WO2002050968A1 - Laser a emission par la surface, procede de fabrication de ce laser, et reseau de lasers a emission par la surface - Google Patents

Laser a emission par la surface, procede de fabrication de ce laser, et reseau de lasers a emission par la surface Download PDF

Info

Publication number
WO2002050968A1
WO2002050968A1 PCT/JP2000/008998 JP0008998W WO0250968A1 WO 2002050968 A1 WO2002050968 A1 WO 2002050968A1 JP 0008998 W JP0008998 W JP 0008998W WO 0250968 A1 WO0250968 A1 WO 0250968A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
etching
etching stop
mesa shape
layer structure
Prior art date
Application number
PCT/JP2000/008998
Other languages
English (en)
French (fr)
Inventor
Toshikazu Mukaihara
Noriyuki Yokouchi
Akihiko Kasukawa
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP25906699A priority Critical patent/JP2001085789A/ja
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to PCT/JP2000/008998 priority patent/WO2002050968A1/ja
Priority to DE10085441T priority patent/DE10085441T5/de
Publication of WO2002050968A1 publication Critical patent/WO2002050968A1/ja
Priority to US10/223,190 priority patent/US6737290B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers

Definitions

  • the present invention relates to a surface-emitting type semiconductor laser device suitably used as a light source for optical data communication and the like, a method for manufacturing the same, and further relates to a surface-emitting type semiconductor laser array using the laser device.
  • the threshold current can be reduced (for example, about several mA). Furthermore, an array of many of these elements is expected to be applied as a high-density integrated device.
  • FIG. 1 shows an example of such a surface emitting laser device.
  • This laser device has a lower reflector layer structure 110 composed of a multilayer film using p-type A 1 GaAs on a p-type semiconductor substrate 100 composed of GaAs and a current confinement layer 1. 20, active layer composed of GaAs ZA1 GaAs having quantum well structure 140, and upper reflector layer structure composed of a multilayer film using n-type A1 GaAs 1 50 are stacked in this order.
  • the lower part from the upper reflector layer structure 150 to the lower end face of the current confinement layer 120 (the interface between the current confinement layer 120 and the partial reflector layer structure 110) is It has a cylindrical mesa shape (diameter of 20 m) 200.
  • an n-type electrode 160 is formed by vapor deposition so as to cover the mesa shape 200.
  • a p-type electrode 180 is formed on the back surface of 100.
  • the passivation process using a silicon nitride film 190 is applied to the surface of the element except for the upper end surface of the mesa shape, that is, the side surfaces of the mesa shape and the upper surface of the upper reflector layer structure.
  • the above-mentioned mesa shape 200 is obtained by stacking the above layers on the substrate 100 and then performing dry etching such as reactive ion beam etching (RIBE) on the entire layer structure. Is formed.
  • dry etching such as reactive ion beam etching (RIBE)
  • the above-described current confinement layer 120 located between the lower reflector layer structure 110 and the active layer 140 forms a precursor layer once with, for example, A 1 As.
  • the mesa shape including the layer is formed, the mesa shape is subjected to a heat treatment (for example, 400 ° C. for 10 minutes) in a steam atmosphere, so that the mesa shape is applied from the side of the precursor layer toward the core.
  • the insulating layer 120a is formed by oxidizing the precursor layer, and the conductive layer 120b made of unoxidized A1As remains on the core. In this case, the current is concentrated and injected into the conductive layer 120b in the current confinement layer 120, so that the threshold current of the element can be reduced.
  • the precursor layer is surely included in the mesa shape, and the current confinement layer is sufficiently formed from the side. It is necessary to promote oxidation.
  • the accuracy of the actual etching depth varies by about ⁇ 10% due to the instability of the dry etching.
  • the end point of the etching should be set at a position at least 10% deeper than the actual position of the precursor layer.
  • the portion below the precursor layer is etched.
  • a part of the p-type lower reflecting mirror layer structure 110 is etched to a position at most one depth deeper than the position of the precursor layer. Or, the whole may have a mesa shape.
  • Japanese Unexamined Patent Application Publication No. H5-2536464 discloses that when the cross-sectional area of a mirror layer (reflector structure) composed of p-type GaAs / A1As in a laser element becomes small, It is described that spikes in the valence band generated at the heterojunction surface of a As / A 1 As limit the electric conduction of holes and increase the element resistance. Therefore, in the case of a surface emitting semiconductor laser device using a p-type semiconductor substrate, the P-type reflecting mirror layer structure on the substrate is etched into a mesa shape, and when the cross-sectional area is reduced, this reflecting mirror layer structure is etched. This causes a problem that the element resistance is increased as compared with the case where the operation is not performed, thereby causing heat generation of the element and an increase in operating voltage. Further, as the etching depth varies, the characteristics of the obtained device also vary.
  • An object of the present invention is to solve the above-described problems in a surface-emitting type semiconductor laser device and to provide an etching stop layer between a current confinement layer and a lower reflector layer structure, thereby etching the lower reflector layer structure. It is an object of the present invention to provide a surface-emitting type semiconductor laser device and a method of manufacturing the same, in which the device resistance is reduced by preventing the above, and a surface-emitting type semiconductor laser using the device. Disclosure of the invention
  • a surface emitting semiconductor laser device comprising: A lower reflector structure and an upper reflector structure are formed on the P-type semiconductor substrate, and an etching stop layer, a current constriction are arranged in order from the bottom between the lower reflector structure and the upper reflector structure. And an active layer is formed; and
  • a portion above the top surface of the etch stop layer is mesa-shaped
  • Dry etching is performed downward from the upper reflecting mirror structure to form a rough mesa shape on the etching stop layer;
  • a surface-emitting type semiconductor laser array comprising the following:
  • the layer structure including the lower reflector layer structure to the upper reflector layer structure is the same P-type semiconductor. , Which are integrated on a substrate.
  • FIG. 1 is a sectional view showing a layer structure of a conventional surface-emitting type semiconductor laser device.
  • FIG. 2 is a sectional view showing the layer structure of the surface emitting semiconductor laser device of the present invention.
  • FIG. 3 is a sectional view showing the layer structure A before etching.
  • FIG. 4 is a sectional view when the layer structure A is subjected to dry etching.
  • FIG. 5 is a sectional view showing a state in which wet etching is further performed.
  • FIG. 6 is a cross-sectional view when an oxidation treatment is performed on a mesa shape.
  • the (P-type) reflector layer structure located below the etching stopper layer is etched to form a mesa shape.
  • the technical idea is to prevent the element from becoming part of the element and thereby reduce the element resistance.
  • the present invention focuses on the difference between the features of dry etching and wet etching.
  • the entire layer structure is positioned on the etching stop layer by applying dry etching having excellent processing accuracy.
  • the rough shape of the mesa shape is accurately formed by etching the part.
  • a high-selectivity etching is applied to the above-described general shape, and the layer structure remaining on the etching stop layer is selectively etched. Make the shape exactly mesa.
  • a surface-emitting type laser element 1 is composed of 30 pairs of p-type A 1 on a p-type semiconductor substrate 10 made of p-type GaAs. . 2 0 ⁇ 1 ().
  • 8 3-layer / type l lower DBR mirror one (lower reflecting mirror layer structure) Ru consists Gao.tAs layer 1 1, and 25 pairs of n-type A l ". 2 Ga 0. 8 a s layer Zn type a 1 0. g Ga QA a s layer upper DBR mirror (upper reflector layer structure) 1 7 made of is formed.
  • an etching stop layer 12 composed of InGaP, a current confinement layer 14, and an active layer 16 composed of GaAsZZA1 GaAs and having three quantum well structures are arranged.
  • a cap layer 18 made of n-type GaAs is formed on the upper DBR mirror 17 in this embodiment.
  • the lower end surface of the current confinement layer 14 (current confinement) is directed downward from the cap layer 18.
  • the part up to the interface between the layer 14 and the etching stop layer 12) has a columnar mesa shape 20 (diameter 3011, mesa height 3.5 m).
  • An n-type electrode 30 of Ti / Pt / Au is formed on the top and side surfaces of the mesa shape by vapor deposition so as to cover the entire mesa shape 200.
  • a back surface of the P-type semiconductor substrate 10 is made of AuZn.
  • a p-type electrode 18 is formed. Note that the entire surface of the surface-emitting laser element 1 is subjected to a passivation process using a silicon nitride film 70.
  • the lower reflector layer structure 11 and the upper reflector layer structure 17 constitute a resonator as a laser reflector, and alternately include two types of semiconductor films (for example, AlGaAs layers) having different compositions as described above. They can be formed by stacking. In this case, the optical thickness of each semiconductor film may be ⁇ 4 ( ⁇ : wavelength of laser output light).
  • each of the reflecting mirror layer structures 11 and 17 is preferably composed of an ⁇ -type or ⁇ -type semiconductor depending on the polarity of the laser output light.
  • the layer structure 17 may be of ⁇ type.
  • the composition ratio of A 1 in A 1 GaAs constituting the semiconductor film may be reduced so that the respective reflecting mirror layer structures 11 and 17 are not oxidized.
  • a dielectric mirror layer structure may be formed by a dielectric multilayer film or a metal thin film.
  • the etching stop layer 12 is made of a material whose lattice matching with the semiconductor layer to be etched is 0.5% or less, and more specifically, is made of a material which is not etched by wet etching described later. Examples of such a material include InGaP when the entire layer structure is formed of a GaAs-based semiconductor.
  • the layer structure including the etching stop layer is wet-etched, only the layer structure located above the etching stop layer is selectively etched, and the etching stop layer is not etched. Therefore, the upper surface of the etching stop layer is etched. The progress of the ringing stops. In this case, the lower portion of the etching stopper layer, that is, the lower reflecting mirror layer structure is not etched.
  • the current confinement layer 14 is composed of a conductive layer 14 b having a core of about 10 m in diameter, It has a concentric annular structure in which the portion is an insulating layer 14a, and current is concentrated and injected into the conductive layer 14, so that the threshold current is reduced.
  • the current confining layer 14 is formed by forming a precursor layer using an A1 compound semiconductor at the time of forming the above layer structure, forming a mesa shape by etching, and then forming a mesa shape from the side of the precursor layer to the core.
  • the periphery is converted into an insulating layer 14a made of A1 oxide, and an unoxidized A1 compound semiconductor is left in the core to form a conductive layer 14b.
  • the used A1 compound semiconductor include A1As and A1GaAs.
  • P-type A1As is used as a material for the precursor layer.
  • the active layer 16 emits light by recombination of electrons and holes. Particularly, a quantum well structure is preferable because the threshold value can be further reduced.
  • a cladding layer having a larger band gap and a lower refractive index than the active layer 12 as appropriate above and below the active layer 16 to form a structure in which the active layer 12 is sandwiched the active layer Electrons and light may be confined in the device.
  • a material for the active layer 16 (and the cladding layer) for example, a GaAs semiconductor may be used.
  • a clad layer is formed, for example, a small amount of A1 may be added to the clad layer to make the band gap larger than that of the active layer.
  • the cap layer 18 is formed of a material that realizes a homogenous contact with an n-type electrode formed thereon and reduces the contact resistance between the two. It can be formed by doping n-type dopants such as i, Ge, Sn, and Se.
  • the n-type electrode 30 can be formed of a multilayer film of, for example, Ti / Pt / Au.
  • the P-type electrode 32 can be formed, for example, by depositing AuZn or Ti / Pt / Au.
  • Each semiconductor layer in the above-described layer structure may be formed by, for example, molecular beam epitaxy (MBE) or chemical vapor deposition (MOCVD) using an organic metal.
  • MBE molecular beam epitaxy
  • MOCVD chemical vapor deposition
  • the lower reflector layer structure 11 located below this layer is etched by the action of the etching stop layer 12 to become a part of the mesa shape. None. Therefore, the cross-sectional area of the P-type lower reflecting mirror layer structure 11 is prevented from decreasing and its element resistance is prevented from increasing, and heat generation of the element and an increase in operating voltage are suppressed. Then, by increasing the sectional area of the reflecting mirror layer structure 11, the element resistance can be significantly reduced.
  • the precursor layer 14 located above the etching stop layer 12 can be surely etched and wrapped in a mesa shape, and this precursor layer can be easily oxidized by a subsequent oxidation treatment. It can be converted into a current confinement layer, and a low threshold laser element can be obtained.
  • the surface-emitting type laser device 1 having the above-described specification in the embodiment of FIG. 2 has a low device resistance of 30 ⁇ , a laser beam in the 850 nm band at a low threshold (3 mA), and It can output at low operating voltage (2 V at 2 O mA drive current).
  • a lower reflector structure 11 On a p-type semiconductor substrate 10 made of p-type GaAs, a lower reflector structure 11, an etching stop layer 12, and a precursor of a current confinement layer are formed, for example, by MBE.
  • the body layer 24, the active layer 16, the upper mirror layer structure 17, and the cap layer 18 are sequentially laminated to form a layer structure A.
  • a resist is applied on the cap layer 18 that is the uppermost layer of the layer structure A, and a resist pattern 60 having the same cross-sectional shape as the target mesa shape is formed by, for example, photolithography. .
  • dry etching D having directivity such as RIBE is applied to the layer structure A to form a rough mesa shape. That is, a part of the layer structure located above the etching stopper layer 12 is removed by etching.
  • the part of the layer structure located above the etching stop layer 12 may be any part as long as it is on the etching stop layer 12.
  • the position of the etching stop layer 12 be such that it is not etched.
  • the etching stop layer when the etching stop layer is located at a depth of 5 m from the surface of the layer structure A, if the end point of the etching is set to a layer approximately 1 ⁇ m above the etching stop layer, the etching depth becomes Since the maximum thickness is about 4.5 (5-1 + 0.5) zm, the etching stopper layer 12 is not etched.
  • the end point of the dry etching may be determined based on, for example, the etching depth obtained by the step measurement.
  • the wet etching W is applied to the surface exposed by the dry etching D, and the etching stop layer 12 is directed downward from the surface exposed by the dry etching D described above.
  • the part reaching the upper surface (the part shown by the broken line in the figure) is removed to complete the mesa shape.
  • the etching stop layer 12 is made of a material that cannot be etched by the wet etching W, the etching stops automatically on the upper surface of the etching stop layer 12 without strictly controlling its end point.
  • the etchant used for such wet etching W include a sulfuric acid aqueous solution and a phosphoric acid aqueous solution.
  • the mesa shape is formed in a cylindrical shape, but the mesa shape is not limited to this.
  • the mesa shape may be formed in a square pillar shape or another polygonal pillar shape.
  • an oxidation treatment is performed on the layer structure A in which at least the precursor layer 24 is surely included in the mesa shape, and the precursor layer 24 is oxidized from the side to form a current confinement layer 14.
  • a oxidation treatment as described above, for example, water vapor oxidation is preferable, and the oxidation rate and the degree of oxidation can be changed by changing the dew point, temperature, and treatment time of steam. it can.
  • the steam oxidation may be performed, for example, at 400 ° C. for 10 minutes.
  • the whole surface of the obtained layer structure A is subjected to a passivation process using a silicon nitride film 70, and then, for example, dry etching such as RIE is applied to form a mesa.
  • a silicon nitride film 70 for example, dry etching such as RIE is applied to form a mesa.
  • the silicon nitride film on the top surface of the shape is removed.
  • an n-type electrode 30 composed of a Ti / Pt / Au multilayer film (not shown) is formed on the upper end surface of the mesa shape (the surface of the cap layer 18) by vapor deposition so as to cover the entire mesa shape.
  • an AuZn film is deposited on the back surface of the mold semiconductor substrate 10 to form a p-type electrode 32, and the surface-emitting laser device 1 is manufactured.
  • etching having excellent processing accuracy is applied to the entire layer structure, and a part of the layer structure located at the position of the etching stop layer is removed by etching.
  • the rough shape is accurately formed, and then the layer structure remaining on the etching stop layer is etched by high etching selectivity, so that the portion above the top surface of the etching stop layer is reliably formed.
  • Etching is performed to form a mesa shape with high dimensional accuracy, and the underlying layer structure, in particular, the reflecting mirror layer structure is prevented from being etched.
  • the cross-sectional area of the P-type lower reflecting mirror layer structure is prevented from decreasing and the element resistance is prevented from increasing, and the heat generation of the element and the increase in operating voltage are suppressed. Then, the cross-sectional area of the reflecting mirror layer structure 11 can be increased to significantly reduce the element resistance. Further, the portion above the etching stop layer is surely etched to have a mesa shape, and the current confinement layer is formed in a stable state, so that the threshold value of the element can be reduced.
  • a plurality of the above surface emitting semiconductor laser elements are formed on a common P-type semiconductor substrate 10. That is, in each surface-emitting type semiconductor laser device, one etching stop layer 12 formed on one p-type semiconductor substrate 10 is used as a common etching stop layer.
  • the etching can be stopped at a desired position. Therefore, according to the present invention, a surface emitting semiconductor laser device having good controllability and excellent heat saturation can be obtained.

Description

明 細. 書
面発光型半導体レーザ素子とその製造方法、 およびそのレーザ素子を用いた面発 光型半導体レーザアレイ 技術分野
本発明は、 光データ通信等の光源として好適に用いられる面発光型半導体レ一 ザ素子及びその製造方法、 更にはそのレーザ素子を用いた面発光型半導体レーザ アレイに関する。 背景技術
基板の面と垂直な方向にレ一ザ光を出射する面発光型レーザ (素子) は、 出射 ビームの形状が円形であるために光ファイバとの接続が容易であり、 又、 共振器 の長さを短くして単一モード光を発振できることから、 近年、 光ファイバを用い たデータ通信 (光インターコネクション) や光コンピュータ用の光源として注目 され Tいる。
そして、 この面発光型レ一ザ素子はレーザ光を発振する活性層の領域が小さい ため、 しきい値電流を低く (例えば数 mA程度) することができる。 さらに、 こ の素子を多数並べてアレイ化したものは、 高密度な集積デバイスとしての応用が 期待されている。
このような面発光型レーザ素子の例を第 1図に示す。
このレーザ素子は、 G a A sから成る p型半導体基板 1 0 0の上に、 p型 A 1 G a A sを用いた多層膜から成る下部反射鏡層構造 1 1 0、 電流狭窄層 1 2 0、 量子井戸構造になっている G a A s ZA 1 G a A sから成る活性層 1 4 0、 及び n型 A 1 G a A sを用いた多層膜から成る上部反射鏡層構造 1 5 0がこの順に積 層されている。 そして、 上部反射鏡層構造 1 5 0から電流狭窄層 1 2 0の下端面 (電流狭窄層 1 2 0と部反射鏡層構造 1 1 0の界面) に至るまでの下側の部分は 円柱状のメサ形状(直径 2 0 m) 2 0 0となっていて、 このメサ形状の上端面に は n型電極 1 6 0がメサ形状 2 0 0を覆うようにして蒸着形成され、 また基板 1 0 0の裏面には p型電極 1 8 0が形成されている。 なお、 メサ形状の上端面を除 く素子の表面、 すなわちメサ形状の側面と上部反射鏡層構造の上面には、 窒化け い素膜 1 9 0によるパッシベーシヨン処理が施されている。
ここで、 上記したメサ形状 2 0 0は、 基板 1 0 0上に上記した各層を積層した 後、 全体の層構造に対して反応性イオンビームエッチング (R I B E ) 等のドラ ィエッチングを行うことにより形成されている。
そして、 下部反射鏡層構造 1 1 0と活性層 1 4 0の間に位置する上述の電流狭 窄層 1 2 0は、 例えば A 1 A sで一旦前駆体層を形成し、 そしてその前駆体層を 含むメサ形状を形成した後、 そのメサ形状に対する水蒸気雰囲気中での加熱処理 (例えば 400°C X 10分) を行うこ.とにより、 前駆体層の側部から芯部に向かって当 該前駆体層を酸化して絶縁層 1 2 0 aを形成し、 該芯部に未酸化の A 1 A sから 成る導電層 1 2 0 bを残存させることにより形成されている。 この場合、 電流狭 窄層 1 2 0における導電層 1 2 0 bに電流が集中して注入されるため、 素子のし きい値電流を低減させることができる。
ところで、 上記した電流狭窄層 1 2 0をその前駆体層から安定した状態で形成 するためには、 当該前駆体層が確実にメサ形状の中に含まれた状態にし、 その側 部から充分に酸化を進めることが必要である。 しかしながら、 R I B E等の指向 性をもったドライエッチングにより上述の前駆体層をメサ形状内に形成した場合、 ドライエッチングの不安定性により、 実際のエッチング深さの精度には ± 1 0 % 程度のばらつきが存在する。
従って、 このようなばらつきを見越して前駆体層を確実に含んだ状態で全体の 層構造をエッチングするためには、 エッチングの終点を、 実際の前駆体層の位置 より 1 0 %以上深い位置に設定する必要がある。 例えば、 前駆体層が全体の層構 造の表面から 5 mの深さの位置に存在している場合、 表面から 5 . 5 mの位 置にエッチングの終点を設定すれば、 実際のエッチング深さは約 5〜6 i mの間 の値になるので、 いずれの場合であっても前駆体層を確実に含んだ状態でメサ形 状を形成することができる。
しかしながら、 この方法の場合、 実際のエッチング深さの値が、 設定した終点 の値より大きくなる方向へずれた場合には、 前駆体層より下側の部分がエツチン グされることになる。 例えば、 上述の例においては、 第 1図の破線に示すように、 前駆体層の位置より最大で 1 深い位置までエッチングされて、' p型の下部反 射鏡層構造 1 1 0の一部又は全部がメサ形状になることがある。
そして、 特開平 5— 2 3 5 4 6 4号公報には、 レ一ザ素子における p型 G a A s /A 1 A sから成るミラ一層 (反射鏡構造) の断面積が小さくなると、 G a A s /A 1 A sのへテロ接合面に生じる価電子帯のスパイクが正孔の電気伝導を制 限し、 素子抵抗を増大させるということが記載されている。 従って、 p型半導体 基板を用いた面発光型半導体レーザ素子の場合、 当該基板上の P型反射鏡層構造 がエッチングされてメサ形状となり、 その断面積が小さくなると、 この反射鏡層 構造がエッチングされなかった場合に比べて素子抵抗が増大して素子の発熱や動 作電圧の上昇を招くという問題が生じる。 さらに、 エッチング深さが変動するに 伴ない、 得られた素子の特性もばらつくことになる。
本発明の目的は、 面発光型半導体レーザ素子における上記した問題を解決し、 電流狭窄層と下部反射鏡層構造の間にエツチング停止層を設けることにより、 下 部反射鏡層構造がエッチングされることを防止してその素子抵抗を低減せしめた 面発光型半導体レーザ素子及びその製造方法、 ならびにその素子を用いた面発光 型半導体レ一ザァレイを提供することである。 発明の開示
上記した目的を達成するために、 本発明においては、
下記から成る面発光型半導体レーザ素子: P型半導体基板の上に、 下部反射鏡構造と上部反射鏡構造が形成されていて、 前記下部反射鏡構造と前記上部反射鏡構造の間には、 下から順に、 エッチング停 止層、 電流狭窄層、 および活性層が形成されている;そして、
前記エッチング停止層の上面から上の部分はメサ形状になっている;が提供さ れる。
また、 本発明においては、
' 下記から成る面発光型半導体レーザ素子の製造方法:
P型半導体基板の上に、 下部反射鏡構造、 エッチング停止層、 電流狭窄層の前 駆体層、 および上部反射鏡構造をこの順序で形成する;
前記上部反射鏡構造から下方に向かってドライエッチングを行って、 前記エツ チング停止層の上部にメサ形状の概略形状を形成する;
. 前記エッチング停止層の上面にまで至るウエットエッチングを行って、 前記ェ ツチング停止層の上面にメサ形状を形成する;そして、
前記メサ形状に含まれている前記電流狭窄層の前駆体層の側部を酸化して電流 狭窄層を形成する;が提供される。
更に本発明においては、 下記から成る面発光型半導体レーザアレイ: 上記した面発光型半導体レーザ素子における前記下部反射鏡層構造から前記上 部反射鏡層構造を含む層構造が、 同一の P型半導体基板の上に複数個集積されて いる、 が提供される。 図面の簡単な説明
第 1図は従来の面発光型半導体レーザ素子の層構造を示す断面図である。
第 2図は本発明の面発光型半導体レーザ素子の層構造を示す断面図である。 第 3図はエッチング前の層構造 Aを示す断面図である。
第 4図は層構造 Aにドライエッチングを行ったときの断面図である。
第 5図は更にウエットエッチングを行う状態を示す断面図である。 第 6図はメサ形状に酸化処理を行ったときの断面図である。 発明を実施するための最良の形態
本発明は、 電流狭窄層と下部反射鏡層構造の間にエッチング停止層を設けるこ とにより、 このエッチング停止層より下方に位置している (P型) 反射鏡層構造 がェツチングされてメサ形状の一部となることを防止し、 そのことにより素子抵 抗を低減させることを技術思想とする。
そして、 本発明は、 ドライエッチングとウエットエッチングの特徴の違いに着 目し、 まず、 全体の層構造に対しては加工精度に優れるドライエッチングを適用 することにより、 エッチング停止層の上に位置する部分をエッチングしてメサ形 状の概略形状を精度よく形成しておく。 ついで、 上記した概略形状に対し、 エツ チング選択性の高いゥエツトエッチングを適用し、 エッチング停止層の上に残存 する層構造を選択的にエッチングして、 該エッチング停止層の上面までの部分を 正確にメサ形状とする。
以下、 本発明に係る面発光型レ一ザ素子の例を第 2図に基づいて説明する。 第 2図において、 面発光型レ一ザ素子 1は、 p型 GaAsから成る p型半導体 基板 10上に、 30対の p型 A 1。.20≤1().8 3層/ 型 l Gao.tAs層から成 る下部 DBRミラ一 (下部反射鏡層構造) 1 1、 及び 25対の n型 A l„.2Ga0.8 A s層 Zn型 A 10.gGaQAA s層から成る上部 D B Rミラー (上部反射鏡層構 造) 1 7が形成されている。 そして、 各 DBRミラー 1 1、 1 7の間には、 下か ら順に、 I n Ga Pから成るエッチング停止層 1 2、 電流狭窄層 14、 及び G a A sZA 1 G a A sから成り、 3個の量子井戸構造を有する活性層 1 6が配置さ れ、 全体として半導体の層構造が構成されている。 なお、 この実施形態において は、 上部 D B Rミラー 1 7の上に、 n型 GaA sから成るキャップ層 1 8が形成 されている。
そして、 キャップ層 1 8から下方に向って電流狭窄層 14の下端面 (電流狭窄 層 14とエッチング停止層 12の界面) に至るまでの部分は、 円柱状のメサ形状 20 (直径30 11、 メサの高さ 3. 5 m)となっている。 メサ形状の上端面と 側面には、 T i/P t /Auから成る n型電極 30がメサ形状 200の全体を覆つ て蒸着形成され、 また P型半導体基板 10の裏面には AuZnから成る p型電極 18が形成されている。 なお、 面発光型レーザ素子 1の表面全体には、 窒化けい 素膜 70によるパッシベーション処理が施されている。
下部反射鏡層構造 1 1及び上部反射鏡層構造 17は、 レーザ反射鏡となって共 振器を構成し、 上述の如く組成の異なる 2種類の半導体膜 (例えば A l GaAs 層) を交互に積層して形成することができる。 この場合、 各半導体膜の光学的厚 みを λΖ4 (λ: レ一ザ出力光の波長) とすればよい。
又、 各反射鏡層構造 1 1、 1 7は、 レーザ出力光の極性に応じて η型又は ρ型 半導体で構成するのが好ましく、 下部反射鏡層構造 1 1を ρ型に、 上部反射鏡層 構造 17を η型にすればよい。 なお、 後述する電流狭窄層 14を形成する際に各 反射鏡層構造 1 1、 17が酸化しないように、 半導体膜を構成する A 1 GaAs 中の A 1組成比を低くしておくとよい。 さらに、 上記した半導体から成る多層膜 に代えて、 誘電体多層膜や金属薄膜で反射鏡層構造を形成してもよい。
エッチング停止層 12は、 エッチングの対象となる半導体層との格子整合が 0. 5 %以下である材料で構成され、 詳しくは後述するウエットエッチングでエッチ ングされない材料で構成されている。 このような材料としては、 例えば、 全体の 層構造を G a A s系半導体で形成する場合には、 I n Ga Pを挙げることができ る。 そして、 このエッチング停止層を含む層構造をウエットエッチングすると、 エッチング停止層の上方に位置する層構造のみが選択的にエッチングされ、 エツ チング停止層はェッチングされないため、 このエツチング停止層の上面でェッチ ングの進行が停止する。 この場合、 エッチング停止層の下側の部分、 すなわち下 部反射鏡層構造はエッチングされることがない。
電流狭窄層 14は、 芯部が直径約 10 mの導電層 14 bから成り、 その外周 部が絶縁層 1 4 aになっている同心状の環状構造になっていて、 この導電層 1 4 に電流が集中して注入されるため、 しきい値電流が低減する。
この電流狭窄層 1 4は、 上記層構造の形成時に含 A 1化合物半導体を用いて前 駆体層を形成し、 エッチングによってメサ形状を形成したのち、 当該前駆体層の 側部から芯部に向かう酸化処理を行うことにより、 周縁部を A 1酸化物から成る 絶縁層 1 4 aに転化させ、 芯部には未酸化の含 A 1化合物半導体を残存させて導 電層 1 4 bにすることによって形成される。 用いる含 A 1化合物半導体としては、 例えば A 1 A sや A 1 G a A sをあげることができる。 なお、 この実施態様にお いては、 P型 A 1 A sを前駆体層の材料として用いている。
活性層 1 6は、 電子と正孔の再結合により発光を生じさせるものであり、 特に 量子井戸構造にすると、 しきい値をより低くすることができるので好ましい。 な お、 活性層 1 6の上及び下に、 活性層 1 2よりバンドギャップが大きぐ屈折率が 小さいクラッド層を適宜形成して活性層 1 2をサンドウイツチした構造にするこ とにより、 活性層に電子や光を閉じ込めるようにしてもよい。 活性層 1 6 (及び クラッド層) の材料としては、 例えば G a A s半導体を用いればよい。 また、 ク ラッド層を形成する場合は、 例えばこれに少量の A 1をド一プし、 活性層に比べ てパンドギヤップを大きくすればよい。
キャップ層 1 8は、 その上に形成される n型電極との間でォ一ミックコンタク 卜を実現し、 両者のコンタクト抵抗を低減させる材料で形成され、 例えば、 G a A s半導体に、 S i , G e、 S n、 S e等の n型ドーパン卜をドープして形成す ることができる。
n型電極 3 0は、 例えば T i /P t /A u等の多層膜で形成することができる。
P型電極 3 2は、 例えば A u Z nや T i /P t /A uを蒸着して形成することがで ぎる。
上記した層構造における各半導体層は、 例えば、 分子線ェピタキシ法 (M B E) や、 有機金属を用いた化学気相蒸着法 (M O C V D) によって形成すればよ い。
この面発光型レーザ素子 1は、 上述の如くエッチング停止層 1 2の作用により、 この層よりも下側に位置している下部反射鏡層構造 1 1がエッチングされてメサ 形状の一部になることがない。 そのため、 P型の下部反射鏡層構造 1 1の断面積 が減少してその素子抵抗が増大することが防止され、 素子の発熱や動作電圧の上 昇が抑制される。 そして、 反射鏡層構造 1 1の断面積を大きくしてその素子抵抗 を著しく低減することができる。 又、 エッチング停止層 1 2よりも上に位置して いる前駆体層 1 4を確実にエッチングしてメサ形状の中に包ませることができ、 更にその後の酸化処理によりこの前駆体層を容易に電流狭窄層に転化させること ができ、 低しきい値のレーザ素子を得ることができる。
例えば、 第 2図の実施形態における上記した仕様の面発光型レーザ素子 1は、 素子抵抗が 3 0 Ωと低く、 8 5 0 n m帯のレーザ光を低しきい値 (3 mA) で、 かつ、 低い動作電圧 (駆動電流 2 O mAで 2 V) で出力することができる。
次に、 面発光型レーザ素子 1を製造する方法について説明する。
まず、 第 3図で示したように p型 G a A sから成る p型半導体基板 1 0の上に、 例えば M B Eにより、 下部反射鏡構造 1 1、 エッチング停止層 1 2, 電流狭窄層 の前駆体層 2 4、 活性層 1 6、 上部反射鏡層構造 1 7、 キャップ層 1 8を順次積 層して層構造 Aを形成する。 そして、 この層構造 Aの最上層となるキャップ層 1 8の上にレジストを塗布し、 例えばフォトリソグラフィによって、 目的とするメ サ形状の断面形状と同一形状をしたレジス卜パターン 6 0を形成する。
次に、 第 4図で示したように、 層構造 Aに対して例えば R I B E等の指向性を もったドライエッチング Dを適用し、 メサ形状の概略形状を形成する。 すなわち、 エッチング停止層 1 2の上側に位置している層構造の一部をエッチング除去する。 ここで、 エッチング停止層 1 2より上側に位置する層構造の一部とは、 エツチン グ停止層 1 2の上でさえあればどの位置の部分であってもよい。 しかしながら、 ドライエッチング Dによる実際のエツチング深さがばらついた場合であつてもェ ッチング停止層 1 2がェツチングされないような位置であることが必要である。 例えば、 エッチング停止層が層構造 Aの表面から 5 mの深さに位置している場 合、 エッチングの終点をエツチング停止層より約 1 μ m上層の部分に設定してお けば、 エッチング深さは最大でも 4 . 5 ( 5— 1 + 0 . 5 ) z m程度であるので エッチング停止層 1 2がエッチングされることがない。 なお、 ドライエッチング の終点の決定は、 例えば段差測定によって得られたエッチング深さに基づいて行 えばよい。
そして、 第 5図で示したように、 ドライエッチング Dによる表出面に対してゥ エツトエッチング Wを適用し、 上記したドライエッチング Dにより表出した表出 面から下方に向ってエッチング停止層 1 2の上面に至る部分 (図の破線で示した 部分) を除去し、 メサ形状を完成させる。 この場合、 エッチング停止層 1 2は、 ゥエツトエッチング Wではエッチングされない材料で構成されているので、.その 終点を厳密に制御せずともエツチングはェッチング停止層 1 2の上面で自動的に 停止する。 このようなウエットエッチング Wに用いるエツチャントとしては、 例 えば硫酸水溶液や燐酸水溶液をあげることができる。
なお、 この実施形態において、 メサ形状は円柱状に形成されているが、 メサ形 状はこれに制限されることはなく、 例えば四角柱形状やその他の多角柱形状に形 成してもよい。
ついで、 少なくとも前駆体層 2 4が確実にメサ形状の中に含まれている層構造 Aに対して酸化処理を施し、 この前駆体層 2 4をその側部から酸化して電流狭窄 層 1 4に転化させる (第 6図) 。 酸化処理としては、 上述のように、 例えば水蒸 気酸化が好適であり、 水蒸気の露点、 温度、 及び処理時間等を変えることによつ て、 酸化の速度や酸化の度合いを変化させることができる。 水蒸気酸化としては、 例えば 400°Cで 10分間の処理を行えばよい。
そして、 得られた層構造 Aの表面全体に、 窒化けい素膜 7 0によるパッシベ一 シヨン処理を施したのち、 例えば R I E等のドライエッチングを適用して、 メサ 形状の上端面の窒化けい素膜を除去する。 さらに、 メサ形状の上端面 (キャップ 層 1 8の表面) に図示しない T i / P t /A u多層膜から成る n型電極 3 0を全体 のメサ形状を覆うようにして蒸着形成し、 P型半導体基板 1 0の裏面に例えば A u Z n膜を蒸着して p型電極 3 2を形成し、 面発光型レーザ素子 1を製造する。 産業上の利用可能性
このように、 本発明によれば、 全体の層構造に対して、 まず、 加工精度に優れ るドライエッチングを適用して、 エッチング停止層の に位置する層構造の一部 をエッチング除去してメサ形状の概略形状を精度よく作り込み、 その後、 エッチ ング選択性の高いゥエツ卜エッチングによりエッチング停止層の上に残存する層 構造をエッチングすることにより、 エッチング停止層の上面から上の部分は確実 にエッチングされて寸法精度の高いメサ形状が形成されるとともに、 その下側に 位置する層構造、 とりわけ反射鏡層構造がエッチングされることが防止される。 そのため、 P型の下部反射鏡層構造の断面積が、低下して素子抵抗が増大することが防 止され、 素子の発熱や動作電圧の上昇が抑制される。 そして、 反射鏡層構造 1 1の断 面積を大きくしてその素子抵抗を著しく低減することができる。 さらに、 エッチング 停止層より上側の部分は確実にエッチングされてメサ形状になっていて、 電流狭窄層 が安定した状態で形成されるので、 素子のしきい値を低減することができる。
なお、 本発明の面発光型半導体レーザアレイは、 上記した面発光型半導体レー ザ素子の複数個が共通の P型半導体基板 1 0の上に形成されているものである。 すなわち、 各面発光型半導体レーザ素子は、 1枚の p型半導体基板 1 0の上に形 成された 1層のエッチング停止層 1 2を共通のエッチング停止層としているもの である。
また、 本発明によれば、 下部 D B Rミラー (下部反射鏡構造 1 1 ) の全体を熱 伝導率の高い A 1 A sで形成しても、 所望の位置でエッチングを停止させること ができる。 そのため、 本発明によれば、 制御性が良好で、 熱飽和性に優れた面発 光型半導体レーザ素子を得ることができる。

Claims

請 求 の 範 囲
1 . 下記から成る面発光型半導体レーザ素子:
P型半導体基板の上に、 下部反射鏡構造と上部反射鏡構造が形成されていて、 前記下部反射鏡構造と前記上部反射鏡構造の間には、 下から順に、 エッチング停 止層、 電流狭窄層、 および活性層が形成されている;そして、
前記エッチング停止層の上面から上の部分はメサ形状になっている。
2 . 下記から成る面発光型半導体レーザ素子の製造方法:
p型半導体基板の上に、 下部反射鏡構造、 エッチング停止層、 電流狭窄層の前 駆体層、 および上部反射鏡構造をこの順序で形成する;
前記上部反射鏡構造から下方に向かってドライエッチングを行って、 前記エツ チング停止層の上部にメサ形状の概略形状を形成する; . 前記エッチング停止層の上面にまで至るゥエツ卜エッチングを行って、 前記ェ ツチング停止層の上面にメサ形状を形成する;そして、
前記メサ形状に含まれている前記電流狭窄層の前駆体層の側部を酸化して電流 狭窄層を形成する。
3 . 下記から成る面発光型半導体レーザアレイ :
請求項 1に記載の、 前記下部反射鏡層構造から前記上部反射鏡層構造を含む層 構造が、 同一の p型半導体基板の上に複数個集積されている。
PCT/JP2000/008998 1999-09-13 2000-12-19 Laser a emission par la surface, procede de fabrication de ce laser, et reseau de lasers a emission par la surface WO2002050968A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25906699A JP2001085789A (ja) 1999-09-13 1999-09-13 面発光型半導体レーザ素子及びその製造方法
PCT/JP2000/008998 WO2002050968A1 (fr) 1999-09-13 2000-12-19 Laser a emission par la surface, procede de fabrication de ce laser, et reseau de lasers a emission par la surface
DE10085441T DE10085441T5 (de) 1999-09-13 2000-12-19 Oberflächen-emittierende Halbleiterlaservorrichtung und ein Verfahren zum Herstellen derselben und eine Oberflächen-emittierende Halbleiterlaser-Matrix, die die Laservorrichtung verwendet
US10/223,190 US6737290B2 (en) 1999-09-13 2002-08-16 Surface-emitting semiconductor laser device and method for fabricating the same, and surface-emitting semiconductor laser array employing the laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25906699A JP2001085789A (ja) 1999-09-13 1999-09-13 面発光型半導体レーザ素子及びその製造方法
PCT/JP2000/008998 WO2002050968A1 (fr) 1999-09-13 2000-12-19 Laser a emission par la surface, procede de fabrication de ce laser, et reseau de lasers a emission par la surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/223,190 Continuation US6737290B2 (en) 1999-09-13 2002-08-16 Surface-emitting semiconductor laser device and method for fabricating the same, and surface-emitting semiconductor laser array employing the laser device

Publications (1)

Publication Number Publication Date
WO2002050968A1 true WO2002050968A1 (fr) 2002-06-27

Family

ID=26344999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008998 WO2002050968A1 (fr) 1999-09-13 2000-12-19 Laser a emission par la surface, procede de fabrication de ce laser, et reseau de lasers a emission par la surface

Country Status (4)

Country Link
US (1) US6737290B2 (ja)
JP (1) JP2001085789A (ja)
DE (1) DE10085441T5 (ja)
WO (1) WO2002050968A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737290B2 (en) 1999-09-13 2004-05-18 The Furukawa Electric Co., Ltd Surface-emitting semiconductor laser device and method for fabricating the same, and surface-emitting semiconductor laser array employing the laser device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368316B2 (en) * 1999-04-23 2008-05-06 The Furukawa Electric Co., Ltd. Surface-emission semiconductor laser device
JP2000307190A (ja) * 1999-04-23 2000-11-02 Furukawa Electric Co Ltd:The 面発光型半導体レーザの作製方法
US7126750B2 (en) * 2002-07-08 2006-10-24 John Gilmary Wasserbauer Folded cavity semiconductor optical amplifier (FCSOA)
JP4069383B2 (ja) 2003-03-18 2008-04-02 富士ゼロックス株式会社 表面発光型半導体レーザおよびその製造方法
JP4492413B2 (ja) * 2005-04-01 2010-06-30 セイコーエプソン株式会社 光半導体素子の製造方法および光半導体素子
US20070057202A1 (en) * 2005-09-12 2007-03-15 Jintian Zhu Method for making reproducible buried heterostructure semiconductor devices
JP2009094332A (ja) * 2007-10-10 2009-04-30 Fuji Xerox Co Ltd 面発光型半導体レーザ装置およびその製造方法
JP5038371B2 (ja) * 2008-09-26 2012-10-03 キヤノン株式会社 面発光レーザの製造方法
JP2013115146A (ja) * 2011-11-25 2013-06-10 Ricoh Co Ltd 面発光レーザ素子及び面発光レーザ素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173278A (ja) * 1996-12-12 1998-06-26 Nec Corp 半導体レーザの製造方法
JPH1174609A (ja) * 1997-08-20 1999-03-16 Lg Electron Inc レーザダイオード及びその製造方法
JPH11312847A (ja) * 1998-02-25 1999-11-09 Nippon Telegr & Teleph Corp <Ntt> 垂直共振器型半導体レーザ素子の製造方法および垂直共振器型半導体レーザ
JP2000307189A (ja) * 1999-04-23 2000-11-02 Fuji Xerox Co Ltd 面発光レーザアレイ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697453B2 (ja) 1992-02-19 1998-01-14 松下電器産業株式会社 面発光レーザ
US5212702A (en) * 1992-03-25 1993-05-18 At&T Bell Laboratories Semiconductor surface emitting laser having reduced threshold voltage and enhanced optical output
JPH05283802A (ja) * 1992-03-31 1993-10-29 Furukawa Electric Co Ltd:The 量子井戸半導体レーザ素子
US6370179B1 (en) * 1996-11-12 2002-04-09 Board Of Regents, The University Of Texas System Low threshold microcavity light emitter
JP3524343B2 (ja) * 1997-08-26 2004-05-10 キヤノン株式会社 微小開口の形成方法と微小開口を有する突起、及びそれらによるプローブまたはマルチプローブ、並びに該プローブを用いた表面観察装置、露光装置、情報処理装置
JPH11168263A (ja) * 1997-09-30 1999-06-22 Canon Inc 光デバイス装置及びその製造方法
US6549553B1 (en) * 1998-02-25 2003-04-15 Nippon Telegraph And Telephone Corporation Vertical-cavity surface-emitting semiconductor laser
TW437104B (en) * 1999-05-25 2001-05-28 Wang Tien Yang Semiconductor light-emitting device and method for manufacturing the same
JP2001085789A (ja) 1999-09-13 2001-03-30 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子及びその製造方法
AU2001285473A1 (en) * 2000-08-22 2002-03-04 Regents Of The University Of California, The Heat spreading layers for vertical cavity surface emitting lasers
US6549556B1 (en) * 2000-12-01 2003-04-15 Applied Optoelectronics, Inc. Vertical-cavity surface-emitting laser with bottom dielectric distributed bragg reflector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173278A (ja) * 1996-12-12 1998-06-26 Nec Corp 半導体レーザの製造方法
JPH1174609A (ja) * 1997-08-20 1999-03-16 Lg Electron Inc レーザダイオード及びその製造方法
JPH11312847A (ja) * 1998-02-25 1999-11-09 Nippon Telegr & Teleph Corp <Ntt> 垂直共振器型半導体レーザ素子の製造方法および垂直共振器型半導体レーザ
JP2000307189A (ja) * 1999-04-23 2000-11-02 Fuji Xerox Co Ltd 面発光レーザアレイ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737290B2 (en) 1999-09-13 2004-05-18 The Furukawa Electric Co., Ltd Surface-emitting semiconductor laser device and method for fabricating the same, and surface-emitting semiconductor laser array employing the laser device

Also Published As

Publication number Publication date
US6737290B2 (en) 2004-05-18
US20020197756A1 (en) 2002-12-26
JP2001085789A (ja) 2001-03-30
DE10085441T5 (de) 2004-08-05

Similar Documents

Publication Publication Date Title
JP3748807B2 (ja) 電気光学的特性が改善された半導体光放出装置及びその製造方法
JP2001237410A (ja) オプトエレクトロニック集積回路とその製造方法
JP2001237497A (ja) 受動半導体構造およびその製造方法
JP2001251017A (ja) 半導体構造およびその製造方法
US8228964B2 (en) Surface emitting laser, surface emitting laser array, and image formation apparatus
US20020110169A1 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
WO2002050968A1 (fr) Laser a emission par la surface, procede de fabrication de ce laser, et reseau de lasers a emission par la surface
JP3800856B2 (ja) 面発光レーザ及び面発光レーザアレイ
JP6004063B1 (ja) 面発光型半導体レーザ素子の製造方法
JP2009188238A (ja) 面発光レーザ及びその製造方法
JP3924859B2 (ja) 半導体レーザ及びその製造方法
JP2021009895A (ja) 面発光レーザ
JP2007165501A (ja) 面発光型半導体レーザ及びその製造方法
JP2009246252A (ja) 面発光レーザ素子及び面発光レーザアレイ
JP2007129010A (ja) 面発光型半導体レーザ及びその製造方法
JP2006324582A (ja) 面発光型半導体レーザおよびその製造方法
JP5322800B2 (ja) 垂直共振器型面発光レーザ
JP4845055B2 (ja) 面発光レーザ素子の製造方法および面発光レーザ素子
JP2021022613A (ja) 面発光レーザおよびその製造方法
JP2005085836A (ja) 面発光半導体レーザ素子及びその製造方法
JP2005093634A (ja) 面発光型半導体レーザー及びその製造方法
JP2009231603A (ja) 面発光半導体レーザの製造方法
JP2010161224A (ja) 面発光レーザ、面発光レーザアレイ及びその製造方法
JPH11112086A (ja) 埋め込み型面発光レーザ及びその作製方法
JP2004207586A (ja) 面発光型半導体レーザ素子及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

WWE Wipo information: entry into national phase

Ref document number: 10223190

Country of ref document: US