WO2002089216A1 - Method for increasing the output power of photovoltaic cells - Google Patents

Method for increasing the output power of photovoltaic cells Download PDF

Info

Publication number
WO2002089216A1
WO2002089216A1 PCT/DZ2001/000004 DZ0100004W WO02089216A1 WO 2002089216 A1 WO2002089216 A1 WO 2002089216A1 DZ 0100004 W DZ0100004 W DZ 0100004W WO 02089216 A1 WO02089216 A1 WO 02089216A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic cells
output power
increasing
rays
multiprism
Prior art date
Application number
PCT/DZ2001/000004
Other languages
French (fr)
Inventor
Bachir Hihi
Original Assignee
Bachir Hihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bachir Hihi filed Critical Bachir Hihi
Publication of WO2002089216A1 publication Critical patent/WO2002089216A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • Energy consumption in the USA for example is 1200 TWh. In France, nuclear represents 70% of French energy consumption.
  • the production cost in the USA is as follows: -3.88 cents / KWh for nuclear; - 1.87 cents / KWh for the fossil;
  • Semi-crystalline silicon modules formed a quarter of global photovoltaic sales in 1988 and their performance is between 12% and 13%.
  • Amorphous silicon has a low yield which is around 7% and the explanation for this imperformance, while manufacturing is expensive.
  • the solar ray perpendicular to F0 will continue its path without deviation, until meeting the facet FI where it will refract in R '1, by making an angle>, ⁇ R'1 is directed on a photovoltaic cell.
  • the surface of the facet F ′ 1 will be calculated in such a way that all the rays which arrive on its surface, will refract covering the entire surface of the photovoltaic cell.
  • the photovoltaic cell will receive as many suns as there are facets, obviously taking into account the absorption at the multiprism level as the cosine of the solar rays with the photovoltaic cell.
  • the rise in temperature due to the concentration does not have much influence on the voltage and we arrive with multiprisms to an increase in the output power of the modules, of the order of 4 to 5 times the nominal power .
  • the concentration with the multiprism does not give satisfactory results, because of the rise in the temperature of the module (more than 100 ° C), therefore a drop in the CO voltage and consequently due to the loss of intensity which is absorbed by the internal resistance of the cell.
  • Photovoltaic cells in general, are light-insensitive in 'outside the visible and very near infrared. This characteristic is reflected in Figure 4 which shows the response curve of a conventional photovoltaic cell.
  • Sunlight emits energy in the ultraviolet and infrared bands as well as in the visible band.
  • h PLANK constant
  • c velocity of light
  • wavelength

Abstract

The invention concerns a method for increasing the output power of any photovoltaic cell using a linear concentration by means of a mutliprism and for using a special transparent film which can absorb up to 93 % of ultraviolet rays so that the temperature at the surface of the photovoltaic cells is acceptable.

Description

PROCEDE PERMETTANT D'AUGMENTER LA PUISSANCE DE SORTIE DES CELLULES PHOTOVOLTAIQUES PROCESS FOR INCREASING THE OUTPUT POWER OF PHOTOVOLTAIC CELLS
A travers le monde, la production énergétique à trois origines essentielles : Le nucléaire, le fossile et l'hydraulique.Across the world, energy production has three essential origins: nuclear, fossil and hydraulic.
La consommation énergétique aux USA par exemple est de 1200 TWh. En France, le nucléaire représente 70% de la consommation énergétique française. Le coût de production aux USA est le suivant : -3,88 centimes / KWh pour le nucléaire ; - 1,87 centimes / KWh pour le fossile ;Energy consumption in the USA for example is 1200 TWh. In France, nuclear represents 70% of French energy consumption. The production cost in the USA is as follows: -3.88 cents / KWh for nuclear; - 1.87 cents / KWh for the fossil;
- 0,36 centimes / KWh pour l'hydraulique.- 0.36 cents / KWh for hydraulics.
Les inconvénients du nucléaire et du fossile, sont :The disadvantages of nuclear and fossil are:
- La pollution- Pollution
- Les déchets nucléaires - fossile : énergie non renouvelable et qui pourrait être épuisée au cours du siècle à venir. Le solaire ne présente aucun de ces inconvénients et est inépuisable.- Nuclear waste - fossil: non-renewable energy that could be used up over the next century. Solar has none of these drawbacks and is inexhaustible.
Les industries développant des modules photovoltaïques utilisent une ou deux des filières suivantes : Silicium monocrystallin dont les cellules ont atteint un rendement de 23% et les modules un rendement de 10% à 14%. Le prix de commercialisation de ces modules s 'échelonne de U.S. $5 à U.S. $6 / Watt.The industries developing photovoltaic modules use one or two of the following sectors: Monocrystalline silicon, the cells of which have reached a yield of 23% and the modules of a yield of 10% to 14%. The marketing price of these modules ranges from U.S. $ 5 to U.S. $ 6 / Watt.
Les modules au silicium semi-cristallin ont formé le quart des ventes mondiales du photovoltaïque en 1988 et leur rendement se situe entre 12% et 13%. Le silicium amorphe a un faible rendement qui avoisine les 7% et l'explication de cette imperformance, alors que la fabrication est coûteuse.Semi-crystalline silicon modules formed a quarter of global photovoltaic sales in 1988 and their performance is between 12% and 13%. Amorphous silicon has a low yield which is around 7% and the explanation for this imperformance, while manufacturing is expensive.
" The Electric Power Research Institute " (USA), Organisme gouvernemental, a conclu que les systèmes voltaïques doivent atteindre un rendement de 15% et un coût de U.S. $ 2,00 par Watt installé pour être en mesure d'entrer en compétition avec les autres sources conventionnelles. Cette conclusion correspond à une production de 2,700 KWh / an / W (ensoleillement 300 j / an, 9 h7 j, amortissement sur 20 ans ) et donc à un prix du KWh solaire égal à : (U.S.$ 2 : 20 ) : 2,7 = 3,70 Cts. Le prix du KWh nucléaire = 3,88 centimes. Le mode de concentration avec multiprisme : Rappel d'une donnée physique : Considérons 2 milieux transparents Ml & M2 ayant respectivement comme indice de réfraction ni & n2."The Electric Power Research Institute" (USA), a government agency, has concluded that Voltaic systems must achieve 15% efficiency and a cost of US $ 2.00 per Watt installed to be able to compete with other conventional sources. This conclusion corresponds to a production of 2,700 KWh / year / W (sunshine 300 d / year, 9 h 7 d, depreciation over 20 years) and therefore at a price per solar KWh equal to: (US $ 2: 20): 2.7 = 3.70 Cts. The price of nuclear KWh = 3.88 cents. The mode of concentration with multiprism: Reminder of a physical datum: Let us consider 2 transparent media Ml & M2 having respectively as refractive index ni & n2.
Tout rayon lumineux R va se réfracter en 0 suivant R'. Si αj. est l'angle que fait R avec la perpendiculaire PP', R' va faire un angle α2 avec PP', qui sera lié avec c^ par la relation : ni . sin cd = n2 . sin α2 Considérons un multiprisme à 2 facettes F0 & FI qui font entre elles un angle a\ et ayant un indice de réfraction n2 > 1 (indice de l'air).Any light ray R will refract at 0 along R '. If αj . is the angle that R makes with the perpendicular PP ', R' will make an angle α 2 with PP ', which will be linked with c ^ by the relation: ni. sin cd = n2. sin α 2 Let us consider a multiprism with 2 facets F0 & FI which form an angle a \ between them and having a refractive index n2> 1 (air index).
