WO2003051401A2 - Stabilisierte mrna tumor-vakzine - Google Patents

Stabilisierte mrna tumor-vakzine Download PDF

Info

Publication number
WO2003051401A2
WO2003051401A2 PCT/EP2002/014577 EP0214577W WO03051401A2 WO 2003051401 A2 WO2003051401 A2 WO 2003051401A2 EP 0214577 W EP0214577 W EP 0214577W WO 03051401 A2 WO03051401 A2 WO 03051401A2
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
pharmaceutical composition
mrna
rna
composition according
Prior art date
Application number
PCT/EP2002/014577
Other languages
English (en)
French (fr)
Other versions
WO2003051401A3 (de
Inventor
Ingmar Hoerr
Florian VON DER MüLBE
Steve Pascolo
Original Assignee
Curevac Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2473135A priority Critical patent/CA2473135C/en
Priority to AU2002360055A priority patent/AU2002360055B2/en
Priority to EP02795235A priority patent/EP1458410B1/de
Priority to DE50211485T priority patent/DE50211485D1/de
Application filed by Curevac Gmbh filed Critical Curevac Gmbh
Publication of WO2003051401A2 publication Critical patent/WO2003051401A2/de
Publication of WO2003051401A3 publication Critical patent/WO2003051401A3/de
Priority to US10/870,110 priority patent/US8217016B2/en
Priority to US13/106,548 priority patent/US20110311472A1/en
Priority to US14/325,850 priority patent/US9155788B2/en
Priority to US14/840,305 priority patent/US9439956B2/en
Priority to US14/965,340 priority patent/US9463228B2/en
Priority to US14/965,485 priority patent/US9433669B2/en
Priority to US14/965,418 priority patent/US20160089425A1/en
Priority to US14/965,613 priority patent/US9655955B2/en
Priority to US14/965,551 priority patent/US9433670B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001129Molecules with a "CD" designation not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/193Colony stimulating factors [CSF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • mRNA for use as a therapeutic agent against tumor diseases
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one mRNA, comprising at least one region coding for at least one antigen from a tumor, in conjunction with an aqueous solvent and preferably a cytokine, for example GM-CSF, and a process for the preparation the pharmaceutical composition.
  • the pharmaceutical composition according to the invention is used in particular for therapy and / or prophylaxis against cancer.
  • Gene therapy and genetic vaccination are molecular medical procedures, the application of which in the therapy and prevention of diseases will have a significant impact on medical practice. Both methods are based on the introduction of nucleic acids into cells or in the patient's tissue and on the subsequent processing of the information encoded by the introduced nucleic acids, i.e. expression of the desired polypeptides.
  • DNA viruses as DNA vehicles.
  • the viruses used are genetically modified so that no functional infectious particles are formed in the transfected cell.
  • a certain risk of the uncontrolled spread of the gene-active and viral genes introduced cannot be excluded due to possible recombination events.
  • the DNA introduced into the cell is integrated to a certain extent into the genome of the transfected cell.
  • this phenomenon can have a desired effect, since it can have a long-lasting effect on the introduced DNA.
  • integration into the genome poses a significant risk of gene therapy.
  • the inserted DNA can be inserted into an intact gene, which is a mutation that hinders or even completely switches off the function of the endogenous gene.
  • These integration events can on the one hand switch off vital enzyme systems for the cell, and on the other hand there is also Danger of a transformation of the changed cell into a degenerate state if the integration of the foreign DNA changes a gene that is crucial for the regulation of cell growth.
  • the corresponding DNA vehicles contain a strong promoter, for example the viral CMV promoter.
  • the integration of such promoters into the genome of the treated cell can lead to undesirable changes in the regulation of gene expression in the cell.
  • RNA In contrast to DNA, the use of RNA as a gene therapeutic or vaccine can be classified as much safer. In particular, RNA does not pose the risk of being stably integrated into the genome of the transfected cell. Furthermore, no viral se- sequences, such as promoters, are required for effective transcription. In addition, RNA is broken down in o much more easily. Due to the relatively short half-life of RNA in the bloodstream compared to DNA, no anti-RNA antibodies have so far been detected. For this reason, RNA can be regarded as the molecule of choice for molecular medical therapy procedures.
  • RNA reverse transcriptase
  • RNA reverse transcriptase
  • RNA-degrading enzymes so-called RNAases (ribonucleases)
  • ribonucleases ribonucleases
  • the natural breakdown of mRNA in the cytoplasm of cells is very finely regulated.
  • several mechanisms are known.
  • the terminal structure is of crucial importance.
  • the so-called "gap structure” (a modified guanosine nucleotide) is at the 5 end and a sequence of up to 200 adenosine nucleotides (the so-called poly A tail) at the 3 end.
  • the RNA is recognized as mRNA via these structures and the degradation is regulated.
  • RNA surveillance system was recently described (Heilerin and Parker, Annu. Rev. Genet 1999, 33: 229 to 260), in which incomplete or nonsense mRNA was recognized by certain feedback protein interactions in the cytosol and is made accessible for degradation, with a major part of these processes being carried out by exonucleases.
  • EP-A-1083232 proposes a method for introducing RNA, in particular mRNA, into cells and organisms to solve the above-mentioned problem of the instability of RNA ex ⁇ ko, in which the RNA in the form of a complex with a cationic peptide or Protein is present
  • WO 99/14346 describes further methods for stabilizing mRNA.
  • modifications of the mRNA are proposed which stabilize the mRNA species against the degradation of RNases.
  • modifications relate on the one hand to stabilization by means of sequence modifications, in particular a reduction in the G and / or U content by base elimination or base substitution.
  • chemical modifications in particular the use of nucleotide analogs, and 5 1 - and 3 - blocking groups, an increased length of the poly A tail and the complexation of the mRNA with stabilizing agents and combinations of the measures mentioned are proposed.
  • TGT transient gene therapy
  • mice immunized with the synthetic DNA construct Furthermore, an increased antibody formation against the g ⁇ protein in mice immunized with the synthetic DNA construct and an increased cytokine release in litro was observed in transfected spleen cells from mice. Finally, an induction of a cytotoxic immune response could be found in mice immunized with the gzg expression plasmid.
  • the authors of this article attribute the improved properties of their DNA vaccine essentially to a change in the nucleocytoplasmic transport caused by the optimized codon use of the mRNA that was reduced by the DNA vaccine. In contrast, the authors consider the impact of changed codon usage on translation efficiency to be low.
  • a pharmaceutical composition comprising at least one mRNA, comprising at least one region coding for at least one antigen from a tumor, in conjunction with an aqueous solvent.
  • antigen from a tumor means that the corresponding antigen is expressed in cells associated with a tumor. Therefore, according to the invention, antigens from tumors are, in particular, those that are produced in the degenerate cells themselves. These are preferably antigens located on the surface of the cells. Furthermore, the antigens from tumors are also those which are expressed in cells which are not (or originally were not) degenerate themselves, but are associated with the tumor in question. These also include, for example, antigens which are associated with tumor-supplying vessels or their (eu) formation, in particular those antigens which are associated with neovascularization or angiogenesis, for example growth factors such as VEGF, bFGF, etc. Also include such antigens associated with a tumor those from cells of the tissue embedding the tumor In particular, appropriate antigens from connective tissue cells are to be mentioned here, for example antigens from the extracellular matrix.
  • one (or more) mRNAs for therapy or vaccination i.e. Vaccination, used for the treatment or prevention (prophylaxis) of cancer.
  • Vaccination is based on the introduction of an antigen (or several antigens) of a tumor, in the present case the genetic information for the antigen in the form of the mRNA coding for the antigen (s) , in the organism, especially in the cell.
  • the mRNA contained in the pharmaceutical composition is translated into the (tumor) antigen, A. the polypeptide or antigenic peptide encoded by the modified mRNA is expressed, thereby stimulating an immune response directed against this polypeptide or antigenic peptide.
  • the immune response is therefore achieved by providing the genetic information for antigens from a tumor, in particular proteins which are only expressed on cancer cells, by administering a pharmaceutical composition according to the invention which contains a Contains mRNA coding for such a cancer antigen. This expresses the cancer antigen (s) in the organism, causing an immune response which is effectively directed against the cancer cells
  • the pharmaceutical composition according to the invention is used, in particular, for the treatment of cancer (the mRNA preferably coding for a tumor-specific surface antigen (TSSA)), for example for the treatment of malignant melanoma, colon carcinoma, lymphoma, sarcoma, and single-cell lung carcinoma , Blastomas, etc. are considered.
  • cancer the mRNA preferably coding for a tumor-specific surface antigen (TSSA)
  • TSSA tumor-specific surface antigen
  • tumor antigens include 707-AP, AFP, ART-4, BAGE, ⁇ -catenin / m, Bcr-abl, CAMEL, CAP-1, CASP-8, CDC27 / m, CDK4 / m, CEA, CT, Cyp-B, DAM, ELF2M, ETV6-AML1, G250, GAGE, GnT-V, GplOO, HAGE, HER-2 / new, HLAA * 0201-R170I, HPV-E7, HSP70-2M , HAST-2, hTERT (or hT T), iCE, KIAA0205, LAGE, LDLR / FUT, MAGE, MART-1 / Melan-A, MC1R, Myosin / m, MUC1, MUM-1, -2, - 3, NAS8-A, NY-ESO-1, pl90 minor bcr-abl, Pml / RARa, PRAME,
  • the antigen (s) from a tumor is a polyepitope of the antigen (s) from a tumor.
  • a “polyepitope” of an antigen or several antigens is an amino acid sequence in which several or many regions of the antigen (s) are represented, which interact with the antigen-binding part of an antibody or with a T cell receptor.
  • the polyepitope can be complete and unmodified, but according to the present invention, in particular to optimize the antibody / antigen or T cell receptor / antigen interaction, it can also be modified, a modification compared to the wild-type polyepitope may comprise, for example, a deletion, addition and / or substitution of one or more amino acid residues. Accordingly, in the mRNA coding for the modified polyepitope of the present invention, one or more nucleotides are removed, added and / or compared to the mRNA coding for the wild-type polyepitope or replaced
  • each RNA (rn) contained in the pharmaceutical composition preferably has one or more modifications, in particular chemical modifications, which increase the half-life of the (m ) Contribute RNA (one or more) in the organism or improve the transfer of the (m) RNA (one or more) into the cell.
  • DSE destabilizing sequence elements
  • Such destabilizing sequences are, for example, AU-rich sequences ("AURES"), Ae occur in 3 - UTR sections of numerous unstable mRNA (Gaput et al, Proc. Nad AcaA Sei. USA 1986, 83: 1670 to 1674).
  • the RNA molecules contained in the pharmaceutical composition according to the invention are therefore preferably modified compared to the wild-type mRNA in such a way that they have no such destabilizing sequences.
  • sequence motifs Ae of possible endonucleases, for example.
  • Ae sequence GAACAAG Ae is contained in the 3 1 UTR segment of the gene coAerating for the transferin receptor (Binder et al, EMBO J. 1994, 13: 1969 until 1980).
  • Aese sequence motifs are also preferably eliminated in the modified mRNA of the pharmaceutical composition according to the invention
  • a person skilled in the art is familiar with various methods which are suitable for substituting godons in the modified mRNA according to the invention.
  • Ae entire mRNA can be chemically synthesized using standard techniques ,
  • base substitutions are preferably introduced using a DNA template for the production of the modified mRNA with the aid of techniques of the usual targeted mutagenesis; Maniatis et aL, Molecular ⁇ oning: A Laboratory Manual, Gold Spring Harbor Laboratory Press, 3rd ed., Gold Spring Harbor, NY, 2001.
  • a corresponding DNA molecule is therefore transcribed in i ro to produce the mRNA.
  • This DNA template has a suitable promoter, for example a T7 or SP6 promoter, for Ae in vtro transcription, the nucleotide sequence desired for Ae Ae mRNA to be produced and a termination signal for Ae in in titro transcription follow.
  • the DNA molecule, which forms the Ae template of the RNA construct to be produced is produced by fermentative propagation and subsequent isolation as part of a plasmid which is replicable in bacteria.
  • plasmids suitable for the Ae present invention can be Ae plasmids pT7TS (GenBank accession number U26404; Lai et aL, Development 1995, 121: 2349 to 2360; vgL also FIG. 8), pGEM * series, for example pGEM * -l (GenBank access number X65300; from Promega) and pSP64 (GenBank access number X65327) ; vgL also Mezei and Storts, Purification of PCR Products, in: Griffin and Griffin (ed.), PCR Technology: Current Innovation, CRC Press, Boca Raton, FL, 2001.
  • Ae can have short single-stranded transitions at the resulting interfaces, or genes Ae produced by chemical synthesis, desired nucleotide sequence can be cloned into a suitable plasmid according to molecular biological methods known to a person skilled in the art (see Maniatis et al., so). The DNA molecule is then cut out of the plasmid, in which it can be in single or multiple copies, by digestion with restriction endonueases.
  • the modified mRNA which is contained in the pharmaceutical composition according to the invention, can also have a 5-cap structure (a modified guanosine nucleotide).
  • a 5-cap structure a modified guanosine nucleotide. Examples of cap structures are m7G (5) ppp (5 '(A, G (5) ppp (5) A and G (5) ppp (5) G.
  • Ae-modified mRNA contains a poly (A + ) tail of at least about 25, in particular at least about 30, preferably at least about 50 nucleotides, more preferably at least about 70 nucleotides, particularly preferably at least about 100 nucleotides.
  • the poly (A + ) tail can also comprise 200 and more nucleotides.
  • IRES interribosomal entry side
  • IRES can thus act as the sole ribosome binding site, but it can also provide several mRNA aenes, Ae Peptides or polypeptides coAert, Ae are translated independently of one another by the ribosomes ("multicistronic” or " ⁇ olycistronic n mRNA).
  • IRES sequences which can be used according to the invention are those from picornaviruses (eg FMDV), pest viruses (C-FFV), polioviruses (PV), encephalo-MyocarAtis viruses (ECMV), foot-and-mouth viruses.
  • FMDV foot-and-mouth disease viruses
  • HCV hepatitis viruses
  • CSFV classical swine fever viruses
  • MLV murine leukoma viruses
  • SIV Simean immunodeficiency viruses
  • CrPV cricket paralysis viruses
  • Ae mRNA has stabilization sequences in the 5 1 and / or 3 non-translated regions, Ae are capable of increasing Ae half-life of the mRNA in the cytosol.
  • stabilizing sequences can have a 100% sequence homology to naturally occurring sequences, Ae in viruses, bacteria and eukaryotes, but can also be partially or completely synthetic in nature.
  • An example of stabilizing sequences which Ae can be used in the present invention are Ae non-translated sequences (DTR) of the ⁇ -globin gene, for example from Homo sapiens or Xen ⁇ us lae ⁇ s.
  • Ae has Ae general formula (CU) ⁇ - X-AHCCC (U / ⁇ Py x Uq ⁇ - U) CC, Ae is contained in the 3T TR of the very stable mRNA, Ae for a-globin, aQ -Gollagen, 15-lipoxygenase or for tyrosine hydroxylase coAert (vgL Hblcik et aL, Proc. Nad Acad Sei USA 1997, 94: 2410 to 2414).
  • Such stabilization sequences can be used individually or in combination with one another or in combination with other stabilization sequences known to a person skilled in the art.
  • Aese has at least one analogue of naturally occurring nucleotides. This is based on the fact that Ae RNA-degrading enzymes occurring in the cells preferably recognize naturally occurring nucleotides as a substrate. By inserting nucleotide analogs, RNA degradation can therefore be made more difficult, and Ae effect on Ae translation efficiency can have a positive or negative effect on Ae translation efficiency when these analogs are inserted, especially in the coAerenden region of the mRNA.
  • nucleotide analogs which can be used according to the invention.
  • the effective transfer of the, preferably modified, mRNA into the cells to be treated or the organism to be treated can be improved in that Ae mRNA is associated with or bound to a cationic or polycationic agent, in particular a corresponding peptide or protein Ae mRNA in the pharmaceutical composition according to the invention is preferably complexed or condensed with such an agent.
  • Ae mRNA is associated with or bound to a cationic or polycationic agent, in particular a corresponding peptide or protein
  • Ae mRNA in the pharmaceutical composition according to the invention is preferably complexed or condensed with such an agent.
  • protamine as a polycationic, nucleic acid-binding protein
  • other cationic peptides or proteins such as poly-L-lysine, poly-Dargine or hormones, is also possible. This procedure for stabilizing the modified mRNA is described in EP-A-1083232, the disclosure of which is fully included in the present invention
  • the mRNA modified in accordance with the invention can contain, in addition to the antigenic or the gene-therapeutically active peptide or polypeptide, at least one further functional section, for example the cytokine (Mbnokine, lymphokine, interleukin or chemokine, such as IL-1, IL) which promotes an Ae immune response -2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, ID9, IL-10, ID12, IF -, IFN- ⁇ , GM-CFS, LT- ⁇ or Growth factors such as hGH, coAert
  • cytokine Mbnokine, lymphokine, interleukin or chemokine, such as IL-1, IL
  • Ae pharmaceutical composition according to the invention can contain one or more adjuvants.
  • adjuvant means any chemical or biological compound, Ae favors a specific immune response.
  • different mechanisms can be considered. For example.
  • Other compounds which allow Ae maturation of the DC for example.
  • Iipopolysaccharide, TNF- ⁇ or CD40- Ligand are another class of suitable adjuvants, and generally any "hazard signal" -type agent (LPS, GP96, oligonucleotides with the CpG-Mbtiv) or cytokines, particularly GM-CFS, which influence the immune system, can be used as adjuvants which use it allow to increase and / or to specifically influence an immune response against an antigen which is coAerted by Ae-modified mRNA, in particular Ae of the aforementioned cytokbe are preferred.
  • LPS hazard signal
  • GP96 oligonucleotides with the CpG-Mbtiv
  • cytokines particularly GM-CFS, which influence the immune system
  • adjuvants are aluminum hydroxide, the Freudian adjuvant and Ae of the above-mentioned stabilizing cationic Peptides or polypeptides, such as protamine.
  • Iipopeptides such as Pam3Cy s, also particularly suitable for use as adjuvants in the pharmaceutical composition of the present invention; vgL Deres et al, Nature 1989, 342: 561-564.
  • RNA or mRNA species which can be added to the pharmaceutical composition of the present invention to increase the immunogenicity.
  • adjuvant RNA is advantageously chemically modified for stabilization (“ck modification” or “cis stabilization”), for example by means of the nucleotide analogs mentioned above, in particular phosphorothioate-modified nucleotides, or else by means of additional measures for stabilizing RNA above
  • ck modification or “cis stabilization”
  • a further advantageous possibility of stabilization is Ae complexation or association (“trans association” or “trans modification” or “trans stabilization”) with the above-mentioned cationic or polycationic agents, for example with protamine.
  • the stability of the RNA molecules contained in the pharmaceutical composition is increased by one or more RNase inhibitors.
  • RNase inhibitors are Peptides or proteins, in particular those from placenta (for example from human placenta) or pancreas. Such RNase inhibitors can are also recombinant.
  • RNase inhibitor RNasin ® which is erheklich commercially, for example from Promega Such RNase inhibitors are generally useful for the stabilization of RNA.
  • a pharmaceutical composition comprising at least one RNA corresponding to at least one antigen, in particular mRNA, and at least one RNase inhibitor as defined above, if appropriate in conjunction with a pharmaceutically acceptable solvent, carrier and / or vehicle
  • Antigens in general form, as well as solvents, carriers and vehicles are defined below.
  • Ae A with regard to the preferred pharmaceutical composition containing at least one for at least one antigen from a tumor co-aerend mRNA.
  • the pharmaceutical composition according to the invention preferably contains one or more further pharmaceutically compatible carriers and / or one or more further pharmaceutically compatible vehicles.
  • suitable pharmaceutical compositions are disclosed in "Remington's Pharmaceutical Sciences” (Mack Pub. Co., Easton, PA 1980), which is wholly part of the disclosure of the present invention.
  • carrier substances come, for example, in addition to sterile water or sterile saline solutions as aqueous Solvents also polyalkylene glycols, hydrogenated naphthalene and in particular biocompatible lactide polymers, lactide / glycolide copolymer or polyoxyethylene
  • compositions according to the invention can include fillers or substances such as lactose, mannitol, substances for covalently attaching polymers such as polyethylene glycol to inhibitors according to the invention, complexation with rental allions or inclusion of materials in or on special preparations of polymer compound, such as For example, poly ctate, polyglycolic acid, hydrogel or on iposomes, microemulsion, micelles, unilamellar or multilamellar vesicles, erythrocyte fragments or spheroplasts.
  • the respective embodiments of the compositions are selected depending on the physical behavior, for example with regard to Ae solubility, Ae stability, bioavailability or degradability.
  • Controlled or constant release of the active ingredient component according to the invention in the composition includes Foamulations based on lipophilic depots (eg fatty acids, waxes or oils).
  • lipophilic depots eg fatty acids, waxes or oils.
  • coatings of substances or compositions according to the invention containing such substances namely coatings with polymers (for example polyoxamers or polyoxamines) are also disclosed.
  • substances or compositions according to the invention can have protective coatings, for example protease inhibitors or permeability enhancers.
  • aqueous carrier materials are, for example, water for injection (WF1) or water, buffered with phosphate, grate or acetate, etc., the pH being typically adjusted to 5.0 to 8.0, preferably 6.0 to 7.0 aqueous solvents or the or Ae further carrier (s) or the Ae further vehicle (s) will additionally preferably contain salt components, for example sodium chloride, potassium chloride or other components which make Ae solution isotonic, for example.
  • aqueous solvents or the other carrier (s) or vehicle (s) or other vehicle (s) can contain, in addition to the components mentioned above, additional components such as human serum albumin (HSA), polysorbate 80, sugar or amino acids ,
  • compositions according to the invention depend on the disease to be treated and its progress, as well as the body weight, age and gender of the patient.
  • the concentration of the modified mRNA in such formulations can therefore vary within a wide range from 1 ⁇ g to 100 mg ml.
  • the pharmaceutical composition according to the invention is preferably administered to the patient parenterally, for example intravenously, intraarterially, subcutaneously, intramuscularly. It is also possible to administer the pharmaceutical composition topically or orally.
  • Ae pharmaceutical composition according to the invention is preferably administered intradermally. Furthermore, transdermal application using electrical currents or by osmotic forces is possible. Furthermore, Ae pharmaceutical composition of the present invention can be injected locally into a tumor.
  • the invention also provides a method for treating or a vaccination method for the prevention of cancer, for example the diseases mentioned above, which comprises administering the pharmaceutical composition according to the invention to a patient, in particular a person
  • coAerend for at least one antigen from a tumor for the production of a pharmaceutical composition for the treatment and / or prevention of cancer, the patient is treated in addition to the invention
  • a treatment or vaccination method comprising the administration of at least one antigen from a tumor (according to the above definition) coAerenden RNA, preferably mRNA, Ae optionally stabilized according to the above statements, and at least one cytokine, for example one or more of the aforementioned cytokines, in particular GM-CSF, to a patient, in particular a human.
  • the method Aent in particular for the treatment and / or prevention of corresponding cancers (for example Ae above cancers).
  • the Ae present invention is also generally directed to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one antigen from a tumor (as defined above) coAerende RNA, preferably mRNA, Ae is (are) stabilized according to the above statements, and at least one cytokine , for example one or more of the above-mentioned cytokines, such as GM-CSF, preferably in combination with a pharmaceutically acceptable carrier and / or vehicle, for example an aqueous solvent, or one or more of the above-defined carriers, solvents or vehicles according to the invention
  • cytokines for example one or more of the abovementioned cytokines, in particular GM-CSF
  • RNA molecules in particular mRNA
  • the cytokine for example GM-CSF
  • the pharmaceutical composition containing Ae for at least one antigen from a tumor co-aerend mRNA or for Preparation of a corresponding medicament for simultaneous administration with or for administration before or after the (rn) RNA listed above).
  • the cytokine in particular GM-CSF, is very particularly preferably administered shortly before (for example about 15 minutes or less, for example about 10 or about 5 minutes) or shorter time (for example about 5, 10, 15, 30, 45 or 60 min) after or a longer time (about 5, about 2, 6, 12, 24 or 36 h) after the administration of the pharmaceutical composition defined above or generally after the at least one RNA for at least one antigen from a tumor
  • the cytokine for example GM-GFS
  • GM-GFS can be applied in the same way as Ae pharmaceutical compositions according to the invention or Ae at least one for at least one antigen from a tumor co Aerende (m) RNA or in a separate manner.
  • Suitable routes of administration as well as suitable formulation options in relation to the or Ae cytokine (s) can be found in the above statements with regard to the pharmaceutical compositions according to the invention.
  • a GM-CFS dose 100 M-krogram / m 2 is particularly recommended.
  • Ae administration of the cytokine, for example GM-CFS is preferably carried out by sc injection.
  • Ae pharmaceutical compositions of the present invention or the RNA co-terminating for an antigen from a tumor and, if appropriate, the ae or cytokine (s) are preferably applied in the form of interval doses.
  • a dose of a pharmaceutical composition according to the invention can be applied in shorter intervals, e.g. daily, every second day, every third day etc., or, which is more preferred, in longer intervals, e.g. once a week, once in two weeks, once in three weeks, once a month etc.
  • Ae intervals also be variable, taking into account in particular the patient's immunological parameters. For example.
  • cytokine (s) / cytok e) can Ae administration of a pharmaceutical composition according to the invention (and possibly also associated with it Ae administration)
  • the cytokine (s) / cytok e) follow a treatment scheme in which the interval is shorter at the start of the treatment, for example once every two weeks, and then, depending on the course of the treatment or the correspondingly determined immunological parameters of the patient, the interval For example, it is extended once a month.
  • a therapy scheme tailored to the respective InAviduum can be used.
  • Another object of the present application relates to a method for producing the pharmaceutical composition defined above, comprising Ae steps: (a) producing a cDNA library or a part thereof from a patient's tumorous tissue, (b) producing a template for Ae In titro transcription RNA from the cDNA library or part thereof and (c) the die.
  • the patient's tumor tissue can be obtained, for example, by a simple biopsy. However, it can also be provided by surgical removal of tumor-infected tissue. Furthermore, Ae can prepare the cDNA library or a part thereof according to step (a) of the of the present invention can be carried out after the corresponding tissue has been deep-frozen for storage, preferably to temperatures below -70 °. To produce the cDNA library or a part thereof, first isolation of the total RNA, for example from a tumor tissue biopsy, is carried out. Methods for this are described, for example, in Maniatis et al, pm. Corresponding kits are also commercially available, for example from Röche AG (for example the product “High Pure RNA Isolation Kit”).
  • RNA is converted according to methods known to a person skilled in the art (vgL, for example, maniatis et aL, supra)
  • Ae corresponding poly (A *) - RNA isolated Kits for this are also commercially available.
  • One example is the "High Pure RNA Tissue Kit” from Röche AG.
  • Ae cDNA library is then produced on the basis of the poly (A + ) RNA obtained in this way (see also, for example, Maniatis et aL, st ⁇ r).
  • kits for example the “SMART PCR cDNA Synthesis Kit” from ⁇ ontech Inc., available to a person skilled in the art.
  • the individual sub-steps of the poly (A + ) RNA for Double-stranded cDNA are shown schematically in FIG. 11 using the example of the method according to the “SMART PCR cDNA Synthesis Kit” from Qontech Inc.
  • step (b) of the above production process a template for Ae in titro transcription is synthesized starting from the cDNA library (or a part thereof). This is done according to the invention in particular by cloning Ae-obtained cDNA fragments into a suitable RNA production vector ,
  • the suitable DNA template and plasmids preferred according to the invention have already been specified above in connection with the production of the mRNA for Ae pharmaceutical composition according to the invention.
  • Aese if it is present as circular plasmid (c) DNA, is first linearized with a corresponding restriction enzyme.
  • the construct cut in this way is preferably used before the own axi transcription cleaned again, for example by appropriate phenol-chloroform and / or Cuoroform / PhenoL ⁇ Isoamylalkohol-G-emische. This ensures in particular that the Ae DNA template is in protein-free form.
  • the next step is the enzymatic synthesis of the RNA starting from the purified template.
  • This sub-step takes place in a corresponding reaction mixture containing Ae linearized, protein-free DNA template in a suitable buffer, to which a ribonuclease inhibitor is preferably added using a mixture of the required ribonucleotide triphosphates (rATP, rCTP, rUTP and rGTP) and a sufficient one Amount of an RNA polymerase, for example T7 polymerase.
  • the reaction mixture is in RNase-free water.
  • a CAP analog is also preferably added in the actual enzymatic synthesis of the RNA.
  • Ae RNA thus produced is preferably precipitated using ammonium acetate / ethanol and optionally washed one or more times with RNase-free ethanol. Finally, Ae purified RNA is dried and, according to a preferred embodiment, taken up in RNase-free water. Furthermore, Ae RNA produced in this way can contain several extracts. tion with phenol / chloroform or phenol / chloroform / isoamyl alcohol.
  • a so-called subtraction library can also be used as part of the total cDNA library to convert Ae to provide mRNA molecules according to the invention.
  • a preferred part of the cDNA library of the tumor tissue codes for Ae tumor-specific antigens. In certain tumors, antigens corresponding to Ae are known.
  • the part of the cDNA library which is tumor-specific for Ae can first be determined (ie before step (a) of the method defined above). This is preferably done in that the sequences of the tumor-specific antigens are determined by comparison with a corresponding cDNA library from healthy tissue.
  • the comparison according to the invention comprises, in particular, a comparison of the expression patterns of the healthy tissue with that of the tumor tissue in question.
  • Corresponding expression patterns can be determined at the nucleic acid level, for example with the aid of suitable hybridization experiments.
  • Ae corresponding (m) RNA or cDNA libraries of the tissues can each be separated into suitable agarose or polyacrylamide genes, transferred to membranes and with appropriate nucleic acid Probes, preferably oligonucleotide probes, which represent the respective genes, are hybridized (Northern or Southern blots).
  • a comparison of the corresponding hybridizations thus provides those genes that Ae are either exclusively from the tumor tissue or are expressed more strongly therein.
  • hybridization experiments are called Ae with the aid of a diagnosis by means of microarrays (one or more microa ⁇ ays).
  • a corresponding DNA microarray comprises a defined arrangement, in particular in a small or very small space, of nucleic acid, in particular oligonucleotide probes, with each probe, for example, in each case a gene, its presence or absence in the corresponding appropriate RNA or cDNA library is to be examined, represented
  • hundreds, thousands and even tens to hundreds of thousands of genes can be represented.
  • Ae poly (A + ) RNA or, which is preferred, Ae-corresponding cDNA with a suitable marker, in particular fluorescent markers are used for this purpose, labeled and brought into contact with the microarray under suitable hybridization conditions Accordingly, a cDNA species on a probe molecule present on the microayray, in particular an oligonucleotide probe molecule, the more or less pronounced a fluorescence signal that can be measured with a suitable detection device, for example a suitably designed fluorescence spectrometer, is observed the stronger If a cDNA (or RNA) species is represented in the library, the larger the signal, for example the fluorescence signal, will be.
  • a suitable detection device for example a suitably designed fluorescence spectrometer
  • tumor tissue-specific expression patterns is in no way limited to analyzes at the nucleic acid level.
  • a person skilled in the art is also familiar with methods known in the prior art which are used for expression analysis at the protein level of aenes.
  • Techniques in particular include 2D gel electrophoresis and mass spectrometry, with Aese techniques advantageously also using protein bio-chips (ie microarrays at the protein level, in which, for example, a protein extract from healthy or tumor tissue with antibodies applied to the microarray substrate and / or peptides), can be combined.
  • MESDI-TOF matrix-assisted laser desorption / ionization-time of flight
  • FIG. 1 shows in a graphic representation Ae results of a tumor accumulation in mice (rat-Her-2 / new-transgenic animals), Ae spontaneously develop breast cancers, with RNA. It is Ae tumor multiplicity on the axis against the age of the mice
  • mice plotted on the x axis. Untreated mice (n 4), Ae as control agents, all had tumors at 6 months of age. Three mice were injected for Her-2 / neu Co Aerende DNA, with one mouse being tumor free after 10 months. As a further negative control, 4 mice received an antisense mRNA complementary to the mRNA for Her 2 / neu. These mice also had all tumors after 6 months (not shown). In contrast, one of 4 mice injected with Her-2 / neu coAerende mRNA (meaning the sense strand) was tumor-free after 9 months
  • FIG. 2 shows in a graphical representation Ae results of experiments on beta-galactosidase (beta-Gal) -specific CTL (cytotoxic T-lyrin phocyte) activity by immunization with a beta-Gal co-terminating mRNA under the influence of GM -CSF.
  • beta-Gal beta-galactosidase
  • CTL cytotoxic T-lyrin phocyte
  • the target cells were P815 (H 'J cells, Ae loaded ( ⁇ ) or not loaded with the synthetic peptide TPHPA-RIGL, which corresponds to the H 2 d epitope of beta-Gal (A.) Three or two animals per group were treated. As negative control, Aenten animals were injected with injection buffers in both Auriculae.
  • FIG. 3 shows in further graphic representations Ae results of EIISA standard tests specific for IFN-gamma (A) or IL-4 (B), documenting cytokine production corresponding to Ae Ae by splenocytes, which in titro with beta-Gal protein were restimulated.
  • BALB / c mice were immunized as previously indicated in Fig. 2.
  • the splenocytes were stimulated in titro with beta-gal protein, culture supernatants corresponding to Ae were obtained, and the IFN-gamma or IL-4 concentration was reduced Use of an EIISA standard test determined
  • FIG. 4 shows further graphical representations which Ae antibody response was demonstrated by mice immunized according to the invention.
  • BALB / c mice were immunized, as indicated in FIG. 2. Blood was drawn two weeks after the boost and the blood serum was obtained therefrom.
  • Beta-gal-specific IgGl (A) and IgG2a antibodies (B) were determined using an ELISA test.
  • Ae absorbance (OD) at 405 nm on the y-axis is shown, Ae from the conversion of the
  • Substrate ABTS results in the ELISA test.
  • the extinctions shown are Ae values, from which Ae corresponding values are subtracted from mice treated with injection buffer
  • FIG. 5 shows microscopic sections of the auricula of mice stained with X-Gal, to which mRNA coding for beta-galactosidase in Ae auricula Id. Was injected. 12 hours after the injection of 25 ⁇ RNA in HEPES-Na ⁇ injection buffer, Ae ears were removed and X-Gal stained sections were made. Blue cells indicate beta-galactosidase activity. As can be seen in both sections, there are only a few blue cells.
  • FIG. 6 shows a section corresponding to FIG. 5 through an auricula of a mouse, which was injected into the ae auricula for beta-galactosidase coAerende mRNA, which was protamine-stabilized. The microscopic section stained with X-Gal shows a few blue stained cells.
  • Fig. 7 shows two further sections through Ae Auricula von Mausen, whereby two pictures were made per section to show a larger section.
  • coAerende mRNA was injected into Ae Auricula for beta-galactosidase in a buffer to which 10 U RNasin, an enzymatic pancreatic RNase inhibitor (available from Röche or Promega) was added just before the injection.
  • an enzymatic pancreatic RNase inhibitor available from Röche or Promega
  • FIG. 8 shows a schematic representation of the plasmid p'l / iS, which was used for Ae In titro transcription. Constructs according to the invention were cloned into Ae BgUl and Spel sites, the relative position of which is indicated. The area filled in black contains Ae 5 - untranslated region of the beta globin gene from Xencpus lae ⁇ , while the area filled in gray represents a corresponding region 3 - untranslated region of the beta globin gene from X. laeis. Furthermore, Ae is the relative position of the T7 promoter , the Pstl site used for sequencing, the poly (A + ) -
  • Tail (A J Q C ) and indicated by an arrow Ae Tramlmptiorisraum.
  • FIG. 9 shows an exemplary flow diagram of the course of an RNA vaccination therapy according to the invention with the supportive administration of GM-CFS.
  • the mRNA coAerende for one or more tumor antigens (MUC1, Her-2 / neu, Tilomerase, MAGE-1)
  • MRNAs or a mRNA coAerende for a control antigen are administered to the patient Ld on days 0, 14, 28 and 42.
  • the patient is given GM-CFS one day after the RNA vaccination (Leucomax ® (100 ⁇ g / m 2 ) from Novartis / Essex Pharma) sc injected With a stable course or objective tumor response (complete remission (CR) or partial remission (PR))
  • CR complete remission
  • PR partial remission
  • Ae patients receive Ae vaccinations once a month sc
  • the response of the tumor raAolo- gisch, laboratory chemistry or sonographically as well as Ae immunological phenomena induced by Ae therapy were evaluated From day 70 Ae immunization therapy is continued at 4-week intervals.
  • blood samples are taken to determine the corresponding laboratory parameters, the differential blood count (Diff-BB), FACS analysis and cytokbe.
  • Diff-BB differential blood count
  • FIG. 10 shows in a flow diagram Ae construction of autologous, stabilized RNA according to the production method of the present invention.
  • tumor tissue is obtained, for example by biopsy.
  • Ae total RNA is extracted from this.
  • Ebe cDNA library is constructed on the basis of the poly (A + ) RNA obtained from the RNA extraction.
  • autologous, stabilized RNA is obtained by means of in titro transcription after production of the corresponding DNA template.
  • FIG. 11 shows the reaction scheme Ae for the preparation of a cDNA library, starting from poly (A + ) RNA, for example for the SMART PCR cDNA synthesis kit from Qontech Inc.
  • FIG. 12 shows a photograph of an ebar agarose gel, the Ae typical size fractionation of a cDNA library, derived from human placenta tissue.
  • M line length markers with fragments of the length indicated on the left are plotted.
  • the lane "DS cDNA" contains the cDNA library. Those fragments which correspond to the expected size fraction (approximately 200 BP to 4000 BP) are used for Ae In titro transcription
  • FIG. 13 shows an exemplary treatment plan for tumor therapy according to the invention by injection via a Turnor mRNA library, here b combination with GM-CSF, for patients with malignant melanoma.
  • a Turnor mRNA library here b combination with GM-CSF
  • autologous, stabilized RNA produced from the patient's own tumor tissue is used.
  • This amplified autologous tumor RNA is administered to the patient Ld on days 0, 14, 28 and 42.
  • GM-CFS Leucomax ® 100 ⁇ g / m 2 Novartis / Essex Pharma
  • the fourth injection evaluates the response of the tumor by means of a staging examination (including sonography, thoracic X-rays, CT etc.) and by Ae evaluation of the immunological parameters induced by Ae therapy. If the course of the disease or objective tumor response is stable (CR or . PR) the patient receives a further vaccination every four weeks. More restaging
  • FIG. 14 shows again schematically the general course of therapy with the pharmaceutical composition according to the invention with an autologous, amplified one
  • Tumor RNA represents ebe cDNA library of the tumor tissue.
  • a sample of the tumor tissue is obtained, for example by means of a biopsy.
  • the entire, then the poly (A +) - RNA is produced from the tissue by appropriate extractions.
  • the same cDNA library is constructed, which is honed by a vector suitable for the subsequent In ⁇ & o transcription Eb RNA vaccine is then obtained in titro transcription, which is injected into the patient from whom the tumor tissue has been removed to combat the tumor
  • Example 1 Tumor accretion with RNA in an animal model
  • Capped mRNA, coAerend for a truncated version of the Her-2 / neu proteb of the rat (“ECD-TM-neu rat", containing Ae extracellular domain and Ae transmembrane region, but not the Ae cytoplasmic region) was generated using "SP6 mMessaggemMachbe "(Ambion) with the help of a plasmid which is essentially the same as the b Fig. 8 corresponded to the structure shown, but instead of the T7 promoter just contained SP6 promoter, and b in which the EC1 TM new rat corotruct was inserted behind the SP6 RNA polymerase promoter.
  • the mRNA produced was dissolved in injection buffer (150 mM Na ⁇ , 10 mM HEPES) at a concentration of 0.8 mg / ml and mixed with Protamb sulfate (Sigma) (1 mg Protamb per 1 mg RNA) Ae Auriculae (25 ⁇ i per ear) of the mice injected Eight injections were carried out, each at the age of 6, 8, 13, 15, 20, 22, 27 and 29 weeks.
  • Aenten mice were given injections with injection buffer, with plasmid DNA coAerender for ECD-TM-neu rat or with antisense mRNA corresponding to the mRNA according to the invention.
  • mice Female BalB-neu T-mice (BalB / c mice, Ae express the oncogene Her2 / neu of the rat; vgL Rovero et aL (2000) J. ImmunoL 165 (9): 5133-5142), Ae spontaneously breast cancer develop nome, were immunized with a shortened version of the Her-2 / neu proteb ("ECD-TM-neu rat", containing Ae extracellular domain and the transmembrane region but not Ae cytoplasmic region) coAerender RNA.
  • ECD-TM-neu rat Her-2 / neu proteb
  • Four served as negative control Injection buffer-treated mice A further group of three mice was injected for the shortened Her-2 / neu coAerende DNA.
  • Aenten four mice, to which Ae corresponding antisense RNA was injected As shown in FIG. 1, the animals in the untreated control group had an average tumor multiplicity of 10 after 26 weeks, all of whom were older by et wa had palpable breast tumors for 20 weeks.
  • a slowdown in carcinoma development can be observed in the immunization with the mRNA ebe deuAche coAerenden for ECD-TM-new rat, in particular a tumor multiplicity of 10 is not reached until the age of 30 weeks.
  • the tumor size is also reduced (not shown) ).
  • mice treated with the mRNA according to the invention were still tumor-free after 9 months.
  • the plasmid thus prepared was leareared with Pst I and transcribed in titro using the rn-MessagemMachbeT7 Bat (Ambion, Austin, TX USA)
  • RNA was extracted using LiCl precipitation, phenol / chloroform extraction and ammonium acid tat precipitation purified The purified RNA was finally resuspended at a concentration of 0.5 mg / ml b injection buffer (150 mM NaG, 10 mM HEPES).
  • P815 and P13.1 cells were RPMI 1640 (Bio-Whittaker, Verviers, Belgium) supplemented with 10% Htz-activated fetal calf serum (FCS) (PAN Systems, Germany), 2 mM. Glutamine, 100 U / ml penicillb and 100 mg / ml streptomycin, cultured
  • CTL cultures were b RPMI 1640-MeAum supplemented with 10% FCS, 2 mM L-glutamine, 100 U / ml penicillin, 100 mg ml streptomycin, 0.05 ⁇ M beta-mercaptoethanol, 50 mg / ml gentamycb, MEM-Non Essential Ambo Assids (100x) and 1mM sodium pyruvate.
  • CTL were restimulated for 1 week with 1 mg / ml beta-galactosidase proteb (Sigma, Taufkirchen, Germany). On day 4, 4 ml of culture supernatant were carefully pipetted off and replaced with fresh Me Aum containing 10 U / ml rIL-2 (final concentration)
  • mice 3 BALB / c mice per group were treated with 20 mg pentobarbital ip. anesthetized per mouse The mice were then injected with both Auriculae 25 mg for beta-galactosidase (beta-Gal) coAerende mRNA injection buffer (150 mM Nad, 10 mM HEPES). In some cases, granomycyte-macrophage-gene-colony stimulation was additionally stimulated.
  • beta-Gal beta-galactosidase
  • Splenocytes obtained from the spleen were stimulated in titro with beta-Gal-Proteb and Ae CTL activity was described after 6 days using standard 51- hour Cr tests, such as b Rammenee et al (1989) Immunogenetics 30: 296-302 , briefly summarized, target cells were labeled with 51 Cr and loaded with the peptide TPHPARIGL for 20 mb at room temperature.
  • RNA for beta-galactosidase coAert, b Ae auricula of mice
  • anti-beta-galacosidase immunogen essentially of the Th2 type. It produces an anti-beta-galahosidase IGl-type immunoglobulbs (FIG. 3A) and the same secretion of IL-4 (FIG. 2B) were found in splenocytes stimulated with beta-galactosidase from mice to which Ae had been conjugated RNA for beta-galactosidase.
  • GM-CFS GM-CFS Ae can increase the immune response caused by the same RNA vaccination.
  • the injection of GM-CFS just the day before the injection of RNA shows hardly any influence on Ae strength or the type of immune response.
  • Ae injection of GM-CFS increases the immune response 2 hours before the injection of the RNA (vgL Ae ILr4 release) b Fig.
  • GM-CFS is removed just the same place or same day after the RNA vaccine Site (not shown), not only is the Ae immune response boosted overall (vgL Ae antibody response according to FIG. 3), but the Ae immune response is polarized to the Thl type (vgL Ae IFN-gamma production by beta-Gal Proteb- stimulated splenocytes according to FIG. 2A, Ae production of IgG2a antibodies against beta-Gal according to FIG. 3B and Ae production of activated CTL according to FIG. 1).
  • the injection of GM-CFS a few Mbuten or a few hours after the RNA injection should give the same effect (amplification and polarization) of the immune response.
  • mice Naked or protah-associated or -complexed mRNA, Ae for beta-galactosidase coAert (prepared as given in Example 2) b Ae mouse auricle b amount of 25 mg RNA b Injection buffer (150 mM NaCJ, 10 mM HEPES ) other mice were injected with beta-galactosidase coAerende mRNA together with 10 U of the RNase inhibitor RNasb (eb pancreatic extracted RNase inhibitor, obtainable from Röche or Promega). The RNase inhibitor was immediately injected with the RNA Solution mixed before injection. Ae ears were removed from the mice after 12 hours.
  • RNasb eb pancreatic extracted RNase inhibitor, obtainable from Röche or Promega
  • the injection of naked or protamb-associated mRNA leads to detectable beta-galactosidase activity with a few cells in the corresponding thin sections (blue cells b FIGS. 5 and 6). Some cells have thus taken up Ae exogenous RNA and translated the Proteb b If the for beta-galactosidase coAe- mRNA was protected with the IGSIase inhibitor RNasb, much more blue cells were observed than in the case of naked or protamb-associated RNA (Fig. 7).
  • RNasb inhibits RNases
  • the Ae half-life of the mRNA molecules projected is prolonged in ti, where the environment (bterstitial tissue) is contaminated with RNases.
  • the stabilization of the RNA in this way leads to increased uptake by cells surrounding Ae and thus to increased expression of the protein co-artened by the exogenous RNA. This phenomenon can therefore also be used for an enhanced immune response against eb from the mRNA co-coated antigen.
  • Example 4 RNA vaccination in patients with malignant diseases
  • Cytotoxic T lymphocytes recognize antigens as short peptides (8-9 ambosacids), Ae bound to MHC class I glycoprotein are expressed on the cell surface (1). These peptides include fragments of btracellular protein molecules. However, there are indications that antigens exogenously taken up by macropbocytosis or phagocytosis can lead to the CD8 + T cell-mediated immune response. The proteins are split b proteosomes, the resulting peptides are transported from the cytosol b the lumen of the endoplasmic reticulum and bound to MHC class I molecules.
  • the processed proteins are transported as peptide / MHG class I complex on Ae cell surface and presented to the CTL. This process takes place in every cell and thus enables the immune system to precisely monitor every single cell for the presence of foreign or altered or embryonic proteins, regardless of whether they come from btracellular pathogenic germs, oncogenes or dysregulated genes. As a result, cytotoxic lymphocytes b are able to recognize and lyse infected or neoplastic cells (2, 3).
  • TAA tumor-associated antigens
  • Ae antigen presenting cells
  • Ae could be likely for the occurrence of so-called "tumor escape” phenomena
  • Aesen's approach could reduce T cell-mediated immune responses to naturally processed and presented antigens with possibly higher immunodominance, and additional involvement of MHG class II restricted epitopes could increase and sustain Ae-reduced tumor-specific immune responses ,
  • An example of an inventive treatment scheme for tumor vaccination of patients with advanced malignancies (breast, ovarian, colorectal,
  • RNA is derived from plasmids, Ae for MUC1, Her-2 / new, telomerase and MAGE-1 tumor antigens and influenza matrix Proteb (IMP) (positive control) coAeren, was produced btra dermally administered to patients with the aforementioned malignancies. This enables the same CTL induction in tito to prevent the disease from progressing or to regress.
  • the tumor antigens mentioned are expressed on the malignant cells of breast, ovarian, colorectal, pancreatic and nerve cell carcinomas
  • RNA vaccination GM-CSF Leucomax ®, 100 ug / m 2, Novartis / Essex Pharma
  • the treatment according to the invention is an immunization approach which requires only minimal intervention in the patient (injection).
  • the therapy is carried out on an outpatient basis and is suitable for many tumor patients without Ae egg restriction to certain HLA types or defined T cell epitopes.
  • polyHonal CD4 + -T helpers as well as CD8 + -CTL can be reduced by Aese therapy.
  • RNAs for several tumor antigens (MUCl, Her-2 / neu, Telomerase, MAGE-1) and for eb control antigen, the influenza matrix proteb (EMP, vital antigen), are additionally administered to the patient on days 0, 14, 28 and 42 additionally
  • Ae patients receive GM-CSF (Leucomax ® (100 ⁇ g m 2 ) Novartis / Essex Pharma) sa just one day after the RNA vaccination if the course of the crane is stable or the tumor response is objective (complete response (CR) or partial response (PR) )
  • Ae patients receive Ae vaccinations if necessary once a month.
  • the response of the tumor is evaluated raAologically, by laboratory chemistry and / or sonographically and Ae by immunotherapy-induced Ae therapy
  • the treatment plan is shown schematically in Fig. 9
  • Diff-BB differential blood count with smear (5 ml EDTA blood).
  • Cytokbe 10 ml serum.
  • ELIspot 20 ml Heparb-blood multitest analysis of the DTH reaction.
  • RNA biopsy should be performed in the case of a positive DTH reaction (no local anesthesia is required for this).
  • RNA production unit For the production of mRNA-based vaccines, only chemically synthesized precursors which have been regenerated from bacteria are required. This is preferably accomplished using a specially equipped RNA production unit. This is located in the enclosed space, which is declared as an RNase-free zone, ie. Working with RNase (zJ ⁇ . Ae uptake of plasmids) must not be carried out. Ae contamination with naturally occurring RNases is also constantly checked. This room is equipped with new devices (4 ° G and -20 ° G refrigerators, heating block, sterile bench, centrifuge, pipettes) which have never been used for biological or clinical work.
  • RNA production increase is used exclusively for Ae enzymatic production (in titro transcription) of mRNA (without bacterial, viral or cell culture work).
  • the final product includes a sterile RNA solution in HEPES / Na ⁇ buffer. Quality analyzes are carried out on a formaldehyde agarose gel. In addition, the Ae RNA concentration and the proportion of protebenes are determined photometrically (OD 320 ⁇ 0.1; ratio of OD 260 / OD 280 > 1.8 for pure RNA). Possible contamination by LPS is analyzed in the LAL test. All RNA samples are filtered sterile before administration
  • the selected genes (CEA Mucbl, Her-2 / neu, Telomerase, Mage-Al and Influenza Matrix) are amplified via PCR using the thermostable Hgh-Pef ormance enzyme (pfu, Stratagene).
  • the genes come from tumor cDNA (Mucbl, Her2 / neu, Telomerase) or they were honed b bacterial vectors (Influenza Matrix and MAGE-Al).
  • the PGR fragments are cut with restriction enzymes (Mucbl: Bglü-Spel; Her-2 / new: HnDmblunt-Spel; Telomerase: Bgl ⁇ -Spel; MAGE-Al: BamHI-Spel; Influenza Matrix Protein: Bglü-Spel) and b das T7TS plasmid (vgL Fig. 8) via Ae Bgi ⁇ and Spei restriction sites Honed plasmids of high purity are obtained via the Endo-free Maxipreparation Kit (Qiagen, Hlden, Germany).
  • the sequence of the vector is checked and documented by means of a double spectral sequencing from the T7 promoter to the Pstl site.
  • Plasmids whose inserted gene sequence is correct and without mutations are used for Ae In titro transcription (control over Ae published sequences: accession numbers : M11730 for Her-2 / new, NM_002456 for MUCl, NM_003219 for Telomerase TERT, V01099 for Influenza Matrix and M77481 for MAGE-Al).
  • each plasmid 500 ⁇ g of each plasmid are ibearized in a volume of 0.8 ml via digestion with the restriction enzyme Pstl and in 2 ml Eppendorf reaction vessel. This construction is transferred to Ae RNA production before 1 ml of a mixture of phenol / chloroform isoamy Alcohol is added to the modified DNA.
  • the reaction vessel is vortexed for 2 Mbuten and centrifuged for 3 Mbuten at 15,000 rpm
  • the aqueous phase is removed and mixed with 0 ml of 2-propanol and 2 ml reaction vessel. This vessel is centrifuged for 15 Mbuten at 15000 rpm, the supernatant is discarded and 1 ml of 75% ethanol is added.
  • the reaction vessel is stirred for 10 minutes at 15,000 rpm centrifuged, and the ethanol is removed The vessel is centrifuged again for 2 Mbuten, and Ae residues of the ethanol are removed with a mukroliter pipette tip. The DNA pellet is then dissolved in 1 ⁇ g / ml b RNase-free water
  • reaction mixture is prepared in each 50 ml Falcon tube: 100 ⁇ g processed protein-free DNA, 1 ml 5 ⁇ buffer (200 mM Tris-HQ (pH 7.9), 30 mM MgCl 2 , 10 mM spermidine, 50 mM Na ⁇ , 50 mM DTI), 2001 Ribonuclease (RNase) inhibitor (recombinant, 5,000 U), 1 ml rNTP-M ⁇ x (each 10 mM ATP, CTP, UTP; 2 mM GTP), 1 ml GAP analogue (8 mM), 150 ⁇ l T7 polymerase (3000 V) and 2.55 ml RNase-free water. The total volume is 5 mL. The mixture is inhibited for 2 hours at 37 ° C in the heating block. Then 100 U RNase-free DNase is added and the mixture is inhibited again for 30 Mbuten at 37 ° C. Ae DNA template is enzymatically degraded
  • T7 polymerase purified from the E. cdi strain which contains the eb plasmid with the gene for Ae polymerase. This RNA polymerase uses only promoter sequences of the T7 phage as substrate; Fa ⁇ nentas. NTPs: chemically synthesized and purified by HPLC purity over 96%; Fermentas.
  • GAP analogue chemically synthesized and purified by HPLC purity over 90%; Institute of Organic Chemistry at the University of Tübingen.
  • RNase Inhibito ⁇ RNasb for injection, recombinantly produced (E. cdi) ', Promega.
  • DNase Pulmozym * ("dornase alfa"); from Röche R ⁇ n ng
  • the DNase-treated RNA is mixed with 20 ml of boar solution from 3.3 ml of 5 M NH4QAc plus 16.65 ml of ethanol.
  • the mixture is inhibited for 1 hour at -20 ° C. and centrifuged at 4000 rpm for 1 hour.
  • the supernatant is removed and the pellet is washed with 5 ml of 75% RNase-free EAanol.
  • the vessel is centrifuged again at 4000 rpm for 15 Mbuten and the supernatant is removed.
  • the vessel is centrifuged again under the previous conditions and the remaining ethanol is removed with a microliter pipette tip.
  • the reaction vessel is opened and the pellet is dried under a sterile bench in a sterile environment
  • RNA 1 ml of RNase-free water is added to the dried RNA.
  • the pellet is inhibited at 4 ° C for at least 4 hours.
  • 2 ⁇ l of the aqueous solution are subjected to quantitative analysis (determination of UV absorption at 260 nm).
  • 2 ml of phenol / CUorofo ⁇ ii / isoamylalfehol solution are added to 1 ml of aqueous RNA solution.
  • the mixture is vortexed for 2 Mbuten and centrifuged at 4000 rpm for 2 Mbuten.
  • the aqueous phase is removed with a microliter pipette and transferred to a new reaction vessel.
  • RNA is dissolved in RNase-free water and adjusted to the same concentration of 10 mg ml. It is incubated at 4 ° C. for 12 hours. By adding injection buffer (150 mM Na ⁇ , 10 mM HEPES) a final concentration of 2 mg ml is reached.
  • injection buffer 150 mM Na ⁇ , 10 mM HEPES
  • the end product is preferably sterile filtered under GMP conditions before use.
  • Each patient receives an e btradermale (id) injection of 150 ⁇ l of the solution for injection, b each of 100 ⁇ g antigen-co Aerende mRNA (CEA Her-2 / new, MAGE-Al, Mucb 1, telomerase, influenza) at two different sites Matrix Proteb) solved
  • a booster immunization is carried out every 14 days in order to then repeat Ae vaccinations at a monaAchemic interval. Every day just after the RNA injection, the patients are additionally administered GM-CSF (Leucomax ® , Sandoz / Essex Pharma) sub cutan (sc)
  • Aese therapy is continued at monaA intervals
  • DTH reaction skin reaction to dermally projected RNA, “delayed type hypersensitivity", T-lymphocyte-mediated reaction
  • Ae induction of tumor-specific T cells and measurable tumor remission is used.
  • TITRO and TITO measured T cell reactions as well as size changes of bi-dimensionally detectable tumor manifestations or kborchemical course parameters are considered as parameters.
  • the objective remission is defined as the best response b form of complete or partial remission, according to the criteria listed below.
  • the remission rate is calculated from the ratio of the number of patients with objective remission and the total number of evaluable patients.
  • the same immunological response to Ae therapy is seen as a change in the immune status, determined by immunotyping peripheral mononuary cells, increasing the antigen-specific CTL precursor frequency in peripheral blood and Ae induction via persistent tumor-specific T cell activity
  • CR Complete remission
  • PK Partial remission
  • NC No Change
  • PD Progression of even tumor findings.
  • Paglia P, Ghiodoni Rodolfo M, Colombo MP Murine dendritic cells loaded b vitro with soluble proteb prime cytotoxic T lymphocytes agabst tumor antuen b vivo. J Exp Med 183: 317, 1996.
  • TAA tumor-associated antigens
  • Ae CTL recognized deficient peptides b binding to MHG class I molecules.
  • the presentation of peptides by antigen-presenting cells (AP sbd is the physiological way of generating specific immune responses by lymphocytes (Ramesee, 1993).
  • Dendritic cells have proven to be potent antigen-presenting cells, Ae lead to induction of the immune response in two ways : The first kt d direct presentation of peptides to CD8 + T lymphocytes and their activation (Schuler & Steinmann, 1985; Inaba et aL, 1987; Romani et aL, 1989), the second is Ae generation via protective immune response, Ae is mediated by CD4 + helper ymphocytes, and presupposes presentation of peptides via MHG class H molecules (Grabbe et aL, 1991, 1992, 1995) ).
  • TAA tumor-associated antigens
  • RNA over peptides A major advantage of using RNA over peptides is that a wide variety of peptides from boar can be processed and presented for eb TAA coAerenden mRNA.
  • the polyvalent vaccine of this type can also be used to see the likelihood of the occurrence of so-called "tumor escape” phenomena.
  • Aesen's approach allows T-cell-mediated immune responses to naturally processed and presented antigens with potentially higher immunodominance With additional involvement of MHGKJasse- ⁇ -restricted epitopes, Ae-reduced tumor-specific immune response can be strengthened and maintained for a longer period of time.
  • mk is vaccinated against the RNA expression profile present in the patient's autologous tumor. This takes into account the specific tumor profile of the patient, with unknown TAAs b Ae vaccination m also being received.
  • the elaborate cultivation of the DC is not necessary because RNA (kebe transf ected DG) is used for the vaccination.
  • the same vaccination therapy is provided using amplified autologous tumor RNA in patients with metastatic malignant melanoma, in particular StaAum m / IV
  • Ae vaccination induces tumor-specific cytotoxic T cells in tito ebe in order to achieve a 1-lbkch-therapeutic effect (tumor response). It is a question of an immunological approach that only requires minimal intervention by the patient (injection).
  • the therapy can be carried out on an outpatient basis and is suitable for many tumor patients without having to cure certain HLA types or defined T cell epitopes.
  • QD8 + -CTL can also be reduced by this Therapk polyHonak GD4 + T-helper ak. From a strategic point of view, it is also particularly advantageous to take into account unknown TAAs in the vaccination protocol and to use autologous material exclusively BehanAungplan
  • the amplified autologous tumor RNA is the patient ID on days 0, 14, 28 and 42 administered addition
  • Ae patients each receive just day after the RNA-vaccination GM-CSF (Leucomax ® 100 ug m 2, Novartis / Essex) sc
  • GM-CSF Leucomax ® 100 ug m 2, Novartis / Essex
  • sc Each At two different sites, the patient receives an injection of 150 ⁇ l of the injection solution, each containing 100 ⁇ g of autologous tumor RNA
  • Ae patients receive Ae vaccinations every 4 weeks. Further Restagii-ig examinations can be provided, for example, day 126, then every 12 weeks.
  • the treatment plan is shown schematically in FIG. 13
  • poly (A + ) RNA is isolated from the patient's own tumor tissue. This collated RNA is very unstable in terms of skh and is limited in its amount. That is why Ae genetic information is present and more stable cDNA library rewriting and somk preservation Starting from the patient's own cDNA booklet, stable autologous RNA can be produced for the entire treatment period.
  • the procedure according to the invention is shown schematically in FIG. 10
  • RNA isolation from a tumor tissue biopsy eb method from Röche AG is used.
  • the Hgh Pure RNA Isotement Kk (Bestelbummer 1828665) according to the manufacturer's instructions.
  • Poly (A + ) RNA is isolated from the total RNA using another method from Röche AG with the Hgh Pure RNA Tksue Kk (order number 2033674)
  • the cDNA library is constructed using the “SMART PCR cDNA syn ⁇ esk Kk” (from Clontech Inc., USA order number PT3041-1) in accordance with the manufacturer's instructions
  • Ae single-stranded poly (A + ) RNA is reverse transcribed using a special primer. Additional primers can be hybridized via the poly-G overhang at the 3 'end of the newly synthesized DNA, via which the construct can be amplified by PCR.
  • the double-stranded cDNA fragments are now ready for cloning b suitable RNA production code (eg pT7TS; vgL Fig. 8)
  • the cDNA-PCR fragments are cut with the restriction enzymes Notl and Spei and b dk corresponding restriction site of the pT7TS vector analogous to the procedure given in Example 4 Honed. Plasmids whose honed gene sequence corresponds to the expected size fractionation (200bp-4000bp) of the cDNA library are used for Ae In titro transcription
  • the reactive frequency of antigen-specific CTL lead cells in the patient's peripheral blood was measured in the course of the vaccination therapy.
  • CTL precursor cells are quantified using FACS analyzes (tetramer staining), Ae is directed against antigens sbd expressed in particular measure by melanoma cells (Tyrosbase, MAGE-3, Melan-A GP100).
  • ELIspot examinations are carried out, Ae is designed so that additional CTL precursor ore cells are also detected, Ae is specifically directed against antigens unknown to singe. with which Ae vaccination was also carried out. These aenes are then used as stimulator cells in the ELIspot examination. The measurement captures the entire vaccination course somk.
  • blood samples for immunomonitoring can be provided as part of the staging examinations and additionally on days 0, 14, 28 and 42 of a total of 30 ml (20 ml ELIspot, 10 ml FACS analysis), as well as a one-time collection of 100 ml on day 70 to grow the DG
  • specimen biopsy samples can be obtained from the injection site for hectological examination for T cell infiltration.
  • Tumor antigen presentation by epidermal antigen-presentbg celk b ⁇ e mouse production by granulocyte-macrophage colonystimulating factor, tumor necrosk factor alpha, and ultraviolet radiation. J Leukoc BioL 52, 209-217.
  • Dendritic cells as bitiators of tumor immune responses a possible strategy for tumor immuno ⁇ erapy ?. ImmunoLToday 16, 117-121.

Abstract

Die vorliegende Erfindung betrifft eine pharmazeutische Zusammensetzung, enthaltend mindestens eine mRNA, umfassend mindestens einen für mindestens ein Antigen aus einem Tumor codierenden Bereich, in Verbindung mit einem wässrigen Lösungsmittel und vorzugsweise einem Cytokin, bspw. GM-CSF, und ein Verfahren zur Herstellung der pharmazeutischen Zusammensetzung. Die erfindungsgemäße pharmazeutische Zusammensetzung dient insbesondere der Therapie und/oder Prophylaxe gegen Krebs.

Description

Die Applikation von mRNA für den Einsatz als Therapeutikum gegen Tumorerkrankungen
Die vorliegende Erfindung betrifft eine pharmazeutische Zusammensetzung, enthaltend mindestens eine mRNA, umfassend mindestens einen für mindestens ein Antigen aus einem Tumor codierenden Bereich, in Verbindung mit einem wässrigen Lösungsmittel und vorzugs- weise einem Cytokin, bspw. GM-CSF, und ein Verfahren zur Herstellung der pharmazeutischen Zusammensetzung. Die erfindungsgemäße pharmazeutische Zusammensetzung dient insbesondere der Therapie und/oder Prophylaxe gegen Krebs.
Die Gentherapie und die genetische Vakzinierung sind molekularmedizinische Verfahren, deren Anwendung in der Therapie und Prävention von Erkrankungen erhebliche Auswirkungen auf die medizinische Praxis haben wird. Beide Verfahren beruhen auf der Einbringung von Nukleinsäuren in Zellen bzw. in Gewebe des Patienten sowie auf der anschließenden Verarbeitung der durch die eingebrachten Nukleinsäuren codierten Information, d.h. der Expression der erwünschten Polypeptide.
Die übliche Vorgehensweise bisheriger Verfahren der Gentherapie und der genetischen Vakzinierung ist die Verwendung von DNA, um die benötigte genetische Information in die Zelle einzuschleusen. In diesem Zusammenhang sind verschiedene Verfahren zur Einbringung von DNA in Zellen, wie bspw. Caldumphosphat-Transfektion, Polypren-Transfektion, Pro- toplasten-Fusion, Elektroporation, Mikroinjektion und Lipofektion, entwickelt worden, wobei sich insbesondere die Lipofektion als geeignetes Verfahren herausgestellt hat
Ein weiteres Verfahren, das insbesondere bei genetischen Vakzinierungsverfahren vorgeschlagen wurde, ist die Verwendung von DNA-Viren als DNA-Vehikel Derartige Viren ha- ben den Vorteil, daß aufgrund ihrer infektiösen Eigenschaften eine sehr hohe Transfektions- rate zu erzielen ist. Die verwendeten Viren werden genetisch verändert, so daß in der transfi- zierten Zelle keine funktionsfähigen infektiösen Partikel gebildet werden. Trotz dieser Vorsichtsmaßnahme kann jedoch aufgrund möglicher Rekombinationsereignisse ein gewisses Risiko der unkontrollierten Ausbreitung der eingebrachten gentherapeutisch wirksamen sowie viralen Gene nicht ausgeschlossen werden.
Üblicherweise wird die in die Zelle eingebrachte DNA in gewissem Ausmaß in das Genom der transfizieiten Zelle integriert Einerseits kann dieses Phänomen einen erwünschten Effekt ausüben, da hierdurch eine langandauernde Wirkung der eingebrachten DNA erzielt werden kann. Andererseits bringt die Integration in das Genom ein wesentliches Risiko der Genthe- rapie mit sich. So kann es bspw. zu einer Insertion der eingebrachten DNA in ein intaktes Gen kommen, was eine Mutation darstellt, welche die Funktion des endogenen Gens behindert oder gar vollkommen ausschaltet Durch solche Integrationsereignisse können einerseits für die Zelle lebenswichtige Enzymsysteme ausgeschaltet werden, andererseits besteht auch die Gefahr einer Transformation der so veränderten Zelle in einen entarteten Zustand, falls durch die Integration der Fremd-DNA ein für die Regulation des Zellwachstums entscheidendes Gen verändert wird. Daher kann bei der Verwendung von DNA- Viren als Genthera- peutika und Vakzine ein Risiko der Krebsbildung nicht ausgeschlossen werden. In diesem Zusammenhang ist auch zu beachten, daß zur wirksamen Expression der in die Zelle eingebrachten Gene die entsprechenden DNA- Vehikel einen starken Promotor, bspw. den viralen CMV-Promotor, enthalten. Die Integration derartiger Promotorεn in das Genom der behandelten Zelle kann zu unerwünschten Veränderungen der Regulierung der Genexpression in der Zelle führen.
Ein weiterer Nachteil der Verwendung von DNA als Gentherapeutika und Vakzine ist die Induktion pathogener Anti-DNA- Antikörper im Patienten unter Hervorrufung einer möglicherweise tödlichen Immunantwort
Im Gegensatz zu DNA ist der Einsatz von RNA als Gentherapeutikum oder Vakzin als wesentlich sicherer einzustufen. Insbesondere bringt RNA nicht die Gefahr mit sich, stabil in das Genom der transfizierten Zelle integriert zu werden. Des weiteren sind keine viralen Se- quenzen, wie Promotoren, zur wirksamen Transkription, erforderlich. Darüber hinaus wird RNA wesentlich einfacher in o abgebaut Wohl aufgrund der gegenüber DNA relativ kurzen Halbwertszeit von RNA im Blutkreislauf sind bisher keine anti-RNA- Antikörper nachgewiesen worden. Daher kann RNA für molekularmedi---inische Therapieverfahren als Mole- kül der Wahl angesehen werden.
Allerdings bedürfen auf RNA-Exprεssionssystemen beruhende medizinische Verfahren vor einer breiteren Anwendung noch der Lösung einiger grundsätzlicher Probleme. Eines der Probleme bei der Verwendung von RNA ist der sichere, Zeil- bzw. Gewebe-spezifische ef i- ziente Transfer der NuUeinsäurε. Da sich RNA in Lösung normalerweise als sehr instabil erweist, konnte durch die herkömmlichen Verfahren, die bei DNA verwendet werden, RNA bisher nicht oder nur sehr ineffizient als Therapeutikum bzw. Impfstoff verwendet werden.
Für die Instabilität sind RNA-abbauende Enzyme, sog. RNAasen (Ribonucleasen), verant- wörtlich. Selbst kleinste Verunreinigungen von Ribonucleasen reichen aus, um RNA in Lösung vollständig abzubauen. Der natürliche Abbau von mRNA im Gytoplasma von Zellen ist sehr fein reguliert Diesbezüglich sind mehrere Mechanismen bekannt So ist für eine funktionale mRNA die endständige Struktur von entscheidender Bedeutung. Am 5-Ende befindet sich die sogenannte "Gap-Struktur" (ein modifiziertes Guanosin-Nucleotid) und am 3 -Ende eine Abfolge von bis zu 200 Adenosin-Nucleotiden (der sog. Poly-A-Schwanz). Über diese Strukturen wird die RNA als mRNA erkannt und der Abbau reguliert. Darüber hinaus gibt es weitere Prozesse, die RNA stabilisieren bzw. destabilisieren. Viele diese Prozesse sind noch unbekannt, oftmals scheint jedoch eine Wechselwirkung zwischen der RNA und Proteinen dafür maßgeblich zu sein. Bspw. wurde kürzlich ein "mRNA-Surveillance-System" beschrie- ben (Heilerin und Parker, Annu. Rev. Genet 1999, 33: 229 bis 260), bei dem durch bestimmte Feedback-Protein- Wechselwirkungen im Cytosol unvollständige oder Nonsense-mRNA erkannt und dem Abbau zugänglich gemacht wird, wobei ein Hauptteil dieser Prozesse durch Exonucleasen vollzogen wird.
Im Stand der Technik sind einige Maßnahmen vorgeschlagen worden, um die Stabilität von RNA zu erhöhen und dadurch ihren Einsatz als Gentherapeutikum bzw. RNA- Vakzine zu ermöglichen. In EP- A- 1083232 wird zur Lösung des vorstehend genannten Problems der Instabilität von RNA ex τko ein Verfahren zur Einbringung von RNA, insbesondere mRNA, in Zellen und Organismen vorgeschlagen, bei welchem die RNA in Form eines Komplexes mit einem kat- ionischen Peptid oder Protein vorliegt
WO 99/14346 beschreibt weitere Verfahren zur Stabilisierung von mRNA Insbesondere werden Modifizierungen der mRNA vorgeschlagen, welche die mRNA-Spezies gegenüber dem Abbau von RNasen stabilisieren. Derartige Modifikationen betreffen einerseits die Stabi- lisierung durch Sequenzmodifikationen, insbesondere Verminderung des G und/oder U- Gehalts durch Baseneliminierung oder Basensubstitution. Andererseits werden chemische Modifikationen, insbesondere die Verwendung von Nucleotidanaloga, sowie 51- und 3 - Blockierungsgruppen, eine erhöhte länge des Poly-A-Schwanzes sowie die Komplexierung der mRNA mit stabilisierenden Mitteln und Kombinationen der genannten Maßnahmen vorge- schlagen.
In den US-Patenten US 5,580,859 und US 6,214,804 werden unter anderem im Rahmen der "transienten Gentherapie" (TGT) mRNA- Vakzine und -Therapeutila offenbart Es werden verschiedene Maßnahmen zur Erhöhung der Translationseffizienz und der mRNA-Stabilität beschrieben, die sich vor allem auf die nicht-translatierten Sequenzbereiche beziehen.
Bieler und Wagner (in: Schleef (Hrsg.), Plasmids for Therapy and Vaccination, Kapitel 9, Seiten 147 bis 168, Wiley-VCH, Weinheim, 2001) berichten von der Verwendung synthetischer Gene im Zusammenhang mit gentherapeutischen Methoden unter Verwendung von DNA- Vakzinen und lentiveralen Vektoren. Es wird die Konstruktion eines synthetischen, von HTV- 1 abgeleiteten gtg-Gens beschrieben, bei welchem die Godons gegenüber der Wildtyp- Sequenz derart modifiziert wurden (alternative Codonverwendung, engl. "codon usage"), daß sie der Verwendung von Godons entsprach, die in hoch exprimierten Säugergenen zu finden ist Dadurch wurde insbesondere der A/T-Gehalt gegenüber der Wildtyp-Sequenz vermin- dert Die Autoren stellen insbesondere eine erhöhte Expressionsrate des synthetischen gtg- Gens in transfizierten Zellen fest Des weiteren wurde in Mäusen eine erhöhte Antikörperbildung gegen das g^Protein bei mit dem synthetischen DNA-Konstrukt immunisierten Mau- sen und auch eine verstärkte Cytokinfreisetzung in litro bei transfizierten Milzzellen von Mäusen beobachtet Schließlich konnte eine Induzierung einer cytotoxischen Immunantwort in mit dem gzg-Expressionsplasmid immunisierten Mäusen festgestellt werden. Die Autoren dieses Artikels führen die verbesserten Eigenschaften ihres DNA-Vakzins im wesentlichen auf einen durch die optimierte Codonverwendung hervorgerufene Veränderung des nucleo- cytoplasmatischen Transports der vom DNA-Vakzin e-φrimierten mRNA zurück. Im Gegensatz dazu halten die Autoren die Auswirkung der veränderten Codonverwendung auf die Translationseffizienz für gering.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein neues System zur Gentherapie und genetischen Vakzinierung für Tumoren bereitzustellen, das die mit den Eigenschaften von DNA-Therapeutika und -Vakzinen verbundenen Nachteile überwindet
Diese Aufgabe wird durch die in den Ansprüchen gekennzeichneten Ausführungsformen der vorliegenden Erfindung gelöst
Insbesondere wird eine pharmazeutische Zusammensetzung bereitgestellt, enthaltend mindestens eine mRNA, umfassend mindestens einen für mindestens ein Antigen aus einem Tumor codierenden Bereich, in Verbindung mit einem wässerigen Lösimgsmittel.
Der Begriff „Antigen aus einem Tumor* bedeutet erfindungsgemäß, dass das entsprechende Antigen in mit einem Tumor assozierten Zellen exprimiert wird. Daher sind erf indungsgemäß Antigene aus Tumoren insbesondere solche, die in den entarteten Zellen selbst produziert werden. Vorzugsweise handelt es sich dabei um auf der Oberfläche der Zellen lokalisierte Antigene. Des Weiteren sind die Antigene aus Tumoren aber auch solche, die in Zellen exprimiert werden, welche nicht selbst (oder ursprünglich nicht selbst) entartet sind (waren), jedoch mit dem in Rede stehenden Tumor assoziiert sind. Dazu gehören bspw. auch Antigene, die mit Tumor-versorgenden Gefäßen bzw. deren ( eu-)Bildung zusammenhängen, insbesondere solche -Antigene, die mit der Neovaskularisierung oder Angiogenese assoziiert sind, bspw. Wachstumsfaktoren wie VEGF, bFGF, usw. Weiterhin umfassen derartige mit einem Tumor zusammenhängende Antigene solche aus Zellen des den Tumor einbettenden Gewe- bes. Zu nennen sind hier entsprechende Antigene von Bindegewebszellen, z.B. Antigene der extrazellulären Matrix.
Erfindungsgemäß wird in der pharmazeutischen Zusammensetzung eine (oder mehrere) mRNAs zur Therapie bzw. Impfung, d.h. Vakzinierung, zur Behandlung oder Prävention (Prophylaxe) von Krebserkrankungen verwendet Die Vakzinierung beruht auf der Einbringung eines Antigens (oder mehrerer Antigene) eines Tumors, im vorliegenden Fall der genetischen Information für das Antigen in Form der für das oder die Antigen(e) codierenden mRNA, in den Organismus, insbesondere in die Zelle. Die in der pharmazeutischen Zusam- mensetzung enthaltene mRNA wird in das (Tumor-) Antigen translatiert, A . das von der modifizierten mRNA codierte Polypeptid bzw. antigene Peptid wird exprimiert, wodurch eine gegen dieses Polypeptid bzw. antigene Peptid gerichtete Immunantwort stimuliert wird. Im vorliegenden Fall der Verwendung als genetische Vakzine zur Behandlung von Krebs wird daher die Immunantwort durch Erbringung der genetischen Information für Antigene aus einem Tumor, insbesondere Proteine, die ausschließlich auf Krebszellen exprimiert werden, erreicht, in dem eine erfindungsgemäße pharmazeutische Zusammensetzung verabreicht wird, die eine für ein derartiges Krebsantigen codierende mRNA enthält Dadurch wird das oder die Krebsantigen(e) im Organismus exprimiert, wodurch eine Immunantwort hervorgerufen wird, die wirksam gegen die Krebszellen gerichtet ist
In ihrer Verwendung als Vakzine kommt die erfindungsgemäße pharmazeutische Zusammensetzung insbesondere zur Behandlung von Krebserkrankungen (wobei die mRNA vorzugsweise für ein tumorspezifisches Oberflächenantigen (TSSA) codiert), bspw. zur Behandlung von malignem Melanom, Kolon-Karzinom, Lymphomen, Sarkomen, ldeinzelligem Lungen- karzinom, Blastomen usw., in Betracht Spezifische Beispiele von Tumorantigenen sind u.a. 707-AP, AFP, ART-4, BAGE, ß-Catenin/m, Bcr-abl, CAMEL, CAP-1, CASP-8, CDC27/m, CDK4/m, CEA, CT, Cyp-B, DAM, ELF2M, ETV6-AML1, G250, GAGE, GnT-V, GplOO, HAGE, HER-2/neu, HLAA*0201-R170I, HPV-E7, HSP70-2M, HAST-2, hTERT (oder hT T), iCE, KIAA0205, LAGE, LDLR/FUT, MAGE, MART-1/Melan-A, MC1R, Myo- sin/m, MUC1, MUM-1, -2, -3, NAS8-A, NY-ESO-1, pl90 minor bcr-abl, Pml/RARa, PRAME, PSA PSM, RAGE, RU1 oder RU2, SAGE, SART-1 oder SART-3, TEL/AML1, TPI/m, TRP-1, TRP-2, TRP-2/INT2 und WTl. Gemäß einer weiteren bevorzugten Ausführungsform ist das oder sind die Antigen(e) aus einem Tumor ein Polyepitop des/der Antigens/ Antigene aus einem Tumor. Ein „Polyepitop" eines Antigens bzw. mehrerer Antigene ist eine Aminosäuresequenz, in der mehrere oder viele Regionen des/der Antigens/ Antigene repräsentiert sind, die mit dem Antigen- bindenden Teil eines Antikörpers oder mit einem T-Zell-Rezeptor in Wechselwirkung treten. Das Polyepitop kann dabei vollständig und unmodifiziert vorliegen. Es kann jedoch gemäß der vorliegenden Erfindung, insbesondere zur Optimierung der Antikörper/ Antigen- bzw. T- Zell-Rezeptor/ Antigen- Wechselwirkung, auch modifiziert vorliegen. Eine Modifikation ge- genüber dem Wildtyp-Polyepitop kann bspw. eine Deletion, Addition und/oder Substitution eines oder mehrerer Aminosäurereste umfassen. Dementsprechend wird/werden in der für das modifizierte Polyepitop codierenden mRNA der vorliegenden Erfindung gegenüber der für das Wildtyp-Polyepitop codierenden mRNA ein oder mehrere Nucleotide entfernt, hinzugefügt und/oder ersetzt
Um die Stabilität der in der pharmazeutischen Zusammensetzung der vorliegenden Erfindung enthaltene (m)RNA zu erhöhen, weist vorzugsweise jede in der pharmazeutischen Zusammensetzung enthaltene (rn)RNA eine oder mehrere Modifikationen, insbesondere chemische Modifikationen, auf, welche zur Erhöhung der Halbwertszeit der (m)RNA (eine oder mehre- re) im Organismus beitragen bzw. den Transfer der (m)RNA (eine oder mehrere) in die Zelle verbessern.
Beispielsweise gibt es in den Sequenzen eukaryotischer mRNAs destabilisierende Sequenzelemente (DSE), an welche Signalproteine binden und den enzymatischen Abbau der mRNA in mo regulieren. Daher werden zur weiteren Stabilisierung der in der erfindungsgemäßen pharmazeutischen Zusammensetzung bevorzugt enthaltenen modifizierten mRNA gegebenenfalls im für das mindestens eine Antigen aus einem Tumor codierenden Bereich ein oder mehrere Veränderungen gegenüber dem entsprechenden Bereich der Wildtyp-mRNA vorgenommen, so daß keine destabilisierenden Sequenzelemente enthalten sinA Selbstverständlich ist es erfindungsgemäß ebenfalls bevorzugt, gegebenenfalls in den nicht-translatierten Bereichen (3'- und/oder 5'-UTR) vorhandene DSE aus der mRNA zu eliminieren. Derartige destabilisierende Sequenzen sind bspw. AU-reiche Sequenzen ("AURES"), Ae in 3 - UTR- bschnitten zahlreicher instabiler mRNA vorkommen (Gaput et aL, Proc. Nad AcaA Sei. USA 1986, 83: 1670 bis 1674). Die in der erfindungsgemäßen pharmazeutischen Zusammensetzung enthaltenen RNA-Moleküle sind daher vorzugsweise derart gegenüber der Wild- typ-mRNA verändert, daß sie keine derartigen destabilisierenden Sequenzen aufweisen. Dies gilt auch für solche Sequenzmotive, Ae von möglichen Endonucleasen erkannt werden, bspw. Ae Sequenz GAACAAG, Ae im 31 UTR-Segment des für den Transferin-Rezeptor coAerenden Gens enthalten ist (Binder et aL, EMBO J. 1994, 13: 1969 bis 1980). Auch Aese Sequenzmotive werden bevorzugt in der modifizierten mRNA der erfindungsgemäßen phar- mazeutischen Zusammensetzung eliminiert
Einem Fachmann sind verschiedene Verfahren geläufig, Ae zur Substitution von Godons in der erfindungsgemäßen modifizierten mRNA geeignet sind Im Falle kürzerer coAerender Bereiche (Ae für biologisch wirksame oder antigene Peptide co Aeren) kann bspw. Ae gesam- te mRNA chemisch unter Verwendung von Standardtechniken synthetisiert werden.
Bevorzugt werden allerdings Basensubstitutionen unter Verwendung einer DNA-Matrize zur Herstellung der modifizierten mRNA mit Hilfe von Techniken der gängigen zielgerichteten Mutagenese eingeführt; Maniatis et aL, Molecular Öoning: A Laboratory Manual, Gold Spring Harbor Laboratory Press, 3. Aufl., Gold Spring Harbor, NY, 2001.
Bei Aesem Verfahren wird zur Herstellung der mRNA daher ein entsprechendes DNA- Molekül in i ro transkribiert Diese DNA-Matrize besitzt einen geeigneten Promotor, bspw. einen T7 -oder SP6-Promotor, für Ae in vtro Transkription, dem Ae gewünschte Nucleotid- sequenz für Ae herzustellende mRNA und ein Termisationssignal für Ae in in titro Transkrib- tion folgen. Erfindungsgemäß wird das DNA-Molekül, das Ae Matrize des herzustellenden RNA-Konstrukts bildet, durch fermentative Vermehrung und anschließende Isolierung als Teil eines in Bakterien replizierbaren Plasmids hergestellt Als für Ae vorliegende Erfindung geeignete Plasmide können bspw. Ae Plasmide pT7TS (GenBank-Zugriffsnummer U26404; Lai et aL, Development 1995, 121: 2349 bis 2360; vgL auch Fig. 8), pGEM* -Reihe, bspw. pGEM*-l (GenBank-Zugriffsnummer X65300; von Promega) und pSP64 (GenBank- Zugriffsnummer X65327) genannt werden; vgL auch Mezei und Storts, Purification of PCR Products, in: Griffin und Griffin (Hrsg.), PCR Technology: Current Innovation, CRC Press, Boca Raton, FL, 2001.
Es kann so unter Verwendung kurzer synthetischer DNA-Oligonucleotide, Ae an den entste- henden Schnittstellen kurze einzelsttängige Übergänge aufweisen, oder durch chemische Synthese hergestellte Gene Ae gewünschte Nucleotidsequenz nach einem Fachmann geläufigen molekularbiologischen Methoden in ein geeignetes Plasmid cloniert werden (vgL Maniatis et aL, s.o.). Das DNA-Molekül wird dann aus dem Plasmid, in welchem es in einfacher oder mehrfacher Kopie vorliegen kann, durch Verdauung mit RestriktionsendonuHeasen ausge- schnitten.
Die modifizierte mRNA, welche in der erfindungsgemäßen pharmazeutischen Zusammensetzung enthalten ist, kann darüber hinaus eine 5 -Cap-Struktur (ein modifiziertes Guanosin- Nucleotid) aufweisen. Als Beispiele von Cap-Strukturen können m7G(5)ppp (5'(A,G(5)ppp(5)A und G(5)ppp(5)G genannt werden.
Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung enthäk Ae modifizierte mRNA einen Poly(A+)-Schwanz von mindestens etwa 25, insbesondere mindestens etwa 30, vorzugsweise mindestens etwa 50 Nucleotiden, mehr bevorzugt mindestens etwa 70 Nucleotiden, besonders bevorzugt mindestens etwa 100 Nucleotiden. Der Poly(A+)- Schwanz kann jedoch auch 200 und mehr Nucleotide umfassen.
Für eine effiziente Translation der mRNA ist weiterhin eine wirksame Bindung der Riboso- men an Ae Ribosomen-Bindungsstelle (Kozak-Sequenz: GGCGGCACCAUGG, das AUG bildet das Startcodon) erfordeAch. Diesbezüglich ist festgestellt worden, daß ein erhöhter A/U-Gehalt um Aese Stelle heru -eine effizientere Ribosomen-Bindung an die mRNA ermöglicht
Des weiteren ist es möglich, in die mRNA eine oder mehrere sog. IRES (engL "internal ribo- somal entry side) einzufügen. Eine IRES kann so als alleinige Ribosomen-Bindungsstelle fungieren, sie kann jedoch auch zur Bereitstellung einer mRNA Aenen, Ae mehrere Peptide bzw. Polypeptide coAert, Ae unabhängig voneinander durch die Ribosomen translatiert werden sollen ("multicistronische" oder "ρolycistronischen mRNA). Beispiele erfindungsgemäß verwendbarer IRES-Sequenzen sind Aejenigen aus Picornaviren (z.B. FMDV), Pestviren (C-FFV), Polioviren (PV), Enzephalo-MyocarAtis- Viren (ECMV), Maul-und-Klauenseuche- Viren (FMDV), Hepatitis-GViren (HCV), Klassisches-Schweinefieber- Viren (CSFV), Muri- nes-Leukoma- Virus (MLV), Simean-Immundefizienz- Viren (SIV) oder Cricket-Paralysis- Viren (CrPV).
Gemäß einer weiteren bevorzugten Ausführungsform der vorligenden Erfindung weist Ae mRNA in den 51- und/oder 3-nichttranslatierten Bereichen Stabilisierungssequenzen auf, Ae befähigt sind, Ae Halbwertszeit der mRNA im Cytosol zu erhöhen.
Diese Stabilisierungssequenzen können eine 100%ige Sequenzhomologie zu natürlich vorkommenden Sequenzen, Ae in Viren, Bakterien und Eukaryoten auftreten, aufweisen, können aber auch teilweise oder vollständig synthetischer Natur sein. Als Beispiel für stabilisierende Sequenzen, Ae in der vorliegenden Erfindung verwendbar sind, können Ae nicht- translatierten Sequenzen (DTR) des ß-Globingens, bspw. von Homo sapiens oder Xenφus laeάs, genannt werden. Ein anderes Beispiel einer Stabilisierungssequenz weist Ae allgemeine Formel (C U)<-X-AHCCC(U/^PyxUq<-- U)CC auf, Ae im 3T TR der sehr stabilen mRNA enthalten ist, Ae für a-Globin, a-Q-Gollagen, 15-Lipoxygenase oder für Tyrosin-Hydroxylase coAert (vgL Hblcik et aL, Proc. Nad Acad Sei USA 1997, 94: 2410 bis 2414). Selbstverständlich können derartige Stabilisierungssequenzen einzeln oder in Kombination miteinander als auch in Kombination mit anderen, einem Fachmann bekannten Stabilisierungssequenzen verwendet werden.
Zur werteren Stabilisierung der mRNA ist es außerdem bevorzugt, daß Aese mindestens ein Analoges natürlich vorkommender Nucleotide aufweist Dies beruht auf der Tatsache, daß Ae in den Zellen vorkommenden RNA-abbauenden Enzyme als Substrat vorzugsweise natürlich vorkommende Nucleotide erkennen. Durch Einfügen von Nucleotidanaloga kann daher der RNA- Abbau erschwert werden, wobei Ae Auswirkung auf Ae Translationseffizienz bei Einfügen von diesen Analoga, insbesondere in den coAerenden Bereich der mRNA, einen positiven oder negativen Effekt auf Ae Translationseffizienz haben kann. In einer keineswegs abschließenden Aufzählung können als Beispiele erfindungsgemäß verwendbarer Nucleotidanaloga Phosphoramidate, Phosphorthioate, Peptidnucleotide, Me- thylphosphonate, 7-Deazaguaonsin, 5-Methylcytosin und Inosin genannt werden. Die Herstellung derartiger Analoga sind einem Fachmann bspw. aus den US-Patenten 4,373,071, US 4,401,796, US 4,415,732, US 4,458,066, US 4,500,707, US 4,668,777, US 4,973,679, US 5,047,524, US 5,132,418, US 5,153,319, US 5,262,530 und 5,700,642 bekannt Erfindungsgemäß können derartige Analoga in nicht-translatierten und translatierten Bereichen der modif i-' zierten mRNA vorkommen.
Des weiteren kann der wirksame Transfer der, vorzugsweise modifizierten, mRNA in die zu behandelnden Zellen bzw. den zu behandelnden Organismus dadurch verbessert werden, daß Ae mRNA mit einem kationischen oder polykationischen Agens, insbesondere einem entsprechenden Peptid oder Protein, assoziiert oder daran gebunden ist Daher liegt Ae mRNA in der erfinungsgemäßen pharmazeutischen Zusammensetzung bevorzugt mit einem derarti- gen Agens komplexiert oder kondensiert vor. Insbesondere ist dabei Ae Verwendung von Protamin als polykationischem, Nucleinsäure-bindenden Protein besonders wirksam. Des weiteren ist Ae Verwendung anderer kationischer Peptide oder Proteine, wie Poly-L-Lysin, Poly-DArginin oder Hstonen, ebenfalls möglich. Diese Vorgehensweise zur Stabilisierung der modifizierten mRNA ist in EP- A- 1083232 beschrieben, deren Aesbezüglicher Offenba- rungsgehalt in Ae vorliegende Erfindung vollumfänglich eingeschlossen ist
Darüber hinaus kann Ae erfindungsgemäß modifizierte mRNA neben dem antigenen oder dem gentherapeutisch wirksamen Peptid bzw. Polypeptid auch mindestens einen weiteren funktionalen Abschnitt enthalten, der bspw. für ein Ae Immunantwort förderndes Cytokin (Mbnokin, Lymphokin, Interleukin oder Chemokin, wie IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL- 7, IL-8, ID9, IL-10, ID12, IF - , IFN-γ, GM-CFS, LT-α oder Wachstumsfaktoren, wie hGH, coAert
Des weiteren kann zur Erhöhung der Immunogenizität Ae erfindungsgemäße pharmazeuti- sehe Zusammensetzung ein oder mehrere Adjuvanzien enthalten. Unter "Adjuvans" ist dabei jede chemische oder biologische Verbindung zu verstehen, Ae eine spezifische Immunantwort begünstigt In Abhängigkeit der verschiedenen Arten von Adjuvanzien können Aesbe- züglich verschiedene Mechanismen in Betracht kommen. Bspw. bilden Verbindungen, Ae eine Endocytose der in der pharmazeutischen Zusammensetzung enthaltenen modifizierten mRNA durch dendritische Zellen (D fördern, eine erste Klasse von verwendbaren Adjuvanzien. Andere Verbindungen, welche Ae Reifung der DC erlauben, bspw. Iipopolysaccha- ride, TNF-α oder CD40-Ligand, sind eine weitere Klasse geeigneter Adjuvanzien. Allgemein kann jedes das Immunsystem beeinflussende Agens von der Art eines "Gefahrsignals" (LPS, GP96, Oligonucleotide mit dem CpG-Mbtiv) oder Cytokine, insbesondere GM-CFS, als Adjuvans verwendet werden, welche es erlauben, eine Immunantwort gegen ein Antigen, das durch Ae modifizierte mRNA coAert wird, zu erhöhen und/oder gerichtet zu beeinflussen. Insbesondere sind dabei Ae vorstehend genannten Cytokbe bevorzugt Weitere bekannte Adjuvanzien sind Alurniniumhydroxid, das Freud'sche Adjuvans sowie Ae vorstehend genannten stabilisierenden kationischen Peptide bzw. Polypeptide, wie Protamin. Des weiteren sind Iipopeptide, wie Pam3Cys, ebenfalls besonders geeignet, um als Adjuvanzien in der pharmazeutischen Zusammmensetzung der vorliegenden Erfindung eingesetzt zu werden; vgL Deres et aL, Nature 1989, 342: 561-564.
Weitere besonders geeignete Adjuvanzien sind darüber hinaus (andere) RNA- oder auch mRNA-Spezies, die der pharmazeutischen Zusammensetzung der vorliegenden Erfindung zur Erhöhung der Immunogenizität zugesetzt werden können. Derartige Adjuvans-RNA ist vorteilhafter weise zur Stabilisation chemisch modifiziert („ck-Modifikation" oder „cis- Stabilisierung") sein, beispielsweise durch Ae vorstehend genannten Nucleotidanaloga, insbesondere Phosphorthioat-modifizierte Nucleotide, oder aber durch Ae obigen weiteren Maßnahmen zur Stabilisation von RNA Eine weitere vorteilhafte Möglichkeit der Stabilisation stellt Ae Komplexierung oder Assoziation („trans-Assoziation" oder „trans- Modifikation" bzw. „trans-Stabilisierung") mit den vorstehend genannten kationischen oder polykationischen Agenzien, bspw. mit Protamin, dar.
Gemäß einer weiteren vorteilhaften Ausführungsform wird die Stabilität der in der pharmazeutischen Zusammensetzung enthaltenen RNA-Mbleküle (mRNA, coAerend für ein Tu- morantigen, und ggf. Adjuvans-(m)RNA) durch einen oder mehrere RNase-Inhibitoren erhöht Bevorzugte RNase-Inhibitoren sind Peptide oder Proteine, insbesondere solche aus Placenta (z.B. aus humaner Placenta) oder Pankreas. Derartige RNase-Inhibitoren können auch rekombinant vorliegen. Ein spezifisches Beispiel eines RNase-Inhibitors ist RNasin®, der im Handel, z.B. bei Promega erhäklich ist Derartige RNase-Inhibitoren sind allgemein zur Stabilisierung von RNA verwendbar. Daher wird erfindungsgemäß auch allgemein eine pharmazeutische Zusammensetzung bereitgestellt, enthaltend mindestens eine für mindestens ein Antigen co Aerende RNA, insbesondere mRNA, und mindestens ein wie vorstehend definierter RNase-Inhibitor, ggf. in Verbindung mit einem pharmazeutisch verträglichen Lösungsmittel, Träger und/oder VehikeL Entsprechende Antigene in allgemeiner Form sowie -Lösungsmittel, Träger bzw. Vehikel sind nachstehend definiert HmsichAch bevorzugter Tumorantigene wird auf Ae Aesbeszüglichen Ausführungen hinischAch der bevorzugten pharmazeutischen Zusammensetzung, enthaltend mindestens eine für mindestens ein Antigen aus einem Tumor co Aerende mRNA, verwiesen.
Die erfindungsgemäße pharmazeutische Zusammensetzung enthält neben dem wässerigen Lösungsmittel und der mRNA vorzugsweise einen oder mehrere weitere(n) pharmazeutisch verträgliche(n) Träger und/oder ein oder mehrere weitere(s) pharmazeutisch verträgliche^) VehikeL Entsprechende Wege zur geeigneten Formulierung und Herstellung der erfindungsgemäßen pharmazeutischen Zusammensetzung sind bei "Remington's Pharmaceutical Sciences" (MackPub. Co., Easton, PA 1980) offenbart, das vollinhalAch Bestandteil der Offenbarung der vorliegenden Erfindung ist Für Ae parenterale Verabreichung kommen als Träger- Stoffe bspw. neben sterilem Wasser oder sterilen Kochsalzlösungen als wässrigem Lösungsmittel auch Polyalkylenglykole, hydrogenierte Naphthalen und insbesondere biokompatible Lactidpolymere, Lactid/Glycolidcopolymer oder Polyoxyethylen-
/Polyoxypropylencopolymere in Betracht Erfindungsgemäße Zusammensetzungen können Füllsubstanzen oder Substanzen, wie Lactose, Mannitol, Substanzen zur kovalenten Anknüp- fung von Polymeren, wie z.B. Polyethylenglykol an erfindungsgemäße Inhibitoren, Komple- xierung mit Mietallionen oder Einschluß von Materialien in oder auf besondere Präparationen von Polymerverbindung, wie z.B. Poly ctat, Polyglykolsäure, Hydrogel oder auf Iiposomen, Mikroemulsion, Micellen, unilamellare oder multilamellare Vesikel, Erythrocyten-Fragmente oder Sphäroplasten, enthalten. Die jeweiligen Ausführungsformen der Zusammensetzungen werden abhängig vom physikalische Verhalten, beispielsweise in Hinblick auf Ae Löslichkeit, Ae Stabilität, Bioverfügbarkeit oder Abbaubarkeit gewählt Kontrollierte oder konstante Freisetzung der erfindungsgemäßen Wirkstoffkomponente in der Zusammensetzung schließt Foimulierungen auf der Basis lipophiler Depots ein (z.B. Fettsäuren, Wachse oder Öle). Im Rahmen der vorliegenden Erfindung werden auch Beschichtungen erfindungsgemäßer Substanzen oder Zusammensetzungen, enthaltend solche Substanzen, nämlich Beschichtungen mit Polymeren offenbart (z.B. Polyoxamere oder Polyoxamine). Weiterhin können erfin- dungsgemäßen Substanzen bzw. Zusammensetzungen protektive Beschichtungen, z.B. Pro- teaseinhibitoren oder Permeabi tsverstärker, aufweisen. Bevorzugte wässerige Trägermaterialien sind z.B. Wasser zur Injektion (WFl) oder Wasser, gepuffert mit Phosphat, G rat oder Acetat usw., wobei der pH typischerweise auf 5,0 bis 8,0, vorzugsweise 6,0 bis 7,0, eingestellt wird Das wässerige Lösungsmittel bzw. der oder Ae weitere(n) Träger bzw. das oder Ae wei- tere(n) Vehikel wird/werden zusätzlich vorzugsweise Salzbestandteile enthalten, z.B. Natriumchlorid, Kaliumchlorid oder andere Komponenten, welche Ae Lösung bspw. isotonisch machen. Weiterhin kann wässerige Lösungsmittel bzw. der oder Ae weitere(n) Träger bzw. das oder Ae we ere(n) Vehikel neben den vorstehend genannten Bestandteilen zusätzliche Komponenten, wie humanes Serumalbumin (HSA), Polysorbat 80, Zucker oder Aminosäu- ren, enthalten.
Die Art und Weise der Verabreichung und Ae Dosierung der erfindungsgemäßen pharmazeutischen Zusammensetzung hängen von der zu behandelnden Erkrankung und deren Fort- schrittsstaAum, wie auch dem Körpergewicht, dem Alter und dem Geschlecht des Patienten ab.
Die Konzentration der modifizierten mRNA in derartigen Formulierungen kann daher innerhalb eines weiten Bereichs von 1 μg bis 100 mg ml variieren. Die erfiήdungsgemäße pharmazeutische Zusammensetzung wird vorzugsweise parenteral, bspw. intravenös, intraarteriell, subkutan, intramuskulär, dem Patienten verabreicht Ebenso ist es möglich, die pharmazeutische Zusammensetzung topisch oder oral zu verabreichen. Vorzugsweise wird Ae erfindungsgemäße pharmazeutische Zusammensetzung intradermal verabreicht Weiterhin ist eine transdermale Applikation mit Hilfe von elektrischen Strömen bzw. durch osmotische Kräfte möglich. Des Weiteren kann Ae pharmazeutische Zusammensetzung der vorliegenden Erfin- düng lokal in einen Tumor injiziert werden. Somit wird erfindungsgemäß auch ein Verfahren zur BehanAung bzw. ein Impfverfahren zur Prävention von Krebserkrankungen, bspw. der vorstehend genannten Erkrankungen, bereitgestellt, welches das Verabreichen der erfindungsgemäßen pharmazeutischen Zusammensetzung an einen Patienten, insbesondere einen Menschen, umfasst
Gemäß einer bevorzugten Ausführungsform des BehanAungs- bzw. Impfverfahrens bzw. bei der vorstehend definierten Verwendung der erfindungsgemäßen mRNA, coAerend für mindestens ein Antigen aus einem Tumor, zur Herstellung einer pharmazeutischen Zusammensetzung zur BehanAung und/oder Prävention von .Krebserkrankungen wird dem Patienten neben der erfindungsgemäßen pharmazeutischen Zusammensetzung ein oder mehrere Cyto- kin(e) verabreicht
Daher wird erfindungsgemäß auch allgemein ein BehanAungs- bzw. Impfverfahren bereitgestellt, umfassend das Verabreichen mindestens einer mindestens ein Antigen aus einem Tu- mor (gemäß obiger Definition) coAerenden RNA, vorzugsweise mRNA, Ae ggf. gemäß den obigen Ausführungen stabilisiert ist (sind), und mindestens eines Cytokins, bspw. eines oder mehrerer der vorstehend genannten Cytokine, insbesondere GM-CSF, an einen Patienten, insbesondere einen Menschen. Das Verfahren Aent insbesondere zur BehanAung und/oder Prävention entsprechender Krebserkrankungen (bspw. Ae obigen Krebserkrankungen). Dementsprechend ist Ae vorliegende Erfindung auch allgemein auf eine pharmazeutische Zusammensetzung gerichtet, umfassend mindestens eine mindestens ein Antigen aus einem Tumor (nach vorstehender Definition) coAerende RNA, vorzugsweise mRNA, Ae ggf. germß den obigen Ausführungen stabilisiert ist (sind), und mindestens ein Cytokin, bspw. eines oder mehrerer der vorstehend genannten Cytokine, wie GM-CSF, vorzugsweise in Verbin- düng mit einem pharmazeutisch verträglichen Träger und/oder Vehikel, z.B. einem wässerigen Löstingsmittel, oder einem oder mehreren der vorstehend definierten Träger, Lösungsmittel bzw. VehikeL Erfindungsgemäß wird somit auch Ae Verwendung von Cytokinen, bspw. eines oder mehrerer der vorstehend genannten Cytokine, insbesondere GM-CSF, in Kombination mit einem oder mehreren, wie vorstehend definierten RNA-Mblekül(en), insbe- sondere mRNA, zur BehanAung und/oder Prävention von Krebserkrankungen (z.B. vorstehend ar^eführterKrebserkrankungen) offenbart Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird das Cytokin, bspw. GM-CSF, gleichzeitig oder, was mehr bevorzugt ist, vor oder nach der pharmazeutischen Zusammensetzung, enthaltend Ae für mindestens ein Antigen aus einem Tumor co Aerende mRNA verabreicht (bzw. zur Herstellung eines entsprechendes Arzneimittels zur gleichzeitigen Verabreichung mit oder zur Verabreichung vor oder nach der vorstehend aufgeführten (rn)RNA verwendet). Ganz besonders bevorzugt erfolgt Ae Verabreichung des Cytokins, insbesondere GM-CSF, kurz vor (z.B. etwa 15 min oder weniger, bspw. etwa 10 oder etwa 5 min) oder kürzere Zeit (bspw. etwa 5, 10, 15, 30, 45 oder 60 min) nach oder längere Zeit (zJ5. etwa 2, 6, 12, 24 oder 36 h) nach der Verabreichung der vorstehend definierten pharmazeutischen Zusammensetzung bzw. allgemein nach der mindestens einen für mindestens ein Antigen aus einem Tumor coAerenden (m)RNA
Die Applikation des Cytokins, bspw. GM-GFS, kann dabei auf dem gleichen Wege wie Ae erfindungsgemäßen pharmazeutischen Zusammensetzungen bzw. Ae mindestens eine für mindestens ein Antigen aus einem Tumor co Aerende (m)RNA oder in einer davon getrennten Weise erfolgen. Geeignete Verabreichungswege sowie auch die geeigneten Formulie- riingsmöglichkeiten in Bezug auf das oder Ae Cytokin(e) können den obigen Ausführungen hinsichtlich der erfindungsgemäßen pharmazeutischen Zusammensetzungen entnommen werden. Bei einem humanen Patienten ist insbesondere eine GM-CFS-Dosis von 100 M-kro- gramm/m2 empfehlenswert Besonders bevorzugt erfolgt Ae Verabreichung des Cytokins, bspw. GM-CFS, durch eine s.c.-Injektion.
Vorzugsweise werden Ae pharmazeutischen Zusammensetzungen der vorliegenden Erfindung bzw. die für ein Antigen aus einem Tumor co Aerende RNA und gegebenenfalls damit zusammenhängend das oder Ae Cytokin(e) in Form von Intervall-Dosen appliziert Beispielsweise kann eine Dosis einer erfindungsgemäßen pharmazeutischen Zusammensetzung in kürzeren Intervallen, bspw. täglich, jeden zweiten Tag, jeden dritten Tag usw., oder aber, was mehr bevorzugt ist, in längeren Intervallen, bspw. einmal wöcheπAch, einmal in zwei Wochen, einmal in drei Wochen, einmal im Monat usw. Dabei können Ae Intervalle auch verändeAch sein, wobei insbesondere Ae immunologischen Parameter des Patienten zu berücksichtigen sind. Bspw. kann Ae Verabreichung einer erfindungsgemäßen pharmazeutischen Zusammensetzung (und gegebenenfalls damit zusammenhängend auch Ae Verabrei- chung des oder der Cytokins/Cytok e) einem BehanAungsschema folgen, bei dem zu Beginn der BehanAung das Intervall kürzer ist, bspw. einmal in zwei Wochen, und dann, je nach BehanAungsverlauf bzw. den entsprechend bestimmten immunologischen Parametern des Patienten, das Intervall auf bspw. einmal im Monat verlängert wird Je nach Patient, insbe- sondere dessen Zustand und seinen immunologischen Parametern, kann so ein auf das jeweilige InAviduum zugeschnittenes Therapieschema angewandt werden.
Ein weiterer Gegenstand der voAegenden Anmeldung betrifft ein Verfahren zur Herstellung der vorstehend definierten pharmazeutischen Zusammensetzung, umfassend Ae Schritte: (a) Herstellen einer cDNA-Bibliothek oder eines Teils davon aus Tumorgewerbe eines Patienten, (b) Herstellen einer Matrize für Ae In titro -Transkription von RNA anhand der cDNA- Bibliothekoder eines Teils davon und (c)
Figure imgf000019_0001
der Matrize.
Das Tumorgewebe des Patienten kann bspw. durch eine einfache Biopsie gewonnen werden. Es kann aber auch durch operative Entfernung von Tumor-befallenem Gewebe bereitgestellt werden. Des Weiteren kann Ae Herstellung der cDNA-Bibliothek oder eines Teils davon gemäß Schritt (a) des
Figure imgf000019_0002
der vorliegenden Erfindung durchgeführt wer- den, nachdem das entsprechende Gewebe zur Lagerung, vorzugsweise auf Temperaturen unterhalb von -70 ° tiefgefroren wurde. Zur Herstellung der cDNA-Bibliothek oder eines Teils davon wird zunächst eine Isolierung der Gesamt-RNA, bspw. aus einer Tumorgewebe- Biopsie, durchgeführt Verfahren hierzu sind bspw. in Maniatis et aL, s pm, beschrieben. Des Weiteren sind hierfür entsprechende Kits im Handel, bspw. bei der Fa. Röche AG (z B. das Produkt „High Pure RNA Isolation Kit"), erhälAch. Aus der Gesamt-RNA wird gemäß einem Fachmann bekannter Verfahren (vgL bspw. Maniatis et aL, supra) Ae entsprechende Po- ly(A*)-RNA isoliert Auch hierfür sind im Handel entsprechende Kits erhälAch. Ein Beispiel ist das „High Pure RNA Tissue Kit" der Fa. Röche AG. Ausgehend von der so gewonnenen Poly(A+)-RNA wird danach Ae cDNA-Bibliothek hergestellt (vgL auch hierzu bspw. Maniatis et aL, stψr). Auch für Aesen Schritt bei der Herstellung der cDNA-Bϊbliothek stehen einem Fachmann im Handel erhäkliche Kits, bspw. das „SMART PCR cDNA Synthesