WO2002043677A2 - Kosmetische und dermatologische haarbehandlungsmittel - Google Patents

Kosmetische und dermatologische haarbehandlungsmittel Download PDF

Info

Publication number
WO2002043677A2
WO2002043677A2 PCT/EP2001/013862 EP0113862W WO0243677A2 WO 2002043677 A2 WO2002043677 A2 WO 2002043677A2 EP 0113862 W EP0113862 W EP 0113862W WO 0243677 A2 WO0243677 A2 WO 0243677A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
hair treatment
vinyl
composition according
optionally
Prior art date
Application number
PCT/EP2001/013862
Other languages
English (en)
French (fr)
Other versions
WO2002043677A3 (de
Inventor
Matthias LÖFFLER
Roman MORSCHHÄUSER
Jan Glauder
Original Assignee
Clariant Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Gmbh filed Critical Clariant Gmbh
Priority to EP01989524A priority Critical patent/EP1345575B1/de
Priority to US10/433,117 priority patent/US7244421B2/en
Priority to DE50115326T priority patent/DE50115326D1/de
Priority to BR0115845-7A priority patent/BR0115845A/pt
Publication of WO2002043677A2 publication Critical patent/WO2002043677A2/de
Publication of WO2002043677A3 publication Critical patent/WO2002043677A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8182Copolymers of vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/91Graft copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring

Definitions

  • the present invention relates to cosmetic and dermatological hair treatment compositions containing comb-shaped copolymers based on acryloyldimethyltauric acid.
  • Such agents are often distributed, for example, in the form of a clear hair conditioner, an aerosol foam or also in emulsion form as so-called cream rinses after shampooing in still wet hair and, depending on the type of hair treatment agent, either rinsed out with water after a few minutes of exposure or left on the hair ,
  • the patent literature contains numerous proposals for realizing such a project, including the use of water-soluble polymers, cationic fatty acid derivatives, mainly cationic, in particular quaternary ammonium compounds, such as cetyltrimethylammonium chloride, alone or in combination with various wax-like additives, such as hydrocarbons, fatty alcohols and fatty acids. Also oils and oil-like substances, such as liquid hydrocarbon compounds, fatty alcohols, monocarboxy acid esters (monocarboxylic acid ester), polyalcohol esters, water-soluble silicones and emulsions of silicones and other oils are described.
  • a disadvantage of the agents described above is that, after rinsing, they often give the damp hair a sticky feel and weigh down the dry hair.
  • silicone derivatives are silicone derivatives.
  • Silicones have the disadvantage of making thin hair so soft, in particular, that it can hardly be styled.
  • insoluble silicones e.g. are proposed in US 2,826,551, often insufficiently incorporated into formulations.
  • the problem here is the generation of a suspension of the finely divided, insoluble polymers, which should be stable over a longer period of time.
  • a variety of compounds have been added to the silicone-containing formulations to effect thickening and stabilization. The most successful procedure to date is described in EP 0.181, 773, where the use of long-chain acyl derivatives leads to the formation of stable formulations.
  • the acyl derivatives contain fatty acid alkanolamides, fatty acid dialkanolamides, alkanolamides and their derivatives. These amides are suspected to be involved in the formation of nitrosamines. It is therefore desirable to formulate cosmetic preparations without such derivatives.
  • Hair care products must also have a viscosity that is adapted to the respective purpose and can be adjusted as variably as possible. For example, relatively high viscosities are required of a hair gel or a hair treatment cream, whereas a hair rinse is usually a flowable liquid with a relatively low viscosity.
  • the polyacrylic acids based on poly (meth) acrylic acid and their water-soluble copolymers are known as thickeners and gel formers.
  • the variety of possible structures and the associated diverse application possibilities are not least expressed in a large number of new patents that have been registered worldwide since the mid-1970s.
  • a major disadvantage of these thickeners based on poly (meth) acrylic acid is the strong pH dependence of the thickening performance. In general, viscosity is only built up when the pH of the Formulation is set above pH 6 and thus the poly (meth) acrylic acid is present in neutralized form.
  • the corresponding gels / formulation are sensitive to UV radiation and shear and also impart a sticky feeling on the skin and on the hair.
  • thickener polymers are also in need of improvement. Since the thickeners based on poly (meth) acrylic acid are generally in acidic form, an additional neutralization step is required, for example, in the formulation.
  • novel thickeners based on crosslinked and neutralized acryloyldimethyltaurates were introduced onto the market (EP-B-0 815 828, EP-B-0 815 844, EP-B-0 815 845 and EP-B-0 829 258) , Both in the form of the pre-neutralized homopolymer and as a corresponding copolymer ( ® Aristoflex AVC, Clariant GmbH) these types based on sulfonate groups are superior in many respects to the poly (meth) acrylates.
  • acryloyldimethyl taurate-based thickener systems show excellent properties in pH ranges below pH 6, ie in a pH range in which it is no longer possible to work with conventional poly (meth) acrylate thickeners.
  • High UV and shear stability, excellent viscoelastic properties, easy processing and a favorable toxicological profile of the main monomer make acryloyldimethyltaurate-based thickener systems modern, new representatives with high potential for the future.
  • AMPS acryloyldimethyltauric acid
  • the invention relates to cosmetic and dermatological
  • Hair treatment composition containing at least one copolymer, obtainable by radical copolymerization of
  • D) optionally one or more at least monofunctional, silicon-free component capable of radical polymerization
  • E) optionally one or more at least monofunctional, fluorine-containing component (s) capable of free-radical polymerization
  • the copolymers according to the invention preferably have a molecular weight of 10 3 g / mol to 10 9 g / mol, particularly preferably 10 4 to 10 7 g / mol, particularly preferably 5 * 10 4 to 5 * 10 ⁇ g / mol.
  • the Acryloyldimethyltauraten can be the inorganic or organic salts of Acryloyldimethyltaurinklare (Acrylamidopropyl-2-methyl-2-sulfonic acid).
  • the Li + , Na + , K + , Mg ++ , Ca ++ , Al +++ and / or NH 4 + salts are preferred.
  • the monoalkylammonium, dialkylammonium, trialkylammonium and / or tetraalkylammonium salts are likewise preferred, it being possible for the alkyl substituents of the amines, independently of one another, to be (C 1 -C 22 ) alkyl radicals or (C 2 -CIO) hydroxyalkyl radicals. Furthermore, one to three times ethoxylated ammonium compounds with different degrees of ethoxylation are preferred. It should be noted that mixtures of two or more of the above representatives are also within the meaning of the invention.
  • the degree of neutralization of acryloyldimethyltauric acid can be between 0 and 100%, a degree of neutralization of above 80% is particularly preferred.
  • the content of acryloyldimethyltauric acid or acryloyldimethyltaurates is at least 0.1% by weight, preferably 20 to 99.5% by weight, particularly preferably 50 to 98% by weight.
  • comonomers B All olefinically unsaturated, non-cationic monomers whose reaction parameters permit copolymerization with acryloyldimethyltauric acid and / or acryloyldimethyltaurates in the respective reaction media can be used as comonomers B).
  • Preferred comonomers B) are unsaturated carboxylic acids and their anhydrides and salts, and also their esters with aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic alcohols with a carbon number of 1 to 30.
  • Acrylic acid is particularly preferred as unsaturated carboxylic acids,
  • Methacrylic acid styrene sulfonic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid and senecioic acid.
  • Preferred counterions are Li + , Na + , K + , Mg ++ , Ca ++ , Al +++ , NH 4 + , monoalkyl ammonium, dialkylammonium, trialkylammonium and / or tetraalkylammonium radicals
  • the alkyl substituents of the amines can independently of one another be (C 1 -C 22 ) -alkyl radicals or (C 2 -C -oo) -hydroxyalkyl radicals.
  • one to three times ethoxylated ammonium compounds with different degrees of ethoxylation can also be used.
  • the degree of neutralization of the carboxylic acids can be between 0 and 100%.
  • comonomers B) are open-chain N-vinylamides, preferably N-vinylformamide (VIFA), N-vinylmethylformamide, N-vinylmethylacetamide (VIMA) and N-vinylacetamide; cyclic N-vinylamides (N-vinyllactams) with a ring size of 3 to 9, preferably N-vinylpyrrolidone (NVP) and N-vinylcaprolactam; Amides of acrylic and methacrylic acid, preferably acrylamide, methacrylamide, N, N-dimethyl-acrylamide, N, N-diethylacrylamide and N, N-diisopropylacrylamide; alkoxylated acrylic and methacrylamides, preferably hydroxyethyl methacrylate, hydroxymethyl methacrylamide, hydroxyethyl methacrylamide, hydroxypropyl methacrylamide and succinic acid mono- [2- (methacryloyloxy) e
  • the proportion by weight of the comonomers B), based on the total mass of the copolymers, can be 0 to 99.8% by weight and is preferably 0.5 to 80% by weight, particularly preferably 2 to 50% by weight.
  • Suitable comonomers C) are all olefinically unsaturated monomers with a cationic charge which are capable of forming copolymers in the selected reaction media with acryloyldimethyltauric acid or its salts.
  • the resulting distribution of the cationic charges over the chains can be statistical, alternating, block-like or gradient-like.
  • the cationic comonomers C) also include those which carry the cationic charge in the form of a betaine, zwitterionic or amphoteric structure.
  • Comonomers C) in the sense of the invention are also amino-functionalized precursors which are converted into their corresponding quaternary (e.g. reaction with dimethyl sulfate, methyl chloride), zwitterionic (e.g. reaction with hydrogen peroxide), betaine (e.g. reaction with chloroacetic acid) or amphomeric derivatives by polymer-analogous reactions can.
  • quaternary e.g. reaction with dimethyl sulfate, methyl chloride
  • zwitterionic e.g. reaction with hydrogen peroxide
  • betaine e.g. reaction with chloroacetic acid
  • amphomeric derivatives by polymer-analogous reactions can.
  • DMAC Diallyldimethylammonium chloride
  • the proportion by weight of the comonomers C), based on the total mass of the copolymers, can be 0.1 to 99.8% by weight, preferably 0.5 to 30% by weight and particularly preferably 1 to 20% by weight.
  • Suitable polymerizable, silicon-containing components D) are all at least mono-olefinically unsaturated compounds which are capable of radical copolymerization under the reaction conditions chosen in each case.
  • the distribution of the individual silicone-containing monomers across the resulting polymer chains does not necessarily have to be statistical.
  • the formation of, for example, block (also multiblock) or gradient-like structures is also within the meaning of the invention. Combinations of two or more different silicone-containing representatives are also possible.
  • the use of silicone-containing components with two or more polymerization-active groups leads to the formation of branched or cross-linked structures.
  • Preferred silicone-containing components are those of the formula (I).
  • R 1 represents a polymerizable function from the group of vinylically unsaturated compounds, which is suitable for building polymer structures by radical means.
  • a suitable chemical bridge Z is required to bind the silicone-containing polymer chain to the reactive end group R 1 .
  • Preferred bridges Z are -O-, - ((Ci - C 50 ) alkylene) -, - ((C 6 - C 30 ) arylene) -, - ((C 5 - C 8 ) cycloalkylene) -, - ((C ⁇ -C 50 ) alkenylene) -, - (polypropylene oxide) n -, - (polyethylene oxide) 0 -,
  • n and o independently of one another are numbers from 0 to 200 and the distribution of the EO / PO units can be random or block-shaped.
  • bridge groupings Z are - ((CM - C ⁇ o) alkyl) - (Si (OCH 3 ) 2 ) - and - (Si (OCH 3 ) 2 ) -.
  • the polymer middle part is represented by silicone-containing repeat units.
  • the radicals R 3 , R 4 , R 5 and R 6 independently of one another are -CH 3 , -O-CH 3 , -C 6 H 5 or -OC 6 H 5 .
  • the indices w and x represent stoichiometric coefficients which, independently of one another, are 0 to 500, preferably 10 to 250.
  • the distribution of the repetition units over the chain can be not only purely statistical, but also block-like, alternating or gradient-like.
  • R 2 can symbolize on the one hand an aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic (Ci - C 50 ) hydrocarbon radical (linear or branched) or -OH, -NH 2 , -N (CH 3 ) 2, -R 7 or for them
  • Structure unit [-ZR 1 ] stand. The meaning of the two variables Z and R 1 has already been explained. R 7 stands for further Si-containing groups. preferred
  • R 7 radicals are -O-Si (CH 3 ) 3 , -O-Si (Ph) 3 , -O-Si (O-Si (CH 3 ) 3) 2 CH 3 ) and
  • R 2 represents an element of the group [-ZR 1 ], it is a matter of difunctional monomers which can be used for crosslinking the resulting polymer structures.
  • Formula (I) describes not only vinylically functionalized, silicone-containing
  • Particularly preferred silicone-containing components are the following acrylic or methacrylic modified silicone-containing components:
  • the content of silicon-containing components can be up to 99.9% by weight, preferably 0.5 to 30% by weight, particularly preferably 1 to 20% by weight.
  • Suitable polymerizable, fluorine-containing components E) are all at least mono-olefinically unsaturated compounds which are capable of radical copolymerization under the reaction conditions chosen in each case.
  • the distribution of the individual fluorine-containing monomers across the resulting polymer chains does not necessarily have to be statistical.
  • the formation of, for example, block (also multiblock) or gradient-like structures is also within the meaning of the invention.
  • Combinations of two or more different fluorine-containing components E) are also possible, it being clear to the expert that monofunctional representatives lead to the formation of comb-shaped structures, whereas di-, tri- or polyfunctional components E) lead to at least partially crosslinked structures.
  • Preferred fluorine-containing components E) are those of the formula (II).
  • R 1 represents a polymerizable function from the group of vinylically unsaturated compounds, which is suitable for building polymer structures by radical means.
  • a suitable chemical bridge Y is required to link the fluorine-containing group to the reactive end group R 1 .
  • Preferred bridges Y are -O-, -C (O) -, -C (O) -0-, -S-, -O-CH 2 -CH (O -) - CH 2 OH, -O-CH 2 - CH (OH) -CH 2 -O-, -O-SO2-O-, -OS (O) -O-, -PH-, -P (CH 3 ) -, -PO3-, -NH-, -N (CH 3 ) -, -O- ⁇ CsoJ alkyl-O-, -O-phenyl-O-, -O-benzyl-O-, -O- (C 5 -C 8 ) cycloalkyl-O-, -O- ( CrC 5 o) alkenyl-O-, -0- (CH (CH 3 ) -CH 2 -O) n -, -O- (CH 2 -CH 2 -O
  • Perfluorooctyethanolyl poly [ethyl glycol block copropylene glycol ether] methacrylate, perfluorooctyl propanolyl polypropylene glycol ether methacrylate.
  • the content of fluorine-containing components can be up to 99.9% by weight, preferably 0.5 to 30% by weight, particularly preferably 1 to 20% by weight.
  • the macromonomers F) are at least simple olefinically functionalized polymers with one or more discrete repeating units and a number average molecular weight greater than or equal to 200 g / mol. Mixtures of chemically different macromonomers F) can also be used in the copolymerization.
  • Macromonomers are polymeric structures that are composed of one or more repeating unit (s) and have a molecular weight distribution that is characteristic of polymers.
  • Preferred macromonomers F) are compounds of the formula (III).
  • R 1 represents a polymerizable function from the group of vinylically unsaturated compounds which are suitable for building polymeric structures by radical means.
  • a suitable bridging group Y is required to bind the polymer chain to the reactive end group.
  • Preferred bridges Y are -O-, -C (O) -, -C (0) -O-, -S-, -O-CH 2 -CH (O -) - CH 2 OH, -O-CH 2 - CH (OH) -CH 2 O-, -0-SO 2 -O-, -O-SO 2 -O-, -O-SO-O-, -PH-, -P (CH 3 ) -, -PO 3 -, -NH- and -N (CH 3 ) -, particularly preferably -O-.
  • the polymeric middle part of the macromonomer is represented by the discrete repeat units A, B, C and D.
  • Preferred repeating units A, B, C and D are derived from acrylamide, methacrylamide, ethylene oxide, propylene oxide, AMPS, acrylic acid, methacrylic acid, methyl methacrylate, acrylonitrile, maleic acid, vinyl acetate, styrene, 1, 3-butadiene, isoprene, isobutene, diethylacrylamide and diisopropylacrylamide ,
  • indices v, w, x and z in formula (IM) represent the stoichiometric coefficients relating to the repeating units A, B, C and D.
  • v, w, x and z are independently 0 to 500, preferably 1 to 30, the The sum of the four coefficients must be ⁇ 1 on average.
  • the distribution of the repeating units over the macromonomer chain can be statistical, block-like, alternating or gradient-like.
  • R 2 represents a linear or branched aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic (-C-C 5 o) hydrocarbon radical, OH, -NH 2 , -N (CH 3 ) 2 or is the same as the structural unit [-YR 1 ].
  • R 2 equal to [-YR 1 ]
  • these are difunctional macromonomers which are suitable for crosslinking the copolymers.
  • Particularly preferred macromonomers F) are acrylic or methacrylic monofunctionalized alkyl ethoxylates of the formula (IV).
  • R 3 , 4 , R 5 and R 6 are independently hydrogen or n-aliphatic, iso-aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic (-C-C 30 ) hydrocarbon radicals.
  • R 3 and R 4 are preferably H or —CH 3 , particularly preferably H;
  • R 5 is H or -CH 3 ; and
  • R 6 is an n-aliphatic, iso-aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic (C1-C30) -
  • Ethylene oxide units (EO) and propylene oxide units (PO), v and w are independently 0 to 500, preferably 1 to 30, the sum of v and w having to be ⁇ 1 on average.
  • Macromonomer chains can be statistical, block-like, alternating or gradient-like.
  • Y stands for the bridges mentioned above.
  • Also particularly suitable as macromonomers F) are esters of (meth) acrylic acid with
  • Genapol ® types are products from Clariant, GmbH.
  • the molecular weight of the macromonomers F) is preferably from 200 g / mol to 10 6 g / mol, particularly preferably 150 to 10 4 g / mol and particularly preferably 200 to 5000 g / mol.
  • suitable macromonomers up to 99.9% by weight can be used.
  • Fractions of 1 to 20% by weight and 75 to 95% by weight are particularly preferred.
  • Preferred copolymers are those which can be obtained by copolymerizing at least components A), C) and D).
  • copolymers are those which can be obtained by copolymerizing at least components A), C) and E).
  • copolymers are those which can be obtained by copolymerizing at least components A), C) and F).
  • copolymers are those which can be obtained by copolymerizing at least components A), D) and F).
  • copolymers are those which can be obtained by copolymerizing at least components A) and F).
  • copolymers are those which can be obtained by copolymerizing at least components A) and D).
  • copolymers are those which can be obtained by copolymerizing at least components A) and E).
  • the copolymerization is carried out in the presence of at least one polymeric additive G), the additive G) completely or is added partially dissolved.
  • the use of several additives G) is also according to the invention.
  • Crosslinked additives G) can also be used.
  • additives G) or their mixtures only have to be wholly or partly soluble in the chosen polymerization medium.
  • additive G) has several functions. On the one hand, it prevents the formation of over-crosslinked polymer fractions in the copolymer being formed in the actual polymerization step and, on the other hand, the additive G) is statistically attacked by active radicals in accordance with the generally known mechanism of graft copolymerization. As a result, depending on the additive G), more or less large amounts of it are incorporated into the copolymers.
  • suitable additives G) have the property of changing the solution parameters of the copolymers which form during the radical polymerization reaction in such a way that the average molecular weights are shifted to higher values.
  • those which were produced with the addition of additives G) advantageously show a significantly higher viscosity in aqueous solution.
  • Preferred additives G) are homo- and copolymers soluble in water and / or alcohols, preferably in t-butanol. Copolymers are also to be understood as meaning those with more than two different types of monomers.
  • additives G) are homopolymers and copolymers of N-vinylformamide, N-vinyl acetamide, N-vinyl pyrrolidone, ethylene oxide, propylene oxide, acryloyldimethyl tauric acid, N-vinyl caprolactam, N-vinyl methylacetamide, acrylamide, acrylic acid, methacrylic acid, N-vinyl morpholide,
  • DMAC diallyldimethylammonium chloride
  • MATAC [2- (methacryloyloxy) ethyl] trimethylammonium chloride
  • G Particularly preferred additives G are polyvinylpyrrolidones (such as Luviskol K15 ®, ® K20 and K30 ® from BASF), poly (N-vinylformamides), poly (N-
  • the molecular weight of the additives G) is preferably 10 2 to 10 7 g / mol, particularly preferably 0.5 * 10 4 to 10 6 g / mol.
  • the amount of polymeric additive G) used is, based on the total mass of the monomers to be polymerized during the copolymerization, preferably 0.1 to 90% by weight, particularly preferably 1 to 20% by weight and particularly preferably 1.5 to 10% by weight .-%.
  • the copolymers according to the invention are crosslinked, i.e. they contain comonomers with at least two polymerizable vinyl groups.
  • Preferred crosslinkers are methylene bisacrylamide; methylenebismethacrylamide; Esters of unsaturated mono- and polycarboxylic acids with polyols, preferably diacrylates and triacrylates or methacrylates, particularly preferably butanediol and ethylene glycol diacrylate or methacrylate, trimethylolpropane triacrylate (TMPTA) and trimethylolpropane trimethacrylate (TMPTMA); Allyl compounds, preferably allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl ester, polyallyl ester, tetraallyloxyethane, triallylamine, tetraallylethylene diamine; Allyl esters of phosphoric acid; and / or vinylphosphonic acid derivatives. Trimethylolpropane triacrylate (TMPTA) is particularly preferred as the crosslinking agent. The proportion by weight of crosslinking comonomers, based on the
  • Total mass of the copolymers is preferably up to 20% by weight, particularly preferably 0.05 to 10% by weight and particularly preferably 0.1 to 7% by weight.
  • All organic or inorganic solvents can be used as the polymerization medium which are largely inert with respect to radical polymerization reactions and which advantageously permit the formation of medium or high molecular weights.
  • Water is preferred; lower alcohols; preferably methanol, ethanol, propanols, iso-, sec- and t-butanol, particularly preferably t-butanol; Hydrocarbons with 1 to 30 carbon atoms and mixtures of the aforementioned compounds.
  • the polymerization reaction preferably takes place in the temperature range between 0 and 150 ° C, particularly preferably between 10 and 100 ° C, both at normal pressure as well as under increased or reduced pressure. If necessary, the polymerization can also be carried out under a protective gas atmosphere, preferably under nitrogen.
  • High-energy electromagnetic radiation, mechanical energy or the usual chemical polymerization initiators such as organic peroxides, for example benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, dilauroyl peroxide or azo initiators, such as azodiisobutyronitrile (AIBN), can be used to initiate the polymerization.
  • organic peroxides for example benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, dilauroyl peroxide or azo initiators, such as azodiisobutyronitrile (AIBN)
  • AIBN azodiisobutyronitrile
  • inorganic peroxy compounds such as (NH) 2 S2 ⁇ 8 , K 2 S 2 O 8 or H2O 2 , optionally in combination with reducing agents (e.g
  • an aliphatic or aromatic sulfonic acid eg benzenesulfonic acid, toluenesulfonic acid etc.
  • Reaction medium used. Mixtures of two or more representatives of the potential solvents described are of course also in accordance with the invention. This also includes emulsions of immiscible solvents (e.g. water / hydrocarbons). In principle, all types of reaction control which lead to the polymer structures according to the invention are suitable (solution polymerization, emulsion process, precipitation process, high-pressure process, suspension process, bulk polymerization, gel polymerization, etc.). Precipitation polymerization is particularly suitable, particularly preferably precipitation polymerization in tert-butanol.
  • the following list shows 67 copolymers which are particularly suitable for the formulation of the agents according to the invention.
  • the different Copolymers No. 1 to No. 67 are available according to the following production methods 1, 2, 3 and 4.
  • Process 1 These polymers are in tert after the precipitation process.
  • Butanol can be produced.
  • the monomers were initially introduced into t-butanol, the reaction mixture was rendered inert, and the reaction was then started after heating to 60 ° C. by adding the corresponding t-butanol-soluble initiator (preferably dilauroyl peroxide). After the reaction has ended (2 hours), the polymers are isolated by suction removal of the solvent and subsequent vacuum drying.
  • t-butanol-soluble initiator preferably dilauroyl peroxide
  • These polymers can be prepared in water using the gel polymerization process.
  • the monomers are dissolved in water, the reaction mixture is rendered inert, and the reaction is then started after heating to 65 ° C. by adding suitable initiator or initiator systems (preferably Na 2 S 2 Os).
  • suitable initiator or initiator systems preferably Na 2 S 2 Os.
  • the polymer gels are then crushed and the polymers isolated after drying.
  • polymers can be prepared in water using the emulsion process.
  • the monomers are mixed in a water / organ mixture.
  • Solvent preferably cyclohexane
  • the reaction mixture is rendered inert using N 2 and then the reaction after heating to 80 ° C. by adding suitable initiators or
  • Initiator systems (preferably Na 2 S 2 O 8 ) started.
  • the polymer emulsions are then evaporated (cyclohexane acts as a tug for water), thereby isolating the polymers.
  • These polymers can be prepared by the solution process in organic solvents (preferably toluene, for example also tertiary alcohols).
  • organic solvents preferably toluene, for example also tertiary alcohols.
  • the monomers are initially introduced in the solvent, the reaction mixture is rendered inert and then the reaction after heating to 70 ° C. started by adding suitable initiator or initiator systems (preferably dilauroyl peroxide).
  • suitable initiator or initiator systems preferably dilauroyl peroxide.
  • the polymers are isolated by evaporation of the solvent and subsequent vacuum drying.
  • the copolymers are water-soluble or water-swellable.
  • a potential disadvantage of the copolymers without grafting is a more or less strong opalescence in aqueous solution. This is based on previously unavoidable, over-crosslinked polymer fractions that arise during the synthesis and are not sufficiently swollen in water. As a result, light-scattering particles form, the size of which is well above the wavelength of visible light and are therefore the cause of opalescence.
  • the described grafting process which can be carried out as an option, significantly reduces or completely avoids the formation of crosslinked polymer components compared to conventional techniques.
  • the hair treatment compositions contain, based on the finished compositions, preferably 0.01 to 10% by weight, particularly preferably 0.1 to 5% by weight, particularly preferably 0.5 to 3% by weight of the copolymers.
  • the hair treatment agents can contain, as further auxiliaries and additives, oil bodies, emulsifiers and co-emulsifiers, cationic polymers, film formers, as well as other additives commonly used in cosmetics, such as e.g. Superfatting agents, moisturizing agents, stabilizers, biogenic agents, glycerin, preservatives, pearlescent agents, colorants and fragrances, solvents, hydrotropes, opacifiers, other thickening agents and dispersing agents, furthermore protein derivatives, such as gelatin, collagen hydrolyzates, polypeptides on a natural and synthetic basis, egg yolk , Lanolin and lanolin derivatives, fatty alcohols, silicones, substances with keratolytic and keratoplastic effects, enzymes and carrier substances, antioxidants, light protection substances UV light protection filters, biogenic substances (local anesthetics, antibiotics, anti-inflammatory agents, anti-allergies, corticosteroids, sebostatics) contain pharmaceutically active substances and /
  • Oil body means any fatty substance that is liquid at room temperature (25 ° C).
  • the fat phase can therefore comprise one or more oils, which are preferably selected from the following oils:
  • Silicone oils volatile or non-volatile, linear, branched or ring-shaped, possibly organically modified; phenylsilicones; Silicone resins and rubbers; Mineral oils such as paraffin or petroleum jelly; Oils of animal origin such as perhydrosqualene, lanolin; Oils of vegetable origin such as liquid triglycerides, e.g. sunflower, corn, soybean, rice, jojoba, babusscu, pumpkin, grape seed, sesame, walnut, apricot, macadamia, avocado, sweet almond, Cuckoo flower, castor oil, Triglycerides of caprylic / capric acids, olive oil, peanut oil, rapeseed oil and coconut oil;
  • Mineral oils such as paraffin or petroleum jelly
  • Oils of animal origin such as perhydrosqualene, lanolin
  • Oils of vegetable origin such as liquid triglycerides, e.g. sunflower, corn, soybean, rice, jojoba, babusscu, pumpkin, grape seed
  • Synthetic oils such as purcellin oil, isoparaffins, linear and / or branched fatty alcohols and fatty acid esters, preferably Guerbet alcohols with 6 to 18, preferably 8 to 10, carbon atoms; Esters of linear (C 6 -C 3 ) fatty acids with linear (C 6 -C 2 o) fatty alcohols; Esters of branched (C 6 -C 3 ) carboxylic acids with linear (C 6 -C 2o) fatty alcohols, esters of linear (C 6 -C 8 ) fatty acids with branched alcohols, especially 2-ethylhexanol; Esters of linear and / or branched fatty acids with polyhydric alcohols (such as dimer diol or trimer diol) and / or Guerbet alcohols; Triglycerides based on (C 6 -C ⁇ o) fatty acids; Esters such as dioctyl adipate, diisopropyl dimer dilinelo
  • Suitable nonionic co-emulsifiers are, inter alia, addition products of 0 to 30 mol of ethylene oxide and / or 0 to 5 mol of propylene oxide with linear fatty alcohols with 8 to 22 C atoms, with fatty acids with 12 to 22 C atoms, with alkylphenols with 8 to 15 carbon atoms in the alkyl group and on sorbitan or sorbitol esters; (Ci 2 -C 18 ) fatty acid monoesters and diesters of adducts of 0 to 30 moles of ethylene oxide with glycerol; Glycerol monoesters and diesters and sorbitan monoesters and diesters of saturated and unsaturated fatty acids having 6 to 22 carbon atoms and, if appropriate, their ethylene oxide addition products; Addition products of 15 to 60 moles of ethylene oxide with castor oil and / or hardened castor oil; Polyol and especially polyglycerol esters such as polyglycerol polyric
  • Suitable ionogenic co-emulsifiers are, for example, anionic emulsifiers, such as mono-, di- or tri-phosphoric acid esters, but also cationic emulsifiers, such as mono-, di- and tri-alkyl quats and their polymeric derivatives.
  • Suitable cationic polymers are the compounds known under the INCI name "Polyquaternium", in particular Polyquaternium-31, Polyquaternium-16, Polyquatemium-24, Polyquatemium-7, Polyquaternium-22, Polyquatemium-39, Polyquaternium-28, Polyquaternium-2, Polyquaternium-10, Polyquaternium-11, Polyquaternium 37 & mineral oil & PPG trideceth ( ® Salcare SC95), PVP-dimethylaminoethyl methacrylate copolymer, guar hydroxypropyltriammonium chloride, as well as calcium alginate and ammonium alginate / Vinylimidazole polymers; condensation products of polyglycols and amines; quaternized collagen polypeptides; quaternized wheat polypeptides; polyethyleneimines; cationic silicone polymers such as amidomethicones; copolymers of adipic acid and dimethylaminohydroxy-propyldiethylenetriamine; poly
  • Suitable silicone compounds are, for example, dimethylpolysiloxane, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine and / or alkyl-modified silicone compounds, and also polyalkylsiloxanes, polyalkylarylsiloxanes, polyether siloxane copolymers, as in US 5104 645 and the writings described therein, which can be both liquid and resinous at room temperature.
  • suitable film formers are salts of phenylbenzimidazolesulfonic acid, water-soluble polyurethanes, for example C 0 - polycarbamylpolyglyceryl esters, polyvinyl alcohol, polyvinylpyrrolidone, copolymers, for example vinylpyrrolidone / vinyl acetate copolymer, water-soluble polyurethanes, for example C 0 - polycarbamylpolyglyceryl esters, polyvinyl alcohol, polyvinylpyrrolidone, copolymers, for example vinylpyrrolidone / vinyl acetate copolymer, water-soluble
  • Acrylic acid polymers / copolymers or their esters or salts for example partial ester copolymers of acrylic / methacrylic acid and polyethylene glycol ethers of fatty alcohols, such as acrylate / steareth-20-methacrylate copolymer, water-soluble cellulose, for example hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, water-soluble quaterniums, polyquaterniums, carbocyvinyl such as carbomers and their salts, polysaccharides, for example polydextrose and glucan.
  • Substances such as lanolin and lecithin, non-ethoxylated and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, mono-, di- and triglycerides and / or fatty acid alkanolamides can be used as superfatting agents.
  • isopropyl palmitate, glycerin and / or sorbitol are available as a moisturizing substance.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate can be used.
  • Biogenic active substances are understood to mean, for example, plant extracts and vitamin complexes.
  • the agents according to the invention can contain organic solvents.
  • organic solvents In principle, all monohydric or polyhydric alcohols are suitable as organic solvents. Alcohols with 1 to 4 carbon atoms such as ethanol, propanol, isopropanol, n-butanol, i-butanol, t-butanol, glycerol and mixtures of the alcohols mentioned are preferably used.
  • Further preferred alcohols are polyethylene glycols with a relative molecular weight below 2000. In particular, use of polyethylene glycol with a relative molecular weight between 200 and 600 and in amounts up to 45% by weight and of polyethylene glycol with a relative molecular weight between 400 and 600 in amounts of 5 to 25% by weight is preferred.
  • Suitable solvents are, for example, triacetin (glycerol triacetate) and 1-methoxy-2-propanol.
  • Short-chain anionic surfactants in particular aryl sulfonates, for example cumene or toluenesulfonate, act hydrotropically.
  • the agents according to the invention can be mixed with conventional ceramides, pseudoceramides, fatty acid-N-alkylpolyhydroxyalkylamides, cholesterol, cholesterol fatty acid esters, fatty acids, triglycerides, cerebrosides,
  • UV filters are, for example, 4-aminobenzoic acid; 3- (4 ⁇ trimethylammonium) benzylidene-borane-2-one methyl sulfate; 3,3,5-trimethyl-cyclohexyl salicylate; 2-hydroxy-4-methoxybenzophenone; 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium and triethanolamine salts; 3,3 , - (1,4-phenylenedimethine) -bis- (7,7-dimethyl-2-oxobicyclo [2.2.1] -heptane-1-methanesulfonic acid and its salts; 1- (4-part-butylphenyl) - 3- (4-methoxyphenyl) propan-1, 3-dione, 3- (4 x -sulfo) benzylidene-bornan- 2-one and its salts; 2-cyan-3,3-diphenyl
  • Suitable preservatives are phenoxyethanol, parabens, pentanediol or sorbic acid.
  • the dyes which can be used are those which are suitable and approved for cosmetic purposes.
  • anti-dandruff agents or antifungal agents are preferably suitable ketoconazole, climbazole ®, octopirox ®, oxiconazole, bifonazole, butoconazole, Cloconazole, Clotrimazole, Econazole, Enilconazole, Fenticonazole, Isoconazole, Miconazole, sulconazole, Tioconazole, Fluconazole, Itraconazole, Terconazole, naftifine and terbinafine, Zn-pyrethione and oczopyrox.
  • Bisabolol ® , Allantoin ® , Phytantriol ® , Panthenol ® , AHA acids, plant extracts and vitamin complexes can be used as biogenic active ingredients.
  • Citric acid and / or sodium hydroxide solution are preferably used as the acid or alkali for pH adjustment.
  • the agents are usually adjusted to a pH in the range 2 to 12, preferably pH 3 to 8.
  • the total proportion of auxiliaries and additives in the hair treatment compositions is preferably 1 to 30% by weight, particularly preferably 2 to 20% by weight.
  • Preferred embodiments are rinses, cures, spray cures, lotions, creams, gels, foams and sprays
  • copolymers used in the examples are representatives of the particularly preferred copolymers No. 1 to No. 67 already listed in the description.
  • the preparation was carried out according to methods 1, 2, 3 or 4 given there using the preferred initiators and solvents.
  • a mixture 1 is made from the components under I).
  • the components under I) are dissolved at about RT with stirring until clear.
  • mixture 1 cooled to room temperature.
  • component II) is dispersed in component III) and the mixture is stirred until it becomes clear.
  • Mixtures 1 and 2 are then mixed with one another with stirring.
  • Components I) and II) produced.
  • the components under I) are dissolved with stirring in component II) until they become clear.
  • the Mixture cooled to room temperature.
  • Panthenol (vitamin B 5) 0.5%
  • a mixture 1 of components I) and II) is prepared in each case.
  • component I) is dissolved at about 60 ° C. with stirring in component II) until it becomes clear.
  • Mixture 1 is then cooled to room temperature.
  • component III) is dispersed in component IV) and the mixture is stirred until it becomes clear.
  • Genamin KSL ® (Clariant) PEG - 5 stearyl ammonium lactate
  • Genapol PDC ® (Clariant) glycol distearate (and) Laureth- 4 (and) Cocamidopropyl Betaine (and) Mica (and) Titanium Dioxide
  • Genamin KDM-P ® (Clariant) behenyltrimethylammonium chloride

Abstract

Gegenstand der Erfindung sind kosmetische und dermatologische Haarbehandlungsmittel, enthaltend mindestens ein Copolymer, erhältlich durch radikalische Copolymersation von A) Acryloyldimethyltaurinsäure und/oder Acryloyldimethyltauraten, B) gegebenenfalls einem oder mehreren weiteren olefinisch ungesättigten, nicht kationischen, Comonomeren, C) gegebenenfalls einem oder mehreren olefinisch ungesättigten, kationischen Comonomeren, D) gegebenenfalls einer siliziumhaltigen Komponente(n), E) gegebenenfalls einer fluorhaltigen Komponente(n), F) gegebenenfalls einem oder mehreren Makromonomeren, G) wobei die Copolymersation gegebenenfalls in Gegenwart mindestens eines polymeren Additivs erfolgt, H) mit der Maßgabe, dass die Komponente A) mit mindestens einer Komponente ausgewählt aus einer der Gruppen D) bis G) copolymerisiert wird.

Description

Beschreibung
Kosmetische und dermatologische Haarbehandlungsmittel
Die vorliegende Erfindung betrifft kosmetische und dermatologische Haarbehandlungsmittel, enthaltend kammförmige Copolymere auf Basis von Acryloyldimethyltaurinsäure.
Durch oftmaliges Bleichen, Dauerwellen und Färben, aber auch durch häufiges Waschen der Haare mit entfettenden Tensiden kommt es zu einer Schädigung der Haarstruktur. Das Haar wird spröde und verliert seinen Glanz. Angeraute Haaroberflächen verursachen Verfilzungen sowie Verknotungen der Haare, die Kämmbarkeit wird erschwert. Infolgedessen haben Haarbehandlungsmittel, die die Glanz, Nass- und Trockenkämmbarkeit, Konditionierung, und Farbtiefe der Haare verbessern, eine erhebliche Bedeutung erlangt. Darüber hinaus sollen Haarpflegemittel durch kürzere Trocknungszeiten die Hitzebelastung der Haare beim Fönen verringern und bereits vorhandene Haarschädigungen, wie z.B. Splisse, "reparieren". Derartige Mittel werden beispielsweise häufig in Form einer klaren Haarpflegespülung, eines Aerosolschaumes oder auch in Emulsionsform als sogenannte Creme-Rinses nach der Haarwäsche im noch nassen Haar verteilt und je nach Art des Haarbehandlungsmittels entweder nach einigen Minuten Einwirkzeit mit Wasser ausgespült oder aber auf dem Haar belassen.
Die Patentliteratur enthält zahlreiche Vorschläge zur Realisierung eines solchen Vorhabens, darunter die Verwendung von wasserlöslichen Polymeren, kationischen Fettsäurederivaten, hauptsächlich kationischen, insbesondere quarternären Ammoniumverbindungen, wie Cetyltrimethylammoniumchlorid, alleine oder in Kombination mit verschiedenen wachsartigen Zusätzen, wie zum Beispiel Kohlenwasserstoffen, Fettalkoholen und Fettsäuren. Auch Öle und ölähnliche Substanzen, wie beispielsweise flüssige Kohlenwasserstoffverbindungen, Fettalkohole, Monocarboxysäureester (monocarboxylic acid ester), Polyalkoholester, wasserlösliche Silikonen und Emulsionen von Silikonen und anderen Ölen werden beschrieben. Ein Nachteil der oben beschriebenen Mittel besteht darin, dass diese nach dem Abspülen oftmals den feuchten Haaren einen klebrigen Griff verleihen und die trockenen Haare beschweren.
Häufig benutzte Materialien, die das Haar geschmeidig und weich erscheinen lassen, sind Silikonderivate. Silikone haben jedoch den Nachteil, insbesondere dünnen Haare so weich zu machen, dass diese kaum noch frisierbar sind. Zudem lassen sich unlösliche Silikone, wie sie z.B. in US 2,826,551 vorgeschlagen werden, oft nur unzureichend in Formulierungen einarbeiten. Das Problem besteht hier in der Erzeugung einer Suspension der feinverteilten, unlöslichen Polymere, die über einen längeren Zeitraum stabil sein soll. Eine Vielzahl von Verbindungen wurden den silikonhaitigen Formulierungen zugesetzt, um eine Verdickung und Stabilisierung zu bewirken. Die bisher erfolgreichste Vorgehensweise wird in EP 0,181 ,773 beschrieben, wo die Verwendung langkettiger Acylderivate zur Bildung stabiler Formulierungen führt. Die Acylderivate enthalten Fettsäurealkanolamide, Fettsäuredialkanolamide, Alkanolamide und deren Derivate. Diese Amide stehen im Verdacht, an der Bildung von Nitrosaminen beteiligt zu sein. Es ist daher erwünscht, kosmetische Zubereitungen ohne solche Derivate zu formulieren.
Haarpflegemittel müssen zudem auch eine Viskosität haben, die dem jeweiligen Verwendungszweck angepasst ist und sich möglichst variabel einstellen lässt. So werden z.B. von einem Haargel oder einer Haarkurcreme relativ hohe Viskositäten gefordert, während eine Haarspülung gewöhnlich eine fließfähige Flüssigkeit mit einer relativ niedrigen Viskosität darstellt.
Als Verdicker und Gelbildner sind insbesondere die auf der Basis der Poly(meth)acrylsäure hergestellten Polyacrylsäuren und deren wasserlösliche Copolymere bekannt. Die Vielfalt der möglichen Strukturen und die damit verbundenen vielfältigen Anwendungsmöglichkeiten drücken sich nicht zuletzt in einer Vielzahl von neuen Patenten aus, die seit Mitte der 70iger Jahre weltweit angemeldet wurden. Ein wesentlicher Nachteil dieser Verdicker auf Basis von Poly(meth)acrylsäure ist die starke pH-Abhängigkeit der Verdickungsleistung. So wird im allgemeinen Viskosität nur dann aufgebaut, wenn der pH Wert der Formulierung oberhalb von pH 6 eingestellt ist und somit die Poly(meth)acrylsäure in neutralisierter Form vorliegt. Ferner sind die entsprechenden Gele/Formulierung empfindlich gegenüber UV-Strahlung und Scherung und vermitteln auf der Haut und auf den Haaren zudem ein klebriges Gefühl. Auch die Handhabung dieser Verdickerpolymere ist verbesserungswürdig. Da die Verdicker auf Basis von Poly(meth)acrylsäure i.a. in saurer Form vorliegen, bedarf es z.B. bei der Formulierung eines zusätzlichen Neutralisationsschrittes. In den 90iger Jahren wurden neuartige Verdicker auf Basis vernetzter und neutralisierter Acryloyldimethyltaurate in den Markt eingeführt (EP-B-0 815 828, EP-B-0 815 844, EP-B-0 815 845 und EP-B-0 829 258). Sowohl in Form des vorneutralisierten Homopolymers als auch als korrespondierendes Copolymer (®Aristoflex AVC, Clariant GmbH) zeigen sich diese auf Sulfonatgruppen basierenden Typen den Poly(meth)acrylaten in vieler Hinsicht überlegen. Beispielsweise zeigen Acryloyldimethyltaurat-basierende Verdickersysteme hervorragende Eigenschaften in pH-Bereichen unterhalb von pH 6, also in einem pH-Bereich, in dem mit herkömmlichen Poly(meth)acrylat-Verdickern nicht mehr gearbeitet werden kann. Hohe UV- und Scherstabilität, hervorragende viskoelastische Eigenschaften, leichte Verarbeitbarkeit und ein günstiges toxikologische Profil des Hauptmonomeren machen Acryloyldimethyltaurat- basierende Verdickersysteme zu modernen, neuen Vertretern mit hohem Potenzial für die Zukunft.
Im Laufe der letzten Jahre etablierte sich ein weiteres Verdickerkonzept auf dem Markt. Hierbei wurde durch hydrophobe Modifikation der konventionellen Poly(meth)acrylate der Zugang zu Polymeren gefunden, die sowohl verdickende als auch emulgierende/dispergierende Eigenschaften aufweisen können. Beispiele für kommerzielle hydrophob modifizierte Poly(meth)acrylate sind ®Pemulen TR-1 und TR-2 von BF-Goodrich und ®Aculyn 22 von Rohm und Haas. Da diese hydrophob modifizierte Polymere ausnahmslos auf der Basis von (Meth)acrylsäure aufgebaut sind, besitzen sie auch die oben erwähnten Nachteile der Poly(meth)acrylate.
Überraschend wurde nun gefunden, dass sich eine neue Klasse von Kammpolymeren auf Basis von Acryloyldimethyltaurinsäure (AMPS) - die sich sowohl als Konditionierer, Glättmittel, Antistatikmittel, Konsistenzgeber, Emulgator, Dispergator, Gleitmittel und Stabilisator eignet- hervorragend zur Formulierung von kosmetischen und dermatologischen Haarbehandlungsmitteln eignet.
Gegenstand der Erfindung sind kosmetische und dermatologische
Haarbehandlungsmittel, enthaltend mindestens ein Copolymer, erhältlich durch radikalische Copolymerisation von
A) Acryloyldimethyltaurinsäure und/oder Acryloyldimethyltauraten, B) gegebenenfalls einem oder mehreren weiteren olefinisch ungesättigten, nicht kationischen, gegebenenfalls vernetzenden, Comonomeren, die wenigstens ein Sauerstoff-, Stickstoff-, Schwefel- oder Phosphoratom aufweisen und ein Molekulargewicht kleiner 500 g/mol besitzen,
C) gegebenenfalls einem oder mehreren olefinisch ungesättigten, kationischen Comonomeren, die wenigstens ein Sauerstoff-, Stickstoff-, Schwefel- oder
Phosphoratom aufweisen und ein Molekulargewicht kleiner 500 g/mol besitzen,
D) gegebenenfalls einer oder mehreren mindestens monofunktionellen, zur radikalischen Polymerisation befähigten, siliziumhaltigen Komponente(n), E) gegebenenfalls einer oder mehreren mindestens monofunktionellen, zur radikalischen Polymerisation befähigten, fluorhaltigen Komponente(n),
F) gegebenenfalls einem oder mehreren einfach oder mehrfach olefinisch ungesättigten, gegebenenfalls vernetzenden, Makromonomeren, die jeweils mindestens ein Sauerstoff-, Stickstoff-, Schwefel- oder Phosphoratom besitzen und ein zahlenmittleres Molekulargewicht größer oder gleich
200 g/mol aufweisen, wobei es sich bei den Makromonomeren nicht um eine siliziumhaltige Komponente D) oder fluorhaltige Komponente E) handelt,
G) wobei die Copolymerisation gegebenenfalls in Gegenwart mindestens eines polymeren Additivs mit zahlenmittleren Molekulargewichten von 200 g/mol bis 109 g/mol erfolgt, H) mit der Maßgabe, dass die Komponente A) mit mindestens einer
Komponente ausgewählt aus einer der Gruppen D) bis G) copolymerisiert wird. Die erfindungsgemäßen Copolymere besitzen bevorzugt ein Molekulargewicht von 103 g/mol bis 109 g/mol, besonders bevorzugt von 104 bis 107 g/mol, insbesondere bevorzugt 5*104 bis 5*10δ g/mol.
Bei den Acryloyldimethyltauraten kann es sich um die anorganischen oder organischen Salze der Acryloyldimethyltaurinsäure (Acrylamidopropyl-2-methyl-2- sulfonsäure) handeln. Bevorzugt werden die Li+-, Na+-, K+-, Mg++-, Ca++-, Al+++- und/oder NH4 +-Salze. Ebenfalls bevorzugt sind die Monoalkylammonium-, Dialkylammonium-, Trialkylammonium- und/oder Tetraalkylammoniumsalze, wobei es sich bei den Alkylsubstituenten der Amine unabhängig voneinander um (Cι-C22)-Alkylreste oder (C2-Cιo)-Hydroxyalkylreste handeln kann. Weiterhin sind auch ein bis dreifach ethoxylierte Ammoniumverbindungen mit unterschiedlichem Ethoxylierungsgrad bevorzugt. Es sollte angemerkt werden, dass auch Mischungen von zwei- oder mehreren der oben genannten Vertreter im Sinne der Erfindung sind.
Der Neutralisationsgrad der Acryloyldimethyltaurinsäure kann zwischen 0 und 100 % betragen, besonders bevorzugt ist ein Neutralisationsgrad von oberhalb 80 %.
Bezogen auf die Gesamtmasse der Copolymere beträgt der Gehalt an Acryloyldimethyltaurinsäure bzw. Acryloyldimethyltauraten mindestens 0,1 Gew.-%, bevorzugt 20 bis 99,5 Gew.-%, besonders bevorzugt 50 bis 98 Gew.-% betragen.
Als Comonomere B) können alle olefinisch ungesättigten, nicht kationischen Monomere eingesetzt werden, deren Reaktionsparameter eine Copolymerisation mit Acryloyldimethyltaurinsäure und/oder Acryloyldimethyltauraten in den jeweiligen Reaktionsmedien erlauben. Als Comonomere B) bevorzugt sind ungesättigte Carbonsäuren und deren Anhydride und Salze, sowie deren Ester mit aliphatischen, olefinischen, cycloaliphatischen, arylaliphatischen oder aromatischen Alkoholen mit einer Kohlenstoffzahl von 1 bis 30. Als ungesättigte Carbonsäuren besonders bevorzugt sind Acrylsäure,
Methacrylsäure, Styrolsulfonsäure, Maleinsäure, Fumarsäure, Crotonsäure, Itaconsäure und Seneciosäure.
Als Gegenionen bevorzugt sind Li+, Na+, K+, Mg++, Ca++, Al+++, NH4 +, Monoaikyl- ammonium-, Dialkylammonium-, Trialkylammonium- und/oder Tetraalkyl- ammoniumreste, wobei es sich bei den Alkylsubstituenten der Amine unabhängig voneinander um (Cι-C22)-Alkylreste oder (C2-Cιo)-Hydroxyalkylreste handeln kann. Zusätzlich können auch ein bis dreifach ethoxylierte Ammoniumverbindungen mit unterschiedlichem Ethoxylierungsgrad Anwendung finden. Der Neutralisationsgrad der Carbonsäuren kann zwischen 0 und 100% betragen. Als Comonomere B) weiterhin bevorzugt sind offenkettige N-Vinylamide, bevorzugt N-Vinylformamid (VIFA), N-Vinylmethylformamid, N-Vinylmethylacetamid (VIMA) und N-Vinylacetamid; cyclische N-Vinylamide (N-Vinyllactame) mit einer Ringgröße von 3 bis 9, bevorzugt N-Vinylpyrrolidon (NVP) und N-Vinylcaprolactam; Amide der Acryl- und Methacrylsäure, bevorzugt Acrylamid, Methacrylamid, N,N-Dimethyl- acrylamid, N,N-Diethylacrylamid und N,N-Diisopropylacrylamid; alkoxylierte Acryl- und Methacrylamide, bevorzugt Hydroxyethylmethacrylat, Hydroxymethylmethacrylamid, Hydroxyethylmethacrylamid, Hydroxypropylmethacrylamid und Bernsteinsäuremono-[2-(methacryloyloxy)- ethylester]; N,N-Dimethylaminomethacrylat; Diethylamino-methylmethacrylat; Acryl- und Methacrylamidoglykolsäure; 2- und 4-Vinylpyridin; Vinylacetat; Methacrylsäureglycidylester; Styrol; Acrylnitril; Vinylchlorid; Stearylacrylat; Laurylmethacrylat; Vinylidenchlorid; und/oder Tetrafluorethylen. Als Comonomere B) ebenfalls geeignet sind anorganische Säuren und deren Salze und Ester. Bevorzugte Säuren sind Vinylphosphonsäure, Vinylsulfonsäure, Allylphosphonsäure und Methallylsulfonsäure.
Der Gewichtsanteil der Comonomere B), bezogen auf die Gesamtmasse der Copolymere, kann 0 bis 99,8 Gew.-% betragen und beträgt bevorzugt 0,5 bis 80 Gew.-%, besonders bevorzugt 2 bis 50 Gew.-%.
Als Comonomere C) kommen alle olefinisch ungesättigten Monomere mit kationischer Ladung in Frage, die in der Lage sind, in den gewählten Reaktionsmedien mit Acryloyldimethyltaurinsäure oder deren Salze Copolymere zu bilden. Die dabei resultierende Verteilung der kationischen Ladungen über die Ketten hinweg kann statistisch, alternierend, block- oder gradientenartig sein. Es sei darauf hingewiesen werden, dass unter den kationischen Comonomeren C) auch solche zu verstehen sind, die die kationische Ladung in Form einer betainischen, zwitterionischen, oder amphoteren Struktur tragen.
Comonomere C) im Sinne der Erfindung sind auch aminofunktionalisierte Precursor, die durch polymeranaloge Reaktionen in Ihre entsprechenden quaternären (z.B. Reaktion mit Dimethylsulfat, Methylchlorid), zwitterionischen (z.B. Reaktion mit Wasserstoffperoxid), betainischen (z.B. Reaktion mit Chloressigsäure), oder amphomeren Derivate überführt werden können.
Besonders bevorzugt als Comonomere C) sind
Diallyldimethylammoniumchlorid (DADMAC),
[2-(Methacryloyloxy)ethyl]trimethylammoniumchlorid (MAPTAC), [2-(Acryloyloxy)ethyl]trimethylammoniumchlorid,
[2-Methacrylamidoethyl]trimethylammoniumchlorid,
[2-(Acrylamido)ethyl]trimethylammoniumchlorid,
N-Methyl-2-vinylpyridiniumchlorid
N-Methyl-4-vinylpyridiniumchlorid Dimethylaminoethylmethacrylat,
Dimethylaminopropylmethacrylamid,
Methacryloylethyl-N-oxid und/oder
Methacryloylethyl-betain.
Der Gewichtsanteil der Comonomeren C) kann, bezogen auf die Gesamtmasse der Copolymere, 0,1 bis 99,8 Gew.-%, bevorzugt 0,5 bis 30 Gew.-% und besonders bevorzugt 1 bis 20 Gew.-% betragen. Als polymerisationsfähige, siliziumhaltige Komponenten D) sind alle mindestens einfach olefinisch ungesättigten Verbindungen geeignet, die unter den jeweils gewählten Reaktionsbedingungen zur radikalischen Copolymerisation befähigt sind. Dabei muss die Verteilung der einzelnen silikonhaltigen Monomere über die entstehenden Polymerketten hinweg nicht notwendigerweise statistisch erfolgen. Auch die Ausbildung von beispielsweise block- (auch multiblock-) oder gradientenartigen Strukturen ist im Sinne der Erfindung. Kombinationen von zwei oder mehreren unterschiedlichen silikonhaltigen Vertretern sind auch möglich. Die Verwendung von silikonhaltigen Komponenten mit zwei oder mehr polymerisationsaktiven Gruppen führt zum Aufbau verzweigter oder vernetzter Strukturen.
Bevorzugte silikonhaltige Komponenten sind solche gemäß Formel (I).
R1 - Z- [(Si(R3R4)-O-)w-(Si(R5R6)-O)x-]- R2 (l)
Dabei stellt R1 eine polymerisationsfähige Funktion aus der Gruppe der vinylisch ungesättigten Verbindungen dar, die zum Aufbau polymerer Strukturen auf radikalischem Wege geeignet ist. Bevorzugt stellt R1 einen Vinyl-, Allyl-, Methallyl-, Methylvinyl-, Acryl- (CH2=CH-CO-), Methacryl- (CH2=C[CH3]-CO-), Crotonyl-, Senecionyl-, Itaconyl-, Maleinyl-, Fumaryl- oder Styrylrest dar. Zur Anbindung der silikonhaltigen Polymerkette an die reaktive Endgruppe R1 ist eine geeignete chemische Brücke Z erforderlich. Bevorzugte Brücken Z sind -O-, - ((Ci - C50)Alkylen)-, -((C6 - C30) Arylen)-, -((C5 - C8) Cycloalkylen)-, -((Cι-C50)Alkenylen)-, -(Polypropylenoxid)n-, -(Polyethylenoxid)0-,
-(Polypropylenoxid)n(Polyethylenoxid)o-, wobei n und o unabhängig voneinander Zahlen von 0 bis 200 bedeuten und die Verteilung der EO/PO-Einheiten statistisch oder blockförmig sein kann. Weiterhin geeignet als Brückegruppierungen Z sind -((CM - Cιo)Alkyl)-(Si(OCH3)2)- und -(Si(OCH3)2)-. Der polymere Mittelteil wird durch silikonhaltige Wiederholungseinheiten repräsentiert.
Die Reste R3, R4, R5 und R6 bedeuten unabhängig voneinander -CH3, -O-CH3, -C6H5 oder -O-C6H5. Die Indizes w und x repräsentieren stöchiometrische Koeffizienten, die unabhängig voneinander 0 bis 500, bevorzugt 10 bis 250, betragen.
Die Verteilung der Wiederholungseinheiten über die Kette hinweg kann nicht nur rein statistisch, sondern auch blockartig, alternierend oder gradientenartig.
R2 kann einerseits einen aliphatischen, olefinischen, cycloaliphatischen, arylaliphatischen oder aromatischen (Ci - C50)-Kohlenwasserstoffrest symbolisieren (linear oder verzweigt) oder -OH, -NH2, -N(CH3)2, -R7 oder für die
Struktureinheit [-Z-R1] stehen. Die Bedeutung der beiden Variablen Z und R1 wurde bereits erklärt. R7 steht für weitere Si-haltige Gruppierungen. Bevorzugte
R7-Reste sind -O-Si(CH3)3, -O-Si(Ph)3, -O-Si(O-Si(CH3)3)2CH3) und
-O-Si(O-Si(Ph)3)2Ph).
Wenn R2 ein Element der Gruppe [-Z-R1] darstellt, handelt es sich um difunktionelle, Monomere, die zur Vernetzung der entstehenden Polymerstrukturen herangezogen werden können.
Formel (I) beschreibt nicht nur vinylisch funktionalisierte, silikonhaltige
Polymerspezies mit einer polymertypischen Verteilung, sondern auch definierte
Verbindungen mit diskreten Molekulargewichten.
Besonders bevorzugte silikonhaltige Komponenten sind die folgenden acrylisch- oder methacrylisch modifizierten silikonhaltigen Komponenten:
Figure imgf000010_0001
Methacryloxyproplydimethylsilyl endgeblockte Polydimethylsiloxane (f = 2 bis 500)
Figure imgf000010_0002
Methacryloxypropyl endgeblockte Polydimethylsiloxane (f = 2 bis 500 bis)
Figure imgf000011_0001
Vinyldimethoxysilyl endgeblockte Polydimethylsiloxane (f = 2-500)
Bezogen auf die Gesamtmasse der Copolymere kann der Gehalt an siliziumhaltigen Komponenten bis 99,9 Gew.-%, bevorzugt 0,5 bis 30 Gew.-%, insbesondere bevorzugt 1 bis 20 Gew.-%, betragen.
Als polymerisationsfähige, fluorhaltige Komponenten E) sind alle mindestens einfach olefinisch ungesättigten Verbindungen geeignet, die unter den jeweils gewählten Reaktionsbedingungen zur radikalischen Copolymerisation befähigt sind. Dabei muss die Verteilung der einzelnen fluorhaltigen Monomere über die entstehenden Polymerketten hinweg nicht notwendigerweise statistisch erfolgen. Auch die Ausbildung von beispielsweise block- (auch multiblock-) oder gradientenartigen Strukturen ist im Sinne der Erfindung. Kombinationen von zwei oder mehreren unterschiedlichen, fluorhaltigen Komponenten E) ist auch möglich, wobei dem Experten klar ist, dass monofunktionelle Vertreter zur Bildung kammförmiger Strukturen führen, wohingegen di-, tri-, oder polyfunktionelle Komponenten E) zu zumindest teilvernetzten Strukturen führen.
Bevorzugte fluorhaltige Komponenten E) sind solche gemäß Formel (II).
R1-Y-CrH2rCsF2sCF3 (II)
Dabei stellt R1 eine polymerisationsfähige Funktion aus der Gruppe der vinylisch ungesättigten Verbindungen dar, die zum Aufbau polymerer Strukturen auf radikalischem Wege geeignet ist. Bevorzugt stellt R1 ein Vinyl-, Allyl-, Methallyl-, Methylvinyl-, Acryl- (CH2=CH-CO-), Methacryl- (CH2=C[CH3]-CO-), Crotonyl-, Senecionyl-, Itaconyl-, Maleinyl-, Fumaryl- oder Styrylrest, besonders bevorzugt einen Acryl- und Methacrylrest, dar. Zur Anbindung der fluorhaltigen Gruppierung an die reaktive Endgruppe R1 ist eine geeignete chemische Brücke Y erforderlich. Bevorzugte Brücken Y sind -O-, -C(O)-, -C(O)-0-, -S-, -O-CH2-CH(O-)-CH2OH, -O-CH2-CH(OH)-CH2-O-, -O-SO2-O-, -O-S(O)-O-, -PH-, -P(CH3)-, -PO3-, -NH-, -N(CH3)-, -O-^ CsoJAlkyl-O-, -O-Phenyl-O-, -O-Benzyl-O-, -O-(C5-C8)Cycloalkyl-O-, -O-(CrC5o)Alkenyl-O-, -0-(CH(CH3)-CH2-O)n-, -O-(CH2-CH2-O)n- und -O-([CH-CH2-0]n-[CH2-CH2-O]m)o-, wobei n, m und 0 unabhängig voneinander Zahlen von 0 bis 200 bedeuten und die Verteilung der EO- und PO-Einheiten statistisch oder blockförmig sein kann. Bei r und s handelt es sich um stöchiometrische Koeffizienten, die unabhängig voneinander Zahlen von 0 bis 200 bedeuten.
Bevorzugte fluorhaltige Komponenten E) gemäß Formel (II) sind
Perfluorhexylethanol-methacrylat,
Perfluorhexoylpropanol-methacrylat, Perfluoroctyethanol-methacrylat,
Perfluoroctylpropanol-methacrylat,
Perfluorhexylethanolylpolygycolether-methacrylat,
Perfluorhexoyl-propanolyl-poly-[ethylglykol-co-propylenglycolether]-acrylat,
Perfluoroctyethanolyl-poly-[ethylglykol-blockco-propylenglycolether]-methacrylat, Perfluoroctylpropanolyl-polypropylen-glycolether-methacrylat.
Bezogen auf die Gesamtmasse des Copolymeren kann der Gehalt an fluorhaltigen Komponenten bis 99.9 Gew.-%, bevorzugt 0.5 bis 30 Gew.-%, insbesondere bevorzugt 1 bis 20 Gew.-%, betragen.
Bei den Makromonomeren F) handelt sich um mindestens einfach olefinisch funktionalisierte Polymere mit einer oder mehreren diskreten Wiederholungseinheiten und einem zahlenmittleren Molekulargewicht größer oder gleich 200 g/mol. Bei der Copolymerisation können auch Mischungen chemisch unterschiedlicher Makromonomere F) eingesetzt werden. Bei den
Makromonomeren handelt es sich um polymere Strukturen, die aus einer oder mehreren Wiederholungseinheit(en) aufgebaut sind und eine für Polymere charakteristische Molekulargewichtsverteilung aufweisen. Bevorzugt als Makromonomere F) sind Verbindungen gemäß Formel (III).
R1 - Y - [(A)v - (B)w - (C)χ - (D)z] - R2 (III)
R1 stellt eine polymerisationsfähige Funktion aus der Gruppe der vinylisch ungesättigten Verbindungen dar, die zum Aufbau polymerer Strukturen auf radikalischem Wege geeignet sind. Bevorzugt stellt R1 einen Vinyl-, Allyl-, Methallyl-, Methylvinyl-, Acryl- (CH2=CH-CO-), Methacryl- (CH2=C[CH3]-CO-), Crotonyl-, Senecionyl-, Itaconyl-, Maleinyl-, Fumaryl- oder Styrylrest dar. Zur Anbindung der Polymerkette an die reaktive Endgruppe ist eine geeignete verbrückende Gruppe Y erforderlich. Bevorzugte Brücken Y sind -O-, -C(O)-, -C(0)-O-, -S-, -O-CH2-CH(O-)-CH2OH, -O-CH2-CH(OH)-CH2O-, -0-SO2-O-, -O-SO2-O-, -O-SO-O-, -PH-, -P(CH3)-, -PO3-, -NH- und -N(CH3)-, besonders bevorzugt -O-. Der polymere Mittelteil des Makromonomeren wird durch die diskreten Wiederholungseinheiten A, B, C und D repräsentiert. Bevorzugte Wiederholungseinheiten A,B,C und D leiten sich ab von Acrylamid, Methacrylamid, Ethylenoxid, Propylenoxid, AMPS, Acrylsäure, Methacrylsäure, Methylmethacrylat, Acrylnitril, Maleinsäure, Vinylacetat, Styrol, 1 ,3-Butadien, Isopren, Isobuten, Diethylacrylamid und Diisopropylacrylamid.
Die Indizes v, w, x und z in Formel (IM) repräsentieren die stöchiometrische Koeffizienten betreffend die Wiederholungseinheiten A, B, C und D. v, w, x und z betragen unabhängig voneinander 0 bis 500, bevorzugt 1 bis 30, wobei die Summe der vier Koeffizienten im Mittel ≥ 1 sein muss. Die Verteilung der Wiederholungseinheiten über die Makromonomerkette kann statistisch, blockartig, alternierend oder gradientenartig sein. R2 bedeutet einen linearen oder verzweigten aliphatischen, olefinischen, cycloaliphatischen, arylaliphatischen oder aromatischen (Cι-C5o)-Kohlenwasser- stoffrest, OH, -NH2, -N(CH3)2 oder ist gleich der Struktureinheit [-Y-R1]. Im Falle von R2 gleich [-Y-R1] handelt es sich um difunktionelle Makromonomere, die zur Vernetzung der Copolymere geeignet sind. Besonders bevorzugt als Makromonomere F) sind acrylisch- oder methacrylisch monofunktionalisierte Alkylethoxylate gemäß Formel (IV).
Figure imgf000014_0001
R3, 4, R5 und R6 bedeuten unabhängig voneinander Wasserstoff oder n-aliphatische, iso-aliphatische, olefinische, cycloaliphatische, arylaliphatische oder aromatische (Cι-C30)-Kohlenwasserstoffreste.
Bevorzugt sind R3 und R4 gleich H oder -CH3, besonders bevorzugt H; R5 ist gleich H oder -CH3; und R6 ist gleich einem n-aliphatischen, iso-aliphatischen, olefinischen, cycloaliphatischen, arylaliphatischen oder aromatischen (C1-C30)-
Kohlenwasserstoffrest. v und w sind wiederum die stöchiometrischen Koeffizienten betreffend die
Ethylenoxideinheiten (EO) und Propylenoxideinheiten (PO), v und w betragen unabhängig voneinander 0 bis 500, bevorzugt 1 bis 30, wobei die Summe aus v und w im Mittel ≥ 1 sein muss. Die Verteilung der EO- und PO-Einheiten über die
Makromonomerkette kann statistisch, blockartig, alternierend oder gradientenartig sein. Y steht für die obengenannten Brücken.
Weiterhin insbesondere bevorzugte Makromonomeren F) haben die folgende Struktur gemäß Formel (IV):
Figure imgf000014_0002
Figure imgf000015_0001
Weiterhin als Makromonomere F) insbesondere geeignet sind Ester der (Meth)acrylsäure mit
(Cιo-C18)-Fettalkoholpolyglykolethern mit 8 EO-Einheiten (Genapol® C-080) Cn-Oxoalkoholpolyglykolethern mit 8 EO-Einheiten (Genapol® UD-080)
(Ci2-Cι4)-Fettalkoholpolyglykolethern m it 7 EO-Einheiten (Genapol® LA-070) (Ci2-Cι4)-Fettalkoholpolyglykolethern m it 11 EO-Einheiten (Genapol® LA-110) (Ci6-Cι8)-Fettalkoholpolyglykolethern m it 8 EO-Einheiten (Genapol® T-080) (Ci6-Cι8)-Fettalkoholpolyglykolethern m it 15 EO-Einheiten (Genapol® T-150) (Ci6-Cι8)-Fettalkoholpolyglykolethern m it 11 EO-Einheiten (Genapol® T-110) (Ci6-Cι8)-Fettalkoholpolyglycolethern m 120 EO-Einheiten (Genapol® T-200) (C16-Cι8)-Fettalkoholpolyglycolethern m 125 EO-Einheiten (Genapol® T-250) (C 8-C22)-Fettalkoholpolyglykolethern m 125 EO-Einheiten und/oder iso-(C16-C18)-Fettalkoholpolyglycolethern mit 25 EO-Einheiten
Bei den Genapol®-Typen handelt es sich um Produkte der Firma Clariant, GmbH.
Bevorzugt beträgt das Molekulargewicht der Makromonomeren F) 200 g/mol bis 106 g/mol, besonders bevorzugt 150 bis 104 g/mol und insbesondere bevorzugt 200 bis 5000 g/mol.
Bezogen auf die Gesamtmasse der Copolymere können geeignete Makromonomere bis zu 99,9 Gew.-% eingesetzt werden. Bevorzugt finden die Bereiche 0,5 bis 30 Gew.-% und 70 bis 99,5 Gew.-% Anwendung. Besonders bevorzugt sind Anteile von 1 bis 20 Gew.-% und 75 bis 95 Gew.-%.
Bevorzugt als Copolymere sind solche, die durch Copolymerisation mindestens der Komponenten A), C) und D) erhältlich sind.
Weiterhin bevorzugt als Copolymere sind solche, die durch Copolymerisation mindestens der Komponenten A), C) und E) erhältlich sind.
Weiterhin bevorzugt als Copolymere sind solche, die durch Copolymerisation mindestens der Komponenten A), C) und F) erhältlich sind.
Weiterhin bevorzugt als Copolymere sind solche, die durch Copolymerisation mindestens der Komponenten A), D) und F) erhältlich sind.
Weiterhin bevorzugt als Copolymere sind solche, die durch Copolymerisation mindestens der Komponenten A) und F) erhältlich sind.
Weiterhin bevorzugt als Copolymere sind solche, die durch Copolymerisation mindestens der Komponenten A) und D) erhältlich sind.
Weiterhin bevorzugt als Copolymere sind solche, die durch Copolymerisation mindestens der Komponenten A) und E) erhältlich sind.
In einer bevorzugten Ausführungsform wird die Copolymerisation in Gegenwart mindestens eines polymeren Additivs G) durchgeführt, wobei das Additiv G) vor der eigentlichen Copolymerisation dem Polymerisationsmedium ganz- oder teilweise gelöst zugegeben wird. Die Verwendung von mehreren Additiven G) ist ebenfalls erfindungsgemäß. Vernetzte Additive G) können ebenfalls verwendet werden.
Die Additive G) bzw. deren Mischungen müssen lediglich ganz oder teilweise im gewählten Polymerisationsmedium löslich sein. Während des eigentlichen Polymerisationsschrittes hat das Additiv G) mehrere Funktionen. Einerseits verhindert es im eigentlichen Polymerisationsschritt die Bildung übervemetzter Polymeranteile im sich bildenden Copolymerisat und andererseits wird das Additiv G) gemäß dem allgemein bekannten Mechanismus der Pfropfcopolymerisation statistisch von aktiven Radikalen angegriffen. Dies führt dazu, dass je nach Additiv G) mehr oder weniger große Anteile davon in die Copolymere eingebaut werden. Zudem besitzen geeignete Additive G) die Eigenschaft, die Lösungsparameter der sich bildenden Copolymere während der radikalischen Polymerisationsreaktion derart zu verändern, dass die mittleren Molekulargewichte zu höheren Werten verschoben werden. Verglichen mit analogen Copolymeren, die ohne den Zusatz der Additive G) hergestellt wurden, zeigen solche, die unter Zusatz von Additiven G) hergestellt wurden, vorteilhafterweise eine signifikant höhere Viskosität in wässriger Lösung. Bevorzugt als Additive G) sind in Wasser und/oder Alkoholen, bevorzugt in t- Butanol, lösliche Homo- und Copolymere. Unter Copolymeren sind dabei auch solche mit mehr als zwei verschiedenen Monomertypen zu verstehen. Besonders bevorzugt als Additive G) sind Homo- und Copolymere aus N-Vinylformamid, N-Vinylacetamid, N-Vinylpyrrolidon, Ethylenoxid, Propylenoxid, Acryloyldimethyltaurinsäure, N-Vinylcaprolactam, N-Vinylmethylacetamid, Acrylamid, Acrylsäure, Methacrylsäure, N-Vinylmorpholid,
Hydroxyethylmethacrylat, Diallyldimethylammoniumchlorid (DADMAC) und/oder [2-(Methacryloyloxy)ethyl]trimethylammoniumchlorid (MAPTAC); Polyalkylenglykole und/oder Alkylpolyglykole. Insbesondere bevorzugt als Additive G) sind Polyvinylpyrrolidone (z.B. Luviskol K15®, K20® und K30® von BASF), Poly(N-Vinylformamide), Poly(N-
Vinylcaprolactame) und Copolymere aus N-Vinylpyrrolidon, N-Vinylformamid und/oder Acrylsäure, die auch teilweise oder vollständig verseift sein können. Das Molekulargewicht der Additive G) beträgt bevorzugt 102 bis 107 g/mol, besonders bevorzugt 0,5*104 bis 106 g/mol.
Die Einsatzmenge des polymeren Additivs G) beträgt, bezogen auf die Gesamtmasse der bei der Copolymerisation zu polymerisierenden Monomere, bevorzugt 0,1 bis 90 Gew.-%, besonders bevorzugt 1 bis 20 Gew.-% und insbesondere bevorzugt 1 ,5 bis 10 Gew.-%.
In einer weiteren bevorzugten Ausführungsform sind die erfindungsgemäßen Copolymere vernetzt, d.h. sie enthalten Comonomere mit mindestens zwei polymerisationsfähigen Vinylgruppen.
Bevorzugte Vernetzer sind Methylenbisacrylamid; Methylenbismethacrylamid; Ester ungesättigter Mono- und Polycarbonsäuren mit Polyolen, bevorzugt Diacrylate und Triacrylate bzw. -methacrylate, besonders bevorzugt Butandiol- und Ethylenglykoldiacrylat bzw. -methacrylat, Trimethylolpropantriacrylat (TMPTA) und Trimethylolpropantrimethacrylat (TMPTMA); Allylverbindungen, bevorzugt Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin; Allylester der Phosphorsäure; und/oder Vinylphosphonsäurederivate. Insbesondere bevorzugt als Vernetzer ist Trimethylolpropantriacrylat (TMPTA). Der Gewichtsanteil an vernetzenden Comonomeren, bezogen auf die
Gesamtmasse der Copolymere, beträgt bevorzugt bis 20 Gew.-%, besonders bevorzugt 0,05 bis 10 Gew.-% und insbesondere bevorzugt 0,1 bis 7 Gew.-%.
Als Polymerisationsmedium können alle organischen oder anorganischen Lösungsmittel dienen, die sich bezüglich radikalischer Polymerisationsreaktionen weitestgehend inert verhalten und vorteilhafterweise die Bildung mittlerer oder hoher Molekulargewichte zulassen. Bevorzugt Verwendung finden Wasser; niedere Alkohole; bevorzugt Methanol, Ethanol, Propanole, iso-, sec- und t- Butanol, insbesondere bevorzugt t-Butanol; Kohlenwasserstoffe mit 1 bis 30 Kohlenstoffatomen und Mischungen der vorgenannten Verbindungen.
Die Polymerisationsreaktion erfolgt bevorzugt im Temperaturbereich zwischen 0 und 150°C, besonders bevorzugt zwischen 10 und 100°C, sowohl bei Normaldruck als auch unter erhöhtem oder erniedrigtem Druck. Gegebenenfalls kann die Polymerisation auch unter einer Schutzgasatmosphäre, vorzugsweise unter Stickstoff, ausgeführt werden.
Zur Auslösung der Polymerisation können energiereiche elektromagnetische Strahlen, mechanische Energie oder die üblichen chemischen Polymerisationsinitiatoren, wie organische Peroxide, z.B. Benzoylperoxid, tert.-Butylhydroperoxid, Methylethylketonperoxid, Cumolhydroperoxid, Dilauroylperoxid oder Azoinitiatoren, wie z.B. Azodiisobutyronitril (AIBN), verwendet werden. Ebenfalls geeignet sind anorganische Peroxyverbindungen, wie z.B. (NH )2S2θ8, K2S2O8 oder H2O2, gegebenenfalls in Kombination mit Reduktionsmitteln (z.B. Natriumhydrogensulfit, Ascorbinsäure, Eisen(ll)-sulfat etc.) oder Redoxsystemen, welche als reduzierende Komponente eine aliphatische oder aromatische Sulfonsäure (z.B. Benzolsulfonsäure, Toluolsulfonsäure etc.) enthalten.
Als Polymerisationsmedium können alle Lösungsmittel dienen, die sich bezüglich radikalischer Polymerisationsreaktionen weitestgehend inert verhalten und die Bildung hoher Molekulargewichte zulassen. Bevorzugt Verwendung finden Wasser und niedere, tertiäre Alkohole oder Kohlenwasserstoffe mit 3 bis 30 C-Atomen. In einer besonders bevorzugten Ausführungsweise wird t-Butanol als
Reaktionsmedium verwendet. Mischungen aus zwei- oder mehreren Vertretern der beschriebenen potentiellen Lösungsmitteln sind selbstverständlich ebenfalls erfindungsgemäß. Dies schließt auch Emulsionen von nicht miteinander mischbaren Solventien ein (z.B. Wasser/Kohlenwasserstoffe). Grundsätzlich sind alle Arten der Reaktionsführung geeignet, die zu den erfindungsgemäßen Polymerstrukturen führen (Lösungspolymerisation, Emulsionsverfahren, Fällungsverfahren, Hochdruckverfahren, Suspensionsverfahren, Substanzpolymerisation, Gelpolymerisation usw.). Bevorzugt eignet sich die Fällungspolymerisation, besonders bevorzugt die Fällungspolymerisation in tert.-Butanol.
Die nachfolgende Auflistung zeigt 67 Copolymere, die für die Formulierung der erfindungsgemäßen Mittel besonders geeignet sind. Die verschiedenen Copolymere Nr. 1 bis Nr. 67 sind gemäß den folgenden Herstellverfahren 1, 2, 3 und 4 erhältlich.
Verfahren 1 : Diese Polymere sind nach dem Fällungsverfahren in tert. Butanol herstellbar. Dabei wurden die Monomere in t-Butanol vorgelegt, die Reaktionsmischung inertisiert und anschließend die Reaktion nach Anheizen auf 60°C durch Zugabe des entsprechenden t-Butanol löslichen Initiators (bevorzugt Dilauroylperoxid) gestartet. Die Polymere werden nach beendeter Reaktion (2 Stunden) durch Absaugen des Lösungsmittels und durch anschließende Vakuumtrocknung isoliert.
Verfahren 2:
Diese Polymere sind nach dem Gelpolymerisationsverfahren in Wasser herstellbar. Dabei werden die Monomere in Wasser gelöst, die Reaktionsmischung inertisiert und anschließend die Reaktion nach Anheizen auf 65°C durch Zugabe von geeigneten Initiatoren- oder Initiatorsystemen (bevorzugt Na2S2Os) gestartet. Die Polymergele werden anschließend zerkleinert und nach Trocknung die Polymere isoliert.
Verfahren 3:
Diese Polymere sind nach dem Emulsionsverfahren in Wasser herstellbar. Dabei werden die Monomere in einer Mischung aus Wasser/organ. Lösungsmittel (bevorzugt Cyclohexan) unter Verwendung eines Emulgators emulgiert, die Reaktionsmischung mittels N2 inertisiert und anschließend die Reaktion nach Anheizen auf 80°C durch Zugabe von geeigneten Initiatoren- oder
Initiatorsystemen (bevorzugt Na2S2O8) gestartet. Die Polymeremulsionen werden anschließend eingedampft (Cyclohexan fungiert als Schlepper für Wasser) und dadurch die Polymere isoliert.
Verfahren 4:
Diese Polymere sind nach dem Lösungsverfahren in organischen Lösungsmitteln (bevorzugt Toluol, z.B. auch tert. Alkohole) herstellbar. Dabei werden die Monomere im Lösungsmittel vorgelegt, die Reaktionsmischung inertisiert und anschließend die Reaktion nach Anheizen auf 70°C durch Zugabe von geeigneten Initiatoren- oder Initiatorsystemen (bevorzugt Dilauroylperoxid) gestartet. Die Polymere werden durch Abdampfen des Lösungsmittels und durch anschließende Vakuumtrocknung isoliert.
Polymere mit hydrophoben Seitenketten, unvemetzt
Figure imgf000021_0001
Polymere mit hydrophoben Seitenketten, vernetzt
Figure imgf000021_0002
Figure imgf000022_0001
Polymere mit hydrophoben Seitenketten, vernetzt, gepfropft
Figure imgf000022_0002
Polymere mit siliziumhaltigen Gruppen, unvemetzt
Figure imgf000022_0003
Polymere mit siliziumhaltigen Gruppen, vernetzt
Figure imgf000022_0004
Figure imgf000023_0001
Polymere mit hydrophoben Seitenketten und kationischen Gruppen, unvemetzt
Figure imgf000023_0002
Polymere mit hydrophoben Seitenketten und kationischen Gruppen, vernetzt
Figure imgf000023_0003
Polymere mit fluorhaltigen Gruppen
Figure imgf000023_0004
Polymere mit fluorhaltigen Gruppen, gepfropft
Figure imgf000023_0005
Multifunktionelle Polymere
Figure imgf000024_0001
Figure imgf000025_0001
Chemische Bezeichnung der Reaktanden:
AMPS Acryloyldimethyltaurat, wahlweise Na- oder NH4-Salz
Genapol® T-080 Ci6-Cι8-Fettalkoholpolyglykolether mit 8 EO-Einheiten Genapol® T-110 C-12-C -Fettalkoholpolyglykolether mit 11 EO -Einheiten Genapol® T-250 Ci6-Ci8-Fettalkoholpolyglycolether mit 25 EO-Einheiten
Genapol® LA-040 C12-Cι4-Fettalkoholpolyglykolether mit 4 EO-Einheiten Genapol® LA-070 C12-Cι -Fettalkoholpolyglykolether mit 7 EO-Einheiten
Genapol® O-150 methacrylat Ci6-C 8-Fettalkoholpolyglykolether Methacrylat mit 15 EO-Einheiten,
Genapol® LA-250 crotonat Ci2-C14-FettalkoholpolygIykolether crotonat mit
25 EO-Einheiten
Genapol® T-250 methacrylat Cι6-Ciδ-Fettalkoholpolyglycolether methacrylat mit 25 EO-Einheiten
Genapol® T-250 acrylat Ci6-Ci8-Fettalkoholpolyglycolether methacrylat mit 25 EO-Einheiten
BB10® Polyoxyethylen(10)Behenylether
TMPTA Trimethylolpropantriacrylat
Poly-NVP Poly-N-Vinylpyrrolidon
Silvet® 867 Siloxan Polyalkylenoxid Copolymer
MBA Methylen-bis-acrylamid
AMA Allylmethacrylat ®Y- 12867 Siloxan Polyalkylenoxid Copolymer Silvet® 7608 Polyalkylenoxid modifiziertes Heptamethyltrisiloxan Silvet® 7280 Polyalkylenoxid-modifiziertes Heptamethyltrisiloxan
DADMAC Diallyldimethyl-ammoniumchlorid
HEMA 2-Hydroxyethylmethacrylat
Quat 2-(Methacryloyloxy)ethyltrimethylammoniumchlorid
Fluowet® AC 600 Perfluoralkylethylacrylat
Span® 80 Sorbitanester
In einer bevorzugten Ausführungsform sind die Copolymere wasserlöslich oder wasserquellbar.
Die beschriebene, optional durchführbare Pfropfung der Copolymere mit anderen
Polymeren führt zu Produkten mit besonderer Polymermorphologie, die in wässrigen Systemen optisch klare Gele ergeben. Ein potenzieller Nachteil der Copolymere ohne Pfropfung besteht in einer mehr oder weniger starken Opaleszenz in wässriger Lösung. Diese beruht auf bisher nicht zu vermeidenden, übervernetzten Polymeranteilen, die während der Synthese entstehen und in Wasser nur unzureichend gequollen vorliegen. Dadurch bilden sich Licht streuende Teilchen aus, deren Größe deutlich oberhalb der Wellenlänge des sichtbaren Lichts liegt und deshalb Ursache der Opaleszenz sind. Durch das beschriebene, optional durchführbare Pfropfverfahren wird die Bildung übervemetzter Polymeranteile gegenüber herkömmlichen Techniken deutlich reduziert oder gänzlich vermieden.
Die beschriebene, optional durchführbare Inkorporation sowohl von kationischen Ladungen als auch von Silizium-, Fluor oder Phosphoratomen in die Copolymere führt zu Produkten, die in kosmetischen Formulierungen besondere sensorische und rheologische Eigenschaften besitzen. Eine Verbesserung der sensorischen und rheologischen Eigenschaften kann insbesondere bei der Verwendung in Rinse-off Produkten vorteilhaft sein. Siliziummodifizierte Copolymere können die Funktionen von Silikonölen in teilweise oder in vollem Umfang übernehmen. Der Einsatz von Silikonen kann durch die Copolymere reduziert oder vermieden werden.
Die Haarbehandlungsmittel enthalten, bezogen auf die fertigen Mittel, bevorzugt 0,01 bis 10 Gew.-%, besonders bevorzugt 0,1 bis 5 Gew.-%, insbesondere bevorzugt 0,5 bis 3 Gew.-% der Copolymere.
Die Haarbehandlungsmittel können als weitere Hilfs- und Zusatzstoffe Ölkörper, Emulgatoren und Co-Emulgatoren, kationische Polymere, Filmbildner, sowie weitere in der Kosmetik gebräuchliche Zusätze, wie z.B. Überfettungsmittel, feuchtigkeitsspendende Mittel, Stabilisatoren, biogene Wirkstoffe, Glycerin, Konservierungsmittel, Perlglanzmittel, Färb- und Duftstoffe, Lösungsmittel, Hydrotrope, Trübungsmittel, weitere Verdickungsmittel und Dispergiermittel, ferner Eiweißderivate, wie Gelatine, Collagenhydrolysate, Polypeptide auf natüriicher und synthetischer Basis, Eigelb, Lecithin, Lanolin und Lanolinderivate, Fettalkohole, Silicone, Stoffe mit keratolytischer und keratoplastischer Wirkung, Enzyme und Trägersubstanzen, Antioxidation, Lichtschutzstoffe UV-Lichtschutzfilter, biogene Wirkstoffe (Lokalanästhetika, Antibiotika, Antiphlogistik, Antiallergica, Corticosteroide, Sebostatika) pharmazeutisch aktive Wirkstoffe und/oder Antischuppenmittel enthalten.
Unter Ölkörper ist jegliche Fettsubstanz zu verstehen, die bei Raumtemperatur (25°C) flüssig ist. Die Fett-Phase kann daher ein oder mehrere Öle umfassen, die vorzugsweise aus folgenden Ölen ausgewählt werden:
Silikonöle, flüchtig oder nicht flüchtig, linear, verzweigt oder ringförmig, eventuell organisch modifiziert; Phenylsilikone; Silikonharze und -gummis; Mineralöle wie Paraffin- oder Vaselinöl; Öle tierischen Ursprungs wie Perhydrosqualen, Lanolin; Öle pflanzlichen Ursprungs wie flüssige Triglyceride, z.B. Sonnenblumen-, Mais-, Soja-, Reis-, Jojoba-, Babusscu-, Kürbis-, Traubenkern-, Sesam-, Walnuss-, Aprikosen-, Makadamia-, Avocado-, Süßmandel-, Wiesenschaumkraut-, Ricinusöl, Triglyceride der Capryl/Caprinsäuren, Olivenöl, Erdnussöl, Rapsöl und Kokosnussöl;
Synthetische Öle wie Purcellinöl, Isoparaffine, lineare und/oder verzweigte Fettalkohole und Fettsäureester, bevorzugt Guerbetalkohole mit 6 bis 18, vorzugsweise 8 bis 10, Kohlenstoffatomen; Ester von linearen (C6-Ci3)-Fettsäuren mit linearen (C6-C2o)-Fettalkoholen; Ester von verzweigten (C6-Cι3)-Carbonsäuren mit linearen (C6-C2o)-Fettalkoholen, Ester von linearen (C6-Cι8)-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol; Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Dimerdiol oder Trimerdiol) und/oder Guerbetalkoholen; Triglyceride auf Basis (C6-Cιo)-Fettsäuren; Ester wie Dioctyladipat, Diisopropyl dimer dilineloat; PropylenglycoleAdicaprilat oder Wachse wie Bienenwachs, Paraffinwachs oder Mikrowachse, gegebenenfalls in Kombination mit hydrophilen Wachsen, wie z.B. Cetylstearylalkohol; Fluorierte und perfluorierte Öle; fluorierte Silikonöle; Gemische der vorgenannten Verbindungen.
Als nichtionogene Co-Emulgatoren kommen u.a. in Betracht Anlagerungsprodukte von 0 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe und an Sorbitan- bzw. Sorbitolester; (Ci2-C18)-Fettsäuremono- und -diester von Anlagerungsprodukten von 0 bis 30 Mol Ethylenoxid an Glycerin; Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und ggfs. deren Ethylenoxidanlagerungsprodukten; Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Rizinusöl und/oder gehärtetes Rizinusöl; Polyol- und insbesondere Polyglycerinester, wie z.B. Polyglycerinpolyricinoleat und Polyglycerinpoly-12-hydroxystearat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen. Als ionogene Co-Emulgatoren eignen sich z.B. anionische Emulgatoren, wie mono-, di- oder tri-Phosphorsäureester, aber auch kationische Emulgatoren wie mono-, di- und tri-Alkylquats und deren polymere Derivate. Als kationische Polymere eignen sich die unter der INCI-Bezeichnung „Polyquaternium" bekannten Verbindungen, insbesondere Polyquaternium-31 , Polyquaternium-16, Polyquatemium-24, Polyquatemium-7, Polyquaternium-22, Polyquatemium-39, Polyquaternium-28, PoIyquaternium-2, Polyquaternium-10, Polyquatemium-11 , Polyquaternium 37&mineral oil&PPG trideceth (®Salcare SC95), PVP-dimethylaminoethylmethacrylat-Copolymer, Guarhydroxypropyltriammoniumchloride, sowie Calciumalginat und Ammoniumalginat. Des weiteren können eingesetzt werden kationische Cellulosederivate; kationische Stärke; Copolymere von Diallylammoniumsalzen und Acrylamiden; quaternierte Vinylpyrrolidon/ Vinylimidazol-Polymere; Kondensationsprodukte von Polyglykolen und Aminen; quaternierte Kollagenpolypeptide; quaternierte Weizenpolypeptide; Polyethylenimine; kationische Siliconpolymere, wie z.B. Amidomethicone; Copolymere der Adipinsäure und Dimethylaminohydroxy-propyldiethylentriamin; Polyaminopolyamid und kationische Chitinderivate, wie beispielsweise Chitosan. Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxan, Methylphenylpolysiloxane, cyclische Silicone und amino-, fettsäure-, alkohol-, polyether-, epoyx-, fluor- und/oder alkylmodifizierte Siliconverbindungen, sowie Polyalkylsiloxane, Polyalkylarylsiloxane, Polyethersiloxan-Copolymere, wie in US 5104 645 und den darin zitierten Schriften beschrieben, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Geeignete Filmbildner sind je nach Anwendungszweck Salze der Phenylbenzimidazolsulfonsäure, wasserlösliche Polyurethane, beispielsweise Cι0- Polycarbamylpolyglycerylester, Polyvinylalkohol, Polyvinylpyrrolidon, -copolymere, beispielsweise Vinylpyrrolidon/Vinylacetatcopolymer, wasserlösliche
Acrylsäurepolymere/ Copolymere bzw. deren Ester oder Salze, beispielsweise Partialestercopolymere der Acryl/ Methacrylsäure und Polyethylenglykolether von Fettalkoholen, wie Acrylat/Steareth-20-Methacrylat Copolymer, wasserlösliche Cellulose, beispielsweise Hydroxymethylcellulose, Hydroxyethylcellulose, Hydroxypropylcellulose, wasserlösliche Quaterniums, Polyquaterniums, Carbocyvinyl-Polymere, wie Carbomere und deren Salze, Polysaccharide, beispielsweise Polydextrose und Glucan. Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin, nicht ethoxylierte und polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Mono-, Di- und Triglyceride und/oder Fettsäurealkanolamide verwendet werden.
Als feuchtigkeitsspendende Substanz stehen beispielsweise Isopropylpalmitat, Glycerin und/ oder Sorbitol zu Verfügung.
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden.
Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Zusätzlich können die erfindungsgemäßen Mittel organische Lösungsmittel enthalten. Prinzipiell kommen als organische Lösungsmittel alle ein- oder mehrwertigen Alkohole in Betracht. Bevorzugt werden Alkohole mit 1 bis 4 Kohlenstoffatomen wie Ethanol, Propanol, Isopropanol, n-Butanol, i-Butanol, t-Butanol, Glycerin und Mischungen aus den genannten Alkoholen eingesetzt. Weitere bevorzugte Alkohole sind Polyethylenglykole mit einer relativen Molekülmasse unter 2000. Insbesondere ist ein Einsatz von Polyethylenglykol mit einer relativen Molekülmasse zwischen 200 und 600 und in Mengen bis zu 45 Gew.-% und von Polyethylenglykol mit einer relativen Molekülmasse zwischen 400 und 600 in Mengen von 5 bis 25 Gew.-% bevorzugt. Weitere geeignete Lösungsmittel sind beispielsweise Triacetin (Glycerintriacetat) und 1-Methoxy-2- propanol. Hydrotrop wirken kurzkettige Aniontenside, insbesondere Arylsulfonate, beispielsweise Cumol- oder Toluolsulfonat.
Die erfindungsgemäßen Mittel können mit konventionellen Ceramiden, Pseudoceramiden, Fettsäure-N-alkylpolyhydroxyalkylamiden, Cholesterin, Cholesterinfettsäureestern, Fettsäuren, Triglyceriden, Cerebrosiden,
Phospholipiden und ähnlichen Stoffen als Pflegezusatz abgemischt werden. Als UV-Filter eignen sich z.B. 4-Aminobenzoesäure; 3-(4^Trimethylammonium)benzyliden-boran-2-on-methylsulfat; 3,3,5-Trimethyl-cyclohexylsalicylat; 2-Hydroxy-4-methoxybenzophenon; 2-Phenylbenzimidazol-5-sulfonsäure und ihre Kalium-, Natrium- und Triethanolaminsalze; 3,3,-(1 ,4-Phenylendimethin)-bis-(7,7-dimethyl-2- oxobicyclo[2.2.1]-heptan-1-methansulfonsäure und ihre Salze; 1-(4-teιt- Butylphenyl)-3-(4-methoxyphenyl)propan-1 ,3-dion, 3-(4x-Sulfo)-benzyliden-bornan- 2-on und seine Salze; 2-Cyan-3,3-diphenyl-acrylsäure-(2-ethylhexylester); Polymer von N-[2(und 4)-(2-oxoborn-3-ylidenmethyl)benzyl]-acrylamid; 4-Methoxy- zimtsäure-2-ethyl-hexylester; ethoxyliertes Ethyl-4-amino-benzoat; 4-Methoxy- zimtsäure-isoamylester; 2,4,6-Tris-[p-(2-ethylhexyloxycarbonyl)anilino]-1 ,3,5- triazin;
2-(2H-benzotriazol-2-yl)-4-methyl-6-(2-methyl-3-(1 ,3,3,3-tetramethyl-1- (trimethylsilyloxy)-disiloxanyl)propyl)phenol;
4,4'-[(6-[4-((1 ,1-dimethylethyl)-amino-carbonyl)phenylamino]-1 ,3,5-triazin-2,4- yl)diimino]bis-(benzoesäure-2-ethylhexylester); 3-(4 -Methylbenzyliden)-D,L-Campher; 3-Benzyliden-Campher; Salicylsäure-2- ethylhexylester; 4-Dimethylaminobenzoesäure-2-ethylhexylester; Hydroxy-4- methoxy-benzophenon-5-sulfonsäure (Sulisobenzonum) und das Natriumsalz; und/oder 4-lsopropylbenzylsalicylat. Als Antioxidantien eignen sich beispielsweise Superoxid-Dismutase, Tocopherol (Vitamin E) und Ascorbinsäure (Vitamin C).
Als Konservierungsmittel in Betracht kommen beispielsweise Phenoxyethanol, Parabene, Pentandiol oder Sorbinsäure.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden.
Als Antischuppenmittel bzw. antifungizide Wirkstoffe eignen sich bevorzugt Ketoconazol, Climbazol®, Octopirox®, Oxiconazol, Terbinafin, Bifonazole, Butoconazole, Cloconazole, Clotrimazole, Econazole, Enilconazole, Fenticonazole, Isoconazole, Miconazole, Sulconazole, Tioconazole, Fluconazole, Itraconazole, Terconazole, Naftifine und Terbinafine, Zn-Pyrethion und Oczopyrox. Als biogene Wirkstoffen können beispielsweise Bisabolol®, Allantoin®, Phytantriol®, Panthenol®, AHA-Säuren, Pflanzenextrakte und Vitaminkomplexe eingesetzt werden.
Als Säure bzw. Laugen zur pH-Wert Einstellung werden bevorzugt Zitronensäure und/oder Natronlauge verwendet.
Die Mittel sind üblicherweise auf einen pH Wert im Bereich 2 bis 12, bevorzugt pH 3 bis 8, eingestellt.
Der Gesamtanteil an Hilfs- und Zusatzstoffen in den Haarbehandlungsmitteln beträgt bevorzugt 1 bis 30 Gew.-%, besonders bevorzugt 2 bis 20 Gew.-%.
Bevorzugte Ausführungsformen sind Spülungen, Kuren, Sprühkuren, Lotionen, Cremes, Gele, Schäume und Sprays
Die nachfolgenden Beispiele und Anwendungen sollen die Erfindung näher erläutern, ohne sie jedoch darauf zu beschränken (bei allen Prozentangaben handelt es sich um Gewichtsprozent). Bei den in den Beispielen verwendeten Copolymeren handelt es sich um Vertreter der in der Beschreibung bereits aufgeführten besonders bevorzugten Copolymere Nr.1 bis Nr.67. Die Herstellung erfolgte nach den dort angegebenen Verfahren 1 , 2, 3 oder 4 unter Verwendung der bevorzugten Initiatoren und Lösemittel.
Beispiel 1 : Haarspülung
I) Genaminox CSL 6,0 % Cetiol HE 2,0 %
II) Copolymer Nr. 48 1 ,2 %
III) Wasser ad 100 %
Zur Herstellung der Haarspülungen 1 wird jeweils eine Mischung 1 aus den Komponenten unter I) hergestellt. Dazu werden die Komponenten unter I) bei ca. RT unter Rühren bis zum Klarwerden gelöst. Anschließend wird die Mischung 1 auf Raumtemperatur abgekühlt. Zur Herstellung einer Mischung 2 wird jeweils die Komponente II) in der Komponente III) dispergiert und die Mischung bis zum Klarwerden gerührt. Anschließend werden die Mischungen 1 und 2 unter Rühren miteinander vermischt. Danach wird der pH-Wert mittels Zitronensäure auf ca. pH=4 eingestellt.
Beispiel 2: Haarspülung
D Cetylalkohol 3,0 %
Hostaphat KL 340 D 1 ,5 %
Paraffinöl nv 0,5 %
II) Copolymer Nr.35 1 ,0 %
IV) Wasser ad 100 %
Zur Herstellung der Haarspülung 2 werden die Komponenten unter I bei ca. 75°C aufgeschmolzen (Mischung 1). II) wird unter Rühren in III) aufgequollen und anschließend auf ca. 75°C erhitzt (Mischung 2). Danach wird die Mischung 2 zur Mischung 1 unter Rühren zugegeben. Unter Rühren auf Raumtemperatur abkühlen. Abschließend pH- Wert auf ca. 4 einstellen.
Beispiele 3: Haarsprühkur
I) Copolymer Nr. 49 2 %
Genaminox CS 4 %
Cetiol HE 2 %
Panthenol 0,2 %
II) Wasser ad 100 %
Zur Herstellung der Haarsprühkur wird jeweils eine Mischung aus den
Komponenten I) und II) hergestellt. Dazu werden die Komponenten unter I) unter Rühren in der Komponente II) bis zum Klarwerden gelöst. Anschließend wird die Mischung auf Raumtemperatur abgekühlt. Danach wird der pH-Wert mittels Zitronensäure auf ca. pH=4 eingestellt.
Beispiel 4: Haarkur
Genamin KSL 7 %
Hostaphat KL 340 D® 1 ,5 %
Genapol PDC® 4 %
Copolymer Nr. 60 1 ,7 %
Paraffinöl nv 1 %
Jojobaöl 1 %
Propylenglykol 0,8 %
Isopropylpalmitat 1 %
Dow Corning 190® 0,8 %
Extrapon 0,3 %
Vitamin E 0,3 %
Panthenol (Vitamin B 5) 0,5 %
Die Herstellung erfolgt in den aufeinanderfolgenden Schritten I bis VI: I Polymer im Wasser bei RT unter Rühren aufquellen
II Ölphase, enthaltend Öl/e, Quats, Lösungsvermittler und gegebenenfalls Vitamine bei ca. 75°C aufschmelzen
III Wasserphase (I) auf ca. 75°C erhitzen
IV Wasserphase (I) zur Ölphase (II) geben und kaltrühren V Bei ca. 30°C Perlglanzkonzentrat, evt. Farbstoff, Parfüm und Pflanzenextrakte zugeben VI pH-Wert einstellen
Beispiel 5: Haarspülung
I) Genamin CTAC 5,0 %
Genamin KDMP 0,5 %
Genaminox LA 5,0 % Velsan D8P-3 1 ,0 %
II) Wasser 27,3 %
III) Copolymer Nr. 41 1 ,2 %
IV) Wasser ad 100 %
Zur Herstellung der Haarspülungen aus den Beispielen 1 bis 3 wird jeweils eine Mischung 1 aus den Komponenten I) und II) hergestellt. Dazu wird die Komponente I) bei ca. 60°C unter Rühren in der Komponente II) bis zum Klarwerden gelöst. Anschließend wird die Mischung 1 auf Raumtemperatur abgekühlt. Zur Herstellung einer Mischung 2 wird jeweils die Komponente III) in der Komponente IV) dispergiert und die Mischung bis zum Klarwerden gerührt. Anschließend werden die Mischungen 1 und 2 unter Rühren miteinander vermischt. Danach wird der pH-Wert mittels Zitronensäure auf ca. pH=4 eingestellt.
INCI Bezeichnung der eingesetzten Handelsprodukte:
Genamin KSL® (Clariant) PEG - 5 Stearyl Ammonium Lactat
Genapol PDC® (Clariant) Glycol Distearat (and) Laureth- 4 (and) Cocamidopropyl Betain (and) Mica (and) Titanium Dioxide
Hostaphat KL 340 D® (Clariant) Trilaureth-4 Phosphat
Dow Corning 190® (Dow Corning) Dimethicon Copolyol
Extrapon® (Dragoco) Pflanzliche Extrakte
Genaminox LA (Clariant GmbH) Lauryldimethylaminoxid
Genaminox CSL (Clariant GmbH) Cocaminoxid
Genapol UD-80 (Clariant GmbH) Undeceth-8
Velsan D8P-3 (Clariant GmbH) Isopropyl PPG-2-lsodeceth-7
Carboxylat
Cetiol HE (Henkel) PEG-7 Glyceryl Cocoat
Genagen CA-050 (Clariant GmbH) PEG-5 Cocamid
Genamin KDM-P® (Clariant) Behenyltrimethylammonium Chlorid
Genamin CTAC® (Clariant) Cetyltrimethylammonium Chlorid

Claims

Patentansprüche
1. Kosmetische und dermatologische Haarbehandlungsmittel, dadurch gekennzeichnet, dass sie mindestens ein Copolymer, erhältlich durch radikalische Copolymerisation von
A) Acryloyldimethyltaurinsäure und/oder Acryloyldimethyltauraten,
B) gegebenenfalls einem oder mehreren weiteren olefinisch ungesättigten, nicht kationischen, gegebenenfalls vernetzenden, Comonomeren, die wenigstens ein Sauerstoff-, Stickstoff-, Schwefel- oder Phosphoratom aufweisen und ein Molekulargewicht kleiner 500 g/mol besitzen,
C) gegebenenfalls einem oder mehreren olefinisch ungesättigten, kationischen Comonomeren, die wenigstens ein Sauerstoff-, Stickstoff-, Schwefel- oder Phosphoratom aufweisen und ein Molekulargewicht kleiner 500 g/mol besitzen, D) gegebenenfalls einer oder mehreren mindestens monofunktionellen, zur radikalischen Polymerisation befähigten, siliziumhaltigen Komponente(n),
E) gegebenenfalls einer oder mehreren mindestens monofunktionellen, zur radikalischen Polymerisation befähigten, fluorhaltigen Komponente(n),
F) gegebenenfalls einem oder mehreren einfach oder mehrfach olefinisch ungesättigten, gegebenenfalls vernetzenden, Makromonomeren, die jeweils mindestens ein Sauerstoff-, Stickstoff-, Schwefel- oder Phosphoratom besitzen und ein zahlenmittleres Molekulargewicht größer oder gleich 200 g/mol aufweisen, wobei es sich bei den Makromonomeren nicht um eine siliziumhaltige Komponente D) oder fluorhaltige Komponente E) handelt,
G) wobei die Copolymerisation gegebenenfalls in Gegenwart mindestens eines polymeren Additivs mit zahlenmittleren Molekulargewichten von 200 g/mol bis 109 g/mol erfolgt,
H) mit der Maßgabe, dass die Komponente A) mit mindestens einer Komponente ausgewählt aus einer der Gruppen D) bis G) copolymerisiert wird, enthalten.
2. Haarbehandlungsmittel nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den Comonomeren B) um ungesättigte Carbonsäuren, Salze ungesättigter Carbonsäuren, Anhydride ungesättigter Carbonsäuren, Ester ungesättigter Carbonsäuren mit aliphatischen, olefinischen, cycloaliphatischen, arylaliphatischen oder aromatischen Alkoholen mit 1 bis 22 C-Atomen, offenkettige N-Vinylamide, cyclische N-Vinylamide mit einer Ringgröße von 3 bis 9, Amide der Acrylsäure, Amide der Methacrylsäure, Amide substituierter Acrylsäuren, Amide substituierter Methacrylsäuren, 2-Vinylpyridin, 4-Vinylpyridin, Vinylacetat; Styrol, Acrylnitril, Vinylchlorid, Vinylidenchlorid, Tetrafluorethylen, Vinylphosphonsäure oder deren Ester oder Salze, Vinylsulfonsäure oder deren Ester oder Salze,
Allylphosphonsäure oder deren Ester oder Salze und/oder Methallylsulfonsäure oder deren Ester oder Salze handelt.
3. Haarbehandlungsmittel nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass es sich beiden Comonomeren C) um
Diallyldimethylammoniumchlorid (DADMAC),
[2-(Methacryloyloxy)ethyl]trimethylammoniumchlorid (MAPTAC),
[2-(Acryloyloxy)ethyl]trimethylammoniumchlorid,
[2-Methacrylamidoethyl]trimethylammoniumchlorid, [2-(Acrylamido)ethyl]trimethylammoniumchlorid,
N-Methyl-2-vinylpyridiniumchlorid
N-Methyl-4-vinylpyridiniumchlorid
Dimethylaminoethylmethacrylat,
Dimethylaminopropylmethacrylamid, Methacryloylethyl-N-oxid und/oder
Methacryloylethyl-betain handelt.
4. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei den siliziumhaltigen Komponenten D) um Verbindungen der Formel (I)
R1 - Z- [(Si(R3R4)-O-)w-(Si(R5R6)-O)x-]- R2 (I) handelt, wobei
R1 einen Vinyl-, Allyl-, Methallyl-, Methylvinyl-, Acryl-, Methacryl-, Crotonyl-, Senecionyl-, Itaconyl-, Maleinyl-, Fumaryl- oder ein Styrylrest darstellt;
Z eine chemische Brücke, bevorzugt ausgewählt aus -O-, -((Ci - C50) Alkyl)-, -((C6 - C30) Aromat)-, -((C5 - C8) Cycloalkyl)-, -((C C50) Alkenyl)-,
-(Polypropylenoxid)n-, -(Polyethylenoxid)0-, -(Polypropylenoxid)n(Polyethylenoxid)0-, wobei n und 0 unabhängig voneinander Zahlen von 0 bis 200 bedeuten und die Verteilung der EO/PO- Einheiten statistisch oder blockförmig sein kann; -((Ci - C10) Alkyl)-(Si(OCH3)2)- und -(Si(OCH3)2)-. darstellt;
R3, R4, R5 und R6 unabhängig voneinander -CH3, -O-CH3, -C6H5 oder -O-CβHδ bedeuten; w, x Zahlen von 0 bis 500 bedeuten, wobei entweder w oder x größer Null sein muss, und R2 einen gesättigten oder ungesättigten, aliphatischen cycloaliphatischen, arylaliphatischen oder aromatischen Rest mit jeweils 1 bis 50 C-Atomen oder eine Gruppe der Formeln -OH, -NH2, -N(CH3)2 , -R7 oder eine Gruppe -Z-R1 bedeutet, wobei Z und R1 die obengenannten Bedeutungen haben und R7 eine Gruppe der Formel -O-Si(CH3)3. -O-Si(Phenyl)3,
-O-Si(0-Si(CHs)3)2CH3) und -O-Si(O-Si(Ph)3)2Ph) bedeutet.
5. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei den fluorhaltigen Komponenten E) um Verbindungen der Formel (II)
R1-Y-CrH2rCsF2sCF3 (II) handelt, wobei
R1 eine polymerisationsfähige Funktion aus der Gruppe der vinylisch ungesättigten Verbindungen, bevorzugt einen Vinyl-, Allyl-, Methallyl-,
Methylvinyl-, Acryl-, Methacryl-, Crotonyl-, Senecionyl-, Itaconyl-, Maleinyl-, Fumaryl- oder Styrylrest, darstellt; Y eine chemische Brücke, bevorzugt -O-, -C(O)-, -C(O)-O-, -S-, -0-CH2-CH(O-)-CH2OH, -O-CH2-CH(OH)-CH2-O-, -O-SO2-O- , -0-S(O)-0-, -PH-, -P(CHs)-, -PO3-, -NH-, -N(CH3)-, -O-(C1-C50)Alkyl-O-, -O-Phenyl-O-, -O-Benzyl-O-, -O-(C5-C8)Cycloalkyl-0-, -O-(Cι-C50)Alkenyl-O-, -O-(CH(CH3)-CH2-0)n-, -O-(CH2-CH2-O)n- und -0-([CH-CH2-O]n-[CH2-CH2-O]m)o-, wobei n, m und 0 unabhängig voneinander Zahlen von 0 bis 200 bedeuten, darstellt und r, s stöchiometrische Koeffizienten darstellen, die unabhängig voneinander
Zahlen zwischen 0 und 200 sein können.
6. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei den Makromonomeren F) um Verbindungen der Formel (III) handelt,
R1 - Y - [(A)v - (B)w - (C)x - (D)z] - R2 (III)
wobei R1 eine polymerisationsfähige Funktion aus der Gruppe der vinylisch ungesättigten Verbindungen, bevorzugt einen Vinyl-, Allyl-, Methallyl-, Methylvinyl-, Acryl-, Methacryl-, Crotonyl-, Senecionyl-, Itaconyl-, Maleinyl-, Fumaryl- oder Styrylrest, darstellt; Y eine verbrückende Gruppe, bevorzugt -O-, -S-, -C(O)-, -C(O)-O-,
-O-CH2-CH(O-)-CH2OH, -O-CH2-CH(OH)-CH2O-, -O-SO2-O-, -O-SO2-O-, -O-SO-O-, -PH-, -P(CH3)-, -PO3-, -NH- und -N(CH3)- darstellt; A, B, C und D unabhängig voneinander diskrete chemische Wiederholungseinheiten, bevorzugt hervorgegangen aus Acrylamid, Methacrylamid, Ethylenoxid, Propylenoxid, AMPS, Acrylsäure, Methacrylsäure, Methylmethacrylat, Acrylnitril, Maleinsäure, Vinylacetat, Styrol, 1 ,3-Butadien, Isopren, Isobuten, Diethylacrylamid und Diisopropylacrylamid, insbesondere bevorzugt Ethylenoxid, Propylenoxid darstellen; v, w, x und z unabhängig voneinander 0 bis 500, bevorzugt 1 bis 30, betragen, wobei die Summe aus v, w, x und z im Mittel > 1 ist; und
R2 einen linearen oder verzweigten aliphatischen, olefinischen, cycloaliphatischen, arylaliphatischen oder aromatischen (Cι-C5o)-Kohlenwasserstoffrest, OH, -NH2 oder -N(CH3)2 darstellt oder gleich [-Y-R1] ist.
7. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei den polymeren Additiven G) um Homo- oder Copolymere aus N-Vinylformamid, N-Vinylacetamid, N-Vinylpyrrolidon, Ethylenoxid, Propylenoxid, Acryloyldimethyltaurinsäure, N-Vinylcaprolacton, N-Vinylmethylacetamid, Acrylamid, Acrylsäure, Methacrylsäure, N-Vinylmorpholid, Hydroxymethylmethacrylat, Diallyldimethylammoniumchlorid (DADMAC) und/oder [2-(Methacryloyloxy)ethyl]trimethylammoniumchlorid (MAPTAC); Polyalkylenglykole und/oder Alkylpolyglykole handelt.
8. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Copolymerisation in Gegenwart mindestens eines polymeren Additivs G) erfolgt.
9. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Copolymere vernetzt sind.
10. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Copolymere durch Fällungspolymerisation in tert.-Butanol hergestellt werden.
11. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Copolymere wasserlöslich oder wasserquellbar sind.
12. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass sie, bezogen auf die fertigen Mittel, 0,01 bis 10 Gew.-% der Copolymere enthalten.
13. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass sie Ölkörper, Emulgatoren, Co-Emulgatoren, kationische Polymere, Filmbildner, Überfettungsmittel, feuchtigkeitsspendende Mittel, Stabilisatoren, biogene Wirkstoffe, Glycerin, Konservierungsmittel, Perlglanzmittel, Färb- und Duftstoffe, Lösungsmittel, Hydrotrope, Trübungsmittel, Verdickungsmittel, Dispergiermittel, Eiweißderivate, Polypeptide auf natürlicher und synthetischer Basis, Eigelb, Lecithin, Lanolin, Lanolinderivate, Fettalkohole, Silicone, Stoffe mit keratolytischer und keratoplastischer Wirkung, Enzyme, Trägersubstanzen, Antioxidation, Lichtschutzstoffe UV-Lichtschutzfilter, biogene Wirkstoffe, pharmazeutisch aktive Wirkstoffe und/oder Antischuppenmittel enthalten.
14. Haarbehandlungsmittel nach mindestens einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, dass es sich dabei um Spülungen, Kuren, Sprühkuren Lotionen, Cremes, Gele, Schäume und Sprays handelt.
PCT/EP2001/013862 2000-12-01 2001-11-28 Kosmetische und dermatologische haarbehandlungsmittel WO2002043677A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01989524A EP1345575B1 (de) 2000-12-01 2001-11-28 Kosmetische und dermatologische haarbehandlungsmittel
US10/433,117 US7244421B2 (en) 2000-12-01 2001-11-28 Cosmetic and dermatological hair-treatment agents
DE50115326T DE50115326D1 (de) 2000-12-01 2001-11-28 Kosmetische und dermatologische haarbehandlungsmittel
BR0115845-7A BR0115845A (pt) 2000-12-01 2001-11-28 Agentes de tratamento de cabelo cosméticos e dermatológicos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10059827A DE10059827A1 (de) 2000-12-01 2000-12-01 Kosmetische und dermatologische Haarbehandlungsmittel
DE10059827.7 2000-12-01

Publications (2)

Publication Number Publication Date
WO2002043677A2 true WO2002043677A2 (de) 2002-06-06
WO2002043677A3 WO2002043677A3 (de) 2002-08-22

Family

ID=7665480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/013862 WO2002043677A2 (de) 2000-12-01 2001-11-28 Kosmetische und dermatologische haarbehandlungsmittel

Country Status (6)

Country Link
US (1) US7244421B2 (de)
EP (1) EP1345575B1 (de)
JP (1) JP5377811B2 (de)
BR (1) BR0115845A (de)
DE (2) DE10059827A1 (de)
WO (1) WO2002043677A2 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357893A2 (de) * 2000-12-01 2003-11-05 Clariant GmbH Saure kosmetische, pharmazeutische und dermatologische mittel
EP2208510A1 (de) 2009-01-15 2010-07-21 L'oreal Kosmetische oder dermatologische Zusammensetzung, die ein Retinoid, eine nicht-phosphatierte Verbindung auf der Basis von Adenosin und ein halbkristallines Polymer enthält
WO2011073280A2 (fr) 2009-12-18 2011-06-23 L'oreal Procédé de traitement cosmétique impliquant un composé apte à condenser in situ résistant
WO2014111571A1 (en) 2013-01-21 2014-07-24 L'oreal Cosmetic or dermatological emulsion comprising a merocyanine and an emulsifying system containing an amphiphilic polymer comprising at least one 2-acrylamidomethylpropanesulfonic acid unit
WO2014207715A2 (en) 2013-06-27 2014-12-31 L'oreal Pemulen starch emulsified gel
US9421157B2 (en) 2006-07-03 2016-08-23 L'oreal Use of C-glycoside derivatives as pro-desquamating active agents
WO2018078095A1 (en) 2016-10-28 2018-05-03 L'oreal Composition comprising at least two fatty acid esters of (poly)glycerol, and use thereof in cosmetics
WO2018195614A1 (en) 2017-04-28 2018-11-01 L'oreal Gel-cream hair care composition
FR3128118A1 (fr) 2021-10-14 2023-04-21 L'oreal ProceDE de traitement des cheveux comprenant l’application d’une émulsion huile-dans-eau comprenant une phase aqueuse, une phase grasse et un polymère

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059819A1 (de) * 2000-12-01 2002-06-13 Clariant Gmbh Tensidhaltige kosmetische, dermatologische und pharmazeutische Mittel
DE10059829A1 (de) * 2000-12-01 2002-06-13 Clariant Gmbh Gepfropfte Kammpolymere auf Basis von Acryloyldimethyltaurinsäure
DE10213142A1 (de) * 2002-03-23 2003-10-02 Clariant Gmbh Stabile Dispersionskonzentrate
MXPA03008714A (es) 2002-09-26 2004-09-10 Oreal Polimeros secuenciados y composiciones cosmeticas que comprenden tales polimeros.
JP3981132B2 (ja) 2002-09-26 2007-09-26 ロレアル 配列されたポリマーとゲル化剤を含む組成物
DE10257279A1 (de) 2002-12-07 2004-06-24 Clariant Gmbh Flüssige Bleichmittelkomponenten enthaltend amphiphile Polymere
FR2860143B1 (fr) 2003-09-26 2008-06-27 Oreal Composition cosmetique comprenant un polymere sequence et une huile siliconee non volatile
US8728451B2 (en) 2004-03-25 2014-05-20 L'oreal Styling composition comprising, in a predominantly aqueous medium, a pseudo-block polymer, processes employing same and uses thereof
US20060018863A1 (en) 2004-07-13 2006-01-26 Nathalie Mougin Novel ethylenic copolymers, compositions and methods of the same
DE602005025227D1 (de) * 2004-08-16 2011-01-20 Union Carbide Chem Plastic Körperpflegezusammensetzung
DE102004050239A1 (de) * 2004-10-15 2005-05-12 Clariant Gmbh Kosmetische, pharmazeutische und dermatologische Mittel
GB0614314D0 (en) * 2006-07-19 2006-08-30 Croda Int Plc Co-polymers in hair styling applications
FR2904320B1 (fr) 2006-07-27 2008-09-05 Oreal Polymeres sequences, et leur procede de preparation
DE102007061969A1 (de) * 2007-12-21 2008-07-17 Clariant International Limited Wasserlösliche oder wasserquellbare Polymere auf Basis von Salzen der Acryloyldimethyltaurinsäure oder ihrer Derivate, deren Herstellung und deren Verwendung als Verdicker, Stabilisator und Konsistenzgeber
US20100166692A1 (en) * 2008-12-30 2010-07-01 Hessefort Yin Z Method for treating damaged hair in conjunction with the relaxing process
DE102009020299A1 (de) 2009-05-07 2010-11-11 Clariant International Ltd. Kammpolymere und deren Verwendung in Wasch- und Reinigungsmitteln
ES2719326T3 (es) 2013-07-19 2019-07-09 Oreal Composición de tinte que comprende un tensioactivo anfótero particular y un polímero espesante particular
ES2661646T3 (es) 2013-07-19 2018-04-02 L'oreal Composición de tinte que comprende un tensioactivo anfótero particular y un tensioactivo de amida oxietilenada o un tensioactivo de alcohol graso oxietilenado que comprende menos de 10 unidades de OE y mezcla de los mismos
FR3008614B1 (fr) 2013-07-19 2015-07-31 Oreal Composition de coloration comprenant un tensio actif amphotere particulier et un tensioactif sulfate
KR102043855B1 (ko) * 2015-12-09 2019-11-12 주식회사 엘지생활건강 표면 개질용 기능성 조성물
DE102016223588A1 (de) 2016-11-28 2018-05-30 Clariant International Ltd Copolymere und deren verwendung in reinigungsmittel-zusammensetzungen
US20190307668A1 (en) * 2016-11-28 2019-10-10 Clariant International Ltd. Cosmetic composition comprising a cationic copolymer
DE102016223590A1 (de) 2016-11-28 2018-05-30 Clariant International Ltd Copolymer enthaltende reinigungsmittelzusammensetzungen
DE102016223586A1 (de) 2016-11-28 2018-05-30 Clariant International Ltd Copolymere und deren verwendung in reinigungsmittel-zusammensetzungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713236A (en) * 1981-12-07 1987-12-15 Morton Thiokol, Inc. Polymeric amine conditioning additives for hair care products
US4859458A (en) * 1981-09-15 1989-08-22 Morton Thiokol, Inc. Hair conditioning polymers containing alkoxylated nitrogen salts of sulfonic acid
EP0503853A2 (de) * 1991-03-08 1992-09-16 Scott Bader Company Limited Wasserlösliche polymere Verdickungsmittel für Produkte für äusserliche Anwendung
US5275809A (en) * 1991-06-28 1994-01-04 Calgon Corporation Ampholyte terpolymers providing superior conditioning properties in shampoos and other hair care products
DE19907715A1 (de) * 1999-02-23 2000-08-24 Schwarzkopf Gmbh Hans Zubereitungen zur Behandlung keratinischer Fasern

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826551A (en) 1954-01-04 1958-03-11 Simoniz Co Nontangling shampoo
CA1261276A (en) 1984-11-09 1989-09-26 Mark B. Grote Shampoo compositions
FR2742657B1 (fr) * 1995-12-21 1998-01-30 Oreal Compositions pour le traitement des matieres keratiniques contenant l'association d'un polymere polyampholyte et d'un polymere cationique
FR2750325B1 (fr) * 1996-06-28 1998-07-31 Oreal Utilisation en cosmetique d'un poly(acide 2-acrylamido 2- methylpropane sulfonique) reticule et neutralise a au moins 90 % et compositions topiques les contenant
FR2750327B1 (fr) * 1996-06-28 1998-08-14 Oreal Composition a usage topique sous forme d'emulsion huile-dans-eau sans tensio-actif contenant un poly(acide 2- acrylamido 2-methylpropane sulfonique) reticule et neutralise
FR2753372B1 (fr) 1996-09-17 1998-10-30 Oreal Composition oxydante gelifiee et utilisations pour la teinture, pour la deformation permanente ou pour la decoloration des cheveux

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859458A (en) * 1981-09-15 1989-08-22 Morton Thiokol, Inc. Hair conditioning polymers containing alkoxylated nitrogen salts of sulfonic acid
US4713236A (en) * 1981-12-07 1987-12-15 Morton Thiokol, Inc. Polymeric amine conditioning additives for hair care products
EP0503853A2 (de) * 1991-03-08 1992-09-16 Scott Bader Company Limited Wasserlösliche polymere Verdickungsmittel für Produkte für äusserliche Anwendung
US5275809A (en) * 1991-06-28 1994-01-04 Calgon Corporation Ampholyte terpolymers providing superior conditioning properties in shampoos and other hair care products
DE19907715A1 (de) * 1999-02-23 2000-08-24 Schwarzkopf Gmbh Hans Zubereitungen zur Behandlung keratinischer Fasern

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357893A2 (de) * 2000-12-01 2003-11-05 Clariant GmbH Saure kosmetische, pharmazeutische und dermatologische mittel
US9421157B2 (en) 2006-07-03 2016-08-23 L'oreal Use of C-glycoside derivatives as pro-desquamating active agents
EP2208510A1 (de) 2009-01-15 2010-07-21 L'oreal Kosmetische oder dermatologische Zusammensetzung, die ein Retinoid, eine nicht-phosphatierte Verbindung auf der Basis von Adenosin und ein halbkristallines Polymer enthält
WO2011073280A2 (fr) 2009-12-18 2011-06-23 L'oreal Procédé de traitement cosmétique impliquant un composé apte à condenser in situ résistant
WO2011073279A2 (fr) 2009-12-18 2011-06-23 L'oreal Procédé de traitement cosmétique impliquant un composé apte à condenser in situ
WO2014111571A1 (en) 2013-01-21 2014-07-24 L'oreal Cosmetic or dermatological emulsion comprising a merocyanine and an emulsifying system containing an amphiphilic polymer comprising at least one 2-acrylamidomethylpropanesulfonic acid unit
WO2014207715A2 (en) 2013-06-27 2014-12-31 L'oreal Pemulen starch emulsified gel
WO2018078095A1 (en) 2016-10-28 2018-05-03 L'oreal Composition comprising at least two fatty acid esters of (poly)glycerol, and use thereof in cosmetics
WO2018195614A1 (en) 2017-04-28 2018-11-01 L'oreal Gel-cream hair care composition
FR3128118A1 (fr) 2021-10-14 2023-04-21 L'oreal ProceDE de traitement des cheveux comprenant l’application d’une émulsion huile-dans-eau comprenant une phase aqueuse, une phase grasse et un polymère

Also Published As

Publication number Publication date
JP2002265336A (ja) 2002-09-18
DE50115326D1 (de) 2010-03-11
EP1345575B1 (de) 2010-01-20
JP5377811B2 (ja) 2013-12-25
BR0115845A (pt) 2003-10-07
US7244421B2 (en) 2007-07-17
DE10059827A1 (de) 2002-06-20
US20040115157A1 (en) 2004-06-17
EP1345575A2 (de) 2003-09-24
WO2002043677A3 (de) 2002-08-22

Similar Documents

Publication Publication Date Title
EP1345575B1 (de) Kosmetische und dermatologische haarbehandlungsmittel
EP2194096B1 (de) Verwendung von kammförmigen Copolymeren auf Basis von Acryloyldimethyltaurinsäure in kosmetischen, pharmazeutischen und dermatologischen Mitteln
EP2186836B1 (de) Kosmetische, pharmazeutische und dermatologische Mittel
EP1339382B1 (de) Dekorative kosmetische und dermatologische mittel
EP1339792B1 (de) Tensidhaltige kosmetische, dermatologische und pharmazeutische mittel
EP2186835B1 (de) Tensidfreie kosmetische, dermatologische und pharmazeutische Mittel
EP1339789B1 (de) Elektrolythaltige kosmetische, pharmazeutische und dermatologische mittel
WO2002043686A2 (de) Saure kosmetische, pharmazeutische und dermatologische mittel
EP1432746B1 (de) Deodorantien und antiperspirantien
DE10059831A1 (de) Siliziummodifizierte Kammpolymere auf Basis von Acryloyldimethyltaurinsäure
DE102006018523A1 (de) Wasserlösliche Polymere und ihre Verwendung in kosmetischen und pharmazeutischen Zubereitungen
DE102007061970A1 (de) Kosmetische, pharmazeutische oder dermatologische Zusammensetzungen enthaltend einen hohen Gehalt an wasserlöslichen Pflegekomponenten
EP1347013A2 (de) Stabile Dispersionskonzentrate
EP1464658A1 (de) Verfahren zur Herstellung von stabilen Polymer-Konzentraten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): BR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

AK Designated states

Kind code of ref document: A3

Designated state(s): BR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001989524

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001989524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10433117

Country of ref document: US