Le rayon solaire perpendiculaire à F0 va continuer son chemin sans déviation, jusqu'à rencontrer la facette FI où il va se réfracter en R' 1, en faisant un angle > ,\ R'1 est dirigé sur une cellule photovoltaïque. La surface de la facette F' 1 sera calculée de telle façon que tous les rayons qui arrivent sur sa surface, se réfracteront en couvrant toute la surface de la cellule photovoltaïque.The solar ray perpendicular to F0 will continue its path without deviation, until meeting the facet FI where it will refract in R '1, by making an angle>, \ R'1 is directed on a photovoltaic cell. The surface of the facet F ′ 1 will be calculated in such a way that all the rays which arrive on its surface, will refract covering the entire surface of the photovoltaic cell.
D'autres facettes F'2 ... F'n adjacentes l'une à l'autre et avec des angles différents, vont dévier tous les rayons lumineux qu'elles reçoivent sur l'entière surface de la cellule photovoltaïque.Other facets F'2 ... F'n adjacent to each other and with different angles, will deflect all the light rays they receive on the entire surface of the photovoltaic cell.
De ce fait, la cellule photovoltaïque recevra autant de soleils qu'il y a de facettes, en tenant compte évidemment de l'absorption au niveau du multiprisme que du cosinus des rayons solaires avec la cellule photovoltaïque.Therefore, the photovoltaic cell will receive as many suns as there are facets, obviously taking into account the absorption at the multiprism level as the cosine of the solar rays with the photovoltaic cell.
En augmentant sensiblement l'éclairement lumineux, nous augmentons automatique ment l'intensité du courant de C.C, sans affecter la tension du C.O, donc nous augmentons la puissance de sortie. By significantly increasing the illuminance, we automatically increase the intensity of the DC current, without affecting the CO voltage, so we increase the output power.
Ce système de concentration suppose que l'ensemble de l'installation ( multiprisme et modules ) doit poursuivre le soleil ( tracking System ) et de ce fait, l'évaluation des coûts doit tenir compte de ce paramètre.This concentration system assumes that the entire installation (multiprism and modules) must follow the sun (tracking system) and therefore the cost evaluation must take this parameter into account.
Théoriquement, pour un facteur de concentration compris entre 2 et 10, il n'est nullement nécessaire de refroidir la cellule photovoltaïque, dans la mesure où les propriétés électriques de ces cellules ont été déterminées dés le départ pour une résistance interne relativement faible.Theoretically, for a concentration factor between 2 and 10, it is not at all necessary to cool the photovoltaic cell, since the electrical properties of these cells were determined from the start for a relatively low internal resistance.
Dans ce cas, l'élévation de température due à la concentration n'influe pas tellement sur la tension et nous arrivons avec des multiprismes à une augmentation de la puissance de sortie des modules, de l'ordre de 4 à 5 fois la puissance nominale.In this case, the rise in temperature due to the concentration does not have much influence on the voltage and we arrive with multiprisms to an increase in the output power of the modules, of the order of 4 to 5 times the nominal power .
Par contre, si la résistance interne de la cellule photovoltaïque est déjà à la limite pour un (01) soleil, la concentration avec le multiprisme ne donne pas de résultats satisfaisants, à cause de l'élévation de la température du module (plus de 100°C), donc chute de la tension de C.O et par voie de conséquence à cause de la perte d'intensité qui est absorbée par la résistance interne de la cellule.On the other hand, if the internal resistance of the photovoltaic cell is already at the limit for one (01) sun, the concentration with the multiprism does not give satisfactory results, because of the rise in the temperature of the module (more than 100 ° C), therefore a drop in the CO voltage and consequently due to the loss of intensity which is absorbed by the internal resistance of the cell.
En ce qui concerne l'amorphe, des résultats opposés ont été obtenus : a - Pour certaines cellules, comme l'amorphe de SOLAREX : avec un multiprisme à 7 facettes, la puissance de sortie a dépassé le coefficient cinq (5) (mesures simultanées sur 2 cellules, l'une sans et l'autre avec multiprisme) b- Pour d'autres, telles les cellules de SOLEMS : avec le même multiprisme à 7 facettes, le coefficient trois (3) a pu être atteint difficilement (dans la plupart des cas, le coefficient a varié de 2,4 à 2,7).With regard to the amorphous, opposite results have been obtained: a - For certain cells, such as the SOLAREX amorphous: with a multi-prism with 7 facets, the output power has exceeded the coefficient five (5) (simultaneous measurements on 2 cells, one without and the other with multiprism) b- For others, such as SOLEMS cells: with the same 7-faceted multiprism, the coefficient three (3) could not be easily reached (in the in most cases, the coefficient varied from 2.4 to 2.7).
Pour toutes ces mesures, les multiprismes utilisés ont été réalisés à partir du « Plexiglas ». Influence de la température sur les cellules photovoltaïques. La puissance de sortie d'une cellule photovoltaïque chute quand la température augmente. La figure 4 montre que cette perte est due essentiellement à une diminution du voltage du court circuit. Il est connu que pour une cellule solaire, le courant est très peu affecté par la température. En d'autres termes, quand l'intensité lumineuse augmente, le voltage en circuit ouvert varie un tout petit peu alors que le courant de court circuit prend une grande variation, et quand la température augmente, le voltage en circuit ouvert accuse une large variation et le courant de court circuit une petite variation.For all these measurements, the multiprisms used were produced from "Plexiglas". Influence of temperature on photovoltaic cells. The output power of a photovoltaic cell drops when the temperature increases. Figure 4 shows that this loss is mainly due to a decrease in the short circuit voltage. It is known that for a solar cell, the current is very little affected by temperature. In other words, when the light intensity increases, the open circuit voltage varies a little bit while the short circuit current takes a large variation, and when the temperature increases, the open circuit voltage shows a large variation and the short circuit current a small variation.
Le spectrum de la lumière solaire s'étend de l'ultraviolet en passant par le visible et en s'étendant jusqu'au lointain infrarouge. Les cellules photovoltaïques, en général, sont insensibles à la lumière en ' dehors du visible et du très proche infrarouge. Cette caractéristique est reflétée par la figure 4 qui montre la courbe de réponse d'une cellule photovoltaïque conventionnelle.The spectrum of sunlight extends from the ultraviolet through the visible and extending to the far infrared. Photovoltaic cells, in general, are light-insensitive in 'outside the visible and very near infrared. This characteristic is reflected in Figure 4 which shows the response curve of a conventional photovoltaic cell.
La lumière solaire émet de l'énergie dans les bandes des ultraviolets et infrarouges aussi bien que dans la bande du visible. La quantité d'énergie émise varie suivant la formule : E = h . c I XSunlight emits energy in the ultraviolet and infrared bands as well as in the visible band. The amount of energy emitted varies according to the formula: E = h. c I X
Où : h = constante de PLANK, c = vélocité de la lumière, λ = longueur d'onde Quand la longueur d'onde diminue, la quantité d'énergie augmente. Augmentant d'une façon logarithmique en intensité pendant que la longueur d'onde décroît, l'énergie électromagnétique est de loin la plus importante dans la bande des ultra violets. Tout système de concentration augmente l'intensité lumineuse et en conséquence aussi bien le courant que la puissance de sortie d'une cellule solaire. Mais, en même temps, toute l'énergie qui n'a pas été transformée en électricité, augmente la température de la cellule solaire, et comme énoncé, le voltage diminue et le gain en puissance de sortie n'est plus important en comparaison avec les coûts du système de concentration. Where: h = PLANK constant, c = velocity of light, λ = wavelength When the wavelength decreases, the amount of energy increases. Increasing logarithmically in intensity as the wavelength decreases, electromagnetic energy is by far the most important in the ultraviolet band. Any concentration system increases the light intensity and consequently both the current and the output power of a solar cell. But, at the same time, all the energy which has not been transformed into electricity, increases the temperature of the solar cell, and as stated, the voltage decreases and the gain in output power is no longer significant in comparison with the costs of the concentration system.

Claims

REVENDICATIONS
1- Procédé permettant d'augmenter la puissance de sortie des cellules photovoltaïques de n'importe quelle filière caractérisée par le fait que cette augmentation de rendement est rendue possible par une concentration linéaire des rayons lumineux.1- Method for increasing the output power of photovoltaic cells of any sector characterized by the fact that this increase in efficiency is made possible by a linear concentration of light rays.
2- Procédé suivant la revendication 1, caractérisé en ce que cette concentration linéaire est obtenue par un multiprisme dont toutes les facettes sont orientées de telle sorte qu'elles renvoient la lumière reçue sur la seule surface des cellules photovoltaïques.2- A method according to claim 1, characterized in that this linear concentration is obtained by a multiprism whose all facets are oriented so that they return the light received on the only surface of the photovoltaic cells.
3- Procédé suivant les revendications 1 et 2, caractérisé en ce que le panneau solaire est équipé d'un système fluide et non électrique qui lui permet d'être toujours orienté vers le soleil.3- A method according to claims 1 and 2, characterized in that the solar panel is equipped with a fluid and non-electric system which allows it to be always oriented towards the sun.
4- Procédé suivant les revendications 1, 2 et 3, caractérisé dans cette conception, la chaleur dégagée sur la surface des cellules photovoltaïques, risque de détruire ces dernières, compte tenu de leur résistance interne. Afin d'éviter ce danger il est prévu de filtrer les rayons solaires et d'éliminer la très grande partie des rayons ultraviolets qui fournissent la plus grande partie de la chaleur et ne sont nullement utiles à l'excitation des cellules photovoltaïques. L'élimination de ces rayons ultraviolets est obtenue par un film transparent absorbant 93% des rayons ultraviolets et appliqué sur la face réceptive des rayons lumineux du multiprisme. 4- A method according to claims 1, 2 and 3, characterized in this design, the heat released on the surface of the photovoltaic cells, may destroy the latter, given their internal resistance. In order to avoid this danger, it is planned to filter the sun's rays and to eliminate the very large part of the ultraviolet rays which provide most of the heat and are in no way useful for the excitation of photovoltaic cells. The elimination of these ultraviolet rays is obtained by a transparent film absorbing 93% of the ultraviolet rays and applied to the receptive face of the light rays of the multiprism.
PCT/DZ2001/000004 2001-04-30 2001-05-23 Method for increasing the output power of photovoltaic cells WO2002089216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DZ010028A DZ3069A1 (en) 2001-04-30 2001-04-30 Method for increasing the output power of photovoltaic cells.
DZ010028 2001-04-30

Publications (1)

Publication Number Publication Date
WO2002089216A1 true WO2002089216A1 (en) 2002-11-07

Family

ID=8161360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DZ2001/000004 WO2002089216A1 (en) 2001-04-30 2001-05-23 Method for increasing the output power of photovoltaic cells

Country Status (2)

Country Link
DZ (1) DZ3069A1 (en)
WO (1) WO2002089216A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893451B2 (en) 2006-05-08 2011-02-22 Lg Innotek Co., Ltd. Light emitting device having light extraction structure and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021267A (en) * 1975-09-08 1977-05-03 United Technologies Corporation High efficiency converter of solar energy to electricity
US4711972A (en) * 1985-07-05 1987-12-08 Entech, Inc. Photovoltaic cell cover for use with a primary optical concentrator in a solar energy collector
US5374317A (en) * 1990-09-26 1994-12-20 Energy Systems Solar, Incorporated Multiple reflector concentrator solar electric power system
US5505789A (en) * 1993-04-19 1996-04-09 Entech, Inc. Line-focus photovoltaic module using solid optical secondaries for improved radiation resistance
US5977475A (en) * 1996-10-11 1999-11-02 Toyota Jidosha Kabushiki Kaisha Converging solar module
US6111190A (en) * 1998-03-18 2000-08-29 Entech, Inc. Inflatable fresnel lens solar concentrator for space power

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021267A (en) * 1975-09-08 1977-05-03 United Technologies Corporation High efficiency converter of solar energy to electricity
US4711972A (en) * 1985-07-05 1987-12-08 Entech, Inc. Photovoltaic cell cover for use with a primary optical concentrator in a solar energy collector
US5374317A (en) * 1990-09-26 1994-12-20 Energy Systems Solar, Incorporated Multiple reflector concentrator solar electric power system
US5505789A (en) * 1993-04-19 1996-04-09 Entech, Inc. Line-focus photovoltaic module using solid optical secondaries for improved radiation resistance
US5977475A (en) * 1996-10-11 1999-11-02 Toyota Jidosha Kabushiki Kaisha Converging solar module
US6111190A (en) * 1998-03-18 2000-08-29 Entech, Inc. Inflatable fresnel lens solar concentrator for space power

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893451B2 (en) 2006-05-08 2011-02-22 Lg Innotek Co., Ltd. Light emitting device having light extraction structure and method for manufacturing the same

Also Published As

Publication number Publication date
DZ3069A1 (en) 2004-09-14

Similar Documents

Publication Publication Date Title
Ju et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)
Sahota et al. Review on series connected photovoltaic thermal (PVT) systems: Analytical and experimental studies
AU2010201428B2 (en) Asymmetric parabolic compound concentrator with photovoltaic cells
FR2941038A1 (en) OPTIMAL STATIC SOLAR CONCENTRATOR SHAPED IN SPIRAL AND PROVIDED WITH MIRRORS
Butler et al. Characterization of a low concentrator photovoltaics module
Suraparaju et al. Performance analysis of a novel solar cogeneration system for generating potable water and electricity
Liang et al. Investigation on an underwater solar concentrating photovoltaic-membrane distillation (CPV-MD) integrated system
Coventry A solar concentrating photovoltaic/thermal collector
FR2999830B1 (en) ELEMENT FOR THE TREATMENT OF IMPROVED SOLAR RADIATION AND A SOLAR FOLLOWER AND A SOLAR POWER PLANT EQUIPPED WITH SUCH ELEMENT
EP1540742A2 (en) Method of increasing the output power from photovoltaic cells
FR2838564A1 (en) PHOTOVOLTAIC GENERATOR WITH PROTECTION AGAINST OVERHEATING
WO2002089216A1 (en) Method for increasing the output power of photovoltaic cells
Elharoun et al. Experimental investigation of photovoltaic performance with compound parabolic solar concentrator and fluid spectral filter
Languy Achromatization of nonimaging Fresnel lenses for photovoltaic solar concentration using refractive and diffractive patterns
Elhefnawy et al. Experimental Investigation on the Performance of Spherical Solar Collector for Water Heating.
Edmonds The performance of bifacial solar cells in static solar concentrators
FR2574863A1 (en) Single-blade rotor wind generator which may be coupled to a static device for capturing solar energy
US20100193009A1 (en) Reflector and system for photovoltaic power generation
Loumakis Sustainable solar energy
Jaffré et al. Design and characterization of a curved linear Fresnel lens concentrating photovoltaic and thermal system
GB2479024A (en) Solar Compressor
Tsoi Structured luminescent solar energy concentrators: a new route towards inexpensive photovoltaic energy
Ma et al. Simultaneous production of electricity and potable water underwater by integrating concentrating photovoltaic with air gap membrane distillation
Hatwaambo et al. Fill factor improvement in non-imaging reflective low concentrating photovoltaic
Amjed Performance analysis of an air solar collector with extended heat transfer surface area with plate fin geometry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): GH GM KE LS MA MG MW MZ SD SL TZ UG ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG