WO2002051260A1 - Coated chewing gum products containing an antigas agent - Google Patents

Coated chewing gum products containing an antigas agent Download PDF

Info

Publication number
WO2002051260A1
WO2002051260A1 PCT/US2001/048070 US0148070W WO02051260A1 WO 2002051260 A1 WO2002051260 A1 WO 2002051260A1 US 0148070 W US0148070 W US 0148070W WO 02051260 A1 WO02051260 A1 WO 02051260A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
gum
syrup
chewing gum
simethicone
Prior art date
Application number
PCT/US2001/048070
Other languages
French (fr)
Inventor
Daniel J. Zyck
David G. Barkalow
Michael J. Greenberg
Scott W. Marske
Philip G. Schnell
Phulip Mazzone
John E. Hammond
David L. Witkewitz
Daniel J. Sitler
Raynold M. Petrocelli
Original Assignee
Wm. Wrigley Jr. Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wm. Wrigley Jr. Company filed Critical Wm. Wrigley Jr. Company
Publication of WO2002051260A1 publication Critical patent/WO2002051260A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/02Apparatus specially adapted for manufacture or treatment of chewing gum
    • A23G4/025Apparatus specially adapted for manufacture or treatment of chewing gum for coating or surface-finishing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/343Products for covering, coating, finishing, decorating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/08Chewing gum characterised by the composition containing organic or inorganic compounds of the chewing gum base
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/18Chewing gum characterised by shape, structure or physical form, e.g. aerated products
    • A23G4/20Composite products, e.g. centre-filled, multi-layer, laminated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/341Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/80Polymers containing hetero atoms not provided for in groups A61K31/755 - A61K31/795
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G2200/00COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF containing organic compounds, e.g. synthetic flavouring agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to methods for producing coated chewing gum products. More particularly, the invention relates to producing coated chewing gum products containing an antigas agent that is added to the chewing gum coating such that it will have a controlled fast release from chewing gum for maximum effectiveness.
  • Coated chewing gum products are well known. Many prior art patents disclose chewing gum products coated with sugar sweeteners or polyol sweeteners. U.S. Patent No. 4,317,838, for example, discloses a method of applying a sugarless coating to chewing gum.
  • the coating may include calcium carbonate as an anti-sticking agent.
  • Synthetic sweeteners including many different high-intensity sweeteners, are also suggested for use in the coating.
  • Another area of interest is the use of medicaments in chewing gum. In some instances, it is contemplated that an active medicament that is added to the chewing gum may be readily released.
  • An active medicament may be added to the gum coating, which is a water soluble matrix, such that during the chewing period, the medicament may be released quickly, resulting in a fast release.
  • a chewing gum coating to be a carrier for an active medicament, specifically an antacid with these fast release characteristics.
  • U.S. Patent No. 4,867,989 discloses a chewing gum composition coated with an outer shell containing layers of a mineral compound and a coating syrup, but this patent states that the mineral compound must be added separately and not dispersed in the syrup used to make the coating.
  • Antacids are usually taken on an "as needed" basis to relieve gastrointestinal disturbances mostly due to dietary indiscretions. These antacids are generally insoluble inorganic salts such as calcium carbonate, magnesium carbonate, calcium hydroxide, magnesium hydroxide, or aluminum hydroxide. Antacids readily neutralize acids in the gastrointestinal (GI) tract and are commonly available in or as antacid tablets. Some typical consumer antacid products are: TUMS, which contains calcium carbonate; MILK of MAGNESIA, which contains magnesium hydroxide, and MAALOX PLUS, which contains a combination of aluminum hydroxide and magnesium hydroxide along with simethicone.
  • Some of these antacid products also include an antigas agent called simethicone to eliminate gas buildup in the GI tract.
  • Other consumer products contain only simethicone as the active ingredient, such as MYLANTA GAS, GAS-X, and PHAZYME.
  • simethicone an antigas agent
  • Other consumer products contain only simethicone as the active ingredient, such as MYLANTA GAS, GAS-X, and PHAZYME.
  • antacids have been added to chewing gum and in a chewing gum coating, but some products have not been totally consumer acceptable. The large amount of active antacid needed for effectiveness does not lend itself to giving a good tasting product.
  • the presence of sugar in the antacid chewing gum or coated on the chewing gum of some products is not consumer acceptable because sugar causes dental caries.
  • a sugarless coated chewing gum produced having an antacid in a sorbitol base coating is currently being sold under the trademark CHOOZ ® . It has been found that by adding the antacid to a gum coating, the antacid is quickly released from the chewing gum into saliva and into the gastrointestinal (GI) tract. Relief from GI acidity is quickly obtained, but little relief from gas formation is provided. It would be desirable to have not only fast relief, but relief from gas formation. Thus, there is a need for a way to make coated chewing gum products that provide for gas relief, as well as being acceptable to the consumer from taste and other standpoints.
  • GI gastrointestinal
  • the invention is a method of making coated chewing gum products containing an antigas agent comprising the steps of: providing chewing gum cores; providing a coating syrup comprising a bulk sweetener; providing an antigas agent; and applying the antigas agent and coating syrup to the cores and drying the syrup to produce a coating on the cores, the coating containing the antigas agent.
  • the invention is a coated chewing gum product containing an antigas agent comprising: a chewing gum core and a coating on the core, the coating comprising an antigas agent.
  • the invention is a method of delivering an antigas agent to an individual that provides relief in the gastrointestinal tract comprising the steps of: providing chewing gum cores; providing a coating syrup comprising a bulk sweetener; providing simethicone; applying the simethicone and coating syrup to the cores and drying the syrup to produce a coating on the cores, the coating containing from about 5 mg to about 200 mg simethicone; and chewing the coated chewing gum product in the mouth and swallowing the coating, the coating dispersing and dissolving to provide simethicone as an antigas agent in the gastrointestinal tract.
  • Preferred embodiments of the invention include the addition of a neutralizing antacid in the coating, and may also include an acid blocker such as a histamine H 2 - receptor antagonists. These agents inhibit or block the secretion of gastric acid by binding to a specific histamine receptor on the parietal (acid secreting) cell membranes located in the stomach. These agents, which may be added to the chewing gum center or to the coating containing the antigas agent, are used for extended relief of gastrointestinal disturbances and extended relief from stomach acidity. Examples of histamine H 2 - receptor antagonists are cimetidine, ranitidine and its active salt, nizatidine and famotidine, with famotidine being preferred.
  • an antigas agent and preferably a neutralizing antacid as well, that is contained in a chewing gum coating, provides an effective relief from many gastrointestinal disturbances. It is believed that providing a larger particle size antacid in a chewing gum coating makes it even more effective and longer lasting.
  • an advantage of a preferred embodiment of the present invention is administering an antacid to an individual that has a larger particle size than is typically administered orally, giving extended relief while still achieving the effect of fast relief.
  • chewing gum includes bubble gum and all other types of chewing gum. Unless specified otherwise, all percentages are weight percentages.
  • products made by the present invention will preferably include an antacid, such as calcium carbonate.
  • the antacid will preferably be included as part of the coating syrup used to prepare a coated chewing gum product.
  • a typical syrup may contain a polyol, suspended calcium carbonate, simethicone, a binding agent, a high-intensity sweetener and a whitener.
  • the antacid is contained in the coating of chewing gum products, which allows a chewing gum coating to be a carrier for the antacid and the antigas agent (also sometimes referred to as an antiflatulent). Accordingly, as the chewing gum is chewed, the active antacid and antiflatulent in the gum coating is released into the saliva and ingested to give relief from gastrointestinal disturbances in the GI tract.
  • the preferred antacids are generally carbonate or hydroxide salts of calcium, magnesium, aluminum, or bismuth, and are generally very water insoluble. Other antacids such as sodium bicarbonate, calcium bicarbonate, and other carbonates, silicates, and phosphates may be used in this invention. When these materials are mixed with acids in the GI tract, the acids are readily neutralized to give relief from GI disturbances.
  • Antiflatulents may be added to an antacid gum coating to be effective antigas materials and eliminate trapped wind.
  • the most common antigas material is dimethicone (dimethyl polysiloxane) and when mixed with silicone dioxide becomes simethicone.
  • Simethicone is also referred to as activated dimethicone.
  • Simethicone is the most common antigas material and may be the only drug approved antiflatulent.
  • other antifoaming agents may be used as antigas agents in this invention.
  • simethicone is in other antacid preparations like MYLANTA GAS and GAS-X at a level of 125 mg per tablet.
  • Other preparations like PHAZYME contain simethicone at higher levels, up to 166 mg.
  • the level of simethicone in a coated chewing gum product may be about
  • the level of simethicone may be about 20 mg to about 50 mg.
  • Simethicone may be blended with a carrier and preferably be added as a dry charge material to a gum coating. Simethicone in some situations may act as an anti-tack agent. To prevent any coating problems while applying simethicone as part of a coating, the simethicone may be encapsulated, agglomerated, entrapped or otherwise physically modified so that it will not affect the gum coating process, but will release during chewing and ingestion. Simethicone may also be blended with flavor and applied on the coated gum piece in between applications of coating syrup. Simethicone USP is readily miscible and may be soluble in mint oils at high levels of use. Besides its antigas effect, simethicone used in a gum coating can also improve the smoothness of the coating.
  • acid blockers may also be used in a simethicone- containing products.
  • acid blockers are histamine H 2 - receptor antagonists which include cimetidine, used in an over the counter (OTC) preparation called TAGAMET; famotidine, used in an OTC preparation called PEPCID; the hydrochloride salt of ranitidine, used in ZANTAC; and nizatidine, used in AXID.
  • OTC over the counter
  • PEPCID the hydrochloride salt of ranitidine
  • nizatidine used in AXID.
  • Some other types of acid blockers are called gastric proton pump inhibitors. These include omeprazole, used in PRILOSEC, and rabeprazole.
  • Acid blockers may also be added to a chewing gum coating. If water soluble, the acid blocker may be added to the sugar or polyol syrup and applied throughout the coating process. Water insoluble acid blockers may be dissolved or dispersed in a solvent, possibly flavors, and applied at various times during the coating process. Preferably, an acid blocker may be added as a powder after it has been preblended with a dry charge material. This could allow more control of the level of the acid blocker used in the chewing gum product and may reduce any instability problems of the acid blocker that may be associated with moisture.
  • the dosage level of acid blocker used in a preferred coated chewing gum product will vary depending on the acid blocker used.
  • the level of acid blocker will be about 1 mg to about 200 mg, either in the gum center or preferably in a gum coating.
  • This level of acid blocker is used in addition to a high level of antacid or calcium carbonate in the preferred gum coating.
  • the level of calcium carbonate in the preferred gum coating will be about 250 to 800 mg in 1 or 2 pieces of gum product having a weight of about 1.5 to 3 grams.
  • calcium carbonate is the most preferred antacid material. This is mostly due to the fact that the most common inert filler in chewing gum base is calcium carbonate. Calcium carbonate, along with talc
  • Chewing gum bases may also contain the other antacids as inert salts. Chewing gum bases that contain calcium carbonate do not readily release their calcium carbonate during chewing. Since calcium carbonate (or in other cases talc) is very water insoluble, it releases from gum base either very slowly or over very long extended chewing. As a result, this calcium carbonate is not effective as an antacid. Generally, when calcium carbonate is added to a gum formulation separate from the gum base, calcium carbonate becomes intimately mixed with the base during chewing and also releases slowly. However, when calcium carbonate is used in the coating of the chewing gum, it does become quickly available in the oral cavity and is ingested to be an effective antacid.
  • suspension coatings with calcium carbonate for an antacid gum may be made with sugar.
  • Sugar with its naturally sweet taste masks some of the off-taste due to the use of high levels of calcium carbonate.
  • the sweet taste of the coating is significantly reduced.
  • other polyols such as maltitol, hydrogenated isomaltulose, sorbitol, or erythritol, are not.
  • the coating contains high levels of calcium carbonate, the polyols generally lack sufficient sweetness to give a good tasting product.
  • high-intensity sweeteners are preferably added to the coating containing calcium carbonate to give a high- quality, consumer-acceptable product.
  • the high level of calcium carbonate or other antacid in the coating modifies the taste quality and gum texture.
  • the addition of high-intensity sweeteners to the gum coating improves the taste of the finished product. This also occurs in sugarcoated gums as well as polyol coated gums, so aspartame or another high-intensity sweeteners may also be added to sugar coated gums with calcium carbonate or other antacids. If the high-intensity sweeter is subject to degradation, it may preferably by added as part of a different coating syrup from the coating syrup containing the calcium carbonate, as disclosed in U.S. Patent Application Serial No. 09/591,256 filled June 9, 2000, hereby incorporated by reference.
  • a calcium carbonate having a median particle size of about 3 microns or greater is sufficient to give longer lasting relief of excess stomach activity.
  • the median particle size of the calcium carbonate in the coating will be between about 3 microns and about 75 microns, and more preferably, between about 3 microns and about 15 microns.
  • a chewing gum composition typically comprises a water-soluble bulk portion, a water-insoluble chewable gum base portion and typically water-insoluble flavoring agents.
  • the water-soluble portion dissipates with a portion of the flavoring agent over a period of time during chewing.
  • the gum base portion is retained in the mouth throughout the chew.
  • the insoluble gum base generally comprises elastomers, resins, fats and oils, softeners and inorganic fillers.
  • the gum base may or may not include wax.
  • the insoluble gum base can constitute approximately 5% to about 95% by weight of the chewing gum, more commonly the gum base comprises about 10% to about 50% of the gum, and in some preferred embodiments approximately 25% to about
  • the level of insoluble gum base may be much higher.
  • the chewing gum base of the present invention contains about 20% to about 60% by weight synthetic elastomer, about 0% to about 30% by weight natural elastomer, about 5% to about 55% by weight elastomer plasticizer, about 4% to about 35% by weight filler, about 5% to about 35% by weight softener, and optional minor amounts (about 1% or less by weight) of miscellaneous ingredients such as colorants, antioxidants, etc.
  • Synthetic elastomers may include, but are not limited to, polyisobutylene with GPC weight average molecular weights of about 10,000 to about 95,000, isobutylene-isoprene copolymer (butyl elastomer), styrene-butadiene, copolymers having styrene-butadiene ratios of about 1 :3 to about 3:1, polyvinyl acetate having GPC weight average molecular weights of about 2,000 to about 90,000, polyisoprene, polyethylene, vinyl acetate - vinyl laurate copolymers having vinyl laurate contents of about 5% to about 50% by weight of the copolymer, and combinations thereof.
  • Preferred ranges are: 50,000 to 80,000 GPC weight average molecular weight for polyisobutylene; 1 :1 to 1:3 bound styrene-butadiene for styrene-budadiene; 10,000 to 65,000 GPC weight average molecular weight for polyvinyl acetate, with the higher molecular weight polyvinyl acetates typically used in bubble gum base; and a vinyl laurate content of 10-45% for vinyl acetate- vinyl laurate.
  • Natural elastomers may include natural rubber such as smoked or liquid latex and guayule, as well as natural gums such as jelutong, lechi caspi, perillo, sorva, massaranduba balata, massaranduba chocolate, nispero, rosindinha, chicle, gutta hang kang, and combinations thereof.
  • the preferred synthetic elastomer and natural elastomer concentrations vary depending on whether the chewing gum in which the base is used is adhesive or conventional, bubble gum or regular gum, as discussed below.
  • Preferred natural elastomers include jelutong, chicle, sorva and massaranduba balata.
  • Elastomer plasticizers may include, but are not limited to, natural rosin esters such as glycerol esters or partially hydrogenated rosin, glycerol esters of polymerized rosin, glycerol esters of partially dimerized rosin, glycerol esters of rosin, pentaerythritol esters of partially hydrogenated rosin, methyl and partially hydrogenated methyl esters of rosin, pentaerythritol esters of rosin; synthetics such as terpene resins derived from alpha-pinene, beta-pinene, and/or d-limonene; and any suitable combinations of the foregoing.
  • the preferred elastomer plasticizers will also vary depending on the specific application, and on the type of elastomer which is used.
  • Fillers/texturizers may include magnesium and calcium carbonate, ground limestone, silicate types such as magnesium and aluminum silicate, clay, alumina, talc, titanium oxide, mono-, di- and tri-calcium phosphate, cellulose polymers, such as wood, and combinations thereof.
  • Softeners/emulsifiers may include tallow, hydrogenated tallow, hydrogenated and partially hydrogenated vegetable oils, cocoa butter, glycerol monostearate, glycerol triacetate, lecithin, mono-, di- and triglycerides, acetylated monoglycerides, fatty acids (e.g. stearic, palmitic, oleic and linoleic acids), and combinations thereof
  • Colorants and whiteners may include FD&C-type dyes and lakes, fruit and vegetable extracts, titanium dioxide, and combinations thereof.
  • the base may or may not include wax.
  • An example of a wax-free gum base is disclosed in U.S. Patent No. 5,286,500, the disclosure of which is incorporated herein by reference.
  • a typical chewing gum composition includes a water-soluble bulk portion and one or more flavoring agents.
  • the water-soluble portion can include bulk sweeteners, high-intensity sweeteners, flavoring agents, softeners, emulsifiers, colors, acidulants, fillers, antioxidants, and other components that provide desired attributes.
  • Softeners are added to the chewing gum in order to optimize the chewability and mouth feel of the gum.
  • the softeners which are also known as plasticizers and plasticizing agents, generally constitute between approximately 0.5% to about 15% by weight of the chewing gum.
  • the softeners may include glycerin, lecithin, and combinations thereof.
  • Aqueous sweetener solutions such as those containing sorbitol, hydrogenated starch hydrolysates, corn syrup and combinations thereof, may also be used as softeners and binding agents in chewing gum.
  • Bulk sweeteners include both sugar and sugarless components. Bulk sweeteners typically constitute about 5% to about 95% by weight of the chewing gum, more typically, about 20% to about 80% by weight, and more commonly, about 30% to about 60% by weight of the gum. Sugar sweeteners generally include saccharide-containing components commonly known in the chewing gum art, including but not limited to, sucrose, dextrose, maltose, dextrin, dried invert sugar, fructose, galactose, corn syrup solids, and the like, alone or in combination.
  • Sugarless sweeteners include, but are not limited to, sugar alcohols such as sorbitol, mannitol, xylitol, hydrogenated starch hydrolysates, maltitol, and the like, alone or in combination.
  • High-intensity artificial sweeteners can also be used, alone or in combination, with the above.
  • Preferred sweeteners include, but are not limited to, sucralose, aspartame, N-substituted APM derivatives such as neotame, salts of acesulfame, alitame, saccharin and its salts, cyclamic acid and its salts, glycyrrhizin, dihydrochalcones, thaumatin, monellin, and the like, alone or in combination.
  • Such techniques as wet granulation, wax granulation, spray drying, spray chilling, fluid bed coating, coacervation, and fiber extrusion may be used to achieve the desired release characteristics.
  • Combinations of sugar and/or sugarless sweeteners may be used in chewing gum. Additionally, the softener may also provide additional sweetness such as with aqueous sugar or alditol solutions.
  • a low calorie gum a low caloric bulking agent can be used. Examples of low caloric bulking agents include: poly dextrose; oligofructose (Raftilose); inulin (Raftilin); fructooligosaccharides (NutraFlora); palatinose oligosaccharide; guar gum hydrolysate (BeneFiber); or indigestible dextrin (Fibersol). However, other low calorie bulking agents can be used.
  • flavoring agents can also be used, if desired.
  • the flavor can be used in amounts of about 0. 1 to about 15 weight percent of the gum, and preferably, about 0.2% to about 5% by weight.
  • Flavoring agents may include essential oils, synthetic flavors or mixtures thereof including, but not limited to, oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, other mint oils, clove oil, oil of wintergreen, anise and the like.
  • Artificial flavoring agents and components may also be used. Natural and artificial flavoring agents may be combined in any sensorially acceptable fashion. In general, chewing gum is manufactured by sequentially adding the various chewing gum ingredients to a commercially available mixer known in the art.
  • the gum mass is discharged from the mixer and shaped into the desired form, such as rolling into sheets and cutting into sticks, extruding into chunks or casting into pellets, which are then coated or panned.
  • the ingredients are mixed by first melting the gum base and adding it to the running mixer. The base may also be melted in the mixer itself. Color or emulsifiers may also be added at this time. A softener such as glycerin may also be added at this time, along with syrup and a portion of the bulking agent. Further parts of the bulking agent are added to the mixer. Flavoring agents are typically added with the final portion of the bulking agent. Other optional ingredients are added to the batch in a typical fashion, well known to those of ordinary skill in the art.
  • the entire mixing procedure typically takes from five to fifteen minutes, but longer mixing times may sometimes be required. Those skilled in the art will recognize that many variations of the above described procedure may be followed.
  • the gum mass is formed into pellets or balls.
  • Pellet or ball gum is prepared as conventional chewing gum but formed into pellets that are pillow shaped, or into balls.
  • the pellets/balls are used as cores for the coated product.
  • the cores can be sugar or polyol coated or panned by conventional panning techniques to make a unique coated pellet gum.
  • the weight can be sugar or polyol coated or panned by conventional panning techniques to make a unique coated pellet gum.
  • ⁇ of the coating may be about 20% to about 50% of the weight of the finished product, but may be as much as 75% of the total gum product.
  • sucrose Conventional panning procedures generally coat with sucrose, but recent advances in panning have allowed use of other carbohydrate materials to be used in place of sucrose.
  • carbohydrate materials include, but are not limited to, sugars such as dextrose, maltose, isomaltulose, and tagatose, or sugarless bulk sweeteners such as xylitol, sorbitol, lactitol, hydrogenated isomaltulose, erythritol, maltitol, and other new polyols (also referred to as alditols) or combinations thereof.
  • the coating is preferably sugarless.
  • a preferred coating comprises about 30% to about 75% maltitol.
  • panning modifiers including, but not limited to, gum arabic, gum talha, maltodextrins, corn syrup, gelatin, cellulose type materials like carboxymethyl cellulose or hydroxymethyl cellulose, starch and modified starches, vegetables gums like alginates, locust bean gum, guar gum, and gum tragacanth.
  • Antitack agents may also be added as panning modifiers, which allow the use of a variety of carbohydrates and sugar alcohols.
  • Flavors may also be added with the sugar or sugarless coating to yield unique product characteristics.
  • the coating may contain ingredients such as flavoring agents, as well as dispersing agents, coloring agents, film formers and binding agents.
  • Flavoring agents contemplated by the present invention include those commonly known in the art such as essential oils, synthetic flavors or mixtures thereof, including but not limited to oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, other mint oils, clove oil, oil of wintergreen, anise and the like.
  • the flavoring agents may be used in an amount such that the coating will contain from about 0.2% to about 3% flavoring agent, and preferably from about 0.7% to about 2.0% flavoring agent.
  • High-intensity sweeteners contemplated for use in the coating include but are not limited to synthetic substances, such as saccharin, thaumatin, alitame, saccharin salts, aspartame, N-substituted APM derivatives such as neotame, sucralose, cyclamic acid and its salts, glycyrrhizin, dihydrochalcones, monellin and acesulfame-K or other salts of acesulfame.
  • the high-intensity sweetener may be added to the coating syrup in an amount such that the coating will contain from about 0.01% to about 2.0%, and preferably from about 0.1% to about 1.0% high- intensity sweetener.
  • the high-intensity sweetener is not encapsulated.
  • Dispersing agents are often added to syrup coatings for the purpose of whitening and tack reduction.
  • Dispersing agents contemplated by the present invention to be employed in the coating syrup include titanium dioxide, talc, or any other antistick compound. Titanium dioxide is a presently preferred dispersing agent of the present invention.
  • the dispersing agent may be added to the coating syrup in amounts such that the coating will contain from about 0.1 % to about 1.0%, and preferably from about 0.3% to about 0.6% of the agent.
  • the calcium carbonate When high amounts of calcium carbonate or other antacid is used, the calcium carbonate is dispersed or suspended in the coating syrup that contains the sugar or polyol, thus making a syrup suspension. Generally, as the level of calcium carbonate is increased, the level of sugar or polyol is decreased. Levels of calcium carbonate used may be as low as 25% of the total solids or as high as 50% of the total solids in the syrup, and more preferably will comprise about 30% to about 40% of the total solids. In preferred embodiments, the calcium carbonate will comprise about 25% to about 50% of the gum coating, and more preferably about 30% to about 40% of the gum coating. Coloring agents are preferably added directly to the syrup suspension in the dye or lake form. Coloring agents contemplated by the present invention include food quality dyes.
  • Film formers preferably added to the syrup include methyl cellulose, gelatins, hydroxypropyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and the like and combinations thereof Binding agents may be added either as an initial coating on the chewing gum center or may be added directly into the syrup. Binding agents contemplated by the present invention include gum arabic, gum talha, guar gum, karaya gum, locust bean gum, alginate gums, xanthan gum, arabinogalactan, various cellulose derivatives, vegetable gums, gelatin and mixtures thereof, with gum arabic being preferred. The binding agent is preferably used at a level of at least about 2% of the coating syrup.
  • the coating is initially present as a liquid syrup which contains from about 30% to about 80% of the coating ingredients previously described herein, and from about 20% to about 70% of a solvent such as water.
  • a solvent such as water.
  • the coating process is carried out in a rotating pan. Sugar or sugarless gum center tablets to be coated are placed into the rotating pan to form a moving mass. The material or syrup suspension which will eventually form the coating is applied or distributed over the gum center tablets. Flavoring agents may be added before, during and after applying the syrup suspension to the gum centers. Once the coating has dried to form a hard surface, additional syrup additions can be made to produce a plurality of coatings or multiple layers of hard coating.
  • syrup is added to the gum center tablets at a temperature range of from about 100°F (38°C) to about 240°F (116°C).
  • the syrup temperature is from about 130°F (54°C) to about 200°F (94°C) throughout the process in order to prevent the polyol or sugar in the syrup suspension from crystallizing.
  • the syrup suspension may be mixed with, sprayed upon, poured over, or added to the gum center tablets in any way known to those skilled in the art.
  • a plurality of layers is obtained by applying single coats, allowing the layers to dry, and then repeating the process.
  • the amount of solids added by each coating step depends chiefly on the concentration of the coating syrup suspension. Any number of coats may be applied to the gum center tablet. Preferably, no more than about 75-100 coats are applied to the gum center tablets.
  • the present invention contemplates applying an amount of syrup sufficient to yield a coated comestible containing about 20% to about 75% coating.
  • a plurality of premeasured aliquots of coating syrup suspension may be applied to the gum center tablets. It is contemplated, however, that the volume of aliquots of syrup suspension applied to the gum center tablets may vary throughout the coating procedure.
  • the present invention contemplates drying the wet syrup suspension in an inert medium.
  • a preferred drying medium comprises air.
  • forced drying air contacts the wet syrup coating in a temperature range of from about 70° F (21°C) to about 115°F (46°C). More preferably, the drying air is in the temperature range of from about 80°F (27°C) to about 100°F (38°C).
  • the invention also contemplates that the drying air possess a relative humidity of less than about 15 percent. Preferably, the relative humidity of the drying air is less than about 8 percent.
  • the drying air may be passed over and admixed with the syrup coated gum centers in any way commonly known in the art.
  • the drying air is blown over and around or through the bed of the syrup coated gum centers at a flow rate, for large scale operations, of about 2800 cubic feet per minute. If lower quantities of material are being processed, or if smaller equipment is used, lower flow rates would be used.
  • the present invention also contemplates the application of powder material after applying an aliquot of coating syrup to help build up the coating.
  • a dry- charge material may be added to dry the coating applications. This is especially useful when coating with some sugars and polyols, such as dextrose, sorbitol, maltitol, and hydrogenated isomaltulose.
  • a liquid addition of coating syrup is made in the coating process and after a specified time to allow the liquid to spread evenly over the pieces, a dry powder material is applied. This also helps to dry the liquid coating. This is referred to as dry charging and is commonly used in "soft" panning operations and is commonly known by those skilled in the art.
  • the dry charge material may consist mostly of the sugar or polyol used in the liquid coating, but may also contain other additives such as gums, dispersing agents, and antitack agents.
  • the simethicone or other antigas agent could be preblended with the dry charge material and applied in about 3 to 12 dry charge applications. After a dry charge application, 2 to 4 liquid applications are made to cover the dry charge material.
  • flavors are added to a sugar or sugarless coating of pellet gum to enhance the overall flavor of gum
  • the flavors are generally preblended with the coating syrup just prior to applying it to the core or added together to the core in one or more coating applications in a revolving pan containing the cores.
  • Simethicone may be pre-blended with the flavor before it is applied to the cores.
  • the coating syrup is very hot, about 130°F (54°C) to 200°F (93 °C), and the flavor may volatilize if preblended with the coating syrup too early.
  • the coating syrup is preferably applied to the gum cores as a hot liquid, the sugar or polyol allowed to crystallize, and the coating then dried with warm, dry air. Aliquots of syrups are preferably applied in about 30 to 80 applications to obtain a hard shell coated product having an increased weight gain of about 20% to 75%.
  • a flavor is applied with one, two, three or even four or more of these coating applications. Each time flavor is added, several non-flavored coatings are applied to cover the flavor before the next flavor coat is applied. This reduces volatilization of the flavor during the coating process.
  • the gum formulas can be prepared as sugar or sugarless type formulations and made in a pellet or pillow shape or a round ball or any other shape of product for coating/panning.
  • gum formulas for pellet centers are generally adjusted to a higher level of gum base to give a more consumer acceptable size of gum bolus. Keeping this in mind, if a coating of about 25% of the total product is added to a pellet core as sugar or polyols, the gum base in the pellet core should also be increased by 25%. Likewise, if a 33% coating is applied, the base levels should also be increased by 33%.
  • gum centers are usually formulated with about 25% to about 50% gum base with a corresponding decrease in the other ingredients except flavor.
  • Some typical sugar gum center formulations are shown in Table 1 that can be used as centers that are coated with a coating that contains an antigas agent to give an effective antigas chewing gum product.
  • Calcium carbonate can then be used in the coating formula on the various pellet gum formulations.
  • Table 2 shows some sugar and dextrose type coating formulas: Using a 1 gram center, the levels of calcium carbonate in the following tables will give 250-800 mg per 1 or 2 pieces in 1.5-3.0 gram pieces with 33% to 66% coating. A 2% level of simethicone in a coating on a 2.25 gram coated gum with a 55.5% coating will give 25 mg of simethicone, which is the amount conventionally found in some antacid preparations. A 2.5% level of simethicone in a 2.0 gram coated gum product with 5% simethicone in the coating will give a product containing 50 mg of simethicone.
  • the above formulations are made by making a coating syrup by dissolving the sugar or dextrose monohydrate and gum arabic in solution at boiling, and suspending titanium dioxide and/or calcium carbonate in this syrup. Flavor and simethicone is not mixed with hot syrup, but added with one or more coating applications. Acesulfame K may be added as part of the coating syrup. After the final coats are applied and dried, wax is applied to give a smooth polish.
  • Powder and/or crystalline sugar along with gum arabic may be blended with calcium carbonate, or calcium carbonate may be suspended in the sugar or dextrose syrup.
  • simethicone is preblend with powder sugar, powder dextrose, or powder gum arabic before use. Other simethicone is mixed with the flavor.
  • gum arabic is blended in the sugar/dextrose syrup.
  • gum arabic powder is dry charged after a gum arabic solution is applied in the first stages of coating, which is then followed by a hard shell coating of sugar solution or dextrose solution.
  • Gum arabic may also be used in coating of sugarless gum centers.
  • the base formulation can be increased in proportion to the amount of coating applied to the center. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced.
  • Some typical sugarless gum center formulations are shown in Table 4 that can be used as centers that are coated with calcium carbonate and simethicone to give an effective antigas product.
  • the high-intensity sweetener used is aspartame, acesulfame K, or a combination thereof.
  • high-intensity sweeteners such as alitame, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcones, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
  • Lycasin and other polyols such as maltitol, xylitol, erythritol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels.
  • the texture may be adjusted by varying glycerin or sorbitol liquid.
  • Sweetness of the center formulation can also be adjusted by varying the level of high-intensity sweetener.
  • Simethicone can be used in sugarless coating with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
  • Gum arabic acts as a binding agent, film former and hardener of the coated pellet.
  • the levels of antacid in the following tables will give 250-800 mg of antacid per 1 or 2 pieces in 1.5-3.0 gram chewing gum product pieces with 33% to 66% coating.
  • a 2% level of simethicone in a coating on a 2.25 gram coated gum with a 55.5% coating will give 25 mg of simethicone.
  • a 2.5% level of simethicone in a 2.0 gram coated gum piece with 5% in a coating will give 50 mg of simethicone.
  • the above formulas are used to coat pellets by applying a xylitol/gum arabic syrup in multiple coats and air-drying. Color or titanium dioxide is also mixed in the xylitol/gum arabic syrup. Calcium carbonate may be suspended in the xylitol hot syrup or added as a dry powder between syrup applications. The acesulfame K may be mixed into the coating syrup before it is applied. After the pellets have been coated and dried, talc and wax are added to give a polish.
  • maltitol coatings may also contain a combination of antacid materials and simethicone.
  • the following formulation can be made.
  • Calcium carbonate has a median particle size of 5.1 microns.
  • simethicone may be premixed with flavor
  • maltitol powder and simethicone are used to dry charge in the early stages of coating.
  • Maltitol, gum talha, calcium carbonate, and titanium dioxide are blended into the coating syrup and applied to the gum pellets. The mixture is applied as a syrup suspension. After all coating is applied and dried, talc and wax are added to give a polish.
  • coatings with sorbitol, lactitol and hydrogenated isomaltulose may be made in the coating formulas in Table 6 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder.
  • the other polyols may become sticky during the coating and drying process,. so the dry powder charge may be needed to give the proper drying.
  • less gum talha could be used and a more pure polyol syrup could be used to give a smooth surface.
  • the dry charge would only be used in the early stages of the coating process.
  • ingredients may be added to the dry charge to help absorb moisture.
  • These materials could be inert such as talc, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials.
  • powdered sweeteners or flavors could be added with the dry charge.
  • Polyols such as sorbitol, maltitol, lactitol and hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high-intensity sweeteners are preferably added to the coating.
  • high-intensity sweeteners may also be used such as acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcones, glycyrrhizin, neotame, and combinations thereof.
  • compositions and methods of the present invention are capable of being incorporated in the form of a variety of embodiments, only a few of which have been illustrated and described above.
  • the invention may be embodied in other forms without departing from its spirit or essential characteristics.
  • the described embodiments are to be considered in all respects only as illustrative and not restrictive, and the scope of the invention, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Abstract

A method of making coated chewing gum products containing an antigas agent comprises the steps of providing chewing gum cores; providing a coating comprising a bulk sweetener; providing an antigas agent; and applying the antigas agent and coating syrup to the cores and drying the syrup to produce a coating on the cores.

Description

COATED CHEWING GUM PRODUCTS CONTAINING AN ANTIGAS AGENT
BACKGROUND OF THE INVENTION
The present invention relates to methods for producing coated chewing gum products. More particularly, the invention relates to producing coated chewing gum products containing an antigas agent that is added to the chewing gum coating such that it will have a controlled fast release from chewing gum for maximum effectiveness.
Coated chewing gum products are well known. Many prior art patents disclose chewing gum products coated with sugar sweeteners or polyol sweeteners. U.S. Patent No. 4,317,838, for example, discloses a method of applying a sugarless coating to chewing gum. The coating may include calcium carbonate as an anti-sticking agent. Synthetic sweeteners, including many different high-intensity sweeteners, are also suggested for use in the coating. Another area of interest is the use of medicaments in chewing gum. In some instances, it is contemplated that an active medicament that is added to the chewing gum may be readily released. An active medicament may be added to the gum coating, which is a water soluble matrix, such that during the chewing period, the medicament may be released quickly, resulting in a fast release. This would allow a chewing gum coating to be a carrier for an active medicament, specifically an antacid with these fast release characteristics. For example, U.S. Patent No. 4,867,989 discloses a chewing gum composition coated with an outer shell containing layers of a mineral compound and a coating syrup, but this patent states that the mineral compound must be added separately and not dispersed in the syrup used to make the coating.
Antacids are usually taken on an "as needed" basis to relieve gastrointestinal disturbances mostly due to dietary indiscretions. These antacids are generally insoluble inorganic salts such as calcium carbonate, magnesium carbonate, calcium hydroxide, magnesium hydroxide, or aluminum hydroxide. Antacids readily neutralize acids in the gastrointestinal (GI) tract and are commonly available in or as antacid tablets. Some typical consumer antacid products are: TUMS, which contains calcium carbonate; MILK of MAGNESIA, which contains magnesium hydroxide, and MAALOX PLUS, which contains a combination of aluminum hydroxide and magnesium hydroxide along with simethicone. Some of these antacid products also include an antigas agent called simethicone to eliminate gas buildup in the GI tract. Other consumer products contain only simethicone as the active ingredient, such as MYLANTA GAS, GAS-X, and PHAZYME. Previously, antacids have been added to chewing gum and in a chewing gum coating, but some products have not been totally consumer acceptable. The large amount of active antacid needed for effectiveness does not lend itself to giving a good tasting product. Also, the presence of sugar in the antacid chewing gum or coated on the chewing gum of some products is not consumer acceptable because sugar causes dental caries.
A sugarless coated chewing gum produced having an antacid in a sorbitol base coating is currently being sold under the trademark CHOOZ®. It has been found that by adding the antacid to a gum coating, the antacid is quickly released from the chewing gum into saliva and into the gastrointestinal (GI) tract. Relief from GI acidity is quickly obtained, but little relief from gas formation is provided. It would be desirable to have not only fast relief, but relief from gas formation. Thus, there is a need for a way to make coated chewing gum products that provide for gas relief, as well as being acceptable to the consumer from taste and other standpoints.
SUMMARY OF THE INVENTION
It has been found that an antigas agent such as simethicone can be provided in a chewing gum coating to provide relief from gas formation, and that the antigas agent is able to act quickly once the gum product is placed in the mouth. In a first aspect, the invention is a method of making coated chewing gum products containing an antigas agent comprising the steps of: providing chewing gum cores; providing a coating syrup comprising a bulk sweetener; providing an antigas agent; and applying the antigas agent and coating syrup to the cores and drying the syrup to produce a coating on the cores, the coating containing the antigas agent. In a second aspect, the invention is a coated chewing gum product containing an antigas agent comprising: a chewing gum core and a coating on the core, the coating comprising an antigas agent.
In a third aspect, the invention is a method of delivering an antigas agent to an individual that provides relief in the gastrointestinal tract comprising the steps of: providing chewing gum cores; providing a coating syrup comprising a bulk sweetener; providing simethicone; applying the simethicone and coating syrup to the cores and drying the syrup to produce a coating on the cores, the coating containing from about 5 mg to about 200 mg simethicone; and chewing the coated chewing gum product in the mouth and swallowing the coating, the coating dispersing and dissolving to provide simethicone as an antigas agent in the gastrointestinal tract.
Preferred embodiments of the invention include the addition of a neutralizing antacid in the coating, and may also include an acid blocker such as a histamine H2 - receptor antagonists. These agents inhibit or block the secretion of gastric acid by binding to a specific histamine receptor on the parietal (acid secreting) cell membranes located in the stomach. These agents, which may be added to the chewing gum center or to the coating containing the antigas agent, are used for extended relief of gastrointestinal disturbances and extended relief from stomach acidity. Examples of histamine H2 - receptor antagonists are cimetidine, ranitidine and its active salt, nizatidine and famotidine, with famotidine being preferred.
The administration of an antigas agent, and preferably a neutralizing antacid as well, that is contained in a chewing gum coating, provides an effective relief from many gastrointestinal disturbances. It is believed that providing a larger particle size antacid in a chewing gum coating makes it even more effective and longer lasting. Thus, an advantage of a preferred embodiment of the present invention is administering an antacid to an individual that has a larger particle size than is typically administered orally, giving extended relief while still achieving the effect of fast relief.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As used herein, the term "chewing gum" includes bubble gum and all other types of chewing gum. Unless specified otherwise, all percentages are weight percentages.
As mentioned above, products made by the present invention will preferably include an antacid, such as calcium carbonate. The antacid will preferably be included as part of the coating syrup used to prepare a coated chewing gum product. A typical syrup may contain a polyol, suspended calcium carbonate, simethicone, a binding agent, a high-intensity sweetener and a whitener.
In a preferred embodiment of the present invention, the antacid is contained in the coating of chewing gum products, which allows a chewing gum coating to be a carrier for the antacid and the antigas agent (also sometimes referred to as an antiflatulent). Accordingly, as the chewing gum is chewed, the active antacid and antiflatulent in the gum coating is released into the saliva and ingested to give relief from gastrointestinal disturbances in the GI tract. The preferred antacids are generally carbonate or hydroxide salts of calcium, magnesium, aluminum, or bismuth, and are generally very water insoluble. Other antacids such as sodium bicarbonate, calcium bicarbonate, and other carbonates, silicates, and phosphates may be used in this invention. When these materials are mixed with acids in the GI tract, the acids are readily neutralized to give relief from GI disturbances.
Antiflatulents may be added to an antacid gum coating to be effective antigas materials and eliminate trapped wind. The most common antigas material is dimethicone (dimethyl polysiloxane) and when mixed with silicone dioxide becomes simethicone. Simethicone is also referred to as activated dimethicone. Simethicone is the most common antigas material and may be the only drug approved antiflatulent. However, other antifoaming agents may be used as antigas agents in this invention. As noted previously, simethicone is in other antacid preparations like MYLANTA GAS and GAS-X at a level of 125 mg per tablet. Other preparations like PHAZYME contain simethicone at higher levels, up to 166 mg. The level of simethicone in a coated chewing gum product may be about
5 mg to about 200 mg per piece of coated gum. When used in combination with an antacid, the level of simethicone may be about 20 mg to about 50 mg.
Simethicone may be blended with a carrier and preferably be added as a dry charge material to a gum coating. Simethicone in some situations may act as an anti-tack agent. To prevent any coating problems while applying simethicone as part of a coating, the simethicone may be encapsulated, agglomerated, entrapped or otherwise physically modified so that it will not affect the gum coating process, but will release during chewing and ingestion. Simethicone may also be blended with flavor and applied on the coated gum piece in between applications of coating syrup. Simethicone USP is readily miscible and may be soluble in mint oils at high levels of use. Besides its antigas effect, simethicone used in a gum coating can also improve the smoothness of the coating.
In addition to antacids, acid blockers may also be used in a simethicone- containing products. Examples of acid blockers are histamine H2- receptor antagonists which include cimetidine, used in an over the counter (OTC) preparation called TAGAMET; famotidine, used in an OTC preparation called PEPCID; the hydrochloride salt of ranitidine, used in ZANTAC; and nizatidine, used in AXID. Some other types of acid blockers are called gastric proton pump inhibitors. These include omeprazole, used in PRILOSEC, and rabeprazole. All of these have been used for the treatment of digestive disorders such as gastritis, dyspepsia, gastric hyperacidity, heartburn, gastric oppression and peptic ulcer. Neutralizing antacids, which are insoluble inorganic salts, are known to neutralize stomach acidity very quickly. As a result, relief from gastrointestinal distress is fast and effective, but does not last long, possibly up to about 30 minutes. The acid blockers, when taken in combination with the antacid, will start to be effective after about 30 minutes, and be most effective after about 3-6 hours, and may last up to about 9-12 hours.
Acid blockers may also be added to a chewing gum coating. If water soluble, the acid blocker may be added to the sugar or polyol syrup and applied throughout the coating process. Water insoluble acid blockers may be dissolved or dispersed in a solvent, possibly flavors, and applied at various times during the coating process. Preferably, an acid blocker may be added as a powder after it has been preblended with a dry charge material. This could allow more control of the level of the acid blocker used in the chewing gum product and may reduce any instability problems of the acid blocker that may be associated with moisture.
The dosage level of acid blocker used in a preferred coated chewing gum product will vary depending on the acid blocker used. In general, the level of acid blocker will be about 1 mg to about 200 mg, either in the gum center or preferably in a gum coating. This level of acid blocker is used in addition to a high level of antacid or calcium carbonate in the preferred gum coating. The level of calcium carbonate in the preferred gum coating will be about 250 to 800 mg in 1 or 2 pieces of gum product having a weight of about 1.5 to 3 grams.
For antacid chewing gum products, calcium carbonate is the most preferred antacid material. This is mostly due to the fact that the most common inert filler in chewing gum base is calcium carbonate. Calcium carbonate, along with talc
(magnesium silicate), which is commonly used in bases for gum products that contain food acids to give tartness to flavors, have been used as fillers in gum base and gum products for many years. Chewing gum bases may also contain the other antacids as inert salts. Chewing gum bases that contain calcium carbonate do not readily release their calcium carbonate during chewing. Since calcium carbonate (or in other cases talc) is very water insoluble, it releases from gum base either very slowly or over very long extended chewing. As a result, this calcium carbonate is not effective as an antacid. Generally, when calcium carbonate is added to a gum formulation separate from the gum base, calcium carbonate becomes intimately mixed with the base during chewing and also releases slowly. However, when calcium carbonate is used in the coating of the chewing gum, it does become quickly available in the oral cavity and is ingested to be an effective antacid.
Generally, suspension coatings with calcium carbonate for an antacid gum may be made with sugar. Sugar with its naturally sweet taste masks some of the off-taste due to the use of high levels of calcium carbonate. With the advent of new coating technologies using less sweet sugarless polyols instead of sugar, the sweet taste of the coating is significantly reduced. In some coatings where xylitol is used, it is sufficiently sweet as a coating, but other polyols such as maltitol, hydrogenated isomaltulose, sorbitol, or erythritol, are not. When the coating contains high levels of calcium carbonate, the polyols generally lack sufficient sweetness to give a good tasting product. As a result, high-intensity sweeteners are preferably added to the coating containing calcium carbonate to give a high- quality, consumer-acceptable product.
For coated antacid chewing gum type products, the high level of calcium carbonate or other antacid in the coating modifies the taste quality and gum texture. The addition of high-intensity sweeteners to the gum coating improves the taste of the finished product. This also occurs in sugarcoated gums as well as polyol coated gums, so aspartame or another high-intensity sweeteners may also be added to sugar coated gums with calcium carbonate or other antacids. If the high-intensity sweeter is subject to degradation, it may preferably by added as part of a different coating syrup from the coating syrup containing the calcium carbonate, as disclosed in U.S. Patent Application Serial No. 09/591,256 filled June 9, 2000, hereby incorporated by reference.
Since calcium carbonate is very water insoluble, as are many of the other neutralizing antacids, the reaction rate of the salts with aqueous acids is dependant on the surface area of the neutralizing agent. Neutralizing agents with a large surface area will react faster with acids than those with a small surface area. Many smaller size particles with a combined large surface area neutralize acids faster than fewer large particles with a combined small surface area. However, larger particle sizes of calcium carbonate give longer lasting relief from stomach acidity.
When the calcium carbonate particles are suspended in a coating syrup and applied as a gum coating, the particle sizes of calcium carbonate remains essentially the same throughout the process.
Analysis of a precipitated calcium carbonate having a median particle size of about 5 microns was done before and after being applied as a coating. Before coating, the sample was analyzed and found to have a median particle size of 5.1 microns. After preparing the sample of calcium carbonate in a suspension and applying it to a gum pellet for ah antacid gum product, the particle size of the calcium carbonate was 4.9 microns.
It has been determined that a calcium carbonate having a median particle size of about 3 microns or greater is sufficient to give longer lasting relief of excess stomach activity. Preferably, the median particle size of the calcium carbonate in the coating will be between about 3 microns and about 75 microns, and more preferably, between about 3 microns and about 15 microns.
In terms of water solubility, larger particles have a tendency to dissolve more slowly in water, and as calcium carbonate dissolves, it neutralizes stomach acidity. Smaller particles of calcium carbonate could react faster, and larger particles would react slower.
In addition to the particle size of calcium carbonate, different crystal structures have an effect on the rate of dissolution and the rate of neutralization. Natural forms of calcium carbonate such as Calcite, Aragonite, and Naterite are highly crystalline forms of calcium carbonate and could dissolve more slowly to give longer lasting neutralizing effect. Marble, Dolomite, and even Mollusk shells are made of amorphous forms of calcium carbonate, and could dissolve faster and neutralize acidity faster than crystalline forms. Precipitated calcium carbonate, which is purified from natural sources, is a "micro" crystalline form and would dissolve quickly and neutralizes acidity quickly.
In general, a chewing gum composition typically comprises a water-soluble bulk portion, a water-insoluble chewable gum base portion and typically water-insoluble flavoring agents. The water-soluble portion dissipates with a portion of the flavoring agent over a period of time during chewing. The gum base portion is retained in the mouth throughout the chew. The insoluble gum base generally comprises elastomers, resins, fats and oils, softeners and inorganic fillers. The gum base may or may not include wax. The insoluble gum base can constitute approximately 5% to about 95% by weight of the chewing gum, more commonly the gum base comprises about 10% to about 50% of the gum, and in some preferred embodiments approximately 25% to about
35% by weight, of the chewing gum. In pellet gum center formulations, the level of insoluble gum base may be much higher.
In a preferred embodiment, the chewing gum base of the present invention contains about 20% to about 60% by weight synthetic elastomer, about 0% to about 30% by weight natural elastomer, about 5% to about 55% by weight elastomer plasticizer, about 4% to about 35% by weight filler, about 5% to about 35% by weight softener, and optional minor amounts (about 1% or less by weight) of miscellaneous ingredients such as colorants, antioxidants, etc.
Synthetic elastomers may include, but are not limited to, polyisobutylene with GPC weight average molecular weights of about 10,000 to about 95,000, isobutylene-isoprene copolymer (butyl elastomer), styrene-butadiene, copolymers having styrene-butadiene ratios of about 1 :3 to about 3:1, polyvinyl acetate having GPC weight average molecular weights of about 2,000 to about 90,000, polyisoprene, polyethylene, vinyl acetate - vinyl laurate copolymers having vinyl laurate contents of about 5% to about 50% by weight of the copolymer, and combinations thereof. Preferred ranges are: 50,000 to 80,000 GPC weight average molecular weight for polyisobutylene; 1 :1 to 1:3 bound styrene-butadiene for styrene-budadiene; 10,000 to 65,000 GPC weight average molecular weight for polyvinyl acetate, with the higher molecular weight polyvinyl acetates typically used in bubble gum base; and a vinyl laurate content of 10-45% for vinyl acetate- vinyl laurate.
Natural elastomers may include natural rubber such as smoked or liquid latex and guayule, as well as natural gums such as jelutong, lechi caspi, perillo, sorva, massaranduba balata, massaranduba chocolate, nispero, rosindinha, chicle, gutta hang kang, and combinations thereof. The preferred synthetic elastomer and natural elastomer concentrations vary depending on whether the chewing gum in which the base is used is adhesive or conventional, bubble gum or regular gum, as discussed below. Preferred natural elastomers include jelutong, chicle, sorva and massaranduba balata.
Elastomer plasticizers may include, but are not limited to, natural rosin esters such as glycerol esters or partially hydrogenated rosin, glycerol esters of polymerized rosin, glycerol esters of partially dimerized rosin, glycerol esters of rosin, pentaerythritol esters of partially hydrogenated rosin, methyl and partially hydrogenated methyl esters of rosin, pentaerythritol esters of rosin; synthetics such as terpene resins derived from alpha-pinene, beta-pinene, and/or d-limonene; and any suitable combinations of the foregoing. The preferred elastomer plasticizers will also vary depending on the specific application, and on the type of elastomer which is used.
Fillers/texturizers may include magnesium and calcium carbonate, ground limestone, silicate types such as magnesium and aluminum silicate, clay, alumina, talc, titanium oxide, mono-, di- and tri-calcium phosphate, cellulose polymers, such as wood, and combinations thereof.
Softeners/emulsifiers may include tallow, hydrogenated tallow, hydrogenated and partially hydrogenated vegetable oils, cocoa butter, glycerol monostearate, glycerol triacetate, lecithin, mono-, di- and triglycerides, acetylated monoglycerides, fatty acids (e.g. stearic, palmitic, oleic and linoleic acids), and combinations thereof
Colorants and whiteners may include FD&C-type dyes and lakes, fruit and vegetable extracts, titanium dioxide, and combinations thereof.
The base may or may not include wax. An example of a wax-free gum base is disclosed in U.S. Patent No. 5,286,500, the disclosure of which is incorporated herein by reference.
In addition to a water-insoluble gum base portion, a typical chewing gum composition includes a water-soluble bulk portion and one or more flavoring agents. The water-soluble portion can include bulk sweeteners, high-intensity sweeteners, flavoring agents, softeners, emulsifiers, colors, acidulants, fillers, antioxidants, and other components that provide desired attributes. Softeners are added to the chewing gum in order to optimize the chewability and mouth feel of the gum. The softeners, which are also known as plasticizers and plasticizing agents, generally constitute between approximately 0.5% to about 15% by weight of the chewing gum. The softeners may include glycerin, lecithin, and combinations thereof. Aqueous sweetener solutions such as those containing sorbitol, hydrogenated starch hydrolysates, corn syrup and combinations thereof, may also be used as softeners and binding agents in chewing gum.
Bulk sweeteners include both sugar and sugarless components. Bulk sweeteners typically constitute about 5% to about 95% by weight of the chewing gum, more typically, about 20% to about 80% by weight, and more commonly, about 30% to about 60% by weight of the gum. Sugar sweeteners generally include saccharide-containing components commonly known in the chewing gum art, including but not limited to, sucrose, dextrose, maltose, dextrin, dried invert sugar, fructose, galactose, corn syrup solids, and the like, alone or in combination.
Sugarless sweeteners include, but are not limited to, sugar alcohols such as sorbitol, mannitol, xylitol, hydrogenated starch hydrolysates, maltitol, and the like, alone or in combination.
High-intensity artificial sweeteners can also be used, alone or in combination, with the above. Preferred sweeteners include, but are not limited to, sucralose, aspartame, N-substituted APM derivatives such as neotame, salts of acesulfame, alitame, saccharin and its salts, cyclamic acid and its salts, glycyrrhizin, dihydrochalcones, thaumatin, monellin, and the like, alone or in combination. In order to provide longer lasting sweetness and flavor perception, it may be desirable to encapsulate or otherwise control the release of at least a portion of the artificial sweetener. Such techniques as wet granulation, wax granulation, spray drying, spray chilling, fluid bed coating, coacervation, and fiber extrusion may be used to achieve the desired release characteristics.
Combinations of sugar and/or sugarless sweeteners may be used in chewing gum. Additionally, the softener may also provide additional sweetness such as with aqueous sugar or alditol solutions. If a low calorie gum is desired, a low caloric bulking agent can be used. Examples of low caloric bulking agents include: poly dextrose; oligofructose (Raftilose); inulin (Raftilin); fructooligosaccharides (NutraFlora); palatinose oligosaccharide; guar gum hydrolysate (BeneFiber); or indigestible dextrin (Fibersol). However, other low calorie bulking agents can be used.
A variety of flavoring agents can also be used, if desired. The flavor can be used in amounts of about 0. 1 to about 15 weight percent of the gum, and preferably, about 0.2% to about 5% by weight. Flavoring agents may include essential oils, synthetic flavors or mixtures thereof including, but not limited to, oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, other mint oils, clove oil, oil of wintergreen, anise and the like. Artificial flavoring agents and components may also be used. Natural and artificial flavoring agents may be combined in any sensorially acceptable fashion. In general, chewing gum is manufactured by sequentially adding the various chewing gum ingredients to a commercially available mixer known in the art. After the ingredients have been thoroughly mixed, the gum mass is discharged from the mixer and shaped into the desired form, such as rolling into sheets and cutting into sticks, extruding into chunks or casting into pellets, which are then coated or panned. Generally, the ingredients are mixed by first melting the gum base and adding it to the running mixer. The base may also be melted in the mixer itself. Color or emulsifiers may also be added at this time. A softener such as glycerin may also be added at this time, along with syrup and a portion of the bulking agent. Further parts of the bulking agent are added to the mixer. Flavoring agents are typically added with the final portion of the bulking agent. Other optional ingredients are added to the batch in a typical fashion, well known to those of ordinary skill in the art.
The entire mixing procedure typically takes from five to fifteen minutes, but longer mixing times may sometimes be required. Those skilled in the art will recognize that many variations of the above described procedure may be followed. After the ingredients are mixed, the gum mass is formed into pellets or balls. Pellet or ball gum is prepared as conventional chewing gum but formed into pellets that are pillow shaped, or into balls. The pellets/balls are used as cores for the coated product. The cores can be sugar or polyol coated or panned by conventional panning techniques to make a unique coated pellet gum. The weight
of the coating may be about 20% to about 50% of the weight of the finished product, but may be as much as 75% of the total gum product.
Conventional panning procedures generally coat with sucrose, but recent advances in panning have allowed use of other carbohydrate materials to be used in place of sucrose. Some of these materials include, but are not limited to, sugars such as dextrose, maltose, isomaltulose, and tagatose, or sugarless bulk sweeteners such as xylitol, sorbitol, lactitol, hydrogenated isomaltulose, erythritol, maltitol, and other new polyols (also referred to as alditols) or combinations thereof. The coating is preferably sugarless. A preferred coating comprises about 30% to about 75% maltitol. These materials may be blended with panning modifiers including, but not limited to, gum arabic, gum talha, maltodextrins, corn syrup, gelatin, cellulose type materials like carboxymethyl cellulose or hydroxymethyl cellulose, starch and modified starches, vegetables gums like alginates, locust bean gum, guar gum, and gum tragacanth. Antitack agents may also be added as panning modifiers, which allow the use of a variety of carbohydrates and sugar alcohols.
Flavors may also be added with the sugar or sugarless coating to yield unique product characteristics.
As noted above, the coating may contain ingredients such as flavoring agents, as well as dispersing agents, coloring agents, film formers and binding agents. Flavoring agents contemplated by the present invention include those commonly known in the art such as essential oils, synthetic flavors or mixtures thereof, including but not limited to oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, other mint oils, clove oil, oil of wintergreen, anise and the like. The flavoring agents may be used in an amount such that the coating will contain from about 0.2% to about 3% flavoring agent, and preferably from about 0.7% to about 2.0% flavoring agent. High-intensity sweeteners contemplated for use in the coating include but are not limited to synthetic substances, such as saccharin, thaumatin, alitame, saccharin salts, aspartame, N-substituted APM derivatives such as neotame, sucralose, cyclamic acid and its salts, glycyrrhizin, dihydrochalcones, monellin and acesulfame-K or other salts of acesulfame. The high-intensity sweetener may be added to the coating syrup in an amount such that the coating will contain from about 0.01% to about 2.0%, and preferably from about 0.1% to about 1.0% high- intensity sweetener. Preferably the high-intensity sweetener is not encapsulated. Dispersing agents are often added to syrup coatings for the purpose of whitening and tack reduction. Dispersing agents contemplated by the present invention to be employed in the coating syrup include titanium dioxide, talc, or any other antistick compound. Titanium dioxide is a presently preferred dispersing agent of the present invention. The dispersing agent may be added to the coating syrup in amounts such that the coating will contain from about 0.1 % to about 1.0%, and preferably from about 0.3% to about 0.6% of the agent.
When high amounts of calcium carbonate or other antacid is used, the calcium carbonate is dispersed or suspended in the coating syrup that contains the sugar or polyol, thus making a syrup suspension. Generally, as the level of calcium carbonate is increased, the level of sugar or polyol is decreased. Levels of calcium carbonate used may be as low as 25% of the total solids or as high as 50% of the total solids in the syrup, and more preferably will comprise about 30% to about 40% of the total solids. In preferred embodiments, the calcium carbonate will comprise about 25% to about 50% of the gum coating, and more preferably about 30% to about 40% of the gum coating. Coloring agents are preferably added directly to the syrup suspension in the dye or lake form. Coloring agents contemplated by the present invention include food quality dyes. Film formers preferably added to the syrup include methyl cellulose, gelatins, hydroxypropyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and the like and combinations thereof Binding agents may be added either as an initial coating on the chewing gum center or may be added directly into the syrup. Binding agents contemplated by the present invention include gum arabic, gum talha, guar gum, karaya gum, locust bean gum, alginate gums, xanthan gum, arabinogalactan, various cellulose derivatives, vegetable gums, gelatin and mixtures thereof, with gum arabic being preferred. The binding agent is preferably used at a level of at least about 2% of the coating syrup.
The coating is initially present as a liquid syrup which contains from about 30% to about 80% of the coating ingredients previously described herein, and from about 20% to about 70% of a solvent such as water. In general, the coating process is carried out in a rotating pan. Sugar or sugarless gum center tablets to be coated are placed into the rotating pan to form a moving mass. The material or syrup suspension which will eventually form the coating is applied or distributed over the gum center tablets. Flavoring agents may be added before, during and after applying the syrup suspension to the gum centers. Once the coating has dried to form a hard surface, additional syrup additions can be made to produce a plurality of coatings or multiple layers of hard coating.
In a hard coating panning procedure, syrup is added to the gum center tablets at a temperature range of from about 100°F (38°C) to about 240°F (116°C). Preferably, the syrup temperature is from about 130°F (54°C) to about 200°F (94°C) throughout the process in order to prevent the polyol or sugar in the syrup suspension from crystallizing. The syrup suspension may be mixed with, sprayed upon, poured over, or added to the gum center tablets in any way known to those skilled in the art.
In general, a plurality of layers is obtained by applying single coats, allowing the layers to dry, and then repeating the process. The amount of solids added by each coating step depends chiefly on the concentration of the coating syrup suspension. Any number of coats may be applied to the gum center tablet. Preferably, no more than about 75-100 coats are applied to the gum center tablets. The present invention contemplates applying an amount of syrup sufficient to yield a coated comestible containing about 20% to about 75% coating. Those skilled in the art will recognize that in order to obtain a plurality of coated layers, a plurality of premeasured aliquots of coating syrup suspension may be applied to the gum center tablets. It is contemplated, however, that the volume of aliquots of syrup suspension applied to the gum center tablets may vary throughout the coating procedure.
Once a coating is applied to the gum center tablets, the present invention contemplates drying the wet syrup suspension in an inert medium. A preferred drying medium comprises air. Preferably, forced drying air contacts the wet syrup coating in a temperature range of from about 70° F (21°C) to about 115°F (46°C). More preferably, the drying air is in the temperature range of from about 80°F (27°C) to about 100°F (38°C). The invention also contemplates that the drying air possess a relative humidity of less than about 15 percent. Preferably, the relative humidity of the drying air is less than about 8 percent.
The drying air may be passed over and admixed with the syrup coated gum centers in any way commonly known in the art. Preferably, the drying air is blown over and around or through the bed of the syrup coated gum centers at a flow rate, for large scale operations, of about 2800 cubic feet per minute. If lower quantities of material are being processed, or if smaller equipment is used, lower flow rates would be used.
The present invention also contemplates the application of powder material after applying an aliquot of coating syrup to help build up the coating. In addition to applying a plurality of liquid layers and drying with air, a dry- charge material may be added to dry the coating applications. This is especially useful when coating with some sugars and polyols, such as dextrose, sorbitol, maltitol, and hydrogenated isomaltulose. A liquid addition of coating syrup is made in the coating process and after a specified time to allow the liquid to spread evenly over the pieces, a dry powder material is applied. This also helps to dry the liquid coating. This is referred to as dry charging and is commonly used in "soft" panning operations and is commonly known by those skilled in the art. The dry charge material may consist mostly of the sugar or polyol used in the liquid coating, but may also contain other additives such as gums, dispersing agents, and antitack agents. The simethicone or other antigas agent could be preblended with the dry charge material and applied in about 3 to 12 dry charge applications. After a dry charge application, 2 to 4 liquid applications are made to cover the dry charge material.
When flavors are added to a sugar or sugarless coating of pellet gum to enhance the overall flavor of gum, the flavors are generally preblended with the coating syrup just prior to applying it to the core or added together to the core in one or more coating applications in a revolving pan containing the cores.
Simethicone may be pre-blended with the flavor before it is applied to the cores.
Generally, the coating syrup is very hot, about 130°F (54°C) to 200°F (93 °C), and the flavor may volatilize if preblended with the coating syrup too early. The coating syrup is preferably applied to the gum cores as a hot liquid, the sugar or polyol allowed to crystallize, and the coating then dried with warm, dry air. Aliquots of syrups are preferably applied in about 30 to 80 applications to obtain a hard shell coated product having an increased weight gain of about 20% to 75%. A flavor is applied with one, two, three or even four or more of these coating applications. Each time flavor is added, several non-flavored coatings are applied to cover the flavor before the next flavor coat is applied. This reduces volatilization of the flavor during the coating process.
For mint flavors such spearmint, peppermint and wintergreen, some of the flavor components are volatilized, but sufficient flavor remains to give a product having a strong, high impact flavor. Fruit flavors, that may contain esters, are more easily volatilized and may be flammable and/or explosive and therefore, generally these type of fruit flavors are not used in coatings.
Examples
The following examples of the invention are provided by way of explanation and illustration.
As noted earlier, the gum formulas can be prepared as sugar or sugarless type formulations and made in a pellet or pillow shape or a round ball or any other shape of product for coating/panning. However, gum formulas for pellet centers are generally adjusted to a higher level of gum base to give a more consumer acceptable size of gum bolus. Keeping this in mind, if a coating of about 25% of the total product is added to a pellet core as sugar or polyols, the gum base in the pellet core should also be increased by 25%. Likewise, if a 33% coating is applied, the base levels should also be increased by 33%. As a result, gum centers are usually formulated with about 25% to about 50% gum base with a corresponding decrease in the other ingredients except flavor. Even higher levels of base may be used when calcium carbonate or another antacid is added to a pellet coating. Generally flavor levels in the gum increase with the level of gum base as the base tends to bind flavors into the gum and more flavor is needed to give a good flavorful product. However flavors can also be added to the coating to give increased flavor impact and more flavor perception.
Some typical sugar gum center formulations are shown in Table 1 that can be used as centers that are coated with a coating that contains an antigas agent to give an effective antigas chewing gum product.
TABLE 1 (WEIGHT PERCENT) EX. 1 EX. 2 EX. 3 EX. 4 EX._5 EXjS
SUGAR 48.0 48.0 46.0 40.0 39.0 36.0
GUM BASE 30.0 35.0 40.0 30.0 35.0 40.0
CORN SYRUP 20.0 15.0 12.0 18.0 14.0 12.0
GLYCERIN 1.0 1.0 1.0 1.0 1.0 1.0
PEPPERMINT 1.0 1.0 1.0 1.0 1.0 1.0
FLAVOR
DEXTROSE
MONOHYDRATE - - - 10.0 10.0 10.0
Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars may be used in the gum center.
Calcium carbonate can then be used in the coating formula on the various pellet gum formulations. The following Table 2 shows some sugar and dextrose type coating formulas: Using a 1 gram center, the levels of calcium carbonate in the following tables will give 250-800 mg per 1 or 2 pieces in 1.5-3.0 gram pieces with 33% to 66% coating. A 2% level of simethicone in a coating on a 2.25 gram coated gum with a 55.5% coating will give 25 mg of simethicone, which is the amount conventionally found in some antacid preparations. A 2.5% level of simethicone in a 2.0 gram coated gum product with 5% simethicone in the coating will give a product containing 50 mg of simethicone.
TABLE 2
(DRY WEIGHT PERCENT)
■ EX. 7 EX. 8 EX. 9 EX. 10 EX. 11 EX. 12
SUGAR 69.3 59.3 51.8 66.3 63.3 49.3
GUM ARABIC 2.0 3.0 4.0 2.0 3.0 4.0
TITANIUM 0.5 1.0 1.0 _ . _
DIOXIDE
CALCIUM 25.0 30.0 40.0 25.0 30.0 40.0
CARBONATE
FLAVOR 1.0 1.5 1.0 1.5 1.5 1.5
WAX 0.1 0.1 0.1 0.1 0.1 0.1
ACESULFAME K 0.1 0.1 0.1 0.1 0.1 0.1
SIMETHICONE* 2.0 5.0 2.0 5.0 2.0 5.0
Simethicone is preblended with flavor before applying.
TABLE 2 (Cont'd)
(DRY WEIGHT PERCENT)
EX. 13 EX. 14 EX. 15 EX. 16
DEXTROSE 69.7 49.2 70.2 50.2
MONOHYDRATE
GUM ARABIC 1.5 3.0 1.5 3.0
TITANIUM DIOXIDE 0.5 1.0 - -
CALCIUM CARBONATE 25.0 40.0 25.0 40.0
FLAVOR 1.0 1.5 1.0 1.5
WAX 0.1 0.1 0.1 0.1
ACESULFAME K 0.2 0.2 0.2 0.2
SIMETHICONE* 2.0 5.0 2.0 5.0
* Simethicone is preblended with flavor before applying.
The above formulations are made by making a coating syrup by dissolving the sugar or dextrose monohydrate and gum arabic in solution at boiling, and suspending titanium dioxide and/or calcium carbonate in this syrup. Flavor and simethicone is not mixed with hot syrup, but added with one or more coating applications. Acesulfame K may be added as part of the coating syrup. After the final coats are applied and dried, wax is applied to give a smooth polish.
The above process gives a hard shell coating. Often a dry charge of powdered sugar or dextrose monohydrate may be used. This gives a somewhat softer coating. A dry charge may be used to build up a coating, but then finished with a straight syrup to obtain a hard shell. Table 3 gives these types of formulations.
TABLE 3
(DRY WEIGHT PERCENT)
EX. 17 EX. 18 EX. 19 EX. 20 EX. 21 EX. 22
SUGAR* 61.8 47.8 - - 51.8 -
DEXTROSE _ - 61.1 47.6 - 40.1
MONOHYDRATE*
POWDER 8.0 3.0 - - . -
SUGAR**
POWDER _ - 8.0 3.0 8.0 5.0
DEXTROSE**
GUM ARABIC 2.0 3.0 2.0 3.0 8.0 6.0
POWDER**
GUM ARABIC _ - - - 4.0 2.0
SOLUTION
FLAVOR** 1.0 1.0 1.5 1.0 1.0 1.5
WAX 0.1 0.1 0.1 0.1 0.1 0.1
CALCIUM 25.0 40.0 25.0 40.0 25.0 40.0
CARBONATE
ACESULFAME 0.1 0.1 0.3 0.3 0.1 0.3
SIMETHICONE ** 2.0 5.0 2.0 5.0 2.0 5.0
* Powder and/or crystalline sugar along with gum arabic may be blended with calcium carbonate, or calcium carbonate may be suspended in the sugar or dextrose syrup.
** Some simethicone is preblend with powder sugar, powder dextrose, or powder gum arabic before use. Other simethicone is mixed with the flavor.
In Examples 17-20, gum arabic is blended in the sugar/dextrose syrup. In Examples 21 and 22, gum arabic powder is dry charged after a gum arabic solution is applied in the first stages of coating, which is then followed by a hard shell coating of sugar solution or dextrose solution. Gum arabic may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced.
Some typical sugarless gum center formulations are shown in Table 4 that can be used as centers that are coated with calcium carbonate and simethicone to give an effective antigas product.
TABLE 4
(WEIGHT PERCENT
EX. 23 EX. 24 EX. 25 EX. 26 EX. 27 EX. 28 EX. 29
GUM BASE 35.0 35.0 30.0 35.0 30.0 40.0 35.8
CALCIUM - - 5.0 15.0 10.0 - 14.5 CARBONATEb)
SORBITOL 43.1 44.9 46.0 43.1 49.8 41.0 40.6
MANNITOL 10.0 10.0 5.0 - - 8.0 -
GLYCERIN - 8.0 2.0 3.0 8.0 2.0 3.0
SORBITOL LIQUID 10.0 - 10.0 - - 6.0a) 1.05c)
FLAVOR 1.5 1.5 1.5 2.5 2.0 2.0 2.5
ENCAPSULATED 0.4 0.4 0.5 1.0 0.2 0.6 2.0
HIGH-INTENSITY
SWEETENER
LECITHIN 0.2 0.4 _ 0.4 0.55 a) Lycasin brand hydrogenated starch hydrolyzate is used instead of sorbitol liquid. b) This material is base filler and may not release to give an antacid effect. c) Water is added in place of sorbitol liquid.
In the above center formulations, the high-intensity sweetener used is aspartame, acesulfame K, or a combination thereof. However other high-intensity sweeteners such as alitame, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcones, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
Lycasin and other polyols such as maltitol, xylitol, erythritol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels. The texture may be adjusted by varying glycerin or sorbitol liquid. Sweetness of the center formulation can also be adjusted by varying the level of high-intensity sweetener.
Simethicone can be used in sugarless coating with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol. Gum arabic acts as a binding agent, film former and hardener of the coated pellet. Using a 1 gram center, the levels of antacid in the following tables will give 250-800 mg of antacid per 1 or 2 pieces in 1.5-3.0 gram chewing gum product pieces with 33% to 66% coating. A 2% level of simethicone in a coating on a 2.25 gram coated gum with a 55.5% coating will give 25 mg of simethicone. A 2.5% level of simethicone in a 2.0 gram coated gum piece with 5% in a coating will give 50 mg of simethicone.
TABLE 5 (DRY WEIGHT PERCENT)
EX. 30 EX. 31 EX. 32 EX. 33 EX 34 EX. 35
XYLITOL 67.1 46.6 63.2 45.0 63.1 43.5
GUM ARABIC 4.0 6.0 7.0 8.5 8.5 10.0
FLAVOR 1.0 1.0 1.0 1.0 1.0 1.0
TITANIUM 0.5 0.9 _ - - _
DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
COLOR* - - 1.4 - - -
CALCIUM 25.0 40.0 25.0 40.0 25.0 40.0
CARBONATE
ACESULFAME K 0.2 0.3 0.2 0.3 0.2 0.3
SIMETHICONE** 2.0 5.0 2.0 5.0 2.0 5.0
* Lake color dispersed in xylitol solution.
** SiτnptTιirr>rip mav be Hiss ιr.1w»r. nr didr-pre . =»r_ in l a vnr
The above formulas are used to coat pellets by applying a xylitol/gum arabic syrup in multiple coats and air-drying. Color or titanium dioxide is also mixed in the xylitol/gum arabic syrup. Calcium carbonate may be suspended in the xylitol hot syrup or added as a dry powder between syrup applications. The acesulfame K may be mixed into the coating syrup before it is applied. After the pellets have been coated and dried, talc and wax are added to give a polish.
Like xylitol, maltitol coatings may also contain a combination of antacid materials and simethicone. The following formulation can be made.
TABLE 6
ΦRY WEIGHT PERCENT)
EX. 36 EX. 37 EX. 38 EX. 39 EX 40 EX. 41
MALTITOL 61.5 42.5 54.3 49.4 55.8 48.1
MALTITOL 5.0 10.0 7.5 5.0 10.0 6.0
POWDER
GUM TALHA 2.0 4.0 6.0 2.0 3.0 6.0
FLAVOR 0.5 0.4 0.7 0.5 0.3 1.0
TITANIUM 0.5 0.5 1.0 0.5 0.4 1.3
DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
CALCIUM 25.0 40.0 25.0 40.0 25.0 35.0
CARBONATE*
ACESULFAME K 0.3 0.4 0.3 0.4 0.3 0.4
SIMETHICONE 5.0 2.0 5.0 2.0 5.0 2.0
* Calcium carbonate has a median particle size of 5.1 microns.
Although some simethicone may be premixed with flavor, maltitol powder and simethicone are used to dry charge in the early stages of coating. Maltitol, gum talha, calcium carbonate, and titanium dioxide are blended into the coating syrup and applied to the gum pellets. The mixture is applied as a syrup suspension. After all coating is applied and dried, talc and wax are added to give a polish.
In a similar manner, coatings with sorbitol, lactitol and hydrogenated isomaltulose may be made in the coating formulas in Table 6 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder. Like maltitol, the other polyols may become sticky during the coating and drying process,. so the dry powder charge may be needed to give the proper drying. In the later stages of the coating process, less gum talha could be used and a more pure polyol syrup could be used to give a smooth surface. Also, the dry charge would only be used in the early stages of the coating process.
In addition to dry charging with the specific polyol, other ingredients may be added to the dry charge to help absorb moisture. These materials could be inert such as talc, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials. Also, powdered sweeteners or flavors could be added with the dry charge.
Polyols such as sorbitol, maltitol, lactitol and hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high-intensity sweeteners are preferably added to the coating. Beside aspartame, other high- intensity sweeteners may also be used such as acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcones, glycyrrhizin, neotame, and combinations thereof. When adding calcium carbonate or other antacids, and a hot syrup is applied, heat and high pH may degrade some sweeteners, so only stable high-intensity sweeteners should be used if the high-intensity sweetener is added in the main coating syrup.
It should be appreciated that the compositions and methods of the present invention are capable of being incorporated in the form of a variety of embodiments, only a few of which have been illustrated and described above. The invention may be embodied in other forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive, and the scope of the invention, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

