WO2003002828A1 - Vacuum insulation panel - Google Patents

Vacuum insulation panel Download PDF

Info

Publication number
WO2003002828A1
WO2003002828A1 PCT/CH2002/000336 CH0200336W WO03002828A1 WO 2003002828 A1 WO2003002828 A1 WO 2003002828A1 CH 0200336 W CH0200336 W CH 0200336W WO 03002828 A1 WO03002828 A1 WO 03002828A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
vacuum
insulation panel
chamber
vacuum insulation
Prior art date
Application number
PCT/CH2002/000336
Other languages
German (de)
French (fr)
Inventor
Gerhard Staufert
Original Assignee
Sager Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sager Ag filed Critical Sager Ag
Publication of WO2003002828A1 publication Critical patent/WO2003002828A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the invention relates to a vacuum insulation panel (VIP) with a large-pore core evacuated to pressures of less than 1 mbar and a long-term sealed vacuum envelope.
  • VIP vacuum insulation panel
  • Vacuum panels with a film-like shell require a pressure-resistant core.
  • the core material must have a low thermal conductivity and be easy to evacuate, i.e. it must be open-pored and have the smallest possible proportion of closed or almost closed pores, have low outgassing behavior, have the smallest possible average diameter of the pores so that thermal conductivities in the range around 5 mW / m ° K are achieved with the lowest possible negative pressure.
  • the desirability of the lowest possible negative pressures - i.e. preferably not falling below the so-called rough vacuum range (1 mbar - 1000 mbar) - is not important because of the somewhat lower expenditure for generating these negative pressures, but it simplifies the maintenance of the negative pressure above the very high one required on the building "Lifetime" of the vacuum of approx. 50 years.
  • the vacuum in the rough vacuum range is required, multi-layer plastic foils can be used, which contain very thin, vapor-deposited layers of aluminum with a total thickness of approx. 0.3 ⁇ m. This low metal content in the case ensures a small amount of heat conduction along the case materials, what before especially important for panels with small lateral dimensions (> approx. 50 cm).
  • nanoporous materials which are offered, for example, by the companies Wacker, Degussa and Cabot. These companies also offer covered and evacuated panels on the market that have the desired low thermal conductivity.
  • the "next worse" known core material is a pressure-resistant, non-outgassing glass wool, which fulfills the first three requirements as well as the nanoporous materials and costs considerably less than these. Because of the significantly larger internal spaces (hereinafter referred to as pores) However, glass wool - and other insulation materials with large open pores such as XPS - must be evacuated to the so-called fine vacuum range (10 "3 mbar - 1 mbar) so that the desired thermal conductivity values in the range of 5 mW / m ° K can be achieved. Long-term compliance with these negative pressures would not be a problem if the casing was to have a significantly higher metal content (metal thickness> a few ⁇ m).
  • the present patent is therefore based on the object of providing a vacuum insulation panel (VIP) with a large-pore core, the sheathing of which is constructed in such a way that, firstly, a sufficient high “service life” of the necessary fine vacuum of an average of 50 years and above is ensured and that secondly, such low heat conduction along the shell is realized that the effective total thermal conductivity of a panel with edge length down to 20 cm remains below 10 mW / m ° K.
  • VIP vacuum insulation panel
  • the VIP according to the invention has a structure which corresponds to the double chamber principle known in vacuum technology, in which an inner low-pressure vacuum chamber is surrounded by an outer vacuum chamber in which a rough vacuum prevails.
  • the VIP according to the double chamber principle has a (for example 1 to 5 cm thick) evacuated core, for example 10 "3 mbar, made of pressure-resistant, large-pored material, which is surrounded by an inner gas-tight film.
  • This inner structure is surrounded by a second, approx. 1 mbar evacuated, thin layer of core material, which in turn is covered with an outer gas-tight film, if the pressure inside the outer chamber increases to approx. 100 mbar in the course of approx.
  • the outer vacuum chamber depending on the structure, can provide a thin but very effective heat insulation and thus a high heat conduction along the inner shell can be neglected overall, it is also conceivable to use an inner shell that is constructed, for example, as a commercially available plastic composite film which includes, for example, a 25 ⁇ m thick aluminum layer. With such a construction, the maintenance of the pressure prevailing in the inner chamber of less than 10 "1 mbar can be guaranteed over periods of the order of 100 years.
  • a first, as inexpensive as possible construction of the VIP according to the double chamber principle with a sufficiently long service life includes, as shown in Fig. 1, an inner core made of pressure-resistant glass wool (1) which does not outgas under vacuum at temperatures up to 100 ° C, which is the actual insulation volume of the VIP.
  • the inner core can also consist of another suitable material, such as extruded polystyrene (XPS), in which case, however, an appropriate getter must be available due to outgassing.
  • XPS extruded polystyrene
  • this core is evacuated to approximately 10 " mbar and welded into an inner gas-tight composite film (2).
  • the thickness of the inner core (1) is aligned depends on the application according to the heat transfer to be observed, which is usually given in W / m 2 K. With a thermal conductivity of approx. 4 mW / m ° K and a heat transfer of approx. 0.2 W / m 2 K, there is, for example, a thickness of inner core (1) of about 2 to 3 cm.
  • the inner film (2) is, for example, a 100 ⁇ m thick PE film onto which, for example, an approximately 0.1 ⁇ m thick aluminum layer is evaporated or sputtered.
  • the PE film acts as a weldable carrier layer, while the aluminum layer forms an effective diffusion barrier for O 2 , N 2 , CO 2 etc. at the average pressure of approx. 10 mbar acting within the outer core material (3).
  • the inner shell (2) is surrounded by a glass wool fleece, for example 5 mm thick, which forms the outer core (3).
  • the outer core (3) is reduced to approx. 1 mbar evacuated and, of course together with the inner chamber (1) + (2) which it envelops, sealed in an outer gas-tight envelope (4). Over the course of approx. 50 years, the pressure inside the outer chamber (3) + (4) may increase to approx. 100 mbar.
  • the outer core (3) should be compressed without losing the desired effect under the initial pressure acting on it from approx. 999 mbar to a few 0.01 mm. When using a glass fleece, its thickness in the compressed state will be at least a few 0.1 mm.
  • the outer casing (4) is a film composite with, for example, a PE layer that acts as a weldable layer and is approximately 50 ⁇ m thick, and a layer that acts as a diffusion barrier against O 2 , N 2 , CO 2 , etc., for example 0.1 ⁇ m vapor-deposited aluminum layer and a PET layer acting as a diffusion barrier against water vapor.
  • a second design of the VIP designed for maximum reliability, based on the double chamber principle, again includes, as shown in Fig. 1, an inner core made of pressure-resistant glass wool (1) which does not outgas under vacuum at temperatures up to 100 ° C (1), which the actual insulation volume of the VIP ensures.
  • this core is evacuated to approx. 10 "3 mbar and welded into an inner gastight envelope (2).
  • the inner shell (2) is constructed as a composite film, which consists, for example, of an approximately 100 ⁇ m thick PE film acting as a carrier layer and as a weldable layer and a laminated approximately 10 - 50 ⁇ m thick aluminum film. It is known that aluminum foils with a thickness of approx. 25 ⁇ m can be manufactured absolutely free of pinhole without great effort and thus a diffusion barrier for O 2 , N 2 , CO 2 etc. with which pressures in the fine vacuum range (10 "3 - 1 mbar) can theoretically be maintained over centuries.
  • the outer core (3) consists of a layer of nanoporous material a few mm thick, which is evacuated, for example, to 1 mbar and welded into an outer envelope film (4).
  • Nanoporous materials that have been evacuated to a pressure of less than approx. 100 mbar have a thermal conductivity in the order of 5 mW / m ° K.
  • the outer chamber (3) + (4) not only forms a rough vacuum, which drastically increases the service life of the fine vacuum prevailing in the inner chamber (l) + (2), but also represents a very effective thermal insulation layer, which increases the thermal conductivity the inner shell (2) compensated.
  • the outer shell (4) consists of a commercially available multi-layer plastic film that contains very thin, vapor-deposited layers of aluminum with a total thickness of approx. 0.3 ⁇ m and thus the pressure in the outer chamber (3) + (4) of less than Maintains 100 mbar over long periods.
  • Fig. 2 illustrates a possible price / performance scenario of some VIP variants in a few years.
  • a VIP with a large-pore core material constructed according to the double chamber principle as inexpensively as possible with a sufficient lifespan with some probability both for a heat transfer of 0.2 W / m K and for one of 0.1 W / m 2 K should be significantly cheaper than a single-sleeve VIP with a nanoporous core.
  • a - according to the second variant described above - a VIP with a large-pore core based on the double chamber principle, optimized with regard to vacuum life, will probably be slightly more expensive than a VIP with a nanoporous core for a heat transfer of 0.2 W / m 2 K, but for one Heat transfer of 0.1 W / m 2 K have a significant price advantage.
  • nanoporous material could also be used as the material for the inner core (1), but this makes no sense due to the price and the “high” permissible pressure (> maximum 100 mbar) necessary for the effectiveness of these materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

The inventive vacuum insulation panel (VIP) has a structure corresponding to the double chamber principle known in vacuum engineering, wherein an inner low-pressure vacuum chamber is surrounded by an outer vacuum chamber in which a rough vacuum prevails. The double-chamber VIP has a core (1) which is, for example, 1-5 cms thick and evacuated to10-3 mbars for example, said core being made of a pressure-resistant large-pored material, surrounded by an inner gastight film (2). Said inner structure is surrounded by a second thin layer of core material (3) evacuated to approximately 1 mbar, also surrounded by an outer gastight film (4). If the pressure inside the outer chamber is allowed to increase to approximately 100 mbars in the course of 50 years, a low-cost plastic-based film can be used, having only a very thin metal layer (i.e. 0.1 µm), whereby an insignificantly small amount of heat conduction can be ensured along the outer covering. .

Description

VAKUUMISOLATIONSPANEEL Thermal insulation panel
Die Erfindung betrifft ein Vakuum-Isolations Paneel (VIP) mit einem auf Drücke kleiner als 1 mbar evakuiertem grossporigem Kem und langzeitig dichter Vakuumhülle.The invention relates to a vacuum insulation panel (VIP) with a large-pore core evacuated to pressures of less than 1 mbar and a long-term sealed vacuum envelope.
Vakuumpaneele mit folienartiger Hülle benötigen einen druckfesten Kern. Das Kernmaterial muss einen niedrigen Wärmeleitwert aufweisen, gut evakuierbar sein, d.h. es muss offenporig sein und einen möglichst geringen Anteil geschlossener oder fast geschlossener Poren haben, ein geringes Ausgasverhalten aufweisen, einen möglichst kleinen mittleren Durchmesser der Poren besitzen, damit bei möglichst geringen Unterdrücken Wärmeleitwerte im Bereich um 5 mW/m°K erreicht werden.Vacuum panels with a film-like shell require a pressure-resistant core. The core material must have a low thermal conductivity and be easy to evacuate, i.e. it must be open-pored and have the smallest possible proportion of closed or almost closed pores, have low outgassing behavior, have the smallest possible average diameter of the pores so that thermal conductivities in the range around 5 mW / m ° K are achieved with the lowest possible negative pressure.
Die Wünschbarkeit möglichst geringer Unterdrücke - also vorzugsweise das nicht Unterschreiten des sogenannten Grobvakuumbereichs (1 mbar - 1000 mbar) - ist nicht wegen des etwas geringeren Aufwandes zur Erzeugung dieser Unterdrücke wichtig, sondern es vereinfacht die Erhaltung des Unterdruckes über die am Bau geforderte, sehr hohe „Lebensdauer" des Vakuums von ca. 50 Jahren. Bei erforderli- chen Unterdrücken im Grob Vakuumbereich kann hierfür mit mehrlagigen Kunststofffolien gearbeitet werden, die sehr dünne, aufgedampfte Schichten von Aluminium mit einer totalen Dicke von ca. 0.3 μm beinhalten. Dieser geringe Metallanteil in der Hülle stellt eine kleine Wärmeleitung entlang der Hüllmaterialien sicher, was vor allem bei Paneelen mit kleinen lateralen Abmessungen (> ca. 50 cm) grosse Bedeutung hat.The desirability of the lowest possible negative pressures - i.e. preferably not falling below the so-called rough vacuum range (1 mbar - 1000 mbar) - is not important because of the somewhat lower expenditure for generating these negative pressures, but it simplifies the maintenance of the negative pressure above the very high one required on the building "Lifetime" of the vacuum of approx. 50 years. If the vacuum in the rough vacuum range is required, multi-layer plastic foils can be used, which contain very thin, vapor-deposited layers of aluminum with a total thickness of approx. 0.3 μm. This low metal content in the case ensures a small amount of heat conduction along the case materials, what before especially important for panels with small lateral dimensions (> approx. 50 cm).
Die einzigen momentan bekannten Kernmaterialien welche alle geschilderten Forderungen erfüllen, sind die sogenannten nanoporösen Materialien, die beispielsweise von den Firmen Wacker, Degussa und Cabot angeboten werden. Diese Firmen bieten auch umhüllte und evakuierte Paneele am Markt an, die den gewünschten niedrigen Wärmeieitwertbesitzen.The only currently known core materials that meet all of the above requirements are the so-called nanoporous materials, which are offered, for example, by the companies Wacker, Degussa and Cabot. These companies also offer covered and evacuated panels on the market that have the desired low thermal conductivity.
Sie weisen allerdings den Nachteil eines hohen Preises auf, so dass ihr Einsatz als allgemeines Isolationsmaterial am Bau der Wirtschaftlichkeit wegen in Frage gestellt ist.However, they have the disadvantage of a high price, so that their use as a general insulation material in the construction of the economy is questioned.
Das „nächst schlechtere" bekannte Kernmaterial ist eine druckfeste, nicht ausgasende Glaswolle, welche die drei ersten Forderungen genau so gut erfüllt wie die nanoporösen Materialien und wesentlich weniger kostet als diese. Wegen der bedeutend grös- seren inneren Zwischenräume (die im weiteren als Poren bezeichnet werden) muss aber Glaswolle - und andere Isolationsmaterialien mit grossen offenen Poren wie z.B. XPS - bis in den sogenannten Feinvakuumbereich (10"3 mbar - 1 mbar) evakuiert werden, damit die angestrebten Wärmeleitwerte im Bereich um 5 mW/m°K erreicht werden. Die langzeitige Einhaltung dieser Unterdrücke wäre dann kein Problem, wenn die Hülle einen wesentlich höheren Metallanteil (Metalldicke > einige μm) aufweisen dürfte. Ohne spezielle konstruktive Massnahmen verbietet sich dies aber wegen der hohen resultierenden Wärmeleitung in der Hülle, welche die effektive Wärmeleitung des gesamten Paneels drastisch erhöhen kann. So ist beispielsweise aus der Publikation des schweizerischen Bundesamtes für Energie „Hochleistungs- Wärmedämmung" vom Dezember 2000 bekannt, dass VIP mit nanoporösem Kern, die mit einer, eine ca. 7 μm dicke Aluminium- Folie beinhaltenden Kunststoff- Ver- bundhülle umgeben sind, unterhalb einer Kantenlänge von ca. 50 cm effektive Gesamtwärmeleitwerte von grösser als 20 mW/m°K aufweisen.The "next worse" known core material is a pressure-resistant, non-outgassing glass wool, which fulfills the first three requirements as well as the nanoporous materials and costs considerably less than these. Because of the significantly larger internal spaces (hereinafter referred to as pores) However, glass wool - and other insulation materials with large open pores such as XPS - must be evacuated to the so-called fine vacuum range (10 "3 mbar - 1 mbar) so that the desired thermal conductivity values in the range of 5 mW / m ° K can be achieved. Long-term compliance with these negative pressures would not be a problem if the casing was to have a significantly higher metal content (metal thickness> a few μm). Without special design measures, however, this is forbidden because of the high heat conduction in the shell, which can drastically increase the effective heat conduction of the entire panel. For example, it is known from the publication of the Swiss Federal Office of Energy "High-performance thermal insulation" from December 2000 that VIP with a nanoporous core, which is covered with a plastic coating containing an approx. 7 μm thick aluminum foil are surrounded, have an effective total thermal conductivity of greater than 20 mW / m ° K below an edge length of approx. 50 cm.
Dem vorliegende Patent liegt deshalb die Aufgabe zugrunde, ein Vakuum-Isolations Paneel (VIP) mit grossporigem Kern zur Verfügung zu stellen, dessen Umhüllung so aufgebaut ist, dass erstens eine genügende hohe „Lebensdauer" des notwendigen Feinvakuums von durchschnittlich 50 Jahren und darüber sichergestellt ist und dass zweitens eine so geringe Wärmeleitung entlang der Hülle realisiert ist, dass der effektive Gesamtwärmeleitwert eines Paneels mit Kantenlänge bis hinunter zu 20 cm unterhalb von 10 mW/m°K bleibt.The present patent is therefore based on the object of providing a vacuum insulation panel (VIP) with a large-pore core, the sheathing of which is constructed in such a way that, firstly, a sufficient high “service life” of the necessary fine vacuum of an average of 50 years and above is ensured and that secondly, such low heat conduction along the shell is realized that the effective total thermal conductivity of a panel with edge length down to 20 cm remains below 10 mW / m ° K.
Diese Aufgabe wird erfindungsgemäss durch die in den Patentansprüchen angegebenen Merkmale gelöst. Vorteilhafte Ausführungsformen der Erfindung ergeben sich nach den Merkmalen der abhängigen Patentansprüche.According to the invention, this object is achieved by the features specified in the patent claims. Advantageous embodiments of the invention result from the features of the dependent claims.
Das erfindungsgemässe VIP weist einen Aufbau auf, der dem in der Vakuumtechnik bekannten Doppelkarnmerprinzip entspricht, bei dem eine innere Tiefdruck-Vaku- umkammer umgeben ist von einer ausseren Vakuumkammer in welcher Grobvakuum herrscht. Das VIP nach dem Doppelkammerprinzip weist einen (z.B. 1 bis 5 cm dicken) auf beispielsweise 10"3 mbar evakuierten Kern aus druckfestem grossporigem Material auf, welcher von einer inneren gasdichten Folie umgeben ist. Dieser innere Aufbau ist umgeben von einer zweiten, auf ca. 1 mbar evakuierten, dünnen Schicht Kernmaterial, welche wiederum umhüllt ist mit einer ausseren gasdichten Folie. Wenn man zulässt, dass der Druck innerhalb der ausseren Kammer im Lauf von ca. 50 Jahren auf ca. 100 mbar zunimmt, kann für die äussere Folie eine preiswerte Folie auf Kunststoffbasis verwendet werden, die nur eine sehr dünne Schicht (in der Grössenordnung von 0.1 μm) Metall aufweist. Dadurch kann entlang der äus- seren Hülle eine vernachlässigbar kleine Wärmeleitung sichergestellt werden. Da die Druckdifferenz zwischen der ausseren und der inneren Vakuumkammer bei den obigen Annahmen im Mittel nur ca. 10 mbar beträgt und da die Menge des durch eine gegebene Hülle diffundierenden Gases umgekehrt proportional zur Druckdifferenz ist, darf die innere Hülle bezüglich der Gasdiffusion um einen Faktor 100 „schlechter" sein als im Falle eines Einkammer- Vakuums. Dies erlaubt es, für die innere Hülle sehr preiswerte Kunststofffolien zu verwenden, welche entweder gar kein oder nur sehr wenig Metall aufweisen.The VIP according to the invention has a structure which corresponds to the double chamber principle known in vacuum technology, in which an inner low-pressure vacuum chamber is surrounded by an outer vacuum chamber in which a rough vacuum prevails. The VIP according to the double chamber principle has a (for example 1 to 5 cm thick) evacuated core, for example 10 "3 mbar, made of pressure-resistant, large-pored material, which is surrounded by an inner gas-tight film. This inner structure is surrounded by a second, approx. 1 mbar evacuated, thin layer of core material, which in turn is covered with an outer gas-tight film, if the pressure inside the outer chamber increases to approx. 100 mbar in the course of approx. 50 years, an inexpensive one can be used for the outer film Plastic-based film with only a very thin layer (in the order of 0.1 μm) of metal can be used, which ensures negligible heat conduction along the outer shell. Since the pressure difference between the outer and the inner vacuum chamber is only about 10 mbar on average with the above assumptions and since the amount of gas diffusing through a given shell is inversely proportional to the pressure difference, the inner shell may diffuse by a factor of 100 with regard to gas diffusion To be "worse" than in the case of a single-chamber vacuum. This makes it possible to use very inexpensive plastic films for the inner shell, which either have little or no metal at all.
Da die äussere Vakuumkarnmer, je nach Aufbau, eine zwar dünne aber doch sehr wirksame Wärmeisolation darstellen kann und damit eine hohe Wäremleitung ent- lang der inneren Hülle gesamthaft vernachlässigbar wird, ist es auch denkbar eine innere Hülle zu verwenden, die beispielsweise als marktübliche Kunststoffverbundfolie aufgebaut ist, die beispielsweise eine 25 μm dicke Aluminiumschicht beinhaltet. Bei einem solchen Aufbau kann die Erhaltung des in der inneren Kammer herrschenden Druckes von kleiner als 10"1 mbar über Zeiträume in der Grössenordnung von 100 Jahren gewährleistet werden.Since the outer vacuum chamber, depending on the structure, can provide a thin but very effective heat insulation and thus a high heat conduction along the inner shell can be neglected overall, it is also conceivable to use an inner shell that is constructed, for example, as a commercially available plastic composite film which includes, for example, a 25 μm thick aluminum layer. With such a construction, the maintenance of the pressure prevailing in the inner chamber of less than 10 "1 mbar can be guaranteed over periods of the order of 100 years.
Da unterschiedliche Hüllfolien gegenüber unterschiedlichen Gasen besonders wirksam sind kann mit dem Doppelkarnmerprinzip eine weitere Verbesserung realisiert werden. Es ist nämlich möglich beispielsweise für die äussere Folie eine Materialkombination zu verwenden welche für die Gase O2, N2, CO2 usw. eine knapp genü- gende Diffusionssperre darstellt aber für Wasserdampf absolut undurchlässig ist. Die innere Hülle kann dann bezüglich O2, N2, CO2 usw. optimiert werden und muss auf Wasserdampf keine Rücksicht mehr nehmen.Since different enveloping films are particularly effective against different gases, a further improvement can be realized with the double chamber principle. It is in fact possible to use a material combination for the outer film, for example, which is a just enough diffusion barrier for the gases O 2 , N 2 , CO 2 etc., but is absolutely impermeable to water vapor. The inner shell can then be optimized with regard to O 2 , N 2 , CO 2 etc. and no longer has to take water vapor into account.
Ein erfindungsgemässes Ausführungsbeispiel wie auch weitere Vorteile der Erfindung sind nachfolgend anhand der Zeichnungen erläutert. Es zeigen : Fig.l einem Schnitt durch ein VIP nach dem DoppelkammerprinzipAn exemplary embodiment according to the invention and further advantages of the invention are explained below with reference to the drawings. Show it : Fig.l a section through a VIP according to the double chamber principle
Fig.2 ein mögliches Preis / Leistungs-Szenario in einigen JahrenFig.2 a possible price / performance scenario in a few years
Ein erster, möglichst preiswerter Aufbau des VIP nach dem Doppelkammerprinzip mit genügend hoher Lebensdauer beinhaltet, wie in Fig. 1 gezeigt, einen inneren Kern aus druckfester, unter Vakuum bei Temperaturen bis zu 100°C nicht ausgasender Glaswolle (1), welcher das eigentliche Isolationsvolumen des VIP sicherstellt. Selbstverständlich kann der innere Kern auch aus einem anderen geeigneten Material wie z.B. extrudiertem Polystyrol (XPS) bestehen, bei dem dann allerdings des Aus- gasens wegen ein entsprechender Getter vorhanden sein muss. Zur Erreichung der angestrebten niedrigen Wärmeleitfähigkeit des evakuierten Kemes im Bereich von 5 ± 3 mW/m°K wird dieser Kern auf ca. 10" mbar evakuiert und in eine innere gasdichte Verbundfolie (2) eingeschweisst. Die Dicke des inneren Kerns (1) richtet sich anwendungsbedingt nach dem einzuhaltenden Wärmedurchgang der üblicherweise in W/m2K angegeben wird. Bei einer Wärmeleitfähigkeit von ca. 4 mW/m°K und ei- nem einzuhaltenden Wärmedurchgang von ca. 0.2 W/m2K ergibt sich beispielsweise eine Dicke des inneren Kerns (1) von ca. 2 bis 3 cm.A first, as inexpensive as possible construction of the VIP according to the double chamber principle with a sufficiently long service life includes, as shown in Fig. 1, an inner core made of pressure-resistant glass wool (1) which does not outgas under vacuum at temperatures up to 100 ° C, which is the actual insulation volume of the VIP. Of course, the inner core can also consist of another suitable material, such as extruded polystyrene (XPS), in which case, however, an appropriate getter must be available due to outgassing. In order to achieve the desired low thermal conductivity of the evacuated core in the range of 5 ± 3 mW / m ° K, this core is evacuated to approximately 10 " mbar and welded into an inner gas-tight composite film (2). The thickness of the inner core (1) is aligned depends on the application according to the heat transfer to be observed, which is usually given in W / m 2 K. With a thermal conductivity of approx. 4 mW / m ° K and a heat transfer of approx. 0.2 W / m 2 K, there is, for example, a thickness of inner core (1) of about 2 to 3 cm.
Die innere Folie (2) ist beispielsweise eine 100 μm dicke PE-Folie auf die beispielsweise eine ca. 0.1 μm dicke Aluminiumschicht aufgedampft oder aufgesputtert ist. Die PE-Folie wirkt als verschweissbare Trägerschicht während die Aluminium Schicht bei dem innerhalb des ausseren Kernmaterials (3) wirkenden mittleren Druck von ca. 10 mbar eine wirksame Diffusionssperre für O2, N2, CO2 usw. bildet.The inner film (2) is, for example, a 100 μm thick PE film onto which, for example, an approximately 0.1 μm thick aluminum layer is evaporated or sputtered. The PE film acts as a weldable carrier layer, while the aluminum layer forms an effective diffusion barrier for O 2 , N 2 , CO 2 etc. at the average pressure of approx. 10 mbar acting within the outer core material (3).
Die innere Hülle (2) ist umgeben von einem beispielsweise 5 mm dicken Glaswollevlies welches den ausseren Kern (3) bildet. Der äussere Kern (3) wird auf ca. 1 mbar evakuiert und, selbstverständlich zusammen mit der inneren Kammer (l)+(2) welche er umhüllt, in eine äussere gasdichte Hüllfolie (4) eingeschweisst. Im Laufe von ca. 50 Jahren darf sich der Druck innerhalb der ausseren Kammer (3) +(4) auf ca. 100 mbar erhöhen. Der äussere Kern (3) dürfte ohne die gewünschte Wirkung zu verlieren unter dem auf ihn wirkenden anfänglichen Druck von ca. 999 mbar auf wenige 0.01 mm zusammengepresst werden. Bei Verwendung eines Glasvlieses wird seine Dicke im zusammengepressten Zustand aber mindestens einige 0.1 mm betragen.The inner shell (2) is surrounded by a glass wool fleece, for example 5 mm thick, which forms the outer core (3). The outer core (3) is reduced to approx. 1 mbar evacuated and, of course together with the inner chamber (1) + (2) which it envelops, sealed in an outer gas-tight envelope (4). Over the course of approx. 50 years, the pressure inside the outer chamber (3) + (4) may increase to approx. 100 mbar. The outer core (3) should be compressed without losing the desired effect under the initial pressure acting on it from approx. 999 mbar to a few 0.01 mm. When using a glass fleece, its thickness in the compressed state will be at least a few 0.1 mm.
Die äussere Hülle (4) ist ein Folienverbund mit beispielsweise einer als verschweiss- bare Schicht wirkenden, ca. 50 μm dicken PE-Schicht, einer als Diffusionssperre gegen O2, N2, CO2 usw. wirkenden, beispielsweise 0,1 μm dickem aufgedampften Aluminium-Schicht und einer als Diffusionssperre gegen Wasserdampf wirkenden PET-Schicht.The outer casing (4) is a film composite with, for example, a PE layer that acts as a weldable layer and is approximately 50 μm thick, and a layer that acts as a diffusion barrier against O 2 , N 2 , CO 2 , etc., for example 0.1 μm vapor-deposited aluminum layer and a PET layer acting as a diffusion barrier against water vapor.
Ein zweiter für höchste Zuverlässigkeit ausgelegter Aufbau des VIP nach dem Dop- pelkammeφrinzip beinhaltet wiederum wie in Fig. 1 gezeigt, einen inneren Kern aus druckfester, unter Vakuum bei Temperaturen bis zu 100°C nicht ausgasender Glaswolle (1), welcher das eigentliche Isolationsvolumen des VIP sicherstellt. Zur Erreichung der angestrebten niedrigen Wärmeleitfähigkeit des evakuierten Kemes im Bereich von 5 ± 3 mW/m°K wird dieser Kern auf ca. 10"3 mbar evakuiert und in eine innere gasdichte Hülle (2) eingeschweisst.A second design of the VIP, designed for maximum reliability, based on the double chamber principle, again includes, as shown in Fig. 1, an inner core made of pressure-resistant glass wool (1) which does not outgas under vacuum at temperatures up to 100 ° C (1), which the actual insulation volume of the VIP ensures. In order to achieve the desired low thermal conductivity of the evacuated core in the range of 5 ± 3 mW / m ° K, this core is evacuated to approx. 10 "3 mbar and welded into an inner gastight envelope (2).
Die innere Hülle (2) ist als Verbundfolie aufgebaut, die beispielsweise aus einer, als Trägerschicht und als verschweissbare Schicht wirkenden ca. 100 μm dicken PE- Folie und einer auflaminierten ca. 10 - 50 μm dicken Aluminium-Folie besteht. Es ist bekannt, dass Aluminiumfolien von ca. 25 μm Dicke ohne grossen Aufwand ab- solut Pinhole frei hergestellt werden können und so eine Diffusionssperre für O2, N2, CO2 usw. bilden mit der Drücke im Feinvakuumbereich (10"3 - 1 mbar) theoretisch über Jahrhunderte aufrechterhalten werden können.The inner shell (2) is constructed as a composite film, which consists, for example, of an approximately 100 μm thick PE film acting as a carrier layer and as a weldable layer and a laminated approximately 10 - 50 μm thick aluminum film. It is known that aluminum foils with a thickness of approx. 25 μm can be manufactured absolutely free of pinhole without great effort and thus a diffusion barrier for O 2 , N 2 , CO 2 etc. with which pressures in the fine vacuum range (10 "3 - 1 mbar) can theoretically be maintained over centuries.
Der äussere Kern (3) besteht in diesem Falle aus einer wenige mm dicken Schicht aus nanoporösem Material, das beispielsweise auf 1 mbar evakuiert und in eine äu- ssere Hüllfolie (4) eingeschweisst wird. Nanoporöse Materialien, die auf einen Druck von kleiner als ca. 100 mbar evakuiert wurden, weisen einen Wärmeleitwert in der Grössenordnung von 5 mW/m°K auf. Aus diesem Grund bildet die äussere Kammer (3) +(4) nicht nur eine die Lebensdauer des in der inneren Kammer (l)+(2) herrschenden Feinvakuums nochmals drastisch erhöhendes Grobvakuum, sondern stellt eine sehr wirksame Wärmedämmschicht dar, welche die erhöhte Wärmeleitfähigkeit der inneren Hülle (2) kompensiert.In this case, the outer core (3) consists of a layer of nanoporous material a few mm thick, which is evacuated, for example, to 1 mbar and welded into an outer envelope film (4). Nanoporous materials that have been evacuated to a pressure of less than approx. 100 mbar have a thermal conductivity in the order of 5 mW / m ° K. For this reason, the outer chamber (3) + (4) not only forms a rough vacuum, which drastically increases the service life of the fine vacuum prevailing in the inner chamber (l) + (2), but also represents a very effective thermal insulation layer, which increases the thermal conductivity the inner shell (2) compensated.
Die äussere Hülle (4) besteht aus einer handelsüblichen mehrlagigen Kunststofffolie, die sehr dünne, aufgedampfte Schichten von Aluminium mit einer totalen Dicke von ca. 0.3 μm beinhaltet und so den in der ausseren Kammer (3)+(4) gewünschten Druck von kleiner als 100 mbar über hohe Zeiträume aufrecht erhält.The outer shell (4) consists of a commercially available multi-layer plastic film that contains very thin, vapor-deposited layers of aluminum with a total thickness of approx. 0.3 μm and thus the pressure in the outer chamber (3) + (4) of less than Maintains 100 mbar over long periods.
Fig.2 verdeutlicht ein mögliches Preis / Leistungs-Szenario einiger VIP Varianten in einigen Jahren.Fig. 2 illustrates a possible price / performance scenario of some VIP variants in a few years.
Es wird deutlich, dass ein - gemass der oben geschilderten ersten Ausführungsvariante - nach dem Doppelkammeφrinzip möglichst kostengünstig aufgebautes VIP mit grossporigem Kernmaterial bei genügender Lebensdauer mit einiger Wahrschein- lichkeit sowohl für einen Wärmedurchgang von 0.2 W/m K wie auch für einen von 0.1 W/m2K deutlich preiswerter sein sollte als ein Ein-Hüllen-VIP mit nanoporösem Kern. Ein - gemass der oben geschilderten zweiten Ausführungsvariante - bezüglich Vakuum-Lebensdauer optimiertes VIP mit grossporigem Kern nach dem Doppelkammeφrinzip wird bei deutlich gesteigerter Lebensdauer für einen Wärmedurchgang von 0.2 W/m2K vermutlich leicht teurer sein als ein VIP mit nanoporösem Kern, aber für einen Wärmedurchgang von 0.1 W/m2K einen deutlichen Preisvorteil aufweisen.It becomes clear that - according to the first design variant described above - a VIP with a large-pore core material constructed according to the double chamber principle as inexpensively as possible with a sufficient lifespan with some probability both for a heat transfer of 0.2 W / m K and for one of 0.1 W / m 2 K should be significantly cheaper than a single-sleeve VIP with a nanoporous core. A - according to the second variant described above - a VIP with a large-pore core based on the double chamber principle, optimized with regard to vacuum life, will probably be slightly more expensive than a VIP with a nanoporous core for a heat transfer of 0.2 W / m 2 K, but for one Heat transfer of 0.1 W / m 2 K have a significant price advantage.
Es ist offensichtlich, dass ähnliche Aufbauten mit ähnlich guten Eigenschaften mittels anderer grossporiger Kernmaterialien und anderer Hüllmaterialen aufgebaut werden können.It is obvious that similar structures with similarly good properties can be constructed using other large-pore core materials and other cladding materials.
Selbstverständlich könnte als Material für den inneren Kern (1) auch ein nanoporöses Material verwendet werden, was aber wegen des Preises und des für die Wirksamkeit dieser Materialien notwendigen „hohen" zulässigen Druckes (> maximal 100 mbar) keinen Sinn macht. Of course, a nanoporous material could also be used as the material for the inner core (1), but this makes no sense due to the price and the “high” permissible pressure (> maximum 100 mbar) necessary for the effectiveness of these materials.

Claims

PATENTANSPRÜCHE
1. Vakuum-Isolations-Paneel mit auf Drücke kleiner als 1 mbar evakuiertem, grossporigem inneren Kern, wobei der innere Kern von einem, aus einer inneren gasdichten Hülle, einem auf Drücke kleiner als 100 mbar evakuierten ausseren Kern und einer ausseren gasdichten Hülle bestehenden Aufbau nach dem Doppelkam- meφrinzip umhüllt ist.1.Vacuum insulation panel with a large-pore inner core evacuated to pressures less than 1 mbar, the inner core consisting of a structure consisting of an inner gas-tight shell, an outer core evacuated to pressures less than 100 mbar and an outer gas-tight shell is encased according to the double comb principle.
2. Vakuum-Isolations-Paneel gemass Anspruch 1 , dadurch gekennzeichnet, dass der innere Kern aus einer druckfesten bis zu Temperaturen von mindestens 70°C nicht ausgasenden Glaswolle besteht.2. Vacuum insulation panel according to claim 1, characterized in that the inner core consists of a pressure-resistant glass wool which does not outgas to temperatures of at least 70 ° C.
3. Vakuum-Isolations-Paneel gemass Anspruch 1 oder 2, dadurch gekennzeichnet, dass der äussere Kern aus einem Glaswollevlies besteht.3. Vacuum insulation panel according to claim 1 or 2, characterized in that the outer core consists of a glass wool fleece.
4. Vakuum-Isolations-Paneel gemass Anspruch 1 oder 2, dadurch gekennzeichnet, dass der äussere Kern aus nanoporösem Material von 1 bis 10 mm Dicke besteht.4. Vacuum insulation panel according to claim 1 or 2, characterized in that the outer core consists of nanoporous material of 1 to 10 mm in thickness.
5. Vakuum-Isolations-Paneel nach einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, dass die innere Hülle aus einer als verschweissbare Trägerfolie wirkenden 50 bis 500 μm dicken Kunststoffschicht und einer 0.05 bis 1 μm dicken metallischen Schicht besteht.5. Vacuum insulation panel according to one of claims 1 to 4, characterized in that the inner shell consists of a 50 to 500 μm thick plastic layer acting as a weldable carrier film and a 0.05 to 1 μm thick metallic layer.
6. Vakuum-Isolations-Paneel gemass einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die innere Hülle aus einer als verschweissbare Trägerfolie wirkenden 50 bis 500 μm dicken Kunststoffschicht und einer 1 bis 50 μm dicken metallischen Schicht besteht. 6. Vacuum insulation panel according to one of claims 1 to 4, characterized in that the inner shell made of a weldable carrier film acting 50 to 500 microns thick plastic layer and a 1 to 50 microns thick metallic layer.
PCT/CH2002/000336 2001-06-29 2002-06-21 Vacuum insulation panel WO2003002828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH11992001 2001-06-29
CH1199/01 2001-06-29

Publications (1)

Publication Number Publication Date
WO2003002828A1 true WO2003002828A1 (en) 2003-01-09

Family

ID=4562590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2002/000336 WO2003002828A1 (en) 2001-06-29 2002-06-21 Vacuum insulation panel

Country Status (1)

Country Link
WO (1) WO2003002828A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359005A1 (en) * 2003-12-15 2005-07-14 Va-Q-Tec Ag Composite thermal insulation board
EP1566264A1 (en) * 2004-02-18 2005-08-24 SCHWENK Dämmtechnik GmbH & Co KG Heat insulating panel
DE202004017115U1 (en) * 2004-11-05 2006-03-16 SCHWENK DÄMMTECHNIK GMBH & Co KG Heat insulation plate (1) for buildings comprises partially overlapping moldings which consist of a porous heat insulation material, are accommodated in airtight covers, and are embedded in a heat insulation cover layer
EP1707349A3 (en) * 2005-03-31 2006-10-25 Heraklith Ag Thermally insulating panel
NL1031475C2 (en) * 2005-03-31 2008-11-04 Jpm Interactive Ltd Game supply system.
EP2119842A2 (en) 2008-05-16 2009-11-18 Saint-Gobain Isover G+H Ag Insulation element and method for producing same
EP2119841A2 (en) 2008-05-16 2009-11-18 Saint-Gobain Isover G+H Ag Insulation element and method for producing same
CN102661006A (en) * 2012-04-29 2012-09-12 万建民 Exterior wall heat insulation plate and production method thereof
CN102720280A (en) * 2012-06-17 2012-10-10 万建民 Special-shaped outer wall insulation board and production method thereof
DE102013002313A1 (en) * 2013-02-07 2014-08-07 Liebherr-Hausgeräte Lienz Gmbh Vacuum insulating body for walls of cooling- and freezing device, has vacuum-tight envelope and powder filling present in area surrounded by envelope, where vacuum insulating plate is present in area surrounded by envelope
WO2014191813A1 (en) 2013-05-29 2014-12-04 Va-Q-Tec Ag Film-coated vacuum insulated panel
US20160039594A1 (en) * 2014-08-05 2016-02-11 Sonoco Development, Inc. Double Bag Vacuum Insulation Panel For Steam Chest Molding
CN105829622A (en) * 2013-12-19 2016-08-03 3M创新有限公司 Barrier films and vacuum insulated panels employing same
CN106869344A (en) * 2017-04-17 2017-06-20 安徽百特新材料科技有限公司 A kind of efficient inorganic vacuum heat-insulating plate
CN109707954A (en) * 2018-12-28 2019-05-03 青岛海尔股份有限公司 Vacuum heat-insulating plate and refrigerator with it
CN111559902A (en) * 2020-05-18 2020-08-21 江南大学 Multi-component mixed VIP core material and preparation method thereof
IT201900023886A1 (en) * 2019-12-13 2021-06-13 Zelandi Niccolo Thermal insulation panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284674A (en) * 1979-11-08 1981-08-18 American Can Company Thermal insulation
EP0437930A1 (en) * 1989-12-18 1991-07-24 Whirlpool Corporation Multi-compartment vacuum insulation panels
DE19809316A1 (en) * 1998-03-05 1999-09-09 Plus Recycling Gmbh R Sandwich construction heat insulation panel has metal layer whose edges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284674A (en) * 1979-11-08 1981-08-18 American Can Company Thermal insulation
EP0437930A1 (en) * 1989-12-18 1991-07-24 Whirlpool Corporation Multi-compartment vacuum insulation panels
DE19809316A1 (en) * 1998-03-05 1999-09-09 Plus Recycling Gmbh R Sandwich construction heat insulation panel has metal layer whose edges

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359005A1 (en) * 2003-12-15 2005-07-14 Va-Q-Tec Ag Composite thermal insulation board
EP1566264A1 (en) * 2004-02-18 2005-08-24 SCHWENK Dämmtechnik GmbH & Co KG Heat insulating panel
DE202004017115U1 (en) * 2004-11-05 2006-03-16 SCHWENK DÄMMTECHNIK GMBH & Co KG Heat insulation plate (1) for buildings comprises partially overlapping moldings which consist of a porous heat insulation material, are accommodated in airtight covers, and are embedded in a heat insulation cover layer
EP1707349A3 (en) * 2005-03-31 2006-10-25 Heraklith Ag Thermally insulating panel
NL1031475C2 (en) * 2005-03-31 2008-11-04 Jpm Interactive Ltd Game supply system.
EP2119841A2 (en) 2008-05-16 2009-11-18 Saint-Gobain Isover G+H Ag Insulation element and method for producing same
DE102008023838A1 (en) * 2008-05-16 2009-11-19 Saint-Gobain Isover G+H Ag Insulation element and method for producing the Dämmelements
DE102008023841A1 (en) * 2008-05-16 2009-11-19 Saint-Gobain Isover G+H Ag Insulation element and method for producing the Dämmelements
EP2119841A3 (en) * 2008-05-16 2010-06-16 Saint-Gobain Isover G+H Ag Insulation element and method for producing same
EP2119842A3 (en) * 2008-05-16 2011-01-26 Saint-Gobain Isover G+H Ag Insulation element and method for producing same
EP2119842A2 (en) 2008-05-16 2009-11-18 Saint-Gobain Isover G+H Ag Insulation element and method for producing same
CN102661006A (en) * 2012-04-29 2012-09-12 万建民 Exterior wall heat insulation plate and production method thereof
CN102661006B (en) * 2012-04-29 2014-04-09 万建民 Exterior wall heat insulation plate and production method thereof
CN102720280B (en) * 2012-06-17 2014-10-22 万建民 Special-shaped outer wall insulation board and production method thereof
CN102720280A (en) * 2012-06-17 2012-10-10 万建民 Special-shaped outer wall insulation board and production method thereof
DE102013002313A1 (en) * 2013-02-07 2014-08-07 Liebherr-Hausgeräte Lienz Gmbh Vacuum insulating body for walls of cooling- and freezing device, has vacuum-tight envelope and powder filling present in area surrounded by envelope, where vacuum insulating plate is present in area surrounded by envelope
JP2018087639A (en) * 2013-05-29 2018-06-07 ヴァ−クー−テック アーゲー Film coated vacuum heat insulation panel
WO2014191813A1 (en) 2013-05-29 2014-12-04 Va-Q-Tec Ag Film-coated vacuum insulated panel
US9688048B2 (en) 2013-05-29 2017-06-27 Va-Q-Tec Ag Film-coated vacuum insulated panel
CN105829622A (en) * 2013-12-19 2016-08-03 3M创新有限公司 Barrier films and vacuum insulated panels employing same
CN105829622B (en) * 2013-12-19 2019-08-06 3M创新有限公司 Barrier film and the vacuum insulation panel for using the barrier film
US10472158B2 (en) 2014-08-05 2019-11-12 Sonoco Development, Inc. Double bag vacuum insulation panel
US9688454B2 (en) * 2014-08-05 2017-06-27 Sonoco Development, Inc. Double bag vacuum insulation panel for steam chest molding
US20160039594A1 (en) * 2014-08-05 2016-02-11 Sonoco Development, Inc. Double Bag Vacuum Insulation Panel For Steam Chest Molding
CN106869344A (en) * 2017-04-17 2017-06-20 安徽百特新材料科技有限公司 A kind of efficient inorganic vacuum heat-insulating plate
CN109707954A (en) * 2018-12-28 2019-05-03 青岛海尔股份有限公司 Vacuum heat-insulating plate and refrigerator with it
IT201900023886A1 (en) * 2019-12-13 2021-06-13 Zelandi Niccolo Thermal insulation panel
CN111559902A (en) * 2020-05-18 2020-08-21 江南大学 Multi-component mixed VIP core material and preparation method thereof
CN111559902B (en) * 2020-05-18 2022-01-07 江南大学 Multi-component mixed VIP core material and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2003002828A1 (en) Vacuum insulation panel
DE602004008116T2 (en) EVACUATABLE FLAT PLATE SUN COLLECTOR
DE69619737T2 (en) Fire-resistant glazing
DE4018970A1 (en) VACUUM HEAT INSULATION SUITABLE FOR THE TRANSFER OF PRESSURE FORCE, ESPECIALLY FOR HEAT STORAGE OF CRAC VEHICLES
WO1987003327A1 (en) Heat-insulating construction and/or lighting element
DE4016407C1 (en)
DE2734709A1 (en) SOLAR PANEL
DE3125597C2 (en)
CH629293A5 (en) SOLAR COLLECTOR WITH A GLASS TUBE into an evacuated BUILT ABSORBER.
EP0725918B1 (en) Outer wall structure for buildings, in particular wainscot panel for the breastwork area of a building wall
DE19904799A1 (en) Vacuum insulation panel, comprises plate shaped material located in a sleeves, an outer sleeve and the space between the inner and outer sleeves evacuated.
EP2119842A2 (en) Insulation element and method for producing same
DE19647567C2 (en) Vacuum thermal insulation panel
DE102007013584A1 (en) Method for producing a vacuum panel, vacuum panel of this type and a brick used for this purpose
WO2015043626A1 (en) Spacer for spacing glass panes of a multi-glazed window, multi-glazed window, vapour barrier film for a spacer, method for producing a vapour barrier film, and method for producing a spacer
DE19847634C1 (en) Multi layer thermal insulation panel has at least two layers separated by a narrow gap with a negative pressure and with small spacers
EP2760665B1 (en) Fire protection element with protective coating, and method for producing the same
WO2021140081A1 (en) Spacer having improved adhesion
DE10031149C2 (en) thermal insulation board
DE10123453A1 (en) Vacuum heat insulation system, comprises an insulation plate of an open pore insulating plate covered with first and second films
EP4202140A1 (en) Vacuum insulation element
EP3104099A1 (en) Switchable vacuum insulation element
AT503131B1 (en) HEAT STORAGE
DE19814271A1 (en) Vacuum insulation panel for domestic refrigerator
DE19809316C2 (en) Heat insulation body and multilayer body therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP