WO2002073221A2 - Messwert-erfassungs- und -verarbeitungseinheit für kleine messsignale - Google Patents

Messwert-erfassungs- und -verarbeitungseinheit für kleine messsignale Download PDF

Info

Publication number
WO2002073221A2
WO2002073221A2 PCT/DE2002/000808 DE0200808W WO02073221A2 WO 2002073221 A2 WO2002073221 A2 WO 2002073221A2 DE 0200808 W DE0200808 W DE 0200808W WO 02073221 A2 WO02073221 A2 WO 02073221A2
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
processing unit
value acquisition
signals
measuring circuit
Prior art date
Application number
PCT/DE2002/000808
Other languages
English (en)
French (fr)
Other versions
WO2002073221A3 (de
Inventor
Siegfried Neumann
Klaus Windsheimer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP02716639A priority Critical patent/EP1368668B1/de
Priority to CA002440774A priority patent/CA2440774A1/en
Priority to DE50200668T priority patent/DE50200668D1/de
Priority to US10/471,460 priority patent/US6853180B2/en
Publication of WO2002073221A2 publication Critical patent/WO2002073221A2/de
Publication of WO2002073221A3 publication Critical patent/WO2002073221A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/002Automatic recalibration
    • G01D18/006Intermittent recalibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0046Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
    • G01R19/0053Noise discrimination; Analog sampling; Measuring transients
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the invention relates to a measurement value acquisition and processing unit for small signals, which is formed by a measuring circuit, which has at least one scanning unit, an A / D converter and digital signal processing, the scanning unit for scanning one serves measurement signal, the A / D converter is provided for digitizing the sample values and the digital signal processing is used for processing the digitized sample values which, in addition to the useful value to be recorded from the measurement signal, have interference components as a result of interference signals, for example Noise and coupling into the measuring circuit.
  • a classic example of the required precise acquisition of measurement signals is electronic motor protection, in which the motor currents serve as input variables for a thermal motor model.
  • motor protection with a high setting range of e.g. 1:10, which indicates the ratio of the minimum rated current to the maximum rated current of the motor.
  • the starting current of the motor can be ten times the nominal current, so that a dynamic range of 1: 100 is required for the analog / digital converter.
  • the invention is therefore based on the object of creating a measurement value acquisition and processing unit of the type mentioned above, which inexpensively enables a large dynamic range for the acquisition of measurement variables.
  • a measurement value acquisition and processing unit with the features according to claim 1.
  • a switching element is provided, by means of which an electrical connection of the measuring circuit to its reference potential AGND can be established, in which, without coupling a measuring signal into the measuring circuit, only any interference signals that may be present occur in the measuring circuit and are detected thereby.
  • the digital signal processing is also used for numerical compensation, in which useful values of the measurement signal, which have interference components, are compensated for with interference components recorded in a time-relevant, isolated manner.
  • this measurement value acquisition and processing unit is that the interference components which falsify the useful signal are measured in isolation in a simple manner. If both measurements take place, on the one hand the measurement for recording the utility value and on the other hand the measurement for recording the interference component takes place almost simultaneously or with a negligible small time interval ' , so the interference component in the detected utility value can be compensated for in digital signal processing.
  • the scanning unit has a multiplexer which is used for time-division scanning of three measurement signals executed by current sensors.
  • the current sensors are designed as current transformers, the measurement signals on the output side of which are at a common reference potential and if four inputs are available in the multiplexer for coupling the measurement signals and the reference potential.
  • the switching element is implemented in the multiplexer so that the short-circuit connection in the measuring circuit to the reference potential is established.
  • 1 shows an inventive measurement value acquisition and processing unit for acquiring a measurement signal
  • FIG. 2 shows a further embodiment of the measurement value acquisition and processing unit according to the invention for acquiring several measurement variables, e.g. the currents of an engine.
  • FIG. 1 shows a measurement value acquisition and processing unit 5 according to the invention.
  • This is formed by a measuring circuit which has at least one scanning unit 6, an analog / digital converter 7 and digital signal processing 8.
  • the scanning unit 6 is used to scan a time-varying measurement signal x (t) to be detected, which can be, for example, a current, a voltage or a temperature and which is supplied by a sensor 9.
  • the digital sample values are further processed in the digital signal processing 8.
  • the digital samples can contain interference components as a result of interference signals, for example noise and coupling into the measurement circuit.
  • the coupling in of the measurement signal x (t) is canceled by switching over the switching element 10, so that only any interference signals that may be present occur in the measuring circuit and are detected thereby.
  • the interference components have to be recorded in a time-relevant manner to the recorded utility values, ie with the least possible time delay.
  • the detection of all interference signals is all the more comprehensive and accurate, the closer the switching connection is to the point at which the measurement signal x (t) is coupled into the measurement value acquisition and processing unit 5, eg between the input terminals for the measurement signal x (t).
  • the digital signal processing 8 is used for numerical compensation, in which useful values of the measurement signal x (t) which have interference components are compensated for with interference components which are detected in a time-related, isolated manner.
  • FIG. 2 shows a further embodiment of a measurement value acquisition and processing unit according to the invention.
  • the three-phase current load in the phase conductors L1, L2, L3 is measured, into which current transformers 11 are connected as current sensors, the secondary winding of which is also connected is burdened with a resistor 12.
  • a voltage U ⁇ (t), u (t), u 3 (t) proportional to the respectively detected phase current istrom (t), i 2 (t), i 3 (t) is consequently present at the three resistors 12, with t the variable "time" is marked.
  • the three resistors 12 are interconnected in the common circuit point 13, which has a predetermined reference potential, here designated AGND.
  • the voltages u ⁇ (t), u 2 (t), u 3 (t) applied to the resistors 12 with respect to this reference potential AGND are fed to inputs of a measuring and processing unit 5.
  • This comprises a measuring circuit with a multiplexer in a scanning unit 6, which has inputs ei, e, e 3 , eo, an analog / digital converter 7 and digital signal processing 8.
  • the multiplexer reaches over its inputs ei, e 2 , e 3 in a predetermined multiplex order, for example 1,2,3 the voltages u ⁇ (t), u 2 (t), u 3 (t) one after the other.
  • the further input e 0 is present in the multiplexer and is optionally connected inside or outside the measurement value acquisition and processing unit 5 via an additional measurement channel with a resistor 14 to the reference potential AGND of the circuit point 13.
  • the resistor 14 corresponds to the above-mentioned resistor 12.
  • the measured value acquisition and processing unit for detecting the thermal load, e.g. an engine is based on the requirement that the thermal load
  • Current transformers 11 must be inexpensive and accordingly small. This can be achieved by current sensors 11 with correspondingly small measurement signals x (t), the height of which are in the range of interference signals, e.g. noise, overcoupling. Interference signals that are injected in the area of the current sensors 11 can be compensated for with little effort by appropriate wiring.
  • the present invention aims to compensate for the injected interference signals occurring in the measurement value acquisition and processing unit 5. It is assumed that the interference signals with which the equivalent current measurement values u ⁇ (t), u 2 (t), u 3 (t) are applied can be measured separately with a small time offset, so that the numerical compensation for the calculation of the thermal load required exact useful values can be determined excluding interference.
  • the additional input e 0 to which an additional measuring channel with the resistor 14, which is connected to the reference potential AGND, can be excluded, is used to detect the separate interference components i 0 .
  • the multiplexer, ie its switching element 10 the return line with the reference potential AGND can be connected to the measuring circuit via phase 0 with the resistor 14.
  • the connection to one of the inputs ei, e 2 , e 3 is interrupted, so that no measuring voltage u ⁇ (t), u 2 (t), u 3 (t) is coupled in, but only interference signals i 0 occur in the measuring circuit and are recorded.
  • the sampled values recorded in each of the phases 1, 2, 3, 0 are forwarded from the multiplexer 6 to the analog / digital converter 7 for digitization and finally further processed in the digital signal processing 8.
  • the digital sig- nal kau 8 is designed as a microprocessor in which. the effective values of the phase currents are calculated to determine the thermal load. In the ideal case, ie without the occurrence of interference signals in, the effective value can be determined in a conventional manner using a digital measuring system for measuring the effective value using the following equation
  • the effective value of the current according to the invention is determined as follows:

Abstract

Die erfindungsgemässe Messwert-Erfassungs- und -Verarbeitungseinheit (5) ermöglicht die Erfassung und Verarbeitung von sehr kleinen Messsignalen, die im Bereich von Störsignalen, z.B. Rauschen, Überkopplungen usw. liegen. Dies bedeutet, dass die zu erfassenden Nutzwerte üblicherweise mit Störanteilen behaftet sind. Mit der erfindungsgemässen Messwert-Erfassungs- und -Verarbeitungseinheit (5) werden diese Störanteile gesondert erfasst, indem im Bereich der Zuführung des Messsignals ein Schaltelement (10) vorgesehen wird, mit dem der Messkreis derart kurzgeschlossen wird, dass keine Einkopplung des Messsignals stattfindet, sondern dass ausschliesslich etwa vorhandene Störsignale im Messkreis auftreten und durch diesen erfasst werden. Auf diese Weise lässt sich kostengünstig ein grosser Dynamikbereich bei der Erfassung von Messgrössen erreichen.

Description

B e s ehr e ibung
Messwert-Erfassungs- und -Verarbeitungseinheit für kleine MessSignale
Die Erfindung bezieht sich auf eine Messwert-Erfassungs- und -Verarbeitungseinheit für kleine Signale, die durch einen Messkreis gebildet wird, der mindestens eine Abtasteinheit, einen A/D-Wandler und eine digitale Signalverarbeitung auf- weist, wobei die Abtasteinheit zur Abtastung eines zu erfassenden Messsignals dient, der A/D-Wandler zu Digitalisierung der Abtastwerte vorgesehen ist und die digitale Signalverarbeitung zur Verarbeitung der digitalisierten Abtastwerte dient, die neben dem zu erfassenden Nutzwert aus dem Messsig- nal Störanteile als Folge von Störsignalen, z.B. Rauschen und Einkopplungen in den Messkreis, aufweisen können.
Ein klassisches Beispiel für die erforderliche genaue Erfassung von Messsignalen ist der elektronische Motorschutz, bei dem die Motorströme als Eingangsgrößen eines thermischen Motormodells dienen. Um die Variantenzahl von Motorschutzgeräten zu minimieren, wird ein Motorschutz mit hohem Einstellbereich von z.B. 1:10 gefordert, wobei dieser das Verhältnis von minimalen Nennstrom zu maximalen Nennstrom des Motors an- gibt. Darüber hinaus muss berücksichtigt werden, dass der Anlaufstrom des Motors das Zehnfache des Nennstroms betragen kann, so dass für den Analog/Digital-Wandlers ein Dynamikbereich von 1:100 erforderlich ist.
Außerdem muss im. Betrieb über die Strommessung erfasst werden, ob der Motor ordnungsgemäß ein- oder ausgeschaltet ist. Nach praktischen Erfahrungen kann davon ausgegangen werden, dass im ausgeschalteten Zustand des Motors der gemessene Strom kleiner als 20 % des Motornennstroms ist. Dies erfor- dert eine Erhöhung des Dynamikbereichs auf 1:500. Für die Erfassung des Stroms ist neben dem Analog/Digital- Wandler außerdem ein entsprechender Stromsensor erforderlich, der denselben Dynamikbereich abdecken muss . Darüber hinaus besteht die Forderung nach einem kostengünstigen Stromsensor, was sich mit einem kleinen Stromsensor mit kleinem
Ausgangssignal erreichen lässt. Hierbei ergibt sich jedoch das Problem, dass derart kleine Ausgangssignale im Bereich von Störsignalen, z.B. Rauschen, Überkopplungen usw. liegen können, und dennoch eine Unterscheidung zwischen dem Motorstrom als eigentliches Nutzsignal und verfälschenden Störsignalen notwendig ist.
Daher liegt der Erfindung die Aufgabe zugrunde, eine Messwert-Erfassungs- und -Verarbeitungseinheit der oben genannten Art zu schaffen, die kostengünstig einen großen Dynamikbereich bei der Erfassung von Messgrößen ermöglicht.
Die Aufgabe wird mit einer Messwert-Erfassungs- und -Verarbeitungseinheit mit den Merkmalen nach Anspruch 1 gelöst. Hierbei ist ein Schaltelement vorgesehen, durch welches eine elektrische Verbindung des Messkreises mit seinem Bezugspotential AGND herstellbar ist, bei der ohne Einkopplung eines Messsignals in den Messkreis ausschließlich etwa vorhandene Störsignale im Messkreis auftreten und durch diesen erfasst werden. Die digitale Signalverarbeitung dient außerdem zur numerischen Kompensation, bei der mit Störanteilen behaftete Nutzwerte des Messsignals mit zeitrelevant isoliert erfassten Störanteilen kompensiert werden.
Der besondere Vorteil dieser erfindungsgemäßen Messwert-Erfassungs- und -Verarbeitungseinheit besteht darin, dass auf einfache Weise die das Nutzsignal verfälschenden Störanteile isoliert gemessen werden. Finden beide Messungen, d.h. einer- seits die Messung zur Erfassung des Nutzwertes und andererseits die zur Erfassung des Störanteils nahezu zeitgleich bzw. mit vernachlässigbaren kleinen Zeitabstand statt', so lässt sich der Störanteil im erfassten Nutzwert in der digitalen Signalverarbeitung kompensieren.
Zur Erfassung von Verbraucherströmen mit Drehstro anschluss, z.B. von Motorströmen, erweist es sich als besonders vorteilhaft, wenn die Abtasteinheit einen Multiplexer aufweist, der zur Abtastung im Zeitmultiplex dreier von Stromsensoren ausgeführter Messsignale dient.
Eine besonders vorteilhafte Ausführungsform besteht, wenn die Stromsensoren als Stromwandler ausgeführt sind, deren aus- gangsseitige Messsignale auf gemeinsamen Bezugspotential liegen und wenn für die Ankopplung der Messsignale und des Bezugspotentials im Multiplexer vier Eingänge zur Verfügung stehen.
Weiterhin ist es vorteilhaft, wenn im Multiplexer das Schaltelement realisiert ist, dass die Kurzschlussverbindung im Messkreis zum Bezugspotential herstellt.
Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand einer Zeichnung näher erläutert. Es zeigen:
FIG 1 eine erfindungsgemäße Messwert-Erfassungs- und -Ver- arbeitungseinheit zur Erfassung eines Messsignals und
FIG 2 eine weitere erfindungsgemäße Ausführung der Messwert-Erfassungs- und -Verarbeitungseinheit zur Erfassung mehrerer Messgrößen, z.B. den Strömen eines Motors .
FIG 1 zeigt eine erfindungsgemäße Messwert-Erfassungs- und Verarbeitungseinheit 5. Diese wird durch einen Messkreis gebildet, der mindestens eine Abtasteinheit 6, einen Analog/ Digital-Wandler 7 und eine digitale Signalverarbeitung 8 aufweist. Dabei dient die Abtasteinheit 6 zur Abtastung eines zu erfassenden sich zeitlich verändernden Messsignals x(t), das z.B. ein Strom, eine Spannung oder eine Temperatur sein kann und das von einem Sensor 9 zugeführt wird. Nach Digitalisierung der analogen Abtastwerte im Analog/Digital-Wandler 7 werden die digitalen Abtastwerte in der digitalen Signal- Verarbeitung 8 weiterverarbeitet. Die digitalen Abtastwerte können neben dem zu erfassenden Nutzwert aus dem Messsignal x(t) Störanteile als Folge von Störsignalen, z.B. Rauschen und Einkopplungen in den Messkreis enthalten. Um diese Störanteile isoliert zu erfassen, wird die Einkopplung des Messsignals x(t) durch Umschaltung des Schaltelements 10 aufgehoben, so dass im Messkreis ausschließlich etwa vorhandene Störsignale auftreten und durch diesen erfasst werden. Dabei ist zu beachten, dass die Störanteile zeitrelevant zu den erfassten Nutzwerten erfasst werden müssen, d.h. mit möglichst geringem zeitlichen Verzug. Was den Ort der KurzschlussVerbindung angeht, ist festzustellen, dass die Erfassung sämtlicher Störsignale umso umfassender und genauer ist, je näher die Schaltverbindung der Stelle liegt, an der das Messsignal x(t) in die Messwert-Erfassungs- und -Verarbeitungseinheit 5 eingekoppelt wird, z.B. zwischen den Eingangsklemmen für das Messsignal x(t) .
Die digitale Signalverarbeitung 8 dient zur numerischen Kompensation, bei der mit Störanteilen behaftete Nutzwerte des Messsignals x(t) mit zeitrelevant isoliert erfassten Störanteilen kompensiert werden.
In FIG 2 ist eine weitere Ausführungsform einer erfindungsgemäßen Messwert-Erfassungs- und -Verarbeitungseinheit darge- stellt. Hier wird zur Erfassung der thermischen Belastung eines Motors M die dreiphasige Strombelastung in den Phasenleitern Ll, L2, L3 gemessen, in die Stromwandler 11 als Stromsensoren zwischengeschaltet sind, deren Sekundärwicklung mit einem Widerstand 12 bebürdet ist. An den drei Widerständen 12 liegt folglich eine dem jeweils erfassten Phasenstrom iχ(t), i2(t), i3(t) proportionale Spannung Uι(t), u (t), u3 (t) an, wobei mit t die Variable "Zeit" gekennzeichnet ist. Die drei Widerstände 12 sind im gemeinsamen Schaltungspunkt 13 zusammengeschaltet, der ein vorbestimmtes Bezugspotential, hier mit AGND bezeichnet, aufweist. Die gegenüber diesem Bezugspotential AGND an den Widerständen 12 anliegenden Spannungen uι(t), u2(t), u3(t) werden Eingängen einer Mess- und Verarbei- tungseinheit 5 zugeführt. Diese umfasst einen Messkreis mit einem Multiplexer in einer Abtasteinheit 6, der Eingänge ei, e , e3, eo aufweist, einen Analog/Digital-Wandler 7 und eine digitale Signalverarbeitung 8. Über seine Eingänge ei, e2, e3 greift der Multiplexer in einer vorbestimmten Multiplex- Reihenfolge, z.B. 1,2,3 die Spannungen uχ(t), u2(t), u3(t) nacheinander ab. Es folgt dann die weitere Erfassung und Verarbeitung durch den Analog/Digital-Wandler 7 und die digitale Signalverarbeitung 8, wobei die gemeinsame Rückleitung des Messkreises an den Schaltungspunkt 13 mit dem Bezugspotential AGND gelegt ist. Im Multiplexer ist der weitere Eingang e0 vorhanden, der wahlweise innerhalb oder außerhalb der Messwert-Erfassungs- und -Verarbeitungseinheit 5 über einen zusätzlichen Messkanal mit einem Widerstand 14 an das Bezugspotential AGND des Schaltungspunktes 13 angebunden ist. Der Widerstand 14 entspricht dem oben genannten als Bürde dienenden Widerstand 12.
Bei der erfindungsgemäßen Messwert-Erfassungs- und -Verarbeitungseinheit zur Erfassung der thermischen Belastung z.B. eines Motors wird von der Forderung ausgegangen, dass die
Stromwandler 11 kostengünstig und dementsprechend klein sein müssen. Dies lässt sich durch Stromsensoren 11 mit entsprechend kleinen Messsignalen x(t) erreichen, die in ihrer Höhe im Bereich von Störsignalen, z.B. Rauschen, Überkopplung liegen. Dabei lassen sich Störsignale, die im Bereich der Stromsensoren 11 eingekoppelt werden, durch entsprechende Beschaltung mit geringem Aufwand kompensieren.
Die vorliegende Erfindung zielt darauf ab, die in der Messwert-Erfassungs- und -Verarbeitungseinheit 5 auftretenden eingekoppelten Störsignale zu kompensieren. Dabei wird davon ausgegangen, dass die Störsignale, mit denen die äquivalenten Strommesswerte uχ(t), u2(t), u3(t) beaufschlagt sind, sich mit kleinem zeitlichen Versatz gesondert messen lassen, so dass mit einer numerischen Kompensation die für die Berechnung der thermischen Belastung erforderlichen genauen Nutzwerte unter Ausschluss von Störanteilen ermittelt werden können.
Zur Erfassung der gesonderten Störanteile i0 dient der zusätzliche Eingang e0, an den ein zusätzlicher Messkanal mit dem Widerstand 14 ausschließbar ist, der mit dem Bezugspotential AGND verbunden ist. In der oben genannten Multiplex-Reihenfolge 1,2,3 wird eine zusätzliche Phase 0, d.h. ein zusätzlicher Messkanal eingefügt. Durch den Multiplexer, d.h. sein Schaltelement 10, ist die Rückleitung mit dem Bezugspotential AGND über die Phase 0 mit dem Widerstand 14 mit dem Messkreis verbindbar. Dabei wird zugleich die Verbindung zu einem der Eingänge ei, e2, e3 unterbrochen, so dass keine Messspannung uχ(t), u2(t), u3(t) eingekoppelt wird, sondern im Messkreis ausschließlich Störsignale i0 auftreten und erfasst werden.
Die jeweils in jeder der Phasen 1,2,3,0 erfassten Abtastwerte werden vom Multiplexer 6 an den Analog/Digital-Wandler 7 zur Digitalisierung weitergeleitet und schließlich in der digitalen SignalVerarbeitung 8 weiterverarbeitet. Die digitale Sig- nalverarbeitung 8 ist als Mikroprozessor ausgeführt, in dem. zur Ermittlung der thermischen Belastung die Effektivwerte der Phasenströme berechnet werden. Im Idealfall, d.h. ohne Auftreten von Störsignalen in lässt sich mit einem digitalen Meßsystem zur Effektivwertmessung der Effektivwert in herkömmlicher Weise nach folgender Gleichung ermitteln
Figure imgf000009_0001
Im vorliegenden Fall unter Berücksichtigung des Einflusses von Störsignalen i0 wird der Effektivwert des Stromes gemäß der Erfindung wie folgt ermittelt:
N N
LRMS1 ∑ il[n]2 Σ iθ[n]2 n=l
Definition:
IRMS Effektivwert des Stromes
IRMSI Effektivwert des Stromes in Ll i[n] digitaler Abtastwert an Ausgang des A/D-Wandlers il[n] digitaler Abtastwert an Ausgang des A/D-Wandlers bei Multiplexerstellung Ll i0[n] digitaler Abtastwert an Ausgang des A/D-Wandlers bei Multiplexerstellung über Widerstand 14 auf Analog Ground
N Anzahl der Abtastwerte für die Effektivwertberechnung

Claims

Patentansprüche
1. Messwert-Erfassungs- und -Verarbeitungseinheit (5) für kleine Signale mit folgenden Merkmalen: a) Die Messwert-Erfassungs- und -Verarbeitungseinheit (5) wird durch einen Messkreis gebildet, der mindestens eine Abtasteinheit (6), einen Analog/Digital-Wandler (7) und eine digitale SignalVerarbeitung (8) aufweist, b) die Abtasteinheit (6) dient zur Abtastung eines zu erfas- senden Messsignals (x(t) , xι(t), u (t), u3(t)), c) der Analog/Digital-Wandler (7) ist zur Digitalisierung der Abtastwerte vorgesehen, d) die digitale Signalverarbeitung (8) dient zur Verarbeitung der digitalisierten Abtastwerte, die neben dem zu erfas- senden Nutzwert aus dem Messsignal Störanteile als Folge von Störsignalen, z.B. Rauschen und Einkopplungen in den Messkreis, aufweisen können, e) mit einem Schaltelement (10) , durch welches eine elektrische Verbindung des Messkreises mit seinem Bezugspotential AGND herstellbar ist, bei der ohne
Einkopplung eines Messsignals in den Messkreis ausschließlich etwa vorhandene Störsignale im Messkreis auftreten und durch diesen erfasst werden, f) die digitale Signalverarbeitung (8) dient zur numerischen Kompensation, bei der die mit Störanteilen behafteten
Nutzwerte des Messsignals mit zeitrelevant isoliert erfassten Störanteilen kompensiert werden.
2. Messwert-Erfassungs- und -Verarbeitungseinheit nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t , dass die Abtasteinheit (6) einen Multiplexer aufweist, der zur Abtastung im Zeitmultiplex dreier von Stromsensoren (11) zugeführter Messsignale dient.
3. Messwert-Erfassungs- und -Verarbeitungseinheit nach
Anspruch 1 oder 2, dadurch gekennzeichnet , dass die Stromsensoren als Stromwandler (11) ausgeführt sind, deren ausgangsseitige Messsignale auf gemeinsamen Bezugspotential (AGND) liegen und dass für die Ankopplung der Messsignale und eines zusätzlichen Messkanals im Multiplexer vier Eingänge e0, ei, e2, e3 zur Verfügung stehen.
4. Messwert-Erfassungs- und -Verarbeitungseinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet , dass im Multiplexer das Schaltelement (10) realisiert ist, das die KurzSchlussverbindung im Messkreis zum Bezugspotential (AGND) herstellt.
PCT/DE2002/000808 2001-03-14 2002-03-06 Messwert-erfassungs- und -verarbeitungseinheit für kleine messsignale WO2002073221A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02716639A EP1368668B1 (de) 2001-03-14 2002-03-06 Messwert-erfassungs- und -verarbeitungseinheit für kleine messsignale
CA002440774A CA2440774A1 (en) 2001-03-14 2002-03-06 Measurement value detection and processing unit for small measurement signals
DE50200668T DE50200668D1 (de) 2001-03-14 2002-03-06 Messwert-erfassungs- und -verarbeitungseinheit für kleine messsignale
US10/471,460 US6853180B2 (en) 2001-03-14 2002-03-06 Measured value acquisition and processing unit for small measuring signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10112304.3 2001-03-14
DE10112304A DE10112304C1 (de) 2001-03-14 2001-03-14 Messwert-Erfassung- und -Verarbeitungseinheit für kleine Messsignale

Publications (2)

Publication Number Publication Date
WO2002073221A2 true WO2002073221A2 (de) 2002-09-19
WO2002073221A3 WO2002073221A3 (de) 2003-06-12

Family

ID=7677463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000808 WO2002073221A2 (de) 2001-03-14 2002-03-06 Messwert-erfassungs- und -verarbeitungseinheit für kleine messsignale

Country Status (5)

Country Link
US (1) US6853180B2 (de)
EP (1) EP1368668B1 (de)
CA (1) CA2440774A1 (de)
DE (2) DE10112304C1 (de)
WO (1) WO2002073221A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258965B4 (de) * 2002-12-16 2007-06-21 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Optimierung der Leistungsbilanz eines Sensors für die Bestimmung und/oder Überwachung einer physikalischen Prozessgröße eines Mediums
DE102004050566A1 (de) * 2004-10-15 2006-04-20 Robert Bosch Gmbh Vorrichtung zur energiesparenden Erfassung einer Betriebsgröße eines bewegbaren Elements
US8213141B2 (en) * 2006-01-17 2012-07-03 Broadcom Corporation Power over Ethernet electrostatic discharge protection circuit
US8309129B2 (en) * 2007-05-03 2012-11-13 Bend Research, Inc. Nanoparticles comprising a drug, ethylcellulose, and a bile salt
DE102008043326B4 (de) 2008-10-30 2018-03-15 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren und Vorrichtung zur Widerstandsmessung eines von einer chemischen und/oder physikalischen Messgröße abhängigen Widerstandselements
DE102014225769B4 (de) * 2014-12-12 2016-11-10 Ifm Electronic Gmbh Schaltung für einen Analogsensor
DE102015223636B4 (de) * 2014-12-12 2016-11-17 Ifm Electronic Gmbh Schaltung für einen Analogsensor
EP3370074B1 (de) 2016-11-02 2020-03-18 Shenzhen Goodix Technology Co., Ltd. Verfahren zur erkennung des hintergrundrauschens eines sensors und vorrichtung dafür
CN115951114B (zh) * 2023-01-17 2023-06-23 上海山源电子科技股份有限公司 一种供电监测系统中的电流信号识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163940A (en) * 1975-09-15 1979-08-07 Racal Instruments Limited Electrical measurement and noise suppression
GB1575148A (en) * 1976-07-07 1980-09-17 Heliowatt Werke Electrical energy meters
DE3700368C1 (en) * 1987-01-08 1988-06-01 Rohde & Schwarz Digital oscilloscope
US5929628A (en) * 1996-12-05 1999-07-27 Teradyne, Inc. Apparatus and method for performing amplitude calibration in an electronic circuit tester

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
YU47218B (sh) * 1989-03-07 1995-01-31 Zellweger Uster Ag. Statičko električno brojilo
DE4434318A1 (de) * 1994-09-26 1996-03-28 Forschungszentrum Juelich Gmbh Verfahren und Einrichtung zur Meßwerterfassung und -verarbeitung
DE4446775B4 (de) * 1994-12-24 2006-07-20 Miele & Cie. Kg Verfahren zur Kompensation der thermischen Offsetdrift von Sensoren
DE19533505A1 (de) * 1995-09-04 1997-03-06 Siemens Ag Verfahren zum Kompensieren des durch eine äußere Einflußgröße verursachten Fehlverhaltes von Meßeinrichtungen
DE19818315C1 (de) * 1998-04-23 1999-09-16 Siemens Ag Einrichtung zum ratiometrischen Messen von Sensorsignalen
US6392402B1 (en) * 1998-07-30 2002-05-21 Fluke Corporation High crest factor rms measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163940A (en) * 1975-09-15 1979-08-07 Racal Instruments Limited Electrical measurement and noise suppression
GB1575148A (en) * 1976-07-07 1980-09-17 Heliowatt Werke Electrical energy meters
DE3700368C1 (en) * 1987-01-08 1988-06-01 Rohde & Schwarz Digital oscilloscope
US5929628A (en) * 1996-12-05 1999-07-27 Teradyne, Inc. Apparatus and method for performing amplitude calibration in an electronic circuit tester

Also Published As

Publication number Publication date
EP1368668B1 (de) 2004-07-21
US6853180B2 (en) 2005-02-08
EP1368668A2 (de) 2003-12-10
US20040095146A1 (en) 2004-05-20
DE50200668D1 (de) 2004-08-26
CA2440774A1 (en) 2002-09-19
DE10112304C1 (de) 2002-07-18
WO2002073221A3 (de) 2003-06-12

Similar Documents

Publication Publication Date Title
EP0432386B1 (de) Anordnung zur Ermittlung von Werten elektrischer Grössen, die von Messwerten mindestens zweier elektrischer Eingangsgrössen der Anordnung ableitbar sind
EP0414052B1 (de) Anordnung zur Messung der Wicklungstemperatur von elektrischen Maschinen
CH650339A5 (de) Eigensichere, digitale pruefeinrichtung und verfahren zum betrieb der einrichtung.
DE3736303C2 (de)
DE102004014662A1 (de) Anordnung mit einer Fahrzeug-Sicherung und einem Analog/Digital-Wandler
EP1368668B1 (de) Messwert-erfassungs- und -verarbeitungseinheit für kleine messsignale
EP1664804B1 (de) Verfahren und vorrichtung zur spannungsmessung
EP0750382A2 (de) Stromerfassungsgerät zur Anbringung an einem stromdurchflossenen Leiter
EP0150814B1 (de) Digitales Impedanzrelais
DE2150180A1 (de) Vorrichtung zum Auswerten der Steigung eines Signals
DE2264064A1 (de) Distanzschutzeinrichtung
DE102019213021A1 (de) Niederspannungsleistungsschalter und Verfahren
DE69532627T2 (de) Testanordnung für ein mit amagnetischen Stromfühlern verbundenes Sicherheitsrelais
DE3928083C2 (de)
DE102006011715B4 (de) Vorrichtung und Verfahren zur Messung einer ersten Spannung und einer zweiten Spannung mit einem Differenzspannungsmesser
EP0053760A1 (de) Anordnung zur Erfassung einer oder mehrerer fehlerhafter Phasen in einem elektrischen Mehrphasensystem
DE3636367C2 (de) Verfahren und Vorrichtung zur Feststellung der Entfernung und der Richtung von Erdschlüssen in isolierten und kompensierten Starkstromnetzen
DE3329726C1 (de) Kapazitäts- und Verlustfaktor-Meßbrücke
EP0658290B1 (de) Verfahren zum gewinnen eines auslösesignals durch vergleich von strömen an den enden einer energieübertragungsstrecke
DE4437750A1 (de) Verfahren und Schaltungsanordnung zur Messung der Drehzahl eines Elektromotoros
DE3735900C2 (de)
DE69731180T2 (de) Verfahren und Gerät zur Erkennung von Kurzschlusszuständen
DE102022208345A1 (de) Genaue und effiziente Korrektur von Sensordaten
DE4111439A1 (de) Digitales schutzrelais
DD265002A1 (de) Verfahren und schaltungsanordnung zur bestimmung des gleichstromwiderstandes und der uebertemperatur von drehstrom-wicklungsanordnungen ohne eingriff in deren betriebsregime

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002716639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10471460

Country of ref document: US

Ref document number: 2440774

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2002716639

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002716639

Country of ref document: EP