WO2002100514A1 - Filter element and production method thereof - Google Patents

Filter element and production method thereof Download PDF

Info

Publication number
WO2002100514A1
WO2002100514A1 PCT/JP2001/004957 JP0104957W WO02100514A1 WO 2002100514 A1 WO2002100514 A1 WO 2002100514A1 JP 0104957 W JP0104957 W JP 0104957W WO 02100514 A1 WO02100514 A1 WO 02100514A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid passage
plugging
diameter fluid
diameter
small
Prior art date
Application number
PCT/JP2001/004957
Other languages
French (fr)
Japanese (ja)
Inventor
Motoshige Mizuno
Masahiro Wakita
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000158206A priority Critical patent/JP4471452B2/en
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to PCT/JP2001/004957 priority patent/WO2002100514A1/en
Publication of WO2002100514A1 publication Critical patent/WO2002100514A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/111Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/35Self-supporting filtering elements arranged for outward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2496Circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention is used for filtration of household water purifiers, filtration of polishing liquid used in semiconductor manufacturing equipment, filtration of circulation baths, filtration of solutions in hydroponics, filtration of fine particles in a diesel particulate filter (DPF), etc. And a method of manufacturing the same.
  • FIG. 5 is a diagram showing an end face configuration of an example of a conventional filter element. A black-out portion is plugged and used for filtering gas and liquid.
  • Extrusion methods using a screw-type extruder or a cylinder-type extruder are widely used in the method of manufacturing a filter base material because it requires a large number of fluid passages in the axial direction of the filter base material.
  • the cross-sectional shape of the fluid passage is rectangular, circular, hexagonal, etc., and is basically the same cross-sectional shape over the entire cross-section of the filter substrate due to the ease of manufacturing an extrusion die capable of forming such a fluid passage.
  • a fluid passage having the same dimensions as that of the filter fluid is formed, so that both the inlet side of the filtered fluid and the outlet side of the clarified fluid are the same fluid passage.
  • the plugging method is shown in Fig. 6 corresponding to the filter element shown in Fig. 5.
  • a mask pattern appropriately selected from rubber, resin film, metal film, etc. in accordance with the material of the fill material is applied to the fill material, or placed on the end face of the fill material Later, plugging material is injected.
  • This plugging material is injected, for example, by immersing the filter substrate with the mask pattern shown in FIG. 6 stuck in a slurry liquid made of the same material as the filter substrate, or when the diameter of the fluid passage is large. Since the drying shrinkage of the plugging material slurry was large, the plugging material prepared in a clay state was pressed with a spatula-shaped tool or squeegee.
  • a filter is used to optically process the hole array at the end of the base material, and a nozzle that can inject a fixed amount of plugging material is filled. Then, a method of individually injecting slurry into plugged portions has also been adopted.
  • the fluid passage of the filter base material is bounded by the plugging operation at the wall surface that is the filtration surface.
  • Solids in the fluid to be filtered accumulate in the fluid passage on the upstream side, and are separated at the upstream and downstream sides.
  • the solids in the fluid to be filtered are deposited on the upstream side, and the downstream side when the resistance of the fluid passing through the wall surface exceeds a predetermined value.
  • the normal fluid flows from the fluid passage upstream to the so-called backwash.
  • the life of the filter as a filtration element is determined when the solids that have entered the open pores of the filter base material cannot be removed beyond the limit even by the backwashing, so the upstream filtration area The larger the width, the lower the filtration resistance and the greater the amount of solids deposited.
  • the inner diameter (d) of the fluid passage is reduced to secure a filtration area, the axial length (L) of the fluid passage will be reduced. LZd becomes large, and solid matter deposited on the bottom-side fluid passage on the upstream side, especially at the bottom, cannot be removed by backwashing, and the life of the filter is shortened. The following are considered good.
  • Increasing the diameter of the fluid passage to facilitate removal of solids facilitates the discharge of solids, but reduces the filtration area per filter-element and increases the size of the filtration device. Becomes
  • the filter element used for filtration of polishing liquid, filtration of circulation bath, filtration of solution in hydroponics, filtration of fine particles in diesel particulate filter (DPF), etc.
  • DPF diesel particulate filter
  • the life of the filter element is determined by the total surface area and the total volume of the fluid passage on the upstream side. In either case, only the filtered clean fluid and fine solids of 5 to 10% of the maximum pore size of the filter element are permeated on the downstream side, so the downstream side has a larger fluid passage area than the upstream side.
  • the fluid passage of the conventional filter element has the same cross-sectional area on both the upstream and downstream sides, so the size of the filter element becomes larger due to the excess cross-sectional area of the fluid passage on the downstream side. ing.
  • the disposable filter element as described above needs to be inexpensive in order to ensure good filtration characteristics by replacing the filter element in a short period of time.
  • the filter base material undergoes deformation such as twisting or bending during molding, the arrangement and shape of the fluid passages such as rectangles, circles, and hexagons are not constant. Later, it is necessary to correct the deviation between the mask pattern and the fluid passage of the filter substrate. Further, as the fluid passage becomes smaller, the wall thickness separating the fluid passage also decreases, so that the dimension of the joint between the openings of the mask pattern must be smaller than the wall thickness between the fluid passages. Also, the strength of the mask pattern itself is reduced, and the mask pattern is damaged when pasting.
  • the method of attaching a mask pattern to an unfired ceramic filter base material is based on the fact that fine particles on the surface of the filter base material are easily peeled off, and the filter is sealed with one end face in advance. After that, it was necessary to bond the mask pattern. Therefore, the plugging method using a mask pattern was difficult for a filter base material formed in a fluid passage with an inscribed circle diameter of ⁇ 2 mm or less.
  • the inner acute angle portion does not occur and the boundary portion has a smooth meniscus shape with respect to the plugging method by press-fitting the plugging material.
  • This is a particularly advantageous and preferable plugging method in the case of an evening structure.
  • the inner diameter of the fluid passage is small, the mask pattern and the filter-substrate are incompletely adhered to each other, and plugging is performed at a place other than the necessary place. Problems easily occur.
  • the filter optically reads the hole array at the end of the substrate, processes the image, and interlocks a nozzle that can inject a fixed amount of plugging material.
  • the method of individually injecting water has a problem that the equipment is expensive and the plugging process itself takes time.
  • the above-described filter element has a problem that the dimensions are large, the yield related to plugging is particularly poor, and the product cost is high.
  • An object of the present invention is to solve the above-mentioned problem and to make the total cross-sectional area of the fluid passage on the upstream side of the filtration wall the optimum cross-sectional area corresponding to the amount of solids in the fluid to be filtered. Also, since the total cross-sectional area on the downstream side can be minimized corresponding to the amount of the clarified liquid and the filtration application, the outer diameter of the filter element can be minimized, and the filter element that can reduce the size of the device can be reduced. It is something to offer. Another object of the present invention is that the occurrence of coating defects particularly in the case of a multilayer structure is remarkable.
  • a filter element according to the present invention is a filter element comprising a plurality of parallel fluid passages partitioned by a porous wall, wherein the fluid passages have a large cross-section, a large-diameter fluid passage, and a large-diameter fluid passage.
  • the large-diameter fluid passage is plugged on an end face opposite to the plugged end face.
  • the fluid passage includes a large-diameter fluid passage and a small-diameter fluid passage, the large-diameter fluid passage is plugged on one end face, and the small-diameter fluid passage is sealed on the other end face.
  • the total cross-sectional area of the fluid passage on the upstream side of the filtration wall can be set to an optimal cross-sectional area corresponding to the amount of solids in the fluid to be filtered, and the downstream side
  • the total cross-sectional area of the filter element can be minimized in accordance with the amount of the clarified liquid and the purpose of filtration, so that the outer diameter of the filter element can be minimized and the size of the apparatus can be reduced.
  • Preferred examples of the filter element of the present invention include a configuration in which the cross section of the fluid passage is based on a circle, a configuration in which a small diameter fluid passage is arranged around a large diameter fluid passage, and the cross section of the fluid passage is based on a polygon, A configuration in which a small-diameter fluid passage is arranged around a large-diameter fluid passage; a configuration in which a polygon is a hexagon; a cross-section perpendicular to an axis of a filter element; When the configuration is more than 40% and less than or equal to 120% of the total cross-sectional area of the fluid passage, the large-diameter fluid passage is used as an inlet for a filtered fluid, and the small-diameter fluid passage is used as an outlet for a clarified fluid. To achieve the effects of the present invention more suitably. Can be.
  • the first invention of the method for producing a filter element of the present invention comprises a plurality of parallel fluid passages partitioned by a porous wall, wherein the fluid passage has a large cross section.
  • a preparation step of preparing a filter substrate comprising at least one small-diameter fluid passage having a cross-sectional size smaller than the diameter fluid passage; and one end face of the filter substrate prepared in the preparation step as a plugging material.
  • the filling length of the plugging material of the small-diameter fluid passage is formed longer than the filling length of the plugging material of the large-diameter fluid passage, and then the small-diameter fluid passage is plugged.
  • the second invention of the method for producing a filter element of the present invention comprises a large number of parallel fluid passages partitioned by a porous wall, wherein the fluid passage has a large-diameter fluid passage having a large cross section, and a large-diameter fluid passage.
  • a preparatory step of preparing a filter base material comprising at least one small-diameter fluid passage having a cross-sectional size smaller than the fluid passage; and one end face of the filter base material prepared in the preparation step as a plugging material.
  • a first plugging step of filling the plugging material into the plugging material, and an end face opposite to the end face plugged in the first plugging step is immersed in the plugging material to form a large-diameter fluid passage.
  • the filling length of the plugging material is longer than the filling length of the plugging material in the small-diameter fluid passage.
  • the fluid passage is composed of a large-diameter fluid passage and a small-diameter fluid passage, so that one filter, which is the most suitable plugging method, is immersed in the plugging material.
  • This method can be used without using a mask pattern by utilizing the difference in cross-sectional size between the large-diameter fluid passage and the small-diameter fluid passage. Therefore, the occurrence of coating defects can be significantly reduced, especially in the case of a multi-layer structure, and since no mask pattern is used, it can be widely applied even when the fluid passage size is small. There is no sealing failure and plugging is possible even if the filler material is deformed, and the plugging time can be reduced, and a more expensive optical image processing device and plugging An inexpensive cost plugging method that does not require a material injection device can be achieved.
  • the filter base is made of a ceramic material; the plugging material is made of a ceramic material; A structure in which a sealing step and a second plugging step are performed.
  • the plugging material is any of a ceramic material and an organic adhesive.
  • the first plugging step is performed.
  • a second plugging step In the first plugging step, the filter base material is immersed in the plugging material, and then the filter base material is lifted upward to provide a large-diameter fluid passage and A structure in which a small-diameter fluid passage is filled with a plugging material.
  • the large-diameter fluid passage or the small-diameter fluid passage is evacuated by vacuum suction from an upper portion of the filler substrate.
  • Small-diameter fluid passage with sealing material filling length Is a structure in which the plugging material is selectively filled so as to be longer than the length of the plugging material in the large-diameter fluid passage.
  • the base material of the filter is immersed in the plugging material. After the filling material is moved downward in the plugging material, the filling length of the plugging material in the large-diameter fluid passage or the small-diameter fluid passage becomes small-diameter fluid passage or large-diameter fluid passage.
  • FIG. 1 is a view showing an end face structure of an example of the filter element of the present invention
  • FIG. 2 is a view showing an end face structure of another example of the filter element of the present invention
  • FIGS. 3 (a) to (1) are It is a diagram showing a method of first plugging the large diameter fluid passage in the method of manufacturing a filter element of the present invention in the order of steps,
  • FIGS. 4 (a) to 4) are diagrams showing a method of plugging a small-diameter fluid passage first in a method of manufacturing a filter element of the present invention in the order of steps.
  • FIG. 5 is a view showing an end face structure of an example of a conventional filter element
  • FIG. 6 is a view showing an example of a mask pattern used for plugging an end face of the conventional filter element.
  • FIG. 7 is a view showing an example of a shape of a plugging material at an end of a conventional fill element.
  • the filter is constituted by a combination of at least two or more fluid passages having different internal dimensions in the cross-sectional direction of the fluid passage of the base material.
  • Fig. 1 shows the end face configuration of a fill element composed of a ⁇ -shaped fluid passage, and the black-out portion is plugged.
  • FIG. 2 shows an end face configuration of a filter element composed of hexagonal fluid passages. Similarly, a black-out portion shows a plugged state.
  • the mold is inexpensive. Also, based on the cross-sectional area of the large-diameter fluid passage with the largest cross-sectional area, the small-diameter fluid passage on the downstream side, which is easy to design, can be appropriately arranged and a fine arrangement can be suitably configured. The design of the cross-sectional area ratio on the downstream side It will be easier.
  • two types of small-diameter fluid passages are arranged for one type of large-diameter fluid passage, but the plugging method described later can of course be employed.
  • the plugging method described later can of course be employed.
  • the outer diameter portion of the filter base material and the large-diameter fluid passage intersect, it is preferable to dispose the large-diameter fluid passage appropriately instead of omitting it.
  • the inscribed circle of the deformed large-diameter fluid passage needs to be larger than the inscribed circle of the small-diameter fluid passage.
  • the hexagonal hole type shown in Fig. 2 minimizes the volume of the wall, which is the filtration layer, has no sharp corners inside and is easy to arrange finely, so the outer diameter of the filter element is minimized. And most preferred.
  • the cross section of the fluid passage may be triangular, square, trapezoidal, octagonal, star-shaped, etc., and may be of any combination including any of the deformed types and the ⁇ -shaped shapes.
  • the deformation mode of the large-diameter fluid passage at the outer diameter portion of the filter element is the same as that of the above-mentioned ⁇ type element.
  • the large-diameter fluid passage and the small-diameter fluid passage use the wall of the fluid passage as a filtration portion, it is necessary that both fluid passages are close to each other to reduce filtration resistance. It is preferable that a small-diameter fluid passage is disposed in the first fluid passage, and one small-diameter fluid passage is shared by a plurality of large-diameter fluid passages.
  • the large-diameter fluid passage is preferably the upstream side where solids in the fluid are separated and deposited, and the downstream side is preferably 40% or more and 120% or less of the total cross-sectional area of the upstream side. .
  • the content is preferably up to 120%.
  • the large-diameter fluid passage side is set as the upstream side of the filtration. If it is necessary to reduce the exposed area per filter fluid and improve the durability of the plugged portion, of course, the downstream side may be a large-diameter fluid passage.
  • a method of plugging the fluid passage will be described.
  • the method can be used in any of the two modes of plugging a small-diameter fluid passage other than the large-diameter fluid passage. It is preferable to select similar materials and properties for the filter base material and the plugging slurry liquid.
  • a sintering aid made of clay such as feldspar and force orinite is used for fused alumina with a particle size of # 800.
  • a mixture of material and methylcellulose and polyethylene glycol oleate as a binder is extruded into the shape shown in Fig. 2 and then calcined at 150. I do.
  • a ceramic emergent which is the most preferable embodiment, is described.
  • a porous plastic if an organic adhesive described later is used, a porous plastic,
  • the present invention can be applied to a filter made of a sintered metal and a substrate.
  • alumina is used as a ceramic material because both low cost and strength can be achieved.
  • a filter such as a filter element used for filtering fine particles in a diesel particulate filter (DPF) is used.
  • DPF diesel particulate filter
  • Plugging can be performed by the method according to the invention.
  • the outer diameter of the fill material base material shown in the example is ⁇ 80 mm
  • the diameter of the inscribed circle of the large diameter fluid passage is ⁇ 3 mm
  • the diameter of the inscribed circle of the small diameter fluid passage is ⁇ 1 mm. 4 mm.
  • the plugging slurry (plugging liquid) is prepared by adding fused alumina particles of # 150 particle size to fused alumina of the above particle size to minimize shrinkage during plugging.
  • Amonium acrylate is also used as a sintering aid, and the force-oliginate and potassium feldspar are well kneaded with water to form a plugging material slurry, which will be used in subsequent steps.
  • a method of first plugging a large-diameter fluid passage will be described with reference to FIGS. 3 (a) to (1) showing a plugging procedure according to the present invention.
  • the filter base material prepared by the above method is immersed in the plugging liquid prepared by the same method as shown in Fig. 3 (b) to a length of 4 mm.
  • the plugging liquid that has entered the small-diameter fluid passage absorbs moisture by the base material, and solids adhere to the inner diameter of the small-diameter fluid passage to close the small-diameter fluid passage.
  • the plugging liquid adheres to the inner diameter of the small-diameter fluid passage as well as the small-diameter fluid passage.
  • the filter base material is removed from the plugging liquid.
  • the base material of the filter is made of the same material as the plugging material in order to minimize distortion due to firing of the plugged portion.
  • other ceramic materials may be used to match the thermal expansion difference with the plugging portion.
  • the filter base material In order to reduce the sintering cost, it is preferable to plug in the unsintered state. Is also good. Further, if the filter base material is easily deformed or damaged due to the penetration of a dissolving material such as water in the slurry plugging material, the filter base material should be fired before plugging. Is preferred.
  • the plugging liquid is discharged from the large-diameter fluid passage, and an opening is formed in the central portion.
  • the large-diameter fluid passage side must be open at the center, so as the plugging liquid adheres to the small-diameter fluid passage of the base material, pulling it upward raises the large-diameter fluid passage.
  • the center of the fluid passage always moves upward in an open state, which is the most preferable.
  • the filter substrate may be rotated in such a manner that the axial direction of the filter substrate becomes radial, and the plugging liquid in the large-diameter fluid passage may be discharged by centrifugal force.
  • the filler is removed from the plugging liquid and dried as shown in Fig. 3 (f).
  • Fig. 3 (g) the filter base material is cut at the position where the plugged portion of the large-diameter fluid passage is left and the plugged portion of the small-diameter fluid passage is removed, and the large-diameter fluid passage is targeted.
  • the first plugging step is completed. In this cutting, the processing load imposed on the base material and the plugged portion by the cutting with the diamond whetstone is small and good.
  • the large-diameter fluid passage of the filter base material can be plugged at one end as shown in FIG. 3 (h).
  • plugging is performed in the same process as above. Is performed.
  • vacuum suction is performed from the upper end of the filter base material, or the small-diameter fluid passage and the large-diameter fluid passage are plugged by a capillary phenomenon.
  • the length of the stopper in the axial direction may be increased, or the stopper may be pulled upward while attaching the plugging liquid to the small-diameter fluid passage side as in FIG. 3 (b).
  • the plugged portion of the large-diameter fluid passage can be removed as shown in Fig. 3 (k) and the small-diameter fluid can be removed.
  • the filter base material is cut at a position where the plugged portion on the passage side remains, and the second plugging step is completed.
  • the second plugging step is completed, the large-diameter fluid passage is plugged on one end face and the small-diameter fluid passage is plugged on the other end face, as shown in Fig. 3 (1). You can get a filled element.
  • the plugging material was the same ceramic material as the base material of the filter.
  • the filter material for domestic water purifiers and the CMP polisher for semiconductor wafer manufacturing were used as plugging materials.
  • the polishing fluid filtration filter to be stored, the filtration filter for the circulation bath, and the filtration filter for the solution in hydroponics The fluid temperature of the Yuichi water purifier is 80 or less, and the plugging material is an organic type that can be easily filled. Are preferred.
  • the process in this case is the same as that of the ceramics-based plugging material described above, but the same operation and effect can be obtained by curing the adhesive instead of attaching the plugging material to the filler.
  • the adhesive it is preferable to mix ceramic powder or resin particles having a particle size of about # 150 into the adhesive in order to prevent the film from being pulled and damaged by the curing shrinkage of the adhesive. If heat is applied to further cure by heating, the adhesive that has a higher coefficient of thermal expansion than the filter substrate during cooling will tensilely damage the filter substrate, so the adhesive is a main agent that can be effective at room temperature. Select a hardening agent that has a long pot life, use a material diluted with a solvent such as acetate, and perform immersion and removal several times to coat the inner surface of the filter substrate. It is preferable to use a method in which an adhesive is adhered.
  • the method of first plugging the small-diameter fluid passage is basically the same as the above-described method of first plugging the large-diameter fluid passage.
  • the outline is described with reference to FIGS. 4 (a) to 4 (i).
  • the filter substrate prepared by the above method is shown in FIG. 4 (b).
  • immerse in the plugging solution prepared by the above method to a length of 4 mm.
  • the filler substrate is removed from the plugging liquid.
  • FIG. 4 (d) since the central portion is in a soft state, the plugging liquid is discharged from the large-diameter fluid passage, and an opening is formed in the central portion.
  • the filter material is placed in a dryer, and the plugged portion of the small-diameter fluid passage is fixed to the filter material.
  • the first step is completed, and as shown in FIG. 4 (e), the small-diameter fluid passage of the filler can be plugged at one end.
  • the filter base material is cut at the position where the plugged portion on the radial fluid passage side remains, and the second plugging step is completed.
  • the second plugging step is completed, the large-diameter fluid passage is plugged on one end face and the small-diameter fluid passage is plugged on the other end face, as shown in FIG. 4 (i).
  • a filtered element can be obtained.
  • the plugging process of the filter element according to the present invention includes two methods, a method of first plugging a large-diameter fluid passage and a method of first plugging a small-diameter fluid passage.
  • the method of first plugging the small-diameter fluid passage is preferable because the number of processes is small, but the large-diameter fluid passage is large in the point that the large-diameter fluid passage side having a large plugging volume can be reliably plugged first.
  • the method of first plugging the passage is preferable. Either of these two methods can be appropriately selected depending on the material of the ceramic base, the internal dimensions of the fluid passage, and the material of the plugging material.
  • the plugging portion of the small-diameter fluid passage is first plugged, so that the small-diameter fluid passage that comes into contact with the fluid containing the solid is removed.
  • a glass glaze is applied to the end face of the filter base material of the plugged small-diameter fluid passage, the adhesion of the plugged portion to the filter base material can be strengthened, and the abrasion resistance can be improved.
  • a large-diameter fluid passage and a small-diameter fluid passage are selected between inscribed circle dimensions of ⁇ 1 to ⁇ 2.5 mm.
  • the slurry plugging material is also preferably used as a glass glaze.
  • the fluid passage is composed of the large-diameter fluid passage and the small-diameter fluid passage, and the large-diameter fluid passage is plugged with one end face, Since the small-diameter fluid passage is configured to be plugged with the other end face, the total cross-sectional area of the fluid passage on the upstream side of the filtration wall is optimized for the solid matter in the fluid to be filtered.
  • the cross-sectional area can be reduced, and the total cross-sectional area on the downstream side can be minimized according to the amount of the clarified liquid and the filtration application, so the outer diameter of the filter element can be minimized. Can also be reduced.
  • the filter base material which is the most suitable plugging method
  • the method of immersion in the sealing material can be used without using a mask pattern by utilizing the difference in cross-sectional size between the large-diameter fluid passage and the small-diameter fluid passage. Therefore, the occurrence of coating defects can be significantly reduced, especially in the case of a multi-layer structure, and since no mask pattern is used, it can be widely applied even when the fluid passage dimension is small. Plugging is possible even if there is no deformation of the filter base material, and the plugging time can be reduced. Furthermore, expensive optical image processing equipment and injection equipment for plugging material can be used. An unnecessary and inexpensive cost plugging method can be achieved.

Abstract

A filter base material comprising many mutually-parallel fluid passages partitioned by porous walls, wherein the fluid passages consist of large-section, large-diameter fluid passages and small-diameter fluid passages each having at least one section size smaller than those of the large-diameter fluid passages, and one end of each of large-diameter fluid passages is sealed, with the small-diameter fluid passages each having at least one section size sealed at ends on the opposite sides of the sealed ends of the large-diameter fluid passages. This filter element is produced by only a step of immersing into a sealant.

Description

明 細 書 フィルターエレメントおよびその製造方法 技術分野  Description Filter element and manufacturing method thereof
本発明は、 家庭用浄水器のろ過、 半導体製造装置で使用する研磨液のろ過、 循 環風呂のろ過、 水耕栽培における溶液のろ過、 ディーゼル微粒子除去装置 (D P F) における微粒子のろ過等に使用されるフィル夕一エレメントおよびその製造 方法に関するものである。  The present invention is used for filtration of household water purifiers, filtration of polishing liquid used in semiconductor manufacturing equipment, filtration of circulation baths, filtration of solutions in hydroponics, filtration of fine particles in a diesel particulate filter (DPF), etc. And a method of manufacturing the same.
背景技術 Background art
従来から、 家庭用浄水器のろ過、 半導体製造装置で使用する研磨液のろ過、 循 環風呂のろ過、 水耕栽培における溶液のろ過、 ディーゼル微粒子除去装置 (D P F) における微粒子のろ過等に使用されるフィルタ一エレメントとして、 多孔質 の壁により仕切られた多数の互いに平行な流体流路ょりなるフィルタ一機材の相 隣接する流体通路の入口部と出口部を交互に目封止し、 流体通路の壁をろ過面と したフィルタ一エレメントが知られている。 図 5は従来のフィルターエレメント の一例の端面構成を示す図であり、 黒く塗りつぶした部分が目封止され気体や液 体のろ過に使用されている。  It has been used for filtration of household water purifiers, filtration of polishing liquids used in semiconductor manufacturing equipment, circulation bath filtration, filtration of solutions in hydroponics, and filtration of fine particles in diesel particulate filters (DPF). As a filter element, a plurality of parallel fluid flow paths separated by a porous wall are alternately plugged at adjacent inlets and outlets of adjacent filter passages of a filter device. A filter element having a wall as a filtration surface is known. FIG. 5 is a diagram showing an end face configuration of an example of a conventional filter element. A black-out portion is plugged and used for filtering gas and liquid.
フィルタ一基材の製法は、 フィル夕一基材の軸方向に多数の貫通した流体通路 を必要とするため、 スクリュー型押し出し機やシリンダー型押し出し機を使用し た押し出し方法が広く採用されている。 流体通路の断面形状としては、 矩形、 円 形、 六角形などが採用され、 かかる流体通路を形成できる押し出し金型の製造の 容易さより、 フィルター基材の全断面に渡って基本的に同一断面形状と同一寸法 の流体通路が形成され、 従ってろ過流体の入口側も清澄流体の出口側も同一流体 通路となっている。  Extrusion methods using a screw-type extruder or a cylinder-type extruder are widely used in the method of manufacturing a filter base material because it requires a large number of fluid passages in the axial direction of the filter base material. . The cross-sectional shape of the fluid passage is rectangular, circular, hexagonal, etc., and is basically the same cross-sectional shape over the entire cross-section of the filter substrate due to the ease of manufacturing an extrusion die capable of forming such a fluid passage. Thus, a fluid passage having the same dimensions as that of the filter fluid is formed, so that both the inlet side of the filtered fluid and the outlet side of the clarified fluid are the same fluid passage.
またその目封止方法は図 5に示すフィルターエレメントに対応した図 6に示す 形状でゴム、 樹脂膜、 金属膜等からフィル夕一基材の材質に対応して適宜選択さ れたマスクパターンをフィル夕一基材に張り付けるか、 フィル夕一基材の端面に 置いた後、 目封止材を注入している。 この目封止材の注入は、 例えばフィルタ— 基材と同一材料からなるスラリー液に図 6に示すマスクパターンを張付けたフィ ルター基材を浸潰するか、 流体通路の径が大の場合は目封止材であるスラリーの 乾燥収縮が大であるので、 粘土状に調製した目封止材をヘラ状の工具またはスキ ージなどで圧入していた。 またマスクパターンを使用せずにフィルタ—基材の端 部の孔配列を光学的に画像処理し、 目封止材を定量注入できるノズルをフィル夕 —基材の目封止する流体通路に対応させ、 目封止箇所にスラリーを個々に注入す る方法も採用されていた。 The plugging method is shown in Fig. 6 corresponding to the filter element shown in Fig. 5. A mask pattern appropriately selected from rubber, resin film, metal film, etc. in accordance with the material of the fill material is applied to the fill material, or placed on the end face of the fill material Later, plugging material is injected. This plugging material is injected, for example, by immersing the filter substrate with the mask pattern shown in FIG. 6 stuck in a slurry liquid made of the same material as the filter substrate, or when the diameter of the fluid passage is large. Since the drying shrinkage of the plugging material slurry was large, the plugging material prepared in a clay state was pressed with a spatula-shaped tool or squeegee. Also, without using a mask pattern, a filter is used to optically process the hole array at the end of the base material, and a nozzle that can inject a fixed amount of plugging material is filled. Then, a method of individually injecting slurry into plugged portions has also been adopted.
上述したフィルタ一基材の形状と目封止方法において、 気体または液体中の固 形分をろ過する場合、 フィルタ一基材の流体通路は目封止操作によりろ過面であ る壁面を境に上流側、 下流側に分隔され、 それぞれ有底状となり、 ろ過すべき流 体中の固形分は上流側の流体通路に堆積し、 壁面を通過する流体の抵抗が所定の 値以上となると下流側の流体通路より正常な流体を上流側に流し、 いわゆる逆洗 を行っている。 ろ過要素としてのフィルタ—エレメントの寿命はフィルタ一基材 の開細孔に侵入した固形物が前記逆洗にても限度以上除去不能となった時点で決 定されるので、 上流側のろ過面積は広い方がろ過抵抗の減少と固形物の堆積量を 多くできることになるが、 ろ過面積を確保するため流体通路の内径 (d) を小さ くすると、 流体通路の軸方向長さ (L) との比 LZdが大となり、 上流側の有底 状の流体通路の特に底部分に堆積した固形物は逆洗を使用しても除去不能となり、 フィルタ—の寿命が短くなるので、 LZdは 5 0以下が良いとされている。 また 固形物の除去を容易とするため流体通路の径を大きくすると、 固形物の排出は容 易となるがフィルタ—エレメント 1個あたりのろ過面積は減少し、 ろ過装置とし ての大きさが大となる。  In the above-described filter base material shape and plugging method, when solid components in a gas or liquid are filtered, the fluid passage of the filter base material is bounded by the plugging operation at the wall surface that is the filtration surface. Solids in the fluid to be filtered accumulate in the fluid passage on the upstream side, and are separated at the upstream and downstream sides.The solids in the fluid to be filtered are deposited on the upstream side, and the downstream side when the resistance of the fluid passing through the wall surface exceeds a predetermined value. The normal fluid flows from the fluid passage upstream to the so-called backwash. The life of the filter as a filtration element is determined when the solids that have entered the open pores of the filter base material cannot be removed beyond the limit even by the backwashing, so the upstream filtration area The larger the width, the lower the filtration resistance and the greater the amount of solids deposited. However, if the inner diameter (d) of the fluid passage is reduced to secure a filtration area, the axial length (L) of the fluid passage will be reduced. LZd becomes large, and solid matter deposited on the bottom-side fluid passage on the upstream side, especially at the bottom, cannot be removed by backwashing, and the life of the filter is shortened. The following are considered good. Increasing the diameter of the fluid passage to facilitate removal of solids facilitates the discharge of solids, but reduces the filtration area per filter-element and increases the size of the filtration device. Becomes
家庭用の浄水器のろ過、 半導体ウェハ製造における CM P研磨機に内蔵する研 磨液のろ過、 循環風呂のろ過、 水耕栽培における溶液のろ過、 ディーゼル微粒子 除去装置 (D P F) における微粒子のろ過などに使用するフィルターエレメント は装置を安価にするため、 2ヶ月から 1年の後、 所定の流体処理量が確保できな くなつた場合、 逆洗せずに交換する場合がある。 この場合のフィルタ一エレメン トとしての寿命は上流側の流体通路の総表面積と総体積により決定される。 いず れの場合も下流側にはろ過された清浄な流体とフィルターエレメントの最大気孔 径の 5〜 1 0 %の微細な固形物しか透過しないので、 下流側は上流側ほど流体の 通過面積を必要としないが、 従来のフィルターエレメントの流体通路は上流側も 下流側も同一断面積であるので、 フィルターエレメントの径が下流側の流体通路 の断面積が過剰な分だけ、 寸法が大となっている。 また前記の如くの使い捨て型 のフィル夕一エレメントは良好なろ過特性を短期のフィルターエレメントの交換 で確保するために低価格であることが必要となっている。 Filtration of water purifiers for home use and grinding built into CMP polishers in semiconductor wafer manufacturing The filter element used for filtration of polishing liquid, filtration of circulation bath, filtration of solution in hydroponics, filtration of fine particles in diesel particulate filter (DPF), etc. When the predetermined fluid throughput cannot be secured, replacement may be performed without backwashing. In this case, the life of the filter element is determined by the total surface area and the total volume of the fluid passage on the upstream side. In either case, only the filtered clean fluid and fine solids of 5 to 10% of the maximum pore size of the filter element are permeated on the downstream side, so the downstream side has a larger fluid passage area than the upstream side. Although not required, the fluid passage of the conventional filter element has the same cross-sectional area on both the upstream and downstream sides, so the size of the filter element becomes larger due to the excess cross-sectional area of the fluid passage on the downstream side. ing. In addition, the disposable filter element as described above needs to be inexpensive in order to ensure good filtration characteristics by replacing the filter element in a short period of time.
フィルタ一基材には成形時にねじれ、曲がりなどの変形が発生するので、矩形、 円形、 六角形などの流体通路の配列および形状も一定でなく、 マスクパターンを 張付ける場合、 マスクパターンを張付けた後にマスクパターンとフィルタ一基材 の流体通路とのずれを修正する必要がある。 また前記流体通路が小さくなると対 応して流体通路を隔てている壁厚も減少するので、 マスクパターンの開孔部どう しのつなぎ部分の寸法も前記流体通路間の壁厚以下にしなければならなくマスク パターン自体の強度も低下し、 張付ける場合にマスクパターンを損傷する。 また 特に、 未焼成のセラミックス製フィルタ一基材にマスクパターンを張り付ける方 法は、 フィル夕一基材自体の表面の細粒が剥離しやすく、 フィルタ一端面を前も つて封孔処理を行ってから、 マスクパターンを接着する必要があった。 従って内 接円径で Φ 2 mm以下の流体通路に形成されたフィルタ一基材にはマスクパター ンを利用した目封止法は困難であった。  Since the filter base material undergoes deformation such as twisting or bending during molding, the arrangement and shape of the fluid passages such as rectangles, circles, and hexagons are not constant. Later, it is necessary to correct the deviation between the mask pattern and the fluid passage of the filter substrate. Further, as the fluid passage becomes smaller, the wall thickness separating the fluid passage also decreases, so that the dimension of the joint between the openings of the mask pattern must be smaller than the wall thickness between the fluid passages. Also, the strength of the mask pattern itself is reduced, and the mask pattern is damaged when pasting. In particular, the method of attaching a mask pattern to an unfired ceramic filter base material is based on the fact that fine particles on the surface of the filter base material are easily peeled off, and the filter is sealed with one end face in advance. After that, it was necessary to bond the mask pattern. Therefore, the plugging method using a mask pattern was difficult for a filter base material formed in a fluid passage with an inscribed circle diameter of Φ2 mm or less.
押出し工程で、 ろ過壁面においてフィル夕一基材の気孔径より大となった欠損 部分を封孔しフィルタ一基材自体の気孔分布を回復させるため、 あるいはフィル 夕一基材の気孔径より小さなろ過気孔径を得るためにフィル夕一基材の壁面の上 流側をフィル夕一基材より小さな気孔径の材料にてコ一トし複層構造にすること が広く採用されている。 この構造のフィル夕一エレメントの場合、 マスクパタ一 ンを置いて目封止材を圧入する場合は、 フィルタ一基材の端部での目封止材の形 状が図 7の様に目封止材とフィルタ一基材との境界部 (図 7中の *印部分) が鋭 角状になり、前記コート層の剥離が発生し、コート層の機能が発揮できなくなる。 またこの方法では、 目封止材の圧入深さの制御が困難であり、 目封止材の剥離や 境界部で隙間が発生しやすい。 In the extrusion process, in order to recover the pore distribution of the filter and the base material of the filter itself, it is necessary to seal the defective area on the filtration wall that has become larger than the pore size of the base material. In order to obtain a filtration pore size smaller than the pore size of the substrate, the upstream side of the wall of the film is coated with a material having a pore size smaller than that of the substrate to form a multilayer structure. Is widely adopted. In the case of a filter element with this structure, when the mask pattern is placed and the plugging material is pressed in, the shape of the plugging material at the end of the filter base material is plugged as shown in Fig. 7. The boundary between the sealing material and the filter base material (marked with * in FIG. 7) becomes sharp, and the coating layer peels off, making it impossible to perform the function of the coating layer. In addition, in this method, it is difficult to control the depth of press-fitting of the plugging material, and the plugging material is easily separated or a gap is easily generated at the boundary.
目封止材に浸漬する方法は、 目封止材の圧入による目封止法に対し前記内鋭角 部が発生しなく、 境界部は滑らかなメニスカス形状を呈するので、 前記複層構造 とするフィル夕—構造の場合には特に有利であり好ましい目封止方法であるが、 流体通路の内径が小さい場合、 マスクパターンとフィルタ一基材の密着が不完全 となり、 必要箇所以外に目封止される問題が発生し易い。  In the method of immersing in the plugging material, the inner acute angle portion does not occur and the boundary portion has a smooth meniscus shape with respect to the plugging method by press-fitting the plugging material. This is a particularly advantageous and preferable plugging method in the case of an evening structure. However, if the inner diameter of the fluid passage is small, the mask pattern and the filter-substrate are incompletely adhered to each other, and plugging is performed at a place other than the necessary place. Problems easily occur.
さらにマスクパターンを使用せずにフィルタ—基材の端部の孔配列を光学的に 読み取った上で画像処理し、 目封止材を定量注入できるノズルを連動させ、 目封 止箇所に直接スラリーを個々に注入する方法は設備が高価であり、 また目封止ェ 程そのものも時間がかかる問題がある。 いずれにしても前述するフィルターエレ メントは寸法が大きくかつ特に目封止に係わる歩留りが悪く、 製品コストが高く なる問題があった。  Furthermore, without using a mask pattern, the filter—optically reads the hole array at the end of the substrate, processes the image, and interlocks a nozzle that can inject a fixed amount of plugging material. The method of individually injecting water has a problem that the equipment is expensive and the plugging process itself takes time. In any case, the above-described filter element has a problem that the dimensions are large, the yield related to plugging is particularly poor, and the product cost is high.
発明の開示 Disclosure of the invention
本発明の目的は上述した課題を解消して、 ろ過壁面を境とした上流側の流体通 路の総断面積を、 ろ過する流体中の固形物量に対応した最適の断面積とすること ができ、 また下流側の総断面積も清澄液の量及びろ過用途に対応した最少のもの とできるのでフィルタ一エレメントの外径寸法も最少とすることが可能で装置の 寸法も小さくできるフィルタ一エレメントを提供しょうとするものである。 また、 本発明の他の目的は、 特に複層構造にした場合のコート不良の発生が著 しく低減でき、 またマスクパターンを全く使用しないので、 流体通路寸法が小さ い場合にも広く適用でき、 マスクパターンの剥離による目封止不良が全く無く、 しかもフィルター基材の変形があつても目封止が可能であると共に、 目封止時間 が低減でき、 さらに高価な光学的な画像処理装置と目封止材の注入装置が不要な 安価なコス卜の目封止方法を達成することができるフィルターエレメントの製造 方法を提供しょうとするものである。 An object of the present invention is to solve the above-mentioned problem and to make the total cross-sectional area of the fluid passage on the upstream side of the filtration wall the optimum cross-sectional area corresponding to the amount of solids in the fluid to be filtered. Also, since the total cross-sectional area on the downstream side can be minimized corresponding to the amount of the clarified liquid and the filtration application, the outer diameter of the filter element can be minimized, and the filter element that can reduce the size of the device can be reduced. It is something to offer. Another object of the present invention is that the occurrence of coating defects particularly in the case of a multilayer structure is remarkable. Since no mask pattern is used, it can be widely applied even when the fluid passage size is small.There is no plugging failure due to the peeling of the mask pattern. Sealing is possible, and the plugging time can be reduced, and an inexpensive cost plugging method that does not require an expensive optical image processing device and a plugging material injection device can be achieved. It is intended to provide a method for manufacturing a filter element that can be used.
本発明のフィルターエレメントは、 多孔質の壁により仕切られた多数の互いに 平行な流体通路よりなるフィル夕一基材において、 流体通路が、 断面が大きい太 径流体通路と、 太径流体通路よりも小さい少なくとも 1つの断面の大きさを有す る細径流体通路とからなり、 太径流体通路の一方の端面を目封止するとともに、 少なくとも 1つの断面の大きさを有する細径流体通路を、 太径流体通路が目封止 された端面とは反対側の端面で目封止したことを特徴とするものである。  A filter element according to the present invention is a filter element comprising a plurality of parallel fluid passages partitioned by a porous wall, wherein the fluid passages have a large cross-section, a large-diameter fluid passage, and a large-diameter fluid passage. A small-diameter fluid passage having at least one small cross-sectional size, plugging one end surface of the large-diameter fluid passage, and forming a small-diameter fluid passage having at least one cross-sectional size. The large-diameter fluid passage is plugged on an end face opposite to the plugged end face.
本発明のフィル夕一エレメントでは、 流体通路を太径流体通路と細径流体通路 とから構成し、 太径流体通路を一方の端面で目封止し、 細径流体通路を他方の端 面で目封止するよう構成することで、 ろ過壁面を境とした上流側の流体通路の総 断面積を、ろ過する流体中の固形物量に対応した最適の断面積とすることができ、 また下流側の総断面積も清澄液の量及びろ過用途に対応した最少のものとできる のでフィルタ一エレメントの外径寸法も最少とすることが可能で装置の寸法も小 さくできる。  In the filter element according to the present invention, the fluid passage includes a large-diameter fluid passage and a small-diameter fluid passage, the large-diameter fluid passage is plugged on one end face, and the small-diameter fluid passage is sealed on the other end face. With the plugging configuration, the total cross-sectional area of the fluid passage on the upstream side of the filtration wall can be set to an optimal cross-sectional area corresponding to the amount of solids in the fluid to be filtered, and the downstream side The total cross-sectional area of the filter element can be minimized in accordance with the amount of the clarified liquid and the purpose of filtration, so that the outer diameter of the filter element can be minimized and the size of the apparatus can be reduced.
本発明のフィルターエレメントの好適例としては、 流体通路の断面が円形を基 準とし、 太径流体通路の回りに細径流体通路を配設した構成、 流体通路の断面が 多角形を基準とし、 太径流体通路の回りに細径流体通路を配設した構成、 多角形 が六角形状である構成、 フィルターエレメントの軸に垂直方向の断面において、 前記細径流体通路の総断面積が前記太径流体通路の総断面積の 4 0 %を超え 1 2 0 %以下である構成、 太径流体通路をろ過流体の入口とし、 前記細径流体通路を 清澄流体の出口とした構成をとると、 上記本発明の効果をより好適に達成するこ とができる。 Preferred examples of the filter element of the present invention include a configuration in which the cross section of the fluid passage is based on a circle, a configuration in which a small diameter fluid passage is arranged around a large diameter fluid passage, and the cross section of the fluid passage is based on a polygon, A configuration in which a small-diameter fluid passage is arranged around a large-diameter fluid passage; a configuration in which a polygon is a hexagon; a cross-section perpendicular to an axis of a filter element; When the configuration is more than 40% and less than or equal to 120% of the total cross-sectional area of the fluid passage, the large-diameter fluid passage is used as an inlet for a filtered fluid, and the small-diameter fluid passage is used as an outlet for a clarified fluid. To achieve the effects of the present invention more suitably. Can be.
また、 本発明のフィルターエレメントの製造方法の第 1発明は、 多孔質の壁に より仕切られた多数の互いに平行な流体通路よりなり、 流体通路が、 断面が大き ぃ太径流体通路と、 太径流体通路よりも小さい少なくとも 1つの断面の大きさを 有する細径流体通路とからなるフィルター基材を準備する準備工程と、 準備ェ 程で準備したフィルター基材の一端面を目封止材に浸漬し、 太径流体通路と細径 流体通路に目封止材を充填し、 フィルタ一基材の太径流体通路より目封止材を排 出することで細径流体通路に選択的に目封止材を充填し、 再び目封止材に浸漬し 太径流体通路の目封止材の充填長さを細径流体通路の目封止材の充填長さよりも 長くなるように目封止材を充填した後、 太径流体通路の目封止材のみを残す位置 でフィル夕一基材を切断して、 太径流体通路のみに選択的に目封止材を充填させ る第一の目封止工程と、 第一の目封止工程で目封止した端面と反対側の端面を目 封止材に浸潰して、 細径流体通路の目封止材の充填長さを太径流体通路の目封止 材の充填長さより長く形成した後、 細径流体通路の目封止材のみを残す位置でフ ィル夕一基材を切断して、 細径流体通路のみに選択的に目封止材を充填させる第 二の目封止工程と、 からなることを特徴とするものである。  Further, the first invention of the method for producing a filter element of the present invention comprises a plurality of parallel fluid passages partitioned by a porous wall, wherein the fluid passage has a large cross section. A preparation step of preparing a filter substrate comprising at least one small-diameter fluid passage having a cross-sectional size smaller than the diameter fluid passage; and one end face of the filter substrate prepared in the preparation step as a plugging material. By immersing, filling the large-diameter fluid passage and the small-diameter fluid passage with the plugging material, and discharging the plugging material from the large-diameter fluid passage of the filter base material to selectively target the small-diameter fluid passage. Fill the plugging material and immerse it again in the plugging material, plugging it so that the filling length of the plugging material in the large diameter fluid passage is longer than the filling length of the plugging material in the small diameter fluid passage After filling the material, fill it at the position where only the plugging material for the large-diameter fluid passage is to be left. A first plugging step of cutting the base material and selectively filling only the large-diameter fluid passage with a plugging material; and a step of opposing the end face plugged in the first plugging step. After the end face is immersed in the plugging material, the filling length of the plugging material of the small-diameter fluid passage is formed longer than the filling length of the plugging material of the large-diameter fluid passage, and then the small-diameter fluid passage is plugged. A second plugging step of cutting the filler material at a position where only the stopper material is left, and selectively filling only the small-diameter fluid passage with the plugging material. Is what you do.
さらに、 本発明のフィルターエレメントの製造方法の第 2発明は、 多孔質の壁 により仕切られた多数の互いに平行な流体通路よりなり、 流体通路が、 断面が大 きい太径流体通路と、 太径流体通路よりも小さい少なくとも 1つの断面の大きさ を有する細径流体通路とからなるフィルタ一基材を準備する準備工程と、 準備 工程で準備したフィルタ一基材の一端面を目封止材に浸漬し、 太径流体通路と細 径流体通路に目封止剤を充填し、 フィル夕一基材の太径流体通路より目封止材を 排出することで、 細径流体通路のみに選択的に目封止材を充填させる第一の目封 止工程と、 第一の目封止工程で目封止した端面と反対側の端面を目封止材に浸漬 して、 太径流体通路の目封止材の充填長さを細径流体通路の目封止材の充填長さ より長く形成した後、 太径流体通路の目封止材のみを残す位置でフィルター基材 を切断して、 太径流体通路のみに選択的に目封止材を充填させる第二の目封止ェ 程と、 からなることを特徴とするものである。 Further, the second invention of the method for producing a filter element of the present invention comprises a large number of parallel fluid passages partitioned by a porous wall, wherein the fluid passage has a large-diameter fluid passage having a large cross section, and a large-diameter fluid passage. A preparatory step of preparing a filter base material comprising at least one small-diameter fluid passage having a cross-sectional size smaller than the fluid passage; and one end face of the filter base material prepared in the preparation step as a plugging material. By immersing, filling the large-diameter fluid passage and the small-diameter fluid passage with a plugging agent, and discharging the plugging material from the large-diameter fluid passage of the base material, selectively to the small-diameter fluid passage only A first plugging step of filling the plugging material into the plugging material, and an end face opposite to the end face plugged in the first plugging step is immersed in the plugging material to form a large-diameter fluid passage. The filling length of the plugging material is longer than the filling length of the plugging material in the small-diameter fluid passage. After the filter substrate at a position leaving only plugging material thick-diameter body passage And a second plugging step of selectively filling only the large-diameter fluid passage with the plugging material.
本発明のフィルターエレメントの製造方法では、 流体通路を太径流体通路と細 径流体通路とから構成することで、 目封止方法としては最も好適であるフィルタ 一基材を目封止材へ浸漬する方法を、 太径流体通路と細径流体通路の断面の大き さの差を利用してマスクパターンを使用しなくとも、 利用することができる。 そ のため、 特に複層構造にした場合のコート不良の発生が著しく低減でき、 またマ スクパターンを全く使用しないので、 流体通路寸法が小さい場合にも広く適用で き、 マスクパターンの剥離による目封止不良が全く無く、 しかもフィル夕一基材 の変形があっても目封止が可能であると共に、 目封止時間が低減でき、 さらに高 価な光学的な画像処理装置と目封止材の注入装置が不要な安価なコス卜の目封止 方法を達成することができる。  In the method for manufacturing a filter element of the present invention, the fluid passage is composed of a large-diameter fluid passage and a small-diameter fluid passage, so that one filter, which is the most suitable plugging method, is immersed in the plugging material. This method can be used without using a mask pattern by utilizing the difference in cross-sectional size between the large-diameter fluid passage and the small-diameter fluid passage. Therefore, the occurrence of coating defects can be significantly reduced, especially in the case of a multi-layer structure, and since no mask pattern is used, it can be widely applied even when the fluid passage size is small. There is no sealing failure and plugging is possible even if the filler material is deformed, and the plugging time can be reduced, and a more expensive optical image processing device and plugging An inexpensive cost plugging method that does not require a material injection device can be achieved.
本発明のフィルターエレメントの製造方法の好適例として、 フィルター基材が セラミックス材料からなる構成、 目封止材がセラミックス材料からなり、 フィル 夕一基材が未焼成の状態で、 前記第一の目封止工程と第二の目封止工程を行う構 成、 目封止材がセラミックス材料、 有機系接着剤のいずれかであり、 フィルター 基材を焼成した後、 前記第一の目封止工程と第二の目封止工程を行う構成、 第一 の目封止工程において、 フィルタ一基材を目封止材に浸漬した後、 フィルタ一基 材を上方に引き上げることにより太径流体通路及び細径流体通路に目封止材を充 填する構成、 第二の目封止工程において、 フィル夕一基材の上部より真空吸引す ることにより、 太径流体通路又は細径流体通路の目封止材の充填長さが細径流体 通路又は太径流体通路の目封止材の長さより長くなるように選択的に目封止材を 充填する構成、 第二の目封止工程において、 フィルタ一基材を目封止材に浸潰し た後、 フィル夕一基材を目封止材中で下方に移動することにより、 太径流体通路 又は細径流体通路の目封止材の充填長さが細径流体通路又は太径流体通路の目封 止材の長さより長くなるように選択的に目封止材を充填する構成、 フィルターェ レメン卜の目封止をした両端の少なくとも一面に釉薬が塗布されている構成をと ると、上述した本発明の製造方法の効果をさらに効果的に達成することができる。 図面の簡単な説明 As a preferred example of the method for manufacturing a filter element of the present invention, the filter base is made of a ceramic material; the plugging material is made of a ceramic material; A structure in which a sealing step and a second plugging step are performed. The plugging material is any of a ceramic material and an organic adhesive. After the filter substrate is fired, the first plugging step is performed. And a second plugging step. In the first plugging step, the filter base material is immersed in the plugging material, and then the filter base material is lifted upward to provide a large-diameter fluid passage and A structure in which a small-diameter fluid passage is filled with a plugging material. In the second plugging step, the large-diameter fluid passage or the small-diameter fluid passage is evacuated by vacuum suction from an upper portion of the filler substrate. Small-diameter fluid passage with sealing material filling length Is a structure in which the plugging material is selectively filled so as to be longer than the length of the plugging material in the large-diameter fluid passage. In the second plugging step, the base material of the filter is immersed in the plugging material. After the filling material is moved downward in the plugging material, the filling length of the plugging material in the large-diameter fluid passage or the small-diameter fluid passage becomes small-diameter fluid passage or large-diameter fluid passage. A structure in which the plugging material is selectively filled so as to be longer than the length of the plugging material, By adopting a configuration in which glaze is applied on at least one surface of both ends of the plugged rement, the above-described effect of the manufacturing method of the present invention can be more effectively achieved. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明のフィルターエレメントの一例の端面構造を示す図であり、 図 2は本発明のフィルターエレメントの他の例の端面構造を示す図であり、 図 3 ( a ) 〜 (1 ) は本発明のフィルターエレメントの製造方法における太径 流体通路を先に目封止する方法を工程順に示す図であり、  FIG. 1 is a view showing an end face structure of an example of the filter element of the present invention, FIG. 2 is a view showing an end face structure of another example of the filter element of the present invention, and FIGS. 3 (a) to (1) are It is a diagram showing a method of first plugging the large diameter fluid passage in the method of manufacturing a filter element of the present invention in the order of steps,
図 4 ( a ) 〜 U ) は本発明のフィルターエレメントの製造方法における細径 流体通路を先に目封止する方法を工程順に示す図であり、  4 (a) to 4) are diagrams showing a method of plugging a small-diameter fluid passage first in a method of manufacturing a filter element of the present invention in the order of steps.
図 5は従来のフィルターエレメントの一例の端面構造を示す図であり、 図 6は従来のフィルターエレメントの端面目封止に使用するマスクパターンの 一例を示す図であり、  FIG. 5 is a view showing an end face structure of an example of a conventional filter element, and FIG. 6 is a view showing an example of a mask pattern used for plugging an end face of the conventional filter element.
図 7は従来のフィル夕一エレメントの端部での目封止材の形状の一例を示す図 である。  FIG. 7 is a view showing an example of a shape of a plugging material at an end of a conventional fill element.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明においてはフィルタ一基材の流体通路の断面方向において、 少なくとも 2つ以上の内寸法の異なる流体通路の組み合わせより構成することが必要である。 図 1は〇型の流体通路からなるフィル夕一エレメントの端面構成を示し、 黒く塗 り潰した部分は目封止された状態である。 また図 2は六角形の流体通路からなる フィルターエレメントの端面構成を示し、 同様に黒く塗りつぶした部分は目封止 されている状態を示す。  In the present invention, it is necessary that the filter is constituted by a combination of at least two or more fluid passages having different internal dimensions in the cross-sectional direction of the fluid passage of the base material. Fig. 1 shows the end face configuration of a fill element composed of a 〇-shaped fluid passage, and the black-out portion is plugged. FIG. 2 shows an end face configuration of a filter element composed of hexagonal fluid passages. Similarly, a black-out portion shows a plugged state.
図 1に示す〇型はコート層による複層化を図る場合、 内部に鋭角部が無くコ一 ト層の剥離が少ないので複層化が容易であり、 また〇型加工を主体とした押出し 金型で済むため金型も安価となる。 また最も断面積の大きな太径流体通路の断面 積を基準として、 配置設計が容易な下流側の細径流体通路を適度に配置し細密配 置を好適に構成できると共に、 上流側の断面積と下流側の断面積の比率の設計が 容易となる。 この実施例の場合、 1種類の太径流体通路に対し、 2種類の寸法の 細径流体通路が配置されているが、 後述する目封止方法は勿論採用出来る。 また フィルタ一基材の外径部分と太径流体通路が交錯する場合、 太径流体通路を省略 するのではなく、 適宜変形させ配設することが好ましい。 この場合、 変形させた 太径流体通路の内接円は細径流体通路の内接円より大とすることが必要となる。 図 2に示す六角孔型はろ過層である壁部分の体積を最少とでき、 また内部の鋭 角部もなく、 さらに細密配置も容易であるので、 フィル夕一エレメントの外径寸 法を最少とでき最も好ましい。また流体通路の断面は三角、四角、台形、八角形、 星型など、 またそれぞれの変形型、 また〇型を含めたいずれかの形状を複合的に 混合して使用してももちろん良い。 フィルターエレメントの外径部分の太径流体 通路の変形態様は前記〇型のェレメントと同様である。 As shown in Fig. 1, when forming a multilayer structure with a coat layer, there is no sharp corner inside and there is little peeling of the coating layer, so that the multilayer structure is easy to form. Since the mold is sufficient, the mold is inexpensive. Also, based on the cross-sectional area of the large-diameter fluid passage with the largest cross-sectional area, the small-diameter fluid passage on the downstream side, which is easy to design, can be appropriately arranged and a fine arrangement can be suitably configured. The design of the cross-sectional area ratio on the downstream side It will be easier. In the case of this embodiment, two types of small-diameter fluid passages are arranged for one type of large-diameter fluid passage, but the plugging method described later can of course be employed. When the outer diameter portion of the filter base material and the large-diameter fluid passage intersect, it is preferable to dispose the large-diameter fluid passage appropriately instead of omitting it. In this case, the inscribed circle of the deformed large-diameter fluid passage needs to be larger than the inscribed circle of the small-diameter fluid passage. The hexagonal hole type shown in Fig. 2 minimizes the volume of the wall, which is the filtration layer, has no sharp corners inside and is easy to arrange finely, so the outer diameter of the filter element is minimized. And most preferred. Further, the cross section of the fluid passage may be triangular, square, trapezoidal, octagonal, star-shaped, etc., and may be of any combination including any of the deformed types and the 〇-shaped shapes. The deformation mode of the large-diameter fluid passage at the outer diameter portion of the filter element is the same as that of the above-mentioned 〇 type element.
また太径流体通路と細径流体通路とは流体通路の壁面をろ過部分としているの で、 両流体通路が近接していることがろ過抵抗を減らすために必要であり、 太径 流体通路の回りに細径流体通路を配設し、 一つの細径流体通路を複数の太径流体 通路で共有する様にすることが好ましい。 いずれの場合も、 太径流体通路を流体 中の固形物を分離し堆積する上流側とし、 下流側は上流側の全断面積の 4 0 %以 上から 1 2 0 %以下とすることが好ましい。 4 0 %未満であると、 下流側の流体 通過に伴う圧力損失が大きくなる。 また下流側の総断面積は通常のろ過操作にお いては、 上流側の総断面積より小であれば良いので、 フィル夕一エレメントの外 径を大きくしないために 1 0 0 %以下が良いが、 下流側を減圧にしてろ過面より 蒸発させる方法を採用する場合などは下流側の流体通路の径が小さくなることに よる圧力損失の増大が発生し、 また通路の数も増大するので金型の製造も困難と なるので、 1 2 0 %までとすることが好ましい。 上流側の固形物の堆積量とろ過 耐久性の検討、 および流体通路の最適配置の設計と金型の設計製造に係わる時間 を短くすることが容易な点から 6 0 %から 1 0 0 %とすることが最も好ましい。 本発明の実施例では、 太径流体通路側をろ過の上流側としているが、 目封じ部分 1個あたりのろ過流体への暴露面積を少なくし、 目封じ部分の耐久性を向上させ る必要が有る場合などは下流側を太径流体通路としてもちろん良い。 In addition, since the large-diameter fluid passage and the small-diameter fluid passage use the wall of the fluid passage as a filtration portion, it is necessary that both fluid passages are close to each other to reduce filtration resistance. It is preferable that a small-diameter fluid passage is disposed in the first fluid passage, and one small-diameter fluid passage is shared by a plurality of large-diameter fluid passages. In either case, the large-diameter fluid passage is preferably the upstream side where solids in the fluid are separated and deposited, and the downstream side is preferably 40% or more and 120% or less of the total cross-sectional area of the upstream side. . If it is less than 40%, the pressure loss due to the passage of the fluid on the downstream side increases. Also, the total cross-sectional area on the downstream side should be smaller than the total cross-sectional area on the upstream side in normal filtration operation, so it is better to be 100% or less in order not to increase the outer diameter of the filter element. However, when a method of evaporating from the filtration surface by reducing the pressure on the downstream side is adopted, the pressure loss increases due to the decrease in the diameter of the downstream fluid passage, and the number of passages also increases. Since it becomes difficult to manufacture a mold, the content is preferably up to 120%. The amount of solids deposited on the upstream side and the filtration From 60% to 100% because it is easy to study the durability and to shorten the time required for designing the optimal arrangement of the fluid passage and designing and manufacturing the mold Is most preferred. In the embodiment of the present invention, the large-diameter fluid passage side is set as the upstream side of the filtration. If it is necessary to reduce the exposed area per filter fluid and improve the durability of the plugged portion, of course, the downstream side may be a large-diameter fluid passage.
つぎに流体通路の目封止方法について述べる。 本発明の目封止方法によれば、 太径流体通路と該太径流体通路以外の細径流体通路を区分した状態で、 第一に太 径流体通路を目封止する方法と、 第一に前記太径流体通路以外の細径流体通路を 目封止する方法の 2通りのいずれの態様にも使用できる。 フィルター基材と目封 止スラリ一液は類似した材料と特性のものを選択することが好ましく、 まず粒度 が # 8 0 0の電融アルミナに長石、 力オリナイトなどの粘土質からなる焼結助材 と、 バインダーとしてメチルセルロース、 ポリエチレングリコールォレイン酸ェ ステルを混合したものを、 例えば図 2に示す形状に押出成形した後 1 5 2 0 で 焼成し、フィル夕一エレメントのフィル夕一基材とする。この実施例では耐食性、 対薬品性が良好であるので、 最も好ましい態様であるセラミックス製のェメレン トについて説明しているが、 後述する有機系の接着剤を使用すれば、 多孔質のプ ラスチック、 焼結金属からなるフィルタ一基材などにももちろん適用できる。 ま たセラミックス材料として、 本実施例では低価格と強度が両立できる点でアルミ ナを採用しているが、 ディーゼル微粒子除去装置 (D P F) における微粒子のろ 過に使用されるフィル夕一エレメントなどの高温用途の場合はコ一デイエライト、 ジルコニァ、 窒化珪素などが、 熱温度差の大なる時はムライト、 耐食性が必要な 時は炭化珪素、 窒化アルミなどと用途に応じた材料を適宜選択し、 本発明に示す 方法により、 目封止できる。 実施例に示すフィル夕一基材の外径は Φ 8 0 mmで あり、 また太径流体通路の内接円の直径は Φ 3 mm、 細径流体通路の内接円の直 径は Φ 1 . 4 mmとした。 また目封止用のスラリー (目封止液) は前記粒度の電 融アルミナに目封止時の収縮を最少とするため # 1 5 0の粒度の電融アルミナ粒 を加え、 粘着材としてポリアクリル酸ァンモニゥムをまた焼結助材として力オリ ナイ卜とカリ長石を水で良く混練して目封止材のスラリーとし、 以降の工程にて 使用する。 まず太径流体通路を最初に目封止する方法について、 本発明による目封止手順 を示す図 3 ( a ) 〜 (1 ) により説明する。 図 3 ( a ) に示す様に前記方法にて 調製したフィルタ一基材を、 図 3 ( b ) に示す様に同じく前記方法で調製した目 封止液に 4 mmの長さに浸漬する。 細径流体通路に侵入した目封止液は水分が基 材により吸収され固形分が細径流体通路の内径に付着し該細径流体通路を閉塞す るが、 太径流体通路側は該孔の内径には前記細径流体通路と同等に目封止液が付 着するが、 中心部は目封止液の付着速度が遅いので、 前記細径流体通路に目封止 液が付着した時点で、 図 3 ( c ) に示す様にフィルタ一基材を目封止液より取り 出す。 この場合、 フィルタ一基材は目封止材と同一材料とすることが目封止部の 焼成による歪みを最少とするため最も好ましいが、 フィル夕一基材との固着を良 好なものとし、 また目封じ部との熱膨張差を合わせるために他セラミックス材料 としても、 もちろん良い。 また焼成コストを少なくするため、 未焼成の状態で目 封じすることが好ましいが、 フィルタ一基材の焼結温度以下で仮焼成して、 フィ ルター基材取扱時の保形性を向上させても良い。 更にフィルタ一基材がスラリー 状の目封止材中の水などの溶解材の浸入により、 変形、 損傷し易い場合は、 該フ ィル夕一基材を焼成してから目封止する事が好ましい。 Next, a method of plugging the fluid passage will be described. According to the plugging method of the present invention, a method of first plugging a large-diameter fluid passage in a state where a large-diameter fluid passage and a small-diameter fluid passage other than the large-diameter fluid passage are separated; The method can be used in any of the two modes of plugging a small-diameter fluid passage other than the large-diameter fluid passage. It is preferable to select similar materials and properties for the filter base material and the plugging slurry liquid. First, a sintering aid made of clay such as feldspar and force orinite is used for fused alumina with a particle size of # 800. For example, a mixture of material and methylcellulose and polyethylene glycol oleate as a binder is extruded into the shape shown in Fig. 2 and then calcined at 150. I do. In this example, since the corrosion resistance and chemical resistance are good, a ceramic emergent, which is the most preferable embodiment, is described. However, if an organic adhesive described later is used, a porous plastic, Of course, the present invention can be applied to a filter made of a sintered metal and a substrate. In this embodiment, alumina is used as a ceramic material because both low cost and strength can be achieved. However, a filter such as a filter element used for filtering fine particles in a diesel particulate filter (DPF) is used. Materials such as cordierite, zirconia and silicon nitride for high temperature applications, mullite when the temperature difference is large, silicon carbide and aluminum nitride etc. for corrosion resistance are required. Plugging can be performed by the method according to the invention. The outer diameter of the fill material base material shown in the example is Φ80 mm, the diameter of the inscribed circle of the large diameter fluid passage is Φ3 mm, and the diameter of the inscribed circle of the small diameter fluid passage is Φ1 mm. 4 mm. The plugging slurry (plugging liquid) is prepared by adding fused alumina particles of # 150 particle size to fused alumina of the above particle size to minimize shrinkage during plugging. Amonium acrylate is also used as a sintering aid, and the force-oliginate and potassium feldspar are well kneaded with water to form a plugging material slurry, which will be used in subsequent steps. First, a method of first plugging a large-diameter fluid passage will be described with reference to FIGS. 3 (a) to (1) showing a plugging procedure according to the present invention. As shown in Fig. 3 (a), the filter base material prepared by the above method is immersed in the plugging liquid prepared by the same method as shown in Fig. 3 (b) to a length of 4 mm. The plugging liquid that has entered the small-diameter fluid passage absorbs moisture by the base material, and solids adhere to the inner diameter of the small-diameter fluid passage to close the small-diameter fluid passage. The plugging liquid adheres to the inner diameter of the small-diameter fluid passage as well as the small-diameter fluid passage. Then, as shown in FIG. 3 (c), the filter base material is removed from the plugging liquid. In this case, it is most preferable that the base material of the filter is made of the same material as the plugging material in order to minimize distortion due to firing of the plugged portion. Of course, other ceramic materials may be used to match the thermal expansion difference with the plugging portion. In order to reduce the sintering cost, it is preferable to plug in the unsintered state. Is also good. Further, if the filter base material is easily deformed or damaged due to the penetration of a dissolving material such as water in the slurry plugging material, the filter base material should be fired before plugging. Is preferred.
次ぎに図 3 ( d ) に示す様に、 中心部は柔らかい状態であるので、 目封止液が 太径流体通路より排出され、 中心部には開孔部ができる。 より積極的に太径流体 通路に存在する目封止液を排出するために、 目封止を実施している端面の反対の 端面から空気等を導入してブローすると好ましい。 また太径流体通路側はこの段 階では中心部が開孔していなければならないので、 フィル夕一基材の細径流体通 路に目封止液が付着するに従い、 上方に引き上げると太径流体通路の中心は常に 開孔状態で上方に移動することになり最も好ましい。 またフィルタ基材の軸方向 が半径方法になる態様でフィルタ基材を回転し、 太径流体通路内の目封止液を遠 心力により排出しても良い。  Next, as shown in Fig. 3 (d), since the central portion is in a soft state, the plugging liquid is discharged from the large-diameter fluid passage, and an opening is formed in the central portion. In order to more positively discharge the plugging liquid present in the large-diameter fluid passage, it is preferable to blow air by introducing air or the like from the end face opposite to the end face where the plugging is performed. At this stage, the large-diameter fluid passage side must be open at the center, so as the plugging liquid adheres to the small-diameter fluid passage of the base material, pulling it upward raises the large-diameter fluid passage. The center of the fluid passage always moves upward in an open state, which is the most preferable. Alternatively, the filter substrate may be rotated in such a manner that the axial direction of the filter substrate becomes radial, and the plugging liquid in the large-diameter fluid passage may be discharged by centrifugal force.
フィル夕一基材を乾燥機に入れ乾燥させ細径流体通路の目封止部をフィルター 基材に固着させた後、 図 3 ( e ) の様に再度目封止液に 8 mm浸漬させると、 細 径流体通路は端部が閉塞しているので目封止液は侵入しないが、 太径流体通路は 少なくとも中心部は開孔しているので、 目封止液への浸漬に伴い太径流体通路に 目封止液が侵入するので、 太径流体通路の孔内に目封止液が固着するまで目封止 液に浸漬しておく。 この時、 端部の目封止長さは細径流体通路と太径流体通路が 異なるので、 フィル夕一基材を目封止液から取り出し図 3 ( f ) の様に乾燥させ た後、 図 3 ( g) に示す様に太径流体通路の目封止箇所を残し、 細径流体通路の 目封止箇所を削除する位置で、 フィルタ一基材を切断し、 太径流体通路を対象と した第一の目封止工程を終了する。 この切断は、 ダイヤモンド砥石による切断が フィル夕一基材および目封じ部分に与える加工負荷が少なく良い。 第一の目封止 工程を終了することで、 図 3 (h) に示す様にフィルタ一基材の太径流体通路を 一方の端部で目封止することができる。 Fill the base material into a dryer and dry to filter the plugged portion of the small-diameter fluid passage. After being fixed to the base material, as shown in Fig. 3 (e), when it is immersed again in the plugging liquid by 8 mm, the plugging liquid does not enter because the end of the small-diameter fluid passage is closed. The large-diameter fluid passage is open at least at the center, so the plugging liquid enters the large-diameter fluid passage as it is immersed in the plugging liquid, so it is plugged in the hole of the large-diameter fluid passage. Immerse in the plugging solution until the solution sticks. At this time, since the plugging length at the end is different between the small-diameter fluid passage and the large-diameter fluid passage, the filler is removed from the plugging liquid and dried as shown in Fig. 3 (f). As shown in Fig. 3 (g), the filter base material is cut at the position where the plugged portion of the large-diameter fluid passage is left and the plugged portion of the small-diameter fluid passage is removed, and the large-diameter fluid passage is targeted. Then, the first plugging step is completed. In this cutting, the processing load imposed on the base material and the plugged portion by the cutting with the diamond whetstone is small and good. By ending the first plugging step, the large-diameter fluid passage of the filter base material can be plugged at one end as shown in FIG. 3 (h).
さらに目封止した太径流体通路の反対側の端部を図 3 ( i ) に示す様に前記目 封止液のスラリーに 5 mmの深さに浸漬すると、 前記と同工程により目封止され る。 この場合、 より積極的に細径流体通路を目封止するために、 フィルタ一基材 の上部端部から真空で吸引するか、 毛細管現象により細径流体通路と太径流体通 路の目封止部の軸方向長さを増すか、 または、 図 3 (b) と同様に細径流体通路 側に目封止液を付着させながら上方に引上げてもよい。 フィルタ一基材を目封止 液より取り出し、 図 3 ( j ) の状態で乾燥させた後、 図 3 (k) に示す様に太径 流体通路の目封止箇所を削除できかつ細径流体通路側の目封止箇所が残存する位 置でフィルタ一基材を切断して、 第二の目封止工程が終了する。 この第二の目封 止工程が終了することで、 図 3 ( 1 ) に示す様に、 太径流体通路を一方の端面で 目封止し、 細径流体通路を他方の端面で目封止したフィル夕一エレメントを得る ことができる。  When the opposite end of the plugged large-diameter fluid passage is further immersed in the plugging liquid slurry to a depth of 5 mm as shown in Fig. 3 (i), plugging is performed in the same process as above. Is performed. In this case, in order to more positively plug the small-diameter fluid passage, vacuum suction is performed from the upper end of the filter base material, or the small-diameter fluid passage and the large-diameter fluid passage are plugged by a capillary phenomenon. The length of the stopper in the axial direction may be increased, or the stopper may be pulled upward while attaching the plugging liquid to the small-diameter fluid passage side as in FIG. 3 (b). After removing the filter base material from the plugging liquid and drying it in the state shown in Fig. 3 (j), the plugged portion of the large-diameter fluid passage can be removed as shown in Fig. 3 (k) and the small-diameter fluid can be removed. The filter base material is cut at a position where the plugged portion on the passage side remains, and the second plugging step is completed. When the second plugging step is completed, the large-diameter fluid passage is plugged on one end face and the small-diameter fluid passage is plugged on the other end face, as shown in Fig. 3 (1). You can get a filled element.
以上の工程では目封止材をフィルタ一基材と同一のセラミックス材料としたが、 家庭用の浄水器のろ過フィルター、 半導体ウェハ製造における CMP研磨機に内 蔵する研磨液ろ過フィル夕、 循環風呂のろ過フィルター、 水耕栽培における溶液 のろ過フィル夕一浄水器では流体の温度が 8 0で以下であり、 目封止材としては 充填が容易な有機系の接着剤が好ましい。 この場合の工程は前述するセラミック ス系の目封止材と同様であるが、 フィル夕一基材への目封止材の付着の代わりに 接着剤を硬化することで同一の作用効果が得られる。 この場合接着剤の硬化収縮 により、 フィル夕一基材を引っ張り損傷することを無くすために、 接着剤中に粒 度が # 1 5 0程度のセラミック粉末または樹脂の粒を混合させると好ましい。 さ らに加熱硬化するために熱を加えると、 冷却時にフィルタ一基材より熱膨張率の 大きい接着剤が、 フィルタ一基材を引張り損傷するので、 接着剤は常温でも効果 が可能な主剤と硬化剤からなり、 かつポットライフの長いものを選定し、 ァセト ン等の溶剤にて希釈したものを使用し、 浸漬と取り出しを複数回実施し、 フィル ター基材の内表面にコーティングする様にして接着剤を付着させる方法が好まし い。 In the above process, the plugging material was the same ceramic material as the base material of the filter. However, the filter material for domestic water purifiers and the CMP polisher for semiconductor wafer manufacturing were used as plugging materials. The polishing fluid filtration filter to be stored, the filtration filter for the circulation bath, and the filtration filter for the solution in hydroponics The fluid temperature of the Yuichi water purifier is 80 or less, and the plugging material is an organic type that can be easily filled. Are preferred. The process in this case is the same as that of the ceramics-based plugging material described above, but the same operation and effect can be obtained by curing the adhesive instead of attaching the plugging material to the filler. Can be In this case, it is preferable to mix ceramic powder or resin particles having a particle size of about # 150 into the adhesive in order to prevent the film from being pulled and damaged by the curing shrinkage of the adhesive. If heat is applied to further cure by heating, the adhesive that has a higher coefficient of thermal expansion than the filter substrate during cooling will tensilely damage the filter substrate, so the adhesive is a main agent that can be effective at room temperature. Select a hardening agent that has a long pot life, use a material diluted with a solvent such as acetate, and perform immersion and removal several times to coat the inner surface of the filter substrate. It is preferable to use a method in which an adhesive is adhered.
一方、 細径流体通路を第一に目封止する方法は、 基本的には上述した太径流体 通路を第一に目封止する方法と同一である。 その概略を図 4 ( a ) 〜 (i ) を参 考にして説明すると、 まず、 図 4 ( a ) に示す様に前記方法にて調製したフィル ター基材を、 図 4 ( b ) に示す様に同じく前記方法で調製した目封止液に 4 mm の長さに浸漬する。 次に図 4 ( c ) に示す様にフィル夕一基材を目封止液より取 り出す。 次に図 4 ( d ) に示す様に、 中心部は柔らかい状態であるので、 目封止 液が太径流体通路より排出され、 中心部には開孔部ができる。 次にフィルタ一基 材を乾燥機に入れ細径流体通路の目封止部をフィルタ一基材に固着させる。 この 状態で第一工程が終了し、 図 4 ( e ) に示す様にフィル夕一基材の細径流体通路 を一方の端部で目封止することができる。  On the other hand, the method of first plugging the small-diameter fluid passage is basically the same as the above-described method of first plugging the large-diameter fluid passage. The outline is described with reference to FIGS. 4 (a) to 4 (i). First, as shown in FIG. 4 (a), the filter substrate prepared by the above method is shown in FIG. 4 (b). Similarly, immerse in the plugging solution prepared by the above method to a length of 4 mm. Next, as shown in FIG. 4 (c), the filler substrate is removed from the plugging liquid. Next, as shown in FIG. 4 (d), since the central portion is in a soft state, the plugging liquid is discharged from the large-diameter fluid passage, and an opening is formed in the central portion. Next, the filter material is placed in a dryer, and the plugged portion of the small-diameter fluid passage is fixed to the filter material. In this state, the first step is completed, and as shown in FIG. 4 (e), the small-diameter fluid passage of the filler can be plugged at one end.
その後、 図 4 ( f ) に示す様に、 フィル夕一基材を再度目封止液に 8 mm浸漬 させると、 細径流体通路は端部が閉塞しているので目封止液は侵入しにくいが、 太径流体通路は少なくとも中心部は開孔しているので、 目封止液への浸漬に伴い 太径流体通路に目封止液が侵入する。 この場合、 より積極的に太径流体通路を目 封止するために、 フィルタ一基材の上部端部から真空で吸引するか、 フィルター 基材を目封止液中で下方に移動させることが好ましい。 次にフィルター基材を目 封止液より取り出し、 図 4 ( g ) にの状態で乾燥させた後、 図 5 ( h ) に示す様 に細径流体通路の目封止箇所を削除できかつ太径流体通路側の目封止箇所が残存 する位置でフィルタ一基材を切断して、 第二の目封止工程がが終了する。 この第 二の目封止工程が終了することで、 図 4 ( i ) に示す様に、 太径流体通路を一方 の端面で目封止し、 細径流体通路を他方の端面で目封止したフィルターエレメン トを得ることができる。 Then, as shown in Fig. 4 (f), when the filler substrate was immersed again in the plugging liquid by 8 mm, the plugging liquid penetrated because the small-diameter fluid passage was closed at the end. Although it is difficult, since the large diameter fluid passage is open at least in the center, The plugging liquid enters the large-diameter fluid passage. In this case, in order to more positively plug the large-diameter fluid passage, a vacuum is sucked from the upper end of the filter base material, or the filter base material is moved downward in the plugging liquid. preferable. Next, the filter base material is removed from the plugging solution, and dried in the state shown in FIG. 4 (g). Then, as shown in FIG. The filter base material is cut at the position where the plugged portion on the radial fluid passage side remains, and the second plugging step is completed. When this second plugging step is completed, the large-diameter fluid passage is plugged on one end face and the small-diameter fluid passage is plugged on the other end face, as shown in FIG. 4 (i). A filtered element can be obtained.
以上の様に、 本考案によるフィルターエレメントの目封止工程は太径流体通路 を第一に目封止する方法と、 細径流体通路を第一に目封止する方法の 2通りがあ るが、 工程数が少ない点で細径流体通路を第一に目封止する方法が好ましいが、 目封止体積の大きい太径流体通路側を先ず確実に目封止できる点では、 太径流体 通路を第一に目封止する方法が好ましく、 この 2方法のいずれかはセラミック基 材の材質と流体通路の内寸法および目封止材の材質により適宜選定できる。 また フィルタ一基材を損耗させる固体を含む流体をろ過する場合は、 細径流体通路の 目封止部を第一に目封止することにより、 固体を含む流体に接触する細径流体通 路を先ず確実にセラミックス径目封止材で目封止し、 固体を含む流体に暴露する ことが少ない太径流体通路を目封止が容易な有機系接着剤にて目封止することも できる。 この場合、 目封止された細径流体通路のフィルタ一基材端面にガラス系 の釉薬を塗布すると、 前記目封止部分のフィルタ一基材への固着を強化でき、 ま た耐摩耗性も向上できる点好ましく、 太径流体通路の端面にも実施しても良い。 本発明による目封止ではスラリー状の目封止材を使用しているので、 Φ 1〜Φ 2 . 5 mmの内接円寸法の間で、 太径流体通路と細径流体通路を選択する場合は、 前 記スラリー状の目封止材をガラス系の釉薬としても好ましい。 産業上の利用可能性 As described above, the plugging process of the filter element according to the present invention includes two methods, a method of first plugging a large-diameter fluid passage and a method of first plugging a small-diameter fluid passage. However, the method of first plugging the small-diameter fluid passage is preferable because the number of processes is small, but the large-diameter fluid passage is large in the point that the large-diameter fluid passage side having a large plugging volume can be reliably plugged first. The method of first plugging the passage is preferable. Either of these two methods can be appropriately selected depending on the material of the ceramic base, the internal dimensions of the fluid passage, and the material of the plugging material. Also, when filtering a fluid containing a solid that causes the filter base material to be worn, the plugging portion of the small-diameter fluid passage is first plugged, so that the small-diameter fluid passage that comes into contact with the fluid containing the solid is removed. Can be reliably plugged with a ceramic plugging material first, and a large-diameter fluid passage that is less likely to be exposed to a fluid containing a solid can be plugged with an organic adhesive that is easy to plug. . In this case, if a glass glaze is applied to the end face of the filter base material of the plugged small-diameter fluid passage, the adhesion of the plugged portion to the filter base material can be strengthened, and the abrasion resistance can be improved. It is preferable in that it can be improved, and it may be carried out on the end face of the large-diameter fluid passage. In the plugging according to the present invention, since a plugging material in a slurry state is used, a large-diameter fluid passage and a small-diameter fluid passage are selected between inscribed circle dimensions of Φ1 to Φ2.5 mm. In this case, the slurry plugging material is also preferably used as a glass glaze. Industrial applicability
以上の説明から明らかなように、 本発明のフィルターエレメントによれば、 流 体通路を太径流体通路と細径流体通路とから構成し、 太径流体通路を一方の端面 で目封止し、 細径流体通路を他方の端面で目封止するよう構成しているため、 ろ 過壁面を境とした上流側の流体通路の総断面積を、 ろ過する流体中の固形物量に 対応した最適の断面積とすることができ、 また下流側の総断面積も清澄液の量及 びろ過用途に対応した最少のものとできるのでフィルターエレメントの外径寸法 も最少とすることが可能で装置の寸法も小さくできる。  As is apparent from the above description, according to the filter element of the present invention, the fluid passage is composed of the large-diameter fluid passage and the small-diameter fluid passage, and the large-diameter fluid passage is plugged with one end face, Since the small-diameter fluid passage is configured to be plugged with the other end face, the total cross-sectional area of the fluid passage on the upstream side of the filtration wall is optimized for the solid matter in the fluid to be filtered. The cross-sectional area can be reduced, and the total cross-sectional area on the downstream side can be minimized according to the amount of the clarified liquid and the filtration application, so the outer diameter of the filter element can be minimized. Can also be reduced.
また、 本発明のフィルターエレメントの製造方法によれば、 流体通路を太径流 体通路と細径流体通路とから構成しているため、 目封止方法としては最も好適で あるフィルタ一基材を目封止材へ浸漬する方法を、 太径流体通路と細径流体通路 の断面の大きさの差を利用してマスクパターンを使用しなくとも、 利用すること ができる。 そのため、 特に複層構造にした場合のコート不良の発生が著しく低減 でき、 またマスクパターンを全く使用しないので、 流体通路寸法が小さい場合に も広く適用でき、 マスクパターンの剥離による目封止不良が全く無く、 しかもフ ィルター基材の変形があっても目封止が可能であると共に、 目封止時間が低減で き、 さらに高価な光学的な画像処理装置と目封止材の注入装置が不要な安価なコ ストの目封止方法を達成することができる。  According to the filter element manufacturing method of the present invention, since the fluid passage is composed of the large-diameter fluid passage and the small-diameter fluid passage, the filter base material, which is the most suitable plugging method, is used. The method of immersion in the sealing material can be used without using a mask pattern by utilizing the difference in cross-sectional size between the large-diameter fluid passage and the small-diameter fluid passage. Therefore, the occurrence of coating defects can be significantly reduced, especially in the case of a multi-layer structure, and since no mask pattern is used, it can be widely applied even when the fluid passage dimension is small. Plugging is possible even if there is no deformation of the filter base material, and the plugging time can be reduced. Furthermore, expensive optical image processing equipment and injection equipment for plugging material can be used. An unnecessary and inexpensive cost plugging method can be achieved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 多孔質の壁により仕切られた多数の互いに平行な流体通路よりなるフィルタ 一基材において、 流体通路が、 断面が大きい太径流体通路と、 太径流体通路よ りも小さい少なくとも 1つの断面の大きさを有する細径流体通路とからなり、 太径流体通路の一方の端面を目封止するとともに、少なくとも 1つの断面の大 きさを有する細径流体通路を、太径流体通路が目封止された端面とは反対側の 端面で目封止したことを特徴とするフィルターエレメント。 1. A filter composed of a number of parallel fluid passages separated by porous walls. In one substrate, the fluid passage has a large-diameter fluid passage having a large cross-section and at least one cross-section smaller than the large-diameter fluid passage. A large-diameter fluid passage having a size of at least one cross-section, and one end face of the large-diameter fluid passage plugged. A filter element characterized by being plugged on an end face opposite to the sealed end face.
2 . 前記流体通路の断面が円形を基準とし、 太径流体通路の回りに細径流体通路 を配設した請求項 1記載のフィルターエレメント。  2. The filter element according to claim 1, wherein a cross section of the fluid passage is based on a circle, and a small diameter fluid passage is provided around a large diameter fluid passage.
3 . 前記流体通路の断面が多角形を基準とし、 太径流体通路の回りに細径流体通 路を配設した請求項 1記載のフィルターエレメント。  3. The filter element according to claim 1, wherein a cross section of the fluid passage is based on a polygon, and a small diameter fluid passage is provided around the large diameter fluid passage.
4. 前記多角形が六角形状である請求項 3記載のフィルターエレメント。  4. The filter element according to claim 3, wherein the polygon is a hexagon.
5 . フィルターエレメントの軸に垂直方向の断面において、 前記細径流体通路の 総断面積が前記太径流体通路の総断面積の 4 0 %を超え 1 2 0 %以下である 請求項 1〜 4のいずれか 1項に記載のフィルターエレメント。  5. The cross section perpendicular to the axis of the filter element, wherein the total cross-sectional area of the small-diameter fluid passage is more than 40% and not more than 120% of the total cross-sectional area of the large-diameter fluid passage. The filter element according to any one of the above.
6 . 前記太径流体通路をろ過流体の入口とし、 前記細径流体通路を清澄流体の出 口とした請求項 1〜 5のいずれか 1項に記載のフィルタ一エレメント。  6. The filter element according to any one of claims 1 to 5, wherein the large-diameter fluid passage serves as an inlet for a filtered fluid, and the small-diameter fluid passage serves as an outlet for a clarified fluid.
7 . フィルターエレメントが、 家庭用浄水器のろ過、 半導体製造装置で使用する 研磨液のろ過、 循環風呂のろ過、 水耕栽培における溶液のろ過、 ディーゼル微 粒子除去装置 (D P F) における微粒子のろ過に使用される請求項 1〜6のい ずれか 1項に記載のフィルタ一エレメント。  7. The filter element is used for filtration of household water purifier, filtration of polishing liquid used in semiconductor manufacturing equipment, filtration of circulation bath, filtration of solution in hydroponics, and filtration of fine particles in diesel particulate filter (DPF). A filter element according to any one of claims 1 to 6 for use.
8 . 多孔質の壁により仕切られた多数の互いに平行な流体通路よりなり、 流体通 路が、 断面が大きい太径流体通路と、 太径流体通路よりも小さい少なくとも 1 つの断面の大きさを有する細径流体通路とからなるフィル夕一基材を準備す る準備工程と、 準備工程で準備したフィル夕一基材の一端面を目封止材に浸漬し、 太径流体 通路と細径流体通路に目封止材を充填し、 フィルタ一基材の太径流体通路より 目封止材を排出することで細径流体通路に選択的に目封止材を充填し、再び目 封止材に浸潰し太径流体通路の目封止材の充填長さを細径流体通路の目封止 材の充填長さよりも長くなるように目封止材を充填した後、太径流体通路の目 封止材のみを残す位置でフィル夕一基材を切断して、太径流体通路のみに選択 的に目封止材を充填させる第一の目封止工程と、 8. A fluid passage having a number of parallel fluid passages separated by a porous wall, the fluid passage having a large-diameter fluid passage having a large cross section and at least one cross-sectional size smaller than the large-diameter fluid passage. A preparatory step for preparing a filler substrate comprising a small-diameter fluid passage; One end surface of the filter base material prepared in the preparation process is immersed in a plugging material, and the large-diameter fluid passage and the small-diameter fluid passage are filled with the plugging material. By discharging the plugging material, the small-diameter fluid passage is selectively filled with the plugging material, immersed in the plugging material again, and the filling length of the plugging material in the large-diameter fluid passage is reduced to the small-diameter fluid. After filling the plugging material so that it becomes longer than the filling length of the plugging material in the passage, cut the filler material at the position where only the plugging material in the large-diameter fluid passage is left A first plugging step of selectively filling only the fluid passage with a plugging material;
第一の目封止工程で目封止した端面と反対側の端面を目封止材に浸漬して、 細径流体通路の目封止材の充填長さを太径流体通路の目封止材の充填長さよ り長く形成した後、細径流体通路の目封止材のみを残す位置でフィルタ一基材 を切断して、細径流体通路のみに選択的に目封止材を充填させる第二の目封止 工程と、  The end face opposite to the end face plugged in the first plugging step is immersed in the plugging material, and the filling length of the plugging material of the small diameter fluid passage is plugged with the large diameter fluid passage. After forming longer than the filling length of the material, the filter base material is cut at the position where only the plugging material of the small-diameter fluid passage is left, and only the small-diameter fluid passage is selectively filled with the plugging material. A second plugging step,
からなることを特徴とするフィルターエレメントの製造方法。A method for producing a filter element, comprising:
. 多孔質の壁により仕切られた多数の互いに平行な流体通路よりなり、 流体通 路が、 断面が大きい太径流体通路と、 太径流体通路よりも小さい少なくとも 1 つの断面の大きさを有する細径流体通路とからなるフィルタ一基材を準備す る準備工程と、 A plurality of parallel fluid passages separated by a porous wall, wherein the fluid passages have a large-diameter fluid passage having a large cross-section and at least one narrow cross-section having a size smaller than the large-diameter fluid passage; A preparation step of preparing a filter-substrate comprising a diameter fluid passage;
準備工程で準備したフィルター基材の一端面を目封止材に浸漬し、 太径流体 通路と細径流体通路に目封止剤を充填し、 フィルタ一基材の太径流体通路より 目封止材を排出することで、細径流体通路のみに選択的に目封止材を充填させ る第一の目封止工程と、  One end surface of the filter base material prepared in the preparation process is immersed in a plugging material, and the large-diameter fluid passage and the small-diameter fluid passage are filled with a plugging agent, and plugged from the large-diameter fluid passage of the filter base material. A first plugging step of selectively filling only the small-diameter fluid passage with the plugging material by discharging the stopper material;
第一の目封止工程で目封止した端面と反対側の端面を目封止材に浸漬して、 太径流体通路の目封止材の充填長さを細径流体通路の目封止材の充填長さよ り長く形成した後、太径流体通路の目封止材のみを残す位置でフィルター基材 を切断して、太径流体通路のみに選択的に目封止材を充填させる第二の目封止 工程と、 からなることを特徴とするフィルターエレメントの製造方法。 The end face opposite to the end face plugged in the first plugging step is immersed in the plugging material, and the filling length of the plugging material of the large diameter fluid passage is plugged with the small diameter fluid passage. After the filter material is formed longer than the filling length of the material, the filter base material is cut at a position where only the plugging material of the large-diameter fluid passage is to be left, and only the large-diameter fluid passage is filled with the plugging material. A second plugging process, A method for producing a filter element, comprising:
0 . 前記フィル夕一基材がセラミックス材料からなる請求項 8または 9記載の フィルターエレメントの製造方法。10. The method for manufacturing a filter element according to claim 8, wherein the filter base material is made of a ceramic material.
1 . 前記目封止材がセラミックス材料からなり、 フィルタ一基材が未焼成の状 態で、前記第一の目封止工程と第二の目封止工程を行う請求項 1 0記載のフィ ルターエレメントの製造方法。10. The filter according to claim 10, wherein the first plugging step and the second plugging step are performed in a state where the plugging material is made of a ceramic material and the filter base material is not fired. Luter element manufacturing method.
2 . 前記目封止材がセラミックス材料、 有機系接着剤のいずれかであり、 フィ ル夕一基材を焼成した後、 前記第一の目封止工程と第二の目封止工程を行う請 求項 1 0記載のフィルターエレメントの製造方法。 2. The plugging material is a ceramic material or an organic adhesive, and the first plugging step and the second plugging step are performed after firing the filler substrate. The method for producing a filter element according to claim 10.
3 .前記第一の目封止工程において、フィルタ一基材を目封止材に浸漬した後、 フィル夕一基材を上方に引き上げることにより太径流体通路及び細径流体通 路に目封止材を充填する請求項 8または 9記載のフィルターエレメントの製 造方法。3. In the first plugging step, after the filter base material is immersed in the plugging material, the filter base material is pulled up to plug the large-diameter fluid passage and the small-diameter fluid passage. 10. The method for producing a filter element according to claim 8, wherein a filler is filled.
4. 前記第二の目封止工程において、 フィル夕一基材の上部より真空吸引する ことにより、太径流体通路又は細径流体通路の目封止材の充填長さが細径流体 通路又は太径流体通路の目封止材の長さより長くなるように選択的に目封止 材を充填する請求項 8または 9記載のフィルターエレメントの製造方法。 5 .前記第二の目封止工程において、フィルタ一基材を目封止材に浸漬した後、 フィルター基材を目封止材中で下方に移動することにより、太径流体通路又は 細径流体通路の目封止材の充填長さが細径流体通路又は太径流体通路の目封 止材の長さより長くなるように選択的に目封止材を充填する請求項 8または 9記載のフィルターエレメントの製造方法。 4. In the second plugging step, the filling length of the plugging material in the large-diameter fluid passage or the small-diameter fluid passage is reduced by vacuum suction from the upper portion of the filler substrate, or the small-diameter fluid passage or 10. The method for manufacturing a filter element according to claim 8, wherein the plugging material is selectively filled so as to be longer than a length of the plugging material of the large diameter fluid passage. 5. In the second plugging step, after the filter base material is immersed in the plugging material, the filter base material is moved downward in the plugging material, thereby forming a large-diameter fluid passage or a small-diameter fluid passage. The plugging material according to claim 8 or 9, wherein the plugging material is selectively filled such that the filling length of the plugging material in the fluid passage is longer than the length of the plugging material in the small diameter fluid passage or the large diameter fluid passage. Manufacturing method of filter element.
6 . フィル夕一エレメントの目封止をした両端の少なくとも一面に釉薬が塗布 されている請求項 8または 9記載のフィルターエレメントの製造方法。 6. The method for producing a filter element according to claim 8 or 9, wherein glaze is applied to at least one surface of the plugged ends of the filter element.
PCT/JP2001/004957 2000-05-29 2001-06-12 Filter element and production method thereof WO2002100514A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000158206A JP4471452B2 (en) 2000-05-29 2000-05-29 Manufacturing method of filter element
PCT/JP2001/004957 WO2002100514A1 (en) 2000-05-29 2001-06-12 Filter element and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000158206A JP4471452B2 (en) 2000-05-29 2000-05-29 Manufacturing method of filter element
PCT/JP2001/004957 WO2002100514A1 (en) 2000-05-29 2001-06-12 Filter element and production method thereof

Publications (1)

Publication Number Publication Date
WO2002100514A1 true WO2002100514A1 (en) 2002-12-19

Family

ID=26345088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004957 WO2002100514A1 (en) 2000-05-29 2001-06-12 Filter element and production method thereof

Country Status (2)

Country Link
JP (1) JP4471452B2 (en)
WO (1) WO2002100514A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902348A1 (en) * 2006-06-19 2007-12-21 Ceramiques Tech Ind Sa Sa Monolithic porous body for use as catalyzed particle filter, has input channels surrounded by output channels so that no porous partition of one of input channels is common with porous partition of other of input channels
US7314496B2 (en) 2002-09-13 2008-01-01 Ibiden Co., Ltd. Honeycomb structure
US7316722B2 (en) 2002-09-13 2008-01-08 Ibiden Co., Ltd. Honeycomb structure
US7517502B2 (en) 2003-10-23 2009-04-14 Ibiden Co., Ltd. Honeycomb structural body
US7585471B2 (en) 2004-02-23 2009-09-08 Ibiden Co., Ltd. Honeycomb structured body and exhaust gas purifying device
US8062603B2 (en) 2003-06-23 2011-11-22 Ibiden Co., Ltd. Honeycomb structural body
US8246710B2 (en) 2003-06-05 2012-08-21 Ibiden Co., Ltd. Honeycomb structural body
EP2939808A4 (en) * 2012-12-27 2016-08-17 Sumitomo Chemical Co Method for manufacturing honeycomb structure

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040427B2 (en) * 2002-10-22 2008-01-30 日本碍子株式会社 Manufacturing method of filter element
JP4369141B2 (en) * 2003-02-18 2009-11-18 日本碍子株式会社 Honeycomb filter and exhaust gas purification system
JP2004261664A (en) * 2003-02-28 2004-09-24 Ngk Insulators Ltd Honeycomb structure and mouthpiece for extrusion molding of honeycomb structure
US7611764B2 (en) * 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure
WO2005037406A1 (en) * 2003-10-20 2005-04-28 Ibiden Co., Ltd. Honeycomb structure
US20070186528A1 (en) * 2006-02-15 2007-08-16 Baldwin Filters, Inc. Fluted filter apparatus
JP2006167680A (en) * 2004-12-20 2006-06-29 Hitachi Metals Ltd Method for producing ceramic honeycomb filter
DE102006035053A1 (en) 2005-09-20 2007-03-22 Robert Bosch Gmbh Filter element and soot filter with geometrically similar channels
JP4600826B2 (en) * 2005-10-18 2010-12-22 日立金属株式会社 Ceramic honeycomb filter
EP2127720B1 (en) * 2007-03-20 2012-02-01 NGK Insulators, Ltd. Honeycomb structure
JP5292280B2 (en) * 2007-03-28 2013-09-18 日本碍子株式会社 Honeycomb filter
EP2130575B1 (en) * 2007-03-29 2014-11-12 NGK Insulators, Ltd. Honeycomb filter comprising segments
WO2008126433A1 (en) * 2007-03-30 2008-10-23 Ngk Insulators, Ltd. Honeycomb segment and honeycomb structure
US7722791B2 (en) 2007-07-18 2010-05-25 Ngk Insulators, Ltd. Method for manufacturing honeycomb structure and manufacturing apparatus thereof
US7919033B2 (en) * 2007-07-18 2011-04-05 Ngk Insulators, Ltd. Method of manufacturing honeycomb structure and manufacturing apparatus thereof
DE102008042372A1 (en) * 2007-09-26 2009-04-23 Denso Corporation, Kariya Exhaust gas cleaning filter for diesel engine, comprises a honeycomb structure having cells that are divided into inlet cells and outlet cells by porous cell walls that are arranged in a honeycomb form, and plug parts
JP5139856B2 (en) * 2008-03-26 2013-02-06 日本碍子株式会社 Method for manufacturing plugged honeycomb structure
JP5045614B2 (en) * 2008-08-26 2012-10-10 株式会社デンソー Diesel particulate filter
JP4947113B2 (en) * 2008-11-06 2012-06-06 株式会社デンソー Honeycomb filter and manufacturing method thereof
JP2010214226A (en) * 2009-03-13 2010-09-30 Panasonic Electric Works Co Ltd Filter member and water purification cartridge with the same
JP2009195905A (en) * 2009-04-13 2009-09-03 Hitachi Metals Ltd Method for manufacturing ceramic honeycomb filter
DE102011004343A1 (en) 2010-02-19 2011-08-25 DENSO CORPORATION, Aichi-pref. Exhaust gas purification filter has base substrate, multiple cells, which are composed of inlet cells and outlet cells, where multiple separation walls are made of porous material
JP5791391B2 (en) * 2010-06-28 2015-10-07 京セラ株式会社 Honeycomb structure and gas processing apparatus using the same
JP6041476B2 (en) * 2011-10-28 2016-12-07 住友化学株式会社 Honeycomb structure
JP5816054B2 (en) * 2011-10-31 2015-11-17 住友化学株式会社 Honeycomb structure
JP6068067B2 (en) 2012-09-06 2017-01-25 日本碍子株式会社 Plugged honeycomb structure
JP2016055231A (en) * 2014-09-08 2016-04-21 イビデン株式会社 Honeycomb fired product and honeycomb filter
JP6898513B2 (en) * 2018-03-30 2021-07-07 日本碍子株式会社 Sealed honeycomb segment and sealed honeycomb structure
DE102020131637A1 (en) * 2020-05-22 2021-11-25 Taiwan Semiconductor Manufacturing Co., Ltd. FILTER DEVICE FOR THE PROCESS OF MANUFACTURING SEMICONDUCTOR DEVICES

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788486A (en) * 1971-09-30 1974-01-29 Minnesota Mining & Mfg Filter
JPS53133860U (en) * 1977-03-30 1978-10-23
US4364761A (en) * 1979-12-03 1982-12-21 General Motors Corporation Ceramic filters for diesel exhaust particulates and methods for making
JPS5892409U (en) * 1981-12-18 1983-06-22 トヨタ自動車株式会社 Internal combustion engine exhaust gas filter
US4550034A (en) * 1984-04-05 1985-10-29 Engelhard Corporation Method of impregnating ceramic monolithic structures with predetermined amounts of catalyst
JPH0568828A (en) * 1991-09-17 1993-03-23 Ibiden Co Ltd Honeycomb filter of exhaust gas purifier
US6120584A (en) * 1997-01-31 2000-09-19 Takasago Thermal Engineering Co., Ltd. Air cleaning apparatus, air filter and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788486A (en) * 1971-09-30 1974-01-29 Minnesota Mining & Mfg Filter
JPS53133860U (en) * 1977-03-30 1978-10-23
US4364761A (en) * 1979-12-03 1982-12-21 General Motors Corporation Ceramic filters for diesel exhaust particulates and methods for making
JPS5892409U (en) * 1981-12-18 1983-06-22 トヨタ自動車株式会社 Internal combustion engine exhaust gas filter
US4550034A (en) * 1984-04-05 1985-10-29 Engelhard Corporation Method of impregnating ceramic monolithic structures with predetermined amounts of catalyst
JPH0568828A (en) * 1991-09-17 1993-03-23 Ibiden Co Ltd Honeycomb filter of exhaust gas purifier
US6120584A (en) * 1997-01-31 2000-09-19 Takasago Thermal Engineering Co., Ltd. Air cleaning apparatus, air filter and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314496B2 (en) 2002-09-13 2008-01-01 Ibiden Co., Ltd. Honeycomb structure
US7316722B2 (en) 2002-09-13 2008-01-08 Ibiden Co., Ltd. Honeycomb structure
US7326270B2 (en) 2002-09-13 2008-02-05 Ibiden Co., Ltd. Filter
US7766991B2 (en) 2002-09-13 2010-08-03 Ibiden Co., Ltd. Honeycomb structural body
US8012234B2 (en) 2002-09-13 2011-09-06 Ibiden Co., Ltd. Honeycomb structural body
US8246710B2 (en) 2003-06-05 2012-08-21 Ibiden Co., Ltd. Honeycomb structural body
US8062603B2 (en) 2003-06-23 2011-11-22 Ibiden Co., Ltd. Honeycomb structural body
US8361400B2 (en) 2003-06-23 2013-01-29 Ibiden Co., Ltd. Honeycomb structural body
US7517502B2 (en) 2003-10-23 2009-04-14 Ibiden Co., Ltd. Honeycomb structural body
US7585471B2 (en) 2004-02-23 2009-09-08 Ibiden Co., Ltd. Honeycomb structured body and exhaust gas purifying device
FR2902348A1 (en) * 2006-06-19 2007-12-21 Ceramiques Tech Ind Sa Sa Monolithic porous body for use as catalyzed particle filter, has input channels surrounded by output channels so that no porous partition of one of input channels is common with porous partition of other of input channels
EP2939808A4 (en) * 2012-12-27 2016-08-17 Sumitomo Chemical Co Method for manufacturing honeycomb structure

Also Published As

Publication number Publication date
JP4471452B2 (en) 2010-06-02
JP2001334114A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
WO2002100514A1 (en) Filter element and production method thereof
JP5005917B2 (en) Method for manufacturing plugged honeycomb structure
CN1723342B (en) Method of producing honeycomb structure body and sealing material
JP5587173B2 (en) Extrudate and fluid treatment method
JP5090743B2 (en) Method for manufacturing plugged honeycomb structure
CN100438947C (en) Base for honeycomb filter, method for producing same and honeycomb filter
WO2009101682A1 (en) Honeycomb structure, exhaust gas purification apparatus and process for producing honeycomb structure
EP2116347B1 (en) Method for manufacturing a sealed honeycomb structure
EP1816323B2 (en) Plugged honeycomb structure
CN105246574A (en) Ceramic filter element and method for manufacturing the same
WO2013054651A1 (en) Method for producing ceramic honeycomb structure, and ceramic honeycomb structure
JP2006263517A (en) Ceramic filter and its manufacturing method
KR101234490B1 (en) Ceramics filter and manufacturing method thereby
CN109789357B (en) Method and apparatus for manufacturing ceramic honeycomb filter
JP4748730B2 (en) Ceramic filter and end face sealing method thereof
JP2002210314A (en) Ceramic filter
KR100671867B1 (en) Ceramic filter
EP2236481A2 (en) Honeycomb structure and method for manufacturing the same
CN107261843B (en) Honeycomb structure
KR100671380B1 (en) Ceramic filter
JP2000342920A (en) Ceramic filter
WO2000048807A1 (en) Improved method of making multicellular filters
JP4040427B2 (en) Manufacturing method of filter element
JP2003230808A (en) Porous filter, water cleaner, filter manufacturing method, press fitting method and apparatus for manufacturing filter, sealing method and sealant applying apparatus
EA004725B1 (en) Ceramic filtering element and method for producing said element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase