WO2002028531A1 - Fluid separation conduit cartridge with encryption capability - Google Patents

Fluid separation conduit cartridge with encryption capability Download PDF

Info

Publication number
WO2002028531A1
WO2002028531A1 PCT/US2001/031295 US0131295W WO0228531A1 WO 2002028531 A1 WO2002028531 A1 WO 2002028531A1 US 0131295 W US0131295 W US 0131295W WO 0228531 A1 WO0228531 A1 WO 0228531A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartridge
fluid separation
separation conduit
fluid
information
Prior art date
Application number
PCT/US2001/031295
Other languages
French (fr)
Inventor
David Strand
Peter Myers
Tim Myers
Original Assignee
Protasis Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protasis Corporation filed Critical Protasis Corporation
Priority to AU2002216618A priority Critical patent/AU2002216618A1/en
Priority to EP01986274A priority patent/EP1324828A1/en
Priority to US10/034,757 priority patent/US6934836B2/en
Publication of WO2002028531A1 publication Critical patent/WO2002028531A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/54Labware with identification means
    • B01L3/545Labware with identification means for laboratory containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • G16H10/65ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records stored on portable record carriers, e.g. on smartcards, RFID tags or CD
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/55Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles sealing elements being incorporated into the joints, e.g. gaskets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • B29C66/73366General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light both parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N2001/021Correlating sampling sites with geographical information, e.g. GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8804Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 automated systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8881Modular construction, specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces
    • G01N30/6026Fluid seals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6034Construction of the column joining multiple columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6091Cartridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers

Definitions

  • This invention pertains to a fluid separation conduit cartridge, in particular, to a fluid chromatography conduit cartridge that has the ability to encrypt, compress, transmit, receive, and decrypt information.
  • LC liquid chromatography
  • a typical liquid chromatography system consists of a column and solvent that traverses the entire column.
  • High pressures are usually required to pump solvent through the column leading to the development of high pressure or high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • High performance liquid chromatography systems typically consist of high pressure pumps, at least one solvent reservoir, a column capable of withstanding relatively high pressures, and a detector.
  • Columns used in HPLC typically consist of packing material. In most instances this packing material includes silica-based particles typically with functional groups (defining a column's chemistry) attached to these silica-based particles.
  • Capillary liquid chromatography is a micro-version of traditional liquid chromatography. As is true for traditional liquid chromatography, the column used in capillary liquid chromatography is of critical import. These columns typically have low solvent consumption and require low volumes of sample for analysis. These conditions translate into a higher degree of unit mass detectability.
  • Capillary liquid chromatography systems typically comprise a micro- pumping unit, a capillary column, a detector, and a data processing system. Capillary liquid chromatography columns are typically produced using such materials as fused silica, stainless steel, or polymeric compositions. The lumen of the capillary is packed with packing material containing separation material, such as bonded silica particles. Typically, the internal diameter of the capillary column is between 50 and 500 ⁇ m.
  • a fluid separation conduit cartridge (also referred to below as a conduit cartridge) comprises at least a housing unit, a memory unit, and one or more connectors is disclosed.
  • the housing unit is manufactured from materials capable of withstanding high pressures and harsh environments.
  • the housing unit can be manufactured from steel, e.g. stainless steel or galvanized steel, such that rusting is minimized and strength is increased.
  • the housing unit is manufactured from plastics or polymers, such as polyetheretherketone (PEEK) for example, such that the housing unit and components within the housing unit can be assembled rapidly, to minimize assembly costs, and to provide a lightweight device.
  • PEEK polyetheretherketone
  • the housing unit typically has one or more connectors, as described in detail below, to connect the conduit cartridge with an system, instrument or other device.
  • the connectors are operative to create a fluid-tight seal between the conduit cartridge and any device to which the conduit cartridge is interfaced, e.g. attached.
  • fluid refers to liquids and/or gases, e.g. supercritical fluids, etc., optionally containing particulate matter, dissolved species, solvated species, and the like.
  • memory unit refers to any device that is operative to store, read, write, and/or read and write information.
  • information refers to any data, results, parameters, etc. used or generated by an instrument or fluid separation conduit cartridge, e.g.
  • Preferred memory units include but are not limited to memory chips, e.g., read only memory (ROMs), programmable read only memory (ROMs) erasable programmable read-only memory (EPROMs), electrically erasable programmable readonly memory (EEPROMs), DBVIMs, SIMMs, and other memory units and memory chips well known to those skilled in the art and commercially available from numerous manufacturers such as Siemens, Toshiba, Texas Instruments and Micron.
  • the memory unit is integrally attached to the conduit cartridge, for example, at the time of its manufacture. In other embodiments, the memory unit may be removed and upgraded, for example, to a larger memory unit.
  • the memory unit is a component of a larger device or circuit, e.g. a circuit comprising a microprocessor in electrical communication with the memory unit, for example.
  • a microcontroller e.g. a microprocessor
  • the amount of information stored typically will depend upon the memory capacity, and how the information is recovered will depend on whether or not a microcontroller, e.g. a microprocessor, is incorporated in the memory unit itself or is in electrical communication with the memory unit.
  • Components could be read-only or read/write or be partitioned with a read-only area for manufacturing information and a read/write area for usage information.
  • the information stored could vary from the minimal amount of data required to identify the cartridge and its quality control test performance in text format to a full quality control trace and usage history.
  • the fluid separation conduit cartridge may comprise a plurality of memory units.
  • a first memory unit may be specific for use on a specific analytical system, e.g. a specific chromatography system.
  • This type of memory unit is customized for use with a specific manufacturer's analytical system. That is, the memory unit may be chosen such that it is compatible with or contains information such that the conduit cartridge is operative with a specific analytical system, e.g. a Waters Alliance HPLC System or a Varian SD-2 Prep HPLC System, for example.
  • the first memory unit may be readable and writeable.
  • the read-only area includes at least full conduit cartridge manufacturing and quality control test data.
  • the writeable area can include at least a history of cartridge usage, number of injections, maximum used pressure, maximum used flow rate, pressure/flow profile, maximum temperature, serial number, cartridge parameters, e.g. number of theoretical plates, test results, or the like, as well as other features.
  • a second memory unit is chosen such that the memory unit is operative with any analytical system.
  • the memory unit is a readonly memory unit and is supplied with a device to read the information in the memory unit and output the information in via, for example, a RS232 interface.
  • the information may include but is not limited to cartridge manufacturing and quality control test data, conduit cartridge history, and the like.
  • the fluid separation conduit cartridge comprises a housing unit, a fluid separation conduit defined within the housing unit and a ferrule subassembly, as described above, at the housing inlet orifice and/or outlet orifice.
  • the fluid separation conduit may be defined or formed, for example, by a lumen or tube, e.g., a flexible tube. Typically such tube is connected at one end to the inlet orifice and at the other end at the outlet orifice.
  • the fluid separation conduit, or a portion thereof may be defined by a channel formed from assembling individual layers into a multi-layer laminated substrate, such as the fluid handling substrates described in commonly assigned U.S. Patent Application No.
  • the fluid separation conduit comprises one or more flexible tubes that terminate at opposite ends of a channel formed by assembling the layers of a multi-layer laminated substrate. That is, in certain embodiments the fluid separation conduit comprises at least one flexible tube in fluid communication with at least one channel, where the fluid separation conduit is defined by the at least on tube and the channel.
  • the fluid separation conduit has at least first and second openings for entry and exit of fluid, respectively.
  • the cross- sectional diameter of the fluid separation conduit may vary depending on the desired flow rate, desired operation pressure, conduit shape, and the like.
  • the inner diameter of the conduit can range from a few microns to about 4-5 mm.
  • An exemplary inner diameter for a tubular conduit suitable to provide 1 uL/min flow rate under typical fluid pressures is about 320 um.
  • Other exemplary inner diameters in include about 50 ran, about 75 urn, about 800 um, about lmm, about 2mm, and about 3.9 mm.
  • An inner diameter of about 3.9 mm or 4.6 mm is suitable, for example, for certain conventional chromatography applications.
  • Suitable wall thicknesesss e.g.
  • an inlet orifice in the housing unit is in fluid communication with a first end of the fluid separation conduit within the housing, and an outlet orifice in the housing unit is in fluid communication with a second end of the fluid separation conduit.
  • the fluid separation conduit provides a fluid flow path within the housing from the inlet orifice to the outlet orifice.
  • a first connector e.g. a first ferrule-sub assembly
  • a second connector e.g. a second ferrule sub-assembly
  • each of the ferrule sub-assemblies comprises a ferrule or end cap seated over the end of the fluid separation conduit.
  • the ferrule sub-assembly preferably comprises a compression ring securing the attachment to the fluid separation conduit and/or creating a fluid-tight seal between the end of the conduit and other channels or devices in fluid communication with the fluid separation conduit.
  • the ferrule sub-assemblies each preferably provides a seating and sealing surface for its respective fluid flow port.
  • the ferrule sub-assembly comprises a frit body providing the seating and sealing surface.
  • each of the ferrule sub-assemblies is secured to the housing unit in a fixed position, optionally being removably fixed, at its respective port.
  • the fluid separation conduit can be conveniently anchored to the housing unit, e.g., to a component of the housing unit which is assembled with one or more other housing components after the fluid separation conduit is attached, to construct the housing unit of the conduit cartridge.
  • a surface of the ferrule sub-assembly at the inlet end of the fluid separation conduit is a substantially flat surface having a fluid opening for the inlet port and facing substantially outwardly from the housmg unit to seat and seal conveniently against a corresponding surface of a fluid feed line or other fluid source feeding fluid to the fluid separation conduit cartridge for testing, analysis, etc.
  • a surface of the ferrule sub- assembly attached to the outlet end of the fluid separation conduit provides a substantially flat surface having a fluid opening for the outlet port and facing substantially outwardly from the housing to seat and seal conveniently against a corresponding surface of a fluid return or waste line or other fluid receiving device for accepting fluid from the fluid separation conduit cartridge after it has been tested, analyzed or subjected to other operation(s) by the fluid separation conduit within the housing.
  • a port of the housing unit may in certain instances be arbitrary and merely a matter of convenience or choice, such as where the conduit cartridge is usable in either direction, preferably then being side-to-side symmetrical so that it can be properly installed in either orientation, hi other embodiments, an outwardly extending connector is provided on a fluid separation conduit cartridge to enable insertion of the conduit cartridge fluid ports into wells or receiving sockets of a manifold or mounting device or the like, for fluid connection and sealing.
  • the housing unit may comprise innumerable other devices positioned within or attached to the housing unit and or components thereof, e.g. the fluid separation conduit, the memory unit, the ferrule subassemblies, etc.
  • the fluid separation conduit cartridge disclosed here can be used to separate one or more species in a fluid.
  • separate, separation, or fluid separation refers to resolving two or more species in the fluid.
  • baseline separation e.g. baseline resolution
  • the fluid separation conduit of the conduit cartridge disclosed here may take numerous forms, e.g. cylindrical, serpentine, coiled, and the like, and preferably contains one or more types of fluid separation media (also referred to below as a stationary phase(s)) for separating species in a fluid.
  • stationary phase refers to the material(s) coated, adsorbed, absorbed, or attached to the inner surfaces of the fluid separation conduit, e.g. the surfaces of the fluid separation conduit that are contacted by fluid from a fluid reservoir, for example.
  • the stationary phase is operative to adsorb and to allow for desorption oA species in the fluid, e.g. allows for reversible adsorption of species in the fluid.
  • the stationary phase acts to separate the species in the fluid.
  • differential solubilities refers to the solubility of a species in the stationary phase and in a fluid passing over or through the stationary phase, e.g. the mobile or fluid phase.
  • a given species is more soluble in the stationary phase than in the fluid phase, then the given species remains adsorbed to the fluid separation conduit and does not elute.
  • the species becomes more soluble in the fluid phase than " in the stationary phase, e.g. by altering the composition of the fluid phase using a solvent gradient, for example, the species is desorbed from the stationary phase and elutes from the fluid separation conduit, e.g. flows out of the cartridge in the fluid phase.
  • different species have different solubilities in the different phases, e.g. partition differently between the stationary and fluid phases, depending on the selected nature of the stationary phase and the fluids, separation of the species in a fluid can be achieved.
  • the nature of the stationary phases may vary depending on the intended use of the fluid separation conduit cartridge.
  • C18 phases may be used for separation of generally non-polar species in a fluid while strong anion exchangers (SAX) might be used for separation of charged species in a fluid.
  • SAX strong anion exchangers
  • the stationary phase is selected from materials having nonpolar functional groups, e.g. C18 and the like, materials with negatively charged functional groups, e.g. RrSO 3 " groups, RrCOO " groups and the like, and materials with positively charged functional groups, e.g.
  • suitable fluid phases may be chosen such that the species in a fluid will elute at different times, e.g. the species will have different retention times.
  • suitable fluid phases for separating one or more species in a fluid.
  • a solvent gradient is used to separate the species in a fluid.
  • solvent gradient refers to changing the composition of the fluid phase with increasing time. Suitable solvent gradient methods will be apparent to those skilled in the art given the benefit of this disclosure and exemplary solvent gradient methods are discussed below.
  • the conduit cartridges typically are in fluid communication with one or more devices operative to move fluid into and/or out of the fluid separation conduit cartridge. That is, one or more devices, in fluid communication, with the conduit cartridges are operative to generate a fluid flow such that species introduced into the fluid flow can enter into the conduit cartridge, be separated by the conduit cartridge, and/or subsequently flow out of the conduit cartridge.
  • Suitable devices for generating a fluid flow are well known to those skilled in the art and include but are not limited to pumps, e.g. piston pumps, standard HPLC pumps and the like, vacuum manifolds, and the like. Those skilled in the art will recognize that these devices are useful in controlling the flow rate of species out of the conduit cartridge, e.g.
  • fluid separation conduit cartridge may include numerous other components. For example, additional columns, e.g.
  • one or more guard columns might be in fluid communication with the fluid separation conduit.
  • Additional memory units such as those discussed above, may be included in the conduit cartridge.
  • Identifiers such as RF tags, bar codes and the like may be placed on or in the housing unit of the cartridge.
  • Additional connectors e.g. electronic connectors such as, for example, PCMCIA connectors, serial connectors, parallel connectors, USB connectors and the like, may be positioned on any surface of the housing unit and optionally may be in electrical commimication with one or more memory units.
  • Such additional devices may be incorporated into the conduit cartridge in any of numerous manners, e.g. incorporated inside the housing unit of the conduit cartridge or may be removably attached to one or more outer surfaces of the housing unit.
  • the fluid separation conduit cartridges disclosed above may omit one or more of the components described above, e.g. a memory unit and/or a connector may be omitted. That is, in certain embodiments, the memory unit, for example, is omitted from the conduit cartridge disclosed above.
  • the conduit cartridge may comprise a housing unit and one or more connectors but no memory unit. In other embodiments, the conduit cartridge may comprise a housing unit and a memory unit but no connectors.
  • One skilled in the art, given the benefit of this disclosure will be able to design conduit cartridges with selected components suitable for an intended use.
  • a fluid separation conduit cartridge comprising at least a housing unit and a separation conduit that is potted.
  • potted refers to surrounding, e.g. enveloping, encasing, enclosing, and the like, one or more components of the cartridge with a potting compound.
  • the potting compound prevents movement of the components within the conduit cartridge and provides protection to any sensitive components, e.g. a memory unit, within the cartridge.
  • the potting compound envelops the conduit cartridge and allows the cartridge .to withstand higher pressures without rupturing, fracturing or leaking.
  • Exemplary potting compounds include but are not limited to thermoset and thermoplastic polymers, e.g., epoxies, glass filled epoxies, metal filled epoxies, carbon-filled epoxies, and the like.
  • the fluid separation conduit cartridge may comprise a housing unit, one or more memory units, one or more connectors, and a potted fluid separation conduit.
  • the potting compounds typically have no effect on the memory unit or any. other components within the housing unit or attached to the housing unit. That is, the memory unit may be integrated into the housing unit of the cartridge and the potting compounds can be disposed in the housing unit to encapsulate the fluid separation conduit and the memory unit without adversely affecting operation of the conduit cartridge.
  • the potting compound can be disposed prior to packing the conduit with a packing material or after packing the conduit with a packing material
  • the conduit cartridge comprises a housing unit, one or more connectors, a potted conduit, and a memory unit.
  • the conduit cartridge comprises a housing unit, one or more connectors and a potted conduit but no memory unit.
  • a method for making a fluid separation conduit cartridge comprising a fluid separation conduit and at least one memory unit.
  • An assembled cartridge is provided comprising all of the necessary elements for a fluid separation conduit including at least one memory unit.
  • the fluid separation conduit and any other internal components, e.g. the memory unit, may optionally be potted as discussed above.
  • the memory unit can then be programmed at the manufacturing facility.
  • the cartridge can then be loaded or packed with a suitable packing material, e.g. a suitable stationary phase, based on the intended use of the fluid separation conduit cartridge.
  • suitable packing material e.g. a suitable stationary phase
  • the cartridge can undergo testing for quality assurance at the manufacturing facility the results of which may then be incorporated into the memory unit.
  • the cartridge can intermittently, e.g. daily, weekly, monthly, etc., throughout its lifetime be examined for quality control issues, for example, in the process of validation of a particular chromatographic method.
  • the cartridge can be tested at a test site, for example, within an end-user's facility, the results of which may be incorporated into the memory unit.
  • the potting compounds may be disposed using numerous methods known to those skilled in the art including but not limited to injection of the potting compound using a syringe and needle.
  • one or more of the cartridge faces on the housing unit are removed, or not assembled, and the potting compound is poured or injected into the housing unit in a sufficient amount to envelop at least a portion or all surfaces of the fluid separation conduit, more preferably enveloping substantially all surfaces, e.g.
  • the potting compound is disposed in the conduit cartridge prior to, or simultaneously with, insertion of a fluid separation conduit into the housing unit.
  • the cartridge can then be packed with a suitable packing material, e.g. a suitable stationary phase, based on the intended use of the fluid separation conduit cartridge. Numerous methods for loading stationary phases are well known to those skilled in the art and include, for example, those mentioned above.
  • the cartridge can undergo testing for quality assurance at the manufact ⁇ ing facility, e.g. testing to assess cartridge quality and operation at high pressures.
  • a fluid separation conduit cartridge comprises at least a housing unit, a fluid separation conduit within the housing unit, an inlet orifice in fluid communication with a first end of the fluid separation conduit, and an encryption device.
  • an encryption device is any device which is operative, either alone or in combination with other devices or components elsewhere, to perform an encryption operation on information, e.g. a signal containing or corresponding to a method, e.g. an LC method, to be performed by the cartridge and/or other components of a system comprising the cartridge, or a signal containing or corresponding to test results obtained by the cartridge or a system comprising the cartridge, e.g. test results from a detector in fluid communication with the cartridge, etc.
  • information can include but is not limited to data that is acquired by a cartridge, data that is acquired by an instrument, data that is acquired by an analytical system, methods that are used by an instrument, system or a conduit cartridge, messages that are sent from a conduit cartridge to a system, e.g. an instrument, or from a system to a conduit cartridge, methods or data that are sent from a conduit cartridge to a remote operating facility, methods or data that are sent from a operating facility to a remote conduit cartridge, quality control and assurance protocols used by an instrument or a conduit cartridge, corporate trade secrets, manufacturing protocols, manufacturing records, records of cartridge use, and any other parameters or data that a conduit cartridge might use or need for chemical, biological, biochemical, or environmental analyses and separations.
  • Exemplary encryption operations performed by the encryption device include encryption, decryption, or both, such as operations to compress, to encrypt, to transmit, to receive, and/or to decrypt information.
  • an encryption device is in some cases below as an encrypting device; likewise reference is made below in some cases encrypting and/or to decrypting rather than to the more generic "encryption operation" but will be understood from context to refer to the more generic concept.
  • remote or remotely means a conduit cartridge and an operating facility that are located at some distance from each other, e.g. in separate buildings, environments, and the like.
  • Remote or remotely also means that the conduit cartridge may be connected by a wire to an operating facility, but input of information occurs by sending the information from the operating facility through the wire and to the conduit cartridge.
  • Remote or remotely also means inputting of information other than by means of a keypad or input device incorporated on the conduit cartridge or instrument.
  • Remote or remotely also means that the attachment for communication, e.g. a wire, between the conduit cartridge and an operating facility is not permanent, e.g. the wire is removably attached.
  • Remote or remotely also means that the conduit cartridge and an operating facility may be in communication through a wireless device such as a cellular phone, RF transmitter and receiver, satellite transmitter and receiver, devices using 802.11b protocols, or comparable devices.
  • information is encrypted using any encryption method known to those skilled in the art.
  • a strong encryption algorithm e.g. 56-bit encryption algorithm, 128-bit encryption algorithm or higher is used.
  • Exemplary encryption algorithms include but are not limited to Blowfish and DES, for example.
  • encryption and decryption may be performed using the memory unit described here, or may be performed using encryption devices, such as, for example, a microprocessor, a subroutine stored in a memory unit, and the like.
  • the microprocessor can be in electrical communication with a memory unit.
  • the microprocessor comprises an internal memory store such that an additional memory unit is not required, hi yet other embodiments, a subroutine for encrypting and decrypting information is resident in a memory unit, e.g. a ROM or EEPROM and is operative to encrypt and decrypt information received by, or sent by as the case may be, the conduit cartridge.
  • a memory unit e.g. a ROM or EEPROM
  • the conduit cartridge can use a two-part encryption and signing process, hi the first part of the encryption process, all information on the conduit cartridge is encrypted using an encryption driver. All information that is sent to the conduit cartridge, either by an instrument or by a remote operating facility, for example, passes through the encryption driver. Similarly, all information that is sent by the cartridge, for example, either to an instrument or to a remote operating facility, passes through the encryption driver.
  • the encryption driver comprises an Authentication Engine, an Encryption Engine, a Signature and Verification Engine, and a Card Filing System. The Authentication Engine provides initial access to the information on the conduit cartridge.
  • the Encryption Engine preferably uses an encryption algorithm or an encryption device that encrypts or decrypts information, such as those discussed here.
  • the Encryption Engine uses a strong encryption method, such as DES, Blowfish, or other strong encryption algorithms known to those skilled in the art.
  • the keys for the encryption may. also be encrypted and stored in the Encryption Engine.
  • the keys may be decrypted when necessary for encrypting or decrypting information.
  • the Signature and Verification Engine typically is a record keeping device that signs all information to ensure that a record of events exists.
  • the SAVE typically is responsible for signing and storing all information passed to the encryption driver.
  • the signature may be used to verify that another party did not alter information on the conduit cartridge.
  • a signature referring to the encrypted information may be added.
  • the signature may be transmitted with or stored with the encrypted information.
  • the encrypted information that has been signed can be decrypted and compared with the information of interest. If upon comparison of the information, the information is similar, then the information has not been altered since the signature was generated.
  • the signature may also be used to construct a record for tracking the usage history of the conduit cartridge, hi certain preferred embodiments, to prevent unwanted parties from obtaining the keys that are required to decode the encrypted information or the signatures, users may validate their keys against a central key store.
  • the SAVE can make a request to a central server to validate a public key, e.g. a request to the central server through the Internet.
  • the SAVE can also ensure that all public keys that are required to verify the signatures of the stored and encrypted information are available.
  • the device and methods used by the conduit cartridge to transmit the information include the aforementioned methods of sending the information through a modem by fax or other method, sending the information by e-mail or over the Internet, sending the information by wireless transmission using a cellular phone, devices using 802.11b protocols, or comparable devices, sending the information by RF transmission, sending the information by satellite transmission, or sending the information through a wire that links the conduit cartridge to another device or to an operating facility. Therefore, in addition to the components of the conduit cartridge described here, the conduit cartridge may optionally include other electrical and mechanical components to provide for transmission of information or other operations.
  • the information may be transmitted from the conduit cartridge to a remote operating facility using any known devices and methods for transmitting information such as e-mail, the Internet, wireless phone, fax, modem, RF transmission, satellite transmission, a direct connection between the conduit cartridge and an operating facility, such as a wire, or other similar transmission devices.
  • the information may be decoded and read only by one who possesses an appropriate decoding key conesponding to the encryption key.
  • the information may be encrypted by the conduit cartridge using a customer's public key, transmitted from the conduit cartridge to the customer, and then decoded using the customer's private key. This feature provides for secure transmission of the information regardless of the methods used for transmitting the information. After successful decoding, the information can be analyzed, stored, or used for other reasons applicable to the function of the conduit cartridge.
  • information that is transmitted from a conduit cartridge to an analytical system, e.g. an instrument, in communication with the conduit cartridge may be encrypted.
  • an analytical system e.g. an instrument
  • information sent from the conduit cartridge to a system may be encrypted using the system's public key, for example.
  • the encrypted information may be decrypted using the system's private key. Therefore, the information remains encrypted during transmission from the conduit cartridge to the system. This feature provides added security during transmission of information sent from the conduit cartridge to the system.
  • conduit cartridges disclosed have innumerable uses.
  • one or more analytical system comprising a conduit cartridge can be placed remotely at a user's facility and any results of testing analyses can be sent to a remote operating facility.
  • the results might be sent directly to a regulatory agency for monitoring of chemicals, pollutants, and the like generated by a manufacturing facility for example. That is, encrypted test results could be transmitted directly to a regulatory agency, for example, which has an appropriate key to decrypt the information. Therefore, unauthorized access, by members of the manufacturing facility for example, is prevented.
  • Such direct transmission to a regulatory agency prevents tampering or altering of the information by the manufacturing facility.
  • a conduit cartridge capable of receiving information.
  • the device and methods used by the conduit cartridge to receive information include the aforementioned devices and methods of receiving the information through a modem by fax or other method, receiving the information by e-mail or over the Internet, receiving the information using a wireless device such as a cellular phone or comparable device, receiving the information using a RF receiver, receiving the information using a satellite receiver, or receiving the information through a wire that links the conduit cartridge and the operating facility. Therefore, in addition to the components of the conduit cartridge described here, the conduit cartridge may optionally contain other electrical and mechanical components to provide for reception of information or other operations.
  • a conduit cartridge operative to receive information provides the ability to alter remotely the method used by the remote conduit cartridge or analytical system, hi accordance with another aspect, to decrease the time required for information to be transmitted and subsequently received at its destination, the conduit cartridge may use compression algorithms. Compression of information effectively allows for faster transmission of a given amount of information.
  • the conduit cartridge may use any compression algorithm known to those skilled in the art. Additionally, any compression algorithm that generates ARC, TAR, ZIP, GZ files or other compressed file formats may be used.
  • the information might be compressed using commercially available computer software programs such as PKZipTM (PKWARE, Inc.) or WinZipTM (WinZip Computing, Inc.) or freely available programs and commands, e.g. gzip, operative to compress information.
  • the conduit cartridge may be directly plugged, e.g. directly interface, into a device for downloading or uploading encrypted information.
  • directly plugged means that the cartridge and the device are in direct communication preferably without any intervening wires or devices.
  • the conduit cartridge may directly interface with a computer or other electronic device to upload or download information.
  • This interface may consist of a direct connection such as a female connector on the conduit cartridge coupled to a male connector on a computer.
  • a direct connection such as a female connector on the conduit cartridge coupled to a male connector on a computer.
  • other types of connectors may be used to accomplish the uploading and downloading of information, e.g. PCMCIA connectors, USB connectors, serial connectors, etc.
  • the information on the conduit cartridge may be uploaded or downloaded using other devices such as a floppy disk or other magnetic media, through wireless transfer using infra-red transmission, 802.11b protocols or any other methods that transfer information from one source to another.
  • one or more digital IDs may be assigned to the cartridge to provide, for example, a unique identifier to the cartridge, a method associated with the cartridge, or an analytical system associated with the cartridge.
  • conduit cartridge disclosed here provides useful information as to the cartridge's performance which is critical in both Good Manufacturing Practice and Good Laboratory
  • Damaged cartridges can be detected early, thereby saving on both frustration and useless data acquisition. Full traceability of the cartridge throughout its lifetime is available to the end-user or any other interested party with appropriate access capabilities.
  • FIG. 1 is a perspective view of a fluid separation conduit cartridge, in accordance with preferred embodiments
  • Fig. 2 is a cut-away view of the fluid separation conduit cartridge shown in Fig. 1, in accordance with preferred embodiments;
  • Fig. 3 is a block diagram of a circuit board contained within the housing of a fluid separation conduit cartridge, in accordance with prefened embodiments;
  • Fig. 4 is an exploded section view of a ferrule sub-assembly, in accordance with preferred embodiments
  • Figs. 5a and 5b are schematic section views, partially broken away, showing the ferrule sub-assembly of Fig. 4 in use in cartridge, in accordance with preferred embodiments
  • Figs. 6a and 6b are schematic section views, partially broken away, showing the fluid separation conduit of a cartridge comprising ferrule sub-assemblies in accordance with the Fig. 4, being charged with fluid separation media, in accordance with preferred embodiments
  • Fig. 7 is an exploded schematic view, partially broken away, showing a cartridge comprising ferrule sub-assemblies in accordance with Fig. 4 mounted in fluid ports extending outwardly from an end cap or manifold of the housing unit of the conduit cartridge, in accordance with preferred embodiments
  • Fig. 8 is a flow diagram of the method of producing a fluid separation conduit cartridge, in accordance with preferred embodiments
  • Fig. 9 shows a diagram of encrypting and decrypting information, in accordance with preferred embodiments
  • Fig. 10 shows the relationship of an encryption driver to the system comprising a conduit cartridge and an operating facility, in accordance with preferred embodiments;
  • Fig. 11 shows restricted access to information on the conduit cartridge, in accordance with preferred embodiments
  • Fig. 12 shows read only access to the information on the conduit cartridge, in accordance with preferred embodiments
  • Fig. 13 shows read without authentication and write once authenticated access to the information on the conduit cartridge, in accordance with preferred embodiments
  • Fig. 14 shows an overview of the signature process, in accordance with preferred embodiments;
  • Fig. 15 shows the process of storing an object using the Signature and Verification
  • Fig. 16 shows the process of reading an object using the Signature and Verification Engine, in accordance with preferred embodiments
  • Fig. 17 shows a block diagram of several of many possible components contained within the conduit cartridge and used for encrypting, transmitting, receiving, and decrypting information, in accordance with preferred embodiments;
  • Fig. 18 is an example of a process of encryption decryption between a customer and a conduit cartridge, in accordance with preferred embodiments
  • Fig. 19 is an example of a process of encryption/decryption between a conduit cartridge and an instrument, in accordance with preferred embodiments
  • Fig. 20 is an example of encryption, decryption, reception and transmission by a conduit cartridge in communication with an instrument and an operating facility, in accordance with preferred embodiments;
  • Fig. 21 is an example of the assignment of digital IDs to the conduit cartridge
  • Fig.22 is a first embodiment of an analytical system in communication with a fluid separation conduit cartridge, in accordance with prefened embodiments
  • Fig. 23 is an embodiment of a fluid separation conduit cartridge attached to a manifold of an analytical system, in accordance with preferred embodiments;
  • Fig. 24 is an embodiment of a fluid separation conduit cartridge attached to a manifold of an analytical system where the manifold is in fluid communication with a device for generating a fluid flow, in accordance with preferred embodiments;
  • Fig. 25 is a second embodiment of an analytical system in communication with a fluid separation conduit cartridge, in accordance with prefened embodiments.
  • fluid separation conduit cartridges disclosed in the figures are not necessarily to scale.
  • the dimensions of the cartridges may have been enlarged, relative to the dimensions of an analytical system, e.g. a chromatography system, an instrument and the like, for example, for ease of illustration and for clarity of viewing.
  • an analytical system e.g. a chromatography system, an instrument and the like
  • the conduit cartridges may have any dimensions suitable for interfacing with an instrument, for example.
  • embodiments of the fluid separation conduit cartridge described here may be used for numerous fluid separation methods including but not limited to liquid chromatography (LC), high performance liquid chromatography (HPLC), fast performance liquid chromatography (FPLC), supercritical fluid (SCF) chromatography, gas chromatography (GC), capillary liquid chromatography, capillary electrophoresis, other liquid-phased separation techniques, e.g micellular electrokinetic chromatography (MEKC), isoelectric focusing, isotachophoresis and other chromatographic methods commonly used by those skilled in the art.
  • LC liquid chromatography
  • HPLC high performance liquid chromatography
  • FPLC fast performance liquid chromatography
  • SCF supercritical fluid
  • GC gas chromatography
  • capillary liquid chromatography capillary electrophoresis
  • other liquid-phased separation techniques e.g micellular electrokinetic chromatography (MEKC), isoelectric focusing, isotachophoresis and other chromatographic methods commonly used by those skilled in the art.
  • a fluid separation conduit cartridge comprises an exterior portion and an interior portion.
  • the exterior portion is defined by a housing unit 1 which comprises a base plate 2, at least two side plates 3, a rear manifold 4 which is perpendicular to the two side plates, a front manifold 5 that lies perpendicular to the two side plates, and a cover plate 6.
  • the dimensions of the housing unit can vary depending on the intended use of the cartridge and upon the instrument or device to which the cartridge is intended to interface.
  • the cartridge is about 1 3 ⁇ inch, more typically about 3-4 inches wide by about 1 % inches, more typically 4 3 A to about 19 inches.
  • the 19 inch dimension is a standard rack dimension and, accordingly, cartridges as disclosed here, in certain embodiments have one dimension equal to 19 inches or l ⁇ that size or other standard fraction of that full rack dimension.
  • the thickness or height of the cartridge will follow somewhat the footprint dimensions and typically will be at least about 5/8 of an inch or more.
  • the cartridge for example, may have the dimensions of a postage stamp, a PCMCIA card (especially a Type III PCMCIA card), a credit card, or the like.
  • the thickness of the cartridge can also vary depending on the intended use of the cartridge. One skilled in the art given the benefit of this disclosure will be able to select suitable thicknesses for accommodating suitable components into the conduit cartridge and to provide the proper dimensions for interfacing the conduit cartridge with an instrument, analytical system, e.g. a chromatography system, and the like. Referring to Fig.
  • the input orifice 7 and output orifice 8 each comprise fittings (9, 10) that can be used to facilitate entry and exit, respectively, of a fluid, with or without any dissolved species or particulate matter, through the cartridge.
  • the fittings 9, 10 can have an outer surface aspect and an inner surface aspect.
  • the outer (or exterior) surface aspect interfaces with an exterior connection, such as an LC separation conduit 20 for example, carrying fluid.
  • the inner (or interior) surface aspect interfaces with the interior of the housing unit 1.
  • the fitting is secured within an orifice by numerous devices and methods known to those skilled in the art, e.g. clamps, adhesives, welding, and the like h accordance with certain prefened embodiments and referring to Fig.
  • an LC separation conduit 20, housed within the interior of the housing unit 1, with two defined ends is attached at a first end 21 to input orifice fitting 9 and is attached at a second end 22 to output orifice fitting 10.
  • Numerous methods suitable for attachment are well known to those skilled in the art and include, for example, snap-connectors, solvent welding, IR welding, compression fittings, adhesives and the like.
  • input orifice fitting 9 and output orifice fitting 10 each is coated with a substance in order to maintain a fluid-tight seal. That is, each fitting is preferably coated with a material that assists in preventing any fluid from permeating between the junction formed by an orifice fitting and surface of the manifold.
  • a capillary conduit e.g. a capillary column, is used in the conduit cartridge.
  • additives such as carbon black, dyes, titanium dioxide, gold, e.g. electroplated gold or electrolessly plated gold, carbon particles, additional polymers, e.g.
  • a secondary polymer or second phase polymer reactive with the primary polymer of the laminate layer, IR absorbing materials, and the like, may be included, as a surface coating and/or a body filler, in the materials used to form the column.
  • the first end of the capillary column can interface with the inner surface aspect of the input orifice fitting (that is, the surface aspect which is interior within the housing unit), while the second end can interface with the inner surface aspect of the exit orifice fitting.
  • the length of the capillary column in the present embodiment can range from about 6 cm to about 25 cm though longer capillary columns may be used by coiling the column within the housing unit.
  • the rear manifold 4 and front manifold 5 can be positioned and secured into place with the remaining housing unit 1 by methods and devices well known to those skilled in the art. Suitable methods and devices for securing the mamfolds to the housing unit include but are not limited to employing an adhesive agent, a screw forming a male unit which is then placed in apposition with a female union, a preformed male connector placed in apposition with a female union, and the like.
  • the conduit cartridges disclosed here are typically in fluid communication with one or more devices operative to generate a fluid flow.
  • the fluid typically comprises a buffer or solvent and any dissolved analytes or species, as discussed above.
  • a plurality of devices for generating a fluid flow are used such that solvent gradients may be implemented to achieve better, and more efficient, separations between the species in the fluid.
  • the choice of devices typically depends on the amount of solvent to be moved within a period. That is, the choice of devices for generating a fluid flow typically depends on the desired flow rate necessary to achieve separation of the species.
  • one or more pumps are in fluid communication with the conduit cartridge, and optionally with one or more injectors, e.g. fixed-loop injectors, auto-injectors, auto-samplers, and the like, for introducing samples into the fluid flow.
  • Suitable pumps include but are not limited micro-pumps, which typically can generate a fluid flow rate between about 30 uL/min and about 100 uL/min, analytical pumps, which typically can generate a fluid flow rate between about 1 uL/min to about 10 mL/min, semi-preparative pumps, which typically can generate a fluid flow rate up to about 20 mL/min, and preparative pumps, which typically can generate a fluid flow rate up to about 50 mL/min.
  • solvent gradient refers to varying the composition of the fluid phase with time. That is, during the separation run, e.g.
  • the composition of the fluid phase is altered such that at specified intervals during the separation run, the composition of the solvent is altered.
  • the composition of the fluid phase may be altered such that at a specified interval, e.g. 5 minutes after the starting the separation run, the composition of the fluid phase is 60% A and 40% B.
  • alterations can be achieved in a linear fashion, a step-wise fashion, or other commonly used parameters for generating and designing solvent gradients known to those skilled in the art.
  • One skilled in the art given the benefit of this disclosure will be able to select suitable devices for generating a fluid flow and suitable solvents and flow rate for achieving separation of species in a fluid sample.
  • the external portion, and/or the internal portion as the case may be, of the cartridge may comprise at least one electrical connector (not shown). That is, an electrical connector may be positioned on any external and/or internal surface of the housing unit of the cartridge.
  • the front manifold comprises an electrical connector.
  • Suitable electrical connectors include power and communication connectors, e.g. AC or DC power connectors, electrical leads, PCMCIA connectors, PCI connectors, serial connectors, parallel connectors, USB connectors, firewire connectors, optical and fiber-optical connectors, coaxial connectors, BCN connectors, SCSI connectors, ribbon connectors, RS-232 interfaces, and the like.
  • the conduit cartridges may also include numerous other connectors, e.g. fluid connectors, as discussed in detail below.
  • a fluid separation conduit cartridge comprises a housing unit and at least one memory unit.
  • the memory unit of the conduit cartridges disclosed here is suitable for use in embodiments comprising the potted conduit and also in embodiments where the conduit is not potted. That is, the memory unit may be incorporated into conduit cartridges where the conduit is potted, e.g. either inside the housing unit or outside the housing unit, and the memory unit itself may be potted without adversely affecting operation of the memory unit.
  • the conduit cartridge may comprise at least one read- write memory unit 30. Examples of different types of suitable memory units are well known to those skilled in the art, e.g. a Dallas Semiconductor chip DS1994 4K-Bit Plus Time Touch Memory.
  • Suitable memory units typically include at least an Input Output portion 32 along with memory 34 and optionally may include a processor 36, e.g. a microprocessor.
  • the conduit cartridge preferably comprises at least two types of memory units.
  • a first memory unit is chosen such that it is compatible with a specific analytical system. That is, the first memory unit is chosen such that is designed to interface with a specific manufacturer's analytical system, e.g. commercially available HPLC systems and the like.
  • the first memory unit is readable and writeable.
  • the read-only area may include, for example, full cartridge manufacturing, quality control test data, and any other data and parameters deemed necessary by the manufacturer.
  • the writeable area can comprise a history of cartridge usage, for example, number of injections, maximum used pressure, maximum used flow rate, pressure/flow profile, maximum temperature, as well as other features.
  • a history of cartridge usage for example, number of injections, maximum used pressure, maximum used flow rate, pressure/flow profile, maximum temperature, as well as other features.
  • a second memory unit is chosen such that it is operative in any analytical system.
  • the second memory unit preferably is a read-only memory unit and is supplied with a device to read the memory unit and output information in via, for example, a PCMCIA interface.
  • the information in the second memory unit can include cartridge manufacturing, quality control test data, and other data or information relevant to the manufacturing and testing of the conduit cartridge.
  • the types of information that can be stored into the memory units include all parameters that describe the cartridge geometry and construction; also, all parameters that describe any packings, coatings or accessory chemistries, such as, filters and guard columns.
  • Time stamp information can also be encoded into the memory unit. This information can be stored at the time the cartridge is manufactured.
  • Additional information that can be stored is related to, for example, the method to be employed by the fluid separation conduit cartridge.
  • Each fluid separation conduit cartridge typically is designed for a given application and dedicated to that use for the life of a particular conduit cartridge.
  • Other information that can be stored on the memory units includes standard overall separation parameters, such as run time, data acquisition, and sampling rate.
  • the names and expected retention times and retention time windows for any targets and/or expected analytes which will be eluted from the cartridge during the separation run can be stored in the memory unit.
  • One skilled in the art given the benefit of this disclosure will be able to select information for storing in the memory units of the conduit cartridges disclosed here.
  • quality control information can be stored in the memory unit to provide for continuous validation of the conduit cartridge, e.g. to provide quality control measures to ensure that the conduit cartridge is operating properly.
  • the number of injections, maximum used pressure, maximum used flow rate, pressure/flow profile, maximum temperature, etc. can be stored within the memory unit.
  • This information can be later accessed by a test center or at the manufacturing facility.
  • Performance status can also be measured by subsequent testing of the cartridge's ability to facilitate separation of test analytes. The results can be compared to the test analysis performed at the manufacturing facility prior to delivery of the fluid separation conduit cartridge to an end-user. This capability allows for lifetime validation of the cartridge. Potentially the cartridge may be passed along to several end-users, however, the data stored within the memory unit will remain with the conduit cartridge.
  • ferrule assemblies can be employed as fittings on the ends of the fluid separation conduit cartridge.
  • the ferrule assemblies are received into conespondingly sized sockets in the housmg unit, preferably with a friction fit or, alternatively, with a snap-fit, with adhesive or other materials and devices to form a permanent or removably fixed connection between the ferrule and the housing unit.
  • the ferrule fittings in this way serve to anchor the ends of the fluid separation conduit to the housing unit of the conduit cartridge.
  • the ferrule fittings are received into an end plate of the housing unit, with the two ends of the fluid separation conduit extending back through the end plate into the interior of the housing unit formed by an open-ended concave housing member attached to, and closed by, the end plate.
  • the ferrule assemblies advantageously provide an externally facing seating and sealing surface for fluid flow into or out of the fluid separation conduit.
  • the ferrule is in the form of a cap, preferably being formed of metal or other suitable material.
  • An annular wall extending from an end wall of the fenule forms a socket into which the end of the fluid separation conduit is inserted.
  • the ferrule socket forms a tight fit with the fluid separation conduit.
  • a compression ring seats around the exterior of the annular wall.
  • the compression ring is sized to compress the ferrule socket on the end of the conduit to secure it in position.
  • the end of the annular wall is beveled or chamfered to ease its insertion into the compression ring.
  • the compression ring typically has a somewhat conical inside wall, larger toward the end wall of ferrule, such that its fit around the annular wall of the fenule gets tighter as it is forced on.
  • the ferrule has a fluid flow passage extending through the end wall, whereby fluid can flow to or from the fluid separation conduit through the end wall.
  • the ferrule sub-assembly further comprises a frit body at the exterior surface of the end wall to provide a seating and sealing surface.
  • the frit body is seated in a well in the exterior face of the ferrule over the end of the fluid flow passage, optionally standing slightly proud of the exterior face of the ferrule, to serve as a seating and sealing surface.
  • a fluid delivery line or fluid removal line mated to the conduit cartridge to establish delivery and removal of fluid to be tested by the conduit cartridge can be pressed against the frit body to establish a fluid-tight seal with a sufficient degree of give or resiliency to accommodate manufacturing tolerances, dissimilar temperature expansion coefficients and the like.
  • the materials used to construct the ferrule assemblies, conduits, and other connectors of the conduit cartridge may be altered and/or reinforced to withstand high pressures depending on the intended use of the conduit cartridge.
  • stainless steels and metal plates can be used to reinforce the housing unit of the conduit cartridge
  • a multi-laminate structure can be included to provide increased strength for withstanding high pressures achieved using high flow rates, e.g. pressures greater than about psi.
  • suitable materials for forming the connectors of the conduit cartridge disclosed here including but not limited to stainless steel, PEEK, reinforced PEEK, brass, ceramics, ceramic composites, etc.. Other suitable materials will be readily apparent to those skilled in the art given the benefit of this disclosure. hi accordance with certain prefened embodiments, refening now to Fig.
  • a ferrule sub- assembly 102 shown in exploded view is seen to comprise a ferrule 104 having an end wall 106 with an exterior surface 108 and an annular wall 110 forming a ferrule socket to receive a first end 112 of a fluid separation conduit 116. While the drawings are not necessarily to scale, inside surface 114 of annular wall 110 is sized to form a friction fit, or other tight fit, with the exterior surface of the first end 112 of the fluid separation conduit 116.
  • Compression ring 118 preferably being formed of stainless steel or other suitable material, has a slightly conical inside surface 120. The beveled end 122 of annular wall 110 eases insertion of the annular wall into the compression ring.
  • Frit body 124 is seated in well 126 in the exterior surface 108 of end wall 106 of the fenule 104.
  • the frit body stands slightly proud of the exterior surface 108, that is, it extends beyond exterior wall 108 slightly.
  • a ferrule sub- assembly 102 as described above is seated on fluid separation conduit 116 that extends through end plate 130 of a housing unit of a conduit cartridge. It can be seen that socket 132 in end wall 130 will receive ferrule sub-assembly 102.
  • FIG. 5a is pressed into socket 132 using any suitable mechanical device, e.g. mechanical press, and/or pulled in by the fluid separation conduit.
