WO2003027727A1 - Cyclic structure and production method thereof - Google Patents

Cyclic structure and production method thereof Download PDF

Info

Publication number
WO2003027727A1
WO2003027727A1 PCT/JP2002/009781 JP0209781W WO03027727A1 WO 2003027727 A1 WO2003027727 A1 WO 2003027727A1 JP 0209781 W JP0209781 W JP 0209781W WO 03027727 A1 WO03027727 A1 WO 03027727A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
periodic structure
optical
core
shell
Prior art date
Application number
PCT/JP2002/009781
Other languages
French (fr)
Japanese (ja)
Inventor
Masafumi Takesue
Original Assignee
Bando Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries, Ltd. filed Critical Bando Chemical Industries, Ltd.
Publication of WO2003027727A1 publication Critical patent/WO2003027727A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Definitions

  • the present invention relates to a periodic structure and a method for manufacturing the same.
  • the present invention is applicable to a wide variety of optical modulation elements, optical storage elements, optical switches, optical sensors, band filter elements, color display elements, optical waveguides, optical circuits, duplexers, laser elements, optical delay elements, polarizing elements, etc. It relates to photonic materials that can be applied. Background art
  • a photonic material generally has a periodic structure in which a plurality of components (substances) having different refractive indices are arranged in a one-dimensional, two-dimensional, or three-dimensional order on the order of the wavelength of light.
  • the length ratio a of the length a occupied by the element with the refractive index nl and the length b occupied by another element with the refractive index n 2 / (a + b) 1 has an important meaning together with the refractive index ratio ⁇ 1 / ⁇ 2.
  • This is the same for systems consisting of three or more components. It is desired that various optical characteristics such as not only the refractive index but also the complex refractive index, the dielectric constant, the second-order or third-order nonlinear optical constant can be freely designed with a desired optical characteristic ratio and a desired length ratio. .
  • JP-A-2 0 0 1 7 2 4 1 4 discloses, using known techniques such as photolithography of the Act on the micro mold produced in S i / S i 0 2 substrate, pouring a sol solution A photonic crystal having two-dimensionally periodic voids, which is produced by solidifying and drying the material in the above-described manner, is described.
  • the optical characteristic ratio and the length ratio can be made as designed, but a great deal of labor is required for the manufacture of the mold, interface defects are likely to occur, and more seriously When fabricating a three-dimensional structure, the two-dimensional structure is accurately laminated in the order of nanometers. There were problems that had to be done.
  • Japanese Patent Application Laid-Open No. 2000-230339 discloses that a template of a three-dimensional structure composed of colloidal crystals is prepared, and a dispersion of nanoparticles having a smaller diameter than the colloidal crystal particles is introduced into the voids. Finally, it describes a periodic material produced by removing colloidal crystals. In such a method using a colloidal crystal template, the steps of preparing and removing the template are necessarily required, and therefore, the materials that can be used are limited. Problems such as periodicity being impaired due to impacts, solvents, etc., defects on the surface and interface are likely to occur, and the length ratio cannot be freely designed due to the contact between colloidal crystal particles. was there.
  • US Pat. No. 5,228,370 describes that a colloidal crystal is not used as a template but directly used for producing a periodic structure. According to such a means, the colloidal crystal particles come into contact with each other to form a periodic structure.
  • An object of the present invention is to provide a periodic structure having a high degree of freedom in designing an optical characteristic ratio and a length ratio in order to obtain a desired photonic characteristic, and a manufacturing method for accurately and easily manufacturing the periodic structure. Aim.
  • the present invention is a periodic structure in which at least one type of particle having a layered structure of two or more layers in which adjacent layers are formed of materials having different optical characteristics from each other is arranged.
  • the present invention provides a method for producing a periodic structure in which at least one kind of particles having two or more layered structures in which adjacent layers are formed of materials having different optical properties from each other is arranged through a colloid crystallization step. It is.
  • FIG. 1 shows a core particle having a diameter a using a material having a refractive index n 1 and a material having a refractive index n 2.
  • FIG. 2 is a schematic diagram showing a cross section of a periodic structure obtained by arranging core-shell particles having a shell shell and having an overall diameter of a + b.
  • Figure 2 shows the results obtained by arranging core-shell particles with a diameter of a 'using a material with a refractive index of nl, a shell with a material with a refractive index of n2, and an overall diameter of a + b.
  • FIG. 1 shows a core particle having a diameter a using a material having a refractive index n 1 and a material having a refractive index n 2.
  • FIG. 2 is a schematic diagram showing a cross section of a periodic structure obtained by arranging core-shell particles having a shell shell and having an overall diameter of a + b.
  • Figure 2 shows the results obtained by
  • FIG. 4 is a schematic diagram showing a cross section of a periodic structure.
  • FIG. 3 is a schematic diagram showing an embodiment in which voids of the core-shell type particles of the periodic structure shown in FIG. 1 are filled with a substance having a refractive index of n3.
  • the inventor of the present invention has proposed a method of using a particle having a structure generally called a core-shell structure (a structure having three or more layers is also possible) composed of a plurality of constituent elements having different optical characteristics, thereby providing a cyclical structure having a high degree of freedom in design.
  • the inventors have found that a structure can be easily and accurately produced, and furthermore, have found that a periodic structure can be produced more simply and accurately by co-crystallizing such particles, leading to the completion of the present invention.
  • a structure can be easily and accurately produced, and furthermore, have found that a periodic structure can be produced more simply and accurately by co-crystallizing such particles, leading to the completion of the present invention.
  • the particles used in the present invention have two or more layered structures in which adjacent layers are formed of materials having different optical properties.
  • optical characteristics are not particularly limited, and examples thereof include a refractive index, a complex refractive index, a dielectric constant, a second-order linear optical constant, and the like.
  • Each layer of the above particles is formed of a material having a different optical property, but the material constituting each layer may not be composed of a single material.
  • fine particles of different materials may be used to adjust the refractive index. Mixtures can also be used.
  • the number of layers of the particles is not particularly limited as long as it is two or more layers.
  • the above-mentioned particles for example, core-shell type particles obtained by using a material ⁇ ⁇ ⁇ as a core material and covering it with a material B having different optical properties can be used.
  • the desired refractive index ratio In order to obtain, the materials used for the core and the shell may be selected in consideration of the refractive index, and in order to obtain a desired length ratio, the particle size of the core portion and the thickness of the shell portion may be adjusted.
  • the particles may be, for example, particles having a core shell structure of three or more layers in order to adjust optical characteristics.
  • the method for producing such core-shell type particles is not particularly limited, and a known method can be used.
  • hollow particles can be used in order to utilize air as a material having a low refractive index.
  • the shape of the particles is not particularly limited, and may not necessarily be spherical, and examples thereof include a cube, a rectangular parallelepiped, a rod, a column, a spindle, and an elliptical sphere.
  • the periodic structure of the present invention is obtained by arranging the above particles.
  • Examples of the form of the arrangement of the particles in the periodic structure of the present invention include an arbitrary lattice structure such as a simple cubic lattice, a face-centered cubic lattice, and a body-centered cubic lattice.
  • the dielectric constant and length ratio of the particles to be used may be adjusted.
  • particles of different particle sizes and shapes may be mixed and used. Is also good.
  • the method for producing the periodic structure of the present invention is not particularly limited, it can be obtained, for example, by subjecting the above particles to colloid crystallization.
  • the method for producing such a colloid crystal is not particularly limited, and a known method can be used.
  • To produce periodic structures by colloidal crystallization it is easiest to make them in a solvent, but the resulting periodic structures may be used in the presence of a solvent, and may be dried. The solvent may be removed by using such a method.
  • the surface of the periodic structure may be further heat-fused by heating (Jpn. J. App 1. Phys., 36 (19997)).
  • L 714-L 717) add a polymerizable monomer and a crosslinking agent or initiator to the solvent in advance.
  • the periodic structure after the periodic structure is manufactured, it may be polymerized by heat or light (US Pat. No. 5,281,370) to increase the mechanical strength of the periodic structure for use.
  • the optical characteristics may be adjusted by filling the voids of the crystal with an appropriate medium.
  • a method for producing a periodic structure in which the particles are arranged through a colloid crystallization step is also one of the present invention.
  • the conditions of heat fusion, and the like, the mechanical properties and the like are adjusted, and the optical properties change in response to stress.
  • the mechanical strength of the polymer including the periodic structure may be adjusted by changing the polymerization conditions.
  • the type of the solvent is selected so that the periodic structure of the present invention obtains the desired optical properties, the solvent is introduced after the heat fusion, and the polymerizable material is added at that time to finally polymerize. May be.
  • the colloidal crystal particles come into contact with each other and the length ratio cannot be freely designed. Problems can be solved, design flexibility is high, and products as designed can be obtained easily and with high accuracy.
  • a periodic structure is formed from particles having two or more layers, a desired refractive index ratio and a desired length ratio can be arbitrarily and easily adjusted.
  • the periodic structure of the present invention includes, for example, an optical modulation element, an optical storage element, an optical switch, an optical sensor, a band filter element, a color display element, an optical waveguide, an optical circuit, a duplexer, a laser element, an optical delay element,
  • an optical modulation element for example, an optical modulation element, an optical storage element, an optical switch, an optical sensor, a band filter element, a color display element, an optical waveguide, an optical circuit, a duplexer, a laser element, an optical delay element,
  • Such an optical material comprising the periodic structure of the present invention is also one of the present invention.
  • FIG. 1 shows a core particle with a diameter of a using a material with a refractive index of n1 and a shell-shell material with a material with a refractive index of n2.
  • FIG. 2 is a schematic diagram in a cross section for illustrating the concept of a dynamic structure.
  • Fig. 2 shows an example in which particles having a diameter different from that of Fig. 1 are used for the core, and the diameter of the entire core-shell type particle is the same as that of Fig. 1.
  • the length ratio can be set to a desired value.
  • the shape of the particles used in the periodic structure of the present invention is not particularly limited to a spherical shape.
  • FIG. 3 shows an embodiment in which the voids of the particles in FIG. 1 are filled with a substance having a refractive index of n3.
  • n 3 may be different from n 1 or n 2, or may be the same.
  • the core particles include inorganic substances such as cadmium sulfide, lead sulfide, gallium arsenide, zirconium oxide, indium tin oxide, titanium oxide, silicon oxide, and aluminum oxide; polystyrene, polycarbonate, polymethylmetharylate Can be used.
  • a material in which particles made of different materials are dispersed may be used as the core particle material.
  • the particle size of the core particles is not particularly limited, but is preferably about l to 100 nm.
  • the core particles are directly or surface-modified by coupling treatment or the like by a known method as appropriate, and then coated with a shell to obtain core-shell particles.
  • the material used for the shell shell include inorganic polymers such as silicon oxide; and organic polymers such as polystyrene, polycarbonate, and polymethyl methacrylate.
  • Known methods can be used for coating the core particles with a shell shell, and for example, seed polymerization can be used.
  • the surface state of the obtained core-shell type particles can be variously modified by adjusting to the subsequent colloidal crystallization and adjusting the optical properties.
  • the particle size of the core-shell type particles is not particularly limited, it is preferably about 10 to 100 nm. After dispersing such core-shell type particles in an appropriate solvent, they were allowed to stand in a container having an appropriate shape and colloidally crystallized to obtain a periodic structure. Then, the solvent was removed in a drying oven, and the material was heated to about the melting point to increase the mechanical strength of the colloid crystal. Then, when polystyrene was selected as the material of the shell, the styrene monomer, the crosslinking agent, and the photopolymerization initiator were dissolved in a solvent, and the periodic structure was slowly immersed. Then, the pressure was reduced to remove bubbles, and then ultraviolet rays were irradiated to advance the polymerization. Then, it was slowly dried to remove the solvent.
  • ADVANTAGE OF THE INVENTION in order to obtain a desired photonic characteristic, it is possible to provide a periodic structure having a high degree of freedom in designing an optical characteristic ratio and a length ratio, and a manufacturing method for accurately and easily manufacturing the periodic structure. .

Abstract

A cyclic structure having a large degree of freedom for designing an optical characteristic ratio and a length ratio so as to obtain a desired photonic characteristic and a production method for producing the cyclic structure with a high accuracy in a simple way. The cyclic structure has at least one type of particles arranged to have a layered structure consisting of two or more layers in which adjacent layers are formed of materials having different optical characteristics from each other.

Description

明細書  Specification
周期的構造体及びその製造方法 技術分野  TECHNICAL FIELD The present invention relates to a periodic structure and a method for manufacturing the same.
本発明は、 光変調素子、 光記憶素子、 光スィッチ、 光センサ、 バンドフィルタ 一素子、 カラーディスプレイ素子、 光導波路、 光回路、 分波器、 レーザ素子、 光 遅延素子、 偏光素子等への幅広い応用が可能であるフォ トニック材料に関する。 背景技術  The present invention is applicable to a wide variety of optical modulation elements, optical storage elements, optical switches, optical sensors, band filter elements, color display elements, optical waveguides, optical circuits, duplexers, laser elements, optical delay elements, polarizing elements, etc. It relates to photonic materials that can be applied. Background art
近年、 フォトニック材料への関心が増加している。 フォトニック材料は、 一般 的には屈折率が異なる複数の構成要素 (物質) 力 光の波長程度のオーダーで、 一次元、 二次元、 又は、 三次元的に並んだ周期的な構造を有する。  In recent years, interest in photonic materials has increased. A photonic material generally has a periodic structure in which a plurality of components (substances) having different refractive indices are arranged in a one-dimensional, two-dimensional, or three-dimensional order on the order of the wavelength of light.
このとき、 二つの構成要素からなる系を例にとると、 屈折率 n lの要素が占め る長さ aと、 屈折率 n 2のもう一つの要素が占める長さ bとの、 長さ比 a / ( a + b ) 1 屈折率比 η 1 / η 2とともに重要な意味を持つ。 これは、 三つ以上の 構成要素からなる系でも同じことである。 屈折率に限らず、 複素屈折率、 誘電率、 二次又は三次の非線形光学定数等の種々の光学特性を、 所望の光学特性比と、 所 望の長さ比で自由に設計できることが望まれる。  In this case, taking a system consisting of two components as an example, the length ratio a of the length a occupied by the element with the refractive index nl and the length b occupied by another element with the refractive index n 2 / (a + b) 1 has an important meaning together with the refractive index ratio η 1 / η 2. This is the same for systems consisting of three or more components. It is desired that various optical characteristics such as not only the refractive index but also the complex refractive index, the dielectric constant, the second-order or third-order nonlinear optical constant can be freely designed with a desired optical characteristic ratio and a desired length ratio. .
このような周期的構造体を、 設計の意図通りに、 精度良く、 かつ簡便に作製す るのは非常に困難である。  It is very difficult to produce such a periodic structure accurately and simply as intended.
フォトニック材料に関してこれまでに提案されている技術としては、 以下のよ うなものが挙げられる。  The following technologies have been proposed for photonic materials.
特開 2 0 0 1— 7 2 4 1 4号公報には、 フォトリソグラフィ一法のような公知 の技術を使って S i / S i 0 2基板上に作製したマイクロモールドに、 ゾル溶液 を流し込んで固化させて乾燥させて作製された、 二次元的に周期的な空隙を持つ たフォトニック結晶が記載されている。 このようなマイクロモールドを用いる方 法では、 光学特性比や長さ比は設計通りに作れるが、 モールドの作製に多大な労 力を要すること、 界面の欠陥が生じやすいこと、 更に致命的なことには三次元構 造体を作製する場合には、 二次元構造体をナノメ一トルのオーダーで正確に積層 しなければならないこと等の問題点があった。 JP-A-2 0 0 1 7 2 4 1 4 discloses, using known techniques such as photolithography of the Act on the micro mold produced in S i / S i 0 2 substrate, pouring a sol solution A photonic crystal having two-dimensionally periodic voids, which is produced by solidifying and drying the material in the above-described manner, is described. In such a method using a micro mold, the optical characteristic ratio and the length ratio can be made as designed, but a great deal of labor is required for the manufacture of the mold, interface defects are likely to occur, and more seriously When fabricating a three-dimensional structure, the two-dimensional structure is accurately laminated in the order of nanometers. There were problems that had to be done.
特開 2 0 0 0— 2 3 3 9 9 9号公報には、 コロイド結晶からなる三次元構造体 のテンプレートを用意し、 その空隙にコロイド結晶粒子より小さな直径を有する ナノ粒子の分散体を導入し、 最終的にコロイド結晶を除去して作製した、 周期性 物質が記載されている。 このようなコロイ ド結晶テンプレートを用いる方法では、 テンプレー卜の作製と除去の工程が必ず必要なこと、 そのため使用できる材料が 限られること、 また、 最終的にコロイド結晶を除去する際に、 加熱、 衝撃、 溶媒 等の影響で、 周期性が損なわれやすいこと、 表面や界面の欠陥が生じやすいこと、 更にはコロイド結晶粒子同士が接するために、 長さ比を自由に設計できないこと 等の問題点があった。  Japanese Patent Application Laid-Open No. 2000-230339 discloses that a template of a three-dimensional structure composed of colloidal crystals is prepared, and a dispersion of nanoparticles having a smaller diameter than the colloidal crystal particles is introduced into the voids. Finally, it describes a periodic material produced by removing colloidal crystals. In such a method using a colloidal crystal template, the steps of preparing and removing the template are necessarily required, and therefore, the materials that can be used are limited. Problems such as periodicity being impaired due to impacts, solvents, etc., defects on the surface and interface are likely to occur, and the length ratio cannot be freely designed due to the contact between colloidal crystal particles. was there.
U S P 5 2 8 1 3 7 0には、 コロイド結晶をテンプレートとしてでなく、 周期 的構造体の作製に直接利用することが記載されている。 このような手段では、 コ ロイ ド結晶粒子同士が接して周期的構造体を形成するので、 特開 2 0 0 0— 2 3 US Pat. No. 5,228,370 describes that a colloidal crystal is not used as a template but directly used for producing a periodic structure. According to such a means, the colloidal crystal particles come into contact with each other to form a periodic structure.
3 9 9 9号公報に記載の技術と同様に、 長さ比を自由に設計できないという問題 点があった 発明の要約 Similar to the technique described in Japanese Patent Publication No. 3999, there was a problem that the length ratio could not be freely designed.
本発明は、 所望のフォ トニック特性を得るために、 光学特性比や長さ比の設計 自由度の高い周期的構造体、 及び、 それを精度良く、 簡便に作製する製造方法を 提供することを目的とする。  An object of the present invention is to provide a periodic structure having a high degree of freedom in designing an optical characteristic ratio and a length ratio in order to obtain a desired photonic characteristic, and a manufacturing method for accurately and easily manufacturing the periodic structure. Aim.
本発明は、 隣接する層が互いに光学特性の異なる材料から形成された二層以上 の層状構造を有する少なくとも 1種類の粒子が配列してなる周期的構造体である。 本発明は、 隣接する層が互いに光学特性の異なる材料から形成された二層以上 の層状構造を有する少なくとも 1種類の粒子を、 コロイド結晶化工程を経て、 配 列させる周期的構造体の製造方法である。  The present invention is a periodic structure in which at least one type of particle having a layered structure of two or more layers in which adjacent layers are formed of materials having different optical characteristics from each other is arranged. The present invention provides a method for producing a periodic structure in which at least one kind of particles having two or more layered structures in which adjacent layers are formed of materials having different optical properties from each other is arranged through a colloid crystallization step. It is.
本発明の周期的構造体からなる光学材料もまた、 本発明の 1つである。 図面の簡単な説明 図 1は、 屈折率 n 1の材料を用いて直径 aのコア粒子とし、 屈折率 n 2の材料 をシェル殻にして、 全体の直径を a + bとしたコアシェル型粒子を配列させて得 られた周期的構造体の断面を示す模式図である。 図 2は、 屈折率 n lの材料を用 いて直径 a ' のコア粒子とし、 屈折率 n 2の材料をシェル殻にして、 全体の直径 を a + bとしたコアシェル型粒子を配列させて得られた周期的構造体の断面を示 す模式図である。 図 3は、 図 1に示した周期的構造体のコアシェル型粒子の空隙 を屈折率 n 3の物質で埋めた態様を示す模式図である。 発明の詳細な開示 An optical material comprising the periodic structure of the present invention is also one of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a core particle having a diameter a using a material having a refractive index n 1 and a material having a refractive index n 2. FIG. 2 is a schematic diagram showing a cross section of a periodic structure obtained by arranging core-shell particles having a shell shell and having an overall diameter of a + b. Figure 2 shows the results obtained by arranging core-shell particles with a diameter of a 'using a material with a refractive index of nl, a shell with a material with a refractive index of n2, and an overall diameter of a + b. FIG. 4 is a schematic diagram showing a cross section of a periodic structure. FIG. 3 is a schematic diagram showing an embodiment in which voids of the core-shell type particles of the periodic structure shown in FIG. 1 are filled with a substance having a refractive index of n3. Detailed Disclosure of the Invention
以下に本発明を詳述する。  Hereinafter, the present invention will be described in detail.
本発明者は、 光学特性の異なる複数の構成要素からなる、 一般的にコアシェル 構造と呼ばれる構造 (三層以上の構造でも可) を持つ粒子を使用することで、 設 計自由度が高い周期的構造体が簡便に精度良く作製できることを見出し、 更に、 このような粒子をコ口ィド結晶化させることで、 一層簡便に精度良く周期的構造 体が作製できることを見出し、 本発明の完成に至った。  The inventor of the present invention has proposed a method of using a particle having a structure generally called a core-shell structure (a structure having three or more layers is also possible) composed of a plurality of constituent elements having different optical characteristics, thereby providing a cyclical structure having a high degree of freedom in design. The inventors have found that a structure can be easily and accurately produced, and furthermore, have found that a periodic structure can be produced more simply and accurately by co-crystallizing such particles, leading to the completion of the present invention. Was.
本発明で用いられる粒子は、 隣接する層が互いに光学特性の異なる材料から形 成された二層以上の層状構造を有するものである。  The particles used in the present invention have two or more layered structures in which adjacent layers are formed of materials having different optical properties.
上記光学特性としては特に限定されず、 例えば、 屈折率、 複素屈折率、 誘電率、 二次又け一 Γ'—— 線形光学定数等を挙げることができる。  The optical characteristics are not particularly limited, and examples thereof include a refractive index, a complex refractive index, a dielectric constant, a second-order linear optical constant, and the like.
上記粒子を構成する材料としては光学特性の異なる材料が複数種用いられるが、 電界、 磁界、 ρ Η、 電解質濃度、 温度、 圧力、 光の照射等の変化に応じて構造や 性質が変化する材料を用いて、 外場に応じて光学的特質が変化するような構成に してもよレ、。 Several types of materials with different optical properties are used as the materials that make up the above particles, but materials whose structure and properties change according to changes in electric field, magnetic field, ρ Η, electrolyte concentration, temperature, pressure, light irradiation, etc. It is also possible to adopt a configuration in which the optical characteristics change according to the external field by using.
上記粒子の各層はそれぞれ光学特性が異なる材料から形成されるが、 各層を構 成する物質は単一材料からなるものでなくてもよく、 例えば、 屈折率を調整する ために材料の異なる微粒子が混合されたものを用いることもできる。  Each layer of the above particles is formed of a material having a different optical property, but the material constituting each layer may not be composed of a single material.For example, fine particles of different materials may be used to adjust the refractive index. Mixtures can also be used.
上記粒子の層の数としては二層以上であれば特に限定されない。 上記粒子とし ては、 例えば、 材料 Αをコア材料として用いて、 それを光学特性の異なる材料 B で覆ったコアシェル型粒子を用いることができる。 このとき、 所望の屈折率比を 得るためには、 コアとシェルに用いる材料を屈折率を考慮して選択すればよく、 所望の長さ比を得るためには、 コア部の粒径と、 シェル部の厚みを調整すればよ い。 上記粒子としては、 例えば、 光学特性を調整するために、 三層以上のコアシ エル構造を持つ粒子であってもよい。 The number of layers of the particles is not particularly limited as long as it is two or more layers. As the above-mentioned particles, for example, core-shell type particles obtained by using a material と し て as a core material and covering it with a material B having different optical properties can be used. At this time, the desired refractive index ratio In order to obtain, the materials used for the core and the shell may be selected in consideration of the refractive index, and in order to obtain a desired length ratio, the particle size of the core portion and the thickness of the shell portion may be adjusted. No. The particles may be, for example, particles having a core shell structure of three or more layers in order to adjust optical characteristics.
このようなコアシヱル型粒子の作製方法としては特に限定されず、 公知の方法 を使用することができる。  The method for producing such core-shell type particles is not particularly limited, and a known method can be used.
上記粒子としては、 屈折率の低い材料として空気を利用するために、 中空粒子 を用いることもできる。  As the particles, hollow particles can be used in order to utilize air as a material having a low refractive index.
上記粒子の形状としては特に限定されず、 必ずしも球状でなくてもよく、 例え ば、 立方体、 直方体、 棒状、 円柱状、 紡錘形状、 楕円球状等を挙げることができ る。  The shape of the particles is not particularly limited, and may not necessarily be spherical, and examples thereof include a cube, a rectangular parallelepiped, a rod, a column, a spindle, and an elliptical sphere.
本発明の周期的構造体は、 上記粒子を配列してなるものである。  The periodic structure of the present invention is obtained by arranging the above particles.
本発明の周期的構造体における、 上記粒子の配列の形態としては、 例えば、 単 純立方格子、 面心立方格子、 体心立方格子等の任意の格子構造を挙げることがで きる。  Examples of the form of the arrangement of the particles in the periodic structure of the present invention include an arbitrary lattice structure such as a simple cubic lattice, a face-centered cubic lattice, and a body-centered cubic lattice.
本発明の周期的構造体として、 例えば、 誘電率の異なるものを作るためには、 用いる粒子の誘電率と長さ比を調整すればよく、 意図的な周期性の欠陥を有する ものを作るためには、 粒径が同じで材料の異なる粒子を混合して用いてもよく、 得られる周期的構造体の周期構造を制御するためには、 異なる粒径や形状の粒子 を混合して用いてもよい。  For example, in order to produce a periodic structure of the present invention having different dielectric constants, the dielectric constant and length ratio of the particles to be used may be adjusted. In order to control the periodic structure of the resulting periodic structure, particles of different particle sizes and shapes may be mixed and used. Is also good.
本発明の周期的構造体の製造方法として特に限定されないが、 例えば、 上記粒 子をコロイ ド結晶化させることにより得ることができる。 このようなコロイ ド結 晶の作製方法としては特に限定されず、 公知の方法を使用することができる。 コロイド結晶化により周期的構造体を製造するには、 溶媒中で作製するのが最 も簡単であるが、 得られた周期的構造体は溶媒が存在する状態で用いられてもよ く、 乾燥等により溶媒を除去して用いられてもよく、 更に加熱して周期構造体の 表面を熱融着したり (J p n . J . A p p 1 . P h y s . , 3 6 ( 1 9 9 7 ) L 7 1 4 - L 7 1 7 ) 、 溶媒に予め重合可能なモノマーと架橋剤や開始剤等とを添 加して、 周期的構造体を作製した後に、 熱や光で重合して (U S P 5 2 8 1 3 7 0 ) 、 周期的構造体の機械的強度を上げて用いてもよく、 また、 コロイ ド結晶の 空隙を適当な媒質で満たして光学特性を調整してもよい。 Although the method for producing the periodic structure of the present invention is not particularly limited, it can be obtained, for example, by subjecting the above particles to colloid crystallization. The method for producing such a colloid crystal is not particularly limited, and a known method can be used. To produce periodic structures by colloidal crystallization, it is easiest to make them in a solvent, but the resulting periodic structures may be used in the presence of a solvent, and may be dried. The solvent may be removed by using such a method. The surface of the periodic structure may be further heat-fused by heating (Jpn. J. App 1. Phys., 36 (19997)). L 714-L 717), add a polymerizable monomer and a crosslinking agent or initiator to the solvent in advance. In addition, after the periodic structure is manufactured, it may be polymerized by heat or light (US Pat. No. 5,281,370) to increase the mechanical strength of the periodic structure for use. The optical characteristics may be adjusted by filling the voids of the crystal with an appropriate medium.
上記粒子を、 コロイ ド結晶化工程を経て、 配列させる周期的構造体の製造方法 もまた、 本発明の 1つである。  A method for producing a periodic structure in which the particles are arranged through a colloid crystallization step is also one of the present invention.
また、 本発明の周期的構造体を構成する粒子や重合材料の設計、 熱融着の条件 等を調整することで、 力学的性質等を調整して、 応力に応答して光学的性質が変 化するような構成にしてもよく、 重合条件を変えて、 周期的構造体を含む重合体 の機械的強度を調整してもよレ、。  Further, by adjusting the design of the particles and the polymer material constituting the periodic structure of the present invention, the conditions of heat fusion, and the like, the mechanical properties and the like are adjusted, and the optical properties change in response to stress. The mechanical strength of the polymer including the periodic structure may be adjusted by changing the polymerization conditions.
本発明の周期的構造体が、 所望の光学特性を得るように、 溶媒の種類を選択し たり、 熱融着後に溶媒を導入したり、 そのときに重合性材料を添加して最終的に 重合させてもよい。  The type of the solvent is selected so that the periodic structure of the present invention obtains the desired optical properties, the solvent is introduced after the heat fusion, and the polymerizable material is added at that time to finally polymerize. May be.
本発明によれば、 上記粒子の設計段階で、 コアとシェルの光学的性質や半径を 調整して粒子を作製することで、 コロイ ド結晶粒子同士が接して長さ比を自由に 設計できないという問題も解決でき、 設計の自由度が高く、 更に設計通りのもの が簡便に高精度で得られる。  According to the present invention, by adjusting the optical properties and radii of the core and the shell at the stage of designing the particles to produce the particles, the colloidal crystal particles come into contact with each other and the length ratio cannot be freely designed. Problems can be solved, design flexibility is high, and products as designed can be obtained easily and with high accuracy.
本発明では二層以上の層状構造を有する粒子から周期的構造を形成するので、 所望の屈折率比や長さ比を任意に、 簡単に調整することができる。  In the present invention, since a periodic structure is formed from particles having two or more layers, a desired refractive index ratio and a desired length ratio can be arbitrarily and easily adjusted.
本発明の周期的構造体は、 例えば、 光変調素子、 光記憶素子、 光スィッチ、 光 センサ、 バンドフィルター素子、 カラーディスプレイ素子、 光導波路、 光回路、 分波器、 レーザ素子、 光遅延素子、 偏光素子等の光学材料への幅広い応用が可能 である。 このような本発明の周期的構造体からなる光学材料もまた、 本発明の 1 つである。 発明を実施するための最良の形態  The periodic structure of the present invention includes, for example, an optical modulation element, an optical storage element, an optical switch, an optical sensor, a band filter element, a color display element, an optical waveguide, an optical circuit, a duplexer, a laser element, an optical delay element, A wide range of applications to optical materials such as polarizing elements are possible. Such an optical material comprising the periodic structure of the present invention is also one of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。 図 1は、 屈折率 n 1の材料を用いて直径 aのコア粒子とし、 屈折率 n 2の材料 をシュル殻にして、 全体の直径を a + bとしたコアシェル型粒子を配列させた、 周期的構造体の概念を示すための、 ある断面における模式図である。 図 2は、 コ ァに図 1とは直径の異なる粒子を用いて、 コアシェル型粒子全体の直径は図 1と 同一にした例である。 このようにコア粒子の直径を変えることで、 長さ比を所望 の値にすることができる。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples. Figure 1 shows a core particle with a diameter of a using a material with a refractive index of n1 and a shell-shell material with a material with a refractive index of n2. FIG. 2 is a schematic diagram in a cross section for illustrating the concept of a dynamic structure. Fig. 2 shows an example in which particles having a diameter different from that of Fig. 1 are used for the core, and the diameter of the entire core-shell type particle is the same as that of Fig. 1. By changing the diameter of the core particles in this manner, the length ratio can be set to a desired value.
図 1及び図 2に示した実施例は球状粒子を用いたものであるが本発明の周期的 構造体に用いる粒子の形状は特に球状に限定されない。  Although the embodiments shown in FIGS. 1 and 2 use spherical particles, the shape of the particles used in the periodic structure of the present invention is not particularly limited to a spherical shape.
また、 図 3には図 1の粒子の空隙を屈折率 n 3の物質で埋めた実施例を示した。 所望のフォトニック特性を得るために、 n 3は n 1や n 2と異なっていても、 一 方と同じであっても良い。  FIG. 3 shows an embodiment in which the voids of the particles in FIG. 1 are filled with a substance having a refractive index of n3. In order to obtain desired photonic characteristics, n 3 may be different from n 1 or n 2, or may be the same.
上記コア粒子としては、 例えば、 硫化カドミウム、 硫化鉛、 砒化ガリウム、 酸 化ジルコニウム、 酸化インジウム錫、 酸化チタン、 酸化シリコン、 酸化アルミ二 ゥム等の無機物;ポリスチレン、 ポリカーボネート、 ポリメチルメタタリレート 等の有機物からなるものを用いることができる。 光学特性を調整するために、 あ る材料に異なる材料からなる粒子を分散させたものをコァ粒子の材料として使用 してもよい。 上記コア粒子の粒径としては特に限定されないが、 l〜 1 0 0 n m 程度が好ましい。  Examples of the core particles include inorganic substances such as cadmium sulfide, lead sulfide, gallium arsenide, zirconium oxide, indium tin oxide, titanium oxide, silicon oxide, and aluminum oxide; polystyrene, polycarbonate, polymethylmetharylate Can be used. In order to adjust the optical characteristics, a material in which particles made of different materials are dispersed may be used as the core particle material. The particle size of the core particles is not particularly limited, but is preferably about l to 100 nm.
上記コア粒子を直接、 又は、 適宜公知の方法によるカップリング処理等で表面 改質した上で、 シェル殻で被覆して、 コアシェル型粒子とする。 上記シェル殻に 用いられる材料としては、 例えば、 酸化シリコン等の無機高分子;ポリスチレン、 ポリカーボネート、 ポリメチルメタクリレート等の有機高分子を挙げることがで きる。 上記コア粒子をシェル殻で被覆する方法としては公知の方法が使用でき、 例えば、 シード重合が使用できる。  The core particles are directly or surface-modified by coupling treatment or the like by a known method as appropriate, and then coated with a shell to obtain core-shell particles. Examples of the material used for the shell shell include inorganic polymers such as silicon oxide; and organic polymers such as polystyrene, polycarbonate, and polymethyl methacrylate. Known methods can be used for coating the core particles with a shell shell, and for example, seed polymerization can be used.
得られたコアシェル型粒子の表面状態は、 その後のコロイド結晶化への適合や 光学特性の調整から、 種々に改質できる。  The surface state of the obtained core-shell type particles can be variously modified by adjusting to the subsequent colloidal crystallization and adjusting the optical properties.
上記コアシェル型粒子の粒径としては特に限定されないが、 1 0〜 1 0 0 0 0 n m程度が好ましい。 このようなコアシ ル型粒子を適当な溶媒に分散させたうえで、 適当な形状の 容器中で静置してコロイ ド結晶化させて周期的構造体を得た。 そして、 乾燥炉で 溶媒を除去し、 そのまま融点程度に加熱して、 コロイ ド結晶の機械的強度を増加 させた。 その後、 シェル殻の材質にポリスチレンを選んだ場合には、 スチレンモ ノマーと架橋剤と光重合開始剤とを溶媒に溶かしておいて、 周期的構造体をゆつ く りと浸漬させた。 そして、 減圧して気泡を除去した上で、 紫外線を照射して重 合を進行させた。 その後、 ゆっく りと乾燥させて溶媒を除去した。 Although the particle size of the core-shell type particles is not particularly limited, it is preferably about 10 to 100 nm. After dispersing such core-shell type particles in an appropriate solvent, they were allowed to stand in a container having an appropriate shape and colloidally crystallized to obtain a periodic structure. Then, the solvent was removed in a drying oven, and the material was heated to about the melting point to increase the mechanical strength of the colloid crystal. Then, when polystyrene was selected as the material of the shell, the styrene monomer, the crosslinking agent, and the photopolymerization initiator were dissolved in a solvent, and the periodic structure was slowly immersed. Then, the pressure was reduced to remove bubbles, and then ultraviolet rays were irradiated to advance the polymerization. Then, it was slowly dried to remove the solvent.
得られた周期的構造体の分光スぺク トル測定からフォトニックバンドギャップが 観測された。 産業上の利用可能性 A photonic band gap was observed from the spectral spectrum measurement of the obtained periodic structure. Industrial applicability
本発明によれば、 所望のフォトニック特性を得るために、 光学特性比や長さ比 の設計自由度の高い周期的構造体、 及び、 それを精度良く、 簡便に作製する製造 方法を提供できる。  ADVANTAGE OF THE INVENTION According to this invention, in order to obtain a desired photonic characteristic, it is possible to provide a periodic structure having a high degree of freedom in designing an optical characteristic ratio and a length ratio, and a manufacturing method for accurately and easily manufacturing the periodic structure. .

Claims

請求の範囲 The scope of the claims
1 . 隣接する層が互いに光学特性の異なる材料から形成された二層以上の層状構 造を有する少なくとも 1種類の粒子が配列してなることを特徴とする周期的構造 体。 1. A periodic structure in which at least one type of particle having two or more layered structures in which adjacent layers are formed of materials having different optical characteristics is arranged.
2 . 隣接する層が互いに光学特性の異なる材料から形成された二層以上の層状構 造を有する少なくとも 1種類の粒子を、 コロイド結晶化工程を経て、 配列させる ことを特徴とする周期的構造体の製造方法。 2. A periodic structure characterized by arranging at least one kind of particles having two or more layers in which adjacent layers are formed of materials having different optical properties through a colloid crystallization step. Manufacturing method.
3 . 請求の範囲第 1又は 2項記載の周期的構造体からなることを特徴とする光学 材料。 3. An optical material comprising the periodic structure according to claim 1 or 2.
PCT/JP2002/009781 2001-09-21 2002-09-24 Cyclic structure and production method thereof WO2003027727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001289772A JP2003098367A (en) 2001-09-21 2001-09-21 Periodic structure and manufacturing method therefor
JP2001-289772 2001-09-21

Publications (1)

Publication Number Publication Date
WO2003027727A1 true WO2003027727A1 (en) 2003-04-03

Family

ID=19112218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009781 WO2003027727A1 (en) 2001-09-21 2002-09-24 Cyclic structure and production method thereof

Country Status (2)

Country Link
JP (1) JP2003098367A (en)
WO (1) WO2003027727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068283A1 (en) * 2021-10-20 2023-04-27 公立大学法人名古屋市立大学 Colloidal crystal and production method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012961A1 (en) * 2003-07-31 2005-02-10 Soken Chemical & Engineering Co., Ltd. Fluid colloid crystal and process for producing three-dimensional aligned particle mass therefrom
CN100456056C (en) * 2003-07-31 2009-01-28 综研化学株式会社 Fluid colloid crystal and process for producing three-dimensional aligned particle mass thereof
JP4546129B2 (en) * 2004-04-08 2010-09-15 独立行政法人科学技術振興機構 PRODUCTION METHOD FOR DIFFERENT SIZE PARTICLE ASSEMBLY, DIFFERENT SIZE PARTICLE ASSEMBLY, AND DIFFERENT SIZE PARTICLE ASSEMBLY LINE
JP2006167855A (en) * 2004-12-15 2006-06-29 Ricoh Co Ltd Method for forming periodic structure, periodic structure, and optical element using periodic structure
US8733983B2 (en) 2009-05-12 2014-05-27 Panasonic Corporation Sheet and light-emitting device
JP6171291B2 (en) * 2012-09-07 2017-08-02 凸版印刷株式会社 True / false judgment method of display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281370A (en) * 1990-08-22 1994-01-25 University Of Pittsburgh Of The Commonwealth System Of Higher Education Method of making solid crystalline narrow band radiation filter
JP2001042144A (en) * 1999-07-28 2001-02-16 Catalysts & Chem Ind Co Ltd Photonic crystal and substrate with photonic crystal layer
EP1081513A1 (en) * 1999-09-01 2001-03-07 Lucent Technologies Inc. Process for fabricating a colloidal crystal having substantial three-dimensional order
EP1089093A2 (en) * 1999-09-28 2001-04-04 Fuji Photo Film Co., Ltd. Anti-reflection film, polarizing plate comprising the same, and image display device using the anti-reflection film or the polarizing plate
EP1097752A2 (en) * 1999-11-04 2001-05-09 Dai Nippon Printing Co., Ltd. Method for producing polymer-particle composites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281370A (en) * 1990-08-22 1994-01-25 University Of Pittsburgh Of The Commonwealth System Of Higher Education Method of making solid crystalline narrow band radiation filter
JP2001042144A (en) * 1999-07-28 2001-02-16 Catalysts & Chem Ind Co Ltd Photonic crystal and substrate with photonic crystal layer
EP1081513A1 (en) * 1999-09-01 2001-03-07 Lucent Technologies Inc. Process for fabricating a colloidal crystal having substantial three-dimensional order
EP1089093A2 (en) * 1999-09-28 2001-04-04 Fuji Photo Film Co., Ltd. Anti-reflection film, polarizing plate comprising the same, and image display device using the anti-reflection film or the polarizing plate
EP1097752A2 (en) * 1999-11-04 2001-05-09 Dai Nippon Printing Co., Ltd. Method for producing polymer-particle composites

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BREEN M.L. ET AL.: "Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals", vol. 17, no. 3, 6 February 2001 (2001-02-06), pages 903 - 907, XP002961087 *
VELIKOV KRASSIMIR P. ET AL.: "Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica", LANGMUIR, vol. 17, no. 16, 7 August 2001 (2001-08-07), pages 4779 - 4786, XP002961086 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068283A1 (en) * 2021-10-20 2023-04-27 公立大学法人名古屋市立大学 Colloidal crystal and production method therefor

Also Published As

Publication number Publication date
JP2003098367A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
Wang et al. Two‐photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications
Xia et al. Photonic crystals
Biswas et al. Photonic band gaps in colloidal systems
Egen et al. Heterostructures of polymer photonic crystal films
KR100782002B1 (en) Colloidal photonic crystals
Moon et al. Chemical aspects of three-dimensional photonic crystals
Shoji et al. Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference
US6589334B2 (en) Photonic band gap materials based on spiral posts in a lattice
Kim et al. Low-threshold lasing in 3D dye-doped photonic crystals derived from colloidal self-assemblies
JP2004511828A (en) Self-assembly method of crystal colloid pattern on substrate and optical application
JP2006028202A5 (en)
US8580374B2 (en) Resin molded body
Gu et al. Fabrication of three‐dimensional photonic crystals in quantum‐dot‐based materials
JP4661326B2 (en) Photonic crystal manufacturing method
KR101686753B1 (en) Inverse opal photonic structure, method of preparing the same and colorimetric sensors using the same
WO2003027727A1 (en) Cyclic structure and production method thereof
JP4208688B2 (en) Manufacturing method of three-dimensional periodic structure
Chen et al. Facile conversion of colloidal crystals to ordered porous polymer nets
JP4424462B2 (en) Photonic crystals using compounds with sulfide groups
Lange et al. Functional 3D photonic films from polymer beads
Cho et al. Programmable Building Blocks via Internal Stress Engineering for 3D Collective Assembly
WO2001062830A2 (en) Polymer-based nanocomposite materials and methods of production thereof
JP2006167855A (en) Method for forming periodic structure, periodic structure, and optical element using periodic structure
JP2007044598A (en) Colloidal crystal, filmy particulate structure, filmy cyclic structure and their manufacturing method
Ruda et al. Nano-engineered tunable photonic crystals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase