WO2003003473A1 - Nonvolatile semiconductor memory cell and semiconductor memory and method for fabricating nonvolatile semiconductor memory - Google Patents

Nonvolatile semiconductor memory cell and semiconductor memory and method for fabricating nonvolatile semiconductor memory Download PDF

Info

Publication number
WO2003003473A1
WO2003003473A1 PCT/JP2001/005544 JP0105544W WO03003473A1 WO 2003003473 A1 WO2003003473 A1 WO 2003003473A1 JP 0105544 W JP0105544 W JP 0105544W WO 03003473 A1 WO03003473 A1 WO 03003473A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
semiconductor memory
memory device
gate
substrate
Prior art date
Application number
PCT/JP2001/005544
Other languages
French (fr)
Japanese (ja)
Inventor
Renichi Yamada
Tomoko Sekiguchi
Yuki Mori
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2003509547A priority Critical patent/JPWO2003003473A1/en
Priority to PCT/JP2001/005544 priority patent/WO2003003473A1/en
Publication of WO2003003473A1 publication Critical patent/WO2003003473A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • the present invention relates to a nonvolatile semiconductor memory device and a semiconductor memory device.
  • nonvolatile semiconductor memory devices are mainly flash memories having a floating gate between a substrate and a control gate.
  • Flash memory requires a floating gate, which complicates the structure and makes it difficult to reduce production costs.
  • the complexity of this structure is also disadvantageous in terms of obtaining high production yields.
  • low power consumption and low drive voltage are required for the application of nonvolatile semiconductor memory devices to portable equipment in recent years.
  • the flash memory has a disadvantage that a high voltage of about 2 OV is required for rewriting since the flash memory has a structure in which two layers of gate insulating films are stacked above and below the floating gate.
  • MONOS metal-oxide-nitride-oxide-semiconductor
  • a nonvolatile semiconductor memory device having a metal-oxide-semiconductor (hereinafter, referred to as “MOS”) structure has been proposed in contrast to the above-mentioned two nonvolatile semiconductor memory devices.
  • MOS metal-oxide-semiconductor
  • Such examples can be found in, for example, Japan, Patent Publication, Japanese Patent Application Laid-Open Nos. H11-134870 and H5-112765.
  • nonvolatile storage is realized by capturing charges in an oxide.
  • the storage element can be manufactured in the same process as the peripheral circuit. Therefore, it can be manufactured at a lower cost as compared with the above-mentioned 2 nonvolatile semiconductor memory device.
  • the threshold voltage becomes lower than necessary in a state where the absolute value of the threshold voltage is lower (hereinafter referred to as “low V th state”). And read failure.
  • the present invention provides a MOS type nonvolatile semiconductor memory element in which the influence of threshold voltage variation is reduced, and a nonvolatile semiconductor memory device using the same.
  • the present invention provides a method for controlling traps (t ra p) in an oxide film, which is a cause of threshold voltage variation in the first place.
  • the present invention provides a method for easily manufacturing an enhancement transistor as a technique for eliminating the influence of threshold voltage variation of a nonvolatile semiconductor memory device.
  • MOS type non-volatile semiconductor storage element capable of performing a stable storage operation
  • a substrate a source region and a drain region provided on a surface portion of the substrate, a channel region provided on a surface portion of the substrate between the source region and the drain region, and the channel region.
  • a gate electrode formed on the insulating film, wherein the insulating film constitutes a charge storage portion, and a trap level of the insulating film is:
  • This is a nonvolatile semiconductor memory element formed by requiring trap level forming means in addition to the forming means. Further, if the invention of the present application is referred from another viewpoint, the following can be said.
  • a second aspect of the present invention provides a semiconductor device comprising: a substrate; a source region and a drain region provided on a surface portion of the substrate; a channel region provided on a surface portion of the substrate between the source region and the drain region; At least a gate electrode formed above the insulating film, the insulating film forming a charge storage portion, and a trap level of the insulating film.
  • a nonvolatile semiconductor memory element that is larger than at least the number of trap levels formed in a thermal oxide film as a usual insulating film.
  • the trap level of the insulating film formed over the channel region of the transistor in the memory portion is changed by the insulating film formed over the channel region of the transistor in the peripheral circuit portion of the semiconductor memory device. It is larger than the number of trap levels.
  • FIG. 15 shows the basic configuration of the semiconductor memory device of the present invention.
  • Reference numeral 50 is a substrate, 51 and 52 are a source and a drain, 53 is an insulating film, 54 is a trap, 55 is a gate electrode, and 56 is a carrier captured at a trap level. Is shown.
  • the basic operation of the above-described nonvolatile semiconductor memory device is as follows. That is, by trapping carriers of the same conductivity type as the substrate of the field-effect transistor at the trap (capture) level of carriers formed in the gate insulating film of the MOS field-effect transistor, At the interface between the substrate of the field effect transistor and the gate insulating film, a carrier of a conductivity type opposite to that of the trapped carrier is induced.
  • the threshold voltage of the field-effect transistor decreases. Conversely, by trapping the carrier of the opposite conductivity type with the substrate of the field-effect transistor, the carrier trapped on the interface between the substrate of the field-effect transistor and the gate insulating film. A carrier of the same conductivity type is induced. Therefore, the threshold voltage of the field-effect transistor increases. In this way, multiple threshold voltages can be achieved depending on the presence or absence of carriers to be captured. Therefore, by utilizing the difference in current driving force at a desired gate voltage, Information can be stored. Further, by applying a bias to the gate electrode of the field-effect transistor, carriers trapped in the gate insulating film can be released from the trap level and erased. Thus, it is possible to realize a semiconductor memory element capable of electrically writing and erasing information.
  • the insulating film is a silicon oxide film, a silicon nitride film, or a composite film thereof.
  • desired carriers can be captured in a so-called gate insulating film, and a so-called nonvolatile memory element can be operated sufficiently stably. That is, a desired carrier is captured by the trap level, and desired information is stored.
  • the present invention is a nonvolatile memory element, it does not require a so-called floating gate. Note that the basic operation such as reading of information is the same as that of the conventional nonvolatile semiconductor memory element, and therefore detailed description is omitted.
  • the trap level forming means added to the insulating film forming means the following method can be used.
  • a voltage at which a tunnel current is generated that is, an electrical stress is applied to a gate electrode of the memory device, and a trap level is actively formed. I do.
  • electrical stress which corresponds to the amount of injected charges at which the trap density generated in the insulating film is saturated.
  • This voltage application is preferably performed when the gate electrode has a negative potential.
  • the insulating film is formed in a plurality of times.
  • trap levels are introduced between these layers. Is entered.
  • more trap levels can be introduced into the gate insulating film than in a single step of forming the insulating film.
  • a plurality of different manufacturing methods can be used for forming the insulating film in the plurality of steps. For example, by forming a thermal oxide film and forming an oxide film thereon by the CVD method, more trap levels can be introduced than in forming an insulating film in one step.
  • This method can more effectively introduce a trap level at a desired position. Further, according to the embodiment of the present invention, it is possible to control the position of the trap level to be formed, that is, the distance from the substrate interface. Even for the same amount of charge, the amount of change in the threshold voltage varies depending on the trapped position. Therefore, it is preferable to control the position of the trap level to be formed according to the required characteristics.
  • a typical example of the nonvolatile semiconductor memory device of the present invention is an example in which the nonvolatile semiconductor memory device includes at least a memory transistor section and an enhancement transistor section.
  • the first feature of the nonvolatile semiconductor memory device according to the present invention is the two-level gate oxide film. That is, the thickness of the gate oxide film is changed from the position corresponding to the source region to the position corresponding to the drain region.
  • a second typical example of the nonvolatile semiconductor memory device of the present invention is a form in which at least each source and drain of the memory transistor portion and the enhancement transistor portion are commonly configured.
  • the enhancement transistor is a transistor having a threshold voltage between the low V th and the high V th state of the memory transistor in the memory cell, and the threshold voltage is stable against rewriting of the memory cell. .
  • the enhancement transistor is connected to the source (or drain) of the memory transistor. By connecting the drain (or source) of the transistor, it plays a role in preventing read failure due to Vth variation in the low Vth state of the memory transistor. In order to realize such a state in the MOS nonvolatile memory, it is necessary to realize two kinds of film thicknesses in which the gate oxide film thickness changes from the source to the drain as shown in FIG. In FIG. In FIG. In FIG.
  • 1, 1 is a gate electrode, 2 is a semiconductor substrate, 3 is a source, 4 is a drain, 5 and 6 are two types of gate oxide films, 5 is a thin film portion, 6 is a thick film portion, 7 Is an interlayer insulator.
  • the source and the drain may be exchanged.
  • the structure in FIG. 1 has two types of gate oxide films, and as shown in the equivalent circuit in FIG. 2, a structure in which two types of transistors having different threshold voltages are joined by a source and a drain is realized.
  • the enhancement transistor can be realized by separating the gate electrode into two as shown in FIG.
  • 2 is a semiconductor substrate
  • 3 and 4 are a source and a drain
  • 5 is a gate oxide film
  • 8 is a gate electrode of a memory transistor
  • 9 is a gate electrode of an enhancement transistor
  • 7 is an interlayer. It is an insulating film.
  • Fig. 4 shows an equivalent circuit of the structure in Fig. 3.
  • a bias necessary for rewriting operation is applied to the gate electrode 8 of the memory transistor to the MOS nonvolatile memory, and only a bias that does not cause a rewriting operation is applied to the gate electrode 9 of the enhancement transistor. By applying the voltage, a desired operation can be realized.
  • the process can be simplified by forming the gate of the peripheral circuit at the same time as forming the gate oxide film. You.
  • the charge trap density in the oxide film immediately after formation is often insufficient for realizing a MOS nonvolatile memory, and even if the density is sufficient, the trap density between memory cells varies. And it is difficult to control the threshold voltage.
  • it is effective to apply an electric stress to the gate oxide film of the memory transistor in advance to make the trap density constant.
  • Q crit the charge trap density in the oxide film is saturated at a certain value (Q crit). The value does not depend on the initial charge trap density.
  • a uniform and stable charge trap can be realized by applying an electrical stress corresponding to the amount of injected charge Qcrit to the gate oxide film of the memory cell transistor in advance.
  • traps are often generated at the oxide film interface, and the trap is likely to be generated. Therefore, if an oxide film is formed in plural times to form an interface in the film, the trap generation position can be controlled.
  • nonvolatile semiconductor memory device Various forms of the nonvolatile semiconductor memory device described above are arranged and listed below.
  • a second conductive type drain region selectively formed on a semiconductor substrate surface on a first conductive type semiconductor substrate, and a predetermined distance from the drain region
  • a source region of the second conductivity type selectively formed on the surface of the semiconductor substrate across the semiconductor substrate, the semiconductor region at least partially overlapping an end of the drain region, and the end of the source region.
  • a storage element including an insulating film having two different thicknesses formed over a substrate and a gate electrode formed over the insulating film is provided. This is a semiconductor memory device that stores information in a state.
  • the nonvolatile semiconductor memory device of the first embodiment described above is arranged in n pieces.
  • m pieces of semiconductor memory rows in which a source is connected to a source line and a drain is connected to a bit line are arranged, and n pieces are arranged.
  • the gates of the m semiconductor devices are connected to the lead lines of the semiconductor device, and at this time, only one semiconductor storage device belonging to a different row of the semiconductor storage devices is connected to one word line.
  • Semiconductor storage device is composed of two cells of the first embodiment of the above-mentioned nonvolatile semiconductor memory device, and is composed of n semiconductor memory cells having a structure in which the sources are connected to each other.
  • the source and gate of the m semiconductor memory cells are connected to the source line and the word line, respectively, by connecting m source lines and 2 ⁇ n read lines connected to the m rows of the semiconductor memory devices connected to the lines.
  • this is a NOR type semiconductor memory device in which only one semiconductor memory device belonging to a different semiconductor memory device column is connected to one source line and one gate line.
  • a second conductive type drain region selectively formed on a surface of the semiconductor substrate on a first conductive type semiconductive substrate;
  • a source region of the second conductivity type selectively formed on the surface of the semiconductor substrate at a distance of at least a distance from the end of the source region;
  • a memory transistor portion and an enhancement transistor portion each including an insulating film having two different thicknesses formed on the semiconductor substrate and a gate electrode formed on the insulating film are provided.
  • the semiconductor memory device has a common source and drain.
  • the insulating film of this type of memory transistor is deposited by CVD. It is useful to apply the above-described method of performing thermal oxidation after forming an oxide film. Further, it is also useful to form the insulating film of the memory transistor by performing thermal oxidation a plurality of times. Further, in such a semiconductor memory device, it is particularly useful to form a trap in the insulating film of the memory transistor by applying an electric stress to the gate electrode.
  • a typical NOR type memory array to which the nonvolatile semiconductor memory device shown so far is applied will be exemplified.
  • the nonvolatile semiconductor memory device is composed of two nonvolatile semiconductor memory devices according to the second embodiment, and has a structure in which n sources of the semiconductor memory device are connected to each other, and 2 ⁇ n drains are all connected to the bit lines.
  • An array of m semiconductor memory devices is arranged, and n source lines, 2 ⁇ n lead lines, and 2 n memory lines are connected to the m sources of the semiconductor memory device cells and the enhancement transistor transistors.
  • the gate of the transistor and the gate of the transistor are connected to a source line, a word line, and a memory line, respectively, and one source line, a lead line, and a memory line belong to different semiconductor storage device columns. Only a NOR type semiconductor memory device to which only one is connected.
  • the gate insulating film of the MOS transistor used in the nonvolatile semiconductor element application circuit or the peripheral circuit of the nonvolatile semiconductor device is formed by the same process as the formation of the thin film portion of the memory cell insulating film. It can be manufactured. And this measure is extremely useful in practice.
  • FIG. 1 is a schematic sectional view of a cell of a MOS type nonvolatile memory having two types of gate oxide films.
  • FIG. 2 is a cell equivalent circuit diagram of the MOS nonvolatile memory shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of a cell of a MOS nonvolatile memory having a memory transistor and an enhancement transistor.
  • FIG. 4 is a cell equivalent circuit of the MOS nonvolatile memory shown in FIG.
  • FIG. 5 is an AND type memory array circuit diagram using the MOS type nonvolatile memory cells shown in FIGS. 1 and 2.
  • FIG. 6 is a schematic cross-sectional view of the element shown in the order of steps for manufacturing the memory array shown in FIG.
  • FIG. 7 is a schematic plan view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
  • FIG. 8 is a circuit diagram of a NOR memory array using the MOS nonvolatile memory cells shown in FIGS. 1 and 2.
  • FIG. 9 is a schematic cross-sectional view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
  • FIG. 10 is a schematic plan view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
  • FIG. 11 is a circuit diagram of a NOR type memory array using the MOS type nonvolatile memory cells shown in FIGS. 3 and 4.
  • FIG. 12 is a schematic cross-sectional view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
  • FIG. 13 is a schematic plan view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
  • FIG. 14 is a diagram showing the dependence of the trap density generated in the oxide film on the amount of injected charge when a high bias stress is applied to the MOS capacitor.
  • FIG. 15 is a sectional view of a main part of the nonvolatile semiconductor memory element of the present invention.
  • FIG. 5 shows a circuit diagram when the memory cells shown in FIGS. 1 and 2 are arranged in an AND memory array.
  • a process as shown in FIGS. 6 and 7 can be considered.
  • FIG. 6 is a schematic sectional view showing the progress of the process in the order of a to i.
  • FIG. 7 shows a schematic plan view of a part of the process shown in FIG.
  • a part 10 of a gate electrode is formed (FIG. 6B). Again, an oxide film is grown on the substrate to form a gate oxide film portion 6 (FIG. 6, c).
  • the source and drain 12 are formed using the gate electrode as a mask region (FIG. 6E).
  • a sidewall 13 is formed beside the gate electrode (f in FIG. 6), and a trench 14 for element isolation is formed using this as a mask (g in FIG. 6).
  • An insulator 15 serving as both an element isolation and an interlayer insulator is buried in the groove 14 (h in FIG. 6).
  • FIG. 7a and FIG. 7 when viewed from above in steps g and h in FIG. 6, respectively.
  • a lead line 16 which is in electrical contact with the gate electrode is formed (i in FIG. 6), and is processed into a stripe shape in a direction perpendicular to the element isolation groove (c in FIG. 7). If the processing depth is set within the gate oxide film 5 formed first, the AND type memory array shown in FIG. 5 can be realized.
  • a trap having a density required for a MOS nonvolatile memory can be formed. Also, when forming the gate oxide film 5, by forming the oxide film a plurality of times and forming an interface in the oxide film, a trap-rich portion can be formed in the oxide film. Further Needless to say, as described above, a plurality of different insulating film manufacturing methods may be combined. That is, a silicon oxide film is manufactured using a CVD method and a thermal oxidation method.
  • the above-described high bias stress generally uses the following method. As described with reference to FIG. 14, charge injection corresponding to the injected charge amount at which the trap density is saturated in the film is performed. The optimum value differs depending on the type and quality of the insulating film, but generally, the current silicon oxide film is injected with a charge of 1 C, cm 2 from 10 OmCZcm 2 . Therefore, 1 mAZcm 2 than 1 0 OmA / cm 2 of current density, and the current injection, it is preferable to apply a stress. Although charge injection is possible at 1 mA / cm 2 or less, it takes too much time to obtain the desired value, which is not practical.
  • the film is more likely to cause dielectric breakdown, which is not practical.
  • the range of 51 ⁇ 1001 ⁇ 201 ⁇ 10 is preferable.
  • charge injection is possible at 5 MV cm or less, it takes too much time to obtain a desired value, which is not practical.
  • the film is more likely to cause dielectric breakdown, which is also impractical.
  • the oxidation process can be reduced by removing the oxide after performing the oxidation of step 5 and removing the oxide film to have the same thickness as the oxide film formed by the second oxidation.
  • FIG. 8 shows a circuit diagram when the memory cells shown in FIGS. 1 and 2 are arranged in a NOR type memory array.
  • a process as shown in FIGS. 9 and 10 can be considered.
  • Fig. 9 In the schematic plan view, the progress of the process is shown in the order of a to g.
  • FIG. 10 shows a schematic plan view of a part of the steps shown in FIG.
  • a stripe-shaped element isolation groove is formed in a semiconductor substrate, and an insulator 15 is buried in the groove.
  • a gate oxide thin film portion 5 is formed on the surface of the semiconductor substrate (a in FIG. 9).
  • the plan view at this time is shown in FIG.
  • a portion 10 of the gate electrode is formed (FIG. 9b), and an oxide film is formed again on the semiconductor substrate to form a gate oxide thick film portion 6 (FIG. 9c).
  • the remaining 11 is formed (d in FIG. 9).
  • the source and drain 12 are formed by ion implantation (FIG. 9, e).
  • the gate electrode is covered with silicon nitride 17 (f in FIG. 9).
  • the plan view at this time is shown in FIG.
  • the source of the memory cell is short-circuited at the source line 18, the plug 19 is set up at the drain (c in FIG. 10), and this plug 19 is short-circuited at the bit line 20 (g in FIG. 9). ).
  • the plan view at this time is shown in FIG. 10d.
  • a trap having a density required for the MOS type nonvolatile memory can be formed.
  • the gate oxide film 5 by forming the oxide film a plurality of times and forming an interface in the oxide film, a portion with many traps can be formed in the oxide film.
  • a plurality of different methods of manufacturing the insulating film may be combined as described above. That is, a silicon oxide film is manufactured using the CVD method and the thermal oxidation method.
  • the thickness of the gate oxide film of the MOS FET in the circuit on the same device other than the memory cell is the same as the oxide film of layer 5 or layer 6.
  • the oxidation step can be reduced by oxidizing the layer 5 and then removing it to make it the same as the oxide film thickness formed by the second oxidation.
  • FIG. 11 the memory cells shown in FIG. 3 and FIG. FIG. 2 shows a circuit diagram in the case of arrangement in an array.
  • the processes shown in FIGS. 12 and 13 can be considered.
  • FIG. 12 is a schematic sectional view showing the progress of the process in the order of a to f.
  • FIG. 13 shows a schematic plan view of a part of the steps shown in FIG.
  • a stripe-shaped element isolation groove is formed in a semiconductor substrate, an insulator 15 is buried in the groove, and then a gate oxide film 5 is formed on the surface of the semiconductor substrate (a in FIG. 12).
  • the plan view at this time is shown in Fig. 13a.
  • the gate 8 of the memory transistor and the gate 9 of the enhancement transistor are formed (FIG. 12b), and the source and drain 12 are formed by ion implantation using this gate electrode as a mask region (first step). 2 Figure 1 c).
  • the gate electrode 9 of the enhancement transistor and the gate electrode 8 of the memory transistor are covered with silicon nitride 17 (d in FIG. 12 and b in FIG. 13), and the source of the memory cell is connected to the source line 1.
  • Short-circuit at 8 and set up a plug 19 at the drain (c in FIG. 13), and short-circuit this plug 19 with a bit line 20 (e in FIG. 12).
  • the plan view at this time is shown in Fig. 13d.
  • a trap having a density required for the MOS type volatile memory can be formed. Also, by forming the oxide film a plurality of times when forming the gate oxide film 5 and forming an interface in the oxide film, a portion with many traps can be formed in the oxide film. Further, it goes without saying that a plurality of different methods of manufacturing the insulating film may be combined as described above. That is, a silicon oxide film is manufactured using the CVD method and the thermal oxidation method.
  • the oxidation process is performed by making the thickness of the gate oxide film of the MOS FET in the circuit on the same device other than the memory cell the same as that of the oxide film 5. Can be reduced.
  • a non-volatile memory having a simple structure can be realized with a smaller number of masks. With a small number of masks, memories can be manufactured at low cost. In addition, because of its simple structure, the cause of failures is smaller than that of conventional non-volatile memory, and development time can be shortened and high yield can be achieved.
  • the present invention can provide a nonvolatile semiconductor memory element and a semiconductor device with stable operation.

Abstract

A nonvolatile semiconductor memory cell comprising a substrate, a source region and a drain region formed in the surface of the substrate, a channel region formed in the surface of the substrate between the source region and the drain region, an insulating film so formed as to cover the channel region, and a gate electrode formed above the insulating film, wherein the insulating film constitutes a charge storage section and the trap level thereof is set up using a trap level set-up means in addition to an insulating film forming means. Furthermore, variation in the memory characteristics of a nonvolatile memory which retains memory by trapping charge in a gate insulation insulator can be suppressed using an enhancement transistor. A nonvolatile memory can thereby be produced inexpensively with high yield.

Description

明 細 書 不揮発性半導体記憶素子及び半導体記憶装置 技術分野  Description Non-volatile semiconductor storage element and semiconductor storage device
本願発明は不揮発性半導体記憶素子及び半導体記憶装置に関するものである。 背景技術  The present invention relates to a nonvolatile semiconductor memory device and a semiconductor memory device. Background art
現在量産されている不揮発性半導体記憶装置は、 基板と制御ゲー卜の間に浮 遊ゲートを有するフラッシュメモリが主である。 し力、し、 フラッシュメモリに は浮遊ゲートが必要なことから構造が複雑になり、 そのため生産コス卜の低減 が難しい。 この構造の複雑さは、 高い生産歩留を得るという観点からも不利で ある。 又、 昨今の携帯機器への不揮発性半導体記憶装置適用にあたり、 低電力 化および低駆動電圧化が求められる。 しかし、 この観点に対しては、 フラッシ ュメモリは浮遊ゲートの上下に 2層のゲート絶縁膜が重なった構造なので、 そ の書換には 2 O V程度の高電圧が必要になリ不利である。  Currently, mass-produced nonvolatile semiconductor memory devices are mainly flash memories having a floating gate between a substrate and a control gate. Flash memory requires a floating gate, which complicates the structure and makes it difficult to reduce production costs. The complexity of this structure is also disadvantageous in terms of obtaining high production yields. In addition, low power consumption and low drive voltage are required for the application of nonvolatile semiconductor memory devices to portable equipment in recent years. However, from this point of view, the flash memory has a disadvantage that a high voltage of about 2 OV is required for rewriting since the flash memory has a structure in which two layers of gate insulating films are stacked above and below the floating gate.
前記フラッシュメモリに対し、 浮遊ゲートを必要としない金属—酸化物ー窒 化物—酸化物一半導体 (以後、 「M O N O S」 と記す) 構造のトランジスタを 記憶部とする不揮発性半導体記憶装置がある。 こうした M O N O S構造の半導 体記憶装置は浮遊ゲートを有さないので、 構造が単純である。  In contrast to the flash memory, there is a nonvolatile semiconductor memory device having a transistor having a metal-oxide-nitride-oxide-semiconductor (hereinafter, referred to as “MONOS”) structure that does not require a floating gate as a storage portion. Such a MONOS semiconductor memory device has a simple structure because it has no floating gate.
一方で、前記の 2不揮発性半導体記憶装置に対し、金属一酸化物一半導体(以 後 「M O S」 と記す) 構造での不揮発性半導体記憶装置が提案されている。 こ うした例は、 例えば、 日本国、 特許公開公報、 特開平 4一 1 3 4 8 7 0号およ び特開平 5— 1 2 1 7 6 5号などに見られる。 当該不揮発性半導体記憶装置で は、 酸化物中に電荷を捕獲することで不揮発性の記憶を実現している。 こうし た不揮発性半導体記憶装置は、 記憶素子を周辺回路と同様の工程で作製できる ため、 前記 2不揮発性半導体記憶装置に比べ安価に作製できる。 On the other hand, a nonvolatile semiconductor memory device having a metal-oxide-semiconductor (hereinafter, referred to as “MOS”) structure has been proposed in contrast to the above-mentioned two nonvolatile semiconductor memory devices. Such examples can be found in, for example, Japan, Patent Publication, Japanese Patent Application Laid-Open Nos. H11-134870 and H5-112765. In the nonvolatile semiconductor memory device, nonvolatile storage is realized by capturing charges in an oxide. In such a nonvolatile semiconductor memory device, the storage element can be manufactured in the same process as the peripheral circuit. Therefore, it can be manufactured at a lower cost as compared with the above-mentioned 2 nonvolatile semiconductor memory device.
しかしながら、 M O S構造の不揮発性半導体記憶装置では、 酸化膜中のトラ ップを電荷保持サイ卜にするため、 保持電荷量の制御が難しい。 例えば、 半導 体記憶装置を 2値方式で用いる際、 その記憶状態において、 しきい電圧の絶対 値が低い方の状態 (以後 「低 V t h状態」 と記す) で必要以上にしきい電圧が 下がると読み出し不良の原因となる。  However, in a non-volatile semiconductor memory device having a MOS structure, since the trap in the oxide film is a charge holding site, it is difficult to control the amount of held charge. For example, when a semiconductor memory device is used in a binary system, in the storage state, the threshold voltage becomes lower than necessary in a state where the absolute value of the threshold voltage is lower (hereinafter referred to as “low V th state”). And read failure.
一方で、 同様の問題が生じると考えられる M O N O S型の不揮発性半導体記 憶装置では、 メモリ トランジスタ毎にエンハンスメントトランジスタを形成し 読み出し不良を防ぐ技術が発明されている、 こうした例は、 例えば、 日本国、 特許公開公報、 特開平 6— 2 3 2 4 1 6号である。 発明の開示  On the other hand, in a MONOS-type nonvolatile semiconductor memory device in which a similar problem is considered to occur, a technology has been invented in which an enhancement transistor is formed for each memory transistor to prevent a reading failure. And Japanese Patent Application Laid-Open Publication No. Hei 6-232314. Disclosure of the invention
本願発明は、 しきい電圧のバラツキの影響が軽減された M O S型の不揮発性 半導体記憶素子及びこれを用いた不揮発性半導体記憶装置を提供する。 特に、 本願発明は、そもそものしきい電圧バラツキの原因である酸化膜中トラップ( t r a p ) の制御法を提供する。 更に、 本願発明は不揮発性半導体記憶装置のし きい電圧のバラツキの影響をなくす為の手法として、 エンハンスメントトラン ジスタを簡便に作製する方法を提供する。  The present invention provides a MOS type nonvolatile semiconductor memory element in which the influence of threshold voltage variation is reduced, and a nonvolatile semiconductor memory device using the same. In particular, the present invention provides a method for controlling traps (t ra p) in an oxide film, which is a cause of threshold voltage variation in the first place. Further, the present invention provides a method for easily manufacturing an enhancement transistor as a technique for eliminating the influence of threshold voltage variation of a nonvolatile semiconductor memory device.
まず、 安定な記憶動作を行い得る M O S型の不揮発性半導体記憶素子につい て説明する。  First, a MOS type non-volatile semiconductor storage element capable of performing a stable storage operation will be described.
本願発明の第 1の形態は、 基板と、 前記基板の表面部に有するソース領域及 びドレイン領域と、 前記ソース領域及びドレイン領域との間の基板の表面部に 有するチャネル領域と、 前記チャネル領域を覆って形成された絶縁膜と、 前記 絶縁膜の上部に形成されたゲート電極とを少なくとも有し、 前記絶縁膜は電荷 蓄積部を構成し、 且つ前記絶縁膜のトラップ準位は、 絶縁膜形成手段に加えて トラップ準位形成手段を要して形成された不揮発性半導体記憶素子である。 更に、本願発明を別な観点で言及すれば次のようにいうことが出来る。即ち、 本願発明の第 2の形態は、 基板と、 前記基板の表面部に有するソース領域及び ドレイン領域と、 前記ソース領域及びドレイン領域との間の基板の表面部に有 するチャネル領域と、 前記チャネル領域を覆って形成された絶縁膜と、 前記絶 縁膜の上部に形成されたゲート電極とを少なくとも有し、 前記絶縁膜は電荷蓄 積部を構成し、 且つ前記絶縁膜のトラップ準位が、 少なくとも通例の絶縁膜と しての熱酸化膜に形成されるトラップ準位の数より大きい不揮発性半導体記憶 素子である。 又、 言い換えれば、 記憶部のトランジスタのチャネル領域を覆つ て形成された絶縁膜のトラップ準位が、 当該半導体記憶装置が有する周辺回路 部のトランジスタのチャネル領域を覆って形成された絶縁膜が有する卜ラップ 準位の数よリ大きくなっている。 According to a first aspect of the present invention, there is provided a substrate, a source region and a drain region provided on a surface portion of the substrate, a channel region provided on a surface portion of the substrate between the source region and the drain region, and the channel region. And at least a gate electrode formed on the insulating film, wherein the insulating film constitutes a charge storage portion, and a trap level of the insulating film is: This is a nonvolatile semiconductor memory element formed by requiring trap level forming means in addition to the forming means. Further, if the invention of the present application is referred from another viewpoint, the following can be said. That is, a second aspect of the present invention provides a semiconductor device comprising: a substrate; a source region and a drain region provided on a surface portion of the substrate; a channel region provided on a surface portion of the substrate between the source region and the drain region; At least a gate electrode formed above the insulating film, the insulating film forming a charge storage portion, and a trap level of the insulating film. Is a nonvolatile semiconductor memory element that is larger than at least the number of trap levels formed in a thermal oxide film as a usual insulating film. In other words, the trap level of the insulating film formed over the channel region of the transistor in the memory portion is changed by the insulating film formed over the channel region of the transistor in the peripheral circuit portion of the semiconductor memory device. It is larger than the number of trap levels.
第 1 5図は本願発明の半導体記憶素子の基本構成を示す。 符号 5 0が基板、 5 1、 5 2がソース及びドレイン、 5 3が絶縁膜、 5 4がトラップ、 5 5がゲ ―ト電極、 5 6はトラップ準位に捕獲されたキヤリアを模式的に示している。 前述の不揮発性半導体記憶素子の基本動作は次の通りである。 即ち、 M O S 型電界効果型トランジスタのゲ一ト絶縁膜中に形成されたキャリアのトラップ (捕獲) 準位に、 当該電界効果型トランジスタの基板と同導電型のキャリアを 卜ラップさせることにより、 前記電界効果型トランジスタの基板と前記ゲート 絶縁膜との界面に、 トラップされたキヤリアと逆導電型のキヤリァが誘起され る。 このため、 当該電界効果型トランジスタのしきい電圧が低下する。 又、 逆 に、 当該電界効果型トランジスタの基板と逆導電型のキャリアを卜ラップさせ ることにより、 前記電界効果型トランジスタの基板と前記ゲー卜絶縁膜との界 面に、トラップされたキヤリアと同導電型のキヤリァが誘起される。このため、 当該電界効果型トランジスタのしきい電圧が上昇する。 このようにして、 捕獲 されるキャリアの有無によって、 複数のしきい電圧を実現することができる。 従って、 所望のゲート電圧において電流駆動力の相違を利用することによって 情報を記憶することが可能となる。 又、 当該電界効果型トランジスタのゲート 電極にバイアスを印加することによって、 当該ゲート絶縁膜内にトラップされ たキャリアをトラップ準位より放出させ、 消去することが出来る。 こうして、 電気的に情 ¼の書き込み及び消去が可能な半導体記憶素子を実現することが出 来る。 FIG. 15 shows the basic configuration of the semiconductor memory device of the present invention. Reference numeral 50 is a substrate, 51 and 52 are a source and a drain, 53 is an insulating film, 54 is a trap, 55 is a gate electrode, and 56 is a carrier captured at a trap level. Is shown. The basic operation of the above-described nonvolatile semiconductor memory device is as follows. That is, by trapping carriers of the same conductivity type as the substrate of the field-effect transistor at the trap (capture) level of carriers formed in the gate insulating film of the MOS field-effect transistor, At the interface between the substrate of the field effect transistor and the gate insulating film, a carrier of a conductivity type opposite to that of the trapped carrier is induced. Therefore, the threshold voltage of the field-effect transistor decreases. Conversely, by trapping the carrier of the opposite conductivity type with the substrate of the field-effect transistor, the carrier trapped on the interface between the substrate of the field-effect transistor and the gate insulating film. A carrier of the same conductivity type is induced. Therefore, the threshold voltage of the field-effect transistor increases. In this way, multiple threshold voltages can be achieved depending on the presence or absence of carriers to be captured. Therefore, by utilizing the difference in current driving force at a desired gate voltage, Information can be stored. Further, by applying a bias to the gate electrode of the field-effect transistor, carriers trapped in the gate insulating film can be released from the trap level and erased. Thus, it is possible to realize a semiconductor memory element capable of electrically writing and erasing information.
前記絶縁膜は多くの場合シリコン酸化膜、 シリコン窒化膜、 あるいはこれら の複合膜などが用いられる。 本願発明においては、 これらの膜が通例形成され る絶縁膜の状態よリも多い卜ラップ準位を有していることが肝要である。 こう して、 いわゆるゲート絶縁膜中に、 所望のキャリアを捕獲し、 いわゆる不揮発 性記憶素子を十分安定に動作せしめることが出来る。 即ち、 所望のキャリアを 前記トラップ準位に捕獲させ、 所望の情報を記憶させる。 本願発明は、 不揮発 性記憶素子ではあるが、 いわゆるフローティングゲ一トを新たに要しない。 尚、 情報の読み出しなどの基本動作はこれまでの不揮発性半導体記憶素子と同 様であるので、 詳細な説明は省略する。  In many cases, the insulating film is a silicon oxide film, a silicon nitride film, or a composite film thereof. In the present invention, it is important that these films have more trap levels than the state of the insulating film usually formed. Thus, desired carriers can be captured in a so-called gate insulating film, and a so-called nonvolatile memory element can be operated sufficiently stably. That is, a desired carrier is captured by the trap level, and desired information is stored. Although the present invention is a nonvolatile memory element, it does not require a so-called floating gate. Note that the basic operation such as reading of information is the same as that of the conventional nonvolatile semiconductor memory element, and therefore detailed description is omitted.
前記絶縁膜形成手段に加えるトラップ準位形成手段として次のような方法を あげることが出来る。  As the trap level forming means added to the insulating film forming means, the following method can be used.
( 1 ) 不揮発性半導体記憶装置を通例の方法によって制作した後、 当該記憶装 置のゲ一卜電極にトンネル電流が発生する電圧、即ち電気的ストレスを印加し、 トラップ準位を積極的に形成する。 この場合、 当該絶縁膜に生成されるトラッ プ密度が飽和する注入電荷量に相当する、 いわゆる電気的ストレスとなすのが 好都合である。 この電圧印加は、 ゲート電極が負電位の方が好ましい。 こうし た高バイアスストレスを印加しておくことで、 M O S型不揮発性メモリに必要 なトラップを作りこむことが可能であるが、 母体となる絶縁膜は各種のものを 用いることが出来る。 その代表的な例を (2 ) に例示する。  (1) After a nonvolatile semiconductor memory device is manufactured by a usual method, a voltage at which a tunnel current is generated, that is, an electrical stress is applied to a gate electrode of the memory device, and a trap level is actively formed. I do. In this case, it is convenient to form what is called electrical stress, which corresponds to the amount of injected charges at which the trap density generated in the insulating film is saturated. This voltage application is preferably performed when the gate electrode has a negative potential. By applying such a high bias stress, it is possible to create traps required for the MOS type nonvolatile memory, but various types of insulating films can be used as the base insulating film. A typical example is shown in (2).
( 2 ) ゲート絶縁膜を形成する際、 複数回に分けて絶縁膜の形成する。 複数の 絶縁膜形成工程を用いることで、 わけても、 これらの層間にトラップ準位が導 入される。 結果として、 ゲート絶縁膜内に、 一工程での絶縁膜の形成よりも多 くのトラップ準位を導入することが出来る。 (2) When forming a gate insulating film, the insulating film is formed in a plurality of times. By using a plurality of insulating film forming steps, in particular, trap levels are introduced between these layers. Is entered. As a result, more trap levels can be introduced into the gate insulating film than in a single step of forming the insulating film.
更に、 前記の複数工程での絶縁膜形成として、 複数の異なる製造方法を用い ることも出来る。 例えば、 熱酸化膜を形成し、 この上に C V D法による酸化膜 を形成することでも、 一工程での絶縁膜の形成よりも多くのトラップ準位を導 入することが出来る。  Further, a plurality of different manufacturing methods can be used for forming the insulating film in the plurality of steps. For example, by forming a thermal oxide film and forming an oxide film thereon by the CVD method, more trap levels can be introduced than in forming an insulating film in one step.
( 3 ) 前記 (1 ) と (2 ) の方法を組み合わせて用いる。 この方法がより有効 に、 所望個所にトラップ準位を導入することが可能である。 更に、 本願発明の 形態は、 形成されるトラップ準位の位置、 即ち、 当該基板界面からの距離を制 御することが可能である。 同じ電荷量に対しても、 トラップされる位置によつ て、 しきい電圧の変化量が異なる。 従って、 要請される特性に応じて、 形成さ れる卜ラップ準位の位置を制御することが好ましい。  (3) The methods (1) and (2) are used in combination. This method can more effectively introduce a trap level at a desired position. Further, according to the embodiment of the present invention, it is possible to control the position of the trap level to be formed, that is, the distance from the substrate interface. Even for the same amount of charge, the amount of change in the threshold voltage varies depending on the trapped position. Therefore, it is preferable to control the position of the trap level to be formed according to the required characteristics.
次に、 不揮発性半導体記憶装置のよリ高性能化を狙つた諸形態を説明する。 本願発明の不揮発性半導体記憶装置の代表的な例は、 当該不揮発性半導体記 憶装置が少なくともメモリ トランジスタ部とェンハンスメン卜トランジスタ部 とで構成された例である。  Next, various embodiments of the nonvolatile semiconductor memory device aiming at higher performance will be described. A typical example of the nonvolatile semiconductor memory device of the present invention is an example in which the nonvolatile semiconductor memory device includes at least a memory transistor section and an enhancement transistor section.
本願発明の不揮発性半導体記憶装置の第 1の形蓐は、 ゲ一ト酸化膜の二水準 化である。 即ち、 ゲート酸化膜を、 ソース領域の対応位置からドレイン領域対 応位置に至る途中に、 その膜厚を変化させるのである。  The first feature of the nonvolatile semiconductor memory device according to the present invention is the two-level gate oxide film. That is, the thickness of the gate oxide film is changed from the position corresponding to the source region to the position corresponding to the drain region.
本願発明の不揮発性半導体記憶装置の代表的な第 2の例は、 少なくともメモ リ トランジスタ部とェンハンスメントトランジスタ部の各ソース及びドレイン を共通に構成する形態である。  A second typical example of the nonvolatile semiconductor memory device of the present invention is a form in which at least each source and drain of the memory transistor portion and the enhancement transistor portion are commonly configured.
即ち、 エンハンスメントトランジスタは、 メモリセル中のメモリ 卜ランジス タの低い V t hと高い V t h状態の間のしきい電圧を有し、 当該しきい電圧が メモリセルの書き換えに対し安定であるトランジスタである。 そして、 メモリ トランジスタのソース (またはドレイン) に、 当該エンハンスメントトランジ スタのドレイン (またはソース) を接続することで、 メモリ トランジスタの低 V t h状態での V t hバラツキに起因する読み出し不良を防ぐ役割を果す。 こうした状態を M O S型不揮発性メモリで実現するには、 第 1図に示すよう にゲート酸化膜厚がソースからドレインに至る途中で変化する 2種膜厚を実現 すればよい。第 1図において、 1はゲート電極、 2は半導体基板、 3はソース、 4はドレイン、 5と 6は 2種膜厚のゲート酸化膜で、 5が薄膜部、 6が厚膜部 で、 7は層間絶縁物である。 第 1図の構造の場合、 ゾースと ドレインを入替え てもよい。 第 1図の構造はゲート酸化膜が 2種であることで、 第 2図の等価回 路に示すように、 しきい電圧の異なる 2種のトランジスタをソースとドレイン で接合した構造が実現する。 当該トランジスタのゲートに、 ゲート酸化膜の薄 膜部 5のゲート電極と基板間にはトンネル電流が流れ、 厚膜部 6のゲート電極 と基板間にはトンネル電流が流れないようなバイァスを印加すると、 薄膜部 5 のみで電荷捕獲が起り、 厚膜部 6では電荷捕獲が起らない。 即ち、 薄膜部 5の みが記憶保持領域となり、 厚膜部 6はしきい電圧が安定なエンハンスメント ト ランジスタとなる。 That is, the enhancement transistor is a transistor having a threshold voltage between the low V th and the high V th state of the memory transistor in the memory cell, and the threshold voltage is stable against rewriting of the memory cell. . Then, the enhancement transistor is connected to the source (or drain) of the memory transistor. By connecting the drain (or source) of the transistor, it plays a role in preventing read failure due to Vth variation in the low Vth state of the memory transistor. In order to realize such a state in the MOS nonvolatile memory, it is necessary to realize two kinds of film thicknesses in which the gate oxide film thickness changes from the source to the drain as shown in FIG. In FIG. 1, 1 is a gate electrode, 2 is a semiconductor substrate, 3 is a source, 4 is a drain, 5 and 6 are two types of gate oxide films, 5 is a thin film portion, 6 is a thick film portion, 7 Is an interlayer insulator. In the case of the structure of FIG. 1, the source and the drain may be exchanged. The structure in FIG. 1 has two types of gate oxide films, and as shown in the equivalent circuit in FIG. 2, a structure in which two types of transistors having different threshold voltages are joined by a source and a drain is realized. When a bias is applied to the gate of the transistor such that a tunnel current flows between the gate electrode of the thin film portion 5 of the gate oxide film and the substrate and no tunnel current flows between the gate electrode of the thick film portion 6 and the substrate. However, charge trapping occurs only in the thin film part 5, and charge trapping does not occur in the thick film part 6. That is, only the thin film portion 5 becomes a memory holding region, and the thick film portion 6 becomes an enhancement transistor having a stable threshold voltage.
又、 ゲート酸化膜に 2種の膜厚を用いなくとも、 第 3図のごとくゲート電極 を 2つに分離することでもェンハンスメン卜トランジスタを実現できる。 第 3 図において、 2は半導体基板で、 3と 4がソースとドレインで、 5がゲート酸 化膜で、 8がメモリ トランジスタのゲート電極で、 9がエンハンスメントトラ ンジスタのゲート電極で、 7が層間絶縁膜である。 第 3図の構造の等価回路を 第 4図に示す。 メモリ トランジスタのゲ一卜電極 8には、 M O S型不揮発性メ モリに書換動作に必要なバイアスを印加し、 ェンハンスメントトランジスタの ゲート電極 9には書換動作が起らぬ程度のバイアスのみを印加するようにする ことで、 所望の動作を実現できる。  Further, even if the gate oxide film does not have two thicknesses, the enhancement transistor can be realized by separating the gate electrode into two as shown in FIG. In FIG. 3, 2 is a semiconductor substrate, 3 and 4 are a source and a drain, 5 is a gate oxide film, 8 is a gate electrode of a memory transistor, 9 is a gate electrode of an enhancement transistor, and 7 is an interlayer. It is an insulating film. Fig. 4 shows an equivalent circuit of the structure in Fig. 3. A bias necessary for rewriting operation is applied to the gate electrode 8 of the memory transistor to the MOS nonvolatile memory, and only a bias that does not cause a rewriting operation is applied to the gate electrode 9 of the enhancement transistor. By applying the voltage, a desired operation can be realized.
第 1図および第 3図に示したメモリセル構造では、 そのゲート酸化膜形成時 に、 同時に周辺回路のゲートを形成することで、 プロセスの簡略化が実現でき る。 In the memory cell structure shown in Figs. 1 and 3, the process can be simplified by forming the gate of the peripheral circuit at the same time as forming the gate oxide film. You.
一般に、 形成直後の酸化膜中にある電荷トラップ密度は M O S型不揮発性メ モリを実現するには不足している場合が多く、 たとえ十分な密度があつたとし てもメモリセル間のトラップ密度バラツキが多く、 しきい電圧の制御が困難で ある。 これを解決する手法として、 あらかじめメモリ トランジスタのゲート酸 化膜に電気的ストレスを印加し、トラップ密度を一定にする手法が有効である。 第 1 4図に示すように、 M O Sキャパシタのゲートにバイアスを印加しトンネ ル電流を流した場合の酸化膜中電荷トラップ密度は、 注入電荷量がある値 (Q c r i t ) で飽和し、 その飽和値は初期電荷トラップ密度によらない。 すなわ ち、 注入電荷量が Q c r i tに相当する電気的ストレスをあらかじめメモリセ ルトランジスタのゲー卜酸化膜に印加することで、 均一でかつ安定な電荷トラ ップを実現できる。  In general, the charge trap density in the oxide film immediately after formation is often insufficient for realizing a MOS nonvolatile memory, and even if the density is sufficient, the trap density between memory cells varies. And it is difficult to control the threshold voltage. As a method for solving this, it is effective to apply an electric stress to the gate oxide film of the memory transistor in advance to make the trap density constant. As shown in Fig. 14, when a bias is applied to the gate of a MOS capacitor and a tunnel current flows, the charge trap density in the oxide film is saturated at a certain value (Q crit). The value does not depend on the initial charge trap density. In other words, a uniform and stable charge trap can be realized by applying an electrical stress corresponding to the amount of injected charge Qcrit to the gate oxide film of the memory cell transistor in advance.
また、 一般に酸化膜界面ではトラップが多くまた発生しやすいので、 酸化膜 を複数回に分けて形成することで膜中に界面を作りこむと、 卜ラップ発生位置 を制御することも可能である。  Generally, traps are often generated at the oxide film interface, and the trap is likely to be generated. Therefore, if an oxide film is formed in plural times to form an interface in the film, the trap generation position can be controlled.
前記説明の不揮発性半導体記憶装置の諸形態を整理し、 以下に列挙する。 前記不揮発性半導体記憶装置の第 1の形態は、 第 1導電型半導体基板上に、 前記半導体基板表面に選択的に形成された第 2導電型のドレイン領域と、 当該 ドレイン領域とは所定の距離を隔てて半導体基板表面に選択的に形成された第 2導電型のソース領域と、前記ドレイン領域の端部に少なくとも一部が重なリ、 かつ前記ソース領域の端部に亘るように前記半導体基板上に形成された 2種の 膜厚を有する絶縁膜と、 当該絶縁膜上に形成されたゲート電極とからなる記憶 素子が設けられ、 当該絶縁膜の薄膜部に電荷を保持することで不揮発状態で情 報を記憶する半導体記憶装置である。  Various forms of the nonvolatile semiconductor memory device described above are arranged and listed below. In a first embodiment of the nonvolatile semiconductor memory device, a second conductive type drain region selectively formed on a semiconductor substrate surface on a first conductive type semiconductor substrate, and a predetermined distance from the drain region A source region of the second conductivity type selectively formed on the surface of the semiconductor substrate across the semiconductor substrate, the semiconductor region at least partially overlapping an end of the drain region, and the end of the source region. A storage element including an insulating film having two different thicknesses formed over a substrate and a gate electrode formed over the insulating film is provided. This is a semiconductor memory device that stores information in a state.
この形態に、 絶縁膜の薄膜部を C V D法による堆積 (デポ) による酸化膜形 成後に、 熱酸化を行う前述した手法を適用することは有用である。 更に、 絶縁膜の薄膜部を複数回の熱酸化により形成することも有用である。 更には、 こうした半導体記憶装置において、 ゲート電極に電気的ストレスを印 加して絶縁膜の薄膜部にトラップを形成することが、 わけても有用である。 これまで示した不揮発性半導記憶装置を適用した、 メモリアレ一の代表的な 形態である A N D型、 及び N O R型を例示する。 In this case, it is useful to apply the above-mentioned method of performing thermal oxidation after forming an oxide film by depositing a thin film portion of the insulating film by CVD (deposition). Further, it is also useful to form the thin film portion of the insulating film by performing thermal oxidation a plurality of times. Further, in such a semiconductor memory device, it is particularly useful to apply an electric stress to the gate electrode to form a trap in the thin film portion of the insulating film. A typical example of a memory array to which the nonvolatile semiconductor memory device described so far is applied is an AND type and a NOR type.
前述した第 1の形態の不揮発性半導体記憶装置を n個配列したもので、 当該 半導体記憶装置のソースをソース線に、 ドレインをビット線に接続した半導体 記憶装置列を m個配列し、 n本のヮード線に m個の当該半導体装置のゲー卜を 接続し、 この際 1本のワード線には異なる当該半導体記憶装置列に属する半導 体記憶装置のみが接続されるようにした、 A N D型の半導体記憶装置である。 更には、 前述の不揮発性半導体記憶装置の第 1の形態の 2個から構成され、 お互いのソースを接続した構造の半導体記憶装置セル n個からなり、 2 X n個 のドレインをすベてビット線に接続した半導体記憶装置列を m個配列し、 n本 のソース線と 2 X n本のヮード線に m個の当該半導体記憶装置セルのソースと ゲートをそれぞれソース線とワード線に接続し、 この際 1本のソース線および ヮ一ド線には異なる当該半導体記憶装置列に属する半導体記憶装置のみが接続 されるようにした、 N O R型の半導体記憶装置である。  The nonvolatile semiconductor memory device of the first embodiment described above is arranged in n pieces. In the semiconductor memory device, m pieces of semiconductor memory rows in which a source is connected to a source line and a drain is connected to a bit line are arranged, and n pieces are arranged. The gates of the m semiconductor devices are connected to the lead lines of the semiconductor device, and at this time, only one semiconductor storage device belonging to a different row of the semiconductor storage devices is connected to one word line. Semiconductor storage device. Furthermore, the nonvolatile semiconductor memory device is composed of two cells of the first embodiment of the above-mentioned nonvolatile semiconductor memory device, and is composed of n semiconductor memory cells having a structure in which the sources are connected to each other. The source and gate of the m semiconductor memory cells are connected to the source line and the word line, respectively, by connecting m source lines and 2 × n read lines connected to the m rows of the semiconductor memory devices connected to the lines. At this time, this is a NOR type semiconductor memory device in which only one semiconductor memory device belonging to a different semiconductor memory device column is connected to one source line and one gate line.
前記不揮発性半導体記憶装置の第 2の形態は、第 1導電型半の導体基板上に、 前記半導体基板表面に選択的に形成された第 2導電型のドレイン領域と、 当該 ドレイン領域とは所定の距離を隔てて半導体基板表面に選択的に形成された第 2導電型のソース領域と、前記ドレイン領域の端部に少なくとも一部が重なリ、 かつ前記ソース領域の端部に亘るように前記半導体基板上に形成された 2種の 膜厚を有する絶縁膜と、 当該絶縁膜上に形成されたゲート電極とからなるメモ リ トランジスタ部及びェンハンスメン卜トランジスタ部とが設けられ、 これら 両トランジスタのソースとドレインを共通と半導体記憶装置である。  In a second embodiment of the nonvolatile semiconductor memory device, a second conductive type drain region selectively formed on a surface of the semiconductor substrate on a first conductive type semiconductive substrate; A source region of the second conductivity type selectively formed on the surface of the semiconductor substrate at a distance of at least a distance from the end of the source region; A memory transistor portion and an enhancement transistor portion each including an insulating film having two different thicknesses formed on the semiconductor substrate and a gate electrode formed on the insulating film are provided. The semiconductor memory device has a common source and drain.
この形態のメモリ トタンジスタの絶縁膜を C V D法による堆積 (デポ) によ る酸化膜形成後に、 熱酸化を行う前述した手法を適用することは有用である。 更に、 メモリ トタンジスタの絶縁膜を複数回の熱酸化により形成することも 有用である。 更には、 こうした半導体記憶装置において、 ゲート電極に電気的 ストレスを印加してメモリ トタンジスタの絶縁膜にトラップを形成することが、 わけても有用である。 The insulating film of this type of memory transistor is deposited by CVD. It is useful to apply the above-described method of performing thermal oxidation after forming an oxide film. Further, it is also useful to form the insulating film of the memory transistor by performing thermal oxidation a plurality of times. Further, in such a semiconductor memory device, it is particularly useful to form a trap in the insulating film of the memory transistor by applying an electric stress to the gate electrode.
これまで示した不揮発性半導記憶装置を適用した、 メモリアレーの代表的な N O R型を例示する。  A typical NOR type memory array to which the nonvolatile semiconductor memory device shown so far is applied will be exemplified.
即ち、 不揮発性半導体記憶装置の第 2の形態の 2個から構成され、 お互いの ソースを接続した構造の半導体記憶装置セル n個からなり、 2 X n個のドレイ ンをすべてビット線に接続した半導体記憶装置列を m個配列し、 n本のソース 線と 2 X n本のヮード線と 2 n本のメモリ線に m個の当該半導体記憶装置セ ルのソースとェンハンスメントトランジスタのゲ一卜とメモリ トランジスタの ゲ一トをそれぞれソース線とワード線とメモリ線に接続し、 この際 1本のソー ス線およびヮード線およびメモリ線には異なる当該半導体記憶装置列に属する 半導体記憶装置のみが接続されるようにした N O R型の半導体記憶装置である。 尚、 上述したように、 これらの不揮発性半導体素子適用回路あるいは不揮発 性半導体装置の周辺回路に用いる M O Sトランジスタのゲート絶縁膜を、 メモ リセルゲ一ト絶縁膜の前記薄膜部の形成と共通のプロセスで作製することが可 能である。 そして、 この方策は実用上極めて有用である。 図面の簡単な説明  That is, the nonvolatile semiconductor memory device is composed of two nonvolatile semiconductor memory devices according to the second embodiment, and has a structure in which n sources of the semiconductor memory device are connected to each other, and 2 × n drains are all connected to the bit lines. An array of m semiconductor memory devices is arranged, and n source lines, 2 × n lead lines, and 2 n memory lines are connected to the m sources of the semiconductor memory device cells and the enhancement transistor transistors. The gate of the transistor and the gate of the transistor are connected to a source line, a word line, and a memory line, respectively, and one source line, a lead line, and a memory line belong to different semiconductor storage device columns. Only a NOR type semiconductor memory device to which only one is connected. As described above, the gate insulating film of the MOS transistor used in the nonvolatile semiconductor element application circuit or the peripheral circuit of the nonvolatile semiconductor device is formed by the same process as the formation of the thin film portion of the memory cell insulating film. It can be manufactured. And this measure is extremely useful in practice. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 2種のゲ一ト酸化膜の厚さを有する M O S型不揮発性メモリのセ ル断面模式図である。  FIG. 1 is a schematic sectional view of a cell of a MOS type nonvolatile memory having two types of gate oxide films.
第 2図は、第 1図に示した M O S型不揮発性メモリのセル等価回路図である。 第 3図は、 メモリ トランジスタとエンハンスメントトランジスタを有する M O S型不揮発性メモリのセル断面模式図である。 第 4図は、 第 3図に示した M O S型不揮発性メモリのセル等価回路である。 第 5図は、 第 1図および第 2図に示した M O S型不揮発性メモリセルを用い た A N D型メモリアレイ回路図である。 FIG. 2 is a cell equivalent circuit diagram of the MOS nonvolatile memory shown in FIG. FIG. 3 is a schematic cross-sectional view of a cell of a MOS nonvolatile memory having a memory transistor and an enhancement transistor. FIG. 4 is a cell equivalent circuit of the MOS nonvolatile memory shown in FIG. FIG. 5 is an AND type memory array circuit diagram using the MOS type nonvolatile memory cells shown in FIGS. 1 and 2.
第 6図は、 第 5図に示したメモリァレイを作製する工程順に示した素子の断 面模式図である。  FIG. 6 is a schematic cross-sectional view of the element shown in the order of steps for manufacturing the memory array shown in FIG.
第 7図は、 第 5図に示したメモリァレイを作製する工程順に示した素子の平 面模式図である。  FIG. 7 is a schematic plan view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
第 8図は、 第 1図および第 2図に示した M O S型不揮発性メモリセルを用い た N O R型メモリアレイ回路図である。  FIG. 8 is a circuit diagram of a NOR memory array using the MOS nonvolatile memory cells shown in FIGS. 1 and 2.
第 9図は、 第 8図に示したメモリアレイを作製する工程順に示した素子の断 面模式図である。  FIG. 9 is a schematic cross-sectional view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
第 1 0図は、 第 8図に示したメモリアレイを作製する工程順に示した素子の 平面模式図である。  FIG. 10 is a schematic plan view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
第 1 1図は、 第 3図および第 4図に示した M O S型不揮発性メモリセルを用 いた N O R型メモリアレイ回路図である。  FIG. 11 is a circuit diagram of a NOR type memory array using the MOS type nonvolatile memory cells shown in FIGS. 3 and 4.
第 1 2図は、 第 1 1図に示したメモリアレイを作製する工程順に示した素子 の断面模式図である。  FIG. 12 is a schematic cross-sectional view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
第 1 3図は、 第 1 1図に示したメモリアレイを作製する工程順に示した素子 の平面模式図である。  FIG. 13 is a schematic plan view of an element shown in the order of steps for manufacturing the memory array shown in FIG.
第 1 4図は、 M O Sキャパシタに高バイアスストレスを印加した際に、 酸化 膜中に発生した卜ラップ密度の注入電荷量依存性を示す図である。  FIG. 14 is a diagram showing the dependence of the trap density generated in the oxide film on the amount of injected charge when a high bias stress is applied to the MOS capacitor.
第 1 5図は、 本願発明の不揮発性半導体記憶素子の主要部断面図である。 発明を実施するための最良の形態  FIG. 15 is a sectional view of a main part of the nonvolatile semiconductor memory element of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本願発明の実施の形態は、 メモリアレイの形式により様々である。 以下、 本 発明の好適な実施の形態につき、 具体例を挙げ、 添付図面を参照しながら説明 する。 The embodiments of the present invention are various depending on the type of the memory array. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings by way of specific examples. I do.
く実施の形態 1 > Embodiment 1>
第 5図に、 第 1図および第 2図に示したメモリセルを A N D型メモリアレイ に配列した場合の回路図を示す。第 5図に示したメモリァレイを実現するには、 例えば第 6図と第 7図に示したようなプロセスが考えられる。 第 6図は断面模 式図で、 aから iの順でプロセスの進行を示す。 又、 第 6図に示した工程の一 部の平面模式図を第 7図に示す。  FIG. 5 shows a circuit diagram when the memory cells shown in FIGS. 1 and 2 are arranged in an AND memory array. In order to realize the memory array shown in FIG. 5, for example, a process as shown in FIGS. 6 and 7 can be considered. FIG. 6 is a schematic sectional view showing the progress of the process in the order of a to i. FIG. 7 shows a schematic plan view of a part of the process shown in FIG.
まず、 半導体基板上にゲート酸化膜薄膜部 5を形成 (第 6図の a ) した後、 ゲート電極の一部 1 0を形成し (第 6図の b ) する。 再び、 当該基板に酸化膜 を成長させ、 ゲート酸化膜厚膜部 6を形成する (第 6図の c ) 。 ゲート電極の 残りの部分 1 1を形成した後 (第 6図の d ) 、 ゲート電極をマスク領域として ソースおよびドレイン 1 2を形成する (第 6図の e ) 。 その後、 ゲート電極脇 にサイドウォール 1 3を形成し (第 6図の f ) 、 これをマスクに素子分離の溝 1 4を形成する (第 6図の g ) 。 この溝 1 4の部分に、 素子分離と層間絶縁物 を兼ねた絶縁物 1 5を埋め込む (第 6図の h ) 。  First, after forming a gate oxide thin film portion 5 on a semiconductor substrate (FIG. 6A), a part 10 of a gate electrode is formed (FIG. 6B). Again, an oxide film is grown on the substrate to form a gate oxide film portion 6 (FIG. 6, c). After forming the remaining portion 11 of the gate electrode (FIG. 6D), the source and drain 12 are formed using the gate electrode as a mask region (FIG. 6E). Thereafter, a sidewall 13 is formed beside the gate electrode (f in FIG. 6), and a trench 14 for element isolation is formed using this as a mask (g in FIG. 6). An insulator 15 serving as both an element isolation and an interlayer insulator is buried in the groove 14 (h in FIG. 6).
ここまでの工程で形成したゲート 1 0、 1 1及びサイドウオール 1 3の形状 はストライプ状となす。 この状態を、 第 6図の gおよび第 6図の hの工程にお いて上方から見た平面図で示すと、 それぞれ、 第 7図の aおよび第 7図の の ようになる。その後、ゲート電極と電気的に接触したヮード線 1 6を形成し(第 6図の i )、素子分離溝と垂直な方向にストライプ状に加工する(第 7図の c )。 この加工深さを、 最初に形成したゲート酸化膜 5の中に収まるようにすると、 第 5図に示した A N D型のメモリアレイが実現できる。  The shapes of the gates 10 and 11 and the sidewalls 13 formed in the steps up to this point are striped. This state is shown as a plan view in FIG. 7a and FIG. 7 when viewed from above in steps g and h in FIG. 6, respectively. Thereafter, a lead line 16 which is in electrical contact with the gate electrode is formed (i in FIG. 6), and is processed into a stripe shape in a direction perpendicular to the element isolation groove (c in FIG. 7). If the processing depth is set within the gate oxide film 5 formed first, the AND type memory array shown in FIG. 5 can be realized.
ゲー卜酸化膜 5にあらかじめ高バイアスス卜レスを印加しておくことで、 M O S型不揮発性メモリに必要な密度のトラップを作リ込むことが出来る。 又、 ゲート酸化膜 5を形成する際に、 酸化膜形成を複数回で行い酸化膜中に界面を 形成することで、 酸化膜中にトラップ多い部分を作り込むことが出来る。 更に は、 前述したように複数の異なる絶縁膜の製造法を組み合わせても良いことは 言うまでもない。 即ち、 CVD法と熱酸化法とを用いてシリコン酸化膜を製造 するのである。 By applying a high bias stress to the gate oxide film 5 in advance, a trap having a density required for a MOS nonvolatile memory can be formed. Also, when forming the gate oxide film 5, by forming the oxide film a plurality of times and forming an interface in the oxide film, a trap-rich portion can be formed in the oxide film. Further Needless to say, as described above, a plurality of different insulating film manufacturing methods may be combined. That is, a silicon oxide film is manufactured using a CVD method and a thermal oxidation method.
前述の高バイアスストレスは概ね次のような方法を多用している。 図 1 4を 用いて説明したように、 当該膜中でのトラップ密度の飽和が起こる注入電荷量 に対応する電荷注入を行う。 絶縁膜の種類、 質などによって、 最適な値は異な なるが、 現在のシリコン酸化膜に対して概ね、 1 0 OmCZc m2より 1 C, cm2の電荷注入を行う。 この為、 1 mAZcm2より 1 0 OmA/cm2の電 流密度で、 電流注入し、 ストレスを印加するのが好適である。 1 mA/cm2 以下でも電荷注入は可能であるが、 所望の値を得るに時間がかかりすぎ、 実際 的ではない。 又、 1 O OmAZcm2を超える電流密度では、 膜が絶縁破壊を 起こす可能性が高くなリ、 これまた実際的ではない。 一方、 電界でストレスを 印加する場合、 51\1 001ょリ 201\1 0 の範囲は好適でぁる。 5MV cm以下でも電荷注入は可能であるが、所望の値を得るに時間がかかりすぎ、 実際的ではない。 又、 2 OMVZcmを超える電流密度では、 膜が絶縁破壊を 起こす可能性が高くなリ、 これまた実際的ではない。 The above-described high bias stress generally uses the following method. As described with reference to FIG. 14, charge injection corresponding to the injected charge amount at which the trap density is saturated in the film is performed. The optimum value differs depending on the type and quality of the insulating film, but generally, the current silicon oxide film is injected with a charge of 1 C, cm 2 from 10 OmCZcm 2 . Therefore, 1 mAZcm 2 than 1 0 OmA / cm 2 of current density, and the current injection, it is preferable to apply a stress. Although charge injection is possible at 1 mA / cm 2 or less, it takes too much time to obtain the desired value, which is not practical. Also, at a current density exceeding 1 O OmAZcm 2 , the film is more likely to cause dielectric breakdown, which is not practical. On the other hand, when stress is applied by an electric field, the range of 51 \ 1001 \ 201 \ 10 is preferable. Although charge injection is possible at 5 MV cm or less, it takes too much time to obtain a desired value, which is not practical. At current densities greater than 2 OMVZcm, the film is more likely to cause dielectric breakdown, which is also impractical.
尚、 こうした概ねの諸条件は、 本実施例の例に限らず本願発明の諸形態に考 慮されるものである。  These general conditions are not limited to the example of the present embodiment, but are considered in various embodiments of the present invention.
本実施例で示したメモリァレイをデバイス中に作る際、 メモリセル以外の同 —デバイス上の回路における MOS F ETのゲート酸化膜の膜厚を、 5または 6の酸化膜と同じにする力、、 または 5の酸化を行った後これを除去し 2度目の 酸化でできる酸化膜厚と同じにすることで、 酸化工程を低減できる。  When the memory array shown in the present embodiment is formed in a device, a force for making the thickness of the gate oxide film of the MOS FET in the circuit on the same device other than the memory cell equal to that of the oxide film of 5 or 6, Alternatively, the oxidation process can be reduced by removing the oxide after performing the oxidation of step 5 and removing the oxide film to have the same thickness as the oxide film formed by the second oxidation.
<実施の形態 2 > <Embodiment 2>
第 8図に、 第 1図および第 2図に示したメモリセルを NOR型メモリアレイ に配列した場合の回路図を示す。第 8図に示したメモリアレイを実現するには、 例えば、 第 9図と第 1 0図に示したようなプロセスが考えられる。 第 9図は断 面模式図で、 aから gの順でプロセスの進行を示す。 又、 第 9図に示した工程 の一部の平面模式図を第 1 0図に示す。 FIG. 8 shows a circuit diagram when the memory cells shown in FIGS. 1 and 2 are arranged in a NOR type memory array. In order to realize the memory array shown in FIG. 8, for example, a process as shown in FIGS. 9 and 10 can be considered. Fig. 9 In the schematic plan view, the progress of the process is shown in the order of a to g. FIG. 10 shows a schematic plan view of a part of the steps shown in FIG.
まず、 半導体基板にストライプ状の素子分離溝を形成し、 溝内に絶縁物 1 5 を埋め込んだ後、 半導体基板表面にゲート酸化膜薄膜部 5を形成する (第 9図 の a ) 。 この時の平面図を第 1 0図の aに示す。 その後ゲート電極の一部 1 0 を形成し (第 9図の b ) 、 再び、 半導体基板上に酸化膜を形成しゲート酸化膜 の厚膜部 6とし (第 9図の c ) 、 ゲート電極の残り 1 1を形成 (第 9図の d ) する。 このゲート電極をマスク領域としてソース及びドレイン 1 2をイオンィ ンプランテーションにより形成する (第 9図の e ) 。 その後、 ゲート電極を窒 化シリコン 1 7にて覆う (第 9図の f ) 。 この時の平面図を第 1 0図の bに示 す。 メモリセルのソースをソース線 1 8にて短絡し、 ドレインにはプラグ 1 9 を立て (第 1 0図の c ) 、 このプラグ 1 9をビット線 2 0にて短絡する (第 9 図の g ) 。 この時の平面図を第 1 0図の dに示す。  First, a stripe-shaped element isolation groove is formed in a semiconductor substrate, and an insulator 15 is buried in the groove. Then, a gate oxide thin film portion 5 is formed on the surface of the semiconductor substrate (a in FIG. 9). The plan view at this time is shown in FIG. Thereafter, a portion 10 of the gate electrode is formed (FIG. 9b), and an oxide film is formed again on the semiconductor substrate to form a gate oxide thick film portion 6 (FIG. 9c). The remaining 11 is formed (d in FIG. 9). Using the gate electrode as a mask region, the source and drain 12 are formed by ion implantation (FIG. 9, e). Thereafter, the gate electrode is covered with silicon nitride 17 (f in FIG. 9). The plan view at this time is shown in FIG. The source of the memory cell is short-circuited at the source line 18, the plug 19 is set up at the drain (c in FIG. 10), and this plug 19 is short-circuited at the bit line 20 (g in FIG. 9). ). The plan view at this time is shown in FIG. 10d.
ゲ一ト酸化膜 5にあらかじめ高バイアスストレスを印加しておくことで、 M O S型不揮発性メモリに必要な密度のトラップを作り込むことが出来る。 又、 ゲー卜酸化膜 5を形成する際に酸化膜形成を複数回で行い酸化膜中に界面を形 成することで、酸化膜中にトラップ多い部分を作り込むことが出来る。更には、 前述したように複数の異なる絶縁膜の製造法を組み合わせても良いことは言う までもない。 即ち、 C V D法と熱酸化法とを用いてシリコン酸化膜を製造する のである。  By applying a high bias stress to the gate oxide film 5 in advance, a trap having a density required for the MOS type nonvolatile memory can be formed. In addition, when the gate oxide film 5 is formed, by forming the oxide film a plurality of times and forming an interface in the oxide film, a portion with many traps can be formed in the oxide film. Further, it goes without saying that a plurality of different methods of manufacturing the insulating film may be combined as described above. That is, a silicon oxide film is manufactured using the CVD method and the thermal oxidation method.
本実施例で示したメモリアレイをデバイス中に作る際、 メモリセル以外の同 一デバイス上の回路における M O S型 F E Tのゲー卜酸化膜の膜厚を、 層 5又 は層 6の酸化膜と同じにするか、 又は層 5の酸化を行った後、 これを除去し 2 度目の酸化でできる酸化膜厚と同じにすることで、 酸化工程を低減できる。 <実施の形態 3 >  When fabricating the memory array shown in this embodiment in a device, the thickness of the gate oxide film of the MOS FET in the circuit on the same device other than the memory cell is the same as the oxide film of layer 5 or layer 6. Alternatively, the oxidation step can be reduced by oxidizing the layer 5 and then removing it to make it the same as the oxide film thickness formed by the second oxidation. <Embodiment 3>
第 1 1図に、 第 3図および第 4図に示したメモリセルを N O R型メモリァレ ィに配列した場合の回路図を示す。 第 1 1図に示したメモリアレイを実現する には、 たとえば第 1 2図と第 1 3図に示したようなプロセスが考えられる。 第 1 2図は断面模式図で、 aから f の順でプロセスの進行を示す。 又、 第 1 2図 に示した工程の一部の平面模式図を第 1 3図に示す。 In FIG. 11, the memory cells shown in FIG. 3 and FIG. FIG. 2 shows a circuit diagram in the case of arrangement in an array. In order to realize the memory array shown in FIG. 11, for example, the processes shown in FIGS. 12 and 13 can be considered. FIG. 12 is a schematic sectional view showing the progress of the process in the order of a to f. FIG. 13 shows a schematic plan view of a part of the steps shown in FIG.
まず、 半導体基板にストライプ状の素子分離溝を形成し、 溝内に絶縁物 1 5 を埋め込んだ後、半導体基板表面にゲー卜酸化膜 5を形成する(第 1 2図の a )。 この時の平面図を第 1 3図の aに示す。 その後、 メモリ トランジスタのゲート 8とエンハンスメントトランジスタのゲート 9を形成し (第 1 2図の b ) 、 こ のゲー卜電極をマスク領域としてソース及びドレイン 1 2をイオンインプラン テーシヨンにより形成する (第 1 2図一 c ) 。 その後、 エンハンスメントトラ ンジスタのゲート電極 9とメモリ トランジスタのゲート電極 8を窒化シリコン 1 7にて覆い (第 1 2図の dおよび第 1 3図の b ) 、 メモリセルのソースをソ —ス線 1 8にて短絡しドレインにはプラグ 1 9を立て (第 1 3図の c ) 、 この プラグ 1 9をビッ卜線 2 0にて短絡する (第 1 2図の e ) 。 この時の平面図を 第 1 3図の dに示す。  First, a stripe-shaped element isolation groove is formed in a semiconductor substrate, an insulator 15 is buried in the groove, and then a gate oxide film 5 is formed on the surface of the semiconductor substrate (a in FIG. 12). The plan view at this time is shown in Fig. 13a. Thereafter, the gate 8 of the memory transistor and the gate 9 of the enhancement transistor are formed (FIG. 12b), and the source and drain 12 are formed by ion implantation using this gate electrode as a mask region (first step). 2 Figure 1 c). Thereafter, the gate electrode 9 of the enhancement transistor and the gate electrode 8 of the memory transistor are covered with silicon nitride 17 (d in FIG. 12 and b in FIG. 13), and the source of the memory cell is connected to the source line 1. Short-circuit at 8 and set up a plug 19 at the drain (c in FIG. 13), and short-circuit this plug 19 with a bit line 20 (e in FIG. 12). The plan view at this time is shown in Fig. 13d.
ゲー卜酸化膜 5にあらかじめ高バイアスストレスを印加しておくことで、 M O S型^ 揮発性メモリに必要な密度の卜ラップを作り込むことが出来る。 又、 ゲート酸化膜 5を形成する際に酸化膜形成を複数回で行い酸化膜中に界面を形 成することで、酸化膜中にトラップ多い部分を作リ込むことが出来る。更には、 前述したように複数の異なる絶縁膜の製造法を組み合わせても良いことは言う までもない。 即ち、 C V D法と熱酸化法とを用いてシリコン酸化膜を製造する のである。  By applying a high bias stress to the gate oxide film 5 in advance, a trap having a density required for the MOS type volatile memory can be formed. Also, by forming the oxide film a plurality of times when forming the gate oxide film 5 and forming an interface in the oxide film, a portion with many traps can be formed in the oxide film. Further, it goes without saying that a plurality of different methods of manufacturing the insulating film may be combined as described above. That is, a silicon oxide film is manufactured using the CVD method and the thermal oxidation method.
本実施例で示したメモリァレイをデバイス中に作る際、 メモリセル以外の同 一デバイス上の回路における M O S型 F E Tのゲート酸化膜の膜厚を、 酸化膜 5と同じにすることで、 酸化工程を低減できる。  When making the memory array shown in this embodiment in a device, the oxidation process is performed by making the thickness of the gate oxide film of the MOS FET in the circuit on the same device other than the memory cell the same as that of the oxide film 5. Can be reduced.
本願発明の M O S型不揮発性メモリにより、 従来の不揮発性メモリより単純 な構造の不揮発性メモリを、 より少ないマスク数で実現できる。 マスク数が少 ないことで、 メモリを安価に作製できる。 また、 構造が簡単なため、 従来の不 揮発性メモリより不良発生原因が少なくなリ、 開発時間の短縮化および高歩留 が達成できる。 Simpler than conventional non-volatile memory by MOS non-volatile memory of the present invention A non-volatile memory having a simple structure can be realized with a smaller number of masks. With a small number of masks, memories can be manufactured at low cost. In addition, because of its simple structure, the cause of failures is smaller than that of conventional non-volatile memory, and development time can be shortened and high yield can be achieved.
以下に、 図面の理解を助ける為、 主な符号を列挙する。  The main symbols are listed below to help understand the drawings.
1…ゲート電極、 2…半導体基板、 3…ソース、 4…ドレイン、 5…ゲート 酸化膜、 6…厚膜ゲート酸化膜、 7…層間絶縁膜、 8…メモリ トランジスタゲ ート電極、 9…エンハンスメントトランジスタゲート電極、 1 0…ゲート電極 の一部、 1 1…ゲート電極の一部、 1 2…ソース■ ドレイン、 1 3…窒化シリ コンサイドウォール、 1 4…素子分離溝、 1 5…素子分離および層間絶縁膜、 1 6…ワード線、 1 7…窒化シリコン、 1 8…ソース線、 1 9…プラグ、 2 0 …ビット線、 2 1…メモリ線。 産業上の利用可能性  1 ... gate electrode, 2 ... semiconductor substrate, 3 ... source, 4 ... drain, 5 ... gate oxide film, 6 ... thick gate oxide film, 7 ... interlayer insulating film, 8 ... memory transistor gate electrode, 9 ... enhancement Transistor gate electrode, 10… part of gate electrode, 11… part of gate electrode, 12… source ■ drain, 13… silicon nitride sidewall, 14… element isolation groove, 15… element isolation And interlayer insulating films, 16 ... word lines, 17 ... silicon nitride, 18 ... source lines, 19 ... plugs, 20 ... bit lines, 21 ... memory lines. Industrial applicability
本願発明は、 動作の安定した不揮発性半導体記憶素子及び半導体装置を提供 することが出来る。  The present invention can provide a nonvolatile semiconductor memory element and a semiconductor device with stable operation.

Claims

請 求 の 範 囲 The scope of the claims
1. 基板と、 前記基板の表面部に有するソース領域及びドレイン領域と、 前記 ソース領域及びドレイン領域との間の基板の表面部に有するチャネル領域と、 前記チャネル領域を覆って形成された絶縁膜と、 前記絶縁膜の上部に形成され たゲート電極とを少なくとも有し、 前記絶縁膜は電荷蓄積部を構成し、 且つ前 記絶縁膜のトラップ準位は、 絶縁膜形成手段に加えてトラップ準位形成手段を 要して形成されたことを特徴とする不揮発性半導体記憶素子。  1. a substrate, a source region and a drain region on a surface of the substrate, a channel region on a surface of the substrate between the source and drain regions, and an insulating film formed to cover the channel region And a gate electrode formed on the insulating film, wherein the insulating film constitutes a charge storage section, and the trap level of the insulating film is a trap level in addition to the insulating film forming means. A nonvolatile semiconductor memory element formed by using a position forming means.
2. 基板と、 前記基板の表面部に有するソース領域及びドレイン領域と、 前記 ソース領域及びドレイン領域との間の基板の表面部に有するチャネル領域と、 前記チャネル領域を覆って形成された絶縁膜と、 前記絶縁膜の上部に形成され たゲート電極とを少なくとも有し、 前記絶縁膜は電荷蓄積部を構成し、 且つ前 記絶縁膜は、 絶縁膜形成手段にて形成された当該絶縁膜に電気的ストレスを印 加されたものであることを特徴とする不揮発性半導体記憶素子。  2. a substrate; a source region and a drain region on the surface of the substrate; a channel region on the surface of the substrate between the source and drain regions; and an insulating film formed to cover the channel region. And at least a gate electrode formed on the insulating film. The insulating film constitutes a charge storage portion, and the insulating film is formed on the insulating film formed by the insulating film forming means. A nonvolatile semiconductor memory element to which electric stress has been applied.
3. 前記絶縁膜が、 複数回の熱酸化により形成された絶縁膜であることを特徴 とする請求の範囲第 1項より第 2項のいずれかに記載の不揮発性半導体記憶素 子。  3. The non-volatile semiconductor memory device according to claim 1, wherein the insulating film is an insulating film formed by performing thermal oxidation a plurality of times.
4. 前記絶縁膜が、 異なる絶縁膜の製造方法によって形成された複数の絶縁膜 によって構成されることを特徴とする請求の範囲第 1項よリ第 2項のいずれか に記載の不揮発性半導体記憶素子。  4. The non-volatile semiconductor device according to claim 1, wherein the insulating film is constituted by a plurality of insulating films formed by different manufacturing methods of the insulating film. Storage element.
5 · 前記絶縁膜が、 CVD (C h em i c a l Va p o u r D e p o s i t ί o n) 法にて形成された絶縁膜と、 熱酸化法にて形成された絶縁膜とを有 することを特徴とする請求の範囲第 1項よリ第 2項のいずれかに記載の不揮発 性半導体記憶素子。 5.The insulating film has an insulating film formed by a CVD (Chemical Vapor Deposit On) method and an insulating film formed by a thermal oxidation method. 3. The nonvolatile semiconductor memory device according to any one of items 1 to 2 above.
6. 前記絶縁膜が、 当該絶縁膜の形成後、 当該絶縁膜に電気的ストレスを印加 して構成した絶縁膜であることを特徴とする請求の範囲第 1項より第 2項のい ずれかに記載の不揮発性半導体記憶素子。 6. The insulating film according to claim 1, wherein the insulating film is an insulating film formed by applying an electric stress to the insulating film after forming the insulating film. 3. The nonvolatile semiconductor memory device according to claim 1.
7. 前記絶縁膜が、 当該絶縁膜の形成後、 当該絶縁膜に電気的ストレスを印加 して構成した絶縁膜であることを特徴とする請求の範囲第 3項に記載の不揮発 性半導体記憶素子。 7. The nonvolatile semiconductor memory device according to claim 3, wherein the insulating film is an insulating film formed by applying an electric stress to the insulating film after the formation of the insulating film. .
8. 前記絶縁膜が、 当該絶縁膜の形成後、 当該絶縁膜に電気的ストレスを印加 して構成した絶縁膜であることを特徴とする請求の範囲第 4項に記載の不揮発 性半導体記憶素子。  8. The nonvolatile semiconductor memory device according to claim 4, wherein the insulating film is an insulating film formed by applying an electric stress to the insulating film after the formation of the insulating film. .
9. 前記絶縁膜が、 当該絶縁膜の形成後、 当該絶縁膜に電気的ストレスを印加 して構成した絶縁膜であることを特徴とする請求の範囲第 5項に記載の不揮発 性半導体記憶素子。  9. The nonvolatile semiconductor memory element according to claim 5, wherein the insulating film is an insulating film formed by applying an electric stress to the insulating film after the formation of the insulating film. .
1 0. 第 1導電型の半導体基板上に、 前記半導体基板表面に選択的に形成され た第 2導電型のドレイン領域と、 当該ドレイン領域とは所定の距離を隔てて半 導体基板表面に選択的に形成された第 2導電型のソース領域と、 前記ドレイン 領域の端部に少なくとも一部が重なリ且つ前記ソース領域の端部に亘るように 形成された絶縁膜と、 ゲート絶縁膜と、 を有する記憶素子部を有し、 前記絶縁 膜は前記第 1導電型の半導体基板と前記ゲート絶縁膜との間に配置され、 前記 絶縁膜は 2種類の膜厚の領域を有し、 且つ絶縁膜の薄い膜厚部に電荷を保持す ることで情報を記憶する不揮発性半導体記憶装置。 10. On the semiconductor substrate of the first conductivity type, the drain region of the second conductivity type selectively formed on the surface of the semiconductor substrate, and the drain region is selected on the surface of the semiconductor substrate at a predetermined distance. A source region of the second conductivity type formed in an integrated manner, an insulating film formed so as to at least partially overlap an end of the drain region and extending over an end of the source region, and a gate insulating film. Wherein the insulating film is disposed between the semiconductor substrate of the first conductivity type and the gate insulating film, and the insulating film has regions of two different thicknesses; and A non-volatile semiconductor memory device that stores information by holding electric charge in a thin portion of an insulating film.
1 1. 前記絶縁膜の少なくとも薄い膜厚部が、 複数回の熱酸化により形成され た絶縁膜であることを特徴とする請求の範囲第 1 0項に記載の不揮発性半導体 記憶装置。  11. The nonvolatile semiconductor memory device according to claim 10, wherein at least a thin film portion of said insulating film is an insulating film formed by performing thermal oxidation a plurality of times.
1 2. 前記絶縁膜の少なくとも薄い膜厚部が、 異なる絶縁膜の製造方法によつ て形成された複数の絶縁膜によって構成されることを特徴とする請求の範囲第 1 0項に記載の不揮発性半導体記憶装置。  12. The method according to claim 10, wherein at least a thin film portion of the insulating film is constituted by a plurality of insulating films formed by different manufacturing methods of the insulating film. Non-volatile semiconductor storage device.
1 3. 前記絶縁膜の少なくとも薄い膜厚部が、 CVD (Ch em i c a l V a p o u r D e p o s i t i o n) 法にて形成された絶縁膜と、 熱酸化法に て形成された絶縁膜とを有することを特徴とする請求の範囲第 1 0項に記載の 不揮発性半導体記憶装置。 1 3. At least a thin film portion of the insulating film has an insulating film formed by a chemical vapor deposition (CVD) method and an insulating film formed by a thermal oxidation method. Claim 10 Non-volatile semiconductor storage device.
1 4 . 前記絶縁膜の少なくとも薄い膜厚部が、 当該絶縁膜の形成後、 当該絶縁 膜に電気的ストレスを印加して構成した絶縁膜であることを特徴とする請求の 範囲第 1 1項より第 1 3項のいずれかに記載の不揮発性半導体記憶装置。  14. The at least thin film portion of the insulating film is an insulating film formed by applying an electrical stress to the insulating film after the formation of the insulating film. 14. The nonvolatile semiconductor memory device according to any one of items 13 to 13.
1 5 . 前記請求の範囲第 1 0項より第 1 4項のいずれかに記載の半導体記憶装 置を n個配列し、 当該不揮発性半導体記憶装置のソースをソース線に、 ドレイ ンをビット線に接続した不揮発性半導体記憶装置列を m個配列し、 n本のヮー ド線に m個の当該不揮発性半導体記憶装置のゲート電極を接続し、 この際 1本 のワード線には異なる当該不揮発性半導体記憶装置列に属する半導体記憶装置 のみが接続されるようにしたことを特徴とする A N D型の半導体記憶装置。  15. The semiconductor memory device according to any one of claims 10 to 14, wherein n semiconductor memory devices are arranged, and the source of the nonvolatile semiconductor memory device is a source line and the drain is a bit line. M rows of non-volatile semiconductor memory devices connected to the memory cell array are connected, and m gate electrodes of the non-volatile semiconductor memory devices are connected to n read lines, and a different word line is connected to one word line. An AND-type semiconductor memory device, wherein only the semiconductor memory devices belonging to the non-volatile semiconductor memory device column are connected.
1 6 . 前記請求の範囲第 1 0項より第 1 4項のいずれかに記載の半導体記憶 装置の 2個から構成され、 お互いのソースを接続した構造の半導体記憶装置セ ルの n個からなり、 2 X n個のドレインをビッ卜線に接続した半導体記憶装置 列を m個配列し、 n本のソース線と 2 X n本のヮード線に m個の当該半導体記 憶装置セルのソースとゲートをそれぞれソース線とヮード線に接続し、 この際 1本のソース線およびヮード線には異なる当該半導体記憶装置列に属する半導 体記憶装置のみが接続されるようにしたことを特徴とする N O R型の半導体記  16. The semiconductor memory device according to any one of claims 10 to 14, comprising two semiconductor memory devices having a structure in which the sources are connected to each other. , 2 x n drains connected to bit lines, m rows of semiconductor storage devices are arranged, and n source lines and 2 x n read lines are connected to m sources of the semiconductor storage cells. The gate is connected to a source line and a line, respectively. At this time, only one semiconductor memory device belonging to a different semiconductor memory device column is connected to one source line and the line. NOR type semiconductor
1 7 . 第 1導電型半導体基板上に、 前記半導体基板表面に選択的に形成された 第 2導電型のドレイン領域と、 当該ドレイン領域とは所定の距離を隔てて半導 体基板表面に選択的に形成された第 2導電型のソース領域と、 前記ドレイン領 域の端部に少なくとも一部が重なリ、 且つ前記ソース領域の端部に亘るように 前記半導体基板上に形成された絶縁膜と、 当該絶縁膜上に形成されゲー卜電極 とからなるメモリ トランジスタとェンハンスメン卜トランジスタが設けられ、 これらのソースとドレインを共通にした半導体記憶装置。 17. A drain region of the second conductivity type selectively formed on the surface of the semiconductor substrate on the semiconductor substrate of the first conductivity type, and the drain region is selected on the surface of the semiconductor substrate at a predetermined distance. A source region of the second conductivity type, which is formed on the semiconductor substrate, and an insulation formed on the semiconductor substrate so as to at least partially overlap an end of the drain region, and to extend over an end of the source region. A semiconductor memory device provided with a memory transistor and an enhancement transistor formed of a film and a gate electrode formed on the insulating film, and having a common source and drain.
1 8 . 前記メモリ トランジスタ絶縁膜が、 複数回の熱酸化により形成された絶 縁膜であることを特徴とする請求の範囲第 1 7項に記載の半導体記憶装置。 18. The memory transistor insulating film is formed by multiple thermal oxidations. 18. The semiconductor memory device according to claim 17, wherein said semiconductor memory device is an edge film.
1 9. 前記メモリ トランジスタ絶縁膜が、 異なる絶縁膜の製造方法によって形 成された複数の絶縁膜によって構成されることを特徴とする請求の範囲第 1 7 項に記載の半導体記憶装置。 19. The semiconductor memory device according to claim 17, wherein said memory transistor insulating film is constituted by a plurality of insulating films formed by different insulating film manufacturing methods.
20. 前記メモリ トランジスタ絶縁膜が、 C VD (C h em i c a I V a p o u r D e p o s i t i o n) 法にて形成された絶縁膜と、 熱酸化法にて形 成された絶縁膜とを有することを特徴とする請求の範囲第 1 7項に記載の半導 体記憶装置。 20. The memory transistor insulating film has an insulating film formed by a CVD (Chemica IV apour Deposition) method and an insulating film formed by a thermal oxidation method. The semiconductor storage device according to claim 17.
21. 前記メモリ トランジスタ絶縁膜が、 当該絶縁膜の形成後、 当該絶縁膜に 電気的ストレスを印加して構成した絶縁膜であることを特徴とする請求の範囲 第 1 8項より第 20項のいずれかに記載の半導体記憶装置。  21. The memory transistor insulating film according to claim 18, wherein the memory transistor insulating film is an insulating film formed by applying an electric stress to the insulating film after the formation of the insulating film. The semiconductor memory device according to any one of the above.
22. 請求の範囲第 1 7項より第 21項のいずれかに記載の半導体記憶装置の 2個から構成され、 お互いのソースを接続した構造の半導体記憶装置セルの n 個からなり、 2 x n個のドレインをビット線に接続した半導体記憶装置列を m 個配列し、 n本のソース線と 2 X n本のワード線と 2 X n本のメモリ線に m個 の当該半導体記憶装置セルのソースとェンハンスメントトランジスタのゲート とメモリ 卜ランジスタのゲ一トをそれぞれソース線とヮード線とメモリ線に接 続し、 この際 1本のソース線およびヮ一ド線およびメモリ線には異なる当該半 導体記憶装置列に属する半導体記憶装置のみが接続されるようにした、 NOR 型の半導体記憶装置。 22. A semiconductor memory device comprising n two semiconductor memory devices according to any one of claims 17 to 21 and having a structure in which sources are connected to each other, comprising 2 x n cells Of the semiconductor memory cells in which m drains are connected to bit lines, and n source lines, 2 × n word lines and 2 × n memory lines have m The gate of the enhancement transistor and the gate of the memory transistor are connected to the source line, the lead line, and the memory line, respectively. A NOR type semiconductor memory device in which only semiconductor memory devices belonging to a semiconductor memory device row are connected.
23. 記憶部と当該記憶部以外の電子回路部とを少なくとも有し、 前記記憶部 を構成する電界効果型トランジスタが異なる膜厚領域を有するゲ一卜絶縁膜を 有する半導体記憶装置を製造する製造方法であって、 前記記憶部を構成する電 界効果型トランジスタのゲート絶縁膜の形成と、 前記記憶部以外の電子回路部 が有する電界効果型トランジスタの少なくともゲート絶縁膜とが、 共通のプロ セスで形成される工程を少なくとも有することを特徴とする半導体記憶装置の 製造方法。 23. Manufacturing for manufacturing a semiconductor memory device having at least a storage unit and an electronic circuit unit other than the storage unit, and a field-effect transistor constituting the storage unit having a gate insulating film having a different thickness region A method of forming a gate insulating film of a field-effect transistor constituting the storage unit and at least a gate insulating film of a field-effect transistor included in an electronic circuit unit other than the storage unit. A semiconductor memory device having at least a step formed by Production method.
24. 記憶部を構成する電界効果型トランジスタのゲ一ト絶縁膜を形成するェ 程と、 前記ゲート絶縁膜に電気的ストレスを印加し前記ゲー卜絶縁膜中にトラ ップ準位を形成する工程と、 を少なくとも有することを特徴とする不揮発性半 導体記憶装置の製造方法。  24. A step of forming a gate insulating film of a field-effect transistor constituting a storage unit, and applying an electric stress to the gate insulating film to form a trap level in the gate insulating film. A method for manufacturing a nonvolatile semiconductor memory device, comprising at least the following steps:
25. 前記ゲート絶縁膜を形成する工程が、 複数回の熱酸化の工程を有するこ とを特徴とする請求の範囲第 24項に記載の半導体記憶装置の製造方法。  25. The method according to claim 24, wherein the step of forming the gate insulating film includes a plurality of thermal oxidation steps.
26. 前記ゲート絶縁膜を形成する工程が、 異なる絶縁膜の製造方法によって 形成される工程を有することを特徴とする請求の範囲第 24項に記載の不揮発 性半導体記憶装置の製造方法。 26. The method for manufacturing a nonvolatile semiconductor memory device according to claim 24, wherein the step of forming the gate insulating film includes a step of forming the gate insulating film by a different insulating film manufacturing method.
27. 前記ゲート絶縁膜を形成する工程が、 CVD (Ch em i c a l V a p o u r D e p o s i t i o n) 法にて絶縁膜を形成する工程と、 熱酸化法 にて絶縁膜を形成する工程とを有することを特徴とする請求の範囲第 24項に 記載の不揮発性半導体記憶装置の製造方法。  27. The step of forming the gate insulating film includes a step of forming an insulating film by a chemical vapor deposition (CVD) method and a step of forming the insulating film by a thermal oxidation method. 25. The method for manufacturing a nonvolatile semiconductor memory device according to claim 24, wherein:
PCT/JP2001/005544 2001-06-28 2001-06-28 Nonvolatile semiconductor memory cell and semiconductor memory and method for fabricating nonvolatile semiconductor memory WO2003003473A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003509547A JPWO2003003473A1 (en) 2001-06-28 2001-06-28 Nonvolatile semiconductor storage element and semiconductor storage device
PCT/JP2001/005544 WO2003003473A1 (en) 2001-06-28 2001-06-28 Nonvolatile semiconductor memory cell and semiconductor memory and method for fabricating nonvolatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/005544 WO2003003473A1 (en) 2001-06-28 2001-06-28 Nonvolatile semiconductor memory cell and semiconductor memory and method for fabricating nonvolatile semiconductor memory

Publications (1)

Publication Number Publication Date
WO2003003473A1 true WO2003003473A1 (en) 2003-01-09

Family

ID=11737489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005544 WO2003003473A1 (en) 2001-06-28 2001-06-28 Nonvolatile semiconductor memory cell and semiconductor memory and method for fabricating nonvolatile semiconductor memory

Country Status (2)

Country Link
JP (1) JPWO2003003473A1 (en)
WO (1) WO2003003473A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998317B2 (en) 2003-12-18 2006-02-14 Sharp Laboratories Of America, Inc. Method of making a non-volatile memory using a plasma oxidized high-k charge-trapping layer
EP2264756A1 (en) * 2008-03-31 2010-12-22 Fujitsu Semiconductor Limited Semiconductor device
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027320A (en) * 1974-09-26 1977-05-31 Siemens Aktiengesellschaft Static storage element and process for the production thereof
JPS562670A (en) * 1979-06-21 1981-01-12 Nec Corp Manufacture of semiconductor memory device
JPS6442865A (en) * 1987-08-10 1989-02-15 Mitsubishi Electric Corp Semiconductor storage device
JPH06177393A (en) * 1992-12-03 1994-06-24 Rohm Co Ltd Nonvolatile storage device, its driving method, and its manufacture
JP2000323590A (en) * 1999-05-13 2000-11-24 Sony Corp Semiconductor device, nonvolatile semiconductor memory and manufacture thereof
JP2001101880A (en) * 1999-09-30 2001-04-13 Sony Corp Write-in method of non-volatile semiconductor memory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027320A (en) * 1974-09-26 1977-05-31 Siemens Aktiengesellschaft Static storage element and process for the production thereof
JPS562670A (en) * 1979-06-21 1981-01-12 Nec Corp Manufacture of semiconductor memory device
JPS6442865A (en) * 1987-08-10 1989-02-15 Mitsubishi Electric Corp Semiconductor storage device
JPH06177393A (en) * 1992-12-03 1994-06-24 Rohm Co Ltd Nonvolatile storage device, its driving method, and its manufacture
JP2000323590A (en) * 1999-05-13 2000-11-24 Sony Corp Semiconductor device, nonvolatile semiconductor memory and manufacture thereof
JP2001101880A (en) * 1999-09-30 2001-04-13 Sony Corp Write-in method of non-volatile semiconductor memory

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE 37TH ANNUAL INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 1999, pages 88 - 92, XP002946224 *
IEEE 38TH ANNUAL INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2000, pages 65 - 71, XP002946223 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998317B2 (en) 2003-12-18 2006-02-14 Sharp Laboratories Of America, Inc. Method of making a non-volatile memory using a plasma oxidized high-k charge-trapping layer
US8320191B2 (en) 2007-08-30 2012-11-27 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
US9030877B2 (en) 2007-08-30 2015-05-12 Infineon Technologies Ag Memory cell arrangement, method for controlling a memory cell, memory array and electronic device
EP2264756A1 (en) * 2008-03-31 2010-12-22 Fujitsu Semiconductor Limited Semiconductor device
EP2264756A4 (en) * 2008-03-31 2011-04-06 Fujitsu Semiconductor Ltd Semiconductor device
US8014204B2 (en) 2008-03-31 2011-09-06 Fujitsu Semiconductor Limited Semiconductor device

Also Published As

Publication number Publication date
JPWO2003003473A1 (en) 2004-10-21

Similar Documents

Publication Publication Date Title
KR100468745B1 (en) Non-volatile memory cell having a silicon-oxide-nitride-oxide-silicon gate structure and fabrication method of such cell
US5729035A (en) Non-volatile semiconductor device with multi-layered capacitor insulating film
US20070111357A1 (en) Manufacturing method of a non-volatile memory
US7531868B2 (en) Non-volatile semiconductor memory device
JP6385873B2 (en) Semiconductor device and manufacturing method thereof
JP5039368B2 (en) Semiconductor memory device, manufacturing method thereof and driving method thereof
KR100706071B1 (en) Single bit nonvolatile memory cell and methods for programming and erasing thereof
US7474548B2 (en) Semiconductor memory device and method for manufacturing the same
JP2005142354A (en) Non-volatile semiconductor storage device, its driving method, and manufacturing method
JP4497290B2 (en) Semiconductor device and manufacturing method thereof
US7541637B2 (en) Non-volatile semiconductor memory element and corresponding production and operation method
US9209197B2 (en) Memory gate landing pad made from dummy features
JP4969748B2 (en) Nonvolatile semiconductor memory device and method of manufacturing nonvolatile memory cell
JP2001077219A (en) Nonvolatile semiconductor storage device and manufacture thereof
WO2003003473A1 (en) Nonvolatile semiconductor memory cell and semiconductor memory and method for fabricating nonvolatile semiconductor memory
JP2008187051A (en) Semiconductor memory device
JPH1167937A (en) Semiconductor non-volatile storage device and manufacture thereof
KR20020041775A (en) Method for manufacturing nonvolatile semiconductor memory with narrow variation in threshold voltages of memory cells
JP2006080567A (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2003078045A (en) Nonvolatile semiconductor memory and its fabricating method
US7061046B2 (en) Non-volatile semiconductor memory device
JP2004538662A (en) Memory cell
JP2009135214A (en) Semiconductor memory device and method of fabricating the same
JP4348962B2 (en) Nonvolatile memory element, semiconductor memory device, and method of manufacturing nonvolatile memory element
JP2005116964A (en) Semiconductor memory and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003509547

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2004115389

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase