WO2002098011A1 - Appareil et procede de reception radio - Google Patents

Appareil et procede de reception radio Download PDF

Info

Publication number
WO2002098011A1
WO2002098011A1 PCT/JP2002/004902 JP0204902W WO02098011A1 WO 2002098011 A1 WO2002098011 A1 WO 2002098011A1 JP 0204902 W JP0204902 W JP 0204902W WO 02098011 A1 WO02098011 A1 WO 02098011A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay time
delay
profile
signal
correlation
Prior art date
Application number
PCT/JP2002/004902
Other languages
English (en)
French (fr)
Inventor
Akihiko Nishio
Katsuhiko Hiramatsu
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE2002601482 priority Critical patent/DE60201482T2/de
Priority to EP20020774065 priority patent/EP1296462B1/en
Priority to US10/332,144 priority patent/US7167505B2/en
Publication of WO2002098011A1 publication Critical patent/WO2002098011A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers

Definitions

  • the present invention relates to a radio reception device and a radio reception method used in a digital radio communication system.
  • CDM Code Division Multiple
  • multiple spreading codes can be multiplexed and transmitted using the orthogonality of the spreading codes without interference due to the cross-correlation of each spreading code.
  • the wireless signal is received by the wireless receiving unit 52 via the antenna 51.
  • the radio receiving unit 52 performs predetermined radio reception processing (for example, down-conversion and A / D conversion) on the received signal, and outputs the signal after the radio reception processing to the RAKE combining unit 53 and Output to correlation processing section 54.
  • the correlation processing unit 54 performs a correlation process between the midamble, which is a known signal, and the signal after the wireless reception process.
  • the signal after the correlation processing (correlation result) is output to the delay profile creation unit 55.
  • the delay profile creation unit 55 creates a delay profile based on the correlation result. This delay profile is output to RAKE combining section 53.
  • RAKE combining section 53 performs RAKE combining based on the delay profile, and outputs the RAKE combining result to JD section 56.
  • JD section 56 Joint detection processing is performed on the RAKE-combined signal according to the maximum delay time. By this joint detection processing, received signals of all codes are output.
  • the size of the matrix A in the joint detection processing is as follows: the number of transmitted symbols is N, the spreading factor is Q, the window width of the delay time is W (expressed in CDMA chip time units), and the number of transmitted multicodes is Is K, the amount of computation is (N Q + W-1) X (KN). Furthermore, the amount of computation of the cross-correlation A H A is KNX KN, which is a huge amount. In this case, the effect of the window width W on the delay time is very large.
  • the window width W of the delay time is set to the window width including the delay wave having the maximum delay time. That is, referring to FIG. 4, the window width W including all three paths including the I 2 I 2 path having the longest delay time is set as the window width of the delay time. This window width is the same as the window width used for RAKE combining.
  • An object of the present invention is to provide a radio receiving apparatus and a radio receiving method capable of optimizing the performance of interference elimination and the scale of computation without deteriorating the performance of RAKE combining.
  • the inventor of the present invention focused on the fact that, in wireless communication under a multipath environment, there are a plurality of delayed waves at a position slightly delayed from the preceding wave and a small number of delayed waves at a position distant from the preceding wave.
  • the present inventors have found that sufficient performance can be obtained while reducing the amount of computation by removing multipath interference around the wave, and the present invention has been made.
  • the purpose is to set a delay time shorter than the delay time used in RAKE combining in a delay profile created using the known signal included in the received signal, and within the range of this delay time, After performing the interference cancellation processing on the subsequent signal and outputting the received signals of all codes, while maintaining the performance of RAKE combining, sufficient interference cancellation by the cross-correlation between spreading codes is performed, and This can be achieved by reducing the calculation scale at the time of removal.
  • FIG. 1 is a block diagram showing a configuration of a conventional wireless receiving apparatus
  • FIG. 2 is a block diagram illustrating a configuration of a wireless reception device according to Embodiment 1 of the present invention
  • FIG. 3 is an internal configuration of a maximum delay time setting unit in the wireless reception device according to Embodiment 1 of the present invention.
  • Figure 4 is a diagram to explain the maximum delay time
  • Figure 5 is a diagram for explaining the setting of the maximum delay time
  • FIG. 6 is a diagram for explaining an effect of the radio receiving apparatus according to Embodiment 1 of the present invention
  • FIG. 7 is a block diagram showing the internal configuration of the maximum delay time setting unit in the wireless reception device according to Embodiment 2 of the present invention.
  • a maximum delay time is set using the delay spread of a received signal, interference is removed using the maximum delay time, and the received signal is output.
  • FIG. 2 is a block diagram showing a configuration of a wireless receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is an internal configuration of a maximum delay time setting unit in the wireless receiving apparatus according to Embodiment 1 of the present invention.
  • the wireless signal is received by the wireless receiving unit 102 via the antenna 101.
  • Radio receiving section 102 performs predetermined radio reception processing (for example, down-conversion or AZD conversion) on the received signal, and converts the signal after the radio reception processing into R A K
  • the signal is output to the E combining unit 103 and the correlation processing unit 104.
  • the correlation processing unit 104 performs a correlation process between the mid-ampoule, which is a known signal, and the signal after the wireless reception process.
  • the signal after correlation processing (correlation result) is output to the delay profile generator 105.
  • the delay profile creation unit 105 creates a delay profile based on the correlation result. This delay profile is R A
  • the maximum delay time setting unit 106 sets the maximum delay time that determines the range of the delay wave for interference cancellation based on the delay profile. This maximum delay time is
  • the maximum delay time setting unit 106 includes a delay spread calculating unit 1061 for obtaining a delay spread from a delay profile, and a maximum delay time determining unit 1 for determining a maximum delay time from the delay spread.
  • RAKE combining section 103 performs RAKE combining based on the delay profile, and outputs the RAKE combining result to JD section 107.
  • the JD unit 107 performs joint detection processing on the signal after RAKE combining according to the maximum delay time. By this joint detection processing, received signals of all codes are output.
  • a radio signal in a system that performs interference cancellation by joint detection is composed of a mit ampoule (damble), which is a known signal for estimating a delay profile, and data.
  • the radio signal composed of the midamble and the data is converted into a baseband signal and then subjected to correlation processing by the correlation processing unit 104.
  • this correlation processing a correlation operation is performed between the midamble and the received signal.
  • the result of the correlation operation is output to delay profile creation section 105, and a delay profile is created as shown in FIG.
  • the delay profile is represented by the power of the channel estimate k at time k and the power I kl 2 .
  • FIG. 4 shows the case of three passes. That is, in the delay profile of FIG. 4, the path at time r 0 is the channel estimation value.
  • the power of I. Is represented by I 2 pass time Te ⁇ is represented by power i shed I 2 channel estimate, time on 2 paths is represented by power I monument 2 1 2 Channel estimates 2.
  • W indicates the window width including the delay wave having the maximum delay time, and is used as the window width in RAKE combining.
  • RAKE combining section 103 performs despreading processing on the signal after the radio reception processing by using the same spreading code as the spreading code used in the transmitting apparatus, and the signal after the despreading processing (despread signal) And RAKE synthesis using: This RAKE combining is performed for the time (window width) W that includes all multipaths.
  • the result obtained by RAKE combining is the received signal when the cross-correlation of the spreading code is not removed.
  • the result of RAKE synthesis is represented by vector b. You.
  • the maximum delay time setting unit 106 sets a delay time width W 'for interference cancellation using the delay profile.
  • a delay spread is calculated, and up to a delay wave included in the delay spread is set as W ′.
  • the delay spread is calculated by the delay spread calculation unit 1061 of the maximum delay time setting unit 106. That is, the standard deviation of the delay profile is calculated.
  • the calculated delay spread is output to maximum delay time determination section 1062.
  • the maximum delay time determination unit 1062 determines the maximum delay time (window width) W based on the delay spread.
  • the maximum delay time is set by the delay spread, it is possible to set the maximum delay time including the delay wave to be subjected to interference elimination. It is also possible to minimize the performance degradation due to the reduction in size.
  • the maximum delay time W is the delay time. Then the path of i will be included.
  • a matrix A is created by performing a convolution operation between the delay profile and the spreading code.
  • the computational complexity of matrix A is given by (NQ + W, where N is the number of transmitted symbols, Q is the spreading factor, W 'is the maximum delay time (window width), and K is the number of transmitted multicodes. -1) X (KN). Therefore, the amount of computation is smaller than before because the window width is narrower from W to w, than in the past. That is, as shown in FIG.
  • window width of JD is realm containing all paths, W 2 (0 Te delayed wave, r 1 5 Te window width includes 2) minutes operation
  • the window width of JD is (the window width including 0 and ⁇ in the delayed wave) in the present embodiment, the calculation of minute is sufficient.
  • the JD section calculates a correlation operation A A H A (matrix).
  • the calculation amount of the correlation operation A H A is (KN) X (KN).
  • FIG. 6 is a diagram for explaining an effect of the radio receiving apparatus according to Embodiment 1 of the present invention.
  • indicates the case where the window width W used for RAKE synthesis and the window width W used for JD are both 57
  • the mark (2) indicates the window width used for RAKE synthesis.
  • W is 57 and the window width W ′ used for JD is 17 (this embodiment) is shown
  • ⁇ mark (3) indicates that the window width W used for RAKE synthesis and the window width W ′ used for JD are In both cases, the value is 17.
  • the best performance can be obtained because the window width is wide, but the calculation scale becomes large because the window width in JD is wide.
  • the RAKE combining and the window width of JD are optimized independently of each other, it can be seen that the performance of the RAKE combining can be maintained as in (1). In this case, the calculation scale is small because the window width in JD is narrow.
  • the window width of RAKE combining and JD is narrowed in order to reduce the calculation scale, sufficient performance (gain of RAKE combining) cannot be obtained.
  • the delay time widths are used in RAKE combining, all multipaths can be gathered, and the signal-to-noise ratio can be improved.
  • Power ratio (S / N) can be increased.
  • the range for removing intersymbol interference is set to a value W, which is smaller than W, the amount of computation for interference cancellation (JD) can be reduced.
  • the maximum performance is derived using all multipaths for RAKE synthesis, and the optimal window width is set for JD based on the delay spread. It is possible to sufficiently remove interference due to the cross-correlation between spreading codes while maintaining, and to reduce the computation scale in JD.
  • the maximum delay time is set by performing a threshold value judgment on the correlation value obtained by convoluting the delay code with the spread profile and performing interference cancellation using the maximum delay time to obtain a received signal. The case of outputting is described.
  • FIG. 7 is a block diagram showing the internal configuration of the maximum delay time setting unit in the wireless reception device according to Embodiment 2 of the present invention.
  • a maximum delay time setting unit 106 includes a delay profile and a spreading code selection unit 1063 that selects a set of spreading codes to be convolved, and a convolution between the selected spreading code and the delay profile.
  • a convolution operation unit 1064 that performs an operation to calculate the cross-correlation is provided, and a threshold value judgment unit 1065 that performs a threshold value judgment on the cross-correlation value of the convolution operation result.
  • the operation from the reception of the radio signal to the creation of the delay profile is the same as in the first embodiment, and a description thereof will be omitted.
  • RAK E ⁇ gl 503 the signal after the radio reception processing is subjected to despreading processing using the same spreading code as that used by the transmitting apparatus, and the signal after the despreading processing (despreading) is performed. Signal) and the delay profile to perform RAKE synthesis.
  • the time (window width) W that includes all multipaths is Done.
  • the result obtained by RAKE combining is the received signal when the cross-correlation of the spreading code is not removed.
  • the result of the RAKE synthesis is represented by a vector b.
  • the maximum delay time setting unit 106 sets the delay time width W, for interference cancellation, using the delay profile.
  • a threshold value is determined for a correlation value obtained by convolving a delay profile with a spreading code, that is, a threshold is set for the magnitude of the cross-correlation of an arbitrarily selected spreading code.
  • the maximum delay time W ' is set by judging the value.
  • the spreading code selection unit 1063 selects a set of spreading codes to be subjected to convolution operation, and outputs the set of spreading codes to the convolution operation unit 1064.
  • the convolution operation unit 1064 performs convolution operation of each spreading code and delay profile. Then, the correlation of the result of convolution of the delay profile with each spreading code is calculated. This correlation result corresponds to the cross-correlation of the spreading code when there is a delayed wave.
  • the cross-correlation value is calculated for various window widths Wk. .
  • the convolution operation unit 106 outputs the obtained cross-correlation value to the threshold value judgment unit 106.
  • the threshold value determination section 106 compares the cross-correlation values P (Wk) of various window widths with a preset threshold value Pth . Then, W ′ that is smaller than the threshold value P th is obtained.
  • the window width is included, and is the delayed wave.
  • the threshold value determination unit 1065 performs a threshold value determination on the cross-correlation value.
  • the window width of the interference elimination (JD) When the window width of the interference elimination (JD) is set to W1, the difference between the actual interference amount P (W) and the interference amount P (W) at the window width becomes small. It can be determined that there is no difference in the interference elimination capability of the case where the window width is W. Therefore, in this case, the window width W 'of the interference elimination (JD) is set to Wt .
  • the temporarily set window width is used as the maximum delay time. It is possible to minimize the performance degradation caused by making it narrower than in the case of synthesis.
  • the threshold value can be set appropriately within a range where performance degradation due to making the window width narrower than in the case of RAKE combining does not affect the system.
  • the maximum delay time W ' includes a path with a delay time of 0 and ⁇ .
  • a matrix A is created by performing a convolution operation between the delay profile and the spreading code.
  • the computational complexity of matrix A is given by (NQ + W, where N is the number of transmitted symbols, Q is the spreading factor, W is the maximum delay time (window width), and K is the number of transmitted multicodes. -1) X (KN). Therefore, the amount of computation is smaller than before because the window width is narrower from W to W 'than in the past.
  • the JD section calculates a correlation operation A A H A (matrix).
  • the calculation amount of the correlation operation A H A is (KN) X (KN).
  • the maximum performance is derived using all multipaths, and for JD, the optimal window width is set based on the delay spread, so that the mutual performance between spreading codes is maintained while maintaining the RAKE combining performance. Interference removal by correlation can be performed sufficiently, and the calculation scale in JD can be reduced.
  • the present invention is not limited to Embodiments 1 and 2, but can be implemented with various modifications.
  • the first and second embodiments the case where the number of paths is three is described, but the present invention can be similarly applied even when the number of paths is two or four or more. is there.
  • the wireless receiving device and wireless receiving method of the present invention can be applied to a wireless base station device of a digital wireless communication system, particularly a CDMA system.
  • the radio receiving apparatus and the radio receiving method of the present invention derive the maximum performance by using all multipaths for RAKE combining, and optimize the window for interference cancellation (JD) based on the delay spread. Since the width is set, it is possible to sufficiently remove interference due to cross-correlation between spreading codes while maintaining the performance of RAKE combining, and to reduce the computation scale for interference cancellation (JD). it can.
  • the present invention is suitable for use in a wireless reception device and a wireless reception method used in a digital wireless communication system.

Description

明 細 書 無線受信装置及び無線受信方法 技術分野
本発明は、 ディジ夕ル無線通信方式において使用される無線受信装置及び無 線受信方法に関する。 背景技術
ディジ夕ル無線通信システムにおいては、 C D M A ( Code Division Multiple
Access) をアクセス方式に使うことによって、 拡散符号の直交性を利用し、 そ れそれの拡散符号の相互相関による干渉がないようにして複数の拡散符号を 多重して送信することができる。
実際の伝搬環境では、 マルチパスが存在するために、 複数の拡散符号を多重 (コード多重) して送信した場合に、 拡散符号間の直交性が保持されずに干渉 となる。 C D MAにおいては、 R A K E合成を行っており、 複数のパスを合成 する R A K E合成の利得がマルチパスによる干渉の劣化よりも大きい伝搬環 境で利用する場合に効果が発揮される。
マルチパス間の干渉を除去する方法はいくつか提案されている。 その一つと し て Karimi の方法 ( "EFFICIENT MULTI-RATE MULTI-USER DETECTION FOR THE ASYNCHRONOUS WCDMA UPLINK", H.R.Karimi, VTC'99, pp.593-597:ジョイントディテクシヨン: J D )がある。 このジョイントディテクシヨンについて図 1を用いて説明する。
無線信号は、 アンテナ 5 1を介して無線受信部 5 2において受信される。 無 線受信部 5 2では、 受信された信号に対して所定の無線受信処理 (例えば、 ダ ゥンコンバートや A/D変換など) を行い、 無線受信処理後の信号を R A K E 合成部 5 3及び相関処理部 5 4に出力する。 相関処理部 54では、 既知信号であるミヅドアンブルと無線受信処理後の信 号との間で相関処理を行う。相関処理後の信号 (相関結果) は、 遅延プロファ ィル作成部 55に出力される。遅延プロファイル作成部 55では、 相関結果に 基づいて遅延プロファイルを作成する。 この遅延プロファイルは、 RAKE合 成部 53に出力される。
RAKE合成部 53では、 遅延プロファイルに基づいて、 RAKE合成を行 い、 RAKE合成結果を JD部 56に出力する。 0部56では、 最大遅延時 間にしたがって、 RAKE合成後の信号に対してジョイントディテクシヨン処 理を行う。 このジョイントディテクシヨン処理により、 全コードの受信信号が 出力される。
このジョイントディテクシヨン処理では、 遅延プロファイルと拡散符号との 間の畳み込み演算により行列 Aを求め、 この行列 Aの相互相関 AHAを求め、 最後に相互相関 A H Aと送信シンボル Xの乗算結果が R A K E合成後の結果 b と等しいという関係 (AHAx = b) から、 上式を Xについて解くことにより 拡散符号の相互相関による干渉を除去して全コードの受信信号を出力する。 ジョイントディテクシヨン処理における行列 Aの大きさは、 送信シンボル数 を Nとし、 拡散率を Qとし、 遅延時間の窓幅を W (CDMAのチップ時間単位 で表す)とし、送信されているマルチコード数を Kとすると、その演算量は(N Q+W- 1) X (KN) となる。 さらに、 相互相関 AHAの演算量は、 KNX KNとなるで、 非常に膨大な量となる。 この場合において、 遅延時間の窓幅 W の影響は非常に大きい。
従来の無線受信方法においては、 遅延時間の窓幅 Wは、 遅延時間が最大とな る遅延波までを含めた窓幅に設定している。 すなわち、 図 4を用いて説明する と、遅延時間が最大である I 2 I 2のパスを含めた 3パスすぺてを含む窓幅 W を遅延時間の窓幅に設定する。 この窓幅は、 RAKE合成に用いられる窓幅と 同じである。
一方、 演算量を少なくするために、 単純に: RAKE合成とジョイントディテ クシヨンのそれそれの窓幅 Wをマルチパスの一部が含まれるような小さな値 に設定すると、 R A K E合成による利得を得ることができなくなる。 発明の開示
本発明の目的は、 R A K E合成の性能を落とすことなく、 しかも干渉除去の 性能と演算規模の最適化を図ることができる無線受信装置及び無線受信方法 を提供することである。
本発明者は、 マルチパス環境下での無線通信において、 先行波から少し遅れ たところに複数の遅延波が存在し、 先行波から離れたところに少ない遅延波が 存在することに着目し、 先行波の周辺のマルチパス干渉を取り除くことにより 演算量を削減しつつ十分な性能を得ることを見出し本発明をするに至った。 すなわち、 この目的は、 受信信号に含まれる既知信号を用いて作成された遅 延プロファイルに R A K E合成で用いる遅延時間よりも短い遅延時間を設定 し、 この遅延時間の範囲内において、 R AK E合成後の信号に対して干渉除去 処理を行って全コードの受信信号を出力して、 R AK E合成の性能を維持しつ つ、 拡散符号間の相互相関による干渉除去を充分に行い、 しかも干渉除去の際 の演算規模を削減することにより達成できる。 図面の簡単な説明
図 1は、 従来の無線受信装置の構成を示すブロック図、
図 2は、 本発明の実施の形態 1に係る無線受信装置の構成を示すプロック図、 図 3は、 本発明の実施の形態 1に係る無線受信装置における最大遅延時間設 定部の内部構成を示すブロック図、
図 4は、 最大遅延時間を説明するための図、
図 5は、 最大遅延時間の設定を説明するための図、
図 6は、 本発明の実施の形態 1に係る無線受信装置の効果を説明するための 図、 及び 図 7は、 本発明の実施の形態 2に係る無線受信装置における最大遅延時間設 定部の内部構成を示すプロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 添付図面を参照して詳細に説明する。 (実施の形態 1 )
本実施の形態では、 受信信号の遅延スプレツドを用いて最大遅延時間を設定 し、 その最大遅延時間を用いて干渉除去を行って受信信号を出力する場合につ いて説明する。
図 2は、 本発明の実施の形態 1に係る無線受信装置の構成を示すプロック図 であり、 図 3は、 本発明の実施の形態 1に係る無線受信装置における最大遅延 時間設定部の内部構成を示すブロック図である。
無線信号は、 アンテナ 1 0 1を介して無線受信部 1 0 2において受信される。 無線受信部 1 0 2では、受信された信号に対して所定の無線受信処理 (例えば、 ダウンコンバートや AZD変換など) を行い、 無線受信処理後の信号を R A K
E合成部 1 0 3及び相関処理部 1 0 4に出力する。
相関処理部 1 0 4では、 既知信号であるミッドアンプルと無線受信処理後の 信号との間で相関処理を行う。相関処理後の信号 (相関結果) は、 遅延プロフ アイル作成部 1 0 5に出力される。遅延プロファイル作成部 1 0 5では、 相関 結果に基づいて遅延プロファイルを作成する。 この遅延プロファイルは、 R A
K E合成部 1 0 3及び最大遅延時間設定部 1 0 6に出力される。
最大遅延時間設定部 1 0 6では、 遅延プロファイルに基づいて、 干渉除去の ための遅延波の範囲を決める、最大遅延時間を設定する。この最大遅延時間は、
J D部 1 0 7に出力される。
最大遅延時間設定部 1 0 6は、 図 3に示すように、 遅延プロファイルから遅 延スプレツドを求める遅延スプレツド算出部 1 0 6 1と、 遅延スプレツドから 最大遅延時間を決定する最大遅延時間決定部 1 0 6 2とを備えている。 RAKE合成部 103では、 遅延プロファイルに基づいて、 RAKE合成を 行い、 RAKE合成結果を J D部 107に出力する。 J D部 107では、 最大 遅延時間にしたがって、 RAKE合成後の信号に対してジョイントディテクシ ヨン処理を行う。 このジョイントディテクシヨン処理により、 全コードの受信 信号が出力される。
次に、 上記構成を有する無線受信装置の動作について説明する。
ジョイントディテクシヨンによる干渉除去を行うシステムにおける無線信 号は、 遅延プロファイルを推定するための既知信号であるミツドアンプル ( damble)とデ一夕とから構成されている。
このようにミツドアンブルとデータとから構成された無線信号は、 ベ一スバ ンド信号に変換された後に相関処理部 104で相関処理に供される。 この相関 処理においては、 ミッドアンブルと受信信号との間で相関演算を行う。相関演 算の結果は、遅延プロファイル作成部 105に出力されて、図 4に示すように、 遅延プロファイルが作成される。
遅延プロフアイルは、時刻て kのチヤネル推定値ひ kの電力 Iひ kl2で表される。 なお、 図 4は 3パスの場合を示している。 すなわち、 図 4の遅延プロファイル において、 時刻 r0のパスはチャネル推定値 。の電力 I 。 I2で表され、 時刻 て丄のパスはチャネル推定値 の電力 iひ I2で表され、時刻て 2のパスはチヤ ネル推定値 2の電力 Iひ 212で表される。 また、 図 4において、 Wは、 遅延時 間が最大となる遅延波までを含めた窓幅を示しており、 RAKE合成の場合の 窓幅として用いられる。
RAKE合成部 103では、 無線受信処理後の信号に対して送信側装置で用 Vヽた拡散符号と同じ拡散符号を用いて逆拡散処理を行い、 この逆拡散処理後の 信号 (逆拡散信号) と遅延プロファイルとを用いて: RAKE合成を行う。 この RAKE合成においては、 全てのマルチパスが含まれる時間 (窓幅) Wについ て行われる。 RAKE合成により得られた結果は、 拡散符号の相互相関を除去 しない場合の受信信号である。 ここで、 RAKE合成の結果をベクトル bで表 す。
最大遅延時間設定部 1 0 6では、 遅延プロファイルを用いて、 干渉除去のた めの遅延時間幅 W' の設定を行う。 本実施の形態では、 遅延スプレッドを算出 し、 その遅延スプレッドに含まれる遅延波までを W' として設定する。
まず、 最大遅延時間設定部 1 0 6の遅延スプレッド算出部 1 0 6 1で遅延ス プレヅドを算出する。 すなわち、 遅延プロファイルの標準偏差を算出する。 算 出された遅延スプレッドは、 最大遅延時間決定部 1 0 6 2に出力される。 最大 遅延時間決定部 1 0 6 2では、遅延スプレヅドに基づいて最大遅延時間(窓幅) W を決定する。
このように、 遅延スプレッドにより最大遅延時間を設定しているので、 干渉 除去の対象とすべき遅延波を含んだ最大遅延時間を設定することができ、 これ により、 窓幅を R A K E合成の場合よりも狭くすることによる性能劣化を極力 少なくすることが可能となる。
したがって、 このように決定された最大遅延時間に含まれる遅延波までがジ ョイントディテクシヨンにおける干渉除去の対象となる。 ここでは、 最大遅延 時間 W, に遅延時間て。とて iのパスが含まれることとなる。
J D部 1 0 7では、 遅延プロファイルと拡散符号との間の畳み込み演算を行 つて行列 Aを作成する。 行列 Aの演算量は、 送信シンボル数を Nとし、 拡散率 を Qとし、 最大遅延時間 (窓幅) を W' とし、 送信されているマルチコ一ド数 を Kとすると、 (N Q +W, - 1 ) X (K N) となる。 したがって、 従来に比 ベて窓幅が Wから w, に狭くなつていることにより、 従来より演算量が少なく なる。 すなわち、 図 5に示すように、 従来では、 J Dの窓幅が全パスを含む領 域であるために、 W2 (遅延波て 0, r 1 52が含まれる窓幅)分の演算が必要 であるのに対して、 本実施の形態では、 J Dの窓幅が (遅延波て 0 , て丄が 含まれる窓幅) であるので、 分の演算で済むことになる。
次いで、 J D部では、 Aの相関演算 AHA (行列) を算出する。相関演算 AH Aの演算量は、 (KN) X (KN) となる。 その後、 送信シンボル Xについて の式 AHAx = bを解くことにより、すなわち RAKE合成結果 bに対して AH Aの逆行列 [AHA]一1を乗算することにより、 窓幅 W, に含まれるパス (遅 延時間て。と r1のパス)についての拡散符号の相互相関を除去した複数の信号 を復調することができる。 これにより、 全コードの受信信号が得られる。
次に、 本実施の形態 1に係る無線受信装置の効果を明確にするために行った 実施例について説明する。
図 6は、 本発明の実施の形態 1に係る無線受信装置の効果を説明するための 図である。 図 6において、 ♦印 (1) は、 RAKE合成に用いる窓幅 W及び J Dに用いる窓幅 W, がいずれも 57である場合を示し、 画印 (2) は、 RAK E合成に用いる窓幅 Wが 57であり、 JDに用いる窓幅 W' が 17である場合 (本実施の形態) を示し、 ▲印 (3) は、 RAKE合成に用いる窓幅 W及び J Dに用いる窓幅 W' がいずれも 17である場合を示す。
(1)の場合には、 窓幅が広いため、 最高の性能を得ることができるが、 J Dの際の窓幅が広いため演算規模は大きくなる。 (2) の場合には、 RAKE 合成と J Dの窓幅をそれそれ独立に最適ィ匕しているので、 (1) と同様に R A KE合成の性能を保つことができることが分かる。 この場合には、 JDの際の 窓幅が狭いため演算規模は小さくなる。 (3)の場合には、 演算規模を小さく するために、 RAKE合成及び JDの窓幅を狭くしているので、充分な性能(R A KE合成の利得) を得ることができない。
また、 演算量については、 (1) の場合の 5スロットの演算量を 100%と すると、 (1) の場合の 3スロットの演算量が 60%となる。 これに対して、 (1) と同じ RAKE合成性能を実現する条件において、 RAKE合成と JD の窓幅をそれそれ独立に最適化した ( 2 )の場合では、 5スロットの演算量が 46%となり、 3スロヅトの演算量が 27%となり、 大幅に削減されることが 分かった。
このように本実施の形態によれば、 R A K E合成においては遅延時間幅 の 全てを用いるので、 全てのマルチパスをかき集めることができ、 信号対雑音電 力比 (S/N)を高くすることができる。 また、 符号間干渉を除去する範囲 (J Dの窓幅) を Wよりも小さな値 W, とするので、 干渉除去 (J D ) のための演 算量を減らすことができる。
すなわち、 本実施の形態によれば、 R AK E合成については全てのマルチパ スを用いて最大の性能を引き出し、 J Dについては遅延スプレッドに基づいて 最適な窓幅を設定するので、 R A K E合成の性能を維持しつつ、 拡散符号間の 相互相関による干渉除去を充分に行うことができ、 しかも J Dの際の演算規模 を削減することができる。
(実施の形態 2 )
本実施の形態では、 拡散符号に遅延プロファイルを畳み込み演算をした結果 の相関値についてしきい値判定を行うことにより最大遅延時間を設定し、 その 最大遅延時間を用いて干渉除去を行って受信信号を出力する場合について説 明する。
図 7は、 本発明の実施の形態 2に係る無線受信装置における最大遅延時間設 定部の内部構成を示すプロック図である。
図 7において、 最大遅延時間設定部 1 0 6は、 遅延プロファイルと畳み込み 演算する拡散符号の組を選択する拡散符号選択部 1 0 6 3と、 選択された拡散 符号と遅延プロファイルとの間の畳み込み演算を行ってその相互相関を算出 する畳み込み演算部 1 0 6 4と、 畳み込み演算結果の相互相関値に対してしき い値判定を行うしきい値判定部 1 0 6 5とを備えている。
次に、 上記構成を有する無線受信装置の動作について説明する。
無線信号を受信して遅延プロファイルを作成するまでの動作は実施の形態 1と同様であるので省略する。
RAK E^gl5 1 0 3では、 無線受信処理後の信号に対して送信側装置で用 いた拡散符号と同じ拡散符号を用いて逆拡散処理を行い、 この逆拡散処理後の 信号 (逆 ¾散信号) と遅延プロファイルとを用いて R AK E合成を行う。 この R AK E合成においては、 全てのマルチパスが含まれる時間 (窓幅) Wについ て行われる。 R A K E合成により得られた結果は、 拡散符号の相互相関を除去 しない場合の受信信号である。 ここで、 R AK E合成の結果をベクトル bで表 す。
最大遅延時間設定部 1 0 6では、 遅延プロファイルを用いて、 干渉除去のた めの遅延時間幅 W, の設定を行う。 本実施の形態では、 拡散符号に遅延プロフ アイルを畳み込み演算をした結果の相関値についてしきい値判定を行う、 すな わち任意に選択した拡散符号の相互相関の大きさに対してしきい値判定を行 うことにより最大遅延時間 W' を設定する。
まず、 拡散符号選択部 1 0 6 3で、 畳み込み演算の対象となる拡散符号の組 を選択し、 その拡散符号の組を畳み込み演算部 1 0 6 4に出力する。 畳み込み 演算部 1 0 6 4では、 それそれの拡散符号と遅延プロファイルとを畳み込み演 算する。 そして、 それぞれの拡散符号に遅延プロファイルを畳み込み演算をし た結果の相関を算出する。 この相関結果は、 遅延波がある場合の拡散符号の相 互相関に相当する。相互相関値については、 いろいろな窓幅 Wkについて演算 する。 .
畳み込み演算部 1 0 6 4は、 求められた相互相関値をしきい値判定部 1 0 6 5に出力する。 しきい値判定部 1 0 6 5では、 いろいろな窓幅の相互相関値 P (Wk) に対して、 あらかじめ設定されたしきい値 P t hと比較する。 そして、 このしきい値 P t hよりも小さくなる W' を求める。
例えば、 図 4において、 W。を遅延波て。が含まれる窓幅とし、 を遅延波 て。とて が含まれる窓幅とし、 W2 ( = W) を遅延波て。, てい て 2が含まれ る窓幅とした場合、 しきい値判定部 1 0 6 5では、 相互相関値に対してしきい 値判定を行う。
具体的には、
{P (W) - P (W0) } /P (W) > P t h
で、 かつ
{P (W) - P (W J } /P (W) < P t h の場合は、 干渉除去 (J D ) の窓幅を W0にすると、 実際の干渉量 P (W) と 窓 W0のときの干渉量: P (W0) の差が大きくなる。 このため、 窓幅を W0とし た時の干渉除去能力は小さいと判断する。
そして、 干渉除去 (J D ) の窓幅を W 1にすると、 実際の干渉量 P (W) と 窓幅 のときの干渉量 P (W の差が小さくなる。 このため、 窓幅を と した時の干渉除去能力は窓幅を Wとした場合と差がないと判断することがで きる。 したがって、 この場合には、 干渉除去 (J D ) の窓幅 W' を Wtに設定 する。
このように、 実際の干渉量と窓幅を仮設定して求めた干渉量との差が所定量 よりも小さいときに、 その仮設定した窓幅を最大遅延時間としているので、 窓 幅を R A K E合成の場合よりも狭くすることによる性能劣化を極力少なくす ることが可能となる。 なお、 しきい値は、 窓幅を R AK E合成の場合よりも狭 くすることによる性能劣化がシステムに影響を与えない範囲で適宜設定する ことが可能である。
このように設定された窓幅に含まれる遅延波までが J Dにおける干渉除去 の対象となる。 ここでは、 最大遅延時間 W' に遅延時間て 0とて丄のパスが含ま れることとなる。
J D部 1 0 7では、 遅延プロファイルと拡散符号との間の畳み込み演算を行 つて行列 Aを作成する。行列 Aの演算量は、 送信シンボル数を Nとし、 拡散率 を Qとし、 最大遅延時間 (窓幅) を W, とし、 送信されているマルチコ一ド数 を Kとすると、 (N Q + W, - 1 ) X (K N) となる。 したがって、 従来に比 ベて窓幅が Wから W' に狭くなつていることにより、 従来より演算量が少なく なる。
次いで、 J D部では、 Aの相関演算 AHA (行列) を算出する。相関演算 AH Aの演算量は、 (K N) X (K N) となる。 その後、 送信シンボル; Xについて の式 AHAx = bを解くことにより、すなわち RAK E合成結果 bに対して AH Aの逆行列 [AHA]一1を乗算することにより、 窓幅 W, に含まれるパス (遅 延時間て。とて iのパス)についての拡散符号の相互相関を除去した複数の信号 を復調することができる。 これにより、 全コードの受信信号が得られる。 本実施の形態においても、 実施の形態 1と同様の効果を発揮することができ る。 すなわち、 RAKE合成については全てのマルチパスを用いて最大の性能 を引き出し、 J Dについては遅延スプレッドに基づいて最適な窓幅を設定する ので、 RAKE合成の性能を維持しつつ、 拡散符号間の相互相関による干渉除 去を充分に行うことができ、 しかも J Dの際の演算規模を削減することができ る。
本発明は上記実施の形態 1, 2に限定されず、 種々変更して実施することが 可能である。例えば、 上記実施の形態 1, 2では、 パス数が 3である場合につ いて説明しているが、 本発明はパス数が 2又は 4以上であっても同様に適用す ることが可能である。
本発明の無線受信装置及び無線受信方法は、 ディジタル無線通信方式、 特に C D M A方式の無線基地局装置に適用することが可能である。
以上説明したように本発明の無線受信装置及び無線受信方法は、 RAKE合 成については全てのマルチパスを用いて最大の性能を引き出し、 干渉除去 (J D) については遅延スプレッドに基づいて最適な窓幅を設定するので、 RAK E合成の性能を維持しつつ、 拡散符号間の相互相関による干渉除去を充分に行 うことができ、 しかも干渉除去 (JD)の際の演算規模を削減することができ る。
本明細書は、 2001年 5月 25日出願の特願 2001— 156625に基 づくものである。 この内容をここに含めておく。 産業上の利用可能性
本発明は、 ディジタル無線通信方式において使用される無線受信装置及び無 線受信方法に用いるに好適である。

Claims

請求の範囲
1 . 複数ないし 1ユーザの信号がコード多重された受信信号に含まれる既知信 号を用いて遅延プロファイルを作成する遅延プロファイル作成手段と、 前記遅 延プロファイルに第 1遅延時間を設定し、 この第 1遅延時間の範囲内で R AK E合成を行う R AK E合成手段と、 前記遅延プロファイルに前記第 1遅延時間 よりも短い第 2遅延時間を設定し、 この第 2遅延時間の範囲内において、 前記 R A K E合成後の信号に対して干渉除去処理を行って全コードの受信信号を 出力する干渉除去手段と、 を具備する無線受信装置。
2 . 第 2遅延時間は、 遅延プロファイルから求められた遅延スプレツドにより 決定される請求の範囲 1記載の無線受信装置。
3 . 第 2遅延時間は、 任意に選択した拡散符号の相互相関の大きさに基づいて 設定される請求の範囲 1記載の無線受信装置。
4 . 無線受信装置を備えた無線基地局装置であって、 前記無線受信装置は、 複 数ないし 1ユーザの信号がコード多重された受信信号に含まれる既知信号を 用いて遅延プロファイルを作成する遅延プロファイル作成手段と、 前記遅延プ 口ファイルに第 1遅延時間を設定し、 この第 1遅延時間の範囲内で R A K E合 成を行う RAK E合成手段と、 前記遅延プロファイルに前記第 1遅延時間より も短い第 2遅延時間を設定し、 この第 2遅延時間の範囲内において、 前記 R A K E合成後の信号に対して干渉除去処理を行つて全コードの受信信号を出力 する干渉除去手段と、 を具備する。
5 . 複数ないし 1ユーザの信号がコ一ド多重された受信信号に含まれる既知信 号を用いて遅延プロフアイルを作成する遅延プロファイル作成工程と、 前記遅 延プロファイルに第 1遅延時間を設定し、 この第 1遅延時間の範囲内で R AK
E合成を行う: R AK E合成工程と、 前記遅延プロファイルに前記第 1遅延時間 よりも短い第 2遅延時間を設定し、 この第 2遅延時間の範囲内において、 前記 R A K E合成後の信号に対して干渉除去処理を行って全コードの受信信号を 出力する干渉除去工程と、 を具備する無線受信方法。
6 . 第 2遅延時間は、 遅延プロファイルから求められた遅延スプレッドにより 決定される請求の範囲 5記載の無線受信方法。
7 . 第 2遅延時間は、 任意に選択した拡散符号の相互相関の大きさに基づいて 設定される請求の範囲 5記載の無線受信方法。
PCT/JP2002/004902 2001-05-25 2002-05-21 Appareil et procede de reception radio WO2002098011A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2002601482 DE60201482T2 (de) 2001-05-25 2002-05-21 Vorrichtung und verfahren zum funkempfang
EP20020774065 EP1296462B1 (en) 2001-05-25 2002-05-21 Radio reception apparatus and radio reception method
US10/332,144 US7167505B2 (en) 2001-05-25 2002-05-21 Radio receiving apparatus and radio receiving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001156625A JP3345406B1 (ja) 2001-05-25 2001-05-25 無線受信装置及び無線受信方法
JP2001-156625 2001-05-25

Publications (1)

Publication Number Publication Date
WO2002098011A1 true WO2002098011A1 (fr) 2002-12-05

Family

ID=19000615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004902 WO2002098011A1 (fr) 2001-05-25 2002-05-21 Appareil et procede de reception radio

Country Status (6)

Country Link
US (1) US7167505B2 (ja)
EP (1) EP1296462B1 (ja)
JP (1) JP3345406B1 (ja)
CN (1) CN1198405C (ja)
DE (1) DE60201482T2 (ja)
WO (1) WO2002098011A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581356B2 (ja) * 2002-05-22 2004-10-27 松下電器産業株式会社 通信端末装置及び拡散コード推定方法
CN1579050A (zh) * 2002-05-23 2005-02-09 松下电器产业株式会社 接收设备和接收方法
CN100525528C (zh) 2003-08-05 2009-08-05 大唐移动通信设备有限公司 正交码cdma信号检测方法
JP4259964B2 (ja) * 2003-09-12 2009-04-30 富士通株式会社 MIXR機能を有するRake受信機
US20050254559A1 (en) * 2004-05-11 2005-11-17 Wen-Sheng Hou Packet detection
US8442441B2 (en) * 2004-12-23 2013-05-14 Qualcomm Incorporated Traffic interference cancellation
WO2006075732A1 (ja) * 2005-01-17 2006-07-20 Sharp Kabushiki Kaisha 無線通信装置
JPWO2006077829A1 (ja) * 2005-01-18 2008-06-19 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末およびマルチパス干渉除去方法
DE112006001114T5 (de) * 2005-05-16 2008-04-30 Murata Manufacturing Co. Ltd. Radargerät
JP4129014B2 (ja) * 2005-08-10 2008-07-30 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末
EP1775849A1 (en) * 2005-10-14 2007-04-18 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for interference mitigation
US8396151B2 (en) * 2006-10-19 2013-03-12 Qualcomm Incorporated Timing tracking in a multiple receive antenna system
US7894774B2 (en) * 2007-08-02 2011-02-22 Wireless Technology Solutions Llc Communication unit and method for interference mitigation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261412A (ja) * 1999-03-06 2000-09-22 Matsushita Electric Ind Co Ltd 干渉信号除去装置
JP2002111542A (ja) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd 通信端末装置及び復調方法
JP2002111546A (ja) * 2000-09-29 2002-04-12 Matsushita Electric Ind Co Ltd 復調装置及び復調方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490165A (en) * 1993-10-28 1996-02-06 Qualcomm Incorporated Demodulation element assignment in a system capable of receiving multiple signals
IL120538A (en) * 1997-03-26 2000-11-21 Dspc Tech Ltd Method and apparatus for reducing spread-spectrum noise
FI104020B (fi) 1997-06-23 1999-10-29 Nokia Telecommunications Oy Vastaanottomenetelmä ja vastaanotin
JP3793632B2 (ja) * 1997-12-18 2006-07-05 松下電器産業株式会社 セルサーチ方法及び移動局装置
JPH11261440A (ja) * 1998-03-11 1999-09-24 Oki Electric Ind Co Ltd 合成受信装置
DE19826036C2 (de) 1998-06-12 2000-05-25 Bosch Gmbh Robert Verfahren zur Trennung von mehreren überlagerten codierten Nutzersignalen
US6373882B1 (en) * 1998-11-06 2002-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Motion estimator for a CDMA mobile station
JP4029237B2 (ja) * 1998-11-26 2008-01-09 ソニー株式会社 受信方法および無線通信端末装置
JP3320667B2 (ja) * 1998-12-21 2002-09-03 株式会社東芝 スペクトラム拡散無線通信装置
JP3279297B2 (ja) * 1999-09-24 2002-04-30 日本電気株式会社 Cdma移動通信受信方式におけるサーチ方法および受信装置
JP3387471B2 (ja) * 2000-02-14 2003-03-17 日本電気株式会社 スペクトラム拡散通信方式受信機およびスペクトラム拡散通信のパスサーチ方法
JP2001244849A (ja) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd 通信端末装置及びセルサーチ方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261412A (ja) * 1999-03-06 2000-09-22 Matsushita Electric Ind Co Ltd 干渉信号除去装置
JP2002111542A (ja) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd 通信端末装置及び復調方法
JP2002111546A (ja) * 2000-09-29 2002-04-12 Matsushita Electric Ind Co Ltd 復調装置及び復調方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1296462A4 *

Also Published As

Publication number Publication date
CN1198405C (zh) 2005-04-20
JP3345406B1 (ja) 2002-11-18
DE60201482D1 (de) 2004-11-11
US7167505B2 (en) 2007-01-23
EP1296462A4 (en) 2003-07-23
US20030108091A1 (en) 2003-06-12
CN1463503A (zh) 2003-12-24
JP2002353853A (ja) 2002-12-06
DE60201482T2 (de) 2005-02-03
EP1296462B1 (en) 2004-10-06
EP1296462A1 (en) 2003-03-26

Similar Documents

Publication Publication Date Title
US7778312B2 (en) Method and apparatus for selecting demodulation processing delays in a receiver
US7313172B2 (en) Scaling using gain factors for use in data detection
JP3275079B2 (ja) 通信システムにおけるコヒーレント・チャネル推定のための方法および装置
US7400608B2 (en) Method and apparatus for spread spectrum interference cancellation
EP1274177B1 (en) Method and apparatus for regenerative based interference cancellation within a communication system
IL142281A (en) Method and device for eliminating interference in a scanner receiver
US7218692B2 (en) Multi-path interference cancellation for transmit diversity
WO2006132592A2 (en) Method and apparatus for reducing interference in spread spectrum signals using spreading code cross-correlations
US7577187B2 (en) Method of noise factor computation for chip equalizer in spread spectrum receiver
US7167529B2 (en) Method and device for radio signal reception
WO2008069736A2 (en) Multi-transmitter interference suppression using code-specific combining
WO2002098011A1 (fr) Appareil et procede de reception radio
WO1996000470A1 (fr) Procede et dispositif de reception de signaux multiplexes a division de code
EP1619807B1 (en) Chip equalizer for spread spectrum receiver
JP4205761B2 (ja) 干渉打消方法及び受信器
JP2000083011A (ja) 干渉キャンセラにおける伝搬路推定方法及び干渉除去装置
EP1605602B1 (en) Interference reduction apparatus and method
EP1299961A1 (en) Receiver and method of receiving a cdma signal in presence of interferers with unknown spreading factors
US6904106B2 (en) Method and apparatus for spread spectrum interference cancellation
US8295329B2 (en) Efficient computation of soft scaling factors for linear multi-user detector
WO2005032022A1 (en) Method and system for multipath interference cancellation for a receiver in a multicode division multiple access system
JP2002026774A (ja) 受信方法および受信機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10332144

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002774065

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028018354

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002774065

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002774065

Country of ref document: EP