  • any suitable mechanical device e.g. mechanical press
  • FIG. 5b wherein the ferrule sub- assembly is seated in socket 132 and fluid separation conduit 116 extends rearwardly into the housing unit of the conduit cartridge. While, for simplicity of illustration, the second end of fluid separation conduit 116 is not shown, it will be readily understood by those skilled in the art that a ferrule sub-assembly similar to or the same as sub-assembly 102 described above can be fitted to the second end of the fluid separation conduit and seated in socket 134 of the end wall 130 of the housing unit.
  • a fluid separation conduit cartridge may comprise a potted conduit, one or more memory units, and one or more connectors.
  • the fluid separation conduit cartridges may also comprise a display unit, such as a liquid crystal display unit 15 shown in Fig. 1, inserted within or atop an outer surface of the housing unit, such as the cover plate 6.
  • This display unit 15 may be connected to a memory unit located within the housing unit 1.
  • the display unit can display information stored in the memory unit, such that certain information, e.g. date of cartridge packing, may be discovered without interfacing the conduit cartridge to an instrument or other device. Any number of numerous other components may also be included in the conduit cartridges disclosed here.
  • FIG. 7 shows an additional embodiment of a fluid separation conduit cartridge.
  • a housing unit of a conduit cartridge comprises an endplate 204 secured at interface 206 to an open-ended concave housing component 202.
  • a fluid separation conduit (not shown) is located within the housing component 202.
  • the first end of the fluid separation conduit terminates at a ferrule sub-assembly 212, as described above.
  • the second end of the fluid separation conduit terminates at ferrule sub- assembly 214.
  • ferrule sub-assembly 212 forms an inlet orifice
  • ferrule sub-assembly 214 forms an outlet orifice for the conduit cartridge.
  • the inlet orifice is located in an outwardly extending projection 208 of the endplate 204.
  • the fluid separation conduit extends rearwardly (or upwardly as shown in Fig. 7) through the endplate 204 into the housing chamber formed by housing component 202.
  • the outlet orifice formed by ferrule sub-assembly 214 is located in an outwardly extending projection 210 of the endplate 204, and the second end of the fluid separation conduit passes through endplate 204 to ferrule sub-assembly 214 at the outward end of projection 210.
  • the first outwardly extending projection 208 and the second outwardly extending projection 210 each is substantially frustro-conical and symmetrical about the axis of the inlet and outlet orifices, respectively.
  • the housing unit is generally planar, having its smallest dimension into the plane of the paper as viewed in Fig. 7.
  • the outwardly extending projections preferably are substantially symmetrical and parallel projecting generally in the plane of the housing unit.
  • a method for the construction of a fluid separation conduit cartridge comprising a memory unit is shown in Fig. 8.
  • An assembled conduit cartridge 300 capable of performing chromatography, for example, is provided, which may comprise a potted conduit and/or a memory unit as described herein before.
  • the conduit cartridge is programmed 302 or personalized, at the manufacturing site, for an intended use. That is, methods, parameters, information, data and the like are programmed into the conduit cartridge prior to shipping the conduit cartridge to the end user. In embodiments comprising a potted compound but no memory unit, this step may be omitted.
  • the type of information written into the memory unit when it is personalized for a particular user method includes but is not limited to method parameters defining a liquid chromatographic (LC) or capillary electrophoretic (CE) or other liquid-phase separation, such as micellular electrokinetic chromatography (MEKC or MECC) separation to be employed by the particular fluid separation conduit cartridge.
  • Other information can include but is not limited to data acquisition parameters, solvent gradient control parameters, expected target molecule names, TUPAC identifiers and retention time windows, detector response factors, other operational and analytical parameters used by commercial chromatographic data stations, the date and time of cartridge personalization and any other information desirable to or requested by an end-user.
  • test performance also known as method validation
  • data would typically be stored to the memory unit with the time and date obtained.
  • the memory unit is capable of storing acquired data in its memory with an indicator of cartridge usage. Examples of different types of read/writeable memory units are discussed above and other memory units are well known to those skilled in the art. It should be appreciated that mformation stored onto the memory unit can be encrypted, as discussed in the commonly assigned patent applications which have been incorporated by reference for all purposes. Additional information may be coded onto the conduit cartridge in the form of a bar code, a magnetic strip, or semiconductor chip.
  • the device employed to read the code from the fluid separation conduit cartridge will depend on the format and medium of the code contained within the memory unit, examples of which include but are not limited to bar code readers, magnetic strip readers, a radio transponder, an inductive loop, ultrasonic, infrared, direct connection, an optical detector, electrical impulse detector or a data bus socket, all of the aforementioned methods and devices being well known to those skilled in the art.
  • the conduit cartridge is loaded or packed 304 with a suitable packing material, e.g. a stationary phase, for the intended use of the conduit cartridge.
  • a suitable packing material e.g. a stationary phase
  • the chemistry, e.g. functional groups, of the stationary phase typically depends on the intended use and the nature of the species in the fluid to be separated.
  • suitable stationary phases for separating species in fluids introduced into the conduit cartridges disclosed here.
  • the assembled and packed fluid separation conduit cartridge can be validated 306, e.g. tested, at the manufacturing site to determine if the cartridge complies with known specifications pertinent to a particular chromatographic method.
  • known analytes specific for a particular chemistry can be subjected to chromatographic separation using the newly formed fluid separation conduit cartridge and suitable fluid mobile phases.
  • Resolution along with other chromatographic parameters, can be determined based upon the performance of the cartridge with a given set of known analytes.
  • This process is a similar operation to that performed when validating a chromatographic method.
  • the information obtained from this testing can then be stored in the memory unit.
  • This test information can subsequently be used as a benchmark for determining the performance status of the cartridge once the apparatus has left the manufact ⁇ ing facility and is in the hands of an end user. If the cartridge meets approval, then the apparatus as a whole can be certified in digital format stored in the memory unit by the manufacturer.
  • the result of the validation process can be written 308 to the cartridge.
  • the specific chemistry of the packing material and any separation methods can be written into the memory unit of the conduit cartridge.
  • the packing material comprises cationic functional groups
  • a separation method for anion exchange can be written to the memory unit.
  • a method for construction of a fluid separation conduit cartridge comprising a fluid separation conduit that is potted is disclosed. The method comprises providing an assembled conduit cartridge and disposing at least one potting compound in the housing of the conduit cartridge.
  • the potting compound may be disposed using numerous methods known to those skilled in the art including but not limited to injecting the compound using tubing, a syringe, and the like, pouring the compound into the housing using a vessel containing the potting compound, etc.
  • the potting compound is disposed in the housing unit prior to insertion of the fluid separation conduit.
  • packing material e.g. a stationary phase
  • the specific chemistry of the packing material typically depends on the intended use of the cartridge and the species in the fluid that are to be separated. Numerous methods for packing the stationary phase are known to those skilled in the art and include but are not limited to those mentioned above.
  • FIG. 6a shows an embodiment for packing of a stationary phase into the fluid separation conduit.
  • a device 140 preferably a needle with a syringe or tubing, is connected to the open end of a fluid separation conduit 22.
  • the first end of the fluid separation conduit is fitted with a ferrule sub-assembly as described above, and is already seated in socket 132 of the manifold or end plate 130 of the housing unit of the conduit cartridge.
  • an additional ferrule sub-assembly is added to the second end of the fluid separation conduit 22 (see Fig. 6b).
  • the second end of the conduit is then pressed into socket 134 of the housing unit using manual or mechanical force or pressure, for example. Subsequent to packing the conduit, quality assurance tests may be performed on the cartridge to ensure that the cartridge will perform properly at the end user's facility. Numerous other steps may be performed after testing the cartridge, e.g. storage solvents may be introduced, the cartridge may be cleaned, etc.
  • the conduit cartridge has the capability and is operative to compress, encrypt, transmit, receive, and decrypt information.
  • An overview of an exemplary encryption process is shown in Fig. 9.
  • Any information 350 that is obtained by the conduit cartridge can be encrypted using one or more encryption algorithms 351.
  • the encryption algorithm 351 may be any algorithm known to those skilled in the art including but not limited to translation tables, wordbyte rotation, Simple Key Management for Internet Protocols (SKIP), XOR bit masking, and encryption using public/private keys.
  • the encryption algorithm used is a strong encryption algorithm, e.g. 56-bit encryption, 128-bit encryption or higher, such as DES or Blowfish though other encryption algorithms, e.g.
  • the encrypted information 352 may not be viewed or read by anyone who does not have the proper key to decrypt the information.
  • the decrypter or decoder 353 can convert the encrypted information back to its original form.
  • a two-part encryption and signing process can be used.
  • all information on the conduit cartridge is encrypted using an encryption driver.
  • the relationship of the encryption driver to the overall encryption process is shown in Fig. 10.
  • All information that enters or exits the conduit cartridge preferably first passes through the encryption driver 376.
  • Applications 375 such as chromatography methods, are also encrypted by the encryption driver prior to submitting the application to the instrument.
  • a storage subsystem 377 exists for storing encrypted information, such as methods used by the conduit cartridge or data obtained by the conduit cartridge.
  • a communications network 378 may be used for sending information from the conduit cartridge to a server 379. The communications network 378 is also used to send information from the server 379 to the conduit cartridge.
  • the communications network may be external, such as the Internet, or may be internal, such as direct communication between a conduit cartridge and an instrument.
  • all information that is sent to the conduit cartridge first passes through the encryption driver.
  • This information may include keys for encoding and decoding the information from the ID/Key Database 380, methods to update the conduit cartridge from the Method Update Database 381, software updates from the Software Update Database 382, or any other information that an operator desires.
  • any and all information that is sent from the conduit cartridge to an instrument or to a server first passes through the encryption driver.
  • the encryption driver contains keys in an encrypted form.
  • the encryption driver comprises an Authentication Engine, an Encryption Engine, a Signature and Verification Engine, and a Card Filing System.
  • the Authentication Engine provides initial access to the mformation on the conduit cartridge. Multiple levels of access may exist including but not limited to read-only, write only, read and write once, read and write once authorized, read and write, and restricted access. Preferably, the levels of access that exist are restricted access, read-only access, and read without authentication and write once authenticated access.
  • Various stores are available on the conduit cartridge that have different levels of access. Preferably these stores are located in a memory unit or other electronic storage device.
  • the level of access typically depends on the nature of the information present in the store. For example, information that is more sensitive and that should be viewed only by an authorized party having the conect decryption keys has the most restricted access.
  • full authentication must be granted.
  • the key store 400 comprises public keys for all known GUTDs and it also may comprise public/private key pairs.
  • the history store 401 comprises usage and signature information. Since this information should be kept protected and accessed only by a system administrator, for example, it has the most restrictive access.
  • restricted access the authentication system must grant both read and write access to the key store 400 and the history store 401.
  • the authentication system For read-only access, the authentication system must grant read access but not write access.
  • Read-only access may be granted where a user wishes to view the Identification Store 405 (see Fig. 12).
  • the Identification Store 405 contains unique identification information for the cartridge and information on the cartridge's use and characteristics. Granting of read-only access does not permit a user to alter any information on the conduit cartridge or to write any information to the conduit cartridge.
  • a store can be read without authentication, but writing to the conduit cartridge requires authentication. For example, refe ⁇ ing to Fig. 13, to read information in the method store 410 or the parameter store 411, authentication is not required. However, to alter the information in the method store 410 or parameter store 411, authentication is required.
  • a summary of the access rights is shown in Table I and Table II.
  • the Encryption Engine preferably is an encryption algorithm or an encryption device that is operative, or has the capability, to encrypt and/or decrypt information.
  • the encryption algorithm may be any algorithm known to those skilled in that art including translation tables, word/byte rotation, Simple Key Management for Internet Protocols (SKIP), XOR bit masking, and encryption using public/private keys.
  • the Encryption Engine uses a strong encryption method such as DES or Blowfish.
  • the keys for the encryption may also be encrypted and stored in the Encryption Engine, and the keys may be decrypted when necessary for encrypting or decrypting information.
  • a Signature and Verification Engine can be used.
  • the Signature and Verification Engine is a record keeping device that signs all information to ensure that a record of events exists.
  • the SAVE is responsible for signing and storing all information passed to the encryption driver.
  • the SAVE is also responsible for retrieving and verifying all objects that are retrieved from the storage device.
  • the SAVE also ensures that the key store on the cartridge is up to date and contains all relevant public keys needed to verify the signatures of information in the storage device.
  • the signature may be used to verify that another party did not alter the information on the conduit cartridge.
  • An overview of the signature process is shown in Fig. 14.
  • the first step is that a digest 450 of the mformation is created.
  • the digest is essentially a hash of the information that is created using an encryption algorithm.
  • a signature 451 is then added to the digest.
  • the signature is added using the signer's private key.
  • the signature that has been added to the digest 452 is then transmitted or stored along with the object to which it refers.
  • decryption 454 of the information occurs, and a digest of the information is created using the same encryption algorithm used to generate the signing hash.
  • the signature is decrypted using the signer's public key.
  • the decrypted hash is compared 455 with the generated hash. If the hashes or digests are identical 456 then the object has not been altered since the signature was generated. If the hashes or digests are not identical 457 then the object has been altered since the signature was generated.
  • This comparison provides an added security measure to verify if the information has been tampered with by an unauthorized party.
  • Other verification measures may be used in placed of or in addition to the SAVE.
  • One skilled in the art given the benefit of this disclosure will be able to use the verification methods disclosed here as well as other suitable verification measures and methods.
  • the weakest link in any encryption system that uses public/private key pairs is typically the key provider, e.g. it is easy to generate a public/private key pair locally, insert the keys into the cryptographic system, and have apparently verified and secure communications.
  • a key authority can be used in the verification process of the SAVE. The key authority provides a verification that the key pair was issued to the party whom now appears to be using it. Trust for the transaction is therefore placed in the hands of the key authority. If no third party verification is in place, the system is still secure and traceable histories can still be generated. However, the user puts his trust in his ability to verify that all keys in the system are valid. Therefore, users in critical systems and environments can validate keys against a central key store.
  • the SAVE can make a request to a central server to validate the public key for the component. Such requests can be made through the Internet, wireless transmission, and other comparable methods. This transaction need not be secure since all that is being verified is the public key. Therefore, this transaction may be carried out over a network, such as the hitemet, without the need for establishment of secure or private connections.
  • a process for storing an object using the SAVE is shown in Fig. 15.
  • a request to store an object 501 is submitted to the encryption driver.
  • the object 500 may be any information such as, for example, information in the memory unit of the conduit cartridge.
  • a private key 503 must then be accepted.
  • a public key 505 must be accepted.
  • the system checks for key validation 507. If key validation is required the unique identifier (UTD) 508 is looked up in the database. The known public key and the supplied key are compared 509. If the keys do not match, then an enor is returned 511 indicating that an unknown or unverified key is in use.
  • UTD unique identifier
  • an digest e.g. an MD5 digest 512
  • MD5 is a strong encryption algorithm.
  • a temporary digest 513 is then created.
  • the temporary digest 513 is then encrypted using a private key 514.
  • the encrypted digest and the encrypted object are passed through an encryption engine 515.
  • the encrypted digest and the encrypted object may be stored on the conduit cartridge 516 or may be transmitted to an analytical system or a remote operating facility. If the public key conesponding to the private key used for encrypting the digest and object is present 517 on the conduit cartridge, then the process ends 518. If the public key conesponding to the private key used for encrypting the digest and object is not present 517 on the conduit cartridge, the public key may be passed through the encryption engine 519 and the encrypted key may be stored on the conduit cartridge in the key store 520.
  • a process for reading an object using the SAVE is shown in Fig. 16.
  • a request to read an object 550 is submitted to the encryption driver.
  • the encrypted object and encrypted digest are read from the store 551.
  • the encrypted object and encrypted digest are passed through the encryption engine 552 to create a plain text object 553 and to extract the creator ID from the object 554.
  • the creator's public key is read from the key store and passed through the encryption engine 555. If key validation 556 is required then the creator's unique ID is looked up in the online database 557.
  • the known public key is compared against the stored key 558. If the keys do not match, then an enor is returned 560 indicating that an unknown or unverified key is in use.
  • the digest is decrypted using the public key 561 creating a plaintext stored digest 562.
  • a MD5 digest for example, of the decrypted object 564 is created and stored as a temporary digest 563.
  • the temporary digest 563 and the plaintext stored digest 562 are then compared 565, If the digests do not match an enor condition is returned 567 indicating that the object does not match the signature. If the digests do match then the plaintext object is returned 568 for reading.
  • One skilled in the art given the benefit of this disclosure will recognize that other types of encryption algorithms may be used and that other methods for verifying information that are known to those skilled in the art may be used.
  • the conduit cartridge has the capability of transmitting encrypted information to an analytical system, e.g. an instrument, or to a remote operating facility. This feature allows for automated remote field sampling and for monitoring of remote sampling processes from the operating facility.
  • the conduit cartridge may send encrypted mformation by e-mail, fax, the Internet, wireless devices, satellite transmission, RF transmission, a wire connecting the conduit cartridge to the operating facility, or similar transmitting devices.
  • the housing unit 1 of the conduit cartridge comprises a processor 600 in communication with at least one memory unit 30 (see Fig. 17).
  • the memory unit may be any memory unit including those described here.
  • the processor may also be in communication with an internal clock 601, a global positioning system (GPS) 603, and a transmitting and receiving device 502.
  • Suitable transmitting and receiving devices include the devices discussed above, e.g. a modem, a fax, a wireless device, such as a cellular phone, a RF transmitter, and a satellite transmitter.
  • Other suitable transmitting and receiving devices will be readily apparent to those skilled in the art given the benefit of this disclosure.
  • the memory unit may contain one or more stores, tables, parameters, programs, or algorithms for compression and encryption of the information. These stores, tables, parameters, programs, or algorithms may be used to compress and encrypt the information or may be used for other purposes, e.g. a chromatography method.
  • the processor can subsequently send the information to the transmitter for transmission to its destination.
  • the GPS would allow for monitoring of the remote testing device by providing the absolute latitude and longitude or other geophysical coordinates (e.g.. plant grid system).
  • the GPS would also provide a tracking mechanism in the event the device is stolen.
  • the GPS may be any GPS known to those skilled in the art, such as, for example, the GPS described in U.S. P/N 6,104,340, the entire disclosure of which is incorporated herein by reference for all purposes.
  • information that is sent from a conduit cartridge to a customer at a remote operating facility can be encrypted.
  • the encrypted information that is sent from the conduit cartridge to the customer may be used for validating or posting methods, for validating or posting information, or for any other purpose deemed necessary by the customer.
  • An example of encrypted information being sent from a conduit cartridge to a customer is shown in Fig. 18.
  • the cartridge Upon receipt by the customer, the cartridge accepts the customer's public key 701. Thereafter, exchange of information between the customer and the cartridge are encrypted and decoded using alternative public/private keys. Any information obtained by the cartridge is encrypted prior to sending to the customer 702. This information is encrypted using the customer's public key 704 and decrypted by the customer using the customer's private key 708. Therefore, only a party who possesses the customer's private key has the capability of reading the information.
  • Any known encryption method may be used to encrypt the information that is sent from the cartridge to the customer.
  • a strong encryption algorithm such as DES or Blowfish is used.
  • the information may also be encrypted using the encryption driver discussed here.
  • any suitable encryption and decryption processes may be used to send information from a cartridge to a customer at a remote operating facility.
  • One skilled in the art given the benefit of this disclosure will be able to select suitable encryption and decryption processes for sending information from a cartridge to a customer at a remote operating facility.
  • information that is sent from a conduit cartridge to an analytical system, e.g. an instrument, in communication with the conduit cartridge can be encrypted.
  • the encrypted information that is sent from the conduit cartridge to the instrument may be used for validating or posting methods, for validating or posting information, or for any other purpose deemed necessary by the customer.
  • the cartridge upon plugging the conduit cartridge into the instrument, the cartridge accepts the instrument's public key 751.
  • Information sent from the conduit cartridge to the instrument 752 is encrypted using the instrument's public key 754 and decoded by the instrument using the instrument's private key 758. Only the instrument possessing the conect private key can read the information.
  • a y known encryption method may be used to encrypt the information that is sent from the conduit cartridge to the instrument.
  • a strong encryption algorithm such as DES or Blowfish is used.
  • the information may also be encrypted using the encryption driver discussed here.
  • any suitable encryption and decryption processes may be used to send information from a cartridge to an analytical system in communication with the cartridge.
  • One skilled in the art given the benefit of this disclosure will be able to select suitable encryption and decryption processes for sending information from a cartridge to an analytical system in communication with the cartridge.
  • a confirmation receipt may be sent back to the conduit cartridge.
  • the conduit cartridge e-mails an instrument to change the method of the instrument
  • the conduit cartridge would have no measure or indication if the instrument received the information and subsequently implemented the new method.
  • e-mail systems have the ability to send a receipt, e.g confirmation, to the message source that the message has been received or read, and the e-mail system can time stamp messages when they are sent and received. This process prevents the ineffective transmission of information from the conduit cartridge to the instrument or from the conduit cartridge to the customer. It also prevents the instrument from performing methods that are no longer desired.
  • the conduit cartridge has the capability of receiving encrypted information sent from an instrument or a remote operating facility.
  • the cartridge may receive encrypted information by e-mail, fax, the itemet, a wireless device, a satellite receiver, a wire connecting the conduit cartridge to the operating facility, or by a similar receiving devices.
  • the encrypted information that is sent by the customer and received by the conduit cartridge may be used to alter the method of the instrument or to change other parameters contained within the conduit cartridge. For example, referring to Fig. 18, upon receipt by the customer, the conduit cartridge accepts the customer's public key 701. Thereafter, exchange of information between the customer and the cartridge are encrypted and decoded using alternative public/private keys. Any information that is sent by the customer to the conduit cartridge can be encrypted prior to sending the information to the conduit cartridge.
  • This information is encrypted using the cartridge's public key 705, for example. After receipt by the conduit cartridge, the encrypted information is decrypted by the cartridge using the cartridge's private key 709. Therefore, only the cartridge with conect key may decode the message effectively preventing decoding of the message by a cartridge that receives the message in enor.
  • Any known encryption method may be used to encrypt the information that is sent from the customer to the cartridge. Preferably, a strong encryption algorithm such as DES or Blowfish is used. The information may also be encrypted using the encryption driver discussed here. Referring to Fig. 19, when the cartridge is first used in an instrument, the cartridge accepts the instrument's public key 751. Information sent from the instrument to the cartridge 753 is encrypted using the cartridge's public key 755.
  • the encrypted information is decrypted using the cartridge's private key 759. Only the cartridge with conect key may decode the message.
  • the instrument can e-mail secure summaries of each run back to the cartridge to allow updates of actual cartridge usage history including, but not limited to, increment run number, date and time of run, and any enor conditions (i.e. cartridge overpressure, column blockage, etc). Any known encryption method may be used to encrypt messages that are sent from the instrument to the cartridge. Preferably, a strong encryption algorithm such as DES or Blowfish is used.
  • the information may also be encrypted using the encryption driver discussed here.
  • One skilled in the art given the benefit of this disclosure will be able to select other suitable encryption and decryption processes for sending information from an analytical system or a remote operating facility to a cartridge.
  • a confirmation receipt may be sent back to the source of the information. For example, if a customer e-mails a remote conduit cartridge to change the method of the conduit cartridge, the customer would have no measure or indication if the conduit cartridge received the message and subsequently implemented the new method.
  • many e-mail systems have the ability to send a receipt to the source that the message has been received or read, and the e-mail system can time stamp messages when they are sent and received. This process prevents the ineffective transmission of information from the customer or instrument to the conduit cartridge. It also prevents the conduit cartridge or instrument from performing methods that are no longer desired.
  • the conduit cartridge has the capability of receiving, decrypting, encrypting, and transmitting information simultaneously.
  • the conduit cartridge 803 is in communication, either by wire communication, direct communication, or by wireless communication, with an instrument 800 and with an operating facility 806.
  • Information may be sent simultaneously to and from the conduit cartridge 803.
  • encrypted information is sent from the conduit cartridge to the instrument 801.
  • the information may be any information described here, such as, for example, a new method for analysis.
  • the operating facility 806 receives encrypted information from the conduit cartridge 804.
  • the information may include any information described here, such as data obtained from an analysis. Information can be sent from the operating facility to the cartridge 805.
  • the information may be any information described here, such as a new method for analysis.
  • the instrument 800 can send encrypted information to the conduit cartridge 802. This information may be any information described here, such as data obtained from an analysis.
  • the conduit cartridge may store the information or pass the information on to the instrument 800 or operating facility 806, as the case may be. If necessary, the conduit cartridge may decrypt the information it receives from the instrument or the operating facility. Since the instrument and the operating facility may decrypt and encrypt the information using different keys, the conduit cartridge may act to decrypt and subsequently re- encrypt information. For example, if information is sent from an instrument to a conduit cartridge 802 (see Fig. 20), the information may be encrypted using the cartridge's public key (see 755 in Fig. 19).
  • the information may then be decrypted using the cartridge's private key.
  • the decrypted information Prior to transmission of the mformation to the operating facility, the decrypted information can be re-encrypted using the operating facility's public key.
  • the conduit cartridge may then transmit the encrypted information to the operating facility using any transmission device disclosed here.
  • the information Upon anival at the operating facility, the information can be decrypted using the operating facility's private key. Therefore, multiple keys are required to obtain and view information that is acquired by the instrument in communication with a conduit cartridge and subsequently sent to an operating facility. This feature provides for extra security, e.g. an unauthorized user may need more than one key to view the information.
  • the encryption driver disclosed here could also be used to encrypt and decrypt the information or other suitable encryption and decryption processes may be used. i accordance with certain prefened embodiments, a similar process can occur when information is sent from the operating facility to the conduit cartridge.
  • the information can first be encrypted using the cartridge's public key.
  • the information can be transmitted by the operating facility and received by the conduit cartridge.
  • the conduit cartridge can then decrypt the information using the cartridge's private key. If the information was intended for the instrument in communication with the conduit cartridge, the conduit cartridge would then re- encrypt the information using the instrument's public key.
  • the encrypted information would be transmitted to the instrument. Upon arrival at the instrument, the instrument, using the instrument's private key, would decrypt the encrypted information.
  • multiple keys are required to obtain and view information that is sent from the operating facility, received by the conduit cartridge and subsequently sent to an instrument in communication with the conduit cartridge.
  • These features provide added security measures to protect data and/or any other information sent to or sent by the conduit cartridge.
  • encryption of the information provides for secure transmission and reception of the information, it may not necessarily provide for efficient transmission and reception of the information.
  • the information obtained by the conduit cartridge may consist of multiple parameter tables that must be sent to a remote operating facility, for example. Transmission and reception oflarge amounts of information, by e-mail, the Internet, or other transmission and reception devices and methods discussed here, would require a significant amount of time. It would be desirable to keep the amount of time required for transmitting and receiving the information to a minimum.
  • Data compression can be used to decrease the amount of time required for transmission and reception of the information by decreasing the size of the information that is sent.
  • several compression algorithms also provide some degree of data encryption.
  • one data compression algorithm might convert a stream of symbols forming an input message into an encoded stream of symbols forming an output message. The input message may be reconstructed upon expanding the output message.
  • An additional type of data compression technique is known as a dictionary-based compression. This technique uses codes for strings of symbols of an input message stream, thereby effectively reducing the size of the output message.
  • a dictionary-based compression method maintains a table of recognized strings. Strings in the input stream that match the string entries that are stored in the dictionary are encoded using a code representing the conesponding dictionary entries.
  • the conduit cartridge may include one or more digital IDs. Refening to Fig. 21, a digital ID 900 is created for the conduit cartridge (TDo). The information encrypted with TDo cannot be changed or read except by the manufacturer. TDo effectively identifies the conduit cartridge by cartridge manufacturer, design revision, lot number, manufacturing date, and any other parameters deemed appropriate by the manufacturer.
  • a second digital ID 901 can be created, IDi, that identifies the method associated with the conduit cartridge.
  • a third digital ID 902 can be created, ⁇ D , that identifies the instrument or instruments associated with the conduit cartridge. Assignment of digital IDs to the conduit cartridge provides one or more unique identifiers, some of which cannot be altered by an end-user (IDo), to the conduit cartridge. Additionally, if the conduit cartridge is removed from the instrument, a time stamp may be recorded, possibly within one of the digital IDs or as another digital ID, for example.
  • IDo end-user
  • a fluid separation conduit cartridge interfaced with an analytical system e.g. a chromatography system
  • the analytical system typically is positioned within an end-user's facility for automated analyses. That is, the analytical system may be positioned near, or in-line, e.g. within the sample flow itself, such that analysis of samples may occur automatically, e.g. using auto-samplers, auto-injectors, and the like, or to facilitate rapid analysis of samples, e.g. samples during a process by an operator at an end-user's facility.
  • the system can be configured for analysis at specified intervals, e.g.
  • the analytical system 950 typically comprises a conduit cartridge 960 interfaced with an analytical system, e.g. a chromatography instrument. Numerous mechanisms for interfacing the conduit cartridge with the analytical system are known to those skilled in the art and exemplary interfaces are described below.
  • the analytical system optionally comprises a treatment unit 952, such as a filter, a guard column, a solid phase extraction silo for analyte pre-concentration, etc.
  • the analytes may be pre- concentrated such that trace levels of analyte are concentrated to levels that are detectable by the analytical system. That is, the concentration of an analyte may be increased 10 1 , 10 2 , 10 3 10 4 , 10 5 , 10 , 10 7 , 10 , 10 9 times or higher to levels that are easily detected using the detector of the analytical system.
  • the treatment units are optional and may be replaced with other chromatographic devices, such as, for example, guard columns, filters, semi-permeable membranes, etc. Alternatively, the treatment units can be replaced with a fluid flow channel such that little or no operations are performed on the fluid prior to entry into the conduit cartridge.
  • the system also typically includes a graphical user interface 954 for programming the system, e.g.
  • the graphical interface may take numerous forms such as, for example, a keypad, an LCD screen, a touch screen, e.g. a touch screen display unit, etc.
  • the graphical user interface is omitted and the information on the conduit cartridge is used to program the system.
  • the system optionally contains a receiver/transmitter 956 to provide for remote operation and diagnosis, e.g. operation of the analytical system over the Internet and/or transmission of data over the Internet to a remote facility.
  • the conduit cartridge itself comprises a receiver/transmitter, and thus the receiver/transmitter of the analytical system maybe omitted.
  • the system typically includes at least one detector 958.
  • the type of detector used typically depends on the optical and physical properties of the species in the fluid.
  • Prefened embodiments of the detector include at least a flow cell, e.g. a flow cell detector in communication with the cartridge. Additionally, the detectors are usually interchangeable such that the detector may be switched to a different type of detector, e.g. from a UV- Visible absorbance detector to a fluorescence detector.
  • Suitable detectors include but are not limited to UN- Visible absorbance detectors, IR detectors, fluorescence detectors, electrochemical detectors, voltammetric detectors, coulometric detectors, potentiometric detectors, thermal detectors, ionization detectors, ⁇ MR detectors, EPR detectors, Raman detectors, refractive index detectors, ultrasonic detectors, photothermal detectors, photoacoustic detectors, evaporative light scattering detectors, mass-spectrometric detectors, and the like.
  • the conduit cartridge 960 typically interfaces with the system through a manifold, which is discussed in detail below. In alternative embodiments, however, the conduit cartridge can interface directly with the system, e.g. can be connected directly to a fluid supply source, e.g. a pump and/or injector, without any intervening mechanical components, for example.
  • a closeable face plate 965 may be hingeably or removably attached to the system and can be closed over, or around, the system to protect the system from harsh environmental conditions, such as chemical solvents, UV radiation and the like.
  • Supplying power and data to the chromatography system is a power and communication interface 966.
  • Such interfaces typically are operative to provide a power source to the system, and can also provide communication of the system to a central computer, e.g. a computer in communication with the system for monitoring test results and/or for receiving information from the system.
  • a fixed-loop injector 964 is typically used to introduce sample into the system. Suitable fixed-loop injectors are well known to those skilled in the art and are commercially available from numerous sources, e.g.
  • auto-injectors and/or auto-samplers may be used to provide for automated sampling and analysis of fluids. Suitable auto-samplers and auto-injectors are well known to those skilled in the art and are commercially available from numerous manufacturers.
  • the system can be programmed such that the auto-samplers and/or auto-injectors take samples at specified intervals, e.g. every 10 seconds, every minute, hourly, daily, weekly, monthly, etc., such that testing of the fluid can be performed without any input from a user.
  • the system also includes precise microfluidics for accurate solvent gradients and includes solvent reservoirs and/or reagent magazines 968 for providing a fluid phase for running the chromatographic methods of the conduit cartridge, e.g. solvent gradients and the like.
  • precise microfluidics can be achieved using numerous methods known to those skilled in the art, such as the methods described in the commonly assigned U.S. Patent Applications incorporated herein by reference for all purposes.
  • typically in fluid communication with the solvent reservoirs are one or more pumps, which are operative to generate a fluid flow.
  • the system installation can be customized such that the system can be positioned in numerous places in a facility. That is, the dimensions and shapes of the system can be designed for placement of the system in numerous areas of an operating facility, and the functions, e.g. the chromatographic methods, of the system can be tailored to perform innumerable tests desired by an end-user.
  • the system is placed near the sample or process to be monitored. That is, the system may be placed, either fixably or removably mounted, for example, near the fluid to be analyzed.
  • the system can be custom mounted to a conduit 970 that carries a fluid sample, e.g. river water, out of a manufacturing facility, for example.
  • the system can automatically sample the fluid flowing through the conduit, e.g. using an auto- sampler, auto-injector and the like, or one or more valves positioned in the conduit can be connected, to the analytical system for introducing samples into the system.
  • an operator can manually take samples from the conduit and can introduce the samples through a fixed-loop injector, for example, using a needle, syringe, and the like.
  • the fluid separation conduit cartridge typically interfaces with an analytical system through a manifold, e.g. the multi-layer laminated manifold 976 shown in Fig. 23.
  • a manifold e.g. the multi-layer laminated manifold 976 shown in Fig. 23.
  • the conduit cartridge 972 will be understood to be analogous to conduit cartridge 960 shown in Fig. 22.
  • the manifold 976 is seen in the particular embodiment of Fig. 23 to be a multi-layer laminated structure and has one or more microfluidic channels for introducing fluid into or receiving fluid from the fluid separation conduit cartridge.
  • the manifold 976 may comprise a first layer 978 attached to a second layer 979 which itself is attached to a third layer 980.
  • the second layer 979 typically is sandwiched between the first layer 978 and the third layer 980.
  • Fluid channels can be provided within and/or at the interface(s) of the layers of such manifolds.
  • layer 979 in the manifold 976 of Fig. 23 can optionally be constructed as a microfluidic substrate assembly described in commonly assigned U.S. Patent Application No. 60/239,010 titled "Microfluidic Substrate Assembly and a Method of Making Same” and filed on October 06, 2000, the entire disclosure of which is hereby incorporated herein by reference for all purposes.
  • the layers of the multi-layer laminated manifold each can be manufactured from any of numerous materials, including but not limited to PEEK, steel, e.g. stainless steel, and the like. Different layers of the multi-layer laminated manifold may be formed of different materials.
  • the microfluidic flow channel is between two or more of the layers, e.g. the microfluidic flow channel can extend from the third layer into the second layer and optionally into the first layer, for example.
  • the microfluidic flow channel can be formed in one or more of the layers using numerous techniques, e.g. UV embossing, micro-machining, micro-milling, and the like.
  • a micro-channel can be etched into the second layer and the first layer such that when the second layer is assembled to the first layer a fluid-tight microfluidic flow channel is created.
  • the layers can be assembled to form the multi-layer laminated manifold.
  • the layers can be assembled by welding the layers together, optionally with a gasket positioned between the layers, or can be assembled using adhesives and the like.
  • the manifold comprises at least a first microfluidic channel in fluid communication with a solvent reservoir and with the input orifice of the fluid separation conduit cartridge.
  • solvent may flow into the conduit cartridge through a microfluidic channel in the manifold, e.g. by pumping the fluid into the cartridge using a pump.
  • the manifold can include a second microfluidic channel that is in fluid communication with an output orifice of the conduit cartridge and typically is also in fluid communication with a detector. Therefore, a sample may be introduced into the conduit cartridge through the first microfluidic channel in the manifold, separated by the conduit cartridge, and the separated species can flow out of the conduit cartridge through the second microfluidic channel in the manifold to a detector that can measure the amount and nature of the species present in the sample.
  • a sample may be introduced into the conduit cartridge through the first microfluidic channel in the manifold, separated by the conduit cartridge, and the separated species can flow out of the conduit cartridge through the second microfluidic channel in the manifold to a detector that can measure the amount and nature of the species present in the sample.
  • the manifold may also contain an interface 974 mounted to the manifold.
  • the interface typically is operative to create a fluid-tight seal when the cartridge is plugged into the manifold. That is, interface 974 is operative to provide a sealing force suitable to prevent fluid from leaking between the manifold and the fluid separation conduit cartridge.
  • one or more gaskets can be positioned between the conduit cartridge and the interface to aid in forming a fluid-tight seal.
  • One skilled in the art given the benefit of this disclosure, will be able to select suitable interfaces and mechanisms for retaining the conduit cartridge against the manifold to create a fluid-tight seal.
  • Exemplary mechanisms include cams, springs, pressure plates, welding, clamps, gear drives, , and combinations of any of them, adapted to be actuated by gravity or manually, by solenoid, pneumatically, hydraulically, etc.
  • the conduit cartridge is plugged directly into the system without using a manifold.
  • suitable connectors may be added to the conduit cartridge such that the conduit cartridge can be in direct fluid communication with a flow line, e.g. a flow line including one or more solvents and one or more species to be separated.
  • a flow line including one or more solvents and one or more species to be separated.
  • the manifold itself is in communication with a device for generating a fluid flow.
  • a pump 990 can be attached to the manifold and can be configured such that fluid is drawn from a fluid reservoir, e.g. a solvent reservoir, and is forced into the manifold and subsequently into conduit cartridge 972.
  • a fluid reservoir e.g. a solvent reservoir
  • Such devices may be any of the devices discussed above including but not limited to pumps, vacuum manifolds and the like.
  • the device for generating a fluid flow can also be in communication with one or more injectors and discussed above.
  • the information that is transmitted from the conduit cartridge to the analytical system can be encrypted as described above.
  • a conduit cartridge and an analytical system in communication with the conduit cartridge may be performing an analysis of components in river water.
  • a remote operator may wish to alter the method used by the analytical system. The operator could transmit a new encrypted method to the cartridge. After receiving new encrypted method, the cartridge can subsequently send the encrypted message to the analytical system to alter the method used for analysis. Remotely receiving information provides for the alteration of the information without having to physically input the new information, using an input pad or comparable device, on the conduit cartridge or on the analytical system.
  • the analytical system 1000 comprises a fluid separation conduit cartridge 1002, e.g. a cartridge operative to perform capillary liquid chromatography, a graphical user interface 1004, and buffer cassettes 1006.
  • the graphical user interface can be used to program the system and/or the fluid separation conduit cartridge for a specific method, e.g. a specific solvent gradient, run time, flow rate, and the like.
  • the graphical user interface can be omitted in embodiments where the conduit cartridge is operative to program the system, e.g. where the conduit cartridge comprises an analytical method in a memory unit, for example.
  • the buffer cassettes are equivalent to solvent reservoirs.
  • the buffer cassettes may be loaded with any suitable mobile phase needed to perform a chromatographic method, for example.
  • the mobile phases are different in different buffer cassettes such that solvent gradients can be implemented in the analytical method.
  • the buffer cassettes may be in communication with one or more devices that are operative to generate a fluid flow (not shown), e.g. pumps and the like.
  • the system 1000 typically has one or more power and communication interfaces 1008 and can be custom installed 1012 at a user's facility such that automated analyses may take place or such that the system is positioned near the fluid to be analyzed.
  • the communication interface may send and/or receive data to or from a central computer, or other device.
  • the system can be controlled by remote operation and diagnosis using a communication device 1010 by various methods, such as for example, e-mail over the Internet.
  • the communication device typically is used to alter the method of the system without having to manually enter the new method using the graphical user interface.
  • This feature provides for remote configuration, or reconfiguration as the case may be, of the system, i certain embodiments, the communication device is omitted and the system is controlled by information sent from the conduit cartridge to the system.
  • the size of the fluid separation conduit cartridge can be tailored such that it has the appropriate dimensions, e.g. height, width and thickness, and has the appropriate connectors to interface with any analytical system.
  • the dimensions of the conduit cartridge may be reduced such that the footprint of the cartridge is smaller and occupies less space on the analytical system.
  • Suitable fluid connectors including those discussed here, e.g. ferrule subassemblies and ⁇ ae like, can be attached to the conduit cartridges and are typically operative to create a fluid-tight seal between the conduit cartridge and the analytical system.
  • Suitable electrical connectors can be attached to the conduit cartridge including those discussed above, for example, PCMCIA connectors, USB connectors, serial connectors and the like. The electrical connectors typically provide for transfer of information to and from the conduit cartridge.
  • the fluid separation conduit cartridge can interface with the system through a manifold, such as the manifold shown in Fig. 23, or can interface with the system directly, e.g. without any intervening physical components.
  • Suitable connectors for interfacing with the manifold can be positioned on any surface of the housing unit of the conduit cartridge.
  • the fluid separation conduit cartridge 1002 may include one or more connectors on a major surface, e.g. the back surface of the conduit cartridge 1002 shown in Fig. 25, such that the conduit cartridge can interface with a manifold and sit flush with the surface of the system.
  • the conduit cartridge may have outwardly projecting connectors that plug into a manifold, having receiving socket, positioned on the analytical system.
  • the conduit cartridge When the conduit cartridge is plugged into the manifold, the conduit cartridge snaps into position on the analytical system, e.g. becomes seated in a slot on the surface of the analytical system.
  • the conduit cartridge is in fluid communication with the analytical system and is retained by the system such that vibrations will not dislodge the conduit cartridge from the system, i.e. the conduit cartridge remains in fluid communication with the system even in the presence of vibrations or other physical disturbances.
  • Numerous other devices e.g. cams, pulleys, springs, pressure plates and the like may be used to retain the conduit cartridge against the manifold of the system such that a fluid tight seal is preserved.
  • information that is sent from conduit cartridge to the analytical system can be encrypted and/or compressed.
  • public/private key pairs are used to encrypt/decrypt information that is sent by the conduit cartridge or is received by the conduit cartridge.
  • the analytical system may include multiple public/private key pairs.
  • the communications device may have it owns encryption/decryption keys such that information received from a remote operating facility by the communication device is decrypted prior to sending the information to the conduit cartridge.
  • the communication device decrypts the information and re-encrypts the information using a different key. Once received by the conduit cartridge the information may then be decrypted and a new method, for example, may be implemented by the analytical system.
  • a conduit cartridge can send information to the communication device and the commumcation device can subsequently transmit the information.
  • the information can be encrypted and decrypted at numerous devices along the transmission path, hi prefened embodiments, the conduit cartridge receives encrypted information from a remote operating facility, decrypts the information, and alters the method of the analytical system in accordance with the information received. That is, the conduit cartridge is operative to receive encrypted information remotely and can alter the method of the analytical system by sending the decrypted information to the system.

Abstract

A fluid separation conduit cartridge that is operative to encrypt, decrypt, transmit and receive information is disclosed. The conduit cartridge encrypts information sent to an analytical system or an operating facility in communication with the conduit cartridge and can decrypt encrypted information received from an analytical system or an operating facility in communication with the conduit cartridge.

Description

FLUID SEPARATION CONDUIT CARTRIDGE WITH ENCRYPTION CAPABILITY
(05092.00022)
Cross-Referenced Applications
This application claims priority to commonly assigned U.S. Patent Application No.
60/239,010 titled "Microfluidic Substrate Assembly and a Method for Making Same" and filed on October 06, 2000, commonly assigned U.S. Patent Application No. 60/239,063 titled "Liquid Separation Column Smart Cartridge " and filed on October 06, 2000, commonly assigned U.S. Patent Application No. 60/238,805 titled "Liquid Separation Column Smart Cartridge with Encryption Capability" and filed on October 06, 2000, and commonly assigned United States Patent Application No. 60/238,390 titled "Microfluidic Substrate Assembly and a Method for Making Same" and filed on October 06, 2000, the entire disclosure of each of which is hereby incorporated herein by reference for all purposes.
Field of Invention
This invention pertains to a fluid separation conduit cartridge, in particular, to a fluid chromatography conduit cartridge that has the ability to encrypt, compress, transmit, receive, and decrypt information.
Background
Molecules can be separated effectively by employing liquid chromatography ("LC"). A typical liquid chromatography system consists of a column and solvent that traverses the entire column. High pressures are usually required to pump solvent through the column leading to the development of high pressure or high performance liquid chromatography (HPLC). High performance liquid chromatography systems typically consist of high pressure pumps, at least one solvent reservoir, a column capable of withstanding relatively high pressures, and a detector. Columns used in HPLC typically consist of packing material. In most instances this packing material includes silica-based particles typically with functional groups (defining a column's chemistry) attached to these silica-based particles. The packing of the column is a critical event in the construction of a specific column, for the integrity of the packed bed impacts the overall resolution capability of the column. As the bed becomes disrupted through any series of events, for example, sharp periodic fluctuations in column pressure, resolution will decrease. Maintaining the integrity of the packing bed is essential if the original efficiency capability of a particular column is to be preserved. Through continued usage, the column's packed bed and the bonded phase deteriorate, and the= resolving power of the column is then lost. Detection and recordation of this loss of resolving power is very important.
Capillary liquid chromatography is a micro-version of traditional liquid chromatography. As is true for traditional liquid chromatography, the column used in capillary liquid chromatography is of critical import. These columns typically have low solvent consumption and require low volumes of sample for analysis. These conditions translate into a higher degree of unit mass detectability. Capillary liquid chromatography systems typically comprise a micro- pumping unit, a capillary column, a detector, and a data processing system. Capillary liquid chromatography columns are typically produced using such materials as fused silica, stainless steel, or polymeric compositions. The lumen of the capillary is packed with packing material containing separation material, such as bonded silica particles. Typically, the internal diameter of the capillary column is between 50 and 500 μm.
Assessment of column quality is performed typically by running standard analytes through the column and comparing certain chromatographic parameters to a standard test run. Apart from performing a chromatographic run with known analytes, assessment of the column cannot be effectuated. Currently, columns themselves lack the ability to store their performance information which can be of great value. The performance record of a column is very important in environments where quality control is an issue, for example, in the pharmaceutical industry. The increased automation and remote placement of analytical devices requires that the information obtained by or sent to the analytical devices remains secure. Since the information may contain corporate trade secrets and/or other sensitive information, precautionary methods must be implemented to prevent the inadvertent dissemination of any information obtained by, transmitted to, or sent by a remote analytical device. Efficient automated field sampling and analyses are not possible without the ability to send the acquired information securely, rapidly, and remotely.
There exists a great need in the art, for a fluid separation conduit cartridge that can compress, encrypt, transmit, and receive information. Such a device would provide for automated remote analyses. There also exists a great need for a conduit cartridge that can accept encrypted messages, so that the method or parameters of the cartridge, or methods used by an instrument in communication with the conduit cartridge may be altered without having to retrieve the remotely placed conduit cartridge.
Summary
In accordance with a first aspect, a fluid separation conduit cartridge (also referred to below as a conduit cartridge) comprises at least a housing unit, a memory unit, and one or more connectors is disclosed. In preferred embodiments, the housing unit is manufactured from materials capable of withstanding high pressures and harsh environments. For example, the housing unit can be manufactured from steel, e.g. stainless steel or galvanized steel, such that rusting is minimized and strength is increased. In other embodiments, the housing unit is manufactured from plastics or polymers, such as polyetheretherketone (PEEK) for example, such that the housing unit and components within the housing unit can be assembled rapidly, to minimize assembly costs, and to provide a lightweight device. The housing unit typically has one or more connectors, as described in detail below, to connect the conduit cartridge with an system, instrument or other device. The connectors are operative to create a fluid-tight seal between the conduit cartridge and any device to which the conduit cartridge is interfaced, e.g. attached. As used here fluid refers to liquids and/or gases, e.g. supercritical fluids, etc., optionally containing particulate matter, dissolved species, solvated species, and the like. As used here, memory unit refers to any device that is operative to store, read, write, and/or read and write information. As used here information refers to any data, results, parameters, etc. used or generated by an instrument or fluid separation conduit cartridge, e.g. manufacturing information, usage information, test results, and the like. Preferred memory units include but are not limited to memory chips, e.g., read only memory (ROMs), programmable read only memory (ROMs) erasable programmable read-only memory (EPROMs), electrically erasable programmable readonly memory (EEPROMs), DBVIMs, SIMMs, and other memory units and memory chips well known to those skilled in the art and commercially available from numerous manufacturers such as Siemens, Toshiba, Texas Instruments and Micron. In certain embodiments, the memory unit is integrally attached to the conduit cartridge, for example, at the time of its manufacture. In other embodiments, the memory unit may be removed and upgraded, for example, to a larger memory unit. In yet other embodiments, the memory unit is a component of a larger device or circuit, e.g. a circuit comprising a microprocessor in electrical communication with the memory unit, for example. One skilled in the art given the benefit of this disclosure will be able to select suitable memory units for incorporation into the conduit cartridges disclosed here. The amount of information stored typically will depend upon the memory capacity, and how the information is recovered will depend on whether or not a microcontroller, e.g. a microprocessor, is incorporated in the memory unit itself or is in electrical communication with the memory unit. Components could be read-only or read/write or be partitioned with a read-only area for manufacturing information and a read/write area for usage information. The information stored could vary from the minimal amount of data required to identify the cartridge and its quality control test performance in text format to a full quality control trace and usage history.
In accordance with another aspect, the fluid separation conduit cartridge may comprise a plurality of memory units. For example, a first memory unit may be specific for use on a specific analytical system, e.g. a specific chromatography system. This type of memory unit is customized for use with a specific manufacturer's analytical system. That is, the memory unit may be chosen such that it is compatible with or contains information such that the conduit cartridge is operative with a specific analytical system, e.g. a Waters Alliance HPLC System or a Varian SD-2 Prep HPLC System, for example. The first memory unit may be readable and writeable. Preferably, the read-only area includes at least full conduit cartridge manufacturing and quality control test data. The writeable area can include at least a history of cartridge usage, number of injections, maximum used pressure, maximum used flow rate, pressure/flow profile, maximum temperature, serial number, cartridge parameters, e.g. number of theoretical plates, test results, or the like, as well as other features. A second memory unit is chosen such that the memory unit is operative with any analytical system. For example, the memory unit is a readonly memory unit and is supplied with a device to read the information in the memory unit and output the information in via, for example, a RS232 interface. The information may include but is not limited to cartridge manufacturing and quality control test data, conduit cartridge history, and the like.
In accordance with another aspect, the fluid separation conduit cartridge comprises a housing unit, a fluid separation conduit defined within the housing unit and a ferrule subassembly, as described above, at the housing inlet orifice and/or outlet orifice. The fluid separation conduit may be defined or formed, for example, by a lumen or tube, e.g., a flexible tube. Typically such tube is connected at one end to the inlet orifice and at the other end at the outlet orifice. The fluid separation conduit, or a portion thereof, may be defined by a channel formed from assembling individual layers into a multi-layer laminated substrate, such as the fluid handling substrates described in commonly assigned U.S. Patent Application No. 60/239,010 titled "Microfluidic Substrate Assembly and a Method of Making Same" and filed on October 06, 2000, the entire disclosure of which is hereby incorporated by reference for all purposes. In certain embodiments, the fluid separation conduit comprises one or more flexible tubes that terminate at opposite ends of a channel formed by assembling the layers of a multi-layer laminated substrate. That is, in certain embodiments the fluid separation conduit comprises at least one flexible tube in fluid communication with at least one channel, where the fluid separation conduit is defined by the at least on tube and the channel. The fluid separation conduit has at least first and second openings for entry and exit of fluid, respectively. The cross- sectional diameter of the fluid separation conduit may vary depending on the desired flow rate, desired operation pressure, conduit shape, and the like. For example, for a cylindrical fluid separation conduit comprising a flexible tube, e g. a coiled capillary tube, the inner diameter of the conduit can range from a few microns to about 4-5 mm. An exemplary inner diameter for a tubular conduit suitable to provide 1 uL/min flow rate under typical fluid pressures is about 320 um. Other exemplary inner diameters in include about 50 ran, about 75 urn, about 800 um, about lmm, about 2mm, and about 3.9 mm. An inner diameter of about 3.9 mm or 4.6 mm is suitable, for example, for certain conventional chromatography applications. Suitable wall thicknesesss, e.g. the difference between an inner diameter and an outer diameter include, 1/16 of an inch, % of an inch, and 3/8 of an inch. In preferred embodiments, an inlet orifice in the housing unit is in fluid communication with a first end of the fluid separation conduit within the housing, and an outlet orifice in the housing unit is in fluid communication with a second end of the fluid separation conduit. The fluid separation conduit provides a fluid flow path within the housing from the inlet orifice to the outlet orifice. A first connector, e.g. a first ferrule-sub assembly, and a second connector, e.g. a second ferrule sub-assembly, can be fitted to the first end and the second end of the fluid separation conduit, respectively. More specifically, in embodiments comprising ferrule sub-assemblies each of the ferrule sub-assemblies comprises a ferrule or end cap seated over the end of the fluid separation conduit. The ferrule sub-assembly preferably comprises a compression ring securing the attachment to the fluid separation conduit and/or creating a fluid-tight seal between the end of the conduit and other channels or devices in fluid communication with the fluid separation conduit. The ferrule sub-assemblies, further described below, each preferably provides a seating and sealing surface for its respective fluid flow port. In preferred embodiments, the ferrule sub-assembly comprises a frit body providing the seating and sealing surface. Preferably each of the ferrule sub-assemblies is secured to the housing unit in a fixed position, optionally being removably fixed, at its respective port. In this manner, the fluid separation conduit can be conveniently anchored to the housing unit, e.g., to a component of the housing unit which is assembled with one or more other housing components after the fluid separation conduit is attached, to construct the housing unit of the conduit cartridge. In certam embodiments, a surface of the ferrule sub-assembly at the inlet end of the fluid separation conduit is a substantially flat surface having a fluid opening for the inlet port and facing substantially outwardly from the housmg unit to seat and seal conveniently against a corresponding surface of a fluid feed line or other fluid source feeding fluid to the fluid separation conduit cartridge for testing, analysis, etc. Similarly, a surface of the ferrule sub- assembly attached to the outlet end of the fluid separation conduit provides a substantially flat surface having a fluid opening for the outlet port and facing substantially outwardly from the housing to seat and seal conveniently against a corresponding surface of a fluid return or waste line or other fluid receiving device for accepting fluid from the fluid separation conduit cartridge after it has been tested, analyzed or subjected to other operation(s) by the fluid separation conduit within the housing. It should be recognized that the designation of a port of the housing unit as being an inlet port or an outlet port may in certain instances be arbitrary and merely a matter of convenience or choice, such as where the conduit cartridge is usable in either direction, preferably then being side-to-side symmetrical so that it can be properly installed in either orientation, hi other embodiments, an outwardly extending connector is provided on a fluid separation conduit cartridge to enable insertion of the conduit cartridge fluid ports into wells or receiving sockets of a manifold or mounting device or the like, for fluid connection and sealing. As discussed above, the housing unit may comprise innumerable other devices positioned within or attached to the housing unit and or components thereof, e.g. the fluid separation conduit, the memory unit, the ferrule subassemblies, etc. In accordance with an additional aspect, the fluid separation conduit cartridge disclosed here can be used to separate one or more species in a fluid. As used here, separate, separation, or fluid separation refers to resolving two or more species in the fluid. Preferably, baseline separation, e.g. baseline resolution, is achieved using the conduit cartridge disclosed here to provide for accurate quantitative measurements of the species in the fluid. The fluid separation conduit of the conduit cartridge disclosed here may take numerous forms, e.g. cylindrical, serpentine, coiled, and the like, and preferably contains one or more types of fluid separation media (also referred to below as a stationary phase(s)) for separating species in a fluid. As used here stationary phase refers to the material(s) coated, adsorbed, absorbed, or attached to the inner surfaces of the fluid separation conduit, e.g. the surfaces of the fluid separation conduit that are contacted by fluid from a fluid reservoir, for example. The stationary phase is operative to adsorb and to allow for desorption oA species in the fluid, e.g. allows for reversible adsorption of species in the fluid. Based on the differential solubilities of the species in the fluid and in the stationary phase, the stationary phase acts to separate the species in the fluid. As used here differential solubilities refers to the solubility of a species in the stationary phase and in a fluid passing over or through the stationary phase, e.g. the mobile or fluid phase. For example, if a given species is more soluble in the stationary phase than in the fluid phase, then the given species remains adsorbed to the fluid separation conduit and does not elute. However, when the species becomes more soluble in the fluid phase than "in the stationary phase, e.g. by altering the composition of the fluid phase using a solvent gradient, for example, the species is desorbed from the stationary phase and elutes from the fluid separation conduit, e.g. flows out of the cartridge in the fluid phase. Because different species have different solubilities in the different phases, e.g. partition differently between the stationary and fluid phases, depending on the selected nature of the stationary phase and the fluids, separation of the species in a fluid can be achieved. The nature of the stationary phases may vary depending on the intended use of the fluid separation conduit cartridge. For example, C18 phases may be used for separation of generally non-polar species in a fluid while strong anion exchangers (SAX) might be used for separation of charged species in a fluid. One skilled in the art given the benefit of this disclosure will be able to select suitable stationary phases for an intended use. Preferably the stationary phase is selected from materials having nonpolar functional groups, e.g. C18 and the like, materials with negatively charged functional groups, e.g. RrSO3 " groups, RrCOO" groups and the like, and materials with positively charged functional groups, e.g. R2-NH3 + groups and the like, where Ri and R2 may be any group linked to the SO37COO" and NH3 + moieties respectively. Depending on the nature of the stationary phases, suitable fluid phases may be chosen such that the species in a fluid will elute at different times, e.g. the species will have different retention times. One skilled in the art given the benefit of this disclosure will be able to select suitable fluid phases for separating one or more species in a fluid. In preferred embodiments, a solvent gradient is used to separate the species in a fluid. As used here solvent gradient refers to changing the composition of the fluid phase with increasing time. Suitable solvent gradient methods will be apparent to those skilled in the art given the benefit of this disclosure and exemplary solvent gradient methods are discussed below. hi accordance with another aspect, the conduit cartridges typically are in fluid communication with one or more devices operative to move fluid into and/or out of the fluid separation conduit cartridge. That is, one or more devices, in fluid communication, with the conduit cartridges are operative to generate a fluid flow such that species introduced into the fluid flow can enter into the conduit cartridge, be separated by the conduit cartridge, and/or subsequently flow out of the conduit cartridge. Suitable devices for generating a fluid flow are well known to those skilled in the art and include but are not limited to pumps, e.g. piston pumps, standard HPLC pumps and the like, vacuum manifolds, and the like. Those skilled in the art will recognize that these devices are useful in controlling the flow rate of species out of the conduit cartridge, e.g. are used to alter the retention times of the species, and thus can effect separation of the species. For example, lower fluid flow rates can be used to provide for better separation of the species, whereas higher fluid flow rates may be used to elute the species from the conduit cartridge more rapidly. One skilled in the art given the benefit of this disclosure will be able to select numerous devices for generating a fluid flow. Suitable devices may also be in fluid communication with one or more sample introduction devices, such as those described in detail below, e.g. fixed-loop injectors, auto-injectors, auto-samplers, and the like. It will be recognized by those skilled in the art, given the benefit of this disclosure, that the fluid separation conduit cartridge disclosed above may include numerous other components. For example, additional columns, e.g. one or more guard columns, might be in fluid communication with the fluid separation conduit. Additional memory units, such as those discussed above, may be included in the conduit cartridge. Identifiers, such as RF tags, bar codes and the like may be placed on or in the housing unit of the cartridge. Additional connectors, e.g. electronic connectors such as, for example, PCMCIA connectors, serial connectors, parallel connectors, USB connectors and the like, may be positioned on any surface of the housing unit and optionally may be in electrical commimication with one or more memory units. Such additional devices may be incorporated into the conduit cartridge in any of numerous manners, e.g. incorporated inside the housing unit of the conduit cartridge or may be removably attached to one or more outer surfaces of the housing unit. It will also be recognized by those skilled in the art, given the benefit of this disclosure, that the fluid separation conduit cartridges disclosed above may omit one or more of the components described above, e.g. a memory unit and/or a connector may be omitted. That is, in certain embodiments, the memory unit, for example, is omitted from the conduit cartridge disclosed above. Thus, in certain embodiments, the conduit cartridge may comprise a housing unit and one or more connectors but no memory unit. In other embodiments, the conduit cartridge may comprise a housing unit and a memory unit but no connectors. One skilled in the art, given the benefit of this disclosure will be able to design conduit cartridges with selected components suitable for an intended use.
In accordance with additional aspects, a fluid separation conduit cartridge comprising at least a housing unit and a separation conduit that is potted is disclosed. As used here potted refers to surrounding, e.g. enveloping, encasing, enclosing, and the like, one or more components of the cartridge with a potting compound. The potting compound prevents movement of the components within the conduit cartridge and provides protection to any sensitive components, e.g. a memory unit, within the cartridge. In certain embodiments, the potting compound envelops the conduit cartridge and allows the cartridge .to withstand higher pressures without rupturing, fracturing or leaking. Exemplary potting compounds include but are not limited to thermoset and thermoplastic polymers, e.g., epoxies, glass filled epoxies, metal filled epoxies, carbon-filled epoxies, and the like. In certain embodiments, the fluid separation conduit cartridge may comprise a housing unit, one or more memory units, one or more connectors, and a potted fluid separation conduit. The potting compounds typically have no effect on the memory unit or any. other components within the housing unit or attached to the housing unit. That is, the memory unit may be integrated into the housing unit of the cartridge and the potting compounds can be disposed in the housing unit to encapsulate the fluid separation conduit and the memory unit without adversely affecting operation of the conduit cartridge. The potting compound can be disposed prior to packing the conduit with a packing material or after packing the conduit with a packing material, certain embodiments, the conduit cartridge comprises a housing unit, one or more connectors, a potted conduit, and a memory unit. In yet other embodiments, the conduit cartridge comprises a housing unit, one or more connectors and a potted conduit but no memory unit. One skilled in the art, given the benefit of this disclosure, will be able to choose components for incorporation into the conduit cartridges disclosed here suitable for an intended use.
In accordance with a method aspect, a method for making a fluid separation conduit cartridge comprising a fluid separation conduit and at least one memory unit is disclosed. An assembled cartridge is provided comprising all of the necessary elements for a fluid separation conduit including at least one memory unit. The fluid separation conduit and any other internal components, e.g. the memory unit, may optionally be potted as discussed above. The memory unit can then be programmed at the manufacturing facility. The cartridge can then be loaded or packed with a suitable packing material, e.g. a suitable stationary phase, based on the intended use of the fluid separation conduit cartridge. Numerous methods for loading stationary phases are well known to those skilled in the art and include, for example, flowing a slurry of a packing material into the conduit using a high pressure pump.. Following the loading of the conduit with a suitable stationary phase, the cartridge can undergo testing for quality assurance at the manufacturing facility the results of which may then be incorporated into the memory unit. Following use by an end-user, the cartridge can intermittently, e.g. daily, weekly, monthly, etc., throughout its lifetime be examined for quality control issues, for example, in the process of validation of a particular chromatographic method. The cartridge can be tested at a test site, for example, within an end-user's facility, the results of which may be incorporated into the memory unit.
In accordance with an additional method aspect, a method for making a fluid separation conduit cartridge comprising a fluid separation conduit that is potted is disclosed. An assembled fluid separation conduit cartridge is provided, comprising at least a housing unit, and one or more potting compounds are disposed within, or optionally on or around, the conduit cartridge. The potting compounds may be disposed using numerous methods known to those skilled in the art including but not limited to injection of the potting compound using a syringe and needle. In certain embodiments, one or more of the cartridge faces on the housing unit are removed, or not assembled, and the potting compound is poured or injected into the housing unit in a sufficient amount to envelop at least a portion or all surfaces of the fluid separation conduit, more preferably enveloping substantially all surfaces, e.g. outer surfaces, of the fluid separation conduit that is located internally with the housing unit. In other embodiments, the potting compound is disposed in the conduit cartridge prior to, or simultaneously with, insertion of a fluid separation conduit into the housing unit. The cartridge can then be packed with a suitable packing material, e.g. a suitable stationary phase, based on the intended use of the fluid separation conduit cartridge. Numerous methods for loading stationary phases are well known to those skilled in the art and include, for example, those mentioned above. Following the packing of the cartridge, the cartridge can undergo testing for quality assurance at the manufactøing facility, e.g. testing to assess cartridge quality and operation at high pressures. In accordance with another aspect, a fluid separation conduit cartridge comprises at least a housing unit, a fluid separation conduit within the housing unit, an inlet orifice in fluid communication with a first end of the fluid separation conduit, and an encryption device. As used here, an encryption device is any device which is operative, either alone or in combination with other devices or components elsewhere, to perform an encryption operation on information, e.g. a signal containing or corresponding to a method, e.g. an LC method, to be performed by the cartridge and/or other components of a system comprising the cartridge, or a signal containing or corresponding to test results obtained by the cartridge or a system comprising the cartridge, e.g. test results from a detector in fluid communication with the cartridge, etc. Thus, information, as used here, can include but is not limited to data that is acquired by a cartridge, data that is acquired by an instrument, data that is acquired by an analytical system, methods that are used by an instrument, system or a conduit cartridge, messages that are sent from a conduit cartridge to a system, e.g. an instrument, or from a system to a conduit cartridge, methods or data that are sent from a conduit cartridge to a remote operating facility, methods or data that are sent from a operating facility to a remote conduit cartridge, quality control and assurance protocols used by an instrument or a conduit cartridge, corporate trade secrets, manufacturing protocols, manufacturing records, records of cartridge use, and any other parameters or data that a conduit cartridge might use or need for chemical, biological, biochemical, or environmental analyses and separations. Exemplary encryption operations performed by the encryption device include encryption, decryption, or both, such as operations to compress, to encrypt, to transmit, to receive, and/or to decrypt information. For convenience, an encryption device is in some cases below as an encrypting device; likewise reference is made below in some cases encrypting and/or to decrypting rather than to the more generic "encryption operation" but will be understood from context to refer to the more generic concept.
As used here, remote or remotely means a conduit cartridge and an operating facility that are located at some distance from each other, e.g. in separate buildings, environments, and the like. Remote or remotely also means that the conduit cartridge may be connected by a wire to an operating facility, but input of information occurs by sending the information from the operating facility through the wire and to the conduit cartridge. Remote or remotely also means inputting of information other than by means of a keypad or input device incorporated on the conduit cartridge or instrument. Remote or remotely also means that the attachment for communication, e.g. a wire, between the conduit cartridge and an operating facility is not permanent, e.g. the wire is removably attached. Remote or remotely also means that the conduit cartridge and an operating facility may be in communication through a wireless device such as a cellular phone, RF transmitter and receiver, satellite transmitter and receiver, devices using 802.11b protocols, or comparable devices. In accordance with another aspect, information is encrypted using any encryption method known to those skilled in the art. Preferably a strong encryption algorithm, e.g. 56-bit encryption algorithm, 128-bit encryption algorithm or higher is used. Exemplary encryption algorithms include but are not limited to Blowfish and DES, for example. In addition to encryption, there may be a need to ensure that all information used by the conduit cartridge, accessed by the conduit cartridge, or sent to the conduit cartridge can be verified. This feature prevents tampering with or altering of the information in the conduit cartridge. Because verification provides that any information sent to the conduit cartridge or obtained by the conduit cartridge will be secure, the conduit cartridge may be placed remotely for numerous analyses.
In accordance with another aspect, encryption and decryption may be performed using the memory unit described here, or may be performed using encryption devices, such as, for example, a microprocessor, a subroutine stored in a memory unit, and the like. In embodiments, comprising a microprocessor, the microprocessor can be in electrical communication with a memory unit. In other embodiments, the microprocessor comprises an internal memory store such that an additional memory unit is not required, hi yet other embodiments, a subroutine for encrypting and decrypting information is resident in a memory unit, e.g. a ROM or EEPROM and is operative to encrypt and decrypt information received by, or sent by as the case may be, the conduit cartridge. Other encryption devices will be apparent to those skilled in the art given the benefit of this disclosure.
In accordance with an additional aspect, the conduit cartridge can use a two-part encryption and signing process, hi the first part of the encryption process, all information on the conduit cartridge is encrypted using an encryption driver. All information that is sent to the conduit cartridge, either by an instrument or by a remote operating facility, for example, passes through the encryption driver. Similarly, all information that is sent by the cartridge, for example, either to an instrument or to a remote operating facility, passes through the encryption driver. In preferred embodiments, the encryption driver comprises an Authentication Engine, an Encryption Engine, a Signature and Verification Engine, and a Card Filing System. The Authentication Engine provides initial access to the information on the conduit cartridge. Multiple levels of access may exist including but not limited to read-only, write-only, read and write once, read and write once authorized, read and write, and restricted access. The Encryption Engine preferably uses an encryption algorithm or an encryption device that encrypts or decrypts information, such as those discussed here. Preferably, the Encryption Engine uses a strong encryption method, such as DES, Blowfish, or other strong encryption algorithms known to those skilled in the art. The keys for the encryption may. also be encrypted and stored in the Encryption Engine. The keys may be decrypted when necessary for encrypting or decrypting information. The Signature and Verification Engine (SAVE) typically is a record keeping device that signs all information to ensure that a record of events exists. The SAVE typically is responsible for signing and storing all information passed to the encryption driver. The signature may be used to verify that another party did not alter information on the conduit cartridge. When information on the conduit cartridge is encrypted, a signature referring to the encrypted information may be added. The signature may be transmitted with or stored with the encrypted information. When verification of encrypted information is desired, the encrypted information that has been signed can be decrypted and compared with the information of interest. If upon comparison of the information, the information is similar, then the information has not been altered since the signature was generated. The signature may also be used to construct a record for tracking the usage history of the conduit cartridge, hi certain preferred embodiments, to prevent unwanted parties from obtaining the keys that are required to decode the encrypted information or the signatures, users may validate their keys against a central key store. The SAVE can make a request to a central server to validate a public key, e.g. a request to the central server through the Internet. The SAVE can also ensure that all public keys that are required to verify the signatures of the stored and encrypted information are available.
It will be recognized by those skilled in the art that other encryption processes and algorithms may be used. That is, the two-part encryption process described above is not necessarily required to generate encrypted information. Other encryption processes and algorithms, including those which involve single or multiple steps of subroutines, can be used to encrypt and/or decrypt information suitable for transmitting to a conduit cartridge, a system, or a remote operating facility. One skilled in the art given the benefit of this disclosure will be able to select additional encryption algorithms and processes suitable for transmission of secure information to and from the conduit cartridges disclosed here. fn accordance with another aspect, a conduit cartridge capable of transmitting or sending encrypted information to a remote destination is disclosed. The device and methods used by the conduit cartridge to transmit the information include the aforementioned methods of sending the information through a modem by fax or other method, sending the information by e-mail or over the Internet, sending the information by wireless transmission using a cellular phone, devices using 802.11b protocols, or comparable devices, sending the information by RF transmission, sending the information by satellite transmission, or sending the information through a wire that links the conduit cartridge to another device or to an operating facility. Therefore, in addition to the components of the conduit cartridge described here, the conduit cartridge may optionally include other electrical and mechanical components to provide for transmission of information or other operations. In certain preferred embodiments, the information may be transmitted from the conduit cartridge to a remote operating facility using any known devices and methods for transmitting information such as e-mail, the Internet, wireless phone, fax, modem, RF transmission, satellite transmission, a direct connection between the conduit cartridge and an operating facility, such as a wire, or other similar transmission devices. Upon receipt of the information at its destination, the information may be decoded and read only by one who possesses an appropriate decoding key conesponding to the encryption key. For example, the information may be encrypted by the conduit cartridge using a customer's public key, transmitted from the conduit cartridge to the customer, and then decoded using the customer's private key. This feature provides for secure transmission of the information regardless of the methods used for transmitting the information. After successful decoding, the information can be analyzed, stored, or used for other reasons applicable to the function of the conduit cartridge.
In accordance with another aspect, information that is transmitted from a conduit cartridge to an analytical system, e.g. an instrument, in communication with the conduit cartridge may be encrypted. One skilled in the art given the benefit of this disclosure will recognize that to effectively alter the method used for testing or analysis using information stored on the conduit cartridge, as discussed here, there must be some communication between the cartridge and the system. If insecure or unencrypted information was sent from the cartridge to the system, an unauthorized party might gain access to trade secrets or proprietary corporate secrets contained in the information. Therefore, information sent from the conduit cartridge to a system, in communication with the conduit cartridge, may be encrypted using the system's public key, for example. Upon arrival at the system, the encrypted information may be decrypted using the system's private key. Therefore, the information remains encrypted during transmission from the conduit cartridge to the system. This feature provides added security during transmission of information sent from the conduit cartridge to the system.
It will be recognized by those skilled in the art that the conduit cartridges disclosed have innumerable uses. For example, one or more analytical system comprising a conduit cartridge can be placed remotely at a user's facility and any results of testing analyses can be sent to a remote operating facility. Alternatively, the results might be sent directly to a regulatory agency for monitoring of chemicals, pollutants, and the like generated by a manufacturing facility for example. That is, encrypted test results could be transmitted directly to a regulatory agency, for example, which has an appropriate key to decrypt the information. Therefore, unauthorized access, by members of the manufacturing facility for example, is prevented. Such direct transmission to a regulatory agency, for example, prevents tampering or altering of the information by the manufacturing facility.
In accordance with another aspect, a conduit cartridge capable of receiving information is disclosed. The device and methods used by the conduit cartridge to receive information include the aforementioned devices and methods of receiving the information through a modem by fax or other method, receiving the information by e-mail or over the Internet, receiving the information using a wireless device such as a cellular phone or comparable device, receiving the information using a RF receiver, receiving the information using a satellite receiver, or receiving the information through a wire that links the conduit cartridge and the operating facility. Therefore, in addition to the components of the conduit cartridge described here, the conduit cartridge may optionally contain other electrical and mechanical components to provide for reception of information or other operations. A conduit cartridge operative to receive information provides the ability to alter remotely the method used by the remote conduit cartridge or analytical system, hi accordance with another aspect, to decrease the time required for information to be transmitted and subsequently received at its destination, the conduit cartridge may use compression algorithms. Compression of information effectively allows for faster transmission of a given amount of information. The conduit cartridge may use any compression algorithm known to those skilled in the art. Additionally, any compression algorithm that generates ARC, TAR, ZIP, GZ files or other compressed file formats may be used. For example, the information might be compressed using commercially available computer software programs such as PKZip™ (PKWARE, Inc.) or WinZip™ (WinZip Computing, Inc.) or freely available programs and commands, e.g. gzip, operative to compress information. The information could then be encrypted using any method known to those skilled in the art such as, for example, public/private key encryption. Transmission of the compressed and encrypted information may occur using any known transmission device including wireless transmission devices that utilize 802.11b protocols, for example. One skilled in the art will recognize that the information may be compressed and then encrypted or may be encrypted and subsequently compressed. In accordance with other aspects, the conduit cartridge may be directly plugged, e.g. directly interface, into a device for downloading or uploading encrypted information. As used here directly plugged means that the cartridge and the device are in direct communication preferably without any intervening wires or devices. For example, the conduit cartridge may directly interface with a computer or other electronic device to upload or download information. This interface may consist of a direct connection such as a female connector on the conduit cartridge coupled to a male connector on a computer. One skilled in the art will recognize that other types of connectors may be used to accomplish the uploading and downloading of information, e.g. PCMCIA connectors, USB connectors, serial connectors, etc. One skilled in . the art will also recognize that the information on the conduit cartridge may be uploaded or downloaded using other devices such as a floppy disk or other magnetic media, through wireless transfer using infra-red transmission, 802.11b protocols or any other methods that transfer information from one source to another. hi accordance with another aspect, one or more digital IDs may be assigned to the cartridge to provide, for example, a unique identifier to the cartridge, a method associated with the cartridge, or an analytical system associated with the cartridge.
The conduit cartridge disclosed here provides useful information as to the cartridge's performance which is critical in both Good Manufacturing Practice and Good Laboratory
Practice settings. Damaged cartridges can be detected early, thereby saving on both frustration and useless data acquisition. Full traceability of the cartridge throughout its lifetime is available to the end-user or any other interested party with appropriate access capabilities.
Brief Description of the Figures
Certain preferred embodiments of the present invention will be described below with reference to the accompanying figures in which: Fig. 1 is a perspective view of a fluid separation conduit cartridge, in accordance with preferred embodiments;
Fig. 2 is a cut-away view of the fluid separation conduit cartridge shown in Fig. 1, in accordance with preferred embodiments;
Fig. 3 is a block diagram of a circuit board contained within the housing of a fluid separation conduit cartridge, in accordance with prefened embodiments;
Fig. 4 is an exploded section view of a ferrule sub-assembly, in accordance with preferred embodiments;
Figs. 5a and 5b are schematic section views, partially broken away, showing the ferrule sub-assembly of Fig. 4 in use in cartridge, in accordance with preferred embodiments; Figs. 6a and 6b are schematic section views, partially broken away, showing the fluid separation conduit of a cartridge comprising ferrule sub-assemblies in accordance with the Fig. 4, being charged with fluid separation media, in accordance with preferred embodiments; Fig. 7 is an exploded schematic view, partially broken away, showing a cartridge comprising ferrule sub-assemblies in accordance with Fig. 4 mounted in fluid ports extending outwardly from an end cap or manifold of the housing unit of the conduit cartridge, in accordance with preferred embodiments; Fig. 8 is a flow diagram of the method of producing a fluid separation conduit cartridge, in accordance with preferred embodiments;
Fig. 9 shows a diagram of encrypting and decrypting information, in accordance with preferred embodiments; Fig. 10 shows the relationship of an encryption driver to the system comprising a conduit cartridge and an operating facility, in accordance with preferred embodiments;
Fig. 11 shows restricted access to information on the conduit cartridge, in accordance with preferred embodiments;
Fig. 12 shows read only access to the information on the conduit cartridge, in accordance with preferred embodiments;
Fig. 13 shows read without authentication and write once authenticated access to the information on the conduit cartridge, in accordance with preferred embodiments;
Fig. 14 shows an overview of the signature process, in accordance with preferred embodiments; Fig. 15 shows the process of storing an object using the Signature and Verification
Engine, in accordance with preferred embodiments;
Fig. 16 shows the process of reading an object using the Signature and Verification Engine, in accordance with preferred embodiments;
Fig. 17 shows a block diagram of several of many possible components contained within the conduit cartridge and used for encrypting, transmitting, receiving, and decrypting information, in accordance with preferred embodiments;
Fig. 18 is an example of a process of encryption decryption between a customer and a conduit cartridge, in accordance with preferred embodiments;
Fig. 19 is an example of a process of encryption/decryption between a conduit cartridge and an instrument, in accordance with preferred embodiments;
Fig. 20 is an example of encryption, decryption, reception and transmission by a conduit cartridge in communication with an instrument and an operating facility, in accordance with preferred embodiments;
Fig. 21 is an example of the assignment of digital IDs to the conduit cartridge; Fig.22 is a first embodiment of an analytical system in communication with a fluid separation conduit cartridge, in accordance with prefened embodiments; Fig. 23 is an embodiment of a fluid separation conduit cartridge attached to a manifold of an analytical system, in accordance with preferred embodiments;
Fig. 24 is an embodiment of a fluid separation conduit cartridge attached to a manifold of an analytical system where the manifold is in fluid communication with a device for generating a fluid flow, in accordance with preferred embodiments; and
Fig. 25 is a second embodiment of an analytical system in communication with a fluid separation conduit cartridge, in accordance with prefened embodiments.
It will be recognized by those skilled in the art that the fluid separation conduit cartridges disclosed in the figures are not necessarily to scale. The dimensions of the cartridges may have been enlarged, relative to the dimensions of an analytical system, e.g. a chromatography system, an instrument and the like, for example, for ease of illustration and for clarity of viewing. Those skilled in the art given the benefit of this disclosure will recognize that the conduit cartridges may have any dimensions suitable for interfacing with an instrument, for example.
Detailed Description of Certain Preferred Embodiments
It will be recognized by those skilled in the art that embodiments of the fluid separation conduit cartridge described here may be used for numerous fluid separation methods including but not limited to liquid chromatography (LC), high performance liquid chromatography (HPLC), fast performance liquid chromatography (FPLC), supercritical fluid (SCF) chromatography, gas chromatography (GC), capillary liquid chromatography, capillary electrophoresis, other liquid-phased separation techniques, e.g micellular electrokinetic chromatography (MEKC), isoelectric focusing, isotachophoresis and other chromatographic methods commonly used by those skilled in the art. For convenience and not intending to Hmit the fluid separation conduit cartridge in any manner, the detailed description of certain prefened embodiments described here is directed to fluid separation conduit cartridges operative to be used in liquid chromatography. However, one skilled in the art, given the benefit of this disclosure will be able to design and use the fluid separation conduit cartridges disclosed here for these and other uses. In accordance with certain prefened embodiments, a fluid separation conduit cartridge comprises an exterior portion and an interior portion. Referring to Fig. 1, the exterior portion is defined by a housing unit 1 which comprises a base plate 2, at least two side plates 3, a rear manifold 4 which is perpendicular to the two side plates, a front manifold 5 that lies perpendicular to the two side plates, and a cover plate 6. An input orifice 7 and an output 8 orifice are shown. Both the input orifice 7 and output orifice 8 are disposed within the front manifold 5. The dimensions of the housing unit, e.g. the cartridge's footprint, can vary depending on the intended use of the cartridge and upon the instrument or device to which the cartridge is intended to interface. For example, in certain embodiments the cartridge is about 1 3λ inch, more typically about 3-4 inches wide by about 1 % inches, more typically 4 3A to about 19 inches. The 19 inch dimension is a standard rack dimension and, accordingly, cartridges as disclosed here, in certain embodiments have one dimension equal to 19 inches or lΛ that size or other standard fraction of that full rack dimension. The thickness or height of the cartridge will follow somewhat the footprint dimensions and typically will be at least about 5/8 of an inch or more. The cartridge, for example, may have the dimensions of a postage stamp, a PCMCIA card (especially a Type III PCMCIA card), a credit card, or the like. The thickness of the cartridge can also vary depending on the intended use of the cartridge. One skilled in the art given the benefit of this disclosure will be able to select suitable thicknesses for accommodating suitable components into the conduit cartridge and to provide the proper dimensions for interfacing the conduit cartridge with an instrument, analytical system, e.g. a chromatography system, and the like. Referring to Fig. 2, the input orifice 7 and output orifice 8 each comprise fittings (9, 10) that can be used to facilitate entry and exit, respectively, of a fluid, with or without any dissolved species or particulate matter, through the cartridge. The fittings 9, 10 can have an outer surface aspect and an inner surface aspect. The outer (or exterior) surface aspect interfaces with an exterior connection, such as an LC separation conduit 20 for example, carrying fluid. The inner (or interior) surface aspect interfaces with the interior of the housing unit 1. The fitting is secured within an orifice by numerous devices and methods known to those skilled in the art, e.g. clamps, adhesives, welding, and the like h accordance with certain prefened embodiments and referring to Fig. 2, an LC separation conduit 20, housed within the interior of the housing unit 1, with two defined ends is attached at a first end 21 to input orifice fitting 9 and is attached at a second end 22 to output orifice fitting 10. Numerous methods suitable for attachment are well known to those skilled in the art and include, for example, snap-connectors, solvent welding, IR welding, compression fittings, adhesives and the like. Preferably, input orifice fitting 9 and output orifice fitting 10 each is coated with a substance in order to maintain a fluid-tight seal. That is, each fitting is preferably coated with a material that assists in preventing any fluid from permeating between the junction formed by an orifice fitting and surface of the manifold. Examples of such materials include but are not limited to polytetrafluoroethylene, e.g. Teflon™ tape and Teflon™ coatings (e.g. sprayed on Teflon™ coating), and other polymer materials such as polyethylene, PEEK coatings, PCTFE (e.g. KEL-F™), and the like. In prefened embodiments, a capillary conduit, e.g. a capillary column, is used in the conduit cartridge. . In certain embodiments, additives, such as carbon black, dyes, titanium dioxide, gold, e.g. electroplated gold or electrolessly plated gold, carbon particles, additional polymers, e.g. a secondary polymer or second phase polymer reactive with the primary polymer of the laminate layer, IR absorbing materials, and the like, may be included, as a surface coating and/or a body filler, in the materials used to form the column. The first end of the capillary column can interface with the inner surface aspect of the input orifice fitting (that is, the surface aspect which is interior within the housing unit), while the second end can interface with the inner surface aspect of the exit orifice fitting. The length of the capillary column in the present embodiment can range from about 6 cm to about 25 cm though longer capillary columns may be used by coiling the column within the housing unit. The rear manifold 4 and front manifold 5 can be positioned and secured into place with the remaining housing unit 1 by methods and devices well known to those skilled in the art. Suitable methods and devices for securing the mamfolds to the housing unit include but are not limited to employing an adhesive agent, a screw forming a male unit which is then placed in apposition with a female union, a preformed male connector placed in apposition with a female union, and the like.
In accordance with certain prefened embodiments, the conduit cartridges disclosed here are typically in fluid communication with one or more devices operative to generate a fluid flow. The fluid typically comprises a buffer or solvent and any dissolved analytes or species, as discussed above. In prefened embodiments, a plurality of devices for generating a fluid flow are used such that solvent gradients may be implemented to achieve better, and more efficient, separations between the species in the fluid. The choice of devices typically depends on the amount of solvent to be moved within a period. That is, the choice of devices for generating a fluid flow typically depends on the desired flow rate necessary to achieve separation of the species. For example, in prefened embodiments, one or more pumps are in fluid communication with the conduit cartridge, and optionally with one or more injectors, e.g. fixed-loop injectors, auto-injectors, auto-samplers, and the like, for introducing samples into the fluid flow. Suitable pumps include but are not limited micro-pumps, which typically can generate a fluid flow rate between about 30 uL/min and about 100 uL/min, analytical pumps, which typically can generate a fluid flow rate between about 1 uL/min to about 10 mL/min, semi-preparative pumps, which typically can generate a fluid flow rate up to about 20 mL/min, and preparative pumps, which typically can generate a fluid flow rate up to about 50 mL/min. Numerous other pumps are commercially available from manufacturers such as Waters, Inc. and Jasco, Inc. When switched on, the pumps draw fluid from solvent or buffer reservoirs and force fluid through the remainder of the fluid circuit, e.g. force fluid into the conduit cartridge. Any species in the fluid can be separated using the conduit cartridge, as discussed above. Depending on the solvent(s) chosen for the method, the species elute, e.g. exit the conduit cartridge, based on their differential solubilities in the fluid phase and the stationary phase. As discussed above, it is prefened that solvent gradients are used to facilitate rapid separation of the species. As used here, solvent gradient refers to varying the composition of the fluid phase with time. That is, during the separation run, e.g. the method, the composition of the fluid phase is altered such that at specified intervals during the separation run, the composition of the solvent is altered. For example, if initially, e.g. when the sample is introduced into the conduit cartridge, the fluid phase comprises 80% solvent A and 20% solvent B, then during the separation run, the composition of the fluid phase may be altered such that at a specified interval, e.g. 5 minutes after the starting the separation run, the composition of the fluid phase is 60% A and 40% B. Such alterations can be achieved in a linear fashion, a step-wise fashion, or other commonly used parameters for generating and designing solvent gradients known to those skilled in the art. One skilled in the art given the benefit of this disclosure will be able to select suitable devices for generating a fluid flow and suitable solvents and flow rate for achieving separation of species in a fluid sample.
In accordance with certam prefened embodiments, the external portion, and/or the internal portion as the case may be, of the cartridge may comprise at least one electrical connector (not shown). That is, an electrical connector may be positioned on any external and/or internal surface of the housing unit of the cartridge. Preferably, the front manifold comprises an electrical connector. Suitable electrical connectors include power and communication connectors, e.g. AC or DC power connectors, electrical leads, PCMCIA connectors, PCI connectors, serial connectors, parallel connectors, USB connectors, firewire connectors, optical and fiber-optical connectors, coaxial connectors, BCN connectors, SCSI connectors, ribbon connectors, RS-232 interfaces, and the like. One skilled in the art given the benefit of this disclosure will be able to select electrical connectors suitable for operation of the conduit cartridges disclosed here. The conduit cartridges may also include numerous other connectors, e.g. fluid connectors, as discussed in detail below.
In accordance with certain prefened embodiments, a fluid separation conduit cartridge comprises a housing unit and at least one memory unit. The memory unit of the conduit cartridges disclosed here is suitable for use in embodiments comprising the potted conduit and also in embodiments where the conduit is not potted. That is, the memory unit may be incorporated into conduit cartridges where the conduit is potted, e.g. either inside the housing unit or outside the housing unit, and the memory unit itself may be potted without adversely affecting operation of the memory unit. For example, referring to Fig. 3, the conduit cartridge may comprise at least one read- write memory unit 30. Examples of different types of suitable memory units are well known to those skilled in the art, e.g. a Dallas Semiconductor chip DS1994 4K-Bit Plus Time Touch Memory. Suitable memory units typically include at least an Input Output portion 32 along with memory 34 and optionally may include a processor 36, e.g. a microprocessor. In accordance with certain prefened embodiments, the conduit cartridge preferably comprises at least two types of memory units. A first memory unit is chosen such that it is compatible with a specific analytical system. That is, the first memory unit is chosen such that is designed to interface with a specific manufacturer's analytical system, e.g. commercially available HPLC systems and the like. Preferably, the first memory unit is readable and writeable. The read-only area may include, for example, full cartridge manufacturing, quality control test data, and any other data and parameters deemed necessary by the manufacturer. The writeable area can comprise a history of cartridge usage, for example, number of injections, maximum used pressure, maximum used flow rate, pressure/flow profile, maximum temperature, as well as other features. When the conduit cartridge comprising a memory unit is placed in a particular analytical system, e.g. a chromatography instrument, the conduit cartridge details are read into the analytical system and the analytical system sets-up according to the method contained within the memory unit of the conduit cartridge. This feature allows for non-expert operators to perform an analysis without having detailed knowledge of information required to program the analytical system. On completion of the analysis, the cartridge's usage information, for example, flow rate, pressure, analysis method, number of injections, last calibration run date and reference, last used date and the like, can be updated and encoded into the memory unit. A second memory unit is chosen such that it is operative in any analytical system. The second memory unit preferably is a read-only memory unit and is supplied with a device to read the memory unit and output information in via, for example, a PCMCIA interface. The information in the second memory unit can include cartridge manufacturing, quality control test data, and other data or information relevant to the manufacturing and testing of the conduit cartridge. In general, the types of information that can be stored into the memory units include all parameters that describe the cartridge geometry and construction; also, all parameters that describe any packings, coatings or accessory chemistries, such as, filters and guard columns. Time stamp information can also be encoded into the memory unit. This information can be stored at the time the cartridge is manufactured. Additional information that can be stored is related to, for example, the method to be employed by the fluid separation conduit cartridge. Each fluid separation conduit cartridge typically is designed for a given application and dedicated to that use for the life of a particular conduit cartridge. Other information that can be stored on the memory units includes standard overall separation parameters, such as run time, data acquisition, and sampling rate. Also, the names and expected retention times and retention time windows for any targets and/or expected analytes which will be eluted from the cartridge during the separation run can be stored in the memory unit. One skilled in the art given the benefit of this disclosure will be able to select information for storing in the memory units of the conduit cartridges disclosed here. In accordance with certain prefened embodiments, throughout the lifetime of the fluid separation conduit cartridge, quality control information can be stored in the memory unit to provide for continuous validation of the conduit cartridge, e.g. to provide quality control measures to ensure that the conduit cartridge is operating properly. For example, the number of injections, maximum used pressure, maximum used flow rate, pressure/flow profile, maximum temperature, etc., can be stored within the memory unit. This information can be later accessed by a test center or at the manufacturing facility. Performance status can also be measured by subsequent testing of the cartridge's ability to facilitate separation of test analytes. The results can be compared to the test analysis performed at the manufacturing facility prior to delivery of the fluid separation conduit cartridge to an end-user. This capability allows for lifetime validation of the cartridge. Potentially the cartridge may be passed along to several end-users, however, the data stored within the memory unit will remain with the conduit cartridge.
In accordance with certain prefened embodiments, as disclosed above, ferrule assemblies can be employed as fittings on the ends of the fluid separation conduit cartridge. The ferrule assemblies are received into conespondingly sized sockets in the housmg unit, preferably with a friction fit or, alternatively, with a snap-fit, with adhesive or other materials and devices to form a permanent or removably fixed connection between the ferrule and the housing unit. The ferrule fittings in this way serve to anchor the ends of the fluid separation conduit to the housing unit of the conduit cartridge. Preferably, the ferrule fittings are received into an end plate of the housing unit, with the two ends of the fluid separation conduit extending back through the end plate into the interior of the housing unit formed by an open-ended concave housing member attached to, and closed by, the end plate. The ferrule assemblies advantageously provide an externally facing seating and sealing surface for fluid flow into or out of the fluid separation conduit. Preferably, the ferrule is in the form of a cap, preferably being formed of metal or other suitable material. An annular wall extending from an end wall of the fenule forms a socket into which the end of the fluid separation conduit is inserted. Preferably the ferrule socket forms a tight fit with the fluid separation conduit. A compression ring seats around the exterior of the annular wall. The compression ring, as its name suggests, is sized to compress the ferrule socket on the end of the conduit to secure it in position. Preferably the end of the annular wall is beveled or chamfered to ease its insertion into the compression ring. The compression ring typically has a somewhat conical inside wall, larger toward the end wall of ferrule, such that its fit around the annular wall of the fenule gets tighter as it is forced on. The ferrule has a fluid flow passage extending through the end wall, whereby fluid can flow to or from the fluid separation conduit through the end wall. The ferrule sub-assembly further comprises a frit body at the exterior surface of the end wall to provide a seating and sealing surface. The frit body is seated in a well in the exterior face of the ferrule over the end of the fluid flow passage, optionally standing slightly proud of the exterior face of the ferrule, to serve as a seating and sealing surface. In use, a fluid delivery line or fluid removal line mated to the conduit cartridge to establish delivery and removal of fluid to be tested by the conduit cartridge, can be pressed against the frit body to establish a fluid-tight seal with a sufficient degree of give or resiliency to accommodate manufacturing tolerances, dissimilar temperature expansion coefficients and the like. In accordance with certain prefened embodiments, the materials used to construct the ferrule assemblies, conduits, and other connectors of the conduit cartridge may be altered and/or reinforced to withstand high pressures depending on the intended use of the conduit cartridge. For example, stainless steels and metal plates can be used to reinforce the housing unit of the conduit cartridge, hi certain embodiments, a multi-laminate structure can be included to provide increased strength for withstanding high pressures achieved using high flow rates, e.g. pressures greater than about psi. One skilled in the art given the benefit of this disclosure will be able to select suitable materials for forming the connectors of the conduit cartridge disclosed here including but not limited to stainless steel, PEEK, reinforced PEEK, brass, ceramics, ceramic composites, etc.. Other suitable materials will be readily apparent to those skilled in the art given the benefit of this disclosure. hi accordance with certain prefened embodiments, refening now to Fig. 4, a ferrule sub- assembly 102 shown in exploded view is seen to comprise a ferrule 104 having an end wall 106 with an exterior surface 108 and an annular wall 110 forming a ferrule socket to receive a first end 112 of a fluid separation conduit 116. While the drawings are not necessarily to scale, inside surface 114 of annular wall 110 is sized to form a friction fit, or other tight fit, with the exterior surface of the first end 112 of the fluid separation conduit 116. Compression ring 118, preferably being formed of stainless steel or other suitable material, has a slightly conical inside surface 120. The beveled end 122 of annular wall 110 eases insertion of the annular wall into the compression ring. Fitting the compression ring onto annular wall 110 tightens the fit around the fluid separation conduit. Frit body 124 is seated in well 126 in the exterior surface 108 of end wall 106 of the fenule 104. The frit body stands slightly proud of the exterior surface 108, that is, it extends beyond exterior wall 108 slightly. Referring now to Figs. 5a and 5b, a ferrule sub- assembly 102 as described above is seated on fluid separation conduit 116 that extends through end plate 130 of a housing unit of a conduit cartridge. It can be seen that socket 132 in end wall 130 will receive ferrule sub-assembly 102. Typically, the assembled structure shown in Fig. 5a is pressed into socket 132 using any suitable mechanical device, e.g. mechanical press, and/or pulled in by the fluid separation conduit. The result is shown in Fig. 5b, wherein the ferrule sub- assembly is seated in socket 132 and fluid separation conduit 116 extends rearwardly into the housing unit of the conduit cartridge. While, for simplicity of illustration, the second end of fluid separation conduit 116 is not shown, it will be readily understood by those skilled in the art that a ferrule sub-assembly similar to or the same as sub-assembly 102 described above can be fitted to the second end of the fluid separation conduit and seated in socket 134 of the end wall 130 of the housing unit.
In accordance with certain prefened embodiments, the components disclosed above, e.g. the connectors and memory units, may be incorporated into conduit cartridges where the conduit is potted. That is, a fluid separation conduit cartridge may comprise a potted conduit, one or more memory units, and one or more connectors. The fluid separation conduit cartridges may also comprise a display unit, such as a liquid crystal display unit 15 shown in Fig. 1, inserted within or atop an outer surface of the housing unit, such as the cover plate 6. This display unit 15 may be connected to a memory unit located within the housing unit 1. The display unit can display information stored in the memory unit, such that certain information, e.g. date of cartridge packing, may be discovered without interfacing the conduit cartridge to an instrument or other device. Any number of numerous other components may also be included in the conduit cartridges disclosed here.
In accordance with certain prefened embodiments, Fig. 7 shows an additional embodiment of a fluid separation conduit cartridge. A housing unit of a conduit cartridge comprises an endplate 204 secured at interface 206 to an open-ended concave housing component 202. A fluid separation conduit (not shown) is located within the housing component 202. The first end of the fluid separation conduit terminates at a ferrule sub-assembly 212, as described above. The second end of the fluid separation conduit terminates at ferrule sub- assembly 214. Thus, ferrule sub-assembly 212 forms an inlet orifice and ferrule sub-assembly 214 forms an outlet orifice for the conduit cartridge. The inlet orifice is located in an outwardly extending projection 208 of the endplate 204. The fluid separation conduit extends rearwardly (or upwardly as shown in Fig. 7) through the endplate 204 into the housing chamber formed by housing component 202. Similarly, the outlet orifice formed by ferrule sub-assembly 214 is located in an outwardly extending projection 210 of the endplate 204, and the second end of the fluid separation conduit passes through endplate 204 to ferrule sub-assembly 214 at the outward end of projection 210. The first outwardly extending projection 208 and the second outwardly extending projection 210 each is substantially frustro-conical and symmetrical about the axis of the inlet and outlet orifices, respectively. Preferably the housing unit is generally planar, having its smallest dimension into the plane of the paper as viewed in Fig. 7. The outwardly extending projections preferably are substantially symmetrical and parallel projecting generally in the plane of the housing unit. One skilled in the art given the benefit of this disclosure will be able to use these and other suitable connectors for connecting the conduit cartridges disclosed here to suitable devices, such as analytical instruments, for example.
In accordance with certain prefened embodiments, a method for the construction of a fluid separation conduit cartridge comprising a memory unit is shown in Fig. 8. An assembled conduit cartridge 300 capable of performing chromatography, for example, is provided, which may comprise a potted conduit and/or a memory unit as described herein before. In embodiments comprising a memory unit, the conduit cartridge is programmed 302 or personalized, at the manufacturing site, for an intended use. That is, methods, parameters, information, data and the like are programmed into the conduit cartridge prior to shipping the conduit cartridge to the end user. In embodiments comprising a potted compound but no memory unit, this step may be omitted. The type of information written into the memory unit when it is personalized for a particular user method includes but is not limited to method parameters defining a liquid chromatographic (LC) or capillary electrophoretic (CE) or other liquid-phase separation, such as micellular electrokinetic chromatography (MEKC or MECC) separation to be employed by the particular fluid separation conduit cartridge. Other information can include but is not limited to data acquisition parameters, solvent gradient control parameters, expected target molecule names, TUPAC identifiers and retention time windows, detector response factors, other operational and analytical parameters used by commercial chromatographic data stations, the date and time of cartridge personalization and any other information desirable to or requested by an end-user. Subsequently, test performance (also known as method validation) data would typically be stored to the memory unit with the time and date obtained. The memory unit is capable of storing acquired data in its memory with an indicator of cartridge usage. Examples of different types of read/writeable memory units are discussed above and other memory units are well known to those skilled in the art. It should be appreciated that mformation stored onto the memory unit can be encrypted, as discussed in the commonly assigned patent applications which have been incorporated by reference for all purposes. Additional information may be coded onto the conduit cartridge in the form of a bar code, a magnetic strip, or semiconductor chip. The device employed to read the code from the fluid separation conduit cartridge will depend on the format and medium of the code contained within the memory unit, examples of which include but are not limited to bar code readers, magnetic strip readers, a radio transponder, an inductive loop, ultrasonic, infrared, direct connection, an optical detector, electrical impulse detector or a data bus socket, all of the aforementioned methods and devices being well known to those skilled in the art.
In accordance with certain prefened embodiments, the conduit cartridge is loaded or packed 304 with a suitable packing material, e.g. a stationary phase, for the intended use of the conduit cartridge. As discussed above, the chemistry, e.g. functional groups, of the stationary phase typically depends on the intended use and the nature of the species in the fluid to be separated. One skilled in the art given the benefit of this disclosure will be able to select suitable stationary phases for separating species in fluids introduced into the conduit cartridges disclosed here. The assembled and packed fluid separation conduit cartridge can be validated 306, e.g. tested, at the manufacturing site to determine if the cartridge complies with known specifications pertinent to a particular chromatographic method. For example, known analytes specific for a particular chemistry can be subjected to chromatographic separation using the newly formed fluid separation conduit cartridge and suitable fluid mobile phases. Resolution, along with other chromatographic parameters, can be determined based upon the performance of the cartridge with a given set of known analytes. This process is a similar operation to that performed when validating a chromatographic method. The information obtained from this testing can then be stored in the memory unit. This test information can subsequently be used as a benchmark for determining the performance status of the cartridge once the apparatus has left the manufactøing facility and is in the hands of an end user. If the cartridge meets approval, then the apparatus as a whole can be certified in digital format stored in the memory unit by the manufacturer.
In accordance with certain prefened embodiments, after validating the cartridge, the result of the validation process can be written 308 to the cartridge. Additionally, the specific chemistry of the packing material and any separation methods can be written into the memory unit of the conduit cartridge. For example, if the packing material comprises cationic functional groups, then a separation method for anion exchange can be written to the memory unit. In accordance with certain prefened embodiments, a method for construction of a fluid separation conduit cartridge comprising a fluid separation conduit that is potted is disclosed. The method comprises providing an assembled conduit cartridge and disposing at least one potting compound in the housing of the conduit cartridge. The potting compound may be disposed using numerous methods known to those skilled in the art including but not limited to injecting the compound using tubing, a syringe, and the like, pouring the compound into the housing using a vessel containing the potting compound, etc. In certain embodiments, the potting compound is disposed in the housing unit prior to insertion of the fluid separation conduit. After the potting compound is disposed around the fluid separation conduit, packing material, e.g. a stationary phase, is introduced into the fluid separation conduit. The specific chemistry of the packing material typically depends on the intended use of the cartridge and the species in the fluid that are to be separated. Numerous methods for packing the stationary phase are known to those skilled in the art and include but are not limited to those mentioned above. Other methods will be readily apparent to those skilled in the art given the benefit of this disclosure. For example, Fig. 6a shows an embodiment for packing of a stationary phase into the fluid separation conduit. A device 140, preferably a needle with a syringe or tubing, is connected to the open end of a fluid separation conduit 22. The first end of the fluid separation conduit is fitted with a ferrule sub-assembly as described above, and is already seated in socket 132 of the manifold or end plate 130 of the housing unit of the conduit cartridge. After loading the packing material, an additional ferrule sub-assembly is added to the second end of the fluid separation conduit 22 (see Fig. 6b). The second end of the conduit is then pressed into socket 134 of the housing unit using manual or mechanical force or pressure, for example. Subsequent to packing the conduit, quality assurance tests may be performed on the cartridge to ensure that the cartridge will perform properly at the end user's facility. Numerous other steps may be performed after testing the cartridge, e.g. storage solvents may be introduced, the cartridge may be cleaned, etc.
In accordance with certain prefened embodiments, the conduit cartridge has the capability and is operative to compress, encrypt, transmit, receive, and decrypt information. An overview of an exemplary encryption process is shown in Fig. 9. Any information 350 that is obtained by the conduit cartridge can be encrypted using one or more encryption algorithms 351. The encryption algorithm 351 may be any algorithm known to those skilled in the art including but not limited to translation tables, wordbyte rotation, Simple Key Management for Internet Protocols (SKIP), XOR bit masking, and encryption using public/private keys. Preferably the encryption algorithm used is a strong encryption algorithm, e.g. 56-bit encryption, 128-bit encryption or higher, such as DES or Blowfish though other encryption algorithms, e.g. weak encryption algorithms, may be suitable depending upon the intended use and/or location of the conduit cartridge. Once encrypted, the encrypted information 352 may not be viewed or read by anyone who does not have the proper key to decrypt the information. The decrypter or decoder 353 can convert the encrypted information back to its original form.
In accordance with certain prefened embodiments, a two-part encryption and signing process can be used. In the first part of the encryption process, all information on the conduit cartridge is encrypted using an encryption driver. The relationship of the encryption driver to the overall encryption process is shown in Fig. 10. All information that enters or exits the conduit cartridge preferably first passes through the encryption driver 376. Applications 375, such as chromatography methods, are also encrypted by the encryption driver prior to submitting the application to the instrument. A storage subsystem 377 exists for storing encrypted information, such as methods used by the conduit cartridge or data obtained by the conduit cartridge. A communications network 378 may be used for sending information from the conduit cartridge to a server 379. The communications network 378 is also used to send information from the server 379 to the conduit cartridge. The communications network may be external, such as the Internet, or may be internal, such as direct communication between a conduit cartridge and an instrument. Preferably, all information that is sent to the conduit cartridge, either by an instrument or by a remote operating facility, first passes through the encryption driver. This information may include keys for encoding and decoding the information from the ID/Key Database 380, methods to update the conduit cartridge from the Method Update Database 381, software updates from the Software Update Database 382, or any other information that an operator desires. Preferably any and all information that is sent from the conduit cartridge to an instrument or to a server first passes through the encryption driver.
In accordance with certain prefened embodiments, the encryption driver contains keys in an encrypted form. In prefened embodiments, the encryption driver comprises an Authentication Engine, an Encryption Engine, a Signature and Verification Engine, and a Card Filing System. The Authentication Engine provides initial access to the mformation on the conduit cartridge. Multiple levels of access may exist including but not limited to read-only, write only, read and write once, read and write once authorized, read and write, and restricted access. Preferably, the levels of access that exist are restricted access, read-only access, and read without authentication and write once authenticated access. Various stores are available on the conduit cartridge that have different levels of access. Preferably these stores are located in a memory unit or other electronic storage device. The level of access typically depends on the nature of the information present in the store. For example, information that is more sensitive and that should be viewed only by an authorized party having the conect decryption keys has the most restricted access. Referring to Fig. 11 , to access the key store 400 and the history store 401, full authentication must be granted. The key store 400 comprises public keys for all known GUTDs and it also may comprise public/private key pairs. The history store 401 comprises usage and signature information. Since this information should be kept protected and accessed only by a system administrator, for example, it has the most restrictive access. For restricted access, the authentication system must grant both read and write access to the key store 400 and the history store 401. For read-only access, the authentication system must grant read access but not write access. Read-only access may be granted where a user wishes to view the Identification Store 405 (see Fig. 12). The Identification Store 405 contains unique identification information for the cartridge and information on the cartridge's use and characteristics. Granting of read-only access does not permit a user to alter any information on the conduit cartridge or to write any information to the conduit cartridge. For read without authentication and write once authenticated access, a store can be read without authentication, but writing to the conduit cartridge requires authentication. For example, refeπing to Fig. 13, to read information in the method store 410 or the parameter store 411, authentication is not required. However, to alter the information in the method store 410 or parameter store 411, authentication is required. A summary of the access rights is shown in Table I and Table II.
Figure imgf000034_0001
Table I: Access when Authentication is Not Performed
Figure imgf000035_0001
Table II: Access when Authentication is Performed
In accordance with certain prefened embodiments, the Encryption Engine preferably is an encryption algorithm or an encryption device that is operative, or has the capability, to encrypt and/or decrypt information. The encryption algorithm may be any algorithm known to those skilled in that art including translation tables, word/byte rotation, Simple Key Management for Internet Protocols (SKIP), XOR bit masking, and encryption using public/private keys. Preferably, the Encryption Engine uses a strong encryption method such as DES or Blowfish. The keys for the encryption may also be encrypted and stored in the Encryption Engine, and the keys may be decrypted when necessary for encrypting or decrypting information. In accordance with certain prefened embodiments, a Signature and Verification Engine can be used. The Signature and Verification Engine (SAVE) is a record keeping device that signs all information to ensure that a record of events exists. The SAVE is responsible for signing and storing all information passed to the encryption driver. The SAVE is also responsible for retrieving and verifying all objects that are retrieved from the storage device. The SAVE also ensures that the key store on the cartridge is up to date and contains all relevant public keys needed to verify the signatures of information in the storage device. The signature may be used to verify that another party did not alter the information on the conduit cartridge. An overview of the signature process is shown in Fig. 14. The first step is that a digest 450 of the mformation is created. The digest is essentially a hash of the information that is created using an encryption algorithm. A signature 451 is then added to the digest. Preferably, the signature is added using the signer's private key. The signature that has been added to the digest 452 is then transmitted or stored along with the object to which it refers. When verification 453 of the information is required, decryption 454 of the information occurs, and a digest of the information is created using the same encryption algorithm used to generate the signing hash. Preferably, the signature is decrypted using the signer's public key. The decrypted hash is compared 455 with the generated hash. If the hashes or digests are identical 456 then the object has not been altered since the signature was generated. If the hashes or digests are not identical 457 then the object has been altered since the signature was generated. This comparison provides an added security measure to verify if the information has been tampered with by an unauthorized party. Other verification measures may be used in placed of or in addition to the SAVE. One skilled in the art given the benefit of this disclosure will be able to use the verification methods disclosed here as well as other suitable verification measures and methods.
In accordance with certain prefened embodiments, the weakest link in any encryption system that uses public/private key pairs is typically the key provider, e.g. it is easy to generate a public/private key pair locally, insert the keys into the cryptographic system, and have apparently verified and secure communications. To provide added security, a key authority can be used in the verification process of the SAVE. The key authority provides a verification that the key pair was issued to the party whom now appears to be using it. Trust for the transaction is therefore placed in the hands of the key authority. If no third party verification is in place, the system is still secure and traceable histories can still be generated. However, the user puts his trust in his ability to verify that all keys in the system are valid. Therefore, users in critical systems and environments can validate keys against a central key store. The SAVE can make a request to a central server to validate the public key for the component. Such requests can be made through the Internet, wireless transmission, and other comparable methods. This transaction need not be secure since all that is being verified is the public key. Therefore, this transaction may be carried out over a network, such as the hitemet, without the need for establishment of secure or private connections.
In accordance with certain prefened embodiments, a process for storing an object using the SAVE is shown in Fig. 15. A request to store an object 501 is submitted to the encryption driver. The object 500 may be any information such as, for example, information in the memory unit of the conduit cartridge. Once the object is accepted 502, a private key 503 must then be accepted. After the private key is accepted 504, a public key 505 must be accepted. Once the public key is accepted 506, the system checks for key validation 507. If key validation is required the unique identifier (UTD) 508 is looked up in the database. The known public key and the supplied key are compared 509. If the keys do not match, then an enor is returned 511 indicating that an unknown or unverified key is in use. If the keys are verified, or if no validation is required or requested, then an digest, e.g. an MD5 digest 512, of the information is created. MD5 is a strong encryption algorithm. One skilled in the art given the benefit of this disclosure will recognize that other encryption algorithms may be used in place of the MD5 algorithm. A temporary digest 513 is then created. The temporary digest 513 is then encrypted using a private key 514. The encrypted digest and the encrypted object are passed through an encryption engine 515. The encrypted digest and the encrypted object may be stored on the conduit cartridge 516 or may be transmitted to an analytical system or a remote operating facility. If the public key conesponding to the private key used for encrypting the digest and object is present 517 on the conduit cartridge, then the process ends 518. If the public key conesponding to the private key used for encrypting the digest and object is not present 517 on the conduit cartridge, the public key may be passed through the encryption engine 519 and the encrypted key may be stored on the conduit cartridge in the key store 520.
In accordance with certain prefened embodiments, a process for reading an object using the SAVE is shown in Fig. 16. A request to read an object 550 is submitted to the encryption driver. The encrypted object and encrypted digest are read from the store 551. The encrypted object and encrypted digest are passed through the encryption engine 552 to create a plain text object 553 and to extract the creator ID from the object 554. The creator's public key is read from the key store and passed through the encryption engine 555. If key validation 556 is required then the creator's unique ID is looked up in the online database 557. The known public key is compared against the stored key 558. If the keys do not match, then an enor is returned 560 indicating that an unknown or unverified key is in use. If the keys match, or if key validation is not required or requested, then the digest is decrypted using the public key 561 creating a plaintext stored digest 562. A MD5 digest, for example, of the decrypted object 564 is created and stored as a temporary digest 563. The temporary digest 563 and the plaintext stored digest 562 are then compared 565, If the digests do not match an enor condition is returned 567 indicating that the object does not match the signature. If the digests do match then the plaintext object is returned 568 for reading. One skilled in the art given the benefit of this disclosure will recognize that other types of encryption algorithms may be used and that other methods for verifying information that are known to those skilled in the art may be used. Depending on the level of security required, one or more steps of the encryption process disclosed above may be altered and/or omitted. In accordance with certain prefened embodiments, the conduit cartridge has the capability of transmitting encrypted information to an analytical system, e.g. an instrument, or to a remote operating facility. This feature allows for automated remote field sampling and for monitoring of remote sampling processes from the operating facility. The conduit cartridge may send encrypted mformation by e-mail, fax, the Internet, wireless devices, satellite transmission, RF transmission, a wire connecting the conduit cartridge to the operating facility, or similar transmitting devices. For example, referring to Fig. 17, the housing unit 1 of the conduit cartridge comprises a processor 600 in communication with at least one memory unit 30 (see Fig. 17). The memory unit may be any memory unit including those described here. The processor may also be in communication with an internal clock 601, a global positioning system (GPS) 603, and a transmitting and receiving device 502. Suitable transmitting and receiving devices include the devices discussed above, e.g. a modem, a fax, a wireless device, such as a cellular phone, a RF transmitter, and a satellite transmitter. Other suitable transmitting and receiving devices will be readily apparent to those skilled in the art given the benefit of this disclosure. The memory unit may contain one or more stores, tables, parameters, programs, or algorithms for compression and encryption of the information. These stores, tables, parameters, programs, or algorithms may be used to compress and encrypt the information or may be used for other purposes, e.g. a chromatography method. The processor can subsequently send the information to the transmitter for transmission to its destination. The GPS would allow for monitoring of the remote testing device by providing the absolute latitude and longitude or other geophysical coordinates (e.g.. plant grid system). The GPS would also provide a tracking mechanism in the event the device is stolen. The GPS may be any GPS known to those skilled in the art, such as, for example, the GPS described in U.S. P/N 6,104,340, the entire disclosure of which is incorporated herein by reference for all purposes. In accordance with certain prefened embodiments, information that is sent from a conduit cartridge to a customer at a remote operating facility can be encrypted. The encrypted information that is sent from the conduit cartridge to the customer may be used for validating or posting methods, for validating or posting information, or for any other purpose deemed necessary by the customer. An example of encrypted information being sent from a conduit cartridge to a customer is shown in Fig. 18. Upon receipt by the customer, the cartridge accepts the customer's public key 701. Thereafter, exchange of information between the customer and the cartridge are encrypted and decoded using alternative public/private keys. Any information obtained by the cartridge is encrypted prior to sending to the customer 702. This information is encrypted using the customer's public key 704 and decrypted by the customer using the customer's private key 708. Therefore, only a party who possesses the customer's private key has the capability of reading the information. Any known encryption method may be used to encrypt the information that is sent from the cartridge to the customer. Preferably, a strong encryption algorithm such as DES or Blowfish is used. The information may also be encrypted using the encryption driver discussed here. Though described above as using public/private key pairs, any suitable encryption and decryption processes may be used to send information from a cartridge to a customer at a remote operating facility. One skilled in the art given the benefit of this disclosure will be able to select suitable encryption and decryption processes for sending information from a cartridge to a customer at a remote operating facility.
In accordance with certain prefened embodiments, information that is sent from a conduit cartridge to an analytical system, e.g. an instrument, in communication with the conduit cartridge can be encrypted. The encrypted information that is sent from the conduit cartridge to the instrument may be used for validating or posting methods, for validating or posting information, or for any other purpose deemed necessary by the customer. For example, referring to Fig. 19, upon plugging the conduit cartridge into the instrument, the cartridge accepts the instrument's public key 751. Information sent from the conduit cartridge to the instrument 752 is encrypted using the instrument's public key 754 and decoded by the instrument using the instrument's private key 758. Only the instrument possessing the conect private key can read the information. A y known encryption method may be used to encrypt the information that is sent from the conduit cartridge to the instrument. Preferably, a strong encryption algorithm such as DES or Blowfish is used. The information may also be encrypted using the encryption driver discussed here. Though described above as using public/private key pairs, any suitable encryption and decryption processes may be used to send information from a cartridge to an analytical system in communication with the cartridge. One skilled in the art given the benefit of this disclosure will be able to select suitable encryption and decryption processes for sending information from a cartridge to an analytical system in communication with the cartridge. In accordance with certain prefened embodiments, to ensure that information sent from the conduit cartridge to the customer or information sent from the conduit cartridge to the instrument is received, a confirmation receipt may be sent back to the conduit cartridge. For example, if a conduit cartridge e-mails an instrument to change the method of the instrument, the conduit cartridge would have no measure or indication if the instrument received the information and subsequently implemented the new method. Those skilled in the art would recognize that many e-mail systems have the ability to send a receipt, e.g confirmation, to the message source that the message has been received or read, and the e-mail system can time stamp messages when they are sent and received. This process prevents the ineffective transmission of information from the conduit cartridge to the instrument or from the conduit cartridge to the customer. It also prevents the instrument from performing methods that are no longer desired. In accordance with certain prefened embodiments, the conduit cartridge has the capability of receiving encrypted information sent from an instrument or a remote operating facility. This feature allows for automated remote field sampling and for monitoring of the remote sampling process from the monitoring facility. The cartridge may receive encrypted information by e-mail, fax, the itemet, a wireless device, a satellite receiver, a wire connecting the conduit cartridge to the operating facility, or by a similar receiving devices. The encrypted information that is sent by the customer and received by the conduit cartridge may be used to alter the method of the instrument or to change other parameters contained within the conduit cartridge. For example, referring to Fig. 18, upon receipt by the customer, the conduit cartridge accepts the customer's public key 701. Thereafter, exchange of information between the customer and the cartridge are encrypted and decoded using alternative public/private keys. Any information that is sent by the customer to the conduit cartridge can be encrypted prior to sending the information to the conduit cartridge. This information is encrypted using the cartridge's public key 705, for example. After receipt by the conduit cartridge, the encrypted information is decrypted by the cartridge using the cartridge's private key 709. Therefore, only the cartridge with conect key may decode the message effectively preventing decoding of the message by a cartridge that receives the message in enor. Any known encryption method may be used to encrypt the information that is sent from the customer to the cartridge. Preferably, a strong encryption algorithm such as DES or Blowfish is used. The information may also be encrypted using the encryption driver discussed here. Referring to Fig. 19, when the cartridge is first used in an instrument, the cartridge accepts the instrument's public key 751. Information sent from the instrument to the cartridge 753 is encrypted using the cartridge's public key 755. After receipt by the conduit cartridge, the encrypted information is decrypted using the cartridge's private key 759. Only the cartridge with conect key may decode the message. The instrument can e-mail secure summaries of each run back to the cartridge to allow updates of actual cartridge usage history including, but not limited to, increment run number, date and time of run, and any enor conditions (i.e. cartridge overpressure, column blockage, etc). Any known encryption method may be used to encrypt messages that are sent from the instrument to the cartridge. Preferably, a strong encryption algorithm such as DES or Blowfish is used. The information may also be encrypted using the encryption driver discussed here. One skilled in the art given the benefit of this disclosure will be able to select other suitable encryption and decryption processes for sending information from an analytical system or a remote operating facility to a cartridge.
In accordance with prefened embodiments, to ensure that the information sent from the customer to the conduit cartridge or information sent from the instrument to the conduit cartridge is received, a confirmation receipt may be sent back to the source of the information. For example, if a customer e-mails a remote conduit cartridge to change the method of the conduit cartridge, the customer would have no measure or indication if the conduit cartridge received the message and subsequently implemented the new method. As discussed above, many e-mail systems have the ability to send a receipt to the source that the message has been received or read, and the e-mail system can time stamp messages when they are sent and received. This process prevents the ineffective transmission of information from the customer or instrument to the conduit cartridge. It also prevents the conduit cartridge or instrument from performing methods that are no longer desired.
In accordance with certain prefened embodiments, the conduit cartridge .has the capability of receiving, decrypting, encrypting, and transmitting information simultaneously. For example, referring to Fig. '20, the conduit cartridge 803 is in communication, either by wire communication, direct communication, or by wireless communication, with an instrument 800 and with an operating facility 806. Information may be sent simultaneously to and from the conduit cartridge 803. In this example, encrypted information is sent from the conduit cartridge to the instrument 801. The information may be any information described here, such as, for example, a new method for analysis. The operating facility 806 receives encrypted information from the conduit cartridge 804. The information may include any information described here, such as data obtained from an analysis. Information can be sent from the operating facility to the cartridge 805. The information may be any information described here, such as a new method for analysis. The instrument 800 can send encrypted information to the conduit cartridge 802. This information may be any information described here, such as data obtained from an analysis. Upon receiving information, the conduit cartridge may store the information or pass the information on to the instrument 800 or operating facility 806, as the case may be. If necessary, the conduit cartridge may decrypt the information it receives from the instrument or the operating facility. Since the instrument and the operating facility may decrypt and encrypt the information using different keys, the conduit cartridge may act to decrypt and subsequently re- encrypt information. For example, if information is sent from an instrument to a conduit cartridge 802 (see Fig. 20), the information may be encrypted using the cartridge's public key (see 755 in Fig. 19). The information may then be decrypted using the cartridge's private key. Prior to transmission of the mformation to the operating facility, the decrypted information can be re-encrypted using the operating facility's public key. The conduit cartridge may then transmit the encrypted information to the operating facility using any transmission device disclosed here. Upon anival at the operating facility, the information can be decrypted using the operating facility's private key. Therefore, multiple keys are required to obtain and view information that is acquired by the instrument in communication with a conduit cartridge and subsequently sent to an operating facility. This feature provides for extra security, e.g. an unauthorized user may need more than one key to view the information. One skilled in the art would recognize that the encryption driver disclosed here could also be used to encrypt and decrypt the information or other suitable encryption and decryption processes may be used. i accordance with certain prefened embodiments, a similar process can occur when information is sent from the operating facility to the conduit cartridge. The information can first be encrypted using the cartridge's public key. The information can be transmitted by the operating facility and received by the conduit cartridge. The conduit cartridge can then decrypt the information using the cartridge's private key. If the information was intended for the instrument in communication with the conduit cartridge, the conduit cartridge would then re- encrypt the information using the instrument's public key. The encrypted information would be transmitted to the instrument. Upon arrival at the instrument, the instrument, using the instrument's private key, would decrypt the encrypted information. Therefore, multiple keys are required to obtain and view information that is sent from the operating facility, received by the conduit cartridge and subsequently sent to an instrument in communication with the conduit cartridge. These features provide added security measures to protect data and/or any other information sent to or sent by the conduit cartridge. hi accordance with certam prefened embodiments, while encryption of the information provides for secure transmission and reception of the information, it may not necessarily provide for efficient transmission and reception of the information. The information obtained by the conduit cartridge may consist of multiple parameter tables that must be sent to a remote operating facility, for example. Transmission and reception oflarge amounts of information, by e-mail, the Internet, or other transmission and reception devices and methods discussed here, would require a significant amount of time. It would be desirable to keep the amount of time required for transmitting and receiving the information to a minimum. Data compression can be used to decrease the amount of time required for transmission and reception of the information by decreasing the size of the information that is sent. Additionally, several compression algorithms also provide some degree of data encryption. For example, one data compression algorithm might convert a stream of symbols forming an input message into an encoded stream of symbols forming an output message. The input message may be reconstructed upon expanding the output message. An additional type of data compression technique is known as a dictionary-based compression. This technique uses codes for strings of symbols of an input message stream, thereby effectively reducing the size of the output message. A dictionary-based compression method maintains a table of recognized strings. Strings in the input stream that match the string entries that are stored in the dictionary are encoded using a code representing the conesponding dictionary entries. The compression methods discussed above, and other comparable compression methods, enable faster transmission and receipt of the information, may provide an added measure of encryption and security, and require less memory and processing power to encrypt, transmit and receive the information. One skilled in the art would recognize that any compression method may be used to compress the information on the conduit cartridge. One skilled in the art would also recognize compression may be performed prior to or after encryption of the information. In accordance with certain prefened embodiments, the conduit cartridge may include one or more digital IDs. Refening to Fig. 21, a digital ID 900 is created for the conduit cartridge (TDo). The information encrypted with TDo cannot be changed or read except by the manufacturer. TDo effectively identifies the conduit cartridge by cartridge manufacturer, design revision, lot number, manufacturing date, and any other parameters deemed appropriate by the manufacturer. A second digital ID 901 can be created, IDi, that identifies the method associated with the conduit cartridge. A third digital ID 902 can be created, ΣD , that identifies the instrument or instruments associated with the conduit cartridge. Assignment of digital IDs to the conduit cartridge provides one or more unique identifiers, some of which cannot be altered by an end-user (IDo), to the conduit cartridge. Additionally, if the conduit cartridge is removed from the instrument, a time stamp may be recorded, possibly within one of the digital IDs or as another digital ID, for example. One skilled in the art given the benefit of this disclosure will recognize that other digital Ids may be created and written to the conduit cartridges disclosed here.
Several examples of a fluid separation conduit cartridge are described below. The examples are not intended to limit the fluid separation conduit cartridges described here in any manner.
Example 1
An example of a fluid separation conduit cartridge interfaced with an analytical system, e.g. a chromatography system, is shown in Fig. 22. The analytical system typically is positioned within an end-user's facility for automated analyses. That is, the analytical system may be positioned near, or in-line, e.g. within the sample flow itself, such that analysis of samples may occur automatically, e.g. using auto-samplers, auto-injectors, and the like, or to facilitate rapid analysis of samples, e.g. samples during a process by an operator at an end-user's facility. For example, the system can be configured for analysis at specified intervals, e.g. every minute, hour, day, etc., such that continuous monitoring of a process can be performed with little or no user input. That is, the system can be configured to run a chromatographic method at a specified time interval without additional input from an operator. Referring to Fig. 22, the analytical system 950 typically comprises a conduit cartridge 960 interfaced with an analytical system, e.g. a chromatography instrument. Numerous mechanisms for interfacing the conduit cartridge with the analytical system are known to those skilled in the art and exemplary interfaces are described below. The analytical system optionally comprises a treatment unit 952, such as a filter, a guard column, a solid phase extraction silo for analyte pre-concentration, etc. The analytes may be pre- concentrated such that trace levels of analyte are concentrated to levels that are detectable by the analytical system. That is, the concentration of an analyte may be increased 101, 102, 103 104, 105, 10 , 107, 10 , 109 times or higher to levels that are easily detected using the detector of the analytical system. The treatment units are optional and may be replaced with other chromatographic devices, such as, for example, guard columns, filters, semi-permeable membranes, etc. Alternatively, the treatment units can be replaced with a fluid flow channel such that little or no operations are performed on the fluid prior to entry into the conduit cartridge. The system also typically includes a graphical user interface 954 for programming the system, e.g. the method, and/or monitoring system performance. The graphical interface may take numerous forms such as, for example, a keypad, an LCD screen, a touch screen, e.g. a touch screen display unit, etc. In certain embodiments, the graphical user interface is omitted and the information on the conduit cartridge is used to program the system. The system optionally contains a receiver/transmitter 956 to provide for remote operation and diagnosis, e.g. operation of the analytical system over the Internet and/or transmission of data over the Internet to a remote facility. In certain embodiments, the conduit cartridge itself comprises a receiver/transmitter, and thus the receiver/transmitter of the analytical system maybe omitted.
The system typically includes at least one detector 958. The type of detector used typically depends on the optical and physical properties of the species in the fluid. Prefened embodiments of the detector include at least a flow cell, e.g. a flow cell detector in communication with the cartridge. Additionally, the detectors are usually interchangeable such that the detector may be switched to a different type of detector, e.g. from a UV- Visible absorbance detector to a fluorescence detector. Suitable detectors include but are not limited to UN- Visible absorbance detectors, IR detectors, fluorescence detectors, electrochemical detectors, voltammetric detectors, coulometric detectors, potentiometric detectors, thermal detectors, ionization detectors, ΝMR detectors, EPR detectors, Raman detectors, refractive index detectors, ultrasonic detectors, photothermal detectors, photoacoustic detectors, evaporative light scattering detectors, mass-spectrometric detectors, and the like. The conduit cartridge 960 typically interfaces with the system through a manifold, which is discussed in detail below. In alternative embodiments, however, the conduit cartridge can interface directly with the system, e.g. can be connected directly to a fluid supply source, e.g. a pump and/or injector, without any intervening mechanical components, for example.
A closeable face plate 965 may be hingeably or removably attached to the system and can be closed over, or around, the system to protect the system from harsh environmental conditions, such as chemical solvents, UV radiation and the like. Supplying power and data to the chromatography system is a power and communication interface 966. Such interfaces typically are operative to provide a power source to the system, and can also provide communication of the system to a central computer, e.g. a computer in communication with the system for monitoring test results and/or for receiving information from the system. To achieve high reproducibility, a fixed-loop injector 964 is typically used to introduce sample into the system. Suitable fixed-loop injectors are well known to those skilled in the art and are commercially available from numerous sources, e.g. Beckman Instruments (Fullerton, CA). Other injectors may be used in place of the fixed-loop injector depending on the intended use of the system. For example, auto-injectors and/or auto-samplers may be used to provide for automated sampling and analysis of fluids. Suitable auto-samplers and auto-injectors are well known to those skilled in the art and are commercially available from numerous manufacturers. Optionally, the system can be programmed such that the auto-samplers and/or auto-injectors take samples at specified intervals, e.g. every 10 seconds, every minute, hourly, daily, weekly, monthly, etc., such that testing of the fluid can be performed without any input from a user. The system also includes precise microfluidics for accurate solvent gradients and includes solvent reservoirs and/or reagent magazines 968 for providing a fluid phase for running the chromatographic methods of the conduit cartridge, e.g. solvent gradients and the like. Such precise microfluidics can be achieved using numerous methods known to those skilled in the art, such as the methods described in the commonly assigned U.S. Patent Applications incorporated herein by reference for all purposes. As discussed above, typically in fluid communication with the solvent reservoirs are one or more pumps, which are operative to generate a fluid flow.
Typically the system installation can be customized such that the system can be positioned in numerous places in a facility. That is, the dimensions and shapes of the system can be designed for placement of the system in numerous areas of an operating facility, and the functions, e.g. the chromatographic methods, of the system can be tailored to perform innumerable tests desired by an end-user. In prefened embodiments, the system is placed near the sample or process to be monitored. That is, the system may be placed, either fixably or removably mounted, for example, near the fluid to be analyzed. For example, the system can be custom mounted to a conduit 970 that carries a fluid sample, e.g. river water, out of a manufacturing facility, for example. Depending upon the configuration of the system, the system can automatically sample the fluid flowing through the conduit, e.g. using an auto- sampler, auto-injector and the like, or one or more valves positioned in the conduit can be connected, to the analytical system for introducing samples into the system. Alternatively, an operator can manually take samples from the conduit and can introduce the samples through a fixed-loop injector, for example, using a needle, syringe, and the like. One skilled in the art given the benefit of this disclosure will be able to select suitable positions for the system described here depending on the type of analyses to be performed by the system
The fluid separation conduit cartridge typically interfaces with an analytical system through a manifold, e.g. the multi-layer laminated manifold 976 shown in Fig. 23. In Fig. 23, the conduit cartridge 972 will be understood to be analogous to conduit cartridge 960 shown in Fig. 22. The manifold 976 is seen in the particular embodiment of Fig. 23 to be a multi-layer laminated structure and has one or more microfluidic channels for introducing fluid into or receiving fluid from the fluid separation conduit cartridge. For example, the manifold 976 may comprise a first layer 978 attached to a second layer 979 which itself is attached to a third layer 980. As can be seen in Fig. 23, the second layer 979 typically is sandwiched between the first layer 978 and the third layer 980. Fluid channels can be provided within and/or at the interface(s) of the layers of such manifolds. For example, layer 979 in the manifold 976 of Fig. 23 can optionally be constructed as a microfluidic substrate assembly described in commonly assigned U.S. Patent Application No. 60/239,010 titled "Microfluidic Substrate Assembly and a Method of Making Same" and filed on October 06, 2000, the entire disclosure of which is hereby incorporated herein by reference for all purposes. The layers of the multi-layer laminated manifold each can be manufactured from any of numerous materials, including but not limited to PEEK, steel, e.g. stainless steel, and the like. Different layers of the multi-layer laminated manifold may be formed of different materials. In certain embodiments, the microfluidic flow channel is between two or more of the layers, e.g. the microfluidic flow channel can extend from the third layer into the second layer and optionally into the first layer, for example. The microfluidic flow channel can be formed in one or more of the layers using numerous techniques, e.g. UV embossing, micro-machining, micro-milling, and the like. For example, a micro-channel can be etched into the second layer and the first layer such that when the second layer is assembled to the first layer a fluid-tight microfluidic flow channel is created. As discussed above, the layers can be assembled to form the multi-layer laminated manifold. For example, the layers can be assembled by welding the layers together, optionally with a gasket positioned between the layers, or can be assembled using adhesives and the like. One skilled in the art given the benefit of this disclosure will be able to select suitable methods for assembling the layers of multi-layer laminated manifolds suitable for use with the conduit cartridges disclosed here. Preferably, the manifold comprises at least a first microfluidic channel in fluid communication with a solvent reservoir and with the input orifice of the fluid separation conduit cartridge. Thus solvent may flow into the conduit cartridge through a microfluidic channel in the manifold, e.g. by pumping the fluid into the cartridge using a pump. The manifold can include a second microfluidic channel that is in fluid communication with an output orifice of the conduit cartridge and typically is also in fluid communication with a detector. Therefore, a sample may be introduced into the conduit cartridge through the first microfluidic channel in the manifold, separated by the conduit cartridge, and the separated species can flow out of the conduit cartridge through the second microfluidic channel in the manifold to a detector that can measure the amount and nature of the species present in the sample. One skilled in the art given the benefit of this disclosure will be able to design other suitable manifolds and devices for interfacing the conduit cartridge with an analytical system.
The manifold may also contain an interface 974 mounted to the manifold. The interface typically is operative to create a fluid-tight seal when the cartridge is plugged into the manifold. That is, interface 974 is operative to provide a sealing force suitable to prevent fluid from leaking between the manifold and the fluid separation conduit cartridge. Optionally, one or more gaskets can be positioned between the conduit cartridge and the interface to aid in forming a fluid-tight seal. One skilled in the art, given the benefit of this disclosure, will be able to select suitable interfaces and mechanisms for retaining the conduit cartridge against the manifold to create a fluid-tight seal. Exemplary mechanisms include cams, springs, pressure plates, welding, clamps, gear drives, , and combinations of any of them, adapted to be actuated by gravity or manually, by solenoid, pneumatically, hydraulically, etc. As discussed above, in alternative embodiments the conduit cartridge is plugged directly into the system without using a manifold. For example, suitable connectors may be added to the conduit cartridge such that the conduit cartridge can be in direct fluid communication with a flow line, e.g. a flow line including one or more solvents and one or more species to be separated. One skilled in the art given the benefit of this disclosure will be able to select suitable mechanisms and devices for interfacing the conduit cartridge disclosed here to a chromatography system.
In other embodiments, the manifold itself is in communication with a device for generating a fluid flow. For example, referring to Fig. 24, a pump 990 can be attached to the manifold and can be configured such that fluid is drawn from a fluid reservoir, e.g. a solvent reservoir, and is forced into the manifold and subsequently into conduit cartridge 972. Such devices may be any of the devices discussed above including but not limited to pumps, vacuum manifolds and the like. The device for generating a fluid flow can also be in communication with one or more injectors and discussed above.
The information that is transmitted from the conduit cartridge to the analytical system can be encrypted as described above. For example, a conduit cartridge and an analytical system in communication with the conduit cartridge may be performing an analysis of components in river water. A remote operator may wish to alter the method used by the analytical system. The operator could transmit a new encrypted method to the cartridge. After receiving new encrypted method, the cartridge can subsequently send the encrypted message to the analytical system to alter the method used for analysis. Remotely receiving information provides for the alteration of the information without having to physically input the new information, using an input pad or comparable device, on the conduit cartridge or on the analytical system.
Example 2
An additional example of a fluid separation conduit cartridge interfaced with an analytical system is shown in Fig. 25. The analytical system 1000 comprises a fluid separation conduit cartridge 1002, e.g. a cartridge operative to perform capillary liquid chromatography, a graphical user interface 1004, and buffer cassettes 1006. The graphical user interface can be used to program the system and/or the fluid separation conduit cartridge for a specific method, e.g. a specific solvent gradient, run time, flow rate, and the like. As discussed above, the graphical user interface can be omitted in embodiments where the conduit cartridge is operative to program the system, e.g. where the conduit cartridge comprises an analytical method in a memory unit, for example. The buffer cassettes are equivalent to solvent reservoirs. That is, the buffer cassettes may be loaded with any suitable mobile phase needed to perform a chromatographic method, for example. Preferably, the mobile phases are different in different buffer cassettes such that solvent gradients can be implemented in the analytical method. The buffer cassettes may be in communication with one or more devices that are operative to generate a fluid flow (not shown), e.g. pumps and the like. The system 1000 typically has one or more power and communication interfaces 1008 and can be custom installed 1012 at a user's facility such that automated analyses may take place or such that the system is positioned near the fluid to be analyzed. As discussed above, the communication interface may send and/or receive data to or from a central computer, or other device. The system can be controlled by remote operation and diagnosis using a communication device 1010 by various methods, such as for example, e-mail over the Internet. The communication device typically is used to alter the method of the system without having to manually enter the new method using the graphical user interface. This feature provides for remote configuration, or reconfiguration as the case may be, of the system, i certain embodiments, the communication device is omitted and the system is controlled by information sent from the conduit cartridge to the system. As can be seen in Fig. 25, the size of the fluid separation conduit cartridge can be tailored such that it has the appropriate dimensions, e.g. height, width and thickness, and has the appropriate connectors to interface with any analytical system. For example, in embodiments comprising a capillary column, the dimensions of the conduit cartridge may be reduced such that the footprint of the cartridge is smaller and occupies less space on the analytical system. Suitable fluid connectors including those discussed here, e.g. ferrule subassemblies and ϋae like, can be attached to the conduit cartridges and are typically operative to create a fluid-tight seal between the conduit cartridge and the analytical system. Suitable electrical connectors can be attached to the conduit cartridge including those discussed above, for example, PCMCIA connectors, USB connectors, serial connectors and the like. The electrical connectors typically provide for transfer of information to and from the conduit cartridge.
As discussed above, the fluid separation conduit cartridge can interface with the system through a manifold, such as the manifold shown in Fig. 23, or can interface with the system directly, e.g. without any intervening physical components. Suitable connectors for interfacing with the manifold can be positioned on any surface of the housing unit of the conduit cartridge. The fluid separation conduit cartridge 1002 may include one or more connectors on a major surface, e.g. the back surface of the conduit cartridge 1002 shown in Fig. 25, such that the conduit cartridge can interface with a manifold and sit flush with the surface of the system. For example, the conduit cartridge may have outwardly projecting connectors that plug into a manifold, having receiving socket, positioned on the analytical system. When the conduit cartridge is plugged into the manifold, the conduit cartridge snaps into position on the analytical system, e.g. becomes seated in a slot on the surface of the analytical system. Thus, the conduit cartridge is in fluid communication with the analytical system and is retained by the system such that vibrations will not dislodge the conduit cartridge from the system, i.e. the conduit cartridge remains in fluid communication with the system even in the presence of vibrations or other physical disturbances. Numerous other devices, e.g. cams, pulleys, springs, pressure plates and the like may be used to retain the conduit cartridge against the manifold of the system such that a fluid tight seal is preserved.
Also as discussed above, information that is sent from conduit cartridge to the analytical system can be encrypted and/or compressed. Preferably, public/private key pairs are used to encrypt/decrypt information that is sent by the conduit cartridge or is received by the conduit cartridge. The analytical system may include multiple public/private key pairs. For example, the communications device may have it owns encryption/decryption keys such that information received from a remote operating facility by the communication device is decrypted prior to sending the information to the conduit cartridge. In other embodiments, the communication device decrypts the information and re-encrypts the information using a different key. Once received by the conduit cartridge the information may then be decrypted and a new method, for example, may be implemented by the analytical system. One skilled in the art, given the benefit of this disclosure, will recognize that a conduit cartridge can send information to the communication device and the commumcation device can subsequently transmit the information. As discussed above, the information can be encrypted and decrypted at numerous devices along the transmission path, hi prefened embodiments, the conduit cartridge receives encrypted information from a remote operating facility, decrypts the information, and alters the method of the analytical system in accordance with the information received. That is, the conduit cartridge is operative to receive encrypted information remotely and can alter the method of the analytical system by sending the decrypted information to the system. Although the present invention has been described above in terms of specific embodiments, it is anticipated that other uses, alterations and modifications thereof will become apparent to those skilled in the art given the benefit of this disclosure. It is intended that the following claims be read as covering such alterations and modifications as fall within the true spirit and scope of the invention. It is intended that the articles "a" and "an", as used below in the claims, cover both the singular and plural forms of the nouns which the articles modify.

Claims

What is claimed is:
1. A fluid separation conduit cartridge comprising: a housing unit; a fluid separation conduit within the housing unit; an inlet orifice in fluid communication with a first end of the fluid separation conduit; an outlet orifice in fluid communication with a second end of the fluid separation conduit, the fluid separation conduit providing a fluid flow path within the housing unit from the inlet orifice to the outlet orifice; and an encryption device mounted to the fluid separation conduit cartridge and operative to perform an encryption operation on a signal communicated between the encryption device and a component in fluid communication with the fluid separation conduit cartridge.
2. The fluid separation conduit cartridge in accordance with claim 1, further comprising a memory unit mounted to the housing unit.
3. The fluid separation conduit cartridge in accordance with claim 1, in which the encryption device is a microprocessor.
4. The fluid separation conduit cartridge in accordance with claim 2, further comprising one or more parameter tables in the memory unit.
5. The fluid separation conduit cartridge in accordance with claim 4, in which the one or more parameter tables are selected from the group consisting of encryption algorithms and compression algorithms.
6. The fluid separation conduit cartridge in accordance with claim 5, in which the encryption algorithm is selected from the group consisting of translation tables, word/byte rotation, Simple Key Management for Internet Protocols (SKIP), XOR bit masking, DES, Blowfish, andMD5.
7. The fluid separation conduit cartridge in accordance with claim 1, further comprising a transmitting and receiving device operative to transmit and receive information.
8. The fluid separation conduit cartridge in accordance with claim 7, in which the transmitting and receiving device operative to transmit and receive information is preferably selected from the group consisting of a modem, a fax machine, a wireless phone, a wireless transmitter, a RF transmitter, and a satellite transmitter.
9. The fluid separation conduit cartridge of claim 7, in which the transmitting and receiving device operative to transmit and receive information transmits and receives information by fax, e-mail, the Internet, or wirelessly.
10. The fluid separation conduit cartridge in accordance with claim 9 in which the transmitted information is encrypted.
11. The fluid separation conduit cartridge in accordance with claim 1 , in which the fluid separation conduit is potted with a potting compound.
12. The fluid separation conduit cartridge in accordance with claim 1, in which the encryption device operative to encrypt and decrypt information uses public/private key pairs to encrypt and decrypt information.
13. A method of making a fluid separation conduit cartridge, the method comprising: providing an assembled fluid separation conduit cartridge, the assembled fluid separation conduit cartridge comprising a housing unit, a fluid separation conduit within the housing unit, an inlet orifice in fluid communication with a first end of the fluid separation conduit, an outlet orifice in fluid communication with a second end of the fluid separation conduit, the fluid separation conduit providing a fluid flow path within the housing unit from the inlet orifice to the outlet orifice, and an encryption device mounted to the fluid separation conduit cartridge and operative to perform an encryption operation on a signal communicated between the encryption device and a component in fluid communication with the fluid separation conduit cartridge, packing the fluid separation conduit cartridge with appropriate packing material; and testing the fluid separation conduit cartridge.
14. The method of claim 13, in which the fluid separation conduit cartridge further comprises a transmitting and receiving device operative to transmit and receive information.
15. The method of claim 14, in which the transmitting and receiving device operative to transmit and receive information is selected from the group consisting of a modem, a fax machine, a wireless phone, a wireless transmitter, a RF transmitter, and a satellite transmitter.
16. The method of claim 13 , in which information is encrypted by providing information to an encryption driver and encrypting the provided information using an encryption algorithm.
17. A method of sending information from a fluid separation conduit cartridge, the method comprising: providing an assembled fluid separation conduit cartridge, the assembled fluid separation conduit cartridge comprising a housing unit, a fluid separation conduit within the housing unit, an inlet orifice in fluid communication with a first end of the fluid separation conduit, an outlet orifice in fluid communication with a second end of the fluid separation conduit, the fluid separation conduit providing a fluid flow path within the housing unit from the inlet orifice to the outlet orifice, and an encryption device mounted to the fluid separation conduit cartridge and operative to perform an encryption operation on a signal communicated between the encryption device and a component in fluid communication with the fluid separation conduit cartridge; a transmitting and receiving device operative to transmit and receive information; encrypting information using an encryption algorithm; and transmitting the encrypted information using the transmitting and receiving device.
18. The method of claim 17, in which the transmitting and receiving device operative to transmit and receive information is selected from the group consisting of a modem, a fax machine, a wireless phone or comparable device, a RF transmitter, and a satellite transmitter.
19. The method of claim 17, wherein the transmitted encrypted information is sent to an instrument in fluid communication with the fluid separation conduit cartridge.
20. The method of claim 17, in which the transmitted encrypted information is sent to an operating facility in communication with the fluid separation conduit cartridge.
21. A method of receiving information using a fluid separation conduit cartridge, comprising: providing an assembled fluid separation conduit cartridge, the assembled fluid separation conduit cartridge comprising a housing unit, a fluid separation conduit within the housing unit, an inlet orifice in fluid communication with a first end of the fluid separation conduit, an outlet orifice in fluid communication with a second end of the fluid separation conduit, the fluid separation conduit providing a fluid flow path within the housing unit from the inlet orifice to the outlet orifice, an encryption device mounted to the fluid separation conduit cartridge and operative to perform an encryption operation on a signal communicated between the encryption device and a component in fluid communication with the fluid separation conduit cartridge, and a transmitting and receiving device operative to transmit and receive information; transmitting encrypted information to the assembled fluid separation conduit cartridge; and receiving the encrypted information using the transmitting and receiving device operative to transmit and receive information.
22. The method of claim 21, further comprising the step of decoding the received encrypted information.
23. The method of claim 21 , in which the transmitted encrypted information is sent from an insfrument in fluid communication with the fluid separation conduit cartridge.
24. The method of claim 21, in which the transmitted encrypted information is sent from an operating facility in communication with the fluid separation conduit cartridge.
25. An analytical system comprising: a fluid flow channel; a fluid separation conduit cartridge; a detector; and an encryption device operative to perform an encryption operation on a signal communicated between the encryption device and another component of the analytical system; the fluid separation conduit cartridge being in fluid communication with the fluid flow channel and comprising a housing unit, a fluid separation conduit within the housing unit, an inlet orifice in fluid communication with a first end of the fluid separation conduit, and an outlet orifice in fluid communication with a second end of the fluid separation conduit and in fluid communication with the detector, the fluid separation conduit providing a fluid flow path within the housing unit from the inlet orifice to the outlet orifice.
26. The analytical system of claim 25, further comprising a device for generating fluid flow.
27. The analytical system of claim 25, in which the encryption device is mounted to the fluid separation conduit cartridge.
28. The analytical system of claim 25, in which the encryption device is operative to receive and decrypt an encrypted signal from a remote source.
29. The analytical system of claim 25, in which the encryption device is operative to receive and encrypt a signal from the detector conesponding to information regarding a test sample.
30. The analytical system of claim 25, in which the encryption device comprises a memory unit storing an encryption key.
31. The analytical system of claim 30, in which the memory unit is mounted to the housing unit.
PCT/US2001/031295 2000-10-06 2001-10-05 Fluid separation conduit cartridge with encryption capability WO2002028531A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002216618A AU2002216618A1 (en) 2000-10-06 2001-10-05 Fluid separation conduit cartridge with encryption capability
EP01986274A EP1324828A1 (en) 2000-10-06 2001-10-05 Fluid separation conduit cartridge with encryption capability
US10/034,757 US6934836B2 (en) 2000-10-06 2001-12-27 Fluid separation conduit cartridge with encryption capability

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US23839000P 2000-10-06 2000-10-06
US23880500P 2000-10-06 2000-10-06
US23901000P 2000-10-06 2000-10-06
US23906300P 2000-10-06 2000-10-06
US60/239,010 2000-10-06
US60/239,063 2000-10-06
US60/238,805 2000-10-06
US60/238,390 2000-10-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/034,757 Continuation US6934836B2 (en) 2000-10-06 2001-12-27 Fluid separation conduit cartridge with encryption capability

Publications (1)

Publication Number Publication Date
WO2002028531A1 true WO2002028531A1 (en) 2002-04-11

Family

ID=27499919

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2001/031295 WO2002028531A1 (en) 2000-10-06 2001-10-05 Fluid separation conduit cartridge with encryption capability
PCT/US2001/031333 WO2002028532A2 (en) 2000-10-06 2001-10-05 Microfluidic substrate assembly and method for making same
PCT/US2001/031291 WO2002028509A2 (en) 2000-10-06 2001-10-05 Fluid separation conduit cartridge

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/US2001/031333 WO2002028532A2 (en) 2000-10-06 2001-10-05 Microfluidic substrate assembly and method for making same
PCT/US2001/031291 WO2002028509A2 (en) 2000-10-06 2001-10-05 Fluid separation conduit cartridge

Country Status (4)

Country Link
US (2) US20020176804A1 (en)
EP (3) EP1324828A1 (en)
AU (3) AU2002213043A1 (en)
WO (3) WO2002028531A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8037902B2 (en) 2003-05-19 2011-10-18 Protasis Corporation Fluid logic device
EP2453231A3 (en) * 2010-11-12 2014-02-19 Wyatt Technology Europe Gmbh Hollow fibre connection
US9321053B2 (en) 2012-08-30 2016-04-26 Life Technologies Corporation Vertical clamp device
EP3163479A1 (en) * 2015-10-27 2017-05-03 Fresenius Medical Care Deutschland GmbH Reusable disposable and dialysis apparatus therefore

Families Citing this family (230)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893877B2 (en) 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
AU746051B2 (en) * 1998-06-12 2002-04-11 Asahi Kasei Kabushiki Kaisha Analyzer
US6306578B1 (en) 1999-03-19 2001-10-23 Genencor International, Inc. Multi-through hole testing plate for high throughput screening
US20020151040A1 (en) 2000-02-18 2002-10-17 Matthew O' Keefe Apparatus and methods for parallel processing of microvolume liquid reactions
US6827095B2 (en) 2000-10-12 2004-12-07 Nanostream, Inc. Modular microfluidic systems
GB2369086B (en) 2000-11-20 2005-06-08 Herfurth Laser Technology Ltd Reaction plate
US20020108860A1 (en) * 2001-01-15 2002-08-15 Staats Sau Lan Tang Fabrication of polymeric microfluidic devices
US7309409B2 (en) 2001-01-26 2007-12-18 Biocal Technology, Inc. Multi-channel bio-separation cartridge
US7829025B2 (en) * 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
DE10117772C2 (en) * 2001-04-09 2003-04-03 Advalytix Ag Mixing device and mixing method for mixing small amounts of liquid
US20030077817A1 (en) * 2001-04-10 2003-04-24 Zarur Andrey J. Microfermentor device and cell based screening method
US7314599B2 (en) * 2001-07-17 2008-01-01 Agilent Technologies, Inc. Paek embossing and adhesion for microfluidic devices
US7019831B2 (en) * 2001-08-24 2006-03-28 Applera Corporation Separation device substrate including non-fluorescent quencher dye
US6554591B1 (en) * 2001-11-26 2003-04-29 Motorola, Inc. Micropump including ball check valve utilizing ceramic technology and method of fabrication
WO2003050035A2 (en) 2001-12-06 2003-06-19 Nanostream, Inc. Adhesiveless microfluidic device fabrication
WO2003062815A1 (en) 2002-01-18 2003-07-31 Biocal Technology, Inc. Multi-segment cartridge for bio-separation with multiplexed fluorescence detection
US7250099B2 (en) 2002-12-13 2007-07-31 Biocal Technology, Inc. Optical detection alignment coupling apparatus
US7622083B2 (en) 2002-01-28 2009-11-24 Biocal Technology, Inc. Multi-capillary electrophoresis cartridge interface mechanism
US7846315B2 (en) 2002-01-28 2010-12-07 Qiagen Sciences, Llc Integrated bio-analysis and sample preparation system
US8114349B2 (en) 2002-01-28 2012-02-14 Qiagen Sciences, Llc Bio-analysis cartridge tracking and protection mechanism
US6773590B2 (en) * 2002-01-29 2004-08-10 Alexander Shkolnik Filtering membranes on the basis of welded polymer structures and method for manufacture thereof
US6581441B1 (en) * 2002-02-01 2003-06-24 Perseptive Biosystems, Inc. Capillary column chromatography process and system
US6814859B2 (en) 2002-02-13 2004-11-09 Nanostream, Inc. Frit material and bonding method for microfluidic separation devices
US7261812B1 (en) 2002-02-13 2007-08-28 Nanostream, Inc. Multi-column separation devices and methods
CN100528363C (en) 2002-02-13 2009-08-19 安捷伦科技有限公司 Microfluidic separation column devices and preparation method thereof
US7459127B2 (en) 2002-02-26 2008-12-02 Siemens Healthcare Diagnostics Inc. Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces
ITRM20020244A1 (en) * 2002-05-06 2003-11-06 Idiogenes S P A INTEGRATED DEVICE FOR THE PERFORMANCE OF A GENETIC INVESTIGATION AND RELATED EXAMINATION AND READING EQUIPMENT.
US7041258B2 (en) * 2002-07-26 2006-05-09 Applera Corporation Micro-channel design features that facilitate centripetal fluid transfer
US8277753B2 (en) 2002-08-23 2012-10-02 Life Technologies Corporation Microfluidic transfer pin
AU2003264734A1 (en) * 2002-09-06 2004-03-29 Epigem Limited Modular microfluidic system
AU2002334664A1 (en) * 2002-09-17 2004-04-08 Midwest Research Institute Carbon nanotube heat-exchange systems
US7104112B2 (en) * 2002-09-27 2006-09-12 Honeywell International Inc. Phased micro analyzer IV
US20040066703A1 (en) 2002-10-03 2004-04-08 Protasis Corporation Fluid-handling apparatus and methods
AU2003287449A1 (en) 2002-10-31 2004-05-25 Nanostream, Inc. Parallel detection chromatography systems
US6936167B2 (en) 2002-10-31 2005-08-30 Nanostream, Inc. System and method for performing multiple parallel chromatographic separations
JP4110948B2 (en) * 2002-11-28 2008-07-02 カシオ計算機株式会社 Small chemical reactor and fuel cell system
US7691247B2 (en) 2002-12-13 2010-04-06 Biocal Technology, Inc. Optical detection alignment coupling apparatus
US7087444B2 (en) * 2002-12-16 2006-08-08 Palo Alto Research Center Incorporated Method for integration of microelectronic components with microfluidic devices
US20060094108A1 (en) * 2002-12-20 2006-05-04 Karl Yoder Thermal cycler for microfluidic array assays
WO2004074818A2 (en) 2002-12-20 2004-09-02 Biotrove, Inc. Assay apparatus and method using microfluidic arrays
DE10301601B3 (en) * 2003-01-16 2004-08-12 Sls Micro Technology Gmbh Miniaturized gas chromatograph and injector therefor
TW571101B (en) * 2003-01-21 2004-01-11 Ind Tech Res Inst Fluid analysis apparatus
WO2004078639A1 (en) * 2003-03-07 2004-09-16 Tosoh Corporation Minute flow path structure body and die
DE20303748U1 (en) * 2003-03-10 2003-05-15 Sensobi Sensoren Gmbh analysis apparatus
US7187173B1 (en) 2003-04-15 2007-03-06 Purdue Research Foundation Multi-coil NMR probe with nonmagnetic diodes
AU2003901779A0 (en) * 2003-04-15 2003-05-01 Microtechnology Centre Management Limited Microfluidic sealing
US6962658B2 (en) * 2003-05-20 2005-11-08 Eksigent Technologies, Llc Variable flow rate injector
WO2005008072A1 (en) * 2003-07-16 2005-01-27 Ebm-Papst St. Georgen Gmbh & Co. Kg Mini fan
DE10332289B4 (en) * 2003-07-16 2018-06-14 Disetronic Licensing Ag Fluid system with safety device
EP1654066B1 (en) 2003-07-31 2014-11-12 Handylab, Inc. Processing particle-containing samples
US7357898B2 (en) * 2003-07-31 2008-04-15 Agency For Science, Technology And Research Microfluidics packages and methods of using same
US20050047967A1 (en) * 2003-09-03 2005-03-03 Industrial Technology Research Institute Microfluidic component providing multi-directional fluid movement
US20050100712A1 (en) * 2003-11-12 2005-05-12 Simmons Blake A. Polymerization welding and application to microfluidics
US7304732B1 (en) 2003-11-19 2007-12-04 United States Of America As Represented By The Secretary Of The Army Microelectromechanical resonant photoacoustic cell
US20050133437A1 (en) * 2003-12-17 2005-06-23 Intel Corporation Sieving media from planar arrays of nanoscale grooves, method of making and method of using the same
CN1922479B (en) * 2003-12-23 2010-09-08 埃格尼股份有限公司 Bio-analysis cartridge tracking and protection mechanism
JP2007524849A (en) * 2004-01-06 2007-08-30 ユィロス・パテント・アクチボラグ Contact heating arrangement
DE102004010504B4 (en) * 2004-03-04 2006-05-04 Degussa Ag Highly transparent laser-markable and laser-weldable plastic materials, their use and manufacture, and use of metal-mixed oxides and methods of marking of manufactured goods
AU2005222618A1 (en) 2004-03-12 2005-09-29 Biotrove, Inc. Nanoliter array loading
US7790325B2 (en) * 2004-03-31 2010-09-07 Canon Kabushiki Kaisha Valve having valve element displaced by at least one of a movement of a diaphragm and a movement of an actuator, and fuel cell using the valve
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
DE102004030619A1 (en) * 2004-06-24 2006-01-12 Forschungszentrum Karlsruhe Gmbh Method for joining workpieces made of plastic
JP4543312B2 (en) * 2004-08-10 2010-09-15 横河電機株式会社 Microreactor
JP2006174828A (en) * 2004-11-29 2006-07-06 Olympus Corp Biological sample-culturing and observing system, incubator box, supply means, and culture container
US7727477B2 (en) * 2004-12-10 2010-06-01 Bio-Rad Laboratories, Inc. Apparatus for priming microfluidics devices with feedback control
JP2006190707A (en) * 2004-12-28 2006-07-20 Toshiba Corp Electronic apparatus and television receiver applied with this electronic apparatus
US7704586B2 (en) 2005-03-09 2010-04-27 Degussa Ag Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving
US20090217997A1 (en) * 2005-05-04 2009-09-03 Alan Feinerman Thin welded sheets fluid pathway
US9260688B2 (en) 2005-07-07 2016-02-16 The Regents Of The University Of California Methods and apparatus for cell culture array
US9388374B2 (en) * 2005-07-07 2016-07-12 Emd Millipore Corporation Microfluidic cell culture systems
US9354156B2 (en) 2007-02-08 2016-05-31 Emd Millipore Corporation Microfluidic particle analysis method, device and system
US9637715B2 (en) 2005-07-07 2017-05-02 Emd Millipore Corporation Cell culture and invasion assay method and system
US8257964B2 (en) 2006-01-04 2012-09-04 Cell ASIC Microwell cell-culture device and fabrication method
JP2007040322A (en) * 2005-07-29 2007-02-15 Canon Inc Relief valve, its manufacturing method, and fuel cell
EP2660482B1 (en) 2005-08-22 2019-08-07 Life Technologies Corporation Vorrichtung, System und Verfahren unter Verwendung von nichtmischbaren Flüssigkeiten mit unterschiedlichen Volumen
US20070183928A1 (en) * 2005-09-09 2007-08-09 Eksigent Technologies, Llc Variable flow rate system for column chromatography
US7704457B2 (en) * 2005-11-18 2010-04-27 Patton Charles J Automatic, field portable analyzer using discrete sample aliquots
WO2007061981A2 (en) * 2005-11-21 2007-05-31 Lumera Corporation Surface plasmon resonance spectrometer with an actuator-driven angle scanning mechanism
EP1790861A1 (en) * 2005-11-25 2007-05-30 Bonsens AB Microfluidic system
US7463358B2 (en) * 2005-12-06 2008-12-09 Lumera Corporation Highly stable surface plasmon resonance plates, microarrays, and methods
US8034719B1 (en) * 2005-12-08 2011-10-11 The United States Of America As Represented By The Secretary Of The Navy Method of fabricating high aspect ratio metal structures
KR100738093B1 (en) * 2006-01-05 2007-07-12 삼성전자주식회사 Portable pH regulating device and method for regulating pH using the same
US8263360B2 (en) * 2006-01-30 2012-09-11 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Hydrophilic IR transparent membrane, spectroscopic sample holder comprising same and method of using same
JP4365832B2 (en) 2006-03-07 2009-11-18 株式会社日立製作所 Biochemical analysis cell, biochemical analysis kit and biochemical analysis device
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
WO2007112114A2 (en) 2006-03-24 2007-10-04 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US9476856B2 (en) 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8809068B2 (en) 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US8716015B2 (en) 2006-04-18 2014-05-06 Advanced Liquid Logic, Inc. Manipulation of cells on a droplet actuator
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
US7901947B2 (en) 2006-04-18 2011-03-08 Advanced Liquid Logic, Inc. Droplet-based particle sorting
JP4809130B2 (en) * 2006-05-31 2011-11-09 タッチパネル・システムズ株式会社 Acoustic wave type touch panel
US20110300034A1 (en) * 2006-06-19 2011-12-08 The Regents Of The University Of California Disposable, High Pressure Microfluidic Chips
US20100005867A1 (en) * 2006-07-17 2010-01-14 Agilent Technologies, Inc. Temperature adjustment of a fluidic sample within a fluidic device
DE102007021199B4 (en) * 2006-07-17 2016-02-11 Evonik Degussa Gmbh Compositions of organic polymer as matrix and inorganic particles as filler, process for their preparation and their use and moldings produced therewith
WO2008025351A2 (en) 2006-08-31 2008-03-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a bioreactor or lab-on-a-chip system and bioreactors or lab-on-a-chip systems produced therewith
US20080069732A1 (en) * 2006-09-20 2008-03-20 Robert Yi Diagnostic test system
US8530054B2 (en) * 2006-09-27 2013-09-10 3M Innovative Properties Company Solar control multilayer film
EP1925364A1 (en) * 2006-11-23 2008-05-28 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Multiple microfluidic connector
US7600413B2 (en) * 2006-11-29 2009-10-13 Schlumberger Technology Corporation Gas chromatography system architecture
US20080128341A1 (en) * 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Micro filtration device for separating blood plasma and fabrication method therefor
US7827012B2 (en) * 2006-12-08 2010-11-02 The Boeing Company System and method for controlling structural type integration
EP1935842A1 (en) * 2006-12-22 2008-06-25 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Multilayer device and apparatus and method for manufacturing such a device
EP1935843A1 (en) * 2006-12-22 2008-06-25 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Device built by joining a plurality of layers
US9152150B1 (en) 2007-02-22 2015-10-06 Applied Biosystems, Llc Compositions, systems, and methods for immiscible fluid discrete volume manipulation
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US8324372B2 (en) 2007-07-13 2012-12-04 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
WO2009023547A2 (en) 2007-08-14 2009-02-19 Arcxis Biotechnologies Polymer microfluidic biochip fabrication
WO2009029845A1 (en) * 2007-08-29 2009-03-05 Plexera Bioscience Llc Microfluidic apparatus for wide area microarrays
US20090060786A1 (en) * 2007-08-29 2009-03-05 Gibum Kim Microfluidic apparatus for wide area microarrays
CA2704216A1 (en) * 2007-10-29 2009-05-07 James F. Leary Hybrid microfluidic spr and molecular imaging device
CA2705553A1 (en) * 2007-11-13 2009-05-22 The Regents Of The University Of California Processes for rapid microfabrication using thermoplastics and devices thereof
KR20150079988A (en) * 2007-12-05 2015-07-08 올테크 어소시에이츠, 인크. Method and apparatus for analyzing samples and collecting sample fractions
US8004669B1 (en) 2007-12-18 2011-08-23 Plexera Llc SPR apparatus with a high performance fluid delivery system
DE102007061920A1 (en) 2007-12-21 2009-06-25 Paritec Gmbh Chamber, pump with chamber and method for the production of chambers
WO2009089189A2 (en) 2008-01-03 2009-07-16 Cellasic Cell culture array system for automated assays and methods of operation and manufacture thereof
US8199124B2 (en) * 2009-01-05 2012-06-12 Tactus Technology User interface system
US9063627B2 (en) 2008-01-04 2015-06-23 Tactus Technology, Inc. User interface and methods
US20160187981A1 (en) 2008-01-04 2016-06-30 Tactus Technology, Inc. Manual fluid actuator
US8243038B2 (en) * 2009-07-03 2012-08-14 Tactus Technologies Method for adjusting the user interface of a device
US8179375B2 (en) * 2008-01-04 2012-05-15 Tactus Technology User interface system and method
US9612659B2 (en) 2008-01-04 2017-04-04 Tactus Technology, Inc. User interface system
US9720501B2 (en) 2008-01-04 2017-08-01 Tactus Technology, Inc. Dynamic tactile interface
US8154527B2 (en) 2008-01-04 2012-04-10 Tactus Technology User interface system
US8570295B2 (en) 2008-01-04 2013-10-29 Tactus Technology, Inc. User interface system
US9588683B2 (en) 2008-01-04 2017-03-07 Tactus Technology, Inc. Dynamic tactile interface
US9372565B2 (en) 2008-01-04 2016-06-21 Tactus Technology, Inc. Dynamic tactile interface
US9052790B2 (en) 2008-01-04 2015-06-09 Tactus Technology, Inc. User interface and methods
US8179377B2 (en) * 2009-01-05 2012-05-15 Tactus Technology User interface system
US9128525B2 (en) 2008-01-04 2015-09-08 Tactus Technology, Inc. Dynamic tactile interface
US8922503B2 (en) 2008-01-04 2014-12-30 Tactus Technology, Inc. User interface system
US9557915B2 (en) 2008-01-04 2017-01-31 Tactus Technology, Inc. Dynamic tactile interface
US9423875B2 (en) 2008-01-04 2016-08-23 Tactus Technology, Inc. Dynamic tactile interface with exhibiting optical dispersion characteristics
US8922510B2 (en) 2008-01-04 2014-12-30 Tactus Technology, Inc. User interface system
US9298261B2 (en) 2008-01-04 2016-03-29 Tactus Technology, Inc. Method for actuating a tactile interface layer
US9552065B2 (en) 2008-01-04 2017-01-24 Tactus Technology, Inc. Dynamic tactile interface
US9274612B2 (en) 2008-01-04 2016-03-01 Tactus Technology, Inc. User interface system
US8947383B2 (en) 2008-01-04 2015-02-03 Tactus Technology, Inc. User interface system and method
US8553005B2 (en) 2008-01-04 2013-10-08 Tactus Technology, Inc. User interface system
US8456438B2 (en) 2008-01-04 2013-06-04 Tactus Technology, Inc. User interface system
US8547339B2 (en) 2008-01-04 2013-10-01 Tactus Technology, Inc. System and methods for raised touch screens
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US20090253163A1 (en) * 2008-04-02 2009-10-08 General Electric Company Iterative staining of biological samples
WO2009131645A2 (en) * 2008-04-23 2009-10-29 Parsortix, Inc. Methods and apparatus for segregation of particles
EP3855178A1 (en) * 2008-05-27 2021-07-28 PerkinElmer Health Sciences, Inc. Laminated microfluidic chromatography system
AU2009298517B2 (en) 2008-09-30 2015-09-24 Forced Physics Llc Method and apparatus for control of fluid temperature and flow
US20110272855A1 (en) * 2008-10-28 2011-11-10 Waters Technologies Corporation Techniques For Patterning Valve Components
WO2010065138A1 (en) 2008-12-04 2010-06-10 Alltech Associates Inc. Methods and apparatus for moving aliquot samples of fluid
EP2376208A4 (en) 2008-12-10 2013-08-28 Alltech Associates Inc Chromatography systems and system components
US9588684B2 (en) 2009-01-05 2017-03-07 Tactus Technology, Inc. Tactile interface for a computing device
US9250106B2 (en) 2009-02-27 2016-02-02 Tandem Diabetes Care, Inc. Methods and devices for determination of flow reservoir volume
WO2010099490A2 (en) 2009-02-27 2010-09-02 Tandem Diabetes Care, Inc. Methods and devices for determination of flow reservoir volume
US9095791B2 (en) * 2009-03-06 2015-08-04 Waters Technologies Corporation Electrospray interface to a microfluidic substrate
WO2010117874A2 (en) * 2009-04-05 2010-10-14 Microstaq, Inc. Method and structure for optimizing heat exchanger performance
WO2010119380A1 (en) 2009-04-15 2010-10-21 Koninklijke Philips Electronics N.V. Microfluidic device comprising sensor
WO2010132611A2 (en) * 2009-05-13 2010-11-18 The Regents Of The University Of California Textured metal nanopetals
WO2010138667A1 (en) * 2009-05-29 2010-12-02 Waters Technologies Corporation Chromatography apparatus and methods using multiple microfluidic substrates
EP2449452B1 (en) * 2009-07-03 2016-02-10 Tactus Technology User interface enhancement system
EP3284494A1 (en) 2009-07-30 2018-02-21 Tandem Diabetes Care, Inc. Portable infusion pump system
JP5425308B2 (en) * 2009-08-13 2014-02-26 コード フットウェア,エルエルシー Reconfigurable shoes and accessories and their docking assemblies
US8314934B2 (en) 2009-09-01 2012-11-20 Alltech Associates, Inc. Methods and apparatus for analyzing samples and collecting sample fractions
GB2475300B (en) * 2009-11-13 2012-12-05 Alan Finlay Microengineered supercritical fluid chromatography system
WO2011087816A1 (en) 2009-12-21 2011-07-21 Tactus Technology User interface system
US9298262B2 (en) 2010-01-05 2016-03-29 Tactus Technology, Inc. Dynamic tactile interface
US9353342B2 (en) 2010-01-21 2016-05-31 Emd Millipore Corporation Cell culture and gradient migration assay methods and devices
US8619035B2 (en) 2010-02-10 2013-12-31 Tactus Technology, Inc. Method for assisting user input to a device
JP5295149B2 (en) * 2010-02-25 2013-09-18 富士フイルム株式会社 Biological material analysis method and biological material analysis cell, chip and apparatus used therefor
WO2011112984A1 (en) 2010-03-11 2011-09-15 Tactus Technology User interface system
JP5308390B2 (en) * 2010-03-31 2013-10-09 富士フイルム株式会社 Test substance detection method and test substance detection apparatus
JP5485772B2 (en) * 2010-03-31 2014-05-07 株式会社エンプラス Microchannel chip and microanalysis system
KR20130141344A (en) 2010-04-19 2013-12-26 택투스 테크놀로지, 아이엔씨. Method of actuating a tactile interface layer
WO2011133604A1 (en) 2010-04-19 2011-10-27 Tactus Technology User interface system
US20110312793A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Microfluidic test module with low mass of probes
WO2012004423A1 (en) * 2010-07-07 2012-01-12 Ikerlan, S.Coop Method for producing microfluid devices.
DE102010031757A1 (en) * 2010-07-16 2012-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Microfluidic system and manufacturing method for a microfluidic system
WO2012014405A1 (en) * 2010-07-26 2012-02-02 株式会社エンプラス Microchannel chip and microanalysis system
JP6366937B2 (en) 2010-10-18 2018-08-01 ヴェロシス インコーポレイテッド Laminated leak-proof chemical processor, fabrication method and operating method
WO2012054780A1 (en) * 2010-10-20 2012-04-26 Tactus Technology User interface system
CN103124946B (en) 2010-10-20 2016-06-29 泰克图斯科技公司 User interface system and method
US8729502B1 (en) 2010-10-28 2014-05-20 The Research Foundation For The State University Of New York Simultaneous, single-detector fluorescence detection of multiple analytes with frequency-specific lock-in detection
GB2486641A (en) * 2010-12-20 2012-06-27 Agilent Technologies Inc A sealed fluidic component comprising two PAEK materials
US10526572B2 (en) 2011-04-01 2020-01-07 EMD Millipore Corporaticn Cell culture and invasion assay method and system
WO2012142516A1 (en) 2011-04-15 2012-10-18 Becton, Dickinson And Company Scanning real-time microfluidic thermo-cycler and methods for synchronized thermocycling and scanning optical detection
US9186672B2 (en) * 2011-04-18 2015-11-17 The Regents Of The Univeristy Of California Microfluidic device for whole blood sample preparation
JP5974429B2 (en) 2011-07-20 2016-08-23 ソニー株式会社 Composite material structure and manufacturing method thereof
CN104040238B (en) 2011-11-04 2017-06-27 汉迪拉布公司 Polynucleotides sample preparation apparatus
CN111808748B (en) 2011-12-03 2023-11-28 Emd密理博公司 Micro-cultivation system and method for microfluidic cell culture
BR112014018995B1 (en) 2012-02-03 2021-01-19 Becton, Dickson And Company systems to perform automated testing
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9657290B2 (en) 2012-07-03 2017-05-23 The Board Of Trustees Of The Leland Stanford Junior University Scalable bio-element analysis
DE102012216497A1 (en) 2012-09-17 2014-03-20 Robert Bosch Gmbh Electronic sensor device for detecting chemical or biological species, microfluidic device with such a sensor device and method for producing the sensor device and method for producing the microfluidic device
CN104662497A (en) 2012-09-24 2015-05-27 泰克图斯科技公司 Dynamic tactile interface and methods
US9405417B2 (en) 2012-09-24 2016-08-02 Tactus Technology, Inc. Dynamic tactile interface and methods
EP2719460B1 (en) * 2012-10-12 2016-12-14 Sony DADC Austria AG Microfluidic devices
US9346051B2 (en) * 2012-12-27 2016-05-24 Rohm Co., Ltd. Microchip
US20140262161A1 (en) * 2013-03-12 2014-09-18 David Lind Weigand Method and apparatus for dynamically cooling electronic devices
US9201049B2 (en) 2013-03-13 2015-12-01 Idex Health & Science Llc Connector with structural reinforcement and biocompatible fluid passageway
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9557813B2 (en) 2013-06-28 2017-01-31 Tactus Technology, Inc. Method for reducing perceived optical distortion
WO2015108969A1 (en) 2014-01-14 2015-07-23 908 Devices Inc. Sample collection in compact mass spectrometry systems
CN103920544B (en) * 2014-04-14 2015-06-17 南京理工大学 Method for preparing polydimethylsiloxane (PDMS) micro-fluidic chip
US10295513B2 (en) * 2014-05-15 2019-05-21 Shimadzu Corporation Ferrule container, and ferrule container containing ferrule
EP2977606A1 (en) * 2014-07-25 2016-01-27 IMEC vzw Microfluidic device and method of manufacturing thereof
WO2016033434A1 (en) * 2014-08-29 2016-03-03 Bio-Rad Laboratories, Inc. Epoxy mold making and micromilling for microfluidics
US10639633B2 (en) 2015-01-30 2020-05-05 Hewlett-Packard Development Company, L.P. Signal transmission bandwidth allocation on a microfluidic chip
US9861982B2 (en) * 2015-03-09 2018-01-09 Emd Millipore Corporation Connectors for pneumatic devices in microfluidic systems
US10488321B2 (en) * 2015-03-19 2019-11-26 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for high-throughput single cell and biomolecule analysis and retrieval in a microfluidic chip
EP3286543B1 (en) 2015-04-20 2023-03-29 Ventana Medical Systems, Inc. Inkjet deposition of reagents for histological samples
EP4104878A1 (en) 2015-08-20 2022-12-21 Tandem Diabetes Care, Inc. Drive mechanism for infusion pump
EP3199240A1 (en) * 2016-01-26 2017-08-02 ThinXXS Microtechnology AG Microfluidic flow cell with integrated electrode and method for producing the same
EP3529584A1 (en) * 2016-10-19 2019-08-28 H. Hoffnabb-La Roche Ag Systems and methods for staining of biological samples
CN110198786A (en) 2016-11-14 2019-09-03 浩康生物系统公司 Method and apparatus for sorting target particles
SG11201811323XA (en) * 2017-01-31 2019-01-30 Illumina Inc Fluidic devices and methods of manufacturing the same
GB201703233D0 (en) * 2017-02-28 2017-04-12 Ge Healthcare Bio Sciences Ab A modular bio-processing unit and a bio-processing system employing plural units
WO2018186884A1 (en) * 2017-04-07 2018-10-11 Hewlett-Packard Development Company, L.P. Microfluidic devices
US10488375B2 (en) 2017-06-02 2019-11-26 Venica Fluid Sciences Limited System for detecting liquid analytes
NL2020616B1 (en) 2018-02-03 2019-08-14 Illumina Inc Cartridge with laminated manifold
US11458246B2 (en) 2018-02-05 2022-10-04 Tandem Diabetes Care, Inc. Methods and systems for detecting infusion pump conditions
CA3103534A1 (en) 2019-05-21 2020-11-26 Illumina, Inc. Sensors having an active surface
WO2021173828A1 (en) * 2020-02-25 2021-09-02 Platelet Biogenesis, Inc. Systems and methods for forming a fluidic system
US11813608B2 (en) 2020-09-22 2023-11-14 Oregon State University Fiber substrate-based fluidic analytical devices and methods of making and using the same
NL2029067B1 (en) * 2021-08-27 2023-03-15 Univ Delft Tech Fluidic interface
WO2023072894A1 (en) * 2021-10-28 2023-05-04 Avantium Technologies B.V Process and equipment for conducting research on adsorption of compounds to solids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975647A (en) * 1987-06-01 1990-12-04 Nova Biomedical Corporation Controlling machine operation with respect to consumable accessory units
US5519635A (en) * 1993-09-20 1996-05-21 Hitachi Ltd. Apparatus for chemical analysis with detachable analytical units
US5892458A (en) * 1995-10-31 1999-04-06 Hewlett-Packard Company Apparatus for recognition of exchangeable parts in analytical measuring instruments

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586733A (en) * 1984-02-17 1986-05-06 Alltech Associates, Inc. Adapter coupling for liquid chromatography device
US4512899A (en) * 1984-03-19 1985-04-23 Milton Roy Company Liquid chromatography tube connections
US5222362A (en) * 1989-01-10 1993-06-29 Maus Daryl D Heat-activated drug delivery system and thermal actuators therefor
DE3915920A1 (en) * 1989-05-16 1990-11-22 Messerschmitt Boelkow Blohm Micro-mechanical structures for storing and testing substances - e.g. for disease diagnosis, is made of inert material, e.g. glass, and has defined pattern of depressions, cavities, etc.
US5601785A (en) * 1991-12-23 1997-02-11 Microsensor Technology, Inc. Connector for detachable column cartridge for gas chromatograph
US5304487A (en) * 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5726026A (en) * 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
EP0617278A1 (en) * 1993-03-12 1994-09-28 Orion Research, Incorporated Connectorized capillaries for use with separation instrumentation components
DE29522076U1 (en) * 1995-10-31 1999-09-02 Hewlett Packard Gmbh Device for recognizing interchangeable parts in analytical measuring devices
NL1004496C2 (en) * 1996-11-11 1998-05-14 Sgt Exploitatie Bv Apparatus for connecting a first pipe of a very small diameter to a second pipe, an injector and a detector of a gas chromatograph provided with such a device, a cassette with a capillary gas chromatography column for cooperation with such an injector and detector and a gas chromatograph.
WO1999060397A1 (en) * 1998-05-18 1999-11-25 University Of Washington Liquid analysis cartridge
US6054072A (en) * 1998-12-29 2000-04-25 Ford Motor Company Infrared bonding of transparent plastics articles
MXPA01007804A (en) * 1999-02-02 2003-06-09 Caliper Techn Corp Methods, devices and systems for characterizing proteins.
US6494433B2 (en) * 2000-06-06 2002-12-17 The Regents Of The University Of Michigan Thermally activated polymer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975647A (en) * 1987-06-01 1990-12-04 Nova Biomedical Corporation Controlling machine operation with respect to consumable accessory units
US5519635A (en) * 1993-09-20 1996-05-21 Hitachi Ltd. Apparatus for chemical analysis with detachable analytical units
US5892458A (en) * 1995-10-31 1999-04-06 Hewlett-Packard Company Apparatus for recognition of exchangeable parts in analytical measuring instruments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAY S: "MODULAR, DIGITAL, GAS ANALYZER ARCHITECTURE RE-THINKING THE APPROACH TO ANALYTICAL MEASUREMENTS", ADVANCES IN INSTRUMENTATION AND CONTROL, INSTRUMENT SOCIETY OF AMERICA, RESEARCH TRIANGLE PARK, US, vol. 49, no. PART 2, 1994, pages 197 - 208, XP000491427, ISSN: 1054-0032 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8037902B2 (en) 2003-05-19 2011-10-18 Protasis Corporation Fluid logic device
EP2453231A3 (en) * 2010-11-12 2014-02-19 Wyatt Technology Europe Gmbh Hollow fibre connection
US9321053B2 (en) 2012-08-30 2016-04-26 Life Technologies Corporation Vertical clamp device
US9527084B2 (en) 2012-08-30 2016-12-27 Life Technologies Corporation Vertical clamp device
EP3163479A1 (en) * 2015-10-27 2017-05-03 Fresenius Medical Care Deutschland GmbH Reusable disposable and dialysis apparatus therefore
WO2017072258A1 (en) 2015-10-27 2017-05-04 Fresenius Medical Care Deutschland Gmbh Reusable disposable and dialysis apparatus therefore
CN108352189A (en) * 2015-10-27 2018-07-31 费森尤斯医疗护理德国有限责任公司 It is reusable to abandon articles for use and dialysis machine therefore
US10957440B2 (en) 2015-10-27 2021-03-23 Fresenius Medical Care Deutschland Gmbh Reusable disposable and dialysis apparatus therefor

Also Published As

Publication number Publication date
US20020176804A1 (en) 2002-11-28
WO2002028532A9 (en) 2003-05-08
WO2002028509A3 (en) 2002-06-13
EP1324828A1 (en) 2003-07-09
EP1327141A2 (en) 2003-07-16
WO2002028532A2 (en) 2002-04-11
AU2002213043A1 (en) 2002-04-15
AU2001296674A1 (en) 2002-04-15
WO2002028532A3 (en) 2003-02-06
AU2002216618A1 (en) 2002-04-15
WO2002028509A2 (en) 2002-04-11
US20070122314A1 (en) 2007-05-31
EP1328346A2 (en) 2003-07-23

Similar Documents

Publication Publication Date Title
US6934836B2 (en) Fluid separation conduit cartridge with encryption capability
EP1324828A1 (en) Fluid separation conduit cartridge with encryption capability
US20050191212A1 (en) Fluid separate conduit cartridge
US6613224B1 (en) Liquid separation column smart cartridge
US20080047836A1 (en) Configurable Microfluidic Substrate Assembly
CA2175843C (en) Capillary sampling flow controller
CN104048916B (en) Flow cell
Barceló Sample handling and trace analysis of pollutants: techniques, applications and quality assurance
US5804701A (en) Compact, low-profile chromatograph
US6972568B2 (en) Radially-compact NMR flow cell assemblies and methods
WO2020097812A1 (en) Fitting assemblies for fluidic connections
Coates et al. Modular, cost-effective, and portable capillary gradient liquid chromatography system for on-site analysis
Lotter et al. Evaluation of pressure stable chip-to-tube fittings enabling high-speed chip-HPLC with mass spectrometric detection
CA1055723A (en) Chromatograph injection system
JP7382070B2 (en) Integrated column and detector in module for liquid chromatography
US7507336B2 (en) Connector for analytical devices
Dossi et al. Application of microchip electrophoresis with electrochemical detection to environmental aldehyde monitoring
US20060045821A1 (en) Microreactor witii controllable pressure and temperature for in situ material investigations
US20020176800A1 (en) Curved miniature liquid chromatography column
Meier‐Augenstein et al. Bridging the information gap between isotope ratio mass spectrometry and conventional mass spectrometry
Mishra et al. Electrodialytic reagent introduction in flow systems
Furter et al. Injection system for fast capillary electrophoresis based on pressure regulation with flow restrictors
Kumar et al. A review on the hyphenation of solid phase microextraction with capillary electrophoresis and mass spectrometry
WO2021191508A1 (en) Apparatus for analyzing laboratory samples, a cartridge for liquid chromatography and a method for heating a sample
Higuchi et al. Development of a new gas-permeation system and its application to the spectrophotometric determination of ammonium ion by FIA

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10034757

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001986274

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001986274

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001986274

Country of ref document: EP