) 1970-12-31 1973-03-13 Ibm Cryogenic arc furnace and method of forming materials
US4520252A (en) 1981-07-07 1985-05-28 Inoue-Japax Research Incorporated Traveling-wire EDM method and apparatus with a cooled machining fluid
US4731515A (en) 1986-10-22 1988-03-15 Systems Research Laboratories, Inc. Method of making powders by electro-discharge machining in a cryogenic dielectric
EP0318037A3 (en) * 1987-11-27 1990-07-25 Sony Corporation Method for forming a fine pattern by using a patterned resist layer
US4994140A (en) * 1989-01-10 1991-02-19 Optoelectronics Technology Research Corporation Method capable of forming a fine pattern without crystal defects
US5837332A (en) 1989-11-19 1998-11-17 Nihon Victor Kabushiki-Kaisha Method and apparatus for preparing crystal thin films by using a surface acoustic wave
US6063243A (en) * 1995-02-14 2000-05-16 The Regents Of The Univeristy Of California Method for making nanotubes and nanoparticles
US5728261A (en) 1995-05-26 1998-03-17 University Of Houston Magnetically enhanced radio frequency reactive ion etching method and apparatus
US5648128A (en) 1996-06-06 1997-07-15 National Science Council Method for enhancing the growth rate of a silicon dioxide layer grown by liquid phase deposition
US6001426A (en) 1996-07-25 1999-12-14 Utron Inc. High velocity pulsed wire-arc spray
US5753088A (en) * 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343993A (en) * 1979-09-20 1982-08-10 International Business Machines Corporation Scanning tunneling microscope
US4566937A (en) * 1984-10-10 1986-01-28 The United States Of America As Represented By The United States Department Of Energy Electron beam enhanced surface modification for making highly resolved structures
US5038322A (en) * 1988-09-21 1991-08-06 U.S. Philips Corporation Method of and device for sub-micron processing a surface
US4896044A (en) * 1989-02-17 1990-01-23 Purdue Research Foundation Scanning tunneling microscope nanoetching method
US5015323A (en) * 1989-10-10 1991-05-14 The United States Of America As Represented By The Secretary Of Commerce Multi-tipped field-emission tool for nanostructure fabrication
US5043578A (en) * 1990-04-05 1991-08-27 International Business Machines Corporation Writing atomic scale features with fine tip as source of deposited atoms
US5047649A (en) * 1990-10-09 1991-09-10 International Business Machines Corporation Method and apparatus for writing or etching narrow linewidth patterns on insulating materials
US5352330A (en) * 1992-09-30 1994-10-04 Texas Instruments Incorporated Process for producing nanometer-size structures on surfaces using electron beam induced chemistry through electron stimulated desorption
US5509843A (en) * 1993-05-19 1996-04-23 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing needle shaped materials and method for manufacturing a microemitter
US5534311A (en) * 1995-05-31 1996-07-09 The United States Of America As Represented By The Secretary Of The Navy Production of structures by electrostatically-focused deposition
US6261421B1 (en) * 1998-12-22 2001-07-17 Mcgill University Particle-free cathodic arc carbon ion source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1345704A4 *

Also Published As

Publication number Publication date
EP1345704A1 (en) 2003-09-24
US20040221812A1 (en) 2004-11-11
US6730370B1 (en) 2004-05-04
AU2001292580A1 (en) 2002-04-08
JP2004509747A (en) 2004-04-02
EP1345704A4 (en) 2006-03-15
WO2002026400A8 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
JP6513124B2 (en) Plasma source and method of depositing thin film coatings using plasma enhanced chemical vapor deposition
Levchenko et al. Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation
Fursey Field emission in vacuum micro-electronics
US5473165A (en) Method and apparatus for altering material
US6730370B1 (en) Method and apparatus for processing materials by applying a controlled succession of thermal spikes or shockwaves through a growth medium
Baranov et al. From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring
JP2002356316A (en) Apparatus and method for producing carbon structures
RU2380195C1 (en) Method for production of metal or semiconductor nanoparticles deposited on carrier
JP3341387B2 (en) Method for manufacturing microstructured material, apparatus for manufacturing the same, and light emitting device having microstructure
Baránková et al. Hollow cathode and hybrid plasma processing
JP2015149279A (en) Plasma source, ion source and method of ion generation
Rawat Dense Plasma Focus—High-Energy-Density Pulsed Plasma Device Based Novel Facility for Controlled Material Processing and Synthesis
US20110129671A1 (en) Method of producing quantum confined indium nitride structures
JP4069199B2 (en) Plasma ion implantation / deposition method and apparatus
JP3095565B2 (en) Plasma chemical vapor deposition equipment
CN1564297A (en) Method of ion injecting for increasing emitting performance of carbon mnotube thin film electronic field
JP2004345071A (en) Writing device and writing method
RU2607403C2 (en) Method of producing endohedral nanostructures based on implanted ions channeling
KR20220072351A (en) Method and system for organizing semiconductor quantum dots and controlling the size thereof
JPH0610338B2 (en) Method for forming boron thin film
JPH0477709B2 (en)
JP2006213968A (en) Method and equipment for ion implantation
JPH10167704A (en) Ozonizer
JP2001002404A (en) Ozone generating device
Veronese Carbon nanotubes and nanoporous alumina in the development of a high resolution position detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WR Later publication of a revised version of an international search report
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002530221

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001972949

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001972949

Country of ref document: EP