1. A method of making coated chewing gum products containing an antigas agent comprising the steps of: a) providing chewing gum cores; b) providing a coating syrup comprising a bulk sweetener; c) providing an antigas agent; and d) applying the antigas agent and coating syrup to the cores and drying the syrup to produce a coating on the cores, the coating containing the antigas agent.
2. The method of claim 1 wherein the bulk sweetener is a polyol.
3. The method of claim 1 wherein the antigas agent is simethicone.
4. The method of claim 3 wherein the polyol is selected from the group consisting of sorbitol, erythritol, xylitol, maltitol, lactitol, hydrogenated isomaltulose and combinations thereof.
5. The method of claim 1 wherein the coating further comprises a neutralizing antacid.
6. The method of claim 1 wherein the coating syrup further comprises a binding agent.
7. The method of claim 6 wherein the binding agent is selected from the group consisting of gum arabic, gum talha, guar gum, karaya gum, locust bean gum, alginate gums, xanthan gum, arabinogalactan, cellulose derivatives, vegetable gums, gelatin and mixtures thereof.
8. The method of claim 6 wherein the binding agent comprises at least about 2% of the coating syrup.
9. The method of claim 5 wherein the neutralizing antacid comprises between about 25% and about 50% of the total solids in the coating syrup.
10. The method of claim 5 wherein the antacid is calcium carbonate and comprises between about 30% and about 40% of the total solids in the coating syrup.
11. The method of claim 5 wherein the neutralizing antacid comprises between about 30% and about 40% of the coating.
12. The method of claim 1 wherein the coating further comprises a high-intensity sweetener.
13. The method of claim 12 wherein the high-intensity sweetener is selected from the group consisting of sucralose, aspartame, N-substituted APM derivatives, salts of acesulfame, alitame, saccharin and its salts, cyclamic acid and its salts, glycyrrhizin, dihydrochalcones, thaumatin, monellin and mixtures thereof.
14. The method of claim 1 wherein the bulk sweetener comprises maltitol.
15. The method of claim 1 wherein the coating is sugarless.
16. The method of claim 12 wherein the high-intensity sweetener comprises acesulfame K.
17. The method of claim 1 wherein a powdered polyol is applied to the cores after application of the coating syrup.
18. The method of claim 1 wherein the coating further comprises an acid blocker.
19. The method of claim 18 wherein the acid blocker is a histamine H2 - receptor antagonist selected from the group consisting of cimetidine, ranitidine and its active salt , famotidine, nizatidine and mixtures thereof.
20. The method of claim 19 wherein the histamine H2 - receptor antagonist comprises famotidine.
21. A chewing gum product made by the method of claim 1.
22. A method of making coated chewing gum products containing an antigas agent comprising the steps of: a) providing chewing gum cores; b) providing a coating syrup comprising: i) a bulk sweetener and ii) a neutralizing antacid; c) providing a dry charge material comprising a bulk sweetener and simethicone; and d) applying the coating syrup and dry charge material to the chewing gum cores to produce a coating on the cores, the coating comprising the simethicone and between about 25% and about 60% antacid.
23. The method of claim 22 wherein the coating comprises about 30% to about 75% maltitol.
24. The method of claim 22 wherein multiple coats of coating syrup and dry charge material are applied to build up the coating.
25. The method of claim 22 wherein the dry charge material and coating syrup both include maltitol as the bulk sweetener.
26. A method of delivering an antigas agent to an individual that provides relief in the gastrointestinal tract comprising the steps of: a) providing chewing gum cores; b) providing a coating syrup comprising a bulk sweetener; c) providing simethicone; d) applying the simethicone and coating syrup to the cores and drying the syrup to produce a coating on the cores, the coating containing from about 5 mg to about 200 mg simethicone; and e) chewing the coated chewing gum product in the mouth and swallowing the coating, the coating dispersing and dissolving to provide simethicone as an antigas agent in the gastrointestinal tract.
27. The method of claim 1 wherein the antigas agent is simethicone which has been physically modified.
28. The method of claim 26 wherein the simethicone is physically modified.
29. The method of claim 27 wherein the simethicone is encapsulated.
30. The method of claim 28 wherein the simethicone is encapsulated.
31. The method of claim 1 wherein the coating further comprises a flavor, and the antigas agent and flavor are preblended and applied to the cores between applications of the coating syrup.
32. The method of claim 1 wherein the antigas agent is mixed in with the coating syrup prior to the coating syrup being applied to the cores.
33. The method of claim 1 wherein the antigas agent is blended with a carrier and applied to the cores as a dry charge between applications of the coating syrup.
34. A coated chewing gum product containing an antigas agent comprising: a) a chewing gum core; and b) a coating on the core, the coating comprising an antigas agent.
35. The coated chewing gum product of claim 34 wherein the antigas agent comprises simethicone.
6. The coated chewing gum product of claim 34 wherein the coating further comprises an acid blocker.
37. The coated chewing gum product of claim 34 wherein the coating further comprises a neutralizing antacid.
PCT/US2001/048070 2000-12-22 2001-12-14 Coated chewing gum products containing an antigas agent WO2002051260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/747,300 US6579545B2 (en) 2000-12-22 2000-12-22 Coated chewing gum products containing an antigas agent
US09/747,300 2000-12-22

Publications (1)

Publication Number Publication Date
WO2002051260A1 true WO2002051260A1 (en) 2002-07-04

Family

ID=25004504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/048070 WO2002051260A1 (en) 2000-12-22 2001-12-14 Coated chewing gum products containing an antigas agent

Country Status (2)

Country Link
US (1) US6579545B2 (en)
WO (1) WO2002051260A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1733627A3 (en) * 2005-06-14 2007-01-10 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Method for providing coated product
EP4256969A3 (en) * 2017-08-18 2024-03-06 Perfetti Van Melle Benelux B.V. Chewing gum compositions and methods of making thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2369515A1 (en) * 1999-04-06 2001-03-29 Wm. Wrigley Jr. Company Pharmaceutical chewing gum formulations
AU4061702A (en) * 2001-05-15 2003-04-03 Mcneil-Ppc, Inc. Dip coating compositions containing starch or dextrin
US20030072731A1 (en) * 2001-05-15 2003-04-17 Cynthia Gulian Dip coating compositions containing starch or dextrin
US20030070584A1 (en) * 2001-05-15 2003-04-17 Cynthia Gulian Dip coating compositions containing cellulose ethers
US20030072729A1 (en) * 2001-05-15 2003-04-17 Christopher Szymczak Simethicone as weight gain enhancer
US8309118B2 (en) 2001-09-28 2012-11-13 Mcneil-Ppc, Inc. Film forming compositions containing sucralose
US7429619B2 (en) * 2002-08-02 2008-09-30 Mcneil Consumer Healthcare Polyacrylic film forming compositions
EP1992345A4 (en) * 2006-03-09 2010-07-28 Espinoza Abdala Leopoldo De Je Synergic combination of h2-receptor inhibitors, inert silicone and a hydroxymagnesium aluminate complex
US20090074917A2 (en) * 2006-07-26 2009-03-19 Remington Direct Lp Low-calorie, no laxation bulking system
US20080026038A1 (en) * 2006-07-26 2008-01-31 Remington Direct Lp No laxation, low flatulence bulking system
AU2007290662A1 (en) * 2006-08-25 2008-03-06 Wm. Wrigley Jr. Company Coated chewing gum products
US20130095141A1 (en) * 2010-03-08 2013-04-18 Beverly A. Schad Food grade dry film coating composition and methods of making and using the same
US20180103655A1 (en) * 2016-10-18 2018-04-19 Ferrara Candy Company Hard Candy with Gummy Center and Systems and Methods for Making Same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452821A (en) * 1981-12-18 1984-06-05 Gerhard Gergely Confectionery product, particularly chewing gum, and process for its manufacture
US4822597A (en) * 1987-07-13 1989-04-18 Warner-Lambert Company Anesthetic-containing chewing gum compositions
US4867989A (en) * 1986-09-09 1989-09-19 Warner-Lambert Company Chewing gum mineral supplement
US5229137A (en) * 1992-05-06 1993-07-20 Brigham And Women's Hospital, Inc. Methods and pharmaceutical compositions for treating episodic heartburn
US5629035A (en) * 1995-12-18 1997-05-13 Church & Dwight Co., Inc. Chewing gum product with encapsulated bicarbonate and flavorant ingredients
WO2000035296A1 (en) * 1996-11-27 2000-06-22 Wm. Wrigley Jr. Company Improved release of medicament active agents from a chewing gum coating

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029189A (en) 1962-04-10 S-aryl-z-mno-x-qxazolibinones
US1298670A (en) 1915-06-11 1919-04-01 Stuart W Cramer Chewing-gum.
US1629461A (en) 1926-04-22 1927-05-17 Health Products Corp Chewing gum
US2892753A (en) 1957-02-26 1959-06-30 Boehringer Sohn Ingelheim Central nervous system stimulant
NL121097C (en) 1958-04-18
US3011949A (en) 1958-06-10 1961-12-05 Anthony G Bilotti Method of promoting release of active ingredients from slab chewing gum and product
US3047461A (en) 1960-06-10 1962-07-31 American Cyanamid Co Central nervous system stimulant
US3075884A (en) 1961-02-13 1963-01-29 American Chicle Co Slab chewing gums containing active ingredients and method of preparing same
US3196172A (en) 1963-05-20 1965-07-20 American Cyanamid Co Trifluoromethylphenylalkylenediamines
DE1216486B (en) 1964-04-23 1966-05-12 Merck Ag E Process for the production of coated tablets
US3308022A (en) 1964-06-25 1967-03-07 American Cyanamid Co Novel hypotensive compositions containing 1-substituted-3-cyano guanidines
US3498964A (en) 1966-08-29 1970-03-03 Takashi Hayashi Peripheral vasodilator peptide obtained from the animals of the family otariidae and method of preparing the same
US3590057A (en) 1967-12-21 1971-06-29 Sumitomo Chemical Co (alpha-(c5-c17)alkyl)benzyl fatty acid amides as cholesterol lowering agents
US3877468A (en) 1970-07-22 1975-04-15 Leo Ab Chewable tobacco substitute composition
US3901248A (en) 1970-07-22 1975-08-26 Leo Ab Chewable smoking substitute composition
US3845217A (en) 1972-11-16 1974-10-29 Helsingborg L Ab Buffered smoking substitute compositions
FR2262005B1 (en) 1974-02-22 1978-01-06 Raffinage Cie Francaise
US3995064A (en) 1975-06-04 1976-11-30 Life Savers, Inc. Method and apparatus for forming chewing gum base and product
FR2345938A1 (en) 1976-03-05 1977-10-28 Choay Patrick Chewing gum contg. xanthine stimulants or mixts. - including plant extracts e.g. tea and coffee extracts
US4154814A (en) 1978-02-13 1979-05-15 EPS Chewing Gum, Inc. Therapeutic chewing gum
US4238510A (en) 1979-02-21 1980-12-09 Life Savers, Inc. Sugarless coating for chewing gum and confections and method
JPS6056143B2 (en) 1979-08-02 1985-12-09 山之内製薬株式会社 Amidine derivatives and their production method
US4238475A (en) 1979-08-01 1980-12-09 Life Savers Inc. Chewing cum capable of releasing finely divided water-insoluble materials therefrom
US4250195A (en) 1979-09-24 1981-02-10 Life Savers, Inc. Method for applying soft flexible sugar coating to fresh chewing gum and coated chewing gum product
US4317838A (en) 1979-09-24 1982-03-02 Life Savers, Inc. Method for applying sugarless coating to chewing gum and confections
US4374858A (en) 1979-10-04 1983-02-22 Warner-Lambert Company Aspartame sweetened chewing gum of improved sweetness stability
US4386063A (en) 1980-12-18 1983-05-31 International Flavors & Fragrances Inc. Flavor use of mixtures containing 1-n-butoxy-1-ethanol acetate
US4400372A (en) 1981-03-05 1983-08-23 Indiana University Foundation Chewing gum
US4386106A (en) 1981-12-01 1983-05-31 Borden, Inc. Process for preparing a time delayed release flavorant and an improved flavored chewing gum composition
US4378374A (en) 1981-12-21 1983-03-29 Nabisco Brands, Inc. Chewing gum having improved softness
WO1983002892A1 (en) 1982-02-22 1983-09-01 Talapin, Vitaly, Ivanovich Medicinal preparation having antinicotine effect and method for obtention thereof
DE3213284A1 (en) 1982-04-08 1983-10-13 Winfried 8451 Kümmersbruck Kruppa ANTI-CARIES CHEWING GUM
US4446135A (en) 1982-06-07 1984-05-01 Sterling Drug Inc. Chewable antacid tablets
US4512968A (en) 1982-11-30 1985-04-23 Lion Corporation Oral compositions
US4459311A (en) 1983-01-03 1984-07-10 Nabisco Brands, Inc. Process for preparing gum base
US4533556A (en) 1983-06-14 1985-08-06 Warner-Lambert Company Kola flavored chewing gum and preparation thereof
US4647450A (en) 1983-07-20 1987-03-03 Warner-Lambert Company Chewing gum compositions containing magnesium trisilicate absorbates
US4933184A (en) 1983-12-22 1990-06-12 American Home Products Corp. (Del) Menthol enhancement of transdermal drug delivery
US4563345A (en) 1984-01-23 1986-01-07 Arrick Robert A Chewing gum
US4753805A (en) 1984-01-31 1988-06-28 Warner-Lambert Company Tabletted chewing gum composition and method of preparation
US4639368A (en) 1984-08-23 1987-01-27 Farmacon Research Corporation Chewing gum containing a medicament and taste maskers
US4971787A (en) 1984-08-27 1990-11-20 Warner-Lambert Company Antacid chewing gum
US4935242A (en) 1984-10-05 1990-06-19 Warner-Lambert Company Novel drug delivery system for expectorants
US4929508A (en) 1984-10-05 1990-05-29 Warner-Lambert Company Novel drug delivery system for antitussives
US4894234A (en) 1984-10-05 1990-01-16 Sharma Shri C Novel drug delivery system for antiarrhythmics
US4555407A (en) 1984-12-24 1985-11-26 General Foods Corporation Continuous chewing gum method
WO1986003967A1 (en) 1984-12-27 1986-07-17 Gerhard Gergely Chewing gum and production method thereof
US4695463A (en) 1985-05-24 1987-09-22 Warner-Lambert Company Delivery system for active ingredients and preparation thereof
IT1189727B (en) 1985-08-30 1988-02-04 Roberto Cappellari CHEWING RUBBER WITH DIFFERENT EFFECT IN THE TASTE AND TIME
GB8522453D0 (en) 1985-09-11 1985-10-16 Lilly Industries Ltd Chewable capsules
US4753800A (en) 1985-10-04 1988-06-28 Warner-Lambert Company Medicament adsorbates and their preparation
GB2181646B (en) 1985-10-22 1989-09-20 David Morris Medicated chewing gum
ZA867327B (en) 1985-11-04 1987-05-27 Warner Lambert Co Flavored tableted chewing gum
US4882152A (en) 1985-12-20 1989-11-21 Yang Robert K Confectionery delivery system for laxatives, vitamins and antacids
US4929447A (en) 1986-01-07 1990-05-29 Warner-Lambert Company Encapsulation composition for use with chewing gum and edible products
US4849227A (en) 1986-03-21 1989-07-18 Eurasiam Laboratories, Inc. Pharmaceutical compositions
US4716033A (en) 1986-03-27 1987-12-29 Warner-Lambert Company Medicament adsorbates with surfactant and their preparation
US4758424A (en) 1986-03-27 1988-07-19 Warner-Lambert Company Medicament adsorbates of decongestants with complex magnesium aluminum silicate and their preparation
US4711774A (en) 1986-03-27 1987-12-08 Warner-Lambert Company Medicament adsorbates with complex magnesium aluminum silicate and their preparation
US4908211A (en) 1986-09-08 1990-03-13 Paz Armando F Chewing gum and ingredients to chemically inhibit formation of plaque and calculus
FR2607671B1 (en) 1986-12-04 1991-02-08 Gen Foods France PROCESS FOR THE DIRECT MANUFACTURE OF BASE GUM FOR MASTICATORY PASTE AND CHEWING GUM
GB8630273D0 (en) 1986-12-18 1987-01-28 Til Medical Ltd Pharmaceutical delivery systems
US4828820A (en) 1987-01-15 1989-05-09 Warner-Lambert Company Chewable tooth cleaning composition
US4835162A (en) 1987-02-12 1989-05-30 Abood Leo G Agonists and antagonists to nicotine as smoking deterents
US5015464A (en) 1987-03-25 1991-05-14 Amway Corporation Antiplaque chewing gum
US4968716A (en) 1987-04-10 1990-11-06 Oxycal Laboratories, Inc. Compositions and methods for administering therapeutically active compounds
US4822816A (en) 1987-04-10 1989-04-18 Oxycal Laboratories, Inc. Compositions and methods for administering vitamin C
US5070085A (en) 1987-04-10 1991-12-03 Oxycal Laboratories, Inc. Compositions and methods for administering therapeutically active compounds
US4975270A (en) 1987-04-21 1990-12-04 Nabisco Brands, Inc. Elastomer encased active ingredients
IE59934B1 (en) 1987-06-19 1994-05-04 Elan Corp Plc Liquid suspension for oral administration
US4853212A (en) 1987-07-13 1989-08-01 Warner-Lambert Company Reduced base content chewing gum compositions having anesthetic properties
US4832994A (en) 1987-09-02 1989-05-23 Fey Michael S Anti-smoking oral composition
FR2635441B1 (en) 1988-08-18 1991-12-27 Gen Foods France HIGH POLYMER BASE GUM BASE CONCENTRATES, THEIR PREPARATION PROCESS AND THEIR USE IN THE MANUFACTURE OF CHEWING GUM
US5013716A (en) 1988-10-28 1991-05-07 Warner-Lambert Company Unpleasant taste masking compositions and methods for preparing same
KR900007862A (en) 1988-11-10 1990-06-02 정보영 Inhibitor of Glucan Synthesis of F-1, F-2 Fractionated by Sephadex G-50 from Cacao Bean Husk Extract
US4938963A (en) 1988-11-22 1990-07-03 Parnell Pharmaceuticals, Inc. Method and composition for treating xerostomia
US5110608A (en) 1988-12-29 1992-05-05 Warner-Lambert Company Chewing gums having longer lasting sweetness
US5154927A (en) 1989-01-19 1992-10-13 Wm. Wrigley Jr. Company Gum composition containing dispersed porous beads containing active chewing gum ingredients and method
US5139787A (en) 1989-01-19 1992-08-18 Wm. Wrigley Jr. Company Gum composition containing dispersed porous beads containing active chewing gum ingredients and method
US4963369A (en) 1989-01-19 1990-10-16 Wm. Wrigley Jr. Co. Gum composition containing dispersed porous beads containing active chewing gum ingredients and method
US4968511A (en) 1989-03-10 1990-11-06 Amelia Ronald P D Composition and process for one-step chewing gum
SE463189B (en) 1989-03-13 1990-10-22 Eston Joensson PREPARED PROVIDED TO BE ADDED TO AMALGAM FILLINGS IN TEMPERATURE, THEREFORE, TO PREVENT OR REDUCE THE EXPOSURE OF MERCURY SILVER OR MERCURY SILVER
US4997659A (en) 1989-03-28 1991-03-05 The Wm. Wrigley Jr. Company Alitame stability in chewing gum by encapsulation
US4978537A (en) 1989-04-19 1990-12-18 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5139794A (en) 1989-04-19 1992-08-18 Wm. Wrigley Jr. Company Use of encapsulated salts in chewing gum
DK365389D0 (en) 1989-07-24 1989-07-24 Fertin Lab As ANTIFUNGAL CHEMICAL GUM PREPARATION
JPH0383913A (en) 1989-08-25 1991-04-09 Lotte Co Ltd Gum for preventing pyorrhea alveolaris
US5512306A (en) 1992-06-19 1996-04-30 Pharmica Ab Smoking substitute
US5045325A (en) 1990-09-26 1991-09-03 Warner-Lambert Company Continuous production of chewing gum using corotating twin screw extruder
US5488962A (en) 1990-10-10 1996-02-06 Perfetti, S.P.A. Chewing gum which is a substitute for tobacco smoke
JPH06102605B2 (en) 1990-11-19 1994-12-14 昭和薬品化工株式会社 Dental test agent composition
US5126151A (en) 1991-01-24 1992-06-30 Warner-Lambert Company Encapsulation matrix
DE4102629A1 (en) 1991-01-30 1992-08-06 Bayer Ag PHARMACEUTICAL RUBBER WITH ACETYL SALICYLIC ACID
US5179122A (en) 1991-02-11 1993-01-12 Eastman Kodak Company Nutritional supplement containing vitamin e
US5629013A (en) 1991-04-04 1997-05-13 The Procter & Gamble Company Chewable calcium carbonate antacid tablet compositions
US5244670A (en) 1991-04-04 1993-09-14 The Procter & Gamble Company Ingestible pharmaceutical compositions for treating upper gastrointestinal tract distress
US5380535A (en) 1991-05-28 1995-01-10 Geyer; Robert P. Chewable drug-delivery compositions and methods for preparing the same
US5221698A (en) 1991-06-27 1993-06-22 The Regents Of The University Of Michigan Bioactive composition
ATE197126T1 (en) 1991-08-26 2000-11-15 Abbott Lab COMPOUNDS AND METHODS FOR SUBLINGUAL OR BUCCAL ADMINISTRATION OF THERAPEUTIC AGENTS
DE69231281T2 (en) 1991-12-17 2001-03-01 Biovail Tech Ltd COMPOSITION AND METHOD FOR ULCUS PREVENTION AND TREATMENT
GB9127150D0 (en) 1991-12-20 1992-02-19 Smithkline Beecham Plc Novel treatment
US5286500A (en) 1992-03-03 1994-02-15 Wm. Wrigley Jr. Company Wax-free chewing gum base
US5665406A (en) 1992-03-23 1997-09-09 Wm. Wrigley Jr. Company Polyol coated chewing gum having improved shelf life and method of making
EP0566174B1 (en) 1992-03-26 1996-06-12 Loders Croklaan B.V. Green chewing gum base
US5294449A (en) 1992-04-09 1994-03-15 Wm. Wrigley Jr. Company Composition of anti-cavity chewing gum and method of fighting tooth decay by using erythrose as anticaries agent
US5294433A (en) 1992-04-15 1994-03-15 The Procter & Gamble Company Use of H-2 antagonists for treatment of gingivitis
US5286502A (en) 1992-04-21 1994-02-15 Wm. Wrigley Jr. Company Use of edible film to prolong chewing gum shelf life
GB9221414D0 (en) 1992-10-13 1992-11-25 Glaxo Group Ltd Pharmaceutical compositions
US5380530A (en) 1992-12-29 1995-01-10 Whitehill Oral Technologies Oral care composition coated gum
US5496541C1 (en) 1993-01-19 2001-06-26 Squigle Inc Tasteful toothpaste and other dental products
US5378131A (en) 1993-02-18 1995-01-03 The Wm. Wrigley Jr. Company Chewing gum with dental health benefits employing calcium glycerophosphate
FR2706771A1 (en) 1993-06-21 1994-12-30 Pelletier Jacques Formula for the treatment of certain cancers.
US5340566A (en) 1993-08-09 1994-08-23 Colgate-Palmolive Company Method for preventing the progression of gingivitis
US5397580A (en) 1993-10-22 1995-03-14 Wm. Wrigley Jr. Company Continuous gum base manufacture using sequential mixers
US5419919A (en) 1993-10-22 1995-05-30 Wm. Wrigley Jr. Company Continuous gum base manufacture using paddle mixing
US5543160A (en) 1994-09-13 1996-08-06 Wm. Wrigley Jr. Company Total chewing gum manufacture using high efficiency continuous mixing
US5916606A (en) 1993-09-30 1999-06-29 Wm. Wrigley Jr. Company Chewing gum compositions containing erythritol and a moisture binding agent
US5494685A (en) 1994-05-17 1996-02-27 Wm. Wrigley Jr. Company Chewing gum with a rolling compound containing erythritol
DE4342568A1 (en) 1993-12-14 1994-06-01 Paul Ralf Peter Chewing gum contg. caffeine - used as substitute for coffee, tea, cola, etc. and to control fatigue and migraine
US5580590A (en) 1993-12-27 1996-12-03 The Wm. Wrigley Jr. Company Environmentally friendly chewing gum compositions containing elastic protein-based polymers and method of making it
JPH07184548A (en) 1993-12-28 1995-07-25 Meiji Seito Kk Component for oral cavity
US5585110A (en) 1994-03-28 1996-12-17 Kalili; Tom Chewing gum composition with fluoride and citric acid
WO1996037182A1 (en) 1995-05-26 1996-11-28 Tom Kalili Chewing gum with fluoride and citric acid
US5834002A (en) 1994-05-02 1998-11-10 Josman Laboratories, Inc. Chewing gum containing colloidal bismuth subcitrate
DE4415999A1 (en) 1994-05-06 1995-11-09 Bolder Arzneimittel Gmbh Gastric acid-binding chewing pastilles
US5536511A (en) 1994-05-06 1996-07-16 Wm. Wrigley Jr. Company Chewing gum pellet coated with a hard coating containing erythritol and xylitol
FR2719999B1 (en) 1994-05-17 1996-08-02 Georges Serge Grimberg Pharmaceutical composition based on guar gum and a neutralizing antacid, to which can be added a series of therapeutic active ingredients.
EP0685164A1 (en) 1994-06-03 1995-12-06 Asama Chemical Co., Ltd. Food quality improver
KR960006319B1 (en) 1994-06-30 1996-05-13 이승우 Chewing gum with pilocarpine
US5582855A (en) 1994-07-01 1996-12-10 Fuisz Technologies Ltd. Flash flow formed solloid delivery systems
IT1274034B (en) 1994-07-26 1997-07-14 Applied Pharma Res PHARMACEUTICAL COMPOSITIONS BASED ON RUBBER TO BE CHEWED AND PROCEDURE FOR THEIR PREPARATION
US5554380A (en) 1994-08-04 1996-09-10 Kv Pharmaceutical Company Bioadhesive pharmaceutical delivery system
US5456677A (en) 1994-08-22 1995-10-10 Spector; John E. Method for oral spray administration of caffeine
US5576344A (en) 1994-08-30 1996-11-19 American Home Products Corporation Process for reducing the adverse taste and malodor associated with H2 -antagonists
JPH10502541A (en) 1994-09-13 1998-03-10 ダブリューエム リグリー ジュニア カンパニー Gum base continuous production method
WO1996015768A1 (en) 1994-11-18 1996-05-30 The Procter & Gamble Company Oral compositions
US5744164A (en) 1994-12-16 1998-04-28 Nestec S.A. Sustained release microparticulate caffeine formulation
US5601858A (en) 1994-12-29 1997-02-11 Warner-Lambert Company Non-stick chewing gum
US5534272A (en) 1995-01-03 1996-07-09 Bernstein Brothers Marketing Corp. Appetite suppressant chewing gum containing chromic picolinate
IL139728A (en) 1995-01-09 2003-06-24 Penwest Pharmaceuticals Compan Aqueous slurry composition containing microcrystalline cellulose for preparing a pharmaceutical excipient
FR2729967A1 (en) 1995-01-30 1996-08-02 Oreal COMPOSITIONS BASED ON AN ABRASIVE SYSTEM AND A SURFACE-ACTIVE SYSTEM
US5569477A (en) 1995-04-28 1996-10-29 Mccready Consumer Products, Inc. Chewing gum containing vitamins or other active materials
US5854267A (en) 1995-06-02 1998-12-29 Merck & Co., Inc. Method for preventing heartburn
US5716928A (en) 1995-06-07 1998-02-10 Avmax, Inc. Use of essential oils to increase bioavailability of oral pharmaceutical compounds
US5665386A (en) 1995-06-07 1997-09-09 Avmax, Inc. Use of essential oils to increase bioavailability of oral pharmaceutical compounds
US5607697A (en) 1995-06-07 1997-03-04 Cima Labs, Incorporated Taste masking microparticles for oral dosage forms
US5645853A (en) 1995-08-08 1997-07-08 Enamelon Inc. Chewing gum compositions and the use thereof for remineralization of lesions in teeth
DE19529862A1 (en) 1995-08-14 1997-02-20 Rhone Poulenc Rorer Gmbh Pharmaceutical preparation for oral use
US5618517A (en) 1995-10-03 1997-04-08 Church & Dwight Co., Inc. Chewing gum product with dental care benefits
US5702687A (en) 1995-10-03 1997-12-30 Church & Dwight Co., Inc. Chewing gum product with plaque-inhibiting benefits
US5693334A (en) 1995-10-05 1997-12-02 Church & Dwight Co., Inc. Chewing gum product with dental health benefits
EP0784933A3 (en) 1995-10-16 1997-11-26 Leaf, Inc. Extended release of additives in comestible products
EP0867191A4 (en) 1995-11-27 2000-01-05 Yamanouchi Pharma Co Ltd Drug composition
US6066342A (en) 1995-12-22 2000-05-23 Tamer International, Ltd. Antacid composition
US5889028A (en) 1996-02-09 1999-03-30 Mayo Foundation For Medical Education And Research Colonic delivery of nicotine to treat inflammatory bowel disease
US5736175A (en) 1996-02-28 1998-04-07 Nabisco Technology Co. Chewing gums containing plaque disrupting ingredients and method for preparing it
US5912007A (en) 1996-02-29 1999-06-15 Warner-Lambert Company Delivery system for the localized administration of medicaments to the upper respiratory tract and methods for preparing and using same
US5846557A (en) 1996-03-20 1998-12-08 Cumberland Packing Corporation Chewing gum containing cough suppressing agent
US5866179A (en) 1996-05-03 1999-02-02 Avant-Garde Technologies & Products S.A. Medicated chewing gum and a process for preparation thereof
US5776956A (en) 1996-07-30 1998-07-07 Lectec Corporation Use of cotinine in treating psychiatric disorders
US5877173A (en) 1996-08-28 1999-03-02 Washington University Preventing neuronal degeneration in Alzheimer's disease
US5989588A (en) 1996-10-04 1999-11-23 Merck & Co., Inc. Methods and compositions for preventing and treating heartburn
US5882702A (en) 1996-10-07 1999-03-16 Warner-Lambert Company Process for the formation of plasticized proteinaceous materials and compositions containing the same
US5897891A (en) 1996-11-18 1999-04-27 Godfrey; John C. Flavorful zinc compositions for oral use incorporating copper
US6165516A (en) 1996-11-27 2000-12-26 Wm. Wrigley Jr. Company Method of controlling release of caffeine in chewing gum
US5980955A (en) 1996-12-30 1999-11-09 Wm. Wrigley Jr. Company Coated chewing gum product and method of making
US5753255A (en) 1997-02-11 1998-05-19 Chavkin; Leonard Chewable molded tablet containing medicinally active substances
US5958472A (en) 1997-02-26 1999-09-28 Warner-Lambert Company Crunchy chewing gum and process for making
US5824291A (en) 1997-06-30 1998-10-20 Media Group Chewing gum containing a teeth whitening agent
US5958380A (en) 1997-07-07 1999-09-28 Enamelon, Inc. Chewing gum products and the use thereof for remineralizing subsurface dental lesions and for mineralizing exposed dentinal tubules
US5858383A (en) 1997-08-11 1999-01-12 Summers Laboratories, Inc. Methods and compositions for topical treatment of ectoparasites
US5900230A (en) 1997-08-18 1999-05-04 Squigle, Inc. Dental products to treat and prevent periodontal disease
US6221402B1 (en) 1997-11-20 2001-04-24 Pfizer Inc. Rapidly releasing and taste-masking pharmaceutical dosage form
US5922346A (en) 1997-12-01 1999-07-13 Thione International, Inc. Antioxidant preparation
US5928664A (en) 1998-02-11 1999-07-27 Fuisz Technologies Ltd. Consumable gummy delivery system
US6200604B1 (en) 1998-03-27 2001-03-13 Cima Labs Inc. Sublingual buccal effervescent
US6024988A (en) 1998-06-01 2000-02-15 Wm. Wrigley Jr. Company Caffeine chewing gum
US6531114B1 (en) 1999-04-06 2003-03-11 Wm. Wrigley Jr. Company Sildenafil citrate chewing gum formulations and methods of using the same
US6303159B2 (en) 1998-12-30 2001-10-16 Wm Wrigley Jr. Company Comestible coating process applying powder and suspension syrup
US6322806B1 (en) 1999-04-06 2001-11-27 Wm. Wrigley Jr. Company Over-coated chewing gum formulations including tableted center
US6355265B1 (en) 1999-04-06 2002-03-12 Wm. Wrigley Jr. Company Over-coated chewing gum formulations
US6350480B1 (en) 1999-12-30 2002-02-26 Wm. Wrigley Jr. Company Chewing gum product including a hydrophilic gum base and method of producing
US20020022057A1 (en) 2000-08-17 2002-02-21 Battey Alyce S. Oral delivery of pharmaceuticals via encapsulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452821A (en) * 1981-12-18 1984-06-05 Gerhard Gergely Confectionery product, particularly chewing gum, and process for its manufacture
US4867989A (en) * 1986-09-09 1989-09-19 Warner-Lambert Company Chewing gum mineral supplement
US4822597A (en) * 1987-07-13 1989-04-18 Warner-Lambert Company Anesthetic-containing chewing gum compositions
US5229137A (en) * 1992-05-06 1993-07-20 Brigham And Women's Hospital, Inc. Methods and pharmaceutical compositions for treating episodic heartburn
US5629035A (en) * 1995-12-18 1997-05-13 Church & Dwight Co., Inc. Chewing gum product with encapsulated bicarbonate and flavorant ingredients
WO2000035296A1 (en) * 1996-11-27 2000-06-22 Wm. Wrigley Jr. Company Improved release of medicament active agents from a chewing gum coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1733627A3 (en) * 2005-06-14 2007-01-10 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Method for providing coated product
US7754254B2 (en) 2005-06-14 2010-07-13 Ueno Fine Chemicals Industry, Ltd. Method for providing coated product
EP4256969A3 (en) * 2017-08-18 2024-03-06 Perfetti Van Melle Benelux B.V. Chewing gum compositions and methods of making thereof

Also Published As

Publication number Publication date
US6579545B2 (en) 2003-06-17
US20020119216A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
US6541048B2 (en) Coated chewing gum products containing an acid blocker and process of preparing
US6645535B2 (en) Method of making coated chewing gum products containing various antacids
US6572900B1 (en) Method for making coated chewing gum products including a high-intensity sweetener
US6949264B1 (en) Nutraceuticals or nutritional supplements and method of making
US6350480B1 (en) Chewing gum product including a hydrophilic gum base and method of producing
US6569472B1 (en) Coated chewing gum products containing antacid and method of making
AU719781B2 (en) Chewing gum composition containing sodium glycinate
US6444241B1 (en) Caffeine coated chewing gum product and process of making
WO2000035298A1 (en) Chewing gum containing medicament active agents
US6579545B2 (en) Coated chewing gum products containing an antigas agent
CA2394290C (en) Release of lipophilic active agents from chewing gum
AU2004257730B2 (en) Method of forming a sugarless coating on chewing gum
US7115288B2 (en) Method for making coated chewing gum products with a coating including an aldehyde flavor and a dipeptide sweetener
US6663849B1 (en) Antacid chewing gum products coated with high viscosity materials
EP1221863A1 (en) Chewing gum containing medicament active agents

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP