WO2002080185A1 - Stage device, exposure device, and method of manufacturing device - Google Patents

Stage device, exposure device, and method of manufacturing device Download PDF

Info

Publication number
WO2002080185A1
WO2002080185A1 PCT/JP2002/002928 JP0202928W WO02080185A1 WO 2002080185 A1 WO2002080185 A1 WO 2002080185A1 JP 0202928 W JP0202928 W JP 0202928W WO 02080185 A1 WO02080185 A1 WO 02080185A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
wafer
movable mirror
gravity
axis direction
Prior art date
Application number
PCT/JP2002/002928
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Kondo
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2002578512A priority Critical patent/JPWO2002080185A1/en
Publication of WO2002080185A1 publication Critical patent/WO2002080185A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention relates to a stage apparatus, an exposure apparatus, and a device manufacturing method. More specifically, the present invention relates to a stage apparatus including a stage that holds and moves an object, and a driving apparatus that drives the stage, and the stage apparatus. The present invention relates to an exposure apparatus and a device manufacturing method using the exposure apparatus. Background art
  • a reticle a pattern formed on a mask or a reticle (hereinafter collectively referred to as a “reticle”) to a plurality of shot areas on a substrate such as a wafer.
  • a stage device having a stage that moves one-dimensionally or two-dimensionally is used.
  • a stage apparatus In such a stage apparatus, a high positioning performance of the stage is required to realize high-precision exposure, and a high acceleration and a high position controllability during high-speed movement are required to improve a throughput of the exposure operation. ing. Accordingly, in recent years, it has been necessary to control the position of the wafer reticle at a higher speed and with higher accuracy without being affected by the accuracy of the mechanical guide surface, and to extend the life by avoiding mechanical friction.
  • a stage device for driving a stage for holding a wafer or the like in a non-contact manner As a driving source of such a stage device, a linear motor adopting an electromagnetic driving method is mainly used.
  • a mover of a linear motor is arranged below a table on which a substrate is placed, and a linear guide is provided between the mover and a stator (linear guide).
  • the stage is driven by the Lorentz force generated by the electromagnetic interaction along the stator and along the guide surface formed on the upper surface of the stage base (platen).
  • the stage drive method for example, the drive control method of a linear motor
  • the improvement of the flatness of the guide surface which serves as the stage movement reference, etc.
  • stage vibration generated when the stage is driven by the linear motor are considered. It is becoming a level that cannot be ignored.
  • a first object of the present invention is to provide a stage device capable of improving the position controllability of a stage.
  • a second object of the present invention is to provide an exposure apparatus capable of realizing highly accurate exposure.
  • a third object of the present invention is to improve the productivity of highly integrated devices. To provide a device manufacturing method. Disclosure of the invention
  • a stage on which an object is placed and a driving device for driving the stage in at least a predetermined one axis direction.
  • the drive shaft J does not mean a physical drive shaft such as a feed screw drive system, but is a point of action of a thrust applied to the stage by the drive device when driving the stage. (If there is more than one point of action, the virtual point of action is the sum of the points of action) and a virtual axis defined by the direction of the thrust. (Including when they match).
  • the position of the center of gravity of the stage on which the object is placed is set on the drive shaft when the stage is driven by the drive device in at least one predetermined axial direction. That is, when the stage is driven in the predetermined one-axis direction, the point of action of the thrust coincides with the position of the center of gravity of the stage.
  • the driving device moves the stage within the moving plane to the predetermined position.
  • the driving device various types such as a combination of a feed screw and a rotary motor and a flat motor can be considered.
  • the driving device is a linear motor. It can be.
  • the stage includes a table that holds the object, and a stage body that supports the table.
  • the setting of the position of the center of gravity on the drive shaft is as follows: The adjustment may be performed by adjusting the position of the center of gravity of the stage body.
  • the apparatus may further include a weight member for adjusting the position of the center of gravity attached to the stage body.
  • the adjustment of the position of the center of gravity of the stage main body is performed by adjusting the position of the stage main body. It can be realized by using a high-density member as the member of the part.
  • the stage further includes a hydrostatic bearing that levitates and supports the stage body and the table via a predetermined clearance with respect to a guide surface serving as a movement reference of the stage. It may be a bottom member provided with the gas static pressure bearing.
  • a recess having a predetermined depth may be formed on the bottom surface of the bottom member.
  • the stage when the position of the stage is measured by an interferometer, the stage is fixed to the stage at at least two points in a state where a gap is formed between the stage and the stage.
  • a moving mirror for the interferometer may be further provided.
  • a stage on which an object is placed and which is levitated and supported via a predetermined clearance with respect to a guide surface serving as a movement reference; Along at least one specified axis.
  • a second stage device comprising: a driving device; and a concave portion having a predetermined depth is formed on a bottom surface of a bottom member constituting the stage.
  • a concave portion having a predetermined depth is formed on the bottom surface of the bottom member constituting the stage on which the object is placed. That is, the recessed portion with respect to the guide surface, which is the stage movement reference, has more clearance than other portions of the bottom surface member. For this reason, for example, when the stage is driven by the driving device in the predetermined one axis direction, and the stage vibrates due to the driving, the stage is moved between the concave portion of the stage and the guide surface.
  • the existing gas dampens the stage's mainly gravitational vibration.
  • gas for example, air
  • the gas acts as a kind of damper, damping the vibration of the stage mainly in the direction of gravity. Therefore, the position controllability of the stage can be improved by the attenuation of the stage vibration.
  • the interferometer when the position of the stage is measured by an interferometer, the interferometer is fixed to the stage at at least two points with a gap formed between the stage and the stage. May be further provided.
  • at least two contact portions that come into contact with the stage and a non-contact portion that does not come into contact with the stage are provided at a portion of the movable mirror that faces the stage. can do.
  • the contact portion may be a protrusion provided on the stage facing surface of the movable mirror.
  • the movable mirror may be screwed to the stage at the contact portion, and a portion around a screwing position of the mirror may have lower rigidity than other portions. .
  • the position of the center of gravity of the stage may be set on a drive shaft of the stage.
  • a movable mirror for the interferometer fixed to a stage.
  • the movable mirror for the interferometer that measures the position of the stage is fixed to the stage at at least two points with a gap formed between the stage and the stage. Therefore, for example, when the stage vibrates when the stage is driven and the vibration is transmitted to the moving mirror, the vibration of the moving mirror is attenuated by gas (for example, air) existing between the moving mirror and the stage. Is done. That is, when the gas moves in the gap or tries to escape from the gap due to the vibration of the moving mirror, the gas functions as a damper of the kind due to its viscosity to attenuate the vibration of the moving mirror. Therefore, the position of the stage is measured by the interferometer via the movable mirror whose vibration is attenuated, so that highly accurate position measurement of the stage and, consequently, highly accurate position control can be performed.
  • gas for example, air
  • At least two contact portions that come into contact with the stage and a non-contact portion that does not come into contact with the stage are set in a portion of the movable mirror facing the stage.
  • the contact portion may be a protrusion provided on the stage facing surface of the movable mirror.
  • the movable mirror may be screwed to the stage at the contact portion, and a portion around a screwing position of the mirror may have lower rigidity than other portions. .
  • the position of the center of gravity of the stage may be set on a drive shaft of the stage.
  • an exposure apparatus for transferring a pattern formed on a first object onto a second object, wherein the exposure apparatus includes any one of the first to third stage apparatuses of the present invention.
  • a driving device for at least one of the first object and the second object It is an exposure apparatus provided.
  • the stage device having high position controllability is provided as at least one of the first object and the second object as a driving device, so that the alignment accuracy of the first object and the second object and the second device can be improved. It is possible to improve the overlay accuracy of the pattern on the object. That is, it is possible to improve the exposure accuracy.
  • the pattern of the first object is transferred onto the second object using the exposure apparatus of the present invention, whereby a pattern can be formed on the second object with high accuracy.
  • a highly integrated microdevice can be manufactured with good yield. Therefore, from still another viewpoint of the present invention, it can be said that this is a device manufacturing method using the exposure apparatus of the present invention.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to one embodiment of the present invention.
  • FIG. 2A is a perspective view of the wafer stage as viewed obliquely from above
  • FIG. 2B is a perspective view of the wafer stage as viewed obliquely from below.
  • FIG. 3 is a diagram for explaining a method of adjusting the position of the center of gravity of the wafer stage.
  • 4A is an enlarged perspective view showing the movable mirror
  • FIG. 4B is an enlarged view showing the vicinity of a screw portion formed on the movable mirror
  • FIG. FIG. 2 is a sectional view taken along line A-A of FIG.
  • FIG. 5 is a flowchart for explaining the device manufacturing method of the present invention.
  • FIG. 6 is a flowchart showing a detailed example of step 2 16 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic configuration of an exposure apparatus 10 according to one embodiment.
  • the exposure apparatus 10 is a step-and-scan projection exposure apparatus.
  • This The exposure apparatus 10 includes an illumination system IOP, a reticle stage RST holding a reticle R as a mask (object, first object), a projection optical system PL, and a wafer W as substrate (object, second object).
  • the apparatus includes a wafer stage device 50 as a stage device constituting the device, and a control system for controlling these devices.
  • the illumination system IOP is disclosed, for example, in Japanese Patent Application Laid-Open No.
  • a light source As disclosed in US Pat. No. 3,497,701 and corresponding US Pat. No. 5,534,970, etc., a light source, an illuminance uniforming optical system including an optical integrator, and a relay It includes a lens, a variable ND filter, a variable field stop (also called a reticle blind or a masking blade), and a dichroic mirror (all not shown).
  • a fly-eye lens, an internal reflection type integrator (such as a rod integrator), or a diffractive optical element is used as the optical integrator.
  • a slit-shaped illumination area (a rectangular illumination area elongated in the Y-axis direction) defined by a reticle blind on a reticle R on which a circuit pattern and the like are drawn is an illumination light as an energy beam. Illuminate with almost uniform illuminance.
  • the illumination light I is K r F excimer laser light (wavelength 2
  • a r F excimer laser beam (wavelength 1 9 3 nm)
  • F 2 laser beam (wavelength 1 5 7 nm)
  • ultraviolet emission lines g-rays, ⁇ -rays, etc.
  • a reticle R is fixed, for example, by vacuum suction.
  • the reticle stage RS ⁇ can be minutely driven by the reticle stage drive unit 22 in an XY plane perpendicular to the optical axis of the illumination system ⁇ ⁇ ⁇ (coincident with the optical axis AX of the projection optical system PL described later).
  • Predetermined scanning direction here, (The X-axis direction, which is the horizontal direction in the paper plane in Fig. 1).
  • the reticle stage drive unit 22 is a mechanism using a linear motor, a voice coil motor or the like as a drive source, but is shown as a simple block in FIG. 1 for convenience of illustration.
  • reticle interferometer reticle laser interferometer
  • a moving mirror having a reflecting surface orthogonal to the Y-axis direction and a moving mirror having a reflecting surface orthogonal to the X-axis direction are provided on the reticle stage RST.
  • a reticle Y interferometer and a reticle X interferometer are provided, and these are typically shown in FIG. 1 as a movable mirror 15 and a reticle interferometer 16, respectively.
  • the end surface of reticle page RST may be mirror-finished to form a reflection surface (corresponding to the reflection surface of movable mirror 15).
  • at least one corner cube mirror may be used in place of the reflecting surface extending in the Y-axis direction used for detecting the position of the reticle stage RST in the scanning direction (the X-axis direction in the present embodiment).
  • at least one of the reticle X interferometer and the reticle X interferometer for example, the reticle X interferometer is a two-axis interferometer having two measurement axes, and the reticle is based on the measurement value of the reticle X interferometer.
  • the rotation amount (jowing amount) in the 0 Z direction (the rotation direction around the Z axis) can be measured.
  • the position information of the reticle stage RST from the reticle interferometer 16 (including the rotation information such as the jogging amount) is supplied to the main controller 20.
  • Main controller 20 drives and controls reticle stage RST via reticle stage drive section 22 based on the position information of reticle stage RST.
  • the projection optical system P is disposed below the reticle stage RST in FIG. 1, and the direction of the optical axis AX is the Z-axis direction.
  • the projection optical system PL for example, both sides are telecentric and a predetermined reduction magnification (for example, 15 or 1 Z 4) Is used. Therefore, when the illumination area IL of the reticle R is illuminated by the illumination light IL from the illumination system IOP, a reduced image (partially inverted image) of the illumination area portion of the circuit pattern of the reticle R is transmitted through the projection optical system PL. The light is projected onto a projection area in the field of view of the projection optical system conjugate to the illumination area on the wafer W, and is transferred to a resist layer on the surface of the wafer W.
  • the wafer stage device 50 includes a stage base 40 supported substantially horizontally at three or four points on a floor surface (or a base plate, a frame caster, or the like) F through a vibration isolation unit 26.
  • a wafer stage WS is provided as a stage disposed above the stage base 40, and a wafer stage drive section 24 is provided as a drive device for the wafer stage WST.
  • Each of the vibration isolation units 26 insulates minute vibration transmitted from the floor surface F to the stage base 40 at a micro G level.
  • These anti-vibration units 26 are so-called active devices that actively suppress the vibration of the stage base 40 based on the output of a vibration sensor such as a semiconductor accelerometer fixed to a predetermined portion of the stage base 40. It is of course possible to use a vibration isolator.
  • the surface (upper surface) on the + Z side of the stage base 40 is processed so as to have a very high degree of flatness, and is used as a guide surface 40a which is a movement reference surface of the wafer stage WST. ing.
  • the wafer stage WST is driven by a wafer stage drive unit 24 below the projection optical system PL in FIG. 1, and holds the wafer W and moves two-dimensionally along the guide surface 40a in the XY direction. It has become.
  • the wafer stage WST includes a wafer table WT serving as a table for holding the wafer W, and a wafer Z supporting the wafer table WTB from below via a tilt drive mechanism (not shown) including a voice coil motor and the like. And a stage body 30.
  • the wafer W is placed on the upper surface of the wafer table WTB via the wafer holder 25. Is held by vacuum suction (or electrostatic suction).
  • the z-tilt drive mechanism moves the wafer table WTB on the wafer stage main body 30 in three degrees of freedom directions of Z, ⁇ X (rotation direction around the X axis) and ⁇ y (rotation direction around the Y axis). It is driven minutely and is also called a Z tilt stage.
  • a movable mirror 21 for reflecting a laser beam from a wafer laser interferometer (hereinafter, referred to as a “wafer interferometer”) 23 as an interferometer is fixed to a side surface of the wafer table WTB, and a wafer interference interferometer disposed outside is fixed. From the total 23, the positions of the wafer table WTB in the X direction, the Y direction, and the 0z direction (the rotation direction around the Z axis) are constantly detected with a resolution of, for example, about 0.5 to 1 nm.
  • the wafer table WT B is actually provided with a movable mirror 21 X having a reflecting surface orthogonal to the X-axis direction at the end in the + X direction, as shown in FIG. 2A.
  • a movable mirror 21Y having a reflecting surface orthogonal to the Y-axis direction is provided at one end in the Y-direction.
  • the wafer interferometer also irradiates laser beams to the moving mirrors 21 X and 21 Y, respectively, and measures the X-axis and Y-axis positions of the wafer table WTB, respectively. And a Y-axis interferometer.
  • a plurality of X-axis and Y-axis interferometers are provided, respectively, or the X-axis and Y-axis interferometers are composed of multi-axis interferometers having a plurality of measurement axes.
  • rotation rotation of the T axis (rotation of the z axis, 0 z rotation), pitching (rotation of the X axis, rotation of 0 x), rolling (rotation of the rotation of the y axis, 0 y rotation)
  • rotation rotation of the T axis (rotation of the z axis, 0 z rotation)
  • pitching rotation of the X axis, rotation of 0 x
  • rolling rotation of the rotation of the y axis, 0 y rotation
  • a plurality of wafer interferometers and a plurality of moving mirrors are provided, respectively.
  • these are representatively shown as a moving mirror 21 and a wafer interferometer 23.
  • an end surface of the wafer table WTB may be mirror-finished to form a reflection surface (corresponding to the reflection surfaces of the moving mirrors 21X and 21Y).
  • the specific configuration of the movable mirrors 21X and 21Y will be described later in further detail.
  • the aforementioned multi-axis interferometer is projected through a reflective surface installed on the wafer table WTB at an angle of 45 °.
  • a laser beam may be applied to the reflection surface installed on the pedestal (not shown) on which the optical system PL is mounted, and the relative position information in the optical axis direction (Z-axis direction) of the projection optical system PL may be detected. good.
  • the position information (or speed information) of the wafer table WTB measured by the wafer interferometer 23 is sent to the main controller 20.
  • the main controller 20 performs the wafer stage based on the position information (or speed information).
  • the wafer stage WS is connected via the linear motors 36 X, 36 Y i, 36 Y 2 constituting the drive unit 24 (the configuration of the wafer stage drive unit 24 including these linear motors will be further described later). Control the position of ⁇ in the X ⁇ plane.
  • the wafer stage main body 30 has a rectangular plate-shaped bottom member 4 that is disposed to face the guide surface 40 a on the upper surface of the stage base 40. 6, a pair of support members 42A, 42B fixed to both ends of the upper surface of the bottom member 46 in the Y-axis direction, respectively, and a bottom surface formed by these support members 42A, 42B. A top plate 48 and the like are supported in parallel on the upper surface of the member.
  • the top plate 48 is formed of a rectangular plate-like member, and a wafer table WT is placed above the top plate 48 via a Z-tilt drive mechanism (not shown) including a voice coil motor and the like. Further, a mover 32X constituting a later-described X-axis linear motor 36X is fixed to a lower surface of the top plate 48. This will be described later.
  • the bottom member 46 is formed of a flat plate member slightly smaller than the top plate 48, and as shown in FIG. 2B, the center of the bottom surface in the Y-axis direction has a depth number tm (for example, 7 A band-shaped recess 46a having a predetermined width of about m) is formed along the X-axis direction.
  • gas static pressure bearings 102 have an outlet 102 a for discharging a pressurized gas (in this case, an inert gas such as helium or nitrogen) into the center thereof, and Shape around the spout 1 0 2 a And a groove 102b communicating with a vacuum suction path (not shown).
  • a pressurized gas in this case, an inert gas such as helium or nitrogen
  • a r F excimer one laser light is used in the light flux of the wavelength range, called Wavelength 2 0 0 nm ⁇ 1 5 0 nm vacuum ultraviolet belonging to the band, such as the F 2 laser beam as the exposure light
  • the absorption by oxygen and organic substances is extremely large, so these gases in the space on the optical path through which the exposure light passes
  • the gas in the space on the optical path should be reduced to an inert gas such as nitrogen or helium (hereinafter, not only helium but also nitrogen). (Collectively referred to as active gas).
  • the illumination system IOP and the projection optical system PL not only the illumination system IOP and the projection optical system PL, but also the first space in which the reticle R is arranged between the illumination system IOP and the projection optical system PL, and the projection optical system PL and the wafer Purging (or simply blowing of inert gas) is also performed in the second space between the two.
  • the pressurized gas for example, of the space through which the exposure light I passes, at least the same type as the inert gas supplied to the second space or a different inert gas different in type is used. I have to do that.
  • the pressurized gas is used.
  • air from which impurities such as organic substances have been removed by a chemical filter, or chemically clean dry air can be used.
  • the air or dry air described above is used unless at least the second space in the space through which the exposure light IL passes is supplied with an inert gas. It may be used as a pressurized gas. That is, when at least the inert gas is not supplied to the second space, any gas can be used as the pressurized gas. Conversely, when the inert gas is supplied, the pressurized gas is used. It is preferable to use an inert gas.
  • the static pressure between the bearing surface of the pressurized gas ejected from the bearing surface of the four gas static pressure bearings 102 toward the guide surface 40a and the guide surface 40a is described. Due to the balance between the pressure (so-called gap pressure), the weight of the entire wafer stage WST, and the vacuum preload, the wafer stage WST is positioned several times above the guide surface 40a, which is the upper surface of the stage base 40. It is supported without contact through a clearance of about / m.
  • the wafer stage drive unit 24 includes an X-axis linear motor 36 X for driving the wafer stage WST in the X-axis direction, which is the scanning direction, and an X-axis linear motor for the wafer stage WST.
  • 3 comprises 6 X and the pair of the Y axis linear motor 3 6 ⁇ 3 6 Y 2 for driving the Y-axis direction, which is the integral non-scanning direction.
  • the Y-axis linear motor 36 is connected to a Y-axis linear guide 34 Yi as a stator extending in the Y-axis direction on the floor F at one X side of the stage base 40. And a Y mover 32 moving along the Y-axis linear guide 34 Yi. Armature coils (not shown) are arranged at predetermined intervals along the Y-axis direction inside the Y-axis linear guide 34.
  • the ⁇ movable element 32 2 ⁇ ⁇ has an inverted U-shaped cross section, and a plurality of field magnets (not shown) are arranged at predetermined intervals on a pair of inner opposed surfaces along the ⁇ axis direction. ing.
  • the ⁇ -axis linear motor 36 Y i is a moving magnet type electromagnetic motor driven linear motor. Therefore, Y In the axis linear motor 36 Yi, the Y mover 32 Yi is driven in the Y-axis direction by electromagnetic interaction between the Y axis linear guide 34 ⁇ ⁇ and the Y mover 32 Yi. Generates driving force (Lorentz force).
  • the other ⁇ -axis linear motor 36 Y 2 has the same configuration as the ⁇ -axis linear motor 36. That, Y-axis linear motors 3 6 Y 2, the stage base 4 at 0 on the + X side on the floor surface F and Y Y-axis extending in the axial direction Riniagai de 3 4 Y 2, the ⁇ axis Riniagai de 3 4 Upsilon 2 moves along the Upsilon and a mover 3 2 ⁇ 2.
  • the X-axis linear motor 36X includes an X-axis linear guide 34X as a stator having the X-axis direction as a longitudinal direction, and an X-axis moving along the X-axis linear guide 34X.
  • a mover 3 2 X is provided.
  • One end of the X-axis linear guide 34 X in the longitudinal direction is fixed with the one movable element 32 Yi, and the other end is fixed with the other Y movable element 32 Y 2.
  • the X-axis linear guide 34X includes a stator yoke extending in the X-axis direction, and a plurality of armature coils disposed therein at predetermined intervals along the X-axis direction.
  • the X mover 32 X is a movable section extending in the X-axis direction in a rectangular frame shape in cross section fixed to the lower surface of the top plate 48 constituting the wafer stage main body 30 described above.
  • a plurality of field magnets 54 N and 54 S alternately arranged at predetermined intervals along the X-axis direction on the upper and lower opposing surfaces on the inner surface side of the mover yoke 52. I have.
  • an alternating magnetic field is formed in the inner space of the mover yoke 52 along the X-axis direction.
  • the X-axis linear motor 36 X in FIG. 1 is configured with the X-axis linear guide 34 X inserted into the inner space of the mover yoke 52 of the X mover 3 2 X.
  • the X-axis linear motor 36 X is a moving magnet type linear motor driven by electromagnetic force.
  • both ends of the X-axis linear guide 34 X are Y movers 32 ⁇ ,
  • Upsilon shaft linear motor 3 6 Upushiron'iota 3 the 6 Y 2 generates a driving force of Upsilon axial, ⁇ E c stage WS along with X-axis linear motor 3 6 X T Are driven in the ⁇ -axis direction.
  • ⁇ driving force generated by the shaft linear motor 3 6 ⁇ 3 6 Y 2 to control the rotation around the Z-axis of the wafer stage WS T via X-axis linear motor 3 6 X It is possible.
  • a rectangular parallelepiped main member 4 having the same length as the length of the bottom member 46 in the X-axis direction is provided on the soil Y-side surface of the bottom member 46.
  • Weight member 44 Ai, 44 A 2 each centroid Gi, Gi ', as shown in FIG. 3, at the same Z location, and from the center of gravity G B of the bottom member 4 6 such that the same distance Is set.
  • the total weight of the weight member 44 44 A2 (Mi X g) is a bottom member
  • a weight group 44B composed of a plurality of block-shaped weights is placed.
  • the center of gravity G 2 of the weight group 44 B is set to be positioned on the same Z-axis and the center of gravity G B of the bottom member 4 6.
  • the mass of the contact forest group 44 B in the following description is intended to refer to the mass M 2.
  • the total mass of the main members 44 A and 44 A 2 and the main Mass M 2 of the Li group 44B is set as follows.
  • the position in the Z direction of the axis (drive shaft) on which the driving force (thrust) of the X-axis linear motor 36 X that drives the wafer stage WST in the X-axis direction is P, bottom member 46 and the weight member 44 44A 2, the center of gravity of the wafer stage WS T excluding the weight group 44 B (this mass and Ms) and G S, the distance between the center of gravity G S this and the drive shaft (5,
  • the distance between the drive shaft and the center of gravity G B of the bottom member 46 is L B
  • the distance in the height direction between the drive shaft and the center of gravity Gi is Li
  • the distance between the drive shaft and the center of gravity G 2 of the weight group 44 B is L 2 .
  • the mass MLM2 is set so as to satisfy the following equation (1).
  • the total mass IVh (weight member 44A 44 A 2 each mass (I HZZ)) of the weight member 44 eight 44 A 2 in our forest group 44B since the mass M 2 is determined, resulting in the wafer stage WS T total center-of-gravity position is set on the drive shaft in driving the wafer stage WS T in the X-axis direction.
  • the weight (weight) of each of the weight members 44 44A 2 and the weight group 44B is reduced, that is, the weight of the entire wafer stage WS T (movable part).
  • FIG. 4A shows a specific configuration of one movable mirror 21Y.
  • the movable mirror 21Y is positioned with respect to the lower surface of the wafer table WT B so as to protrude from the lower side of the one Y-side end of the wafer table WT B in the one Y direction. It is placed on a seat plate 56Y fixed by screws or the like. The upper surface of the seat plate 56Y is processed so as to satisfy a predetermined flatness.
  • the movable mirror 21Y has a substantially rectangular parallelepiped shape, and one surface 21Ym of the movable mirror 21Y is mirror-finished so that the laser from the interferometer 23 is reflected.
  • the one Y side surface 21 Ym is appropriately referred to as “mirror surface 21 YmJ”.
  • a convex portion 2 1 m protruding in the + Y direction at a position near both ends in the X-axis direction.
  • Ya, 21 Yb are formed from the upper end to the lower end of the movable mirror 21Y.
  • the convex portion 21YC21Yd is formed from the + Y end to the one Y end of the movable mirror 21Y.
  • one Y side surface of the wafer table WT B and the movable mirror 21Y are configured so that only the convex portions 21Ya and 21Yb are in contact with each other.
  • only the convex portions 21Yc and 21Yd contact the upper surface of the seat plate 56Y and the movable mirror 21Y. That is, in the movable mirror 21Y, the + Y side surfaces other than the convex portions 21Ya and 21Yb have a clearance of about several / (for example, 7 m) with respect to the wafer table WTB.
  • the lower surface portion other than 21 Yc and 21 Yd has a clearance of about several m with respect to the seat plate 56 Y.
  • the movable mirror 21Y is provided near the convex portions 21c and 21d of the mirror surface 21Ym to fix the movable mirror 21Y to the wafer table WTB. Screwed portions 21Ye and 21Yf are formed.
  • FIG. 4B shows an enlarged view of the vicinity of one of the screwed portions 21 Ye and 21 Yf of the screwed portions 21 Ye and 21 Yf as viewed from the Y direction to the + Y direction.
  • FIG. 4C shows a cross-sectional view taken along line AA in FIG. 4B with the screw 72 removed from the state in FIG. 4B.
  • the screwed portion 21 Y e is from the mirror surface 21 Ym to Y A rectangular groove 6 2 a dug down to a position slightly closer to the + Y side in the axial center, and a round hole 6 penetrating from the inner bottom surface of the rectangular groove 6 2 a to the + Y side surface. 2b and a rectangular hole 6 2c 6 2d located on the ⁇ X side of the round hole 6 2b and penetrating from the bottom surface inside the rectangular groove 6 2a to the + Y side surface. ing.
  • the other screwed portion 21Yf has the same configuration as the screwed portion 21Ye. That is, the screwed portion 21 Yf has a rectangular groove portion dug down from the mirror surface 21 Ym to the center portion in the Y-axis direction and slightly closer to the + Y side, and further + Y from the inside of the rectangular groove portion. It is formed by a round hole penetrating to the side and two rectangular holes.
  • the movable mirror 21 Y has a round hole 6 2 formed in the screwed portion 21 Ye (and 21 Yf) as typically shown by a screwed portion 21 Ye in FIG. 4C.
  • b and the wafer table WTB are screwed to the wafer table WTB by screws 72 through screw holes 80 formed on one Y side of the wafer table WTB.
  • the reason why the screwing portions 21 Ye and 21 Yf are formed as described above is that when the movable mirror 21 Y is fixed to the side surface of the wafer table WTB by the screws 72, The force acts on the periphery of the screw 72, but the periphery of the screw 72 is formed as the screwed portions 21Ye and 21Yf as described above, and is lower than the other portions. Due to the rigidity, the stress of the screw 72 causes a stress concentration in the low-rigidity part (screwed part), and the mirror surface other than the screwed part 21 Ye and 21 Yf deforms to 21 Ym. This is because almost no occurrence occurs. Therefore, the flatness of the mirror surface 21Ym can be maintained high by forming the screwed portions 21Ye and 21Yf on the movable mirror 21Y.
  • movable mirror 21 Y because, even if the vibration accompanying the driving of wafer stage WST is transmitted to movable mirror 21 Y, movable mirror 2 1
  • the gas between Y and its fixed surface moves in the gap due to vibration, Alternatively, the vibration can be attenuated by the viscosity of the gas in order to escape from the gap.
  • the other movable mirror 21X has the same configuration as the movable mirror 21Y.
  • the movable mirror 21 X is placed on a seat plate 56 X fixed near the + X end of the lower surface of the wafer table WTB, Like the movable mirror 21Y, the movable mirror 21X has two convex portions formed on the surfaces on the 1X side and the 1Z side, respectively. Then, the + X side surface of wafer table WTB and the upper surface (+ Z side surface) of seat plate 56X come into contact with each projection.
  • the movable mirror 21X is fixed to the wafer table WTB via a screw (not shown) formed from the + X side (mirror surface) of the movable mirror 21X to the rear surface thereof.
  • a few ⁇ m (for example, m m) is excluded between the movable mirror 21 X and the wafer table WTB, and between the movable mirror 21 X and the seat plate 56 X except for a convex portion. ) Intervals.
  • the control system is mainly constituted by a main controller 20 in FIG.
  • the main control unit 20 includes a so-called microcomputer (or workstation) including a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and the like. Control and control the whole.
  • Main controller 20 controls, for example, synchronous scanning of reticle R and wafer W, subbing of wafer W, and the like, for example, so that the exposure operation is performed appropriately.
  • main controller 20 starts relative scanning in the X-axis direction of reticle R and wafer W, ie, reticle stage RST and wafer stage WST.
  • stages RST and WST reach their respective target scanning speeds and reach a constant speed synchronization state
  • the pattern area of reticle R starts to be illuminated by the ultraviolet pulse light from the illumination system IOP, and scanning exposure starts.
  • the relative scanning is performed by controlling the reticle driving unit 22 and the wafer stage driving unit 24 while monitoring the measured values of the wafer interferometer 23 and the reticle interferometer 16 described above. It is done.
  • Main control unit 20 determines, in particular during the above-described scanning exposure, that the moving speed Vr of reticle stage RS in the X-axis direction and the moving speed Vw of wafer stage WST in the X-axis direction are the projection magnification of projection optical system PL. (1X 4 times or 15 times) Performs synchronous control so that the speed ratio is maintained.
  • the main controller 20 moves the wafer stage WST through the wafer stage driving unit 24 to the X and Y axes. In the direction, and is moved to the scanning start position (acceleration start position) for the exposure of the second shot.
  • each unit is controlled by the main controller 20 in the same manner as described above, and the second shot on the wafer W is subjected to the same scanning exposure as described above.
  • the scanning exposure of shots on the wafer W and the stepping operation between shots are repeatedly performed, and the pattern of the reticle R is sequentially transferred to all of the exposure target shots on the wafer W.
  • the wafer is replaced with the next wafer, and the alignment and the exposure operation are repeated as described above.
  • the wafer stage WST when performing the above-described exposure operation, the wafer stage WST is driven by the linear motor, but the center of gravity of the wafer stage WST is Is set on the drive axis when driven in the X-axis direction, so that when the wafer stage WST is driven in the X-axis direction, unnecessary rotational moment does not act. Therefore, the occurrence of pitching (rotation about the Y-axis), shoring (rotation about the Z-axis), and the like in the wafer stage WST can be effectively suppressed. Position controllability can be improved.
  • the position of the wafer table WT is measured using the moving mirrors 21X and 21Y fixed to the wafer table WTB. Since the moving mirrors 21X and 21Y are fixed to the side of the wafer table WTB and the upper surface of the seat plates 56X and 56Y with a clearance of about several ⁇ m, Even if the WST vibrates with the drive and the vibration is transmitted to the movable mirrors 21 X and 21 Y, the gas existing between the movable mirrors 21 X and 21 Y and each fixed surface causes The vibrations of the moving mirrors 21X and 21Y are attenuated. This is the gas between the moving mirrors 21X and 21Y and each fixed surface.
  • the vibration of the movable mirrors 21 X and 21 Y is suppressed as much as possible, the position control of the wafer stage WST (wafer table WTB) can be performed with high accuracy.
  • the concave portion 46a for forming a void is formed on the bottom surface of the wafer stage main body 30 as well, due to the viscosity of the gas present in the void, the wafer is formed for the same reason as described above. Vibration of the entire stage can be suppressed. Therefore, it is possible to control the position of the wafer stage WST with high accuracy. Further, in the present embodiment, the wafer is moved using the wafer stage device 50 having high position control as described above. Therefore, especially in a scanning type exposure apparatus, the synchronization accuracy between the reticle and the wafer at the time of scanning exposure is improved. It has become possible to improve the transfer accuracy of the pattern onto the wafer, that is, the exposure accuracy.
  • the weight member fixed to the wafer stage body in order to set the position of the center of gravity of the wafer stage on the drive shaft, is not limited to the configuration shown in FIGS. 2A and 2B.
  • the shape, the number, the mass, the material, and the installation location (position) may be arbitrarily set, and at least one member (such as the bottom member 46) constituting the wafer stage main body may be partially convex. It may be processed so as to be a part so that fixing of the main member is unnecessary.
  • the weight member and the weight group are fixed to the wafer stage main body in order to set the position of the center of gravity of the wafer stage on the drive shaft.
  • the present invention is not limited to this.
  • the material of at least one member constituting the wafer stage main body (movable part) is changed without external addition such as using a main member. That is, at least one member is made of a heavy material different from other members.
  • the bottom member as a part of the wafer stage body is changed to a high-density member such as alloy steel such as stainless steel, nigel alloy, molybdenum, dangsten, and their alloys. It is good also as changing.
  • one or a plurality of members constituting the wafer stage main body are all made of high-density members or the like, but only a part thereof may be made of high-density members or the like.
  • a part of the wafer stage main body (movable part) is made heavy by adding a weight member, for example, and the position of the center of gravity is set on the drive shaft.
  • a part of the wafer stage main body is made lighter (at least one member constituting the wafer stage main body is made lighter).
  • the wafer table WTB or the like has a honeycomb structure, or at least one member thereof.
  • the center of gravity of the wafer stage body may be set on the drive shaft by using a lighter material different from other members.
  • the at least one member to be heavier or lighter may be any member constituting the wafer stage main body (movable part).
  • the mass Ms of the wafer stage WST (movable part) in the above equation (1) is partly, for example, the moving mirrors 21 X and 21 Y provided on the wafer table WTB and a reference (not shown).
  • the weight includes a mark plate and the like, the wafer stage WST moves while holding the wafer W, and therefore preferably includes the mass of the wafer W.
  • a gap is provided between the movable mirror and the surface to be fixed by forming a convex portion on the movable mirror.
  • a convex portion may be formed on the side to which the movable mirror is fixed, such as the side of the table or the upper surface of the seat plate, or a separate member may be provided in the gap between the movable mirror and the fixed target surface. It may be fixed. The point is that the moving mirror should be fixed to the wafer stage (wafer table) with a gap between the moving mirror and the surface to be fixed.
  • a force that employs screwing as means for fixing the movable mirror to the wafer table is not limited to this.
  • an adhesive such as an adhesive May be fixed. In this case, It is not necessary to provide a low-rigidity portion as in the above embodiment.
  • the stage device of the present invention has a first feature of setting the position of the center of gravity on the drive shaft, a second feature of providing a gap between the movable mirror and the surface to be fixed, and a wafer stage (bottom member).
  • a stage combining any two features or a stage having any one feature may be used.
  • a part of the movable stage such as a wafer table WTB, is not provided without the movable mirrors 21X and 21Y.
  • the end surface may be mirror-finished to be a reflection surface.
  • the exposure apparatus uses a different vibration-proof mechanism for each of the wafer stage (stage base 40) and the projection optical system PL.
  • the exposure apparatus is configured to hold the exposure apparatus, it goes without saying that the exposure apparatus of the present invention is not limited to this.
  • the column holding the projection optical system PL and the stage base may be supported by the same vibration isolation mechanism. In this case, the stage base may be suspended from the column described above.
  • the body structure of the exposure apparatus is not limited to the one shown in FIG. 1, but may have any configuration.
  • at least one of the wafer stage and the reticle stage has a reaction frame mechanism that arranges a part of the driving device on an installation surface different from the base on which the stage is arranged, or a counter mass. Therefore, a countermass mechanism that cancels the reaction force generated when the stage moves may be adopted, a twin-stage system in which two stages are arranged, or a twin-holder system that can hold two objects (reticle or wafer). Etc. may be adopted.
  • F 2 laser as the light source
  • a pulsed laser light source in the vacuum ultraviolet region such as A r F excimer one
  • a mercury lamp, K r F excimer one laser light source may be used ultraviolet or far ultraviolet light source or a r 2 other vacuum ultraviolet light source such as a laser light source (output wavelength 1 2 6 nm), such as.
  • the laser light output from each of the above light sources as vacuum ultraviolet light, but also a single-wavelength laser light in the infrared or visible range emitted from a DFB semiconductor laser or a fiber-laser
  • erbium (E r) or both erbium and ytterbium (Y b)
  • E r erbium
  • Y b ytterbium
  • a harmonic converted to ultraviolet light using a nonlinear optical crystal may be used.
  • ultraviolet light not only ultraviolet light but also X-rays (including EUV light) or charged particle beams such as electron beams and ion beams may be used as the illumination light IL for exposure.
  • the present invention is applied to a scanning exposure apparatus such as a step-and-scan method
  • a scanning exposure apparatus such as a step-and-scan method
  • the scope of the present invention is, of course, not limited to this. That is, the present invention can be suitably applied to a step-and-repeat type reduction projection exposure apparatus.
  • the illumination optical system and projection optical system composed of multiple lenses are incorporated in the main body of the exposure apparatus, optical adjustment is performed, and a reticle stage consisting of many mechanical parts and a wafer stage are attached to the main body of the exposure apparatus to perform wiring and Connect the piping and By performing comprehensive adjustment (electrical adjustment, operation check, etc.), the exposure apparatus of the above embodiment can be manufactured. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled.
  • the present invention is applied to an exposure apparatus for manufacturing a semiconductor.
  • the present invention is not limited to this.
  • the present invention is applied to a liquid crystal display device for transferring a liquid crystal display element pattern to a square glass plate.
  • the present invention can be widely applied to an exposure apparatus, a display apparatus such as a plasma display and an organic EL, an exposure apparatus for manufacturing a thin-film magnetic head, an image sensor, a micromachine, a DNA chip, and the like.
  • a transmissive reticle is generally used in an exposure apparatus using DUV (far ultraviolet) light or VUV (vacuum ultraviolet) light, and quartz glass, quartz glass doped with fluorine, and the like are used as a reticle substrate. Fluorite, magnesium fluoride, quartz or the like is used.
  • the semiconductor device includes a step of designing the function and performance of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, and a step of forming a reticle pattern by the exposure apparatus of the above embodiment. It is manufactured through the steps of transferring to a wafer, device assembling steps (including dicing, bonding, and packaging processes) and inspection steps.
  • this device manufacturing method will be described in detail.
  • FIG. 5 shows a flowchart of an example of manufacturing devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.).
  • a function / performance design of a device for example, a circuit design of a semiconductor device
  • a pattern is designed to realize the function.
  • step 202 mask manufacturing step
  • step 203 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step 204 wafer processing step
  • step 204 wafer processing step
  • step 205 device assembling step
  • step 205 includes, as necessary, processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation).
  • step 206 inspection step
  • inspections such as an operation confirmation test and a durability test of the device created in step 205 are performed. After these steps, the device is completed and shipped.
  • FIG. 6 shows a detailed flow example of the above step 204 in the semiconductor device.
  • step 2 11 oxidation step
  • step 212 CVD step
  • step 2 13 electrode formation step
  • step 2 14 ion implantation step
  • steps 21 1 to 21 4 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage.
  • step 215 resist forming step
  • step 2 16 exposure step
  • step 2 17 development step
  • step 18 the exposed members other than the portion where the resist remains are removed by etching. Then, in step 219 (resist removing step), unnecessary resist after etching is removed.
  • the exposure apparatus of the above embodiment is used in the exposure step (step 2 16), so that the reticle as the first object is placed on the wafer as the second object.
  • the pattern can be transferred with high precision, and as a result, the productivity (including the yield) of a highly integrated device can be improved.
  • the first to third stage devices of the present invention are suitable for driving a stage with good posture stability and position controllability.
  • the exposure apparatus of the present invention is suitable for transferring a circuit pattern onto an object.
  • the device manufacturing method of the present invention is suitable for producing a highly integrated device.

Abstract

A stage device, wherein the position of the gravity center of a wafer stage (WST) for loading a wafer (W) thereon is set on the point of application of a thrust caused when the wafer stage is driven by a linear motor (36X) in X-axis direction, whereby, when the wafer stage is driven in X-axis direction, an unnecessary torque causing a pitching and a yawing does not almost act on the wafer stage and, therefore, the vibration of the wafer stage resulting from the pitching and the yawing can be suppressed to increase the attitude stability and position controllability of the wafer stage.

Description

明 細 書  Specification
ステージ装置及び露光装置、 並びにデバイス製造方法 技術分野 Stage apparatus, exposure apparatus, and device manufacturing method
本発明はステージ装置及び露光装置、 並びにデバイス製造方法に係り、 更に 詳しくは、 物体を保持して、 移動するステージと該ステージを駆動する駆動装 置とを備えるステージ装置及び該ステージ装置を備えた露光装置、 並びに該露 光装置を用いるデバイス製造方法に関する。 背景技術  The present invention relates to a stage apparatus, an exposure apparatus, and a device manufacturing method. More specifically, the present invention relates to a stage apparatus including a stage that holds and moves an object, and a driving apparatus that drives the stage, and the stage apparatus. The present invention relates to an exposure apparatus and a device manufacturing method using the exposure apparatus. Background art
従来より、 半導体素子 (集積回路) 又は液晶表示素子等を製造するリソグラ フイエ程では、 種々の露光装置が用いられている。 近年では、 半導体素子の高 集積化に伴い、 ステップ 'アンド ' リピート方式の縮小投影露光装置 (いわゆ るステツパ) や、 このステツバに改良を加えたステップ 'アンド 'スキャン方 式の走査型投影露.光装置 (いわゆるスキャニング■ステツパ) 等の逐次移動型 の投影露光装置が主流となっている。  2. Description of the Related Art Conventionally, various exposure apparatuses have been used in a lithography process for manufacturing a semiconductor device (integrated circuit) or a liquid crystal display device. In recent years, along with the high integration of semiconductor devices, a step-and-repeat type reduction projection exposure apparatus (a so-called stepper), and a step-and-scan type scanning projection exposure system with an improved version of this stepper. .Successively moving projection exposure equipment such as optical equipment (so-called scanning and stepper) is mainly used.
この種の露光装置では、マスク又はレチクル(以下、 「レチクル」と総称する) に形成されたパターンをウェハ等の基板上の複数のショッ ト領域に順次転写す る必要から、 レチクルやウェハを保持して 1次元又は 2次元移動するステージ を備えたステージ装置が用いられている。  In this type of exposure apparatus, it is necessary to sequentially transfer a pattern formed on a mask or a reticle (hereinafter collectively referred to as a “reticle”) to a plurality of shot areas on a substrate such as a wafer. A stage device having a stage that moves one-dimensionally or two-dimensionally is used.
かかるステージ装置では、 高精度な露光を実現する必要から、 ステージの高 い位置決め性能が要求されるとともに、 露光動作のスループッ卜向上のため、 高加速度及び高速移動時の高い位置制御性が要求されている。 これに応じて、 近年ではウェハゃレチクルをより高速で、 機械的な案内面の精度等に影響され ず高精度に位置制御を行うとともに、 機械的な摩擦を回避して長寿命とする必 要から、 ウェハ等を保持するステージを非接触で駆動するステージ装置が開発 されている。 かかるステージ装置の駆動源としては、 電磁力駆動方式を採用し たリニアモータが主流となっている。 In such a stage apparatus, a high positioning performance of the stage is required to realize high-precision exposure, and a high acceleration and a high position controllability during high-speed movement are required to improve a throughput of the exposure operation. ing. Accordingly, in recent years, it has been necessary to control the position of the wafer reticle at a higher speed and with higher accuracy without being affected by the accuracy of the mechanical guide surface, and to extend the life by avoiding mechanical friction. In short, a stage device for driving a stage for holding a wafer or the like in a non-contact manner has been developed. As a driving source of such a stage device, a linear motor adopting an electromagnetic driving method is mainly used.
このリニアモータを、 例えば基板ステージの駆動源として用いる場合には、 基板が載置されるテーブルの下側にリニァモータの可動子を配置し、 該可動子 と固定子 (リニアガイ ド) との間の電磁相互作用によって生じるローレンツ力 によりステージを固定子に沿って、 かつステージベース (定盤) の上面に形成 されたガイド面に沿つて駆動するのが一般的である。  When this linear motor is used, for example, as a drive source for a substrate stage, a mover of a linear motor is arranged below a table on which a substrate is placed, and a linear guide is provided between the mover and a stator (linear guide). In general, the stage is driven by the Lorentz force generated by the electromagnetic interaction along the stator and along the guide surface formed on the upper surface of the stage base (platen).
ところで、 従来においても、 ステージの位置制御性の向上を図るために、 ス テージの駆動方法 (例えばリニアモータの駆動制御方法など) や、 ステージの 移動基準となるガイド面の平坦度などの改善等、 様々な工夫がなされている。  By the way, in the past, in order to improve the position controllability of the stage, the stage drive method (for example, the drive control method of a linear motor) and the improvement of the flatness of the guide surface, which serves as the stage movement reference, etc. There are various ideas.
しかしながら、 最近における半導体素子の高集積化に伴い、 基板ステージ等 に対する位置制御性の要求はますます厳しくなつておリ、 今やステージの駆動 方法や、 ガイド面の平坦度の改善などの手法では要求されるステージの位置制 御性を達成することは困難となりつつある。  However, with the recent high integration of semiconductor devices, the position controllability of the substrate stage and the like has become more and more strict, and now there is a demand for methods of driving the stage and improving the flatness of the guide surface. It is becoming difficult to achieve the required position control of the stage.
すなわち、 従来は殆ど問題視されなかったステージ装置そのもの (ステージ あるいは駆動装置、又は両者の組み合わせ)に起因する位置制御性の低下要因、 例えば、 リニァモータによるステージの駆動の際に生じるステージの振動など が無視できないレベルとなりつつある。  In other words, factors that reduce the position controllability due to the stage device itself (stage or drive device, or a combination of both), which has rarely been regarded as a problem in the past, such as stage vibration generated when the stage is driven by the linear motor, are considered. It is becoming a level that cannot be ignored.
上記と同様の問題は、 露光装置以外の精密機器のステージ装置についても生 じる可能性がある。  Problems similar to those described above may also occur with stage equipment for precision equipment other than exposure equipment.
本発明は、 かかる事情の下になされたもので、 その第 1の目的は、 ステージ の位置制御性の向上を図ることができるステージ装置を提供することにある。 本発明の第 2の目的は、 高精度な露光を実現することが可能な露光装置を提 供することにある。  The present invention has been made under such circumstances, and a first object of the present invention is to provide a stage device capable of improving the position controllability of a stage. A second object of the present invention is to provide an exposure apparatus capable of realizing highly accurate exposure.
本発明の第 3の目的は、 高集積度のデバイスの生産性を向上させることがで きるデバイス製造方法を提供することにある。 発明の開示 A third object of the present invention is to improve the productivity of highly integrated devices. To provide a device manufacturing method. Disclosure of the invention
本発明は、 第 1の観点からすると、 物体が載置されるステージと ;該ステ一 ジを少なくとも所定の 1軸方向に駆動する駆動装置と ; を備え、 前記ステージ の重心位置が、 前記駆動装置が少なくとも前記所定の 1軸方向に前記ステージ を駆動する際の駆動軸上に設定されていることを特徴とする第 1のステージ装 置である。  According to a first aspect of the present invention, there is provided a stage on which an object is placed; and a driving device for driving the stage in at least a predetermined one axis direction. A first stage device, wherein the device is set on a drive shaft for driving the stage in at least the predetermined one axis direction.
本明細書において、 「駆動軸 Jとは、送りねじ駆動方式のような物理的な駆動 軸を意味するものではなく、 ステージを駆動する際に駆動装置がステージに対 して与える推力の作用点 (作用点が複数存在する場合には、 それらを総合した 実質的な作用点) と、 その推力の方向により規定される仮想的な軸 (この軸が 駆動方式によっては、 物理的な駆動軸と一致する場合を含む) を意味するもの である。  In this specification, "the drive shaft J does not mean a physical drive shaft such as a feed screw drive system, but is a point of action of a thrust applied to the stage by the drive device when driving the stage. (If there is more than one point of action, the virtual point of action is the sum of the points of action) and a virtual axis defined by the direction of the thrust. (Including when they match).
これによれば、 物体が載置されるステージの重心位置が、 ステージが、 少な くとも所定の 1軸方向に駆動装置によって駆動される際の駆動軸上に設定され ている。 すなわち、 ステージが前記所定の 1軸方向に駆動される際に、 ステー ジの重心位置にその推力の作用点が一致するので、 ステージの重心を通る前記 According to this, the position of the center of gravity of the stage on which the object is placed is set on the drive shaft when the stage is driven by the drive device in at least one predetermined axial direction. That is, when the stage is driven in the predetermined one-axis direction, the point of action of the thrust coincides with the position of the center of gravity of the stage.
1軸に直交する軸回りの回転モ一メン卜が発生するのを防止することができる。 これにより、 ステージに前記 1軸に直交する軸回りの不要な回転、 ひいてはそ れに起因する振動等が発生するのを効果的に抑制することができる。 従って、 ステージの姿勢の安定性及び位置制御性を向上させることが可能となる。 It is possible to prevent the occurrence of rotational moment about an axis orthogonal to one axis. Thus, unnecessary rotation of the stage about an axis orthogonal to the one axis, and the occurrence of vibrations and the like due to the rotation can be effectively suppressed. Therefore, the stability of the posture of the stage and the controllability of the position can be improved.
この場合において、 前記駆動装置は、 前記ステージを移動面内で前記所定の In this case, the driving device moves the stage within the moving plane to the predetermined position.
1軸方向及びこれに直交する他の 1軸方向に駆動することとすることができる。 この場合において、 他の 1軸方向についても駆動軸とステージの重心位置とがIt can be driven in one axis direction and another one axis direction orthogonal thereto. In this case, the drive axis and the center of gravity of the stage
—致していることが望ましい。 本発明の第 1のステージ装置では、 駆動装置としては、 送りねじと回転モ一 タとの組み合わせや、 平面モータなど、 種々のものが考えられるが、 例えば前 記駆動装置は、 リニアモータであることとすることができる。 -Desirably. In the first stage device of the present invention, as the driving device, various types such as a combination of a feed screw and a rotary motor and a flat motor can be considered. For example, the driving device is a linear motor. It can be.
本発明の第 1のステージ装置では、 前記ステージは、 前記物体を保持するテ 一ブルと、 該テーブルを支持するステージ本体部とを備え、 前記重心位置の前 記駆動軸上への設定は、 前記ステージ本体部の重心位置の調整によリ行われて いることとすることができる。  In the first stage device of the present invention, the stage includes a table that holds the object, and a stage body that supports the table. The setting of the position of the center of gravity on the drive shaft is as follows: The adjustment may be performed by adjusting the position of the center of gravity of the stage body.
この場合において、 前記ステージ本体部に取り付けられた前記重心位置の調 整用のおもリ部材を更に備えることとすることができる。  In this case, the apparatus may further include a weight member for adjusting the position of the center of gravity attached to the stage body.
本発明の第 1のステージ装置では、 前記ステージが前記テーブルと前記ステ ージ本体部とを備えている場合には、前記ステージ本体部の重心位置の調整は、 前記ステージ本体部を構成する一部の部材として高密度部材を用いることによ リ実現されることとすることもできる。  In the first stage device of the present invention, when the stage includes the table and the stage main body, the adjustment of the position of the center of gravity of the stage main body is performed by adjusting the position of the stage main body. It can be realized by using a high-density member as the member of the part.
この場合において、 前記ステージの移動基準となるガイ ド面に対して所定の クリアランスを介して前記ステージ本体部及び前記テーブルを浮上支持する気 体静圧軸受けを更に備え、 前記一部の部材は、 前記気体静圧軸受けが設けられ た底面部材であることとすることができる。  In this case, the stage further includes a hydrostatic bearing that levitates and supports the stage body and the table via a predetermined clearance with respect to a guide surface serving as a movement reference of the stage. It may be a bottom member provided with the gas static pressure bearing.
この場合において、 前記底面部材の底面に、 所定深さの凹部が形成されてい ることとすることができる。  In this case, a recess having a predetermined depth may be formed on the bottom surface of the bottom member.
本発明の第 1のステージ装置では、 前記ステージの位置が、 干渉計により計 測されている場合、 前記ステージとの間に空隙を形成した状態で、 少なくとも 2点で前記ステージに固定される前記干渉計用の移動鏡を更に備えることとす ることができる。  In the first stage device of the present invention, when the position of the stage is measured by an interferometer, the stage is fixed to the stage at at least two points in a state where a gap is formed between the stage and the stage. A moving mirror for the interferometer may be further provided.
本発明は、 第 2の観点からすると、 物体が載置されるとともに、 移動基準と なるガイ ド面に対して所定のクリアランスを介して浮上支持されたステージ と ;前記ステージを前記ガイ ド面に沿って少なくとも所定の 1軸方向に駆動す る駆動装置と ; を備え、 前記ステージを構成する底面部材の底面に、 所定深さ の凹部が形成されていることを特徴とする第 2のステージ装置である。 According to a second aspect of the present invention, there is provided a stage on which an object is placed and which is levitated and supported via a predetermined clearance with respect to a guide surface serving as a movement reference; Along at least one specified axis. A second stage device, comprising: a driving device; and a concave portion having a predetermined depth is formed on a bottom surface of a bottom member constituting the stage.
これによれば、 物体が載置されるステージを構成する底面部材の底面に、 所 定深さの凹部が形成されている。 すなわち、 ステージの移動基準であるガイ ド 面に対して凹部の部分は、 底面部材のその他の部分以上のクリアランスを有し ている。 このため、 ステージが、 例えば前記所定の 1軸方向に駆動装置によつ て駆動された際に、 その駆動に伴いステージに振動が生じた場合に、 ステージ の凹部とガイ ド面との間に存在する気体により、 ステージの主として重力方向 の振動が減衰される。すなわち、ステージが例えば重力方向に振動した場合に、 前記凹部とガイ ド面との間に存在する気体(例えば空気)が凹部内で移動する、 あるいは凹部から抜け出そうとするが、 その際にその気体の粘性のためその気 体が一種のダンバとして機能し、 ステージの主として重力方向の振動を減衰さ せる。 従って、 このステージ振動の減衰によりステージの位置制御性を向上さ せることが可能となる。  According to this, a concave portion having a predetermined depth is formed on the bottom surface of the bottom member constituting the stage on which the object is placed. That is, the recessed portion with respect to the guide surface, which is the stage movement reference, has more clearance than other portions of the bottom surface member. For this reason, for example, when the stage is driven by the driving device in the predetermined one axis direction, and the stage vibrates due to the driving, the stage is moved between the concave portion of the stage and the guide surface. The existing gas dampens the stage's mainly gravitational vibration. That is, when the stage vibrates, for example, in the direction of gravity, gas (for example, air) existing between the concave portion and the guide surface moves in the concave portion or tries to escape from the concave portion. Due to the viscosity of the gas, the gas acts as a kind of damper, damping the vibration of the stage mainly in the direction of gravity. Therefore, the position controllability of the stage can be improved by the attenuation of the stage vibration.
この場合において、 前記ステージの位置が、 干渉計により計測されている場 合、 前記ステージとの間に空隙を形成した状態で、 少なくとも 2点で前記ス亍 ージに固定される前記干渉計用の移動鏡を更に備えることとすることができる。 この場合において、 前記移動鏡の前記ステージに対向する部分には、 前記ス 亍一ジと接触する少なくとも 2箇所の接触部と、 前記ステージとは接触しない 非接触部とが設定されていることとすることができる。  In this case, when the position of the stage is measured by an interferometer, the interferometer is fixed to the stage at at least two points with a gap formed between the stage and the stage. May be further provided. In this case, at least two contact portions that come into contact with the stage and a non-contact portion that does not come into contact with the stage are provided at a portion of the movable mirror that faces the stage. can do.
この場合において、 前記接触部は、 前記移動鏡の前記ステージ対向面に設け られた凸部であることとすることができる。 また、 前記移動鏡は、 前記接触部 にて前記ステージに対してねじ止めされ、 前記ミラーのねじ止め位置周辺の部 分は、 その他の部分よりも低剛性とされていることとすることができる。  In this case, the contact portion may be a protrusion provided on the stage facing surface of the movable mirror. Further, the movable mirror may be screwed to the stage at the contact portion, and a portion around a screwing position of the mirror may have lower rigidity than other portions. .
本発明の第 2のステージ装置では、 前記ステージの重心位置は、 前記ステー ジの駆動軸上に設定されていることとすることができる。 本発明は、 第 3の観点からすると、 物体が載置されるとともに、 その位置が 干渉計により計測されるステージと ;前記ステージとの間に空隙を形成した状 態で、 少なくとも 2点で前記ステージに固定される前記干渉計用の移動鏡と ; を備える第 3のステージ装置である。 In the second stage device of the present invention, the position of the center of gravity of the stage may be set on a drive shaft of the stage. According to a third aspect of the present invention, there is provided a stage in which an object is placed and the position of which is measured by an interferometer; and a gap is formed between the stage and the stage. And a movable mirror for the interferometer fixed to a stage.
これによれば、 ステージの位置を計測する干渉計用の移動鏡が、 ステージと の間に空隙を形成した状態で、 少なくとも 2点でステージに固定されている。 このため、 例えばステージの駆動の際にステージが振動し、 その振動が移動鏡 に伝達されると、 移動鏡とステージとの間に存在する気体 (例えば空気) によ リ移動鏡の振動が減衰される。 すなわち、 移動鏡の振動により気体が前記空隙 内で移動する、 あるいは空隙から抜け出そうとするときに、 その気体はその粘 性によリー種のダンバとして機能して移動鏡の振動を減衰させる。 従って、 そ の振動が減衰された移動鏡を介して干渉計によりステージの位置が計測される ので、 ステージの高精度な位置計測、 ひいては高精度な位置制御を行うことが 可能となる。  According to this, the movable mirror for the interferometer that measures the position of the stage is fixed to the stage at at least two points with a gap formed between the stage and the stage. Therefore, for example, when the stage vibrates when the stage is driven and the vibration is transmitted to the moving mirror, the vibration of the moving mirror is attenuated by gas (for example, air) existing between the moving mirror and the stage. Is done. That is, when the gas moves in the gap or tries to escape from the gap due to the vibration of the moving mirror, the gas functions as a damper of the kind due to its viscosity to attenuate the vibration of the moving mirror. Therefore, the position of the stage is measured by the interferometer via the movable mirror whose vibration is attenuated, so that highly accurate position measurement of the stage and, consequently, highly accurate position control can be performed.
この場合において、 前記移動鏡の前記ステージに対向する部分には、 前記ス テージと接触する少なくとも 2箇所の接触部と、 前記ステージとは接触しない 非接触部とが設定されていることとすることができる。 '  In this case, at least two contact portions that come into contact with the stage and a non-contact portion that does not come into contact with the stage are set in a portion of the movable mirror facing the stage. Can be. '
この場合において、 前記接触部は、 前記移動鏡の前記ステージ対向面に設け られた凸部であることとすることができる。 また、 前記移動鏡は、 前記接触部 にて前記ステージに対してねじ止めされ、 前記ミラーのねじ止め位置周辺の部 分は、 その他の部分よりも低剛性とされていることとすることができる。  In this case, the contact portion may be a protrusion provided on the stage facing surface of the movable mirror. Further, the movable mirror may be screwed to the stage at the contact portion, and a portion around a screwing position of the mirror may have lower rigidity than other portions. .
本発明の第 3のステージ装置では、 前記ステージの重心位置は、 前記ステー ジの駆動軸上に設定されていることとすることができる。  In the third stage device of the present invention, the position of the center of gravity of the stage may be set on a drive shaft of the stage.
本発明は、 第 4の観点からすると、 第 1物体に形成されたパターンを第 2物 体上に転写する露光装置であって、 本発明の第 1〜第 3のステージ装置のいず れかを、 前記第 1物体と前記第 2物体との少なくとも一方の駆動装置として具 備する露光装置である。 According to a fourth aspect of the present invention, there is provided an exposure apparatus for transferring a pattern formed on a first object onto a second object, wherein the exposure apparatus includes any one of the first to third stage apparatuses of the present invention. As a driving device for at least one of the first object and the second object. It is an exposure apparatus provided.
これによれば、 位置制御性の高いステージ装置を第 1物体と第 2物体との少 なくとも一方の駆動装置として具備することから、 第 1物体と第 2物体の位置 合わせ精度や、 第 2物体に対するパターンの重ね合わせ精度等を向上させるこ とが可能である。 すなわち、 露光精度の向上を図ることが可能である。  According to this, the stage device having high position controllability is provided as at least one of the first object and the second object as a driving device, so that the alignment accuracy of the first object and the second object and the second device can be improved. It is possible to improve the overlay accuracy of the pattern on the object. That is, it is possible to improve the exposure accuracy.
また、 リソグラフイエ程において、 本発明の露光装置を用いて第 1物体のパ ターンを第 2物体上に転写することによリ、 第 2物体上にパターンを精度良く 形成することができ、 これにより、 より高集積度のマイクロデバイスを歩留ま リ良く製造することができる。 従って、 本発明の更に別の観点からは、 本発明 の露光装置を用いるデバイス製造方法であると言える。 図面の簡単な説明  In addition, in the lithographic process, the pattern of the first object is transferred onto the second object using the exposure apparatus of the present invention, whereby a pattern can be formed on the second object with high accuracy. Thereby, a highly integrated microdevice can be manufactured with good yield. Therefore, from still another viewpoint of the present invention, it can be said that this is a device manufacturing method using the exposure apparatus of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の一実施形態に係る露光装置の構成を概略的に示す図である。 図 2 Aは、 ウェハステージを斜め上方から見た斜視図であり、 図 2 Bは、 ゥ ェハステージを斜め下方から見た斜視図である。  FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to one embodiment of the present invention. FIG. 2A is a perspective view of the wafer stage as viewed obliquely from above, and FIG. 2B is a perspective view of the wafer stage as viewed obliquely from below.
図 3は、 ウェハステージの重心位置の調整方法を説明するための図である。 図 4 Aは、 移動鏡を拡大して示す斜視図であり、 図 4 Bは、 移動鏡に形成さ れたねじ止め部近傍を拡大して示す図であり、 図 4 Cは、 図 4 Bの A— A線断 面図である。  FIG. 3 is a diagram for explaining a method of adjusting the position of the center of gravity of the wafer stage. 4A is an enlarged perspective view showing the movable mirror, FIG. 4B is an enlarged view showing the vicinity of a screw portion formed on the movable mirror, and FIG. FIG. 2 is a sectional view taken along line A-A of FIG.
図 5は、本発明のデバイス製造方法を説明するためのフローチヤ一トである。 図 6は、 図 5のステップ 2 1 6の詳細例を示すフローチヤ一トである。 発明を実施するための最良の形態  FIG. 5 is a flowchart for explaining the device manufacturing method of the present invention. FIG. 6 is a flowchart showing a detailed example of step 2 16 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施形態を、 図 1〜図 4 Cに基づいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 4C.
図 1には、 一実施形態に係る露光装置 1 0の概略構成が示されている。 この 露光装置 1 0は、 ステップ ·アンド 'スキャン方式の投影露光装置である。 こ の露光装置 1 0は、 照明系 I O P、 マスク (物体、 第 1物体) としてのレチク ル Rを保持するレチクルステージ R S T、 投影光学系 P L、 基板 (物体、 第 2 物体) としてのウェハ Wの駆動装置を構成するステージ装置としてのウェハス テージ装置 5 0、 及びこれらを制御する制御系等を備えている。 FIG. 1 shows a schematic configuration of an exposure apparatus 10 according to one embodiment. The exposure apparatus 10 is a step-and-scan projection exposure apparatus. This The exposure apparatus 10 includes an illumination system IOP, a reticle stage RST holding a reticle R as a mask (object, first object), a projection optical system PL, and a wafer W as substrate (object, second object). The apparatus includes a wafer stage device 50 as a stage device constituting the device, and a control system for controlling these devices.
前記照明系 I O Pは、 例えば特開平 1 0— 1 1 2 4 3 3号公報、 特開平 6 - The illumination system IOP is disclosed, for example, in Japanese Patent Application Laid-Open No.
3 4 9 7 0 1号公報及びこれに対応する米国特許第 5 , 5 3 4 , 9 7 0号公報 などに開示されるように、 光源、 オプティカルインテグレ一タを含む照度均一 化光学系、 リレーレンズ、 可変 N Dフィルタ、 可変視野絞り (レチクルブライ ンド又はマスキングブレードとも呼ばれる)、及びダイクロイツクミラー等(い ずれも不図示) を含んで構成されている。 ここで、 オプティカルインテグレー タとしてはフライアイレンズ、 内面反射型インテグレータ (ロッドインテグレ ータ等)、あるいは回折光学素子等が用いられる。本国際出願で指定した指定国 又は選択した選択国の国内法令が許す限りにおいて、 上記米国特許における開 示を援用して本明細書の記載の一部とする。 As disclosed in US Pat. No. 3,497,701 and corresponding US Pat. No. 5,534,970, etc., a light source, an illuminance uniforming optical system including an optical integrator, and a relay It includes a lens, a variable ND filter, a variable field stop (also called a reticle blind or a masking blade), and a dichroic mirror (all not shown). Here, a fly-eye lens, an internal reflection type integrator (such as a rod integrator), or a diffractive optical element is used as the optical integrator. To the extent permitted by the national laws of the designated or designated elected States in this International Application, the disclosures in the above US patents will be incorporated herein by reference.
この照明系 I O Pでは、 回路パターン等が描かれたレチクル R上で、 レチク ルブラインドで規定されたスリツト状の照明領域 (Y軸方向に細長い長方形状 の照明領域) 部分をエネルギビームとしての照明光 I しによりほぼ均一な照度 で照明する。 ここで、 照明光 I しとしては、 K r Fエキシマレ一ザ光 (波長 2 In this illumination system IOP, a slit-shaped illumination area (a rectangular illumination area elongated in the Y-axis direction) defined by a reticle blind on a reticle R on which a circuit pattern and the like are drawn is an illumination light as an energy beam. Illuminate with almost uniform illuminance. Here, the illumination light I is K r F excimer laser light (wavelength 2
4 8 n m) などの遠紫外光、 A r Fエキシマレーザ光 (波長 1 9 3 n m)、 ある し、は F 2 レーザ光 (波長 1 5 7 n m) などの真空紫外光などが用いられる。 照 明光 I しとして、 超高圧水銀ランプからの紫外域の輝線 (g線、 ί線等) を用 いることも可能である。 4 8 nm) far ultraviolet light such as, A r F excimer laser beam (wavelength 1 9 3 nm), to some, it is a vacuum ultraviolet light such as F 2 laser beam (wavelength 1 5 7 nm) is used. It is also possible to use ultraviolet emission lines (g-rays, ί-rays, etc.) from an ultra-high pressure mercury lamp as the illumination light I.
前記レチクルステージ R S Τ上には、 レチクル Rが、 例えば真空吸着により 固定されている。 レチクルステージ R S Τは、 レチクルステージ駆動部 2 2に よって、 照明系 Ι Ο Ρの光軸 (後述する投影光学系 P Lの光軸 A Xに一致) に 垂直な X Y平面内で微少駆動可能であるとともに、 所定の走査方向 (ここでは 図 1における紙面内左右方向である X軸方向とする) に指定された走査速度で 駆動可能となっている。なお、レチクルステージ駆動部 2 2は、リニアモータ、 ボイスコイルモータ等を駆動源とする機構であるが、 図 1では図示の便宜上か ら単なるブロックとして示されている。 On the reticle stage RS, a reticle R is fixed, for example, by vacuum suction. The reticle stage RS 微 can be minutely driven by the reticle stage drive unit 22 in an XY plane perpendicular to the optical axis of the illumination system 一致 Ο 一致 (coincident with the optical axis AX of the projection optical system PL described later). , Predetermined scanning direction (here, (The X-axis direction, which is the horizontal direction in the paper plane in Fig. 1). The reticle stage drive unit 22 is a mechanism using a linear motor, a voice coil motor or the like as a drive source, but is shown as a simple block in FIG. 1 for convenience of illustration.
レチクルステージ R S Tの移動面内の位置は、レチクルレーザ干渉計(以下、 「レチクル干渉計」 という) 1 6によって、 移動鏡 1 5を介して、 例えば 0 . 5 - 1 n m程度の分解能で常時検出される。 ここで、 実際には、 レチクルステ ージ R S T上には Y軸方向に直交する反射面を有する移動鏡と X軸方向に直交 する反射面を有する移動鏡とが設けられ、 これらの移動鏡に対応してレチクル Y干渉計とレチクル X干渉計とが設けられているが、 図 1ではこれらが代表的 に移動鏡 1 5、 レチクル干渉計 1 6として示されている。 なお、 例えば、 レチ クルス亍一ジ R S Tの端面を鏡面加工して反射面(移動鏡 1 5の反射面に相当) を形成しても良い。 また、 レチクルステージ R S Tの走査方向 (本実施形態で は X軸方向) の位置検出に用いられる Y軸方向に伸びた反射面の代わりに、 少 なくとも 1つのコーナーキューブ型ミラーを用いても良い。 ここで、 レチクノレ Y干渉計とレチクル X干渉計の少なくとも一方、 例えばレチクル X干渉計は、 測長軸を 2軸有する 2軸干渉計であり、 このレチクル X干渉計の計測値に基づ きレチクルステージ R S Tの X位置に加え、 0 Z方向 (Z軸回りの回転方向) の回転量 (ョーイング量) も計測できるようになつている。 レチクル干渉計 1 6からのレチクルステージ R S Tの位置情報 (ョ一ィング量などの回転情報を 含む) は主制御装置 2 0に供給される。 主制御装置 2 0では、 レチクルステー ジ R S Tの位置情報に基づいてレチクルステージ駆動部 2 2を介してレチクル ステージ R S Tを駆動制御する。 The position in the moving plane of the reticle stage RST is constantly detected by a reticle laser interferometer (hereinafter referred to as “reticle interferometer”) 16 through a movable mirror 15 with a resolution of, for example, about 0.5 to 1 nm. Is done. Here, actually, a moving mirror having a reflecting surface orthogonal to the Y-axis direction and a moving mirror having a reflecting surface orthogonal to the X-axis direction are provided on the reticle stage RST. A reticle Y interferometer and a reticle X interferometer are provided, and these are typically shown in FIG. 1 as a movable mirror 15 and a reticle interferometer 16, respectively. For example, the end surface of reticle page RST may be mirror-finished to form a reflection surface (corresponding to the reflection surface of movable mirror 15). Also, at least one corner cube mirror may be used in place of the reflecting surface extending in the Y-axis direction used for detecting the position of the reticle stage RST in the scanning direction (the X-axis direction in the present embodiment). . Here, at least one of the reticle X interferometer and the reticle X interferometer, for example, the reticle X interferometer is a two-axis interferometer having two measurement axes, and the reticle is based on the measurement value of the reticle X interferometer. In addition to the X position of the stage RST, the rotation amount (jowing amount) in the 0 Z direction (the rotation direction around the Z axis) can be measured. The position information of the reticle stage RST from the reticle interferometer 16 (including the rotation information such as the jogging amount) is supplied to the main controller 20. Main controller 20 drives and controls reticle stage RST via reticle stage drive section 22 based on the position information of reticle stage RST.
前記投影光学系 Pしは、 レチクルステージ R S Tの図 1における下方に配置 され、その光軸 A Xの方向が Z軸方向とされている。投影光学系 P Lとしては、 例えば両側テレセントリックで所定の縮小倍率 (例えば 1 5、 又は 1 Z 4 ) を有する屈折光学系が使用されている。 このため、 照明系 I O Pからの照明光 I Lによってレチクル Rの照明領域が照明されると、 レチクル Rの回路パタ一 ンの照明領域部分の縮小像 (部分倒立像) が投影光学系 P Lを介してウェハ W 上の前記照明領域に共役な投影光学系の視野内の投影領域に投影され、 ウェハ W表面のレジス卜層に転写される。 The projection optical system P is disposed below the reticle stage RST in FIG. 1, and the direction of the optical axis AX is the Z-axis direction. As the projection optical system PL, for example, both sides are telecentric and a predetermined reduction magnification (for example, 15 or 1 Z 4) Is used. Therefore, when the illumination area IL of the reticle R is illuminated by the illumination light IL from the illumination system IOP, a reduced image (partially inverted image) of the illumination area portion of the circuit pattern of the reticle R is transmitted through the projection optical system PL. The light is projected onto a projection area in the field of view of the projection optical system conjugate to the illumination area on the wafer W, and is transferred to a resist layer on the surface of the wafer W.
前記ウェハステージ装置 5 0は、 床面 (又はベースプレート、 フレームキヤ スターなど) F上に防振ュニッ ト 2 6を介して 3点あるいは 4点でほぼ水平に 支持されたステージべ一ス 4 0と、 該ステージベース 4 0の上方に配設された ステージとしてのウェハステージ W S丁と、 該ウェハステージ W S Tの駆動装 置としてのウェハステージ駆動部 2 4とを備えている。  The wafer stage device 50 includes a stage base 40 supported substantially horizontally at three or four points on a floor surface (or a base plate, a frame caster, or the like) F through a vibration isolation unit 26. A wafer stage WS is provided as a stage disposed above the stage base 40, and a wafer stage drive section 24 is provided as a drive device for the wafer stage WST.
前記各防振ュニット 2 6は、 床面 Fからステージベース 4 0に伝達される微 振動をそれぞれマイクロ Gレベルで絶縁する。 これらの防振ュニット 2 6とし て、 ステージベース 4 0の所定箇所に固定された半導体加速度計等の振動セン サの出力に基づいてステージベース 4 0の振動を積極的に制振するいわゆるァ クティブ防振装置を用いることは勿論可能である。  Each of the vibration isolation units 26 insulates minute vibration transmitted from the floor surface F to the stage base 40 at a micro G level. These anti-vibration units 26 are so-called active devices that actively suppress the vibration of the stage base 40 based on the output of a vibration sensor such as a semiconductor accelerometer fixed to a predetermined portion of the stage base 40. It is of course possible to use a vibration isolator.
前記ステージべ一ス 4 0の + Z側の面 (上面) は、 その平坦度が非常に高く なるように加工されており、 ウェハステージ W S Tの移動基準面であるガイ ド 面 4 0 aとされている。  The surface (upper surface) on the + Z side of the stage base 40 is processed so as to have a very high degree of flatness, and is used as a guide surface 40a which is a movement reference surface of the wafer stage WST. ing.
前記ウェハステージ W S Tは、 投影光学系 P Lの図 1における下方で、 ゥェ ハステージ駆動部 2 4によって駆動され、 ウェハ Wを保持して上記ガイ ド面 4 0 aに沿って X Y 2次元移動するようになっている。  The wafer stage WST is driven by a wafer stage drive unit 24 below the projection optical system PL in FIG. 1, and holds the wafer W and moves two-dimensionally along the guide surface 40a in the XY direction. It has become.
前記ウェハステージ W S Tは、 ウェハ Wを保持するテ一ブルとしてのウェハ テーブル W T巳と、 該ウェハテーブル W T Bをボイスコイルモータ等を含む不 図示の Z ■チルト駆動機構を介して下側から支持するウェハステージ本体部 3 0とを備えている。  The wafer stage WST includes a wafer table WT serving as a table for holding the wafer W, and a wafer Z supporting the wafer table WTB from below via a tilt drive mechanism (not shown) including a voice coil motor and the like. And a stage body 30.
前記ウェハテーブル W T Bの上面には、 ウェハホルダ 2 5を介してウェハ W が真空吸着 (又は静電吸着) 等により吸着保持されている。 前記 z ·チルト駆 動機構は、ウェハステージ本体部 30上でウェハテーブル WT Bを Z, Θ X (X 軸回りの回転方向)、 Θ y (Y軸回りの回転方向) の 3自由度方向に微小駆動す るもので、 Zチル卜ステージとも呼ばれる。 The wafer W is placed on the upper surface of the wafer table WTB via the wafer holder 25. Is held by vacuum suction (or electrostatic suction). The z-tilt drive mechanism moves the wafer table WTB on the wafer stage main body 30 in three degrees of freedom directions of Z, ΘX (rotation direction around the X axis) and Θy (rotation direction around the Y axis). It is driven minutely and is also called a Z tilt stage.
前記ウェハテーブル WT Bの側面には、 干渉計としてのウェハレーザ干渉計 (以下、 「ウェハ干渉計」という) 23からのレーザビームを反射する移動鏡 2 1が固定され、 外部に配置されたウェハ干渉計 23より、 ウェハテーブル WT Bの X方向、 Y方向及び 0 z方向 (Z軸回りの回転方向)の位置が例えば、 0. 5〜1 nm程度の分解能で常時検出されている。  A movable mirror 21 for reflecting a laser beam from a wafer laser interferometer (hereinafter, referred to as a “wafer interferometer”) 23 as an interferometer is fixed to a side surface of the wafer table WTB, and a wafer interference interferometer disposed outside is fixed. From the total 23, the positions of the wafer table WTB in the X direction, the Y direction, and the 0z direction (the rotation direction around the Z axis) are constantly detected with a resolution of, for example, about 0.5 to 1 nm.
ここで、 ウェハテーブル WT Bには、 実際には、 図 2 Aに示されるように、 +X方向の端部に、 X軸方向に直交する反射面を有する移動鏡 21 Xが設けら れ、 一 Y方向端部に、 Y軸方向に直交する反射面を有する移動鏡 21 Yが設け られている。 また、 これに対応して、 ウェハ干渉計も移動鏡 2 1 X, 21 Yに それぞれレーザ光を照射してウェハテーブル WT Bの X軸方向、 Y軸方向の位 置をそれぞれ計測する X軸干渉計、 Y軸干渉計がそれぞれ設けられている。 本実施形態では、 X軸及び Y軸干渉計はそれぞれ複数ずつ設けられ、 あるい は X軸及び Y軸干渉計は測長軸を複数有する多軸干渉計で構成され、 ウェハテ —ブル WTBの X、 Y位置の他、 回転 (ョ一 Tング (Z軸回りの回転である 0 z回転)、 ピッチング (X軸回りの回転である 0 X回転)、 ローリング (Y軸回 リの回転である 0 y回転) ) も計測可能となっている。  Here, the wafer table WT B is actually provided with a movable mirror 21 X having a reflecting surface orthogonal to the X-axis direction at the end in the + X direction, as shown in FIG. 2A. A movable mirror 21Y having a reflecting surface orthogonal to the Y-axis direction is provided at one end in the Y-direction. Corresponding to this, the wafer interferometer also irradiates laser beams to the moving mirrors 21 X and 21 Y, respectively, and measures the X-axis and Y-axis positions of the wafer table WTB, respectively. And a Y-axis interferometer. In this embodiment, a plurality of X-axis and Y-axis interferometers are provided, respectively, or the X-axis and Y-axis interferometers are composed of multi-axis interferometers having a plurality of measurement axes. In addition to the Y position, rotation (rotation of the T axis (rotation of the z axis, 0 z rotation), pitching (rotation of the X axis, rotation of 0 x), rolling (rotation of the rotation of the y axis, 0 y rotation))) can be measured.
このようにウェハ干渉計、 及び移動鏡はそれぞれ複数設けられているが、 図 1ではこれらが代表的に移動鏡 21、 ウェハ干渉計 23として示されている。 ここで、 例えば、 ウェハテーブル WT Bの端面を鏡面加工して反射面 (移動 鏡 21 X、 21 Yの反射面に相当) を形成しても良い。 なお、 移動鏡 21 X, 21 Yの具体的な構成等については、 後に更に詳述する。 また、 前述の多軸干 渉計は 45° 傾いてウェハテーブル WT Bに設置される反射面を介して、 投影 光学系 P Lが載置される架台 (不図示) に設置される反射面にレーザビームを 照射し、 投影光学系 P Lの光軸方向 (Z軸方向) に関する相対位置情報を検出 するようにしても良い。 As described above, a plurality of wafer interferometers and a plurality of moving mirrors are provided, respectively. In FIG. 1, these are representatively shown as a moving mirror 21 and a wafer interferometer 23. Here, for example, an end surface of the wafer table WTB may be mirror-finished to form a reflection surface (corresponding to the reflection surfaces of the moving mirrors 21X and 21Y). The specific configuration of the movable mirrors 21X and 21Y will be described later in further detail. In addition, the aforementioned multi-axis interferometer is projected through a reflective surface installed on the wafer table WTB at an angle of 45 °. A laser beam may be applied to the reflection surface installed on the pedestal (not shown) on which the optical system PL is mounted, and the relative position information in the optical axis direction (Z-axis direction) of the projection optical system PL may be detected. good.
ウェハ干渉計 2 3で計測されるウェハテーブル W T Bの位置情報 (又は速度 情報) は主制御装置 2 0に送られ、 主制御装置 2 0では前記位置情報 (又は速 度情報)に基づいてウェハステージ駆動部 2 4を構成するリニアモータ 3 6 X , 3 6 Y i , 3 6 Y 2 (これらのリニアモータを含むウェハステージ駆動部 2 4の 構成等については更に後述する) を介してウェハステージ W S Τの X Υ面内位 置を制御する。 The position information (or speed information) of the wafer table WTB measured by the wafer interferometer 23 is sent to the main controller 20. The main controller 20 performs the wafer stage based on the position information (or speed information). The wafer stage WS is connected via the linear motors 36 X, 36 Y i, 36 Y 2 constituting the drive unit 24 (the configuration of the wafer stage drive unit 24 including these linear motors will be further described later). Control the position of Τ in the X Υ plane.
前記ウェハステージ本体部 3 0は、 図 2 Α及び図 2 Βに示されるように、 前 記ステージベース 4 0上面のガイ ド面 4 0 aに対向して配置される矩形板状の 底面部材 4 6、 該底面部材 4 6の上面の Y軸方向の両端部にそれぞれ固定され た一対の支持部材 4 2 A , 4 2 Bと、 これらの支持部材 4 2 A , 4 2 Bによつ て底面部材の上面に平行に支持された天板 4 8等を備えている。  As shown in FIGS. 2A and 2B, the wafer stage main body 30 has a rectangular plate-shaped bottom member 4 that is disposed to face the guide surface 40 a on the upper surface of the stage base 40. 6, a pair of support members 42A, 42B fixed to both ends of the upper surface of the bottom member 46 in the Y-axis direction, respectively, and a bottom surface formed by these support members 42A, 42B. A top plate 48 and the like are supported in parallel on the upper surface of the member.
前記天板 4 8は、 矩形板状の部材から成り、 その上方には、 ボイスコイルモ —タ等よリ成る不図示の Z -チルト駆動機構を介してウェハテーブル W T巳が 載置されている。 また、 この天板 4 8の下面には、 後述する X軸リニアモータ 3 6 Xを構成する可動子 3 2 Xが固定されている。 これについては後述する。 前記底面部材 4 6は、 天板 4 8よりも一回り小さい平板状部材から成り、 図 2 Bに示されるように、 その底面の Y軸方向中央部には、 深さ数) t m (例えば 7 m)程度で所定幅の帯状の凹部 4 6 aが X軸方向に沿って形成されている。 また、 この凹部 4 6 aの Y軸方向両側に位置する平面部 4 6 b , 4 6 cには、 各 2つ合計 4つの真空予圧型気体静圧軸受け (以下、 単に 「気体静圧軸受け」 と呼ぶ) 1 0 2が設けられている。 これらの気体静圧軸受け 1 0 2は、 図 2 B から分かるように、 その中央部に加圧気体 (ここではヘリウム又は窒素などの 不活性ガス) を噴き出す噴出し口 1 0 2 aと、 該噴出し口 1 0 2 aの周囲に形 成され、 不図示の真空吸引路に連通する溝 1 0 2 bとを備えている。 The top plate 48 is formed of a rectangular plate-like member, and a wafer table WT is placed above the top plate 48 via a Z-tilt drive mechanism (not shown) including a voice coil motor and the like. Further, a mover 32X constituting a later-described X-axis linear motor 36X is fixed to a lower surface of the top plate 48. This will be described later. The bottom member 46 is formed of a flat plate member slightly smaller than the top plate 48, and as shown in FIG. 2B, the center of the bottom surface in the Y-axis direction has a depth number tm (for example, 7 A band-shaped recess 46a having a predetermined width of about m) is formed along the X-axis direction. In addition, the flat portions 46 b and 46 c located on both sides of the concave portion 46 a in the Y-axis direction each have a total of four vacuum preload-type gas static pressure bearings (hereinafter simply referred to as “gas static pressure bearings”). 102) are provided. As can be seen from FIG. 2B, these gas static pressure bearings 102 have an outlet 102 a for discharging a pressurized gas (in this case, an inert gas such as helium or nitrogen) into the center thereof, and Shape around the spout 1 0 2 a And a groove 102b communicating with a vacuum suction path (not shown).
ここで、 A r Fエキシマレ一ザ光、 あるし、は F 2 レーザ光などの波長 2 0 0 n m〜 1 5 0 n mの帯域に属する真空紫外と呼ばれる波長域の光束を露光光と して用いる場合には、 酸素や有機物 (F 2 レーザ光の場合には、 それ以外に水 蒸気, 炭化水素ガス等も含む) による吸収が極めて大きいため、 露光光が通る 光路上の空間中のこれらのガスの濃度を数 P p m以下の濃度にまで下げるべく, その光路上の空間の気体を、 吸収の少ない、 窒素や、 ヘリウム等の不活性ガス (以下では、 ヘリウムなどだけでなく窒素も含めて不活性ガスと総称する) で 置換する (パージする) 必要がある。 そこで、 本実施形態では照明系 I O P及 び投影光学系 P Lなどだけでなく、 照明系 I O Pと投影光学系 P Lとの間でレ チクル Rが配置される第 1空間、 及び投影光学系 P Lとウェハ Wとの間の第 2 空間でもパージ (又は単なる不活性ガスの送風) を行っている。 このため、 本 実施形態では加圧気体として、 例えば露光光 I しが通る空間のうち少なくとも 前述の第 2空間に供給される不活性ガスと同一種類、 あるいは種類が異なる別 の不活性ガスを用いることとしている。 Here, A r F excimer one laser light, to some, is used in the light flux of the wavelength range, called Wavelength 2 0 0 nm~ 1 5 0 nm vacuum ultraviolet belonging to the band, such as the F 2 laser beam as the exposure light In such cases, the absorption by oxygen and organic substances (including water vapor, hydrocarbon gas, etc. in the case of F 2 laser light) is extremely large, so these gases in the space on the optical path through which the exposure light passes In order to reduce the concentration of nitrogen to a concentration of several ppm or less, the gas in the space on the optical path should be reduced to an inert gas such as nitrogen or helium (hereinafter, not only helium but also nitrogen). (Collectively referred to as active gas). Therefore, in the present embodiment, not only the illumination system IOP and the projection optical system PL, but also the first space in which the reticle R is arranged between the illumination system IOP and the projection optical system PL, and the projection optical system PL and the wafer Purging (or simply blowing of inert gas) is also performed in the second space between the two. For this reason, in the present embodiment, as the pressurized gas, for example, of the space through which the exposure light I passes, at least the same type as the inert gas supplied to the second space or a different inert gas different in type is used. I have to do that.
但し、 露光光 I Lとして波長が 2 0 0 n m程度以上の照明光 (例えば K r F エキシマレーザ光などの遠紫外光、 又は i線などの紫外光など) を用いる場合 には加圧気体として、 例えばケミカルフィルタにて有機物などの不純物が除去 された空気、 あるいは化学的にクリーンなドライエアなどを用いることができ る。 さらに、 露光光 I Lとして A r Fエキシマレーザ光を用いる場合でも、 露 光光 I Lが通る空間のうち少なくとも前述の第 2空間に不活性ガスが供給され ていなければ、前述の空気又はドライエアなどを加圧気体として用いても良い。 すなわち、少なくとも前述の第 2空間に不活性ガスが供給されていないときは、 加圧気体として任意の気体を用いることができ、 逆に不活性ガスが供給されて いるときは、 加圧気体として不活性ガスを用いることが好ましい。  However, when using illumination light having a wavelength of about 200 nm or more as the exposure light IL (for example, far ultraviolet light such as KrF excimer laser light, or ultraviolet light such as i-ray), the pressurized gas is used. For example, air from which impurities such as organic substances have been removed by a chemical filter, or chemically clean dry air can be used. Furthermore, even when the ArF excimer laser beam is used as the exposure light IL, the air or dry air described above is used unless at least the second space in the space through which the exposure light IL passes is supplied with an inert gas. It may be used as a pressurized gas. That is, when at least the inert gas is not supplied to the second space, any gas can be used as the pressurized gas. Conversely, when the inert gas is supplied, the pressurized gas is used. It is preferable to use an inert gas.
なお、 気体静圧軸受けとして、 軸受け面の加圧気体の噴出し口の周囲に真空 吸引路に連通する溝を有するタイプのものを使用する場合には、 各気体静圧軸 受けからガイ ド面 4 0 aに対して噴出された気体が直ちに真空排気されるので, 周囲への気体の漏出を防止することができる。 従って、 ヘリウム等の純度を高 く維持しなければならない、 気体の流出による周囲気体の汚染を嫌う環境下に おいても加圧気体として空気(ドライエアを含む)、あるいは前述のパージが行 われる空間に比べて純度が相対的に低い、 すなわち露光光を減衰させる不純物 (酸素、 有機物、 水蒸気など) の濃度が相対的に高い不活性ガスを用いること が可能である。 In addition, as a gas static pressure bearing, a vacuum is applied around the pressurized gas outlet on the bearing surface. When using a type that has a groove communicating with the suction path, the gas ejected from each gas static pressure bearing to the guide surface 40a is immediately evacuated and exhausted. Can be prevented from leaking. Therefore, it is necessary to maintain high purity of helium and the like, and even in an environment where the outflow of gas does not want to contaminate the surrounding gas, air (including dry air) as a pressurized gas or the space where the aforementioned purging is performed It is possible to use an inert gas having a relatively low purity as compared with that of the above, that is, a relatively high concentration of impurities (oxygen, organic substances, water vapor, etc.) that attenuate exposure light.
本実施形態では、 4つの気体静圧軸受け 1 0 2の軸受け面からガイ ド面 4 0 aに向かってそれぞれ噴き出された加圧気体の軸受け面とガイ ド面 4 0 aとの 間の静圧 (いわゆる隙間内圧力) と、 ウェハステージ W S T全体の自重と真空 予圧力とのバランスによリ、 ウェハステージ W S Tがステージベース 4 0の上 面であるガイ ド面 4 0 aの上方に数// m程度のクリアランスを介して非接触で 支持されるようになっている。  In this embodiment, the static pressure between the bearing surface of the pressurized gas ejected from the bearing surface of the four gas static pressure bearings 102 toward the guide surface 40a and the guide surface 40a is described. Due to the balance between the pressure (so-called gap pressure), the weight of the entire wafer stage WST, and the vacuum preload, the wafer stage WST is positioned several times above the guide surface 40a, which is the upper surface of the stage base 40. It is supported without contact through a clearance of about / m.
前記ウェハステージ駆動部 2 4は、 図 1に示されるように、 ウェハステージ W S Tを走査方向である X軸方向に駆動する X軸リニアモータ 3 6 Xと、 ゥェ ハステージ W S Tを X軸リニアモータ 3 6 Xと一体的に非走査方向である Y軸 方向に駆動する一対の Y軸リニアモータ 3 6 丫 3 6 Y 2 とを備えている。As shown in FIG. 1, the wafer stage drive unit 24 includes an X-axis linear motor 36 X for driving the wafer stage WST in the X-axis direction, which is the scanning direction, and an X-axis linear motor for the wafer stage WST. 3 comprises 6 X and the pair of the Y axis linear motor 3 6丫3 6 Y 2 for driving the Y-axis direction, which is the integral non-scanning direction.
—方の Υ軸リニアモータ 3 6 Υ ι は、 ステージベース 4 0の一X側で床面 F 上に Y軸方向に延設された固定子としての Y軸リニアガイ ド 3 4 Y i と、 該 Y 軸リニアガイド 3 4 Y i に沿って移動する Y可動子 3 2 とを備えている。 前記 Y軸リニアガイ ド 3 4 Υ ι の内部には不図示の電機子コイルが所定間隔 で Υ軸方向に沿って配設されている。 前記 Υ可動子 3 2 Υ ι は Χ Ζ断面逆 U字 状の形状を有し、 内側の一対の対向面には Υ軸方向に沿って、 不図示の複数の 界磁石が所定間隔で配列されている。すなわち、 Υ軸リニアモータ 3 6 Y i は、 ムービングマグネット型の電磁力駆動方式のリニアモータである。 従って、 Y 軸リニアモータ 3 6 Y i では、 Y軸リニアガイ ド 3 4 丫丄 と、 Y可動子 3 2 Y i との間の電磁相互作用によリ Y可動子 3 2 Y i を Y軸方向に駆動する駆動力 (ローレンツ力) を発生する。 The Y-axis linear motor 36 is connected to a Y-axis linear guide 34 Yi as a stator extending in the Y-axis direction on the floor F at one X side of the stage base 40. And a Y mover 32 moving along the Y-axis linear guide 34 Yi. Armature coils (not shown) are arranged at predetermined intervals along the Y-axis direction inside the Y-axis linear guide 34. The Υmovable element 32 2 Υ ι has an inverted U-shaped cross section, and a plurality of field magnets (not shown) are arranged at predetermined intervals on a pair of inner opposed surfaces along the Υ axis direction. ing. That is, the Υ-axis linear motor 36 Y i is a moving magnet type electromagnetic motor driven linear motor. Therefore, Y In the axis linear motor 36 Yi, the Y mover 32 Yi is driven in the Y-axis direction by electromagnetic interaction between the Y axis linear guide 34 丫 丄 and the Y mover 32 Yi. Generates driving force (Lorentz force).
他方の丫軸リニアモータ 3 6 Y 2 も Υ軸リニアモータ 3 6 と同様の構成 となっている。 すなわち、 Y軸リニアモータ 3 6 Y 2 は、 ステージベース 4 0 の + X側で床面 F上に Y軸方向に延設された Y軸リニアガイ ド 3 4 Y 2 と、 該 Υ軸リニアガイ ド 3 4 Υ 2に沿って移動する Υ可動子 3 2 Υ 2 とを備えている。 この Υ軸リニアモータ 3 6 Υ 2 では、 Υ軸リニアガイ ド 3 4 Υ 2 と、 Υ可動子 3 2 Υ 2 との間で電磁相互作用を行って Υ可動子 3 2 Υ 2 に対する Υ軸方向の 駆動力 (ローレンツ力) を発生する。 The other 丫 -axis linear motor 36 Y 2 has the same configuration as the Υ-axis linear motor 36. That, Y-axis linear motors 3 6 Y 2, the stage base 4 at 0 on the + X side on the floor surface F and Y Y-axis extending in the axial direction Riniagai de 3 4 Y 2, the Υ axis Riniagai de 3 4 Upsilon 2 moves along the Upsilon and a mover 3 2 Υ 2. This Upsilon shaft linear motor 3 6 Υ 2, Υ axis as Riniagai de 3 4 Υ 2, Υ of Upsilon axial direction with respect to the movable element 3 2 Υ 2 Υ mover 3 2 Upsilon 2 perform electromagnetic interaction between the Generates driving force (Lorentz force).
前記 X軸リニアモータ 3 6 Xは、 X軸方向を長手方向とする固定子としての X軸リニアガイ ド 3 4 Xと、 該 X軸リニアガイ ド 3 4 Xに沿って X軸方向へ移 動する X可動子 3 2 Xとを備えている。 前記 X軸リニアガイ ド 3 4 Xの長手方 向の一端部には、 前記一方の Υ可動子 3 2 Y i が固定され、 他端部には他方の Y可動子 3 2 Y 2 が固定されている。 また、 X軸リニアガイ ド 3 4 Xは、 X軸 方向に伸びる固定子ヨークと、 その内部に所定間隔で X軸方向に沿って配設さ れた複数の電機子コイルとを備えている。  The X-axis linear motor 36X includes an X-axis linear guide 34X as a stator having the X-axis direction as a longitudinal direction, and an X-axis moving along the X-axis linear guide 34X. A mover 3 2 X is provided. One end of the X-axis linear guide 34 X in the longitudinal direction is fixed with the one movable element 32 Yi, and the other end is fixed with the other Y movable element 32 Y 2. I have. The X-axis linear guide 34X includes a stator yoke extending in the X-axis direction, and a plurality of armature coils disposed therein at predetermined intervals along the X-axis direction.
前記 X可動子 3 2 Xは、 図 2 Bに示されるように、 前述したウェハステージ 本体部 3 0を構成する天板 4 8の下面に固定された断面矩形枠状で X軸方向に 伸びる可動子ヨーク 5 2と、 該可動子ヨーク 5 2の内面側の上下対向面に、 X 軸方向に沿って所定間隔で交互に配列された複数の界磁石 5 4 N , 5 4 Sとを 備えている。 この場合、 可動子ヨーク 5 2の内部空間には、 X軸方向に沿って 交番磁界が形成されている。 X可動子 3 2 Xの可動子ヨーク 5 2の内部空間に X軸リニアガイ ド 3 4 Xが挿入された状態で図 1の X軸リニアモータ 3 6 Xが 構成されている。  As shown in FIG. 2B, the X mover 32 X is a movable section extending in the X-axis direction in a rectangular frame shape in cross section fixed to the lower surface of the top plate 48 constituting the wafer stage main body 30 described above. And a plurality of field magnets 54 N and 54 S alternately arranged at predetermined intervals along the X-axis direction on the upper and lower opposing surfaces on the inner surface side of the mover yoke 52. I have. In this case, an alternating magnetic field is formed in the inner space of the mover yoke 52 along the X-axis direction. The X-axis linear motor 36 X in FIG. 1 is configured with the X-axis linear guide 34 X inserted into the inner space of the mover yoke 52 of the X mover 3 2 X.
この場合、 X可動子 3 2 Xと、 X軸リニアガイ ド 3 4 Xとの間の電磁相互作 用により、 X可動子 3 2 Xを X軸方向に駆動する駆動力 (ローレンツ力) を発 生するようになっている。 この X軸リニアモータ 3 6 Xは、 厶一ビングマグネ ット型の電磁力駆動方式のリニアモータである。 In this case, electromagnetic interaction between the X mover 32 X and the X axis linear guide 34 X Depending on the application, a driving force (Lorentz force) for driving the X mover 32X in the X-axis direction is generated. The X-axis linear motor 36 X is a moving magnet type linear motor driven by electromagnetic force.
また、前述のように、 X軸リニアガイ ド 3 4 Xの両端部が Y可動子 3 2 Υι、 Also, as described above, both ends of the X-axis linear guide 34 X are Y movers 32 Υι,
3 2 Υ2 にそれぞれ固定されていることから、 Υ軸リニアモータ 3 6 Υι , 3 6 Y2 が Υ軸方向の駆動力を発生すると、 X軸リニアモータ 3 6 Xとともにゥェ ハステージ WS Τが Υ軸方向に駆動されるようになっている。 この場合、 Υ軸 リニアモータ 3 6丫 3 6 Y2 の発生する駆動力を異ならせることにより、 X 軸リニアモータ 3 6 Xを介してウェハステージ WS Tの Z軸回りの回転を制御 することが可能となっている。 Since 3 2 are respectively fixed to Upsilon 2, Upsilon shaft linear motor 3 6 Upushiron'iota, 3 the 6 Y 2 generates a driving force of Upsilon axial, © E c stage WS along with X-axis linear motor 3 6 X T Are driven in the Υ-axis direction. In this case, by varying the Υ driving force generated by the shaft linear motor 3 6丫3 6 Y 2, to control the rotation around the Z-axis of the wafer stage WS T via X-axis linear motor 3 6 X It is possible.
前記底面部材 46の土 Y側の面には、 図 2 A及び図 2 Bに示されるように、 底面部材 46の X軸方向の長さと同一の長さを有する直方体状のおもリ部材 4 As shown in FIGS. 2A and 2B, a rectangular parallelepiped main member 4 having the same length as the length of the bottom member 46 in the X-axis direction is provided on the soil Y-side surface of the bottom member 46.
4 Ai, 44 A2 が固定されている。これらのおもリ部材 44 Αι , 44 A2 は、 それぞれ同形状、 同質量 (ここでは質量 (ΜιΖ2) とする) とされている。 おもリ部材 44 Ai、 44 A2 それぞれの重心 Gi , Gi ' は、 図 3に示される ように、 同一 Z位置で、 且つ底面部材 4 6の重心 GB から等距離の位置となる ように設定されている。 4 Ai, 44 A 2 are fixed. These main members 44 Αι and 44 A 2 have the same shape and the same mass (here, the mass (ΜιΖ2)). Weight member 44 Ai, 44 A 2 each centroid Gi, Gi ', as shown in FIG. 3, at the same Z location, and from the center of gravity G B of the bottom member 4 6 such that the same distance Is set.
すなわち、 上記の如く、 2つのおもリ部材 44 44 A2 が配置されてい ることから、 おもリ部材 44 44 A2 の総重量 (Mi X g) は、 底面部材That, as described above, from Rukoto 2 Tsunoomori member 44 44 A 2 is not arranged, the total weight of the weight member 44 44 A2 (Mi X g) is a bottom member
46の重心08 と同一の Z軸上に作用することになる。 It acts on the same Z axis as the center of gravity 08 of 46.
更に、底面部材 46の上面の Y軸方向中央部には、図 2 Aに示されるように、 複数のブロック状のおもりから構成されるおもリ群 44 Bが載置されている。 この場合、 図 3に示されるように、 おもり群 44 Bの重心 G2 は、 底面部材 4 6の重心 GB と同一の Z軸上に位置するように設定されている。 なお、 このお もり群 44 Bの質量を、 以下の説明においては質量 M2 と表すものとする。 本実施形態において、おもリ部材 44 A , 4 4 A2 の合計質量 及びおも リ群 44Bの質量 M2 は、 以下のように設定されている。 Further, at the center of the upper surface of the bottom member 46 in the Y-axis direction, as shown in FIG. 2A, a weight group 44B composed of a plurality of block-shaped weights is placed. In this case, as shown in FIG. 3, the center of gravity G 2 of the weight group 44 B is set to be positioned on the same Z-axis and the center of gravity G B of the bottom member 4 6. Incidentally, the mass of the contact forest group 44 B, in the following description is intended to refer to the mass M 2. In this embodiment, the total mass of the main members 44 A and 44 A 2 and the main Mass M 2 of the Li group 44B is set as follows.
すなわち、 図 3に示されるように、 ウェハステージ WS Tを X軸方向に駆動 する X軸リニアモータ 36 Xの駆動力 (推力) .が作用する軸 (駆動軸) の Z方 向位置を P、 底面部材 46及びおもり部材 44 44A2、 おもり群 44 B を除くウェハステージ WS T (この質量を Ms とする) の重心を GS とし、 こ の重心 GS と駆動軸との距離を (5、 駆動軸と底面部材 46の重心 GB との距離 を LB、 駆動軸と重心 Gi との高さ方向距離を Li、 駆動軸とおもり群 44 Bの 重心 G2 との距離を L2 としたときに、 次式 ( 1 ) を満たすように質量 ML M 2 が設定されている。 That is, as shown in FIG. 3, the position in the Z direction of the axis (drive shaft) on which the driving force (thrust) of the X-axis linear motor 36 X that drives the wafer stage WST in the X-axis direction is P, bottom member 46 and the weight member 44 44A 2, the center of gravity of the wafer stage WS T excluding the weight group 44 B (this mass and Ms) and G S, the distance between the center of gravity G S this and the drive shaft (5, The distance between the drive shaft and the center of gravity G B of the bottom member 46 is L B , the distance in the height direction between the drive shaft and the center of gravity Gi is Li, and the distance between the drive shaft and the center of gravity G 2 of the weight group 44 B is L 2 . Sometimes, the mass MLM2 is set so as to satisfy the following equation (1).
Ms ■ ά =MB ■ LB+Mi ■ Li+M2 ' し2 … (1 ) Ms ■ ά = M B ■ L B + Mi ■ Li + M 2 'shi 2 ... (1)
このように、 上式 ( 1 ) を満足するように、 おもリ部材 44八 44 A2 の総質量 IVh (おもリ部材 44A 44 A2 それぞれの質量 (I hZZ)) お もり群 44Bの質量 M2 が決定されているので、 結果的にウェハステージ WS T全体の重心位置がウェハステージ WS Tを X軸方向へ駆動する際の駆動軸上 に設定されている。 Thus, so as to satisfy the above equation (1), the total mass IVh (weight member 44A 44 A 2 each mass (I HZZ)) of the weight member 44 eight 44 A 2 in our forest group 44B since the mass M 2 is determined, resulting in the wafer stage WS T total center-of-gravity position is set on the drive shaft in driving the wafer stage WS T in the X-axis direction.
なお、 上式 (1 ) からも分かるように、 各おもリ部材 44 44A2、 お もり群 44 Bの各質量(重量) を軽減する、すなわちウェハステージ WS T (可 動部) 全体の重量を軽減するためには、 距離 LB、 及び L2 は、 できる限 リ大きく設定しておくことが望ましい。 As can be seen from the above equation (1), the weight (weight) of each of the weight members 44 44A 2 and the weight group 44B is reduced, that is, the weight of the entire wafer stage WS T (movable part). In order to reduce the distance, it is desirable to set the distances L B and L 2 as large as possible.
次に、 ウェハテーブル WT Bの側面に設けられた、 前記移動鏡 21 X, 2 1 Yの構成等について図 4 A〜図 4 Cに基づいて説明する。  Next, the configuration and the like of the movable mirrors 21X and 21Y provided on the side surface of the wafer table WTB will be described with reference to FIGS. 4A to 4C.
図 4Aには、 一方の移動鏡 21 Yの具体的な構成が示されている。 この図 4 Aから分かるように、 移動鏡 21 Yは、 ウェハテーブル WT Bの一 Y側端部の 下側から一 Y方向に突出した状態となるように、 ウェハテーブル WT Bの下面 に対してねじ止め等によリ固定された座板 56 Y上に載置されている。 この座 板 56 Yの上面は、 所定の平坦度を満足するように加工されている。 移動鏡 21 Yは、 概略直方体状の形状を有し、 その一 Υ側の面 2 1 Ymが鏡 面加工され、前述した干渉計 23からのレーザが反射されるようになつている。 なお、 以下の説明においては、 この一 Y側面 21 Ymを適宜 「鏡面 2 1 YmJ と呼ぶものとする。 FIG. 4A shows a specific configuration of one movable mirror 21Y. As can be seen from FIG. 4A, the movable mirror 21Y is positioned with respect to the lower surface of the wafer table WT B so as to protrude from the lower side of the one Y-side end of the wafer table WT B in the one Y direction. It is placed on a seat plate 56Y fixed by screws or the like. The upper surface of the seat plate 56Y is processed so as to satisfy a predetermined flatness. The movable mirror 21Y has a substantially rectangular parallelepiped shape, and one surface 21Ym of the movable mirror 21Y is mirror-finished so that the laser from the interferometer 23 is reflected. In the following description, the one Y side surface 21 Ym is appropriately referred to as “mirror surface 21 YmJ”.
鏡面 21 Ymの反対側の面 (+Y側の面) には、 その X軸方向両端部近傍の 位置に、 +Y方向に数 j«m (例えば、 7 jum) 程度突出した凸部 2 1 Y a, 2 1 Y bが移動鏡 21 Yの上端部から下端部にかけて形成されている。  On the surface opposite to the mirror surface 21 Ym (the surface on the + Y side), a convex portion 2 1 m (for example, 7 jum) protruding in the + Y direction at a position near both ends in the X-axis direction. Ya, 21 Yb are formed from the upper end to the lower end of the movable mirror 21Y.
更に、 移動鏡 21 Yの下面には、 上記凸部 2 1 Y a、 21 Y bと同一の X方 向位置に、 一 Z方向に数; U m (例えば、 7 im) 程度突出した状態で、 凸部 2 1 Y C 21 Y dが移動鏡 21 Yの +Y端部から一 Y端部にかけて形成されて いる。  Further, on the lower surface of the movable mirror 21Y, at the same position in the X direction as the above-mentioned convex portions 21Ya and 21Yb, in a state protruding about several Um (for example, 7 im) in one Z direction. The convex portion 21YC21Yd is formed from the + Y end to the one Y end of the movable mirror 21Y.
ここで、 ウェハテーブル WT Bの一 Y側面と移動鏡 21 Yとは、 凸部 21 Y a、 21 Y b部分のみが接触するようになっている。 また、 同様に、 座板 56 Yの上面と移動鏡 21 Yとは、 凸部 21 Y c、 21 Y d部分のみが接触するよ うになつている。 すなわち、 移動鏡 21 Yにおいては、 凸部 21 Y a , 21 Y b以外の +Y側面部分はウェハテーブル WT Bに対して数/ (例えば、 7〃 m) 程度のクリアランスを有し、 凸部 21 Y c, 21 Y d以外の下面部分は座 板 56 Yに対して数〃 m程度のクリアランスを有することになる。  Here, one Y side surface of the wafer table WT B and the movable mirror 21Y are configured so that only the convex portions 21Ya and 21Yb are in contact with each other. Similarly, only the convex portions 21Yc and 21Yd contact the upper surface of the seat plate 56Y and the movable mirror 21Y. That is, in the movable mirror 21Y, the + Y side surfaces other than the convex portions 21Ya and 21Yb have a clearance of about several / (for example, 7 m) with respect to the wafer table WTB. The lower surface portion other than 21 Yc and 21 Yd has a clearance of about several m with respect to the seat plate 56 Y.
更に、 移動鏡 21 Yには、 図 4Aに示されるように、 鏡面 21 Ymの凸部 2 1 c, 21 dの近傍に、 移動鏡 21 Yをウェハテーブル WT Bに対して固定す るためのねじ止め部 21 Y e, 21 Y f が形成されている。  Further, as shown in FIG. 4A, the movable mirror 21Y is provided near the convex portions 21c and 21d of the mirror surface 21Ym to fix the movable mirror 21Y to the wafer table WTB. Screwed portions 21Ye and 21Yf are formed.
図 4 Bには、 上記ねじ止め部 21 Y e , 21 Y f のうちの一方のねじ止め部 21 Y e近傍を拡大して一 Y方向から + Y方向に見た図が示され、図 4 Cには、 図 4 Bの状態からねじ 72を外した状態の図 4 Bにおける A— A線断面図が示 されている。  FIG. 4B shows an enlarged view of the vicinity of one of the screwed portions 21 Ye and 21 Yf of the screwed portions 21 Ye and 21 Yf as viewed from the Y direction to the + Y direction. FIG. 4C shows a cross-sectional view taken along line AA in FIG. 4B with the screw 72 removed from the state in FIG. 4B.
これらの図から分かるように、 ねじ止め部 21 Y eは、 鏡面 21 Ymから Y 軸方向中央部やや + Y側寄りの位置にかけて掘り下げられた状態の矩形状溝部 6 2 aと、 該矩形状溝部 6 2 aの内部の底面から更に + Y側面まで貫通形成さ れた丸孔 6 2 bと、 丸孔 6 2 bの ± X側に位置し該矩形状溝部 6 2 aの内部の 底面から + Y側面まで貫通形成された矩形孔 6 2 c 6 2 dとによリ形成され ている。 As can be seen from these figures, the screwed portion 21 Y e is from the mirror surface 21 Ym to Y A rectangular groove 6 2 a dug down to a position slightly closer to the + Y side in the axial center, and a round hole 6 penetrating from the inner bottom surface of the rectangular groove 6 2 a to the + Y side surface. 2b and a rectangular hole 6 2c 6 2d located on the ± X side of the round hole 6 2b and penetrating from the bottom surface inside the rectangular groove 6 2a to the + Y side surface. ing.
なお、 他方のねじ止め部 2 1 Y f も上記ねじ止め部 2 1 Y eと同様の構成と なっている。 すなわち、 ねじ止め部 2 1 Y f は、 鏡面 2 1 Y mから Y軸方向中 央部やや + Y側寄りの位置にかけて掘り下げられた状態の矩形状溝部と、 矩形 状溝部の内部から更に + Y側面まで貫通形成された丸孔、 及び 2つの矩形孔と により形成されている。  The other screwed portion 21Yf has the same configuration as the screwed portion 21Ye. That is, the screwed portion 21 Yf has a rectangular groove portion dug down from the mirror surface 21 Ym to the center portion in the Y-axis direction and slightly closer to the + Y side, and further + Y from the inside of the rectangular groove portion. It is formed by a round hole penetrating to the side and two rectangular holes.
移動鏡 2 1 Yは、 図 4 Cにおいてねじ止め部 2 1 Y eにて代表的に示される ように、 ねじ止め部 2 1 Y e (及び 2 1 Y f ) に形成された丸孔 6 2 b及び、 ウェハテーブル W T Bの一 Y側面に形成されたねじ穴 8 0を介してねじ 7 2に よリ、 ウェハテーブル W T Bに対してねじ止めされている。  The movable mirror 21 Y has a round hole 6 2 formed in the screwed portion 21 Ye (and 21 Yf) as typically shown by a screwed portion 21 Ye in FIG. 4C. b and the wafer table WTB are screwed to the wafer table WTB by screws 72 through screw holes 80 formed on one Y side of the wafer table WTB.
ねじ止め部 2 1 Y e , 2 1 Y f が上記のように形成されているのは、 移動鏡 2 1 Yがねじ 7 2によってウェハテーブル W T Bの側面に固定されると、 その 固定のための力がねじ 7 2の周辺部に作用することになるが、 このねじ 7 2の 周辺部を上述のようにねじ止め部 2 1 Y e , 2 1 Y f として形成し、 その他の 部分よりも低剛性とすることで、 ねじ 7 2の力によって低剛性部分 (ねじ止め 部) に応力集中が生じ、 ねじ止め部 2 1 Y e , 2 1 Y f 以外の鏡面 2 1 Y m部 分には変形が殆ど生じないようにするためである。 従って、 ねじ止め部 2 1 Y e , 2 1 Y f を移動鏡 2 1 Yに形成することによリ、 鏡面 2 1 Y mの平面度を 高く維持することができるのである。  The reason why the screwing portions 21 Ye and 21 Yf are formed as described above is that when the movable mirror 21 Y is fixed to the side surface of the wafer table WTB by the screws 72, The force acts on the periphery of the screw 72, but the periphery of the screw 72 is formed as the screwed portions 21Ye and 21Yf as described above, and is lower than the other portions. Due to the rigidity, the stress of the screw 72 causes a stress concentration in the low-rigidity part (screwed part), and the mirror surface other than the screwed part 21 Ye and 21 Yf deforms to 21 Ym. This is because almost no occurrence occurs. Therefore, the flatness of the mirror surface 21Ym can be maintained high by forming the screwed portions 21Ye and 21Yf on the movable mirror 21Y.
また、 移動鏡 2 1 Yとして上述したような所定位置に凸部を有する形状を採 用したのは、 ウェハステージ W S Tの駆動に伴う振動が移動鏡 2 1 Yに伝達し ても、移動鏡 2 1 Yとその固定面との間の気体が振動によリ隙間内で移動する、 あるいは隙間から抜け出そうとするため、 その気体の粘性によって振動を減衰 させることができるからである。 Further, the above-described shape having a convex portion at a predetermined position as described above was adopted as movable mirror 21 Y because, even if the vibration accompanying the driving of wafer stage WST is transmitted to movable mirror 21 Y, movable mirror 2 1 The gas between Y and its fixed surface moves in the gap due to vibration, Alternatively, the vibration can be attenuated by the viscosity of the gas in order to escape from the gap.
なお、 他方の移動鏡 2 1 Xについても、 移動鏡 2 1 Yと同様の構成となって いる。  Note that the other movable mirror 21X has the same configuration as the movable mirror 21Y.
すなわち、 移動鏡 2 1 Xは、 図 2 A , 図 2 Bに示されるように、 ウェハテー ブル W T Bの下面の + X端部近傍に固定された座板 5 6 X上に載置されており、 移動鏡 2 1 Xには移動鏡 2 1 Yと同様に、 一X側及び一 Z側の面に 2つの凸部 がそれぞれ形成されている。 そして、 ウェハテーブル W T Bの + X側面及び座 板 5 6 Xの上面 (+ Z側面) と各凸部が接触するようになっている。  That is, as shown in FIGS. 2A and 2B, the movable mirror 21 X is placed on a seat plate 56 X fixed near the + X end of the lower surface of the wafer table WTB, Like the movable mirror 21Y, the movable mirror 21X has two convex portions formed on the surfaces on the 1X side and the 1Z side, respectively. Then, the + X side surface of wafer table WTB and the upper surface (+ Z side surface) of seat plate 56X come into contact with each projection.
そして、 移動鏡 2 1 Xの + X側の面 (鏡面) からその裏面にかけて形成され た不図示のねじ止め部を介して、 ウェハテーブル W T Bに固定されている。  The movable mirror 21X is fixed to the wafer table WTB via a screw (not shown) formed from the + X side (mirror surface) of the movable mirror 21X to the rear surface thereof.
この場合においても、 移動鏡 2 1 Xとウェハテーブル W T Bとの間、 及び移 動鏡 2 1 Xと座板 5 6 Xとの間には凸部を除いて、 数〃 m (例えば、 フ m ) 程度の間隔が設けられている。  Also in this case, a few 〃 m (for example, m m) is excluded between the movable mirror 21 X and the wafer table WTB, and between the movable mirror 21 X and the seat plate 56 X except for a convex portion. ) Intervals.
制御系は、 図 1中、 主制御装置 2 0によって主に構成される。 主制御装置 2 0は、 C P U (中央演算処理装置)、 R O M (リード 'オンリ ' メモリ)、 R A M (ランダム .アクセス■ メモリ) 等から成るいわゆるマイクロコンピュータ (又はワークステーション)を含んで構成され、装置全体を統括して制御する。 主制御装置 2 0は、 例えば露光動作が的確に行われるように、 例えばレチクル Rとウェハ Wの同期走査、 ウェハ Wのス亍ッビング等を制御する。  The control system is mainly constituted by a main controller 20 in FIG. The main control unit 20 includes a so-called microcomputer (or workstation) including a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and the like. Control and control the whole. Main controller 20 controls, for example, synchronous scanning of reticle R and wafer W, subbing of wafer W, and the like, for example, so that the exposure operation is performed appropriately.
次に、 上述のようにして構成された本実施形態の露光装置 1 0により、 レチ クル Rのパターンをウェハ W上の各ショッ卜領域に順次転写する際の露光動作 について簡単に説明する。 なお、 前提として、 不図示のレチクル顕微鏡、 ゥェ ハテーブル W T B上の不図示の基準マーク板、 及び不図示のウェハァライメン ト系を用いたレチクルァライメント、 ウェハァライメント系のベースライン計 測、 及びウェハァライメント (E G A等) 等の準備作業は終了しているものと する。 Next, an exposure operation when the pattern of the reticle R is sequentially transferred to each shot area on the wafer W by the exposure apparatus 10 of the present embodiment configured as described above will be briefly described. It is assumed that a reticle microscope (not shown), a reference mark plate (not shown) on wafer table WTB, a reticle alignment using a wafer alignment system (not shown), baseline measurement of wafer alignment system, and Preparation work such as wafer alignment (EGA etc.) has been completed. I do.
なお、 上記のレチクルァライメント、 ベースライン計測等については、 例え ぱ特開平 7— 1 7 6 4 6 8号公報及びこれに対応する米国特許第 5 , 6 4 6 , 4 1 3号に詳細に開示され、 また、 E G Aについては、 特開昭 6 1—4 4 4 2 9号公報及びこれに対応する米国特許第 4, 7 8 0 , 6 1 7号等に詳細に開示 されている。 本国際出願で指定した指定国又は選択した選択国の国内法令が許 す限りにおいて、 上記各公報並びにこれらに対応する上記米国特許における開 示を援用して本明細書の記載の一部とする。  The above-mentioned reticle alignment, baseline measurement, etc. are described in detail in, for example, Japanese Patent Application Laid-Open No. 7-176468 and U.S. Pat. Nos. 5,646,413 corresponding thereto. The EGA is disclosed in detail in Japanese Patent Application Laid-Open No. Sho 61-44429 and corresponding US Pat. Nos. 4,780,617. To the extent permitted by the national laws of the designated country or selected elected country specified in this international application, the disclosures in each of the above-mentioned publications and the corresponding U.S. patents are incorporated herein by reference to form a part thereof. .
まず、 主制御装置 2 0は、 レチクル Rとウェハ W、 すなわちレチクルステー ジ R S Tとウェハステージ W S Tとの X軸方向の相対走査を開始する。 両ステ ージ R S T、 W S Tがそれぞれの目標走査速度に達し、 等速同期状態に達する と、 照明系 I O Pからの紫外パルス光によってレチクル Rのパターン領域が照 明され始め、 走査露光が開始される。 上記の相対走査は、 主制御装置 2 0力 前述したウェハ干渉計 2 3及びレチクル干渉計 1 6の計測値をモニタしつつ、 レチクル駆動部 2 2及びウェハステージ駆動部 2 4を制御することによリ行わ れる。  First, main controller 20 starts relative scanning in the X-axis direction of reticle R and wafer W, ie, reticle stage RST and wafer stage WST. When both stages RST and WST reach their respective target scanning speeds and reach a constant speed synchronization state, the pattern area of reticle R starts to be illuminated by the ultraviolet pulse light from the illumination system IOP, and scanning exposure starts. . The relative scanning is performed by controlling the reticle driving unit 22 and the wafer stage driving unit 24 while monitoring the measured values of the wafer interferometer 23 and the reticle interferometer 16 described above. It is done.
主制御装置 2 0は、 特に上記の走査露光時には、 レチクルステージ R S丁の X軸方向の移動速度 V rとウェハステージ W S Tの X軸方向の移動速度 V wと が、 投影光学系 P Lの投影倍率 (1 Z 4倍あるいは 1 5倍) に応じた速度比 に維持されるように同期制御を行う。  Main control unit 20 determines, in particular during the above-described scanning exposure, that the moving speed Vr of reticle stage RS in the X-axis direction and the moving speed Vw of wafer stage WST in the X-axis direction are the projection magnification of projection optical system PL. (1X 4 times or 15 times) Performs synchronous control so that the speed ratio is maintained.
そして、 レチクル Rのパターン領域の異なる領域が紫外パルス光で逐次照明 され、 パターン領域全面に対する照明が完了することにより、 ウェハ W上の第 1ショッ トの走査露光が終了する。 これにより、 レチクル Rのパターンが投影 光学系 P Lを介して第 1ショッ卜に縮小転写される。  Then, different areas of the pattern area of the reticle R are sequentially illuminated with the ultraviolet pulse light, and the illumination of the entire pattern area is completed, thereby completing the scanning exposure of the first shot on the wafer W. Thereby, the pattern of the reticle R is reduced and transferred to the first shot via the projection optical system PL.
上述のようにして、 第 1ショットの走査露光が終了すると、 主制御装置 2 0 により、 ウェハステージ駆動部 2 4を介してウェハステージ W S Tが X、 Y軸 方向にステップ移動され、 第 2ショットの露光のための走査開始位置 (加速開 始位置) に移動される。 As described above, when the scanning exposure of the first shot is completed, the main controller 20 moves the wafer stage WST through the wafer stage driving unit 24 to the X and Y axes. In the direction, and is moved to the scanning start position (acceleration start position) for the exposure of the second shot.
そして、 主制御装置 2 0により、 上述と同様に各部の動作が制御され、 ゥェ ハ W上の第 2ショッ卜に対して上記と同様の走査露光が行われる。  Then, the operation of each unit is controlled by the main controller 20 in the same manner as described above, and the second shot on the wafer W is subjected to the same scanning exposure as described above.
このようにして、 ウェハ W上のショッ卜の走査露光とショッ ト間のステツピ ング動作とが繰り返し行われ、 ウェハ W上の露光対象ショッ 卜の全てにレチク ル Rのパターンが順次転写される。  In this manner, the scanning exposure of shots on the wafer W and the stepping operation between shots are repeatedly performed, and the pattern of the reticle R is sequentially transferred to all of the exposure target shots on the wafer W.
ウェハ W上の全露光対象ショッ卜へのパターン転写が終了すると、 次のゥェ ハと交換され、 上記と同様にァライメント、 露光動作が繰り返される。  When the pattern transfer to all the shots to be exposed on the wafer W is completed, the wafer is replaced with the next wafer, and the alignment and the exposure operation are repeated as described above.
以上説明したように、 本実施形態の露光装置 1 0によると、 上述のような露 光動作を行うに際し、 ウェハステージ W S Tがリニアモータによって駆動され るが、 ウェハステージ W S Tの重心位置がウェハステージ W S Tが X軸方向に 駆動されるときの駆動軸上に設定されているので、 ウェハステージ W S Tを X 軸方向に駆動する場合に、 不要な回転モーメン卜が作用しないようになってい る。従って、 ウェハステージ W S Tにピッチング (Y軸回りの回転)、 ョーイン グ (Z軸回りの回転) 等が発生するのを効果的に抑制することができ、 これに よリウェハステージの姿勢安定性及び位置制御性を向上させることが可能とな つている。  As described above, according to the exposure apparatus 10 of the present embodiment, when performing the above-described exposure operation, the wafer stage WST is driven by the linear motor, but the center of gravity of the wafer stage WST is Is set on the drive axis when driven in the X-axis direction, so that when the wafer stage WST is driven in the X-axis direction, unnecessary rotational moment does not act. Therefore, the occurrence of pitching (rotation about the Y-axis), shoring (rotation about the Z-axis), and the like in the wafer stage WST can be effectively suppressed. Position controllability can be improved.
また、 ウェハステージ W S Tの駆動の際に、 本実施形態では、 ウェハテープ ル W T Bに固定された移動鏡 2 1 X , 2 1 Yを用いてウェハテーブル W T巳の 位置計測を行うが、 上述したように、 移動鏡 2 1 X、 2 1 Yがウェハテーブル W T Bの側面、 座板 5 6 X , 5 6 Yの上面に対して数〃 m程度のクリアランス を介して固定されているので、 たとえウェハステージ W S Tが駆動に伴って振 動し、 その振動が移動鏡 2 1 X , 2 1 Yに伝達しても、 移動鏡 2 1 X、 2 1 Y と各固定面との間に存在する気体によって、 移動鏡 2 1 X , 2 1 Yの振動が減 衰されることになる。 これは、 移動鏡 2 1 X, 2 1 Yと各固定面との間の気体 が振動により隙間内で移動する、 あるいは隙間から抜け出そうとするときに、 その気体の粘性により振動が減衰するからである。 従って、 移動鏡 2 1 X , 2 1 Yの振動が極力抑制されることにより、 ウェハステージ W S T (ウェハテー ブル W T B ) の位置制御を高精度に行うことができる。 In driving the wafer stage WST, in the present embodiment, the position of the wafer table WT is measured using the moving mirrors 21X and 21Y fixed to the wafer table WTB. Since the moving mirrors 21X and 21Y are fixed to the side of the wafer table WTB and the upper surface of the seat plates 56X and 56Y with a clearance of about several 〃m, Even if the WST vibrates with the drive and the vibration is transmitted to the movable mirrors 21 X and 21 Y, the gas existing between the movable mirrors 21 X and 21 Y and each fixed surface causes The vibrations of the moving mirrors 21X and 21Y are attenuated. This is the gas between the moving mirrors 21X and 21Y and each fixed surface. This is because when the material moves in the gap due to vibration or tries to get out of the gap, the vibration is attenuated by the viscosity of the gas. Therefore, since the vibration of the movable mirrors 21 X and 21 Y is suppressed as much as possible, the position control of the wafer stage WST (wafer table WTB) can be performed with high accuracy.
また、 ウェハステージ本体部 3 0の底面にも数/ の空隙を形成するための 凹部 4 6 aを形成したことから、 その空隙内に存在する気体の粘性により、 上 述と同様の理由からウェハステージ全体の振動を抑制することができる。 従つ て、ウェハステージ W S Tの位置制御を高精度に行うことが可能となっている。 また、 本実施形態では、 上記のように位置制御性の高いウェハステージ装置 5 0を用いてウェハの移動を行うので、 特に走査型の露光装置では走査露時に おけるレチクルとウェハとの同期精度が向上し、 ウェハに対するパターンの転 写精度、 すなわち露光精度を向上することが可能となっている。  In addition, since the concave portion 46a for forming a void is formed on the bottom surface of the wafer stage main body 30 as well, due to the viscosity of the gas present in the void, the wafer is formed for the same reason as described above. Vibration of the entire stage can be suppressed. Therefore, it is possible to control the position of the wafer stage WST with high accuracy. Further, in the present embodiment, the wafer is moved using the wafer stage device 50 having high position control as described above. Therefore, especially in a scanning type exposure apparatus, the synchronization accuracy between the reticle and the wafer at the time of scanning exposure is improved. It has become possible to improve the transfer accuracy of the pattern onto the wafer, that is, the exposure accuracy.
なお、 上記実施形態では、 ウェハステージの重心位置を駆動軸上に設定する ために、 ウェハステージ本体部に固定されるおもリ部材は、 図 2 A、 図 2 Bの 構成に限られるものではなく、 例えば形状、 個数、 質量、 材質、 及び設置箇所 (位置) などが任意で構わないし、 ウェハステージ本体部を構成する少なくと も 1つの部材 (底面部材 4 6など) をその一部が凸部となるように加工して、 おもリ部材の固定を不要としても良い。 さらに、 上記実施形態では、 ウェハス テ一ジの重心位置を駆動軸上に設定するために、 ウェハステージ本体部に対し ておもり部材、 おもり群を固定するものとしたが、 本発明がこれに限られるも のではない。 すなわち、 ウェハステージの重心位置を調整するにあたって、 お もリ部材を用いる等の外的な付加を行わずに、ウェハステージ本体部(可動部) を構成する少なくとも 1つの部材の材質を変更する、 すなわちその少なくとも 1つの部材を他の部材と異なる重い材質とする。 例えば、 ウェハステージ本体 部を構成する一部の部材としての底面部材を、 ステンレス鋼等の合金鋼、 ニッ ゲル合金、 モリブデン、 ダングステン、 及びそれらの合金等高密度部材等に変 更することとしても良い。 In the above embodiment, in order to set the position of the center of gravity of the wafer stage on the drive shaft, the weight member fixed to the wafer stage body is not limited to the configuration shown in FIGS. 2A and 2B. For example, the shape, the number, the mass, the material, and the installation location (position) may be arbitrarily set, and at least one member (such as the bottom member 46) constituting the wafer stage main body may be partially convex. It may be processed so as to be a part so that fixing of the main member is unnecessary. Further, in the above embodiment, the weight member and the weight group are fixed to the wafer stage main body in order to set the position of the center of gravity of the wafer stage on the drive shaft. However, the present invention is not limited to this. It is not something that can be done. In other words, when adjusting the position of the center of gravity of the wafer stage, the material of at least one member constituting the wafer stage main body (movable part) is changed without external addition such as using a main member. That is, at least one member is made of a heavy material different from other members. For example, the bottom member as a part of the wafer stage body is changed to a high-density member such as alloy steel such as stainless steel, nigel alloy, molybdenum, dangsten, and their alloys. It is good also as changing.
このとき、 ウェハステージ本体部を構成する 1つ又は複数の部材の各々でそ の全てを高密度部材等とすることが好ましいが、 その一部のみを高密度部材等 としても良い。 また、 上記実施形態では、 例えばおもリ部材を付加するなどし て、 ウェハステージ本体部 (可動部) の一部を重く してその重心位置を駆動軸 上に設定するものとしたが、 それとは逆にウェハステージ本体部の一部を軽く する (ウェハステージ本体部を構成する少なくとも 1つの部材を軽量化する)、 例えばウェハテーブル W T Bなどをハニカ厶構造とする、 あるいはその少なく とも 1つの部材を他の部材と異なる軽い材質とするなどして、 ウェハステージ 本体部の重心位置を駆動軸上に設定しても良い。 ここで、 上記重く又は軽くす べき少なくとも 1つの部材は、 ウェハステージ本体部 (可動部) を構成するい かなる部材でも構わない。 さらに、 上記実施形態では、 上記式 (1 ) における ウェハステージ W S T (可動部) の質量 Msがその一部、 例えばウェハテープ ル W T Bに設けられる移動鏡 2 1 X、 2 1 Yや不図示の基準マーク板などの質 量を含むものとしたが、 ウェハステージ W S Tはウェハ Wを保持して移動する ので、 ウェハ Wの質量をも含むものとすることが好ましい。  At this time, it is preferable that one or a plurality of members constituting the wafer stage main body are all made of high-density members or the like, but only a part thereof may be made of high-density members or the like. Further, in the above embodiment, a part of the wafer stage main body (movable part) is made heavy by adding a weight member, for example, and the position of the center of gravity is set on the drive shaft. Conversely, a part of the wafer stage main body is made lighter (at least one member constituting the wafer stage main body is made lighter). For example, the wafer table WTB or the like has a honeycomb structure, or at least one member thereof. The center of gravity of the wafer stage body may be set on the drive shaft by using a lighter material different from other members. Here, the at least one member to be heavier or lighter may be any member constituting the wafer stage main body (movable part). Further, in the above embodiment, the mass Ms of the wafer stage WST (movable part) in the above equation (1) is partly, for example, the moving mirrors 21 X and 21 Y provided on the wafer table WTB and a reference (not shown). Although the weight includes a mark plate and the like, the wafer stage WST moves while holding the wafer W, and therefore preferably includes the mass of the wafer W.
なお、 上記実施形態では、 移動鏡に凸部を形成することで、 移動鏡と固定対 象面との間に空隙を設けるものとしたが、 本発明がこれに限られるものではな く、 ウェハテーブルの側面や、 座板の上面など、 移動鏡が固定される対象面側 に凸部を形成することとしても良いし、 移動鏡と固定対象面との間の隙間に別 の部材を介して固定するようにしても良い。 要は、 移動鏡と固定対象面との間 の一部に空隙を介した状態で、 移動鏡がウェハステージ (ウェハテーブル) に 固定されれば良い。  In the above embodiment, a gap is provided between the movable mirror and the surface to be fixed by forming a convex portion on the movable mirror. However, the present invention is not limited to this. A convex portion may be formed on the side to which the movable mirror is fixed, such as the side of the table or the upper surface of the seat plate, or a separate member may be provided in the gap between the movable mirror and the fixed target surface. It may be fixed. The point is that the moving mirror should be fixed to the wafer stage (wafer table) with a gap between the moving mirror and the surface to be fixed.
なお、 上記実施形態では、 ウェハテーブルに対して移動鏡を固定する手段と してねじ止めを採用するものとした力 本発明がこれに限られるものではなく、 例えば、 凸部にて接着剤等により固定することとしても良い。 この場合には、 上記実施形態のように、 低剛性部を設けなくて良い。 Note that, in the above embodiment, a force that employs screwing as means for fixing the movable mirror to the wafer table is not limited to this. For example, an adhesive such as an adhesive May be fixed. In this case, It is not necessary to provide a low-rigidity portion as in the above embodiment.
なお、 上記実施形態では、 重心位置が駆動軸上に設定されたウェハステージ に振動が抑制された移動鏡を設け、 更にウェハステージの底面部材の底面に凹 部を形成した場合について説明したが、本発明がこれに限られるものではない。 すなわち、 本発明のステージ装置は、 重心位置を駆動軸上に設定する第 1の特 徴、 移動鏡とその固定対象面との間に空隙を設ける第 2の特徴、 及びウェハス テージ (底面部材) の底面に凹部を設ける第 3の特徴のうち、 任意の 2つの特 徴を組み合わせたステージ、 あるいは任意の 1つの特徴を有するステージとし ても良い。 特に第 2の特徴を有さないで第 1及び第 3の特徴の少なくとも一方 を有するウェハステージでは、 移動鏡 2 1 X、 2 1 Yを設けることなくその一 部、 例えばウェハ亍一ブル W T Bの端面を鏡面加工して反射面としても良い。 なお、 上記実施形態においては、 本発明のステージ装置がウェハを駆動する ウェハステージに用いられた場合について説明したが、 これに限らず、 本発明 のステージ装置をレチクルステージとして採用することも可能である。  In the above-described embodiment, the case where the vibration mirror is provided on the wafer stage in which the center of gravity is set on the drive shaft is provided with the movable mirror and the concave portion is formed on the bottom surface of the bottom member of the wafer stage has been described. The present invention is not limited to this. That is, the stage device of the present invention has a first feature of setting the position of the center of gravity on the drive shaft, a second feature of providing a gap between the movable mirror and the surface to be fixed, and a wafer stage (bottom member). Among the third features in which the concave portion is provided on the bottom surface, a stage combining any two features or a stage having any one feature may be used. In particular, in a wafer stage having at least one of the first and third features without having the second feature, a part of the movable stage, such as a wafer table WTB, is not provided without the movable mirrors 21X and 21Y. The end surface may be mirror-finished to be a reflection surface. In the above embodiment, the case where the stage device of the present invention is used for a wafer stage for driving a wafer has been described. However, the present invention is not limited to this, and the stage device of the present invention can be used as a reticle stage. is there.
なお、 上記実施形態では、 ステージを駆動する駆動装置としてリニアモータ を採用した場合について説明したが、 本発明がこれに限られるものではなく、 例えば、駆動装置として送りねじ方式の駆動装置を採用することも可能である。 また、 図 1では図示が省略されているが、 上記実施形態の露光装置は、 ゥェ ハステ一ジ (ステージべ一ス 4 0 ) と投影光学系 P Lとを異なる防振機構でそ れぞれ保持する構成となっているが、 本発明の露光装置がこれに限定されない ことは勿論である。 例えば、 投影光学系 P Lを保持するコラムとステージベー スとを同一の防振機構により支持しても良い。 この場合、 ステージべ一スを前 記コラムに吊り下げ支持することもできる。 あるいは、 ステージベース上に別 の防振機構を設け、 該防振機構を介して前記コラムを支持することとしても良 い。 すなわち、 露光装置のボディ構造は図 1に示されるものに限定されるもの ではなく、 その構成はいかなる構成であっても良い。 さらに、 上記実施形態の露光装置では、 ウェハステージとレチクルステージ との少なくとも一方で、 駆動装置の一部をステージが配置されるベースとは異 なる設置面に配置するリアクションフレーム機構、 あるいはカウンターマスに よってステージの移動時に発生する反力を相殺するカウンターマス機構を採用 しても良いし、 2つのステージが配置されるツインステージ方式、 あるいは 2 つの物体 (レチクル又はウェハ) を保持可能なツインホルダ方式などを採用し ても良い。 In the above embodiment, the case where a linear motor is used as the driving device for driving the stage has been described. However, the present invention is not limited to this. For example, a driving device of a feed screw system is used as the driving device. It is also possible. Although not shown in FIG. 1, the exposure apparatus according to the above-described embodiment uses a different vibration-proof mechanism for each of the wafer stage (stage base 40) and the projection optical system PL. Although the exposure apparatus is configured to hold the exposure apparatus, it goes without saying that the exposure apparatus of the present invention is not limited to this. For example, the column holding the projection optical system PL and the stage base may be supported by the same vibration isolation mechanism. In this case, the stage base may be suspended from the column described above. Alternatively, another anti-vibration mechanism may be provided on the stage base, and the column may be supported via the anti-vibration mechanism. That is, the body structure of the exposure apparatus is not limited to the one shown in FIG. 1, but may have any configuration. Further, in the exposure apparatus of the above-described embodiment, at least one of the wafer stage and the reticle stage has a reaction frame mechanism that arranges a part of the driving device on an installation surface different from the base on which the stage is arranged, or a counter mass. Therefore, a countermass mechanism that cancels the reaction force generated when the stage moves may be adopted, a twin-stage system in which two stages are arranged, or a twin-holder system that can hold two objects (reticle or wafer). Etc. may be adopted.
なお、 上記実施形態では、 光源として F 2 レーザ、 A r Fエキシマレ一ザ等 の真空紫外域のパルスレーザ光源を用いるものとしたが、 これに限らず、 水銀 ランプ、 K r Fエキシマレ一ザ光源 (出力波長 2 4 8 n m) などの紫外又は遠 紫外光源、 あるいは A r 2 レーザ光源 (出力波長 1 2 6 n m ) などの他の真空 紫外光源を用いても良い。 また、 例えば、 真空紫外光として上記各光源から出 力されるレーザ光に限らず、 D F B半導体レーザ又はファイバ一レーザから発 振される赤外域、 又は可視域の単一波長レーザ光を、例えばエルビウム (E r ) (又はエルビウムとイッテルビウム (Y b ) の両方) がド一プされたファイバ 一アンプで増幅し、 非線形光学結晶を用いて紫外光に波長変換した高調波を用 いても良い。 さらに、 露光用照明光 I Lとして紫外光などだでなく、 X線 (E U V光を含む) 又は電子線やイオンビームなどの荷電粒子線などを用いても良 い。 In the above embodiment, F 2 laser as the light source, it is assumed to use a pulsed laser light source in the vacuum ultraviolet region, such as A r F excimer one The is not limited to this, a mercury lamp, K r F excimer one laser light source (output wavelength 2 4 8 nm) may be used ultraviolet or far ultraviolet light source or a r 2 other vacuum ultraviolet light source such as a laser light source (output wavelength 1 2 6 nm), such as. Further, for example, not only the laser light output from each of the above light sources as vacuum ultraviolet light, but also a single-wavelength laser light in the infrared or visible range emitted from a DFB semiconductor laser or a fiber-laser, for example, erbium (E r) (or both erbium and ytterbium (Y b)) may be amplified by a fiber-coupled amplifier, and a harmonic converted to ultraviolet light using a nonlinear optical crystal may be used. Furthermore, not only ultraviolet light but also X-rays (including EUV light) or charged particle beams such as electron beams and ion beams may be used as the illumination light IL for exposure.
なお、 上記実施形態では、 ステップ 'アンド■スキャン方式等の走査型露光 装置に本発明が適用された場合について説明したが、 本発明の適用範囲がこれ に限定されないことは勿論である。 すなわちステップ 'アンド■ リピート方式 の縮小投影露光装置にも本発明は好適に適用できる。  In the above embodiment, the case where the present invention is applied to a scanning exposure apparatus such as a step-and-scan method has been described, but the scope of the present invention is, of course, not limited to this. That is, the present invention can be suitably applied to a step-and-repeat type reduction projection exposure apparatus.
なお、 複数のレンズから構成される照明光学系、 投影光学系を露光装置本体 に組み込み、 光学調整をするとともに、 多数の機械部品からなるレチクルステ ージゃウェハステージを露光装置本体に取り付けて配線や配管を接続し、 更に 総合調整 (電気調整、 動作確認等) をすることにより、 上記実施形態の露光装 置を製造することができる。 なお、 露光装置の製造は温度及びクリーン度等が 管理されたクリーンルームで行うことが望ましい。 In addition, the illumination optical system and projection optical system composed of multiple lenses are incorporated in the main body of the exposure apparatus, optical adjustment is performed, and a reticle stage consisting of many mechanical parts and a wafer stage are attached to the main body of the exposure apparatus to perform wiring and Connect the piping and By performing comprehensive adjustment (electrical adjustment, operation check, etc.), the exposure apparatus of the above embodiment can be manufactured. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled.
また、 上記実施形態では、 本発明が半導体製造用の露光装置に適用された場 合について説明したが、 これに限らず、 例えば、 角型のガラスプレートに液晶 表示素子パターンを転写する液晶用の露光装置、 プラズマディスプレイや有機 E Lなどの表示装置、 薄膜磁気ヘッ ド、 撮像素子、 マイクロマシン、 D N Aチ ップなどを製造するための露光装置などにも本発明は広く適用できる。  In the above embodiment, the case where the present invention is applied to an exposure apparatus for manufacturing a semiconductor is described. However, the present invention is not limited to this. For example, the present invention is applied to a liquid crystal display device for transferring a liquid crystal display element pattern to a square glass plate. The present invention can be widely applied to an exposure apparatus, a display apparatus such as a plasma display and an organic EL, an exposure apparatus for manufacturing a thin-film magnetic head, an image sensor, a micromachine, a DNA chip, and the like.
また、 半導体素子などのマイクロデバイスだけでなく、 光露光装置、 E U V 露光装置、 X線露光装置、 及び電子線露光装置などで使用されるレチクル又は マスクを製造するために、 ガラス基板又はシリコンウェハなどに回路パターン を転写する露光装置にも本発明を適用できる。 ここで、 D U V (遠紫外) 光や V U V (真空紫外) 光などを用いる露光装置では一般的に透過型レチクルが用 いられ、レチクル基板としては石英ガラス、フッ素がド一プされた石英ガラス、 螢石、 フッ化マグネシウム、 又は水晶などが用いられる。  In addition to micro devices such as semiconductor devices, glass substrates or silicon wafers are used to manufacture reticles or masks used in optical exposure equipment, EUV exposure equipment, X-ray exposure equipment, electron beam exposure equipment, etc. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern to a substrate. Here, a transmissive reticle is generally used in an exposure apparatus using DUV (far ultraviolet) light or VUV (vacuum ultraviolet) light, and quartz glass, quartz glass doped with fluorine, and the like are used as a reticle substrate. Fluorite, magnesium fluoride, quartz or the like is used.
半導体デバイスは、 デバイスの機能■性能設計を行うステップ、 この設計ス 亍ップに基づいたレチクルを製作するステップ、 シリコン材料からウェハを製 作するステップ、 上記実施形態の露光装置によりレチクルのパターンをウェハ に転写するステップ、 デバイス組み立てステップ (ダイシング工程、 ボンディ ング工程、 パッケージ工程を含む)、 検査ステップ等を経て製造される。 以下、 このデバイス製造方法について詳述する。  The semiconductor device includes a step of designing the function and performance of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, and a step of forming a reticle pattern by the exposure apparatus of the above embodiment. It is manufactured through the steps of transferring to a wafer, device assembling steps (including dicing, bonding, and packaging processes) and inspection steps. Hereinafter, this device manufacturing method will be described in detail.
《デバイス製造方法》  《Device manufacturing method》
図 5には、デバイス( I Cや L S I等の半導体チップ、液晶パネル、 C C D、 薄膜磁気ヘッド、 マイクロマシン等) の製造例のフローチャートが示されてい る。図 5に示されるように、 まず、ステップ 2 0 1 (設計ステップ) において、 デバイスの機能■性能設計 (例えば、 半導体デバイスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。引き続き、ステップ 2 0 2 (マ スク製作ステップ) において、 設計した回路パターンを形成したマスクを製作 する。 一方、 ステップ 2 0 3 (ウェハ製造ステップ) において、 シリコン等の 材料を用いてウェハを製造する。 FIG. 5 shows a flowchart of an example of manufacturing devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.). As shown in FIG. 5, first, in step 201 (design step), a function / performance design of a device (for example, a circuit design of a semiconductor device) is performed. A pattern is designed to realize the function. Subsequently, in step 202 (mask manufacturing step), a mask on which the designed circuit pattern is formed is manufactured. On the other hand, in step 203 (wafer manufacturing step), a wafer is manufactured using a material such as silicon.
次に、 ステップ 2 0 4 (ウェハ処理ステップ) において、 ステップ 2 0 1〜 ステップ 2 0 3で用意したマスクとウェハを使用して、 後述するように、 リソ グラフィ技術等によってウェハ上に実際の回路等を形成する。 次いで、 ステツ プ 2 0 5 (デバイス組立てステップ) において、 ステップ 2 0 4で処理された ウェハを用いてデバイス組立てを行う。 このステップ 2 0 5には、 ダイシング 工程、 ボンディング工程、 及びパッケージング工程 (チップ封入) 等の工程が 必要に応じて含まれる。  Next, in step 204 (wafer processing step), using the mask and wafer prepared in steps 201 to 203, an actual circuit is formed on the wafer by lithography technology or the like as described later. Etc. are formed. Next, in step 205 (device assembling step), device assembling is performed using the wafer processed in step 204. Step 205 includes, as necessary, processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation).
最後に、 ステップ 2 0 6 (検査ステップ) において、 ステップ 2 0 5で作成 されたデバイスの動作確認テスト、 耐久テスト等の検査を行う。 こうした工程 を経た後にデバイスが完成し、 これが出荷される。  Finally, in step 206 (inspection step), inspections such as an operation confirmation test and a durability test of the device created in step 205 are performed. After these steps, the device is completed and shipped.
図 6には、 半導体デバイスにおける、 上記ステップ 2 0 4の詳細なフロ一例 が示されている。 図 6において、 ステップ 2 1 1 (酸化ステップ) においては ウェハの表面を酸化させる。 ステップ 2 1 2 ( C V Dステップ) においてはゥ ェハ表面に絶縁膜を形成する。 ステップ 2 1 3 (電極形成ステップ) において はウェハ上に電極を蒸着によって形成する。 ステップ 2 1 4 (イオン打ち込み ステップ) においてはウェハにイオンを打ち込む。 以上のステップ 2 1 1〜ス テツプ 2 1 4それぞれは、 ウェハ処理の各段階の前処理工程を構成しており、 各段階において必要な処理に応じて選択されて実行される。  FIG. 6 shows a detailed flow example of the above step 204 in the semiconductor device. In FIG. 6, in step 2 11 (oxidation step), the surface of the wafer is oxidized. In step 212 (CVD step), an insulating film is formed on the wafer surface. In step 2 13 (electrode formation step), electrodes are formed on the wafer by vapor deposition. In step 2 14 (ion implantation step), ions are implanted into the wafer. Each of the above-mentioned steps 21 1 to 21 4 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage.
ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下の ようにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ 2 1 5 (レジスト形成ステップ) において、 ウェハに感光剤を塗布する。 引き続 き、 ステップ 2 1 6 (露光ステップ) において、 上で説明した露光装置及びそ の露光方法によってマスクの回路パターンをウェハに転写する。 次に、 ステツ プ 2 1 7 (現像ステップ) においては露光されたウェハを現像し、 ステップ 2In each stage of the wafer process, when the above-described pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step 215 (resist forming step), a photosensitive agent is applied to the wafer. Subsequently, in step 2 16 (exposure step), the exposure apparatus and its The circuit pattern of the mask is transferred to the wafer by the exposure method described above. Next, in step 2 17 (development step), the exposed wafer is developed, and
1 8 (エッチングステップ) において、 レジストが残存している部分以外の部 分の露出部材をエッチングにより取り去る。 そして、 ステップ 2 1 9 (レジス 卜除去ステップ) において、 エッチングが済んで不要となったレジストを取り 除く。 In 18 (etching step), the exposed members other than the portion where the resist remains are removed by etching. Then, in step 219 (resist removing step), unnecessary resist after etching is removed.
これらの前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ上 に多重に回路パターンが形成される。  By repeating these pre-processing and post-processing steps, multiple circuit patterns are formed on the wafer.
以上説明した本実施形態のデバイス製造方法を用いれば、 露光工程 (ステツ プ 2 1 6 ) において上記実施形態の露光装置が用いられるので、 第 2物体とし てのウェハ上に第 1物体としてのレチクルのパターンを高精度に転写すること ができ、 結果的に高集積度のデバイスを生産性 (歩留まりを含む) を向上させ ることが可能となる。 産業上の利用可能性  When the device manufacturing method of the present embodiment described above is used, the exposure apparatus of the above embodiment is used in the exposure step (step 2 16), so that the reticle as the first object is placed on the wafer as the second object. The pattern can be transferred with high precision, and as a result, the productivity (including the yield) of a highly integrated device can be improved. Industrial applicability
以上説明したように、 本発明の第 1〜第 3のステージ装置は、 ステージをそ の姿勢の安定性及び位置制御性良く駆動するのに適している。 また、 本発明の 露光装置は、 回路パターンを物体上に転写するのに適している。 また、 本発明 のデバイス製造方法は、 高集積度のデバイスの生産に適している。  As described above, the first to third stage devices of the present invention are suitable for driving a stage with good posture stability and position controllability. Further, the exposure apparatus of the present invention is suitable for transferring a circuit pattern onto an object. Further, the device manufacturing method of the present invention is suitable for producing a highly integrated device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 物体が載置されるステージと ;  1. a stage on which the object is placed;
該ステージを少なくとも所定の 1軸方向に駆動する駆動装置と ; を備え、 前記ステージの重心位置は、 前記駆動装置が少なくとも前記所定の 1軸方向 に前記ステージを駆動する際の駆動軸上に設定されていることを特徴とするス テージ装置。  And a driving device for driving the stage in at least a predetermined one axis direction. The position of the center of gravity of the stage is set on a driving axis when the driving device drives the stage in at least the predetermined one axis direction. A stage device characterized in that:
2 . 請求項 1に記載のステージ装置において、 2. The stage device according to claim 1,
前記駆動装置は、 前記ステージを移動面内で前記所定の 1軸方向及びこれに 直交する他の 1軸方向に駆動することを特徴とするステージ装置。  The stage device, wherein the driving device drives the stage in the predetermined one axis direction and another one axis direction orthogonal to the predetermined one axis direction in a moving plane.
3 . 請求項 1に記載のステージ装置において、 3. The stage device according to claim 1,
前記駆動装置は、 リニァモータであることを特徴とするステージ装置。  The stage device, wherein the driving device is a linear motor.
4 . 請求項 1に記載のステージ装置において、 4. The stage device according to claim 1,
前記ステージは、 前記物体を保持するテーブルと、 該テーブルを支持するス テージ本体部とを備え、  The stage includes a table that holds the object, and a stage body that supports the table.
前記重心位置の前記駆動軸上への設定は、 前記ステージ本体部の重心位置の 調整によリ行われていることを特徴とするステージ装置。  The stage apparatus, wherein the setting of the position of the center of gravity on the drive shaft is performed by adjusting the position of the center of gravity of the stage main body.
5 . 請求項 4に記載のステージ装置において、 5. The stage device according to claim 4,
前記ステージ本体部に取り付けられた前記重心位置の調整用のおもリ部材を 更に備えることを特徴とするステージ装置。  A stage apparatus further comprising a weight member for adjusting the position of the center of gravity attached to the stage body.
6 . 請求項 4に記載のステージ装置において、 前記ステージ本体部の重心位置の調整は、 前記ステージ本体部を構成する一 部の部材として高密度部材を用いることにより実現されることを特徴とするス テージ装置。 6. The stage device according to claim 4, A stage apparatus wherein the adjustment of the position of the center of gravity of the stage main body is realized by using a high-density member as a part of the stage main body.
7 . 請求項 6に記載のステージ装置において、 7. The stage device according to claim 6,
前記ステージの移動基準となるガイ ド面に対して所定のクリアランスを介し て前記ステージ本体部及び前記テーブルを浮上支持する気体静圧軸受けを更に 備え、  The apparatus further includes a static gas pressure bearing that floats and supports the stage main body and the table via a predetermined clearance with respect to a guide surface serving as a movement reference of the stage,
前記一部の部材は、 前記気体静圧軸受けが設けられた底面部材であることを 特徴とするステージ装置。  The stage device according to claim 1, wherein the partial member is a bottom member provided with the static gas pressure bearing.
8 . 請求項 7に記載のステージ装置において、 8. The stage device according to claim 7,
前記底面部材の底面に、 所定深さの凹部が形成されていることを特徴とする ステージ装置。  A stage device, wherein a concave portion having a predetermined depth is formed on a bottom surface of the bottom member.
9 . 請求項 1に記載のステージ装置において、 9. The stage apparatus according to claim 1,
前記ステージの位置は、 干渉計により計測され、  The position of the stage is measured by an interferometer,
前記ステージとの間に空隙を形成した状態で、 少なくとも 2点で前記ス亍ー ジに固定される前記干渉計用の移動鏡を更に備えることを特徴とするステージ  A stage further comprising a movable mirror for the interferometer fixed to the stage at at least two points with a gap formed between the stage and the stage.
1 0 . 物体が載置されるとともに、 移動基準となるガイ ド面に対して所定の クリアランスを介して浮上支持されたステージと ; 10. A stage on which an object is placed and which is levitated and supported via a predetermined clearance with respect to a guide surface serving as a movement reference;
前記ステージを前記ガイ ド面に沿って少なくとも所定の 1軸方向に駆動する 駆動装置と ; を ίΐえ、  A driving device for driving the stage in at least one predetermined axial direction along the guide surface;
前記ステージを構成する底面部材の底面に、 所定深さの凹部が形成されてい ることを特徴とするステージ装置。 A recess having a predetermined depth is formed on the bottom surface of the bottom member constituting the stage. A stage device.
1 1 . 請求項 1 0に記載のステージ装置において、 11. The stage device according to claim 10, wherein
前記ステージの位置は、 干渉計により計測され、  The position of the stage is measured by an interferometer,
前記ステージとの間に空隙を形成した状態で、 少なくとも 2点で前記ステー ジに固定される前記干渉計用の移動鏡を更に備えることを特徴とするステージ  A stage further comprising a movable mirror for the interferometer fixed to the stage at at least two points with a gap formed between the stage and the stage.
1 2 . 請求項 1 1に記載のステージ装置において、 1 2. In the stage device according to claim 11,
前記移動鏡の前記ステージに対向する部分には、 前記ステージと接触する少 なくとも 2箇所の接触部と、 前記ステージとは接触しない非接触部とが設定さ れていることを特徴とするステージ装置。  At least two contact portions that contact the stage and a non-contact portion that does not contact the stage are set on a portion of the movable mirror that faces the stage. apparatus.
1 3 . 請求項 1 2に記載のステージ装置において、 13. The stage apparatus according to claim 12,
前記接触部は、 前記移動鏡の前記ステージ対向面に設けられた凸部であるこ とを特徴とするステージ装置。  The stage device, wherein the contact portion is a convex portion provided on the stage facing surface of the movable mirror.
1 4 . 請求項 1 2に記載のステージ装置において、 14. The stage device according to claim 12,
前記移動鏡は、 前記接触部にて前記ステージに対してねじ止めされ、 前記ミ ラーのねじ止め位置周辺の部分は、 その他の部分よリも低剛性とされているこ とを特徴とするステージ装置。  A stage, wherein the movable mirror is screwed to the stage at the contact portion, and a portion around a screwing position of the mirror has lower rigidity than other portions. apparatus.
1 5 . 請求項 1 0に記載のステージ装置において、 15. The stage apparatus according to claim 10,
前記ステージの重心位置は、 前記ステージの駆動軸上に設定されていること を特徴とするステージ装置。 A stage apparatus, wherein the position of the center of gravity of the stage is set on a drive shaft of the stage.
1 6 . 物体が載置されるとともに、 その位置が干渉計により計測されるステ ージと ; 16. A stage where the object is placed and its position is measured by an interferometer;
前記ステージとの間に空隙を形成した状態で、 少なくとも 2点で前記ステー ジに固定される前記干渉計用の移動鏡と ; を備えるステージ装置。  And a movable mirror for the interferometer fixed to the stage at at least two points in a state where a gap is formed between the stage and the stage.
1 7 . 請求項 1 6に記載のステージ装置において、 17. The stage device according to claim 16,
前記移動鏡の前記ステージに対向する部分には、 前記ステージと接触する少 なくとも 2箇所の接触部と、 前記ステージとは接触しない非接触部とが設定さ れていることを特徴とするステージ装置。  At least two contact portions that contact the stage and a non-contact portion that does not contact the stage are set on a portion of the movable mirror that faces the stage. apparatus.
1 8 . 請求項 1 7に記載のステージ装置において、 18. The stage device according to claim 17,
前記接触部は、 前記移動鏡の前記ステージ対向面に設けられた凸部であるこ とを特徴とするステージ装置。  The stage device, wherein the contact portion is a convex portion provided on the stage facing surface of the movable mirror.
1 9 . 請求項 1 7に記載のステージ装置において、 1 9. The stage device according to claim 17,
前記移動鏡は、 前記接触部にて前記ステージに対してねじ止めされ、 前記ミ ラーのねじ止め位置周辺の部分は、 その他の部分よリも低剛性とされているこ とを特徴とするステージ装置。  A stage, wherein the movable mirror is screwed to the stage at the contact portion, and a portion around a screwing position of the mirror has lower rigidity than other portions. apparatus.
2 0 . 請求項 1 6に記載のステージ装置において、 20. The stage apparatus according to claim 16,
前記ステージの重心位置は、 前記ステージの駆動軸上に設定されていること を特徴とするステージ装置。  The stage apparatus, wherein the position of the center of gravity of the stage is set on a drive shaft of the stage.
2 1 . 第 1物体に形成されたパターンを第 2物体上に転写する露光装置であ つて、 21. An exposure apparatus for transferring a pattern formed on a first object onto a second object,
請求項 1〜 2 0のいずれか一項に記載のステージ装置を、 前記第 1物体と前 記第 2物体との少なくとも一方の駆動装置として具備する露光装置。 The stage device according to any one of claims 1 to 20, wherein An exposure apparatus provided as at least one drive unit for the second object.
2 2 . リソグラフイエ程を含むデバイス製造方法であって、 22. A device manufacturing method including a lithographic process,
前記リソグラフイエ程では、 請求項 2 1に記載の露光装置を用いて、 第 1物 体のパターンを第 2物体上に転写することを特徴とするデバイス製造方法。  22. A device manufacturing method, wherein the pattern of a first object is transferred onto a second object using the exposure apparatus according to claim 21 in the lithographic process.
PCT/JP2002/002928 2001-03-28 2002-03-26 Stage device, exposure device, and method of manufacturing device WO2002080185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002578512A JPWO2002080185A1 (en) 2001-03-28 2002-03-26 Stage apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-092235 2001-03-28
JP2001092235 2001-03-28

Publications (1)

Publication Number Publication Date
WO2002080185A1 true WO2002080185A1 (en) 2002-10-10

Family

ID=18946735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002928 WO2002080185A1 (en) 2001-03-28 2002-03-26 Stage device, exposure device, and method of manufacturing device

Country Status (3)

Country Link
JP (1) JPWO2002080185A1 (en)
TW (1) TW548708B (en)
WO (1) WO2002080185A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007660A1 (en) * 2006-07-14 2008-01-17 Nikon Corporation Stage apparatus and exposure apparatus
JP2011133492A (en) * 2004-05-14 2011-07-07 Kla-Tencor Corp System and method for measuring specimen
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
JP2017073503A (en) * 2015-10-08 2017-04-13 株式会社ニューフレアテクノロジー Stage device and charged particle beam lithography device
US10055834B2 (en) 2015-08-04 2018-08-21 Nuflare Technology, Inc. Pattern inspection apparatus, pattern imaging apparatus, and pattern imaging method
TWI820665B (en) * 2019-04-10 2023-11-01 荷蘭商Asml荷蘭公司 Particle beam apparatus and object table

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593961B (en) * 2010-12-15 2017-08-01 日立全球先端科技股份有限公司 Charged particle line application device, and irradiation method
JP6327917B2 (en) * 2014-04-11 2018-05-23 株式会社キーエンス Shape measuring device, shape measuring method, and shape measuring program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121605A (en) * 1990-09-13 1992-04-22 Canon Inc Mounting construction for laser interferometer mirror for detecting position
JPH11231079A (en) * 1998-02-13 1999-08-27 Nikon Corp Stage device and exposure device
JPH11317440A (en) * 1998-05-06 1999-11-16 Canon Inc Stage device, aligner, and manufacture of the devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121605A (en) * 1990-09-13 1992-04-22 Canon Inc Mounting construction for laser interferometer mirror for detecting position
JPH11231079A (en) * 1998-02-13 1999-08-27 Nikon Corp Stage device and exposure device
JPH11317440A (en) * 1998-05-06 1999-11-16 Canon Inc Stage device, aligner, and manufacture of the devices

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2011133492A (en) * 2004-05-14 2011-07-07 Kla-Tencor Corp System and method for measuring specimen
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
KR101236043B1 (en) 2006-07-14 2013-02-21 가부시키가이샤 니콘 Stage apparatus, exposure apparatus, and device manufacturing method
WO2008007660A1 (en) * 2006-07-14 2008-01-17 Nikon Corporation Stage apparatus and exposure apparatus
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US10055834B2 (en) 2015-08-04 2018-08-21 Nuflare Technology, Inc. Pattern inspection apparatus, pattern imaging apparatus, and pattern imaging method
JP2017073503A (en) * 2015-10-08 2017-04-13 株式会社ニューフレアテクノロジー Stage device and charged particle beam lithography device
TWI820665B (en) * 2019-04-10 2023-11-01 荷蘭商Asml荷蘭公司 Particle beam apparatus and object table
US11908656B2 (en) 2019-04-10 2024-02-20 Asml Netherlands B.V. Stage apparatus suitable for a particle beam apparatus

Also Published As

Publication number Publication date
TW548708B (en) 2003-08-21
JPWO2002080185A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
WO2002080185A1 (en) Stage device, exposure device, and method of manufacturing device
JP4362862B2 (en) Stage apparatus and exposure apparatus
EP1746637B1 (en) Drive method for mobile body, stage device, and exposure device
JP5182557B2 (en) Pattern forming method, pattern forming apparatus, and device manufacturing method
JPWO2003015139A1 (en) Stage system, exposure apparatus, and device manufacturing method
US20040083966A1 (en) Support device and manufacturing method thereof, stage device, and exposure apparatus
US20060215144A1 (en) Stage drive method, stage apparatus, and exposure apparatus
WO1999063585A1 (en) Scanning aligner, method of manufacture thereof, and method of manufacturing device
JPWO2005083294A1 (en) Gas spring device, vibration isolator, stage device, and exposure device
JP2004193425A (en) Movement control method, movement controller, aligner and device manufacturing method
TW200302507A (en) Stage device and exposure device
CN105493237B (en) Movable body apparatus, exposure apparatus, and device manufacturing method
JP2004140145A (en) Aligner
JP4479911B2 (en) Driving method, exposure method, exposure apparatus, and device manufacturing method
JP2004165416A (en) Aligner and building
JPWO2004105105A1 (en) Stage apparatus, exposure apparatus, and device manufacturing method
JPWO2004075268A1 (en) Moving method, exposure method, exposure apparatus, and device manufacturing method
JP2006303312A (en) Stage equipment and aligner
JP2003045785A (en) Stage apparatus, aligner, and device-manufacturing method
JP2006040927A (en) Supporting apparatus, stage device, exposure device and method of manufacturing device
JP2001023896A (en) Stage device and aligner
JP2005140185A (en) Parallel link mechanism, stage device and aligner
WO2007135998A1 (en) Holding device and exposure device
JP2002217082A (en) Stage system and aligner
JP2000269118A (en) Method of exposure and aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002578512

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase