WO2003024171A2 - Method of treating photoresists using electrodeless uv lamps - Google Patents

Method of treating photoresists using electrodeless uv lamps Download PDF

Info

Publication number
WO2003024171A2
WO2003024171A2 PCT/US2002/028647 US0228647W WO03024171A2 WO 2003024171 A2 WO2003024171 A2 WO 2003024171A2 US 0228647 W US0228647 W US 0228647W WO 03024171 A2 WO03024171 A2 WO 03024171A2
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
lamp
sec
electrodeless
eis
Prior art date
Application number
PCT/US2002/028647
Other languages
French (fr)
Other versions
WO2003024171A3 (en
Inventor
Randal L. Campbell
James E. Jones
Original Assignee
Ppg Industries Ohio, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ppg Industries Ohio, Inc. filed Critical Ppg Industries Ohio, Inc.
Priority to AU2002333521A priority Critical patent/AU2002333521A1/en
Priority to JP2003528079A priority patent/JP2005503029A/en
Publication of WO2003024171A2 publication Critical patent/WO2003024171A2/en
Publication of WO2003024171A3 publication Critical patent/WO2003024171A3/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0082Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the exposure method of radiation-sensitive masks

Definitions

  • the present invention relates to methods and apparatus for treating photoresist materials using electrodeless UV lamps.
  • the present invention finds particular application in the preparation of circuit boards.
  • Processes for forming resist patterns on the surfaces of substrates typically comprise forming a photo-sensitive layer on the surface of the substrate, irradiating portions of the photo-sensitive layer with actinic light, and developing the irradiated layer. If the solubilization of the photoresist increases when exposed to actinic light, it is referred to as a "positive-acting" photoresist; the relatively high molecular weight positive-acting photoresist material depolymerizes, or undergoes breakage of the polymer bonds, upon exposure to actinic radiation thereby rendering the treated compound easily dissolved by developing solution.
  • the solubilization of the photoresist decreases when exposed to actinic radiation, it is referred to as a "negative- acting" photoresist; the relatively low molecular weight negative-acting material crosslinks upon exposure to actinic radiation and, thus, it is the non- treated compound that dissolves upon exposure to the developing solution.
  • Photoresists are often used to protect the underlying substrate from the effects of a subsequent etching process. Defects in the resist pattern, such as inadequate coverage over certain parts of the substrate or inadequate development of the irradiated layer, can result in problems in the completed product. Accordingly, it is important to employ a photoresist whose irradiated layer can adequately be developed and that forms a uniform layer over all surfaces of the substrate to be protected.
  • Photoreactive polymers are particularly useful as binder resins in photoresist compositions employed in photodevelopment of electronic components such as circuit boards and other products.
  • Positive-acting resists are often preferred in the manufacture of circuit boards; defects that will occur in the manufacture of circuit boards are easier to repair when positive-acting resists are used as compared to when negative-active resists are used.
  • the use of "masks” or “art work” prevents exposure of desired areas of the photoresist to UV light.
  • a positive resist is a relatively high molecular weight composition, such as a polymer, that depolymerizes upon exposure to UV light. The polymer bonds break thereby reducing the overall molecular weight of the composition.
  • the positive photoresist composition that is exposed to UV light is therefore more easily dissolved by a developing solution. In this manner, the portion of the composition that has been exposed to UV light is removed.
  • Negative photoresists are relatively low molecular weight compositions that crosslink upon exposure to UV light to form high molecular weight polymers. The material that is not crosslinked, i.e. that which is not exposed to UV light, is removed during the developing step.
  • the present methods find particular application in the preparation of electronic circuit boards.
  • the present invention is further directed to apparatus and methods for making a circuit board.
  • positive-acting photoresists are often preferred in the manufacture of circuit boards.
  • the surface characteristics of positive photoresists are often superior to negative photoresists, with fewer mechanical defects.
  • positive-acting photoresists often handle better than their negative counterparts.
  • the energy needed to break bonds in the case of positive photoresists is typically much higher than the energy needed to form bonds, or promote crosslinking in the case of negative photoresists; this increased energy requirement typically necessitates a longer exposure time to the light source.
  • Electroless UV lamps operate at a higher intensity, their use may significantly reduce the amount of UV exposure time for treating positive photoresists.
  • Figure 1 is a partially cross-sectioned, schematic view of an electrodeless UV lamp and energy source according to the present invention.
  • Figure 2 is a schematic view of an apparatus according to one embodiment of the present invention.
  • the present invention is directed to a method for treating a photoresist composition
  • a method for treating a photoresist composition comprising exposing the composition to radiation from an electrodeless UV lamp.
  • the photoresist is exposed to light, including but not limited to, light in the 100 to 450 nanometer (“nm") range.
  • the exposure should be at a dosage sufficient to effect the treatment, as further discussed below.
  • the method finds application in the treatment of both positive and negative photoresists.
  • “Treatment” in reference to a positive photoresist refers to exposure to UV radiation so as to effect depolymerization of the photoresist material, or increased solubilization of the resist.
  • Treating in reference to a negative photoresist refers to exposure to UV radiation so as to effect crosslinking of the photoresist material, or decreasing the solubility of the resist.
  • treating or treatment generally refers to effecting a difference in solubility between the portion of the photoresist exposed to radiation and the portion of the photoresist not exposed to radiation.
  • Any suitable positive photoresist can be treated according to the present methods. Examples of suitable positive photoresist compounds are described, for example, in U.S. Patent Nos. 6,100,008; 5,733,479; 5,721 ,088; 5,600,035; 5,489,714 and 5,449,834.
  • Positive photoresists are available, for example, from PPG Industries, Inc., in their Liquid Image Plus TM and Electro Image Plus® lines.
  • any suitable negative photoresist can be used according to the present invention.
  • Such compositions are described, for example, in U.S. Patent Nos. 5,721,088 and 5,674,660.
  • Negative photoresists are commercially available, for example, from Shipley Co., Marlboro, Massachusetts and Vantico, New York.
  • U.S. Patent No. 5,595,859 discloses a suitable electrodepositable photoresist composition. All of these patents and the references cited therein are hereby incorporated by reference.
  • Treatment of the photoresist is effected by exposure to UV radiation generated from an electrodeless UV lamp.
  • electrodeless UV lamps are commercially available, for example, from Fusion UV Systems, Inc., Gaithersburg, Maryland, such as the lamps in their F600S UV lamp system line.
  • Electrodeless UV lamps are also available from Primarc, a subsidiary of Nordson, Amherst, Ohio.
  • the gas inside the electrodeless bulb is excited by high frequency microwave energy emitted from a magnetron.
  • Bulb ignition is achieved by a small low pressure mercury vapor lamp located behind a reflector. This radiates short-wave UV light, which ionizes the gas inside the microwave bulb. The bulb reaches full power within a few seconds, producing the output necessary for treating the photoresist.
  • Bulbs are typically filled with mercury gas, either alone or in conjunction with a metal halide dopant.
  • Examples include mercury indium, mercury gallium, and mercury iron bulbs.
  • Metal halides without mercury can also be used in such lamps.
  • the bulbs are commercially available in a variety of watts per inch (wpi), such as those ranging from 300 to 600 wpi. It will be appreciated that different commercially available bulbs have different wpi values at different wavelengths.
  • a bulb can be selected so as to have the maximum wpi value at the desired wavelength or wavelength range.
  • FIG. 1 shows a suitable electrodeless UV lamp in partial cross-section, schematic form.
  • a microwave- excited electrodeless discharge lamp 2 is fitted inside housing 4 having reflector means 6.
  • a wave guide 8 is attached to magnetron 10 supplied with power from the power supply 12.
  • the magnetron 10 oscillates a microwave that is guided through wave guide 8 and into housing 4, forming a strong microwave magnetic field in housing 4.
  • the gas in the electrodeless discharged lamp 2 is excited, so as to radiate ultraviolet light as depicted by the arrows in Figure 1.
  • UV radiation emanating from lamp 2 can be directed towards the photoresist composition to be treated. This is typically done by the reflector means 6. It will be appreciated that a number of different reflectors and a variety of configurations can be used to direct the UV radiation to the photoresist. Different reflector configurations and lamps are described, for example, in U.S. Patent Nos. 6,118,130; 5,962,860 and 5,832,362. Although those patents discuss different applications with different objectives, the concepts of directing the radiation would be relevant here. Depending on the needs and desires of the user, the apparatus taught in these patents, or modifications thereof, could be useful for carrying out the present methods.
  • UV light is in the range of approximately 100 to 450 nm.
  • the wavelengths above about 315 nm are especially suitable for treating photoresists.
  • the "D" UV electrodeless bulb commercially available from Fusion UV Systems is particularly well suited for delivering UV light in the 320 to 380 nm range.
  • the dosage at which treatment of the photoresist is effected can vary depending on the particular photoresist used, the thickness of the photoresist, and the substrate to which the photoresist is applied. "Dosage” or “photo speed” refers to the amount of actinic radiation required to effect treatment of the photoresist film. Photo speed or dosage is typically expressed in milliJoules per centimeter 2 (mJ/cm 2 ).
  • Suitable dosages when treating a photoresist of between about 0.2 and 0.3 mils are typically about 400 mJ/cm 2 +/-25%, or about 400 mJ/cm 2 +/-10%, as measured with a Model 87 digital radiometer, Standard Probe 320-380, commercially obtained from EIS, Tukwila, Washington. It will be appreciated that dosages measured with equipment from other manufacturers -. even with digital radiometers using the same type of probe - can be significantly different than the values achieved with the EIS product. It will be further appreciated that the dosage given above is that to which the photoresist itself is exposed. As noted above, artwork or masks made of Mylar or other materials will absorb some of the UV radiation, as will print frames made of glass or glass and plastic.
  • Thickness of the photoresist should also be considered, as a thicker coating will typically require a higher dosage of radiation.
  • the appropriate dosage to use for a given application will be readily apparent to those skilled in the art.
  • the dosage needed to effect treatment results from administration of a particular intensity of light for a particular length of time.
  • a dosage of about 400 mJ/cm 2 as described can be achieved, for example, by exposure of the photoresist to UV radiation at an intensity of approximately 80 milliwatts per centimeter 2 ("mW/cm 2 ") for five seconds, or an intensity of 40 mW/cm 2 for ten seconds.
  • mW/cm 2 milliwatts per centimeter 2
  • a similar dosage would be achieved by administering approximately 50 mW/cm 2 for about eight seconds. Because it is often desired to minimize the amount of time in which treatment is effected, the intensity will generally be high enough to deliver the necessary dosage in the desired time, such as about five seconds or even less.
  • the distance between the light and the photoresist is related to the intensity, as set forth in The Inverse Square law: intensity is inversely proportional to (distance of light) 2 .
  • intensity is inversely proportional to (distance of light) 2 .
  • the photoresist composition should be uniformly exposed to the UV radiation.
  • the photoresist can be applied to any suitable substrate. Examples include wood, paper, particle board, chipboard, metals, metals having primers, glass, plastics, and metallized plastics.
  • the coated substrates have a variety of applications, such as in the chemical milling industry, lead frame manufacturing, manufacture of aperture screens, the printing plate industry and especially the circuit board industry.
  • the photoresist can be applied to the substrate by any known means, such as brushing, dipping, roll coating, doctor blade coating, spraying, curtain coating, and electrodeposition. Such methods are standard practice in the various arts in which the photoresists find application.
  • the present invention is further directed to an apparatus for making a circuit board.
  • the apparatus generally comprises an electrodeless UV lamp, means for directing radiant energy from the lamp to the photoresist, and means for affixing a mask to the photoresist.
  • the UV lamp and reflecting means can be as described above.
  • the means for affixing a mask to a photoresist can be those means standardly used in the circuit board art for this purpose.
  • this is an apparatus in which the substrate comprising photoresist on either or both sides is placed between a mask on one side or masks on both sides.
  • the substrate/mask(s) are placed in a print frame having windows of glass, Mylar, plastic and the like.
  • a vacuum is applied to the print frame, thereby drawing the mask(s) into intimate contact with the photoresist.
  • the vacuum is maintained during exposure to actinic radiation. Placement and maintenance of the mask(s) in the formation of circuit boards typically requires great precision or resolution, which cannot be achieved with current apparatus in which electrodeless UV light is used.
  • the apparatus will further comprise a support means that holds the substrate on which the photoresist is deposited during exposure to the radiant energy.
  • a support means that holds the substrate on which the photoresist is deposited during exposure to the radiant energy.
  • the support means can be a movable means, while the UV lamp is stationary relative to the support means.
  • the support means can be stationary and the UV lamp can move relative to the support, such as by scanning.
  • both the support means and UV light can move.
  • rapid and uniform exposure to UV radiation can be achieved.
  • UV lamps can also be positioned both above and below the substrate so that the photoresist composition on either side of a substrate can be treated. Use of lamps both above and below the substrate are particularly relevant in the preparation of circuit boards, which are typically treated on both sides.
  • Figure 2 depicts one embodiment of an apparatus according to the present invention.
  • the mask is affixed to the substrate using vacuum means 14.
  • the vacuumed print frame passed into housing 16 through inlet 18.
  • Support means 20 holds the print frame while in housing 16.
  • Housing 16 contains at least one electrodeless UV lamp (not shown) and means for directing radiation from the lamp to the photoresist (not shown). More than one lamp can be used within housing 16 such as one or more lamps above 16a or below 16b support means 20.
  • the exposed photoresist exits the housing 16 at outlet 22.
  • the apparatus it will be appreciated, can be fully automated.
  • the present invention is therefore further directed to methods for making a circuit board.
  • the methods generally comprise the steps of applying a photoresist to an electroconductive substrate; applying a mask over the photoresist; treating the photoresist with radiation from one or more electrodeless UV lamps at a dosage sufficient to effect the treatment of the photoresist; and developing the photoresist.
  • Application of the photoresist to the circuit board can be by any means known in the art, such as those means listed above for the application of a photoresist to a substrate. Particularly suitable for the preparation of circuit boards are roll coating and electrocoating.
  • the electroconductive substrate can be any metallic surface such as stainless steel, nickel, beryllium, copper, copper alloys, or mixtures thereof.
  • a piece of artwork or a mask is overlaid on the circuit board.
  • the mask prevents the penetration of UV radiation to certain portions of the photoresist.
  • the mask covers that which is to be retained on the circuit board, and for a negative photoresists the mask covers that which is to be eliminated from the circuit board.
  • the mask is overlaid on the photoresist and vacuumed to the board between a print frame, that is two pieces of glass, plastic or the like, as described above.
  • the vacuumed print frame can then be treated with radiation from one or more electrodeless UV lamps. The dose should be sufficient to effect treating of the photoresist.
  • SST Stouffer Step Tablet
  • the photoresist film After irradiation and removal of the photomask, the photoresist film is developed. Development of the photoresist film entails subjecting it to a developing solution by spraying, dipping, or the like. Any developing solution known in the art can be used. For example, a basic aqueous solution can be used for polymeric materials, such as KOH, NaOH, K 2 C0 3 and Na 2 C0 3 solutions.
  • the photoresist film is developed at a temperature between 0 and 180°F over a period of between about ten seconds and ten minutes.
  • the concentration of the base in the developing solution can be between about 0.05 and 20 weight percent in water.
  • the exposed areas of a negative photoresist become insolubilized, i.e. less soluble to a developing solution.
  • the developing solution removes one or the other.
  • the unexposed areas of the film are removed.
  • the portion of the substrate that is not covered by the photoresist is etched to form a circuit.
  • Etching involves the removal of the conductive substrate that is not covered with the photoresist film. Etching is typically conducted by subjecting the uncovered substrates to an etchant comprising, for example, ferric chloride solutions, cupric chloride, alkaline ammonical etchants or peroxide in sulfuric acid.
  • the etchant is usually sprayed onto the developed surfaces.
  • the etchant is usually at a temperature of between about 0 and 150°F, and remains on the surface of the substrate for a time sufficient to remove exposed copper metal, typically between about 1 and 20 minutes. After etching, stripping means known in the art are employed to remove the remaining photoresist film from the circuit board.
  • Stripping is typically conducted by placing the etched substrate in the stripping solution at a temperature of between about 20 and 212°F for a period of between about ten seconds to ten minutes.
  • the methods for making circuit boards according to the present invention can be carried out by using the apparatus described above.
  • polymer is meant to refer to oligomers and both homopolymers and copolymers.
  • Example 1 This example was run to confirm that treatment of photoresists, particularly positive photoresists, can be effected in times of less than 5 seconds.
  • the lamp used in the testing was commercially obtained from Fusion UV; the Fusion F-600 “D” bulb, which contains iron-doped mercury, and "H” bulb, which is pure mercury were used. As discussed below, use of the "D” bulb allowed adequate exposure times in 1 to 3 seconds.
  • the light was placed in a holder over top of a conveyor. The holder was adjustable in the "z” direction; the distance between the light and the conveyor surface was varied as indicated on the table below. Dosage was recorded both with the Power PuckTM, a radiometer commercially obtained through UV Process Supply, Inc., and the EIS Digital Radiometer, Model 87, discussed above.
  • the substrates tested according to the present invention were copper substrates that had been wire bar coated with Liquid-ImageTM to a thickness of between approximately 0.2 and 0.3.mils.
  • the Stouffer Step Tablet and piece of test artwork were laid on the coated substrate.
  • Duplicate panels were exposed to each of the two bulbs at four different heights.
  • the coated substrates were passed under the bulbs on conveyors, at speeds that correlated to an exposure time of approximately 2 seconds or less.
  • the different variables for each panel and the results obtained for each panel are provided in the table below.
  • Panels were exposed to UV radiation both with and without artwork. When no artwork was used, a Mylar film was laid on the photoresist to account for the UV radiation that would normally be absorbed by artwork made from this material. Following exposure, the panels were developed in a spray developer in a 1.5 percent NaOH solution at 150°F. Not all of the panels were developed. Control values were obtained using a high pressure mercury capillary electrode lamp applying the dosage and time indicated in Table 1.
  • the D lamp was the most effective. Particularly good results were achieved with Panel 19, which was exposed to light from the "D" bulb at a distance of 10 inches for approximately 2 seconds.
  • a developing time of 10-15 seconds without artwork or 20-30 seconds with artwork is typically seen using conventional methods; the clear times when using the present methods compare with those when using conventional means, which confirms that complete exposure was achieved when using the present methods.
  • Table 1 provides values for clear time, which will be appreciated as the time it took the UV exposed positive photoresist to be removed from the substrate either with or without artwork; “total time” is two times the clear time. “Clear SST” is the results of the Stouffer Step Tablet. All values were obtained by visualization. Table 1 also provides dosage readings as determined by the Power Puck and in EIS model 87 digital radiometer. It will be appreciated that the dosage of value as measured by each radiometer are quite different, thus illustrating the point that different radiometers give very different readings.
  • Example 2 This example further illustrates the methods for treating a positive photoresist according to the present invention.
  • Photoresist coated substrates as used in Example 1 were also used here, as was the "D" UV bulb, commercially obtained from Fusion UV Systems.
  • the substrates were contained within a vacuum print tray. Lamp distance from the vacuum print tray was varied from 11 inches to 30 inches, as indicated in the tables below.
  • the lamp unit was also evaluated at several angles in addition to the normal 90° or vertical position. Measurements were gathered using a grid superimposed on the glass of the vacuum print tray to confirm the uniformity of the pattern of exposure. In some cases, five panels were used at once and aligned as indicated in the tables. Exposure times of between 5 and 10 seconds were used.
  • the UV exposed panels were developed using a 1.5 percent NaOH solution at 105°F.
  • the EIS model 87 radiometer equipped with a standard 320-380 nm probe and a four UV band radiometer UV Power PuckTM were used to determine dosage.
  • Tables 2-8 showing results using various parameters. Looking to Table 7, for example, a rapid development (i.e. a 15 to 11 second clear time) was demonstrated using the current methods. Photoresist films of between about 0.20 and 0.30 mils were exposed and developed quickly in the 1.5 percent NaOH solution at 105°F and had less than 30 seconds of UV exposure and 60 seconds or less develop time (30 seconds or less clear time). The 0.20 mil samples exposed for 5 seconds had a 15 second clear time (30 second total develop time to a 3.0 SST). The 0.2 mil, 10 second exposure sample had an 11 second clear time (22 second total develop time to a 3.0 SST).
  • the 0.30 mil samples exposed for 5 seconds had a 28 second clear time (56 second total develop time to a 3.0 SST), and the 0.30 mil samples with 10 second exposure had an 18 second clear time (36 second total develop time to a 3.0 SST). This confirms that rapid results with high precision can be achieved using the present methods.
  • lamp centered front-to-back, distance from edge of lamp to panel center is 23".
  • Example 3 Substrates prepared as described above were subject to 5, 10 and 15 second exposure times using an F-600 "D" bulb centered over a 32" x 24" effected print area.
  • the lamp height was 15 inches and was parallel to the table surface.
  • Table 9 As can be seen from the table, the exposure times and conditions gave very rapid clear times and desirable clear SST values.

Abstract

Methods for treating a photoresist by exposure to light from an electrodeless UV bulb are disclosed. The methods are applicable to both positive and negative photoresists. In the case of positive photoresists, use of electrodeless UV lamps significantly reduces the UV exposure time. Methods for making circuit boards and apparatus for making circuit boards are also disclosed.

Description

METHOD OF TREATING PHOTORESISTS USING ELECTRODELESS UV LAMPS
FIELD OF THE INVENTION The present invention relates to methods and apparatus for treating photoresist materials using electrodeless UV lamps. The present invention finds particular application in the preparation of circuit boards.
BACKGROUND INFORMATION Processes for forming resist patterns on the surfaces of substrates typically comprise forming a photo-sensitive layer on the surface of the substrate, irradiating portions of the photo-sensitive layer with actinic light, and developing the irradiated layer. If the solubilization of the photoresist increases when exposed to actinic light, it is referred to as a "positive-acting" photoresist; the relatively high molecular weight positive-acting photoresist material depolymerizes, or undergoes breakage of the polymer bonds, upon exposure to actinic radiation thereby rendering the treated compound easily dissolved by developing solution. If the solubilization of the photoresist decreases when exposed to actinic radiation, it is referred to as a "negative- acting" photoresist; the relatively low molecular weight negative-acting material crosslinks upon exposure to actinic radiation and, thus, it is the non- treated compound that dissolves upon exposure to the developing solution. Photoresists are often used to protect the underlying substrate from the effects of a subsequent etching process. Defects in the resist pattern, such as inadequate coverage over certain parts of the substrate or inadequate development of the irradiated layer, can result in problems in the completed product. Accordingly, it is important to employ a photoresist whose irradiated layer can adequately be developed and that forms a uniform layer over all surfaces of the substrate to be protected.
Photoreactive polymers are particularly useful as binder resins in photoresist compositions employed in photodevelopment of electronic components such as circuit boards and other products. Positive-acting resists are often preferred in the manufacture of circuit boards; defects that will occur in the manufacture of circuit boards are easier to repair when positive-acting resists are used as compared to when negative-active resists are used. The irradiation of the photoresist, in the case of circuit board manufacture, often occurs through a glass or plastic cover sheet. The use of "masks" or "art work" prevents exposure of desired areas of the photoresist to UV light.
SUMMARY OF THE INVENTION The present invention is directed to the use of electrodeless UV lamps to effect treating of photoresist compositions. Both positive and negative photoresists can be treated according to the present invention. A positive resist, as discussed above, is a relatively high molecular weight composition, such as a polymer, that depolymerizes upon exposure to UV light. The polymer bonds break thereby reducing the overall molecular weight of the composition. The positive photoresist composition that is exposed to UV light is therefore more easily dissolved by a developing solution. In this manner, the portion of the composition that has been exposed to UV light is removed. Negative photoresists, in contrast, are relatively low molecular weight compositions that crosslink upon exposure to UV light to form high molecular weight polymers. The material that is not crosslinked, i.e. that which is not exposed to UV light, is removed during the developing step.
The present methods find particular application in the preparation of electronic circuit boards. To this end, the present invention is further directed to apparatus and methods for making a circuit board. While the present invention is directed to the treatment of both positive and negative photoresists, positive-acting photoresists are often preferred in the manufacture of circuit boards. The surface characteristics of positive photoresists are often superior to negative photoresists, with fewer mechanical defects. In addition, positive-acting photoresists often handle better than their negative counterparts. The energy needed to break bonds in the case of positive photoresists is typically much higher than the energy needed to form bonds, or promote crosslinking in the case of negative photoresists; this increased energy requirement typically necessitates a longer exposure time to the light source. This can result in a much longer manufacturing time per piece, particularly when using automated systems. Thus, notwithstanding the benefits achieved with a positive photoresist, because of the extended exposure time mass production of circuit boards and other products often favors the use of negative photoresists. The present invention addresses this issue. Because electrodeless UV lamps operate at a higher intensity, their use may significantly reduce the amount of UV exposure time for treating positive photoresists.
BRIEF DESCRIPTION OF THE FIGURES Figure 1 is a partially cross-sectioned, schematic view of an electrodeless UV lamp and energy source according to the present invention. Figure 2 is a schematic view of an apparatus according to one embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for treating a photoresist composition comprising exposing the composition to radiation from an electrodeless UV lamp. In this manner, the photoresist is exposed to light, including but not limited to, light in the 100 to 450 nanometer ("nm") range. The exposure should be at a dosage sufficient to effect the treatment, as further discussed below. As noted above, the method finds application in the treatment of both positive and negative photoresists. "Treatment" in reference to a positive photoresist refers to exposure to UV radiation so as to effect depolymerization of the photoresist material, or increased solubilization of the resist. "Treating" in reference to a negative photoresist refers to exposure to UV radiation so as to effect crosslinking of the photoresist material, or decreasing the solubility of the resist. Thus, treating or treatment generally refers to effecting a difference in solubility between the portion of the photoresist exposed to radiation and the portion of the photoresist not exposed to radiation. Any suitable positive photoresist can be treated according to the present methods. Examples of suitable positive photoresist compounds are described, for example, in U.S. Patent Nos. 6,100,008; 5,733,479; 5,721 ,088; 5,600,035; 5,489,714 and 5,449,834. Positive photoresists are available, for example, from PPG Industries, Inc., in their Liquid Image Plus and Electro Image Plus® lines. Similarly, any suitable negative photoresist can be used according to the present invention. Such compositions are described, for example, in U.S. Patent Nos. 5,721,088 and 5,674,660. Negative photoresists are commercially available, for example, from Shipley Co., Marlboro, Massachusetts and Vantico, New York. U.S. Patent No. 5,595,859 discloses a suitable electrodepositable photoresist composition. All of these patents and the references cited therein are hereby incorporated by reference.
Treatment of the photoresist is effected by exposure to UV radiation generated from an electrodeless UV lamp. These lamps are commercially available, for example, from Fusion UV Systems, Inc., Gaithersburg, Maryland, such as the lamps in their F600S UV lamp system line. Electrodeless UV lamps are also available from Primarc, a subsidiary of Nordson, Amherst, Ohio. In general, the gas inside the electrodeless bulb is excited by high frequency microwave energy emitted from a magnetron. Bulb ignition is achieved by a small low pressure mercury vapor lamp located behind a reflector. This radiates short-wave UV light, which ionizes the gas inside the microwave bulb. The bulb reaches full power within a few seconds, producing the output necessary for treating the photoresist. Bulbs are typically filled with mercury gas, either alone or in conjunction with a metal halide dopant. Examples include mercury indium, mercury gallium, and mercury iron bulbs. Metal halides without mercury can also be used in such lamps. The bulbs are commercially available in a variety of watts per inch (wpi), such as those ranging from 300 to 600 wpi. It will be appreciated that different commercially available bulbs have different wpi values at different wavelengths. A bulb can be selected so as to have the maximum wpi value at the desired wavelength or wavelength range.
Typically, when turning on a conventional UV lamp, an electrode attached to the bulb or a gas inside the bulb is burned up or consumed. This consumption eventually necessitates replacement of the bulbs. Because the electrodeless bulbs of the present invention are "turned on" by means of excitation, nothing is consumed that would shorten the life of the bulb; thus, the electrodeless UV bulbs do not wear out as quickly as other UV bulbs. This represents an advantage of the present invention.
Figure 1 shows a suitable electrodeless UV lamp in partial cross-section, schematic form. With reference to Figure 1 , a microwave- excited electrodeless discharge lamp 2, is fitted inside housing 4 having reflector means 6. A wave guide 8 is attached to magnetron 10 supplied with power from the power supply 12. The magnetron 10 oscillates a microwave that is guided through wave guide 8 and into housing 4, forming a strong microwave magnetic field in housing 4. By this strong microwave magnetic field, the gas in the electrodeless discharged lamp 2 is excited, so as to radiate ultraviolet light as depicted by the arrows in Figure 1.
UV radiation emanating from lamp 2 can be directed towards the photoresist composition to be treated. This is typically done by the reflector means 6. It will be appreciated that a number of different reflectors and a variety of configurations can be used to direct the UV radiation to the photoresist. Different reflector configurations and lamps are described, for example, in U.S. Patent Nos. 6,118,130; 5,962,860 and 5,832,362. Although those patents discuss different applications with different objectives, the concepts of directing the radiation would be relevant here. Depending on the needs and desires of the user, the apparatus taught in these patents, or modifications thereof, could be useful for carrying out the present methods.
It will be appreciated that UV light is in the range of approximately 100 to 450 nm. The wavelengths above about 315 nm are especially suitable for treating photoresists. According to the present invention, it would be desirable to expose the photoresist to an array of wavelengths in the UV range, particularly the 320 to 380 nm range, and there would be no desire to filter out any of the wavelengths in this range. The "D" UV electrodeless bulb commercially available from Fusion UV Systems is particularly well suited for delivering UV light in the 320 to 380 nm range. It will be appreciated, however, that certain substrates will be covered with, for example, glass and/or Mylar during exposure to the UV radiation and as a result radiation below about 320 nm or 280 nm, depending on the material(s) used, may be filtered out. Exposure to the wavelengths of 320 nm and above, however, will not be impeded. Thus, exposure to wavelengths between about 280 and 450 or about 320 and 450 are particularly relevant to many applications of the current methods.
The dosage at which treatment of the photoresist is effected can vary depending on the particular photoresist used, the thickness of the photoresist, and the substrate to which the photoresist is applied. "Dosage" or "photo speed" refers to the amount of actinic radiation required to effect treatment of the photoresist film. Photo speed or dosage is typically expressed in milliJoules per centimeter2 (mJ/cm2). Suitable dosages when treating a photoresist of between about 0.2 and 0.3 mils are typically about 400 mJ/cm2 +/-25%, or about 400 mJ/cm2 +/-10%, as measured with a Model 87 digital radiometer, Standard Probe 320-380, commercially obtained from EIS, Tukwila, Washington. It will be appreciated that dosages measured with equipment from other manufacturers -. even with digital radiometers using the same type of probe - can be significantly different than the values achieved with the EIS product. It will be further appreciated that the dosage given above is that to which the photoresist itself is exposed. As noted above, artwork or masks made of Mylar or other materials will absorb some of the UV radiation, as will print frames made of glass or glass and plastic. These factors should be accounted for when determining how to administer the appropriate dosage. Thickness of the photoresist should also be considered, as a thicker coating will typically require a higher dosage of radiation. The appropriate dosage to use for a given application will be readily apparent to those skilled in the art.
The dosage needed to effect treatment results from administration of a particular intensity of light for a particular length of time. A dosage of about 400 mJ/cm2 as described can be achieved, for example, by exposure of the photoresist to UV radiation at an intensity of approximately 80 milliwatts per centimeter2 ("mW/cm2") for five seconds, or an intensity of 40 mW/cm2 for ten seconds. A similar dosage would be achieved by administering approximately 50 mW/cm2 for about eight seconds. Because it is often desired to minimize the amount of time in which treatment is effected, the intensity will generally be high enough to deliver the necessary dosage in the desired time, such as about five seconds or even less.
It will further be appreciated that the distance between the light and the photoresist is related to the intensity, as set forth in The Inverse Square law: intensity is inversely proportional to (distance of light)2. Thus, the distance at which the electrodeless UV lamp is placed in relation to the photoresist composition should be taken into account when calculating the desired dosage and intensity. The distance between the UV lamp and the photoresist composition should be close enough to effect relatively quick treatment (i.e. about five seconds or less) but not so close to cause heat damage.
It will be appreciated that the parameters discussed above will vary depending on the photoresist being used, its thickness, and the application. Generally, the photoresist composition should be uniformly exposed to the UV radiation. The photoresist can be applied to any suitable substrate. Examples include wood, paper, particle board, chipboard, metals, metals having primers, glass, plastics, and metallized plastics. The coated substrates have a variety of applications, such as in the chemical milling industry, lead frame manufacturing, manufacture of aperture screens, the printing plate industry and especially the circuit board industry. The photoresist can be applied to the substrate by any known means, such as brushing, dipping, roll coating, doctor blade coating, spraying, curtain coating, and electrodeposition. Such methods are standard practice in the various arts in which the photoresists find application.
The present invention is further directed to an apparatus for making a circuit board. The apparatus generally comprises an electrodeless UV lamp, means for directing radiant energy from the lamp to the photoresist, and means for affixing a mask to the photoresist. The UV lamp and reflecting means can be as described above. The means for affixing a mask to a photoresist can be those means standardly used in the circuit board art for this purpose. Typically, this is an apparatus in which the substrate comprising photoresist on either or both sides is placed between a mask on one side or masks on both sides. The substrate/mask(s) are placed in a print frame having windows of glass, Mylar, plastic and the like. A vacuum is applied to the print frame, thereby drawing the mask(s) into intimate contact with the photoresist. The vacuum is maintained during exposure to actinic radiation. Placement and maintenance of the mask(s) in the formation of circuit boards typically requires great precision or resolution, which cannot be achieved with current apparatus in which electrodeless UV light is used.
Typically, the apparatus will further comprise a support means that holds the substrate on which the photoresist is deposited during exposure to the radiant energy. Because the application of radiant energy should be uniform, and because the speed at which treatment is effected is often important, it is further desirable that either the support means, the UV lamp, or both, be moveable. For example, the support means can be a movable means, while the UV lamp is stationary relative to the support means. Alternatively, the support means can be stationary and the UV lamp can move relative to the support, such as by scanning. Alternatively, both the support means and UV light can move. In any embodiment, according to the invention, rapid and uniform exposure to UV radiation can be achieved.
It is further possible for the present apparatus to employ a plurality of UV lamps positioned at various angles relative to the substrate. In this manner, uniformity of UV exposure can be further ensured. UV lamps can also be positioned both above and below the substrate so that the photoresist composition on either side of a substrate can be treated. Use of lamps both above and below the substrate are particularly relevant in the preparation of circuit boards, which are typically treated on both sides.
Figure 2 depicts one embodiment of an apparatus according to the present invention. The mask is affixed to the substrate using vacuum means 14. The vacuumed print frame passed into housing 16 through inlet 18. Support means 20 holds the print frame while in housing 16. Housing 16 contains at least one electrodeless UV lamp (not shown) and means for directing radiation from the lamp to the photoresist (not shown). More than one lamp can be used within housing 16 such as one or more lamps above 16a or below 16b support means 20. The exposed photoresist exits the housing 16 at outlet 22. The apparatus, it will be appreciated, can be fully automated.
The present invention is therefore further directed to methods for making a circuit board. The methods generally comprise the steps of applying a photoresist to an electroconductive substrate; applying a mask over the photoresist; treating the photoresist with radiation from one or more electrodeless UV lamps at a dosage sufficient to effect the treatment of the photoresist; and developing the photoresist. Application of the photoresist to the circuit board can be by any means known in the art, such as those means listed above for the application of a photoresist to a substrate. Particularly suitable for the preparation of circuit boards are roll coating and electrocoating. The electroconductive substrate can be any metallic surface such as stainless steel, nickel, beryllium, copper, copper alloys, or mixtures thereof.
Following application of the photoresist to a suitable substrate, a piece of artwork or a mask is overlaid on the circuit board. The mask prevents the penetration of UV radiation to certain portions of the photoresist. For positive photoresists the mask covers that which is to be retained on the circuit board, and for a negative photoresists the mask covers that which is to be eliminated from the circuit board. Typically, the mask is overlaid on the photoresist and vacuumed to the board between a print frame, that is two pieces of glass, plastic or the like, as described above. The vacuumed print frame can then be treated with radiation from one or more electrodeless UV lamps. The dose should be sufficient to effect treating of the photoresist. The parameters discussed above regarding dosage and related factors are applicable to the present methods for making circuit boards. Because different radiometers can give very divergent dosage readings, the circuit board industry has established the Stouffer Step Tablet ("SST") for standardization purposes. SST is a 21 -step gray scale that will provide image quality results that can be compared regardless of the developer used, the radiometer used, etc. For positive photoresists, a clear value of about 5 or less is typically desired, while for negative photoresists, a solid value of greater than 8 is typically desired. The present methods achieve these parameters. The clear value represents the density of photoresist that is "cleared away" after exposure to UV radiation and developing solution. The solid value that remains represents the exposure level for a negative photoresist. After irradiation and removal of the photomask, the photoresist film is developed. Development of the photoresist film entails subjecting it to a developing solution by spraying, dipping, or the like. Any developing solution known in the art can be used. For example, a basic aqueous solution can be used for polymeric materials, such as KOH, NaOH, K2C03 and Na2C03 solutions.
Usually, the photoresist film is developed at a temperature between 0 and 180°F over a period of between about ten seconds and ten minutes. The concentration of the base in the developing solution can be between about 0.05 and 20 weight percent in water. The exposed areas of a negative photoresist become insolubilized, i.e. less soluble to a developing solution. The opposite is true for a positive photoresist. Thus, there is a solubility differential between the exposed and unexposed areas of the photoresist film, and the developing solution removes one or the other. For a negative photoresist, the unexposed areas of the film are removed. After the development, the portion of the substrate that is not covered by the photoresist is etched to form a circuit. Etching involves the removal of the conductive substrate that is not covered with the photoresist film. Etching is typically conducted by subjecting the uncovered substrates to an etchant comprising, for example, ferric chloride solutions, cupric chloride, alkaline ammonical etchants or peroxide in sulfuric acid. The etchant is usually sprayed onto the developed surfaces. The etchant is usually at a temperature of between about 0 and 150°F, and remains on the surface of the substrate for a time sufficient to remove exposed copper metal, typically between about 1 and 20 minutes. After etching, stripping means known in the art are employed to remove the remaining photoresist film from the circuit board. Stripping is typically conducted by placing the etched substrate in the stripping solution at a temperature of between about 20 and 212°F for a period of between about ten seconds to ten minutes. The methods for making circuit boards according to the present invention can be carried out by using the apparatus described above.
As used herein, unless otherwise expressly specified, all numbers such as those expressing values, ranges, amounts or percentages may be read as if prefaced by the word "about", even if the term does not expressly appear. Also, as used herein, the term "polymer" is meant to refer to oligomers and both homopolymers and copolymers.
EXAMPLES
The following examples are intended to illustrate the invention, and should not be construed as limiting the invention in any way.
Example 1 This example was run to confirm that treatment of photoresists, particularly positive photoresists, can be effected in times of less than 5 seconds. The lamp used in the testing was commercially obtained from Fusion UV; the Fusion F-600 "D" bulb, which contains iron-doped mercury, and "H" bulb, which is pure mercury were used. As discussed below, use of the "D" bulb allowed adequate exposure times in 1 to 3 seconds. The light was placed in a holder over top of a conveyor. The holder was adjustable in the "z" direction; the distance between the light and the conveyor surface was varied as indicated on the table below. Dosage was recorded both with the Power Puck™, a radiometer commercially obtained through UV Process Supply, Inc., and the EIS Digital Radiometer, Model 87, discussed above.
The substrates tested according to the present invention were copper substrates that had been wire bar coated with Liquid-Image™ to a thickness of between approximately 0.2 and 0.3.mils. The Stouffer Step Tablet and piece of test artwork were laid on the coated substrate. Duplicate panels were exposed to each of the two bulbs at four different heights. The coated substrates were passed under the bulbs on conveyors, at speeds that correlated to an exposure time of approximately 2 seconds or less. The different variables for each panel and the results obtained for each panel are provided in the table below. Panels were exposed to UV radiation both with and without artwork. When no artwork was used, a Mylar film was laid on the photoresist to account for the UV radiation that would normally be absorbed by artwork made from this material. Following exposure, the panels were developed in a spray developer in a 1.5 percent NaOH solution at 150°F. Not all of the panels were developed. Control values were obtained using a high pressure mercury capillary electrode lamp applying the dosage and time indicated in Table 1.
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
As can be seen from the above table, the D lamp was the most effective. Particularly good results were achieved with Panel 19, which was exposed to light from the "D" bulb at a distance of 10 inches for approximately 2 seconds. The clear time, or time it takes for the positive photoresist to be washed off, was achieved in 20 seconds when artwork was used and 12 seconds with no artwork. A developing time of 10-15 seconds without artwork or 20-30 seconds with artwork is typically seen using conventional methods; the clear times when using the present methods compare with those when using conventional means, which confirms that complete exposure was achieved when using the present methods.
Table 1 provides values for clear time, which will be appreciated as the time it took the UV exposed positive photoresist to be removed from the substrate either with or without artwork; "total time" is two times the clear time. "Clear SST" is the results of the Stouffer Step Tablet. All values were obtained by visualization. Table 1 also provides dosage readings as determined by the Power Puck and in EIS model 87 digital radiometer. It will be appreciated that the dosage of value as measured by each radiometer are quite different, thus illustrating the point that different radiometers give very different readings.
Example 2 This example further illustrates the methods for treating a positive photoresist according to the present invention. Photoresist coated substrates as used in Example 1 were also used here, as was the "D" UV bulb, commercially obtained from Fusion UV Systems. The substrates were contained within a vacuum print tray. Lamp distance from the vacuum print tray was varied from 11 inches to 30 inches, as indicated in the tables below. The lamp unit was also evaluated at several angles in addition to the normal 90° or vertical position. Measurements were gathered using a grid superimposed on the glass of the vacuum print tray to confirm the uniformity of the pattern of exposure. In some cases, five panels were used at once and aligned as indicated in the tables. Exposure times of between 5 and 10 seconds were used. The UV exposed panels were developed using a 1.5 percent NaOH solution at 105°F. The EIS model 87 radiometer equipped with a standard 320-380 nm probe and a four UV band radiometer UV Power Puck™ were used to determine dosage.
Tables 2-8 showing results using various parameters. Looking to Table 7, for example, a rapid development (i.e. a 15 to 11 second clear time) was demonstrated using the current methods. Photoresist films of between about 0.20 and 0.30 mils were exposed and developed quickly in the 1.5 percent NaOH solution at 105°F and had less than 30 seconds of UV exposure and 60 seconds or less develop time (30 seconds or less clear time). The 0.20 mil samples exposed for 5 seconds had a 15 second clear time (30 second total develop time to a 3.0 SST). The 0.2 mil, 10 second exposure sample had an 11 second clear time (22 second total develop time to a 3.0 SST). The 0.30 mil samples exposed for 5 seconds had a 28 second clear time (56 second total develop time to a 3.0 SST), and the 0.30 mil samples with 10 second exposure had an 18 second clear time (36 second total develop time to a 3.0 SST). This confirms that rapid results with high precision can be achieved using the present methods.
Table 2
Set up with one F-600 "D" Bulb centered over a 36" x 24" effective print area, as indicated by "X"
Lamp height - 30"
Dosages in 30 seconds.
Nos. given in mJ/cm2 / mW/cm2
Note: lamp slightly out of level by approx. 5 degrees, thus left side readings are higher.
Back/left 36" / 24" 30" / 21" 6" / 21" 0" / 24" Back/ri
EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V
Figure imgf000020_0001
Front/left 36" / 0" 30" / 3" 18" / 12" 6" / 3" 0" / 0" Front/ri
Table 3
Initial testing Set up with one F-600 "D" Bulb centered over a 36" x 24" effective print area, as indicated in grid
Lamp height - 15"
Dosages in 10 seconds.
Nos. given in mJ/cm2 / mW/cm2
Note: lamp leveled.
Back/left 36" / 24" 30" / 21" 6" / 21" 0" / 24" Back/right
EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V
Figure imgf000021_0001
V
Front/left 36" 1 0" 30" / 3" 18" / 12" 6" / 3" 0" / 0" Front/right
Panel No. Exposure Time Develop Clear Time Total Dev. Time Clear SST
18-1 10 sec. 120 sec. 240 sec. 100% UFL 18-2 10 sec. 25 sec. 50 sec. 3
Table 4
Initial testing Set up with one F-600 "D" Bulb at right side aiming toward the center of the 36" x 24" effective print area, as indicated by "X"
Lamp height - 15" at 45° angle from right edge.
Dosages in 30 seconds.
Nos. given in mJ/cm2 / mW/cm2
Note: lamp centered front-to-back, distance from edge of lamp to panel center is 23".
Back/left 36" / 24" 30" / 21" 24" / 24" 20" / 24" 16" / 24" 8" / 24" 4" / 24" 0" / 24" Back/
EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V
Figure imgf000022_0001
V Front/left 36" / 0" 30" / 3" 24" / 0" 20" / 0" 16" 1 0" 8" / 0" 4" / 0" 0" / 0" Front/
Table 5
Initial testing Set up with one F-600 "D" Bulb at right side aiming toward the center of the 36" x 24" effective print area, as indicated by "X"
Lamp height - 15" at 45° angle from right edge. Dosages in 30 seconds. Nos. given in mJ/cm2 / mW/cm2
Note: lamp centered front-to-back, distance from edge of lamp to panel center is 21". Exposed Panels for 30 sec. Arranged at 1 , 2
3 4, 5
Back/left Back
EIS
A
B
C
V
EIS
A
B
C
V
EIS
A
B
C
V
EIS
A
B
C
V
EIS
A
B
C
V
EIS
A
B
C
Figure imgf000023_0001
V
Front left 36" / 0" 30" / 3" 24" / 0" 20" / 0" 16" / 0" 12" / 0" 8" / 0" 4" / 0" 0" / 0" Front
Table 5 (Cont'd)
Panel No. Exposure Time Develot Total Dev. Time Clear SST
1 30 sec. 35 sec. 70 sec. 3
2 30 sec. 75 sec. 150 sec. 3.5
3 30 sec. i 1 sec. 22 sec. 3
4 30 sec. 30 sec. 60 sec. 3 -
5 30 sec. 65 sec. 130 sec. 3
Table 6
Initial testing Set up with one F-600 "D" Bulb at right side aiming toward the center of the 36" x 24" effective print area, as indicated by "X"
Lamp height - 15" at 15° angle from 4" in from right edge. Dosages in 30 seconds. Nos. given in mJ/cm2 / mW/cm2
Note: lamp centered front-to-back, distance from edge of lamp to panel center is 17.5". Exposed Panels for 30 sec. Arranged at 6, 7
8 9, 10
Back left Bac
EIS
A
B
C
V
EIS
A
B
C
V
EIS
A
B
C
V
EIS
A
B
C
V
EIS
A
B
C
V
EIS
A
B
C
Figure imgf000025_0001
V
Front/left 36" / 0" 24" / 0" 20" / 0" 16" / 0" 12" 10" 8" / 0" 4" / 0" 0" / 0" Fro
Table 6 (Cont'd.)
Panel No. Exposure Time Develo Total Dev. Time Clear SST
6 30 sec. 45 sec. 90 sec.
7 30 sec. 75 sec. 150 sec.
8 30 sec. 7 sec. 14 sec.
9 30 sec. 55 sec. 110 sec.
10 30 sec. 35 sec. 70 sec.
Table 7
Initial testing Set up with one F-600 "D" Bulb centered over a 36" x 24" effective print area
Lamp height - 15" at parallel from in from table.
Dosages in 15 seconds.
Nos. given in mJ/cm2 / mW/cm2
Note: lamp centered front-to-back
Back/left 36"/ 24" 24"/ 24" 20"/ 24" 16"/ 24" 12"/ 24" 4" / 24" 0" / 24" Back/r
EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V
Figure imgf000027_0001
V Front/left 36" / 0" 24" 10" 20" 10" 18"/0" 14"/0" 12" 10" 8"/0" 4"/0" 0"/0" Froπt/r
Table 7 (Cont'd)
Additional Measurements at Parallel in center directly beneath lamp.
Develop 2x Dev.
Lamp Height Exposure Time APM mJ/cm2 B V Clear Time Time Clear SST
15" 15 sec. 1092 7261 / 463 2107/139 218/14 4264 / 283 9 sec. 18 sec. 3.5 15" 10 sec. 574 4311 /449 1318/138 144/14 2461 / 274 11 sec. 22 sec. 3 15" 5 sec. 329 2572/452 844/139 100/14 1408/253 15 sec. 30 sec. 3
20" 15 sec. 615 4167 / 264 1224/80 129/9 2461 / 164 15 sec. 30 sec. 3 20" 10 sec. 387 2826 / 262 848 / 80 92/8 1638/162 23 sec. 46 sec. 3 20" 5 sec. 213 1591/262 517/80 61/8 880/150 50 sec. 100 sec. 3
15" 15 sec. Electro-Image Exposure to be developed at PPG 15" 10 sec. Electro-Image Exposure to be developed at PPG 15" 10 sec. Electro-Image Exposure to be developed at PPG 15" 5 sec. Electro-Image Exposure to be developed at PPG
15" 15 sec. 22 bar Coating, DFT - 0.3 mil. 13 sec. 26 sec. 3 15" 10 sec. 22 bar Coating, DFT - 0.3 mil. 18 sec. 36 sec. 3 15" 5 sec. 22 bar Coating, DFT - 0.3 mil. 28 sec. 56 sec. 3
20" 15 sec. 22 bar Coating, DFT - 0.3 mil. 24 sec. 48 sec. 3 20" 15 sec. 22 bar Coating, DFT - 0.3 mil. 35 sec. 70 sec. 3 20" 15 sec. 22 bar Coating, DFT - 0.3 mil. 75 sec. 150 sec. 3+
Table 8 Initial testing Set up with one F-600 "D" Bulb centered over a 36" x 24" effective print area
Lamp height - 11" at parallel from in from table. mJ/cm2 / mW/cm2
Dosages in 15 seconds. EIS V
Nos. given in mJ/cm2 / mW/cm2 Center Reading at 5 sec. = 710 mJ 5204/822 1699/253 200/26 2893/474 Note: lamp centered front-to-back Center Reading at 10 sec.= 1106 mJ 8193/822 2515/255 276/27 4703/506
Back left 36" / 24" 24" / 24" 20*724" 16" / 24" 12" / 24" 4" / 24" 0" / 24" Back right
EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS ►
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V V EIS EIS
A A
B B
C C
V
Figure imgf000029_0001
V
Front/left 36" / 0" 24" / 0" 20" / 0" 18" / 0" 14" / 0" 12" / 0" 8" / 0" 4" / 0" 0" / 0" Front/πgnr Panel No. Expose Time Develop Clear Time 2x Dev Time Clear SST Comments
5 sec. 10 sec. 20 sec. 3.5 Both panels at the center point directly beneath the lamp. 10 sec. 7 sec. 14 sec. 4
Example 3 Substrates prepared as described above were subject to 5, 10 and 15 second exposure times using an F-600 "D" bulb centered over a 32" x 24" effected print area. The lamp height was 15 inches and was parallel to the table surface. The results are provided in Table 9. As can be seen from the table, the exposure times and conditions gave very rapid clear times and desirable clear SST values.
Table 9
Figure imgf000030_0001
Whereas particular embodiments of this invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A method for treating a photoresist composition comprising exposing said composition to radiation from an electrodeless UV lamp in the 100 nm to 450 nm wavelength range at a dosage sufficient to effect said treating.
2. The method of Claim 1 , wherein said radiation is in the 280 to 450 wavelength range.
3. The method of Claim 1 , wherein said photoresist is a positive photoresist and treating results in increasing the solubility of the photoresist.
4. The method of Claim 1 , wherein said photoresist is a negative photoresist and treating results in decreasing the solubility of the photoresist.
5. The method of Claim 1 , wherein a mask is used over the photoresist to allow for radiation exposure in a predetermined pattern.
6. The method of Claim 5, wherein the mask is affixed to the photoresist within a print frame by vacuum means.
7. The method of Claim 1 , wherein said dosage is effected by exposing said photoresist to radiation at an intensity of between 40 and 80 milliwatts per centimeter2 for a period of between 5 and 10 seconds.
8. The method of Claim 7, wherein an intensity of 80 milliwatts per centimeter2 is employed for 5 seconds.
9. The method of Claim 7, wherein an intensity of 50 milliwatts per centimeter2 is employed for 8 seconds.
10. The method of Claim 7, wherein an intensity of 40 milliwatts per centimeter2 is employed for 10 seconds.
11. An apparatus for making a circuit board from a substrate on which a photoresist is deposited comprising: an electrodeless UV lamp; means for directing radiant energy from said lamp to said photoresist; and means for affixing a mask to said photoresist.
12. The apparatus of Claim 11 , further comprising: support means to hold said substrate during exposure to said radiant energy.
13. The apparatus of Claim 12, wherein the support means, the electrodeless UV lamp, or both, are movable.
14. The apparatus of Claim 13, wherein the support means is stationary and the electrodeless UV lamp moves.
15. The apparatus of Claim 13, wherein the UV lamp is stationary and the support means moves.
16. The apparatus of Claim 11, wherein the affixing means is a vacuum means for affixing the mask to the photoresist within a print frame.
17. The apparatus of Claim 11, comprising a plurality of electrodeless UV lamps.
18. The apparatus of Claim 17, wherein at least one of said lamps is positioned above said substrate and at least one of said lamps is positioned below said substrate.
19. The apparatus of Claim 11 , wherein said apparatus is fully automated.
20. A method for making a circuit board comprising: applying a photoresist to an electroconductive substrate; applying a mask over the photoresist; treating said photoresist with radiation from an electrodeless UV lamp at a dosage sufficient to effect said treating; and developing the photoresist.
21. The method of Claim 20, wherein said photoresist is a positive photoresist.
22. The method of Claim 21 , wherein said dosage is sufficient to achieve an SST clear value of 5 or less.
23. The method of Claim 20, wherein said photoresist is a negative photoresist.
24. The method of Claim 23, wherein said dosage is sufficient to achieve an SST solid value of greater than 8.
PCT/US2002/028647 2001-09-12 2002-09-10 Method of treating photoresists using electrodeless uv lamps WO2003024171A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002333521A AU2002333521A1 (en) 2001-09-12 2002-09-10 Method of treating photoresists using electrodeless uv lamps
JP2003528079A JP2005503029A (en) 2001-09-12 2002-09-10 Method for processing photoresist using electrodeless UV lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/951,582 US6620574B2 (en) 2001-09-12 2001-09-12 Method of treating photoresists using electrodeless UV lamps
US09/951,582 2001-09-12

Publications (2)

Publication Number Publication Date
WO2003024171A2 true WO2003024171A2 (en) 2003-03-20
WO2003024171A3 WO2003024171A3 (en) 2003-08-28

Family

ID=25491862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/028647 WO2003024171A2 (en) 2001-09-12 2002-09-10 Method of treating photoresists using electrodeless uv lamps

Country Status (4)

Country Link
US (2) US6620574B2 (en)
JP (2) JP2005503029A (en)
AU (1) AU2002333521A1 (en)
WO (1) WO2003024171A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050271973A1 (en) * 2004-06-04 2005-12-08 Ziegler Michael J Negative acting photoresist with improved blocking resistance
US20090101829A1 (en) * 2007-10-19 2009-04-23 Nordson Corporation Sensor, system, and method for an ultraviolet lamp system
US9165756B2 (en) * 2011-06-08 2015-10-20 Xenex Disinfection Services, Llc Ultraviolet discharge lamp apparatuses with one or more reflectors
US8986562B2 (en) 2013-08-07 2015-03-24 Ultratech, Inc. Methods of laser processing photoresist in a gaseous environment
US20170334170A1 (en) * 2016-03-23 2017-11-23 Atieh Haghdoost Articles including adhesion enhancing coatings and methods of producing them

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0063041A2 (en) * 1981-04-13 1982-10-20 P.A. Consulting Services Limited Improved incremental bending method and apparatus
US4532427A (en) * 1982-03-29 1985-07-30 Fusion Systems Corp. Method and apparatus for performing deep UV photolithography
US5006397A (en) * 1987-02-06 1991-04-09 Key-Tech, Inc. Printed circuit board
DE4302555A1 (en) * 1992-01-29 1993-09-30 Fusion Systems Corp Excimer radiation generating lamp - has high pressure halogen filling, useful for UV treatment of coatings

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721643B2 (en) 1986-03-13 1995-03-08 ウシオ電機株式会社 Resist processing method
JPS63234529A (en) * 1987-03-24 1988-09-29 Ushio Inc Treatment of resist
US5726815A (en) 1996-04-12 1998-03-10 Fusion Uv Systems, Inc. Apparatus for aligning the object focus in filament irradiating units
US5903091A (en) 1996-05-31 1999-05-11 Fusion Lighting, Inc. Lamp method and apparatus using multiple reflections
US5832362A (en) 1997-02-13 1998-11-03 The Procter & Gamble Company Apparatus for generating parallel radiation for curing photosensitive resin
US5962860A (en) 1997-05-19 1999-10-05 The Procter & Gamble Company Apparatus for generating controlled radiation for curing photosensitive resin
US6118130A (en) 1998-11-18 2000-09-12 Fusion Uv Systems, Inc. Extendable focal length lamp
JP2000311933A (en) * 1999-04-27 2000-11-07 Canon Inc Substrate-retaining device, substrate-carrying system, projection aligner, coating device, device-manufacturing method, and substrate-retaining part cleaning method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0063041A2 (en) * 1981-04-13 1982-10-20 P.A. Consulting Services Limited Improved incremental bending method and apparatus
US4532427A (en) * 1982-03-29 1985-07-30 Fusion Systems Corp. Method and apparatus for performing deep UV photolithography
US5006397A (en) * 1987-02-06 1991-04-09 Key-Tech, Inc. Printed circuit board
DE4302555A1 (en) * 1992-01-29 1993-09-30 Fusion Systems Corp Excimer radiation generating lamp - has high pressure halogen filling, useful for UV treatment of coatings

Also Published As

Publication number Publication date
JP2005503029A (en) 2005-01-27
US6620574B2 (en) 2003-09-16
JP2008078666A (en) 2008-04-03
AU2002333521A1 (en) 2003-03-24
US20030211426A1 (en) 2003-11-13
WO2003024171A3 (en) 2003-08-28
US20030129537A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
US4436806A (en) Method and apparatus for making printed circuit boards
JPS58114031A (en) Manufacture of relief image
JPH0143940B2 (en)
US4789622A (en) Production of resist images, and a suitable dry film resist
EP0038967A1 (en) Process for producing a patterned resist image
JPS61220328A (en) Manufacture and use of lift of mask
JPS5692536A (en) Pattern formation method
EP0460919A2 (en) Process for exposing a photosensitive resin composition to light
JP2008078666A (en) Method for processing photoresist using electrodeless uv lamp
US5296271A (en) Microwave treatment of photoresist on a substrate
CA2050629A1 (en) Process for defined etching of substrates
JP4769680B2 (en) Pattern forming composition comprising metal fine particle dispersion and pattern forming method
JP2006030999A (en) Photosensitive resin laminate
EP0425437A2 (en) Method for making metallic patterns
US6699646B2 (en) Positive type photosensitive resin composition and method for forming resist pattern
JP2003215777A (en) Member for mask film, method for manufacturing mask film by using the same, and method for manufacturing photosensitive resin printing plate
GB2152861A (en) Apparatus for making printed circuit boards
JPH0781027A (en) Plastic mask for cream solder printing
JPH04214565A (en) Apparatus for printing light detecting layer in manufacture of printed material
JP2001242618A (en) Pattern forming method
US4306006A (en) Method of directly manufacturing reticle patterns on chrome-coated plates by means of a pattern generator
JPH03203390A (en) Manufacture of printed board
US4361642A (en) Process for producing photohardenable reproduction materials
JP3511728B2 (en) UV treatment equipment
JPH0836266A (en) Process for producing thick-film resist pattern and thick-film resist pattern produced by the process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003528079

Country of ref document: JP

122 Ep: pct application non-entry in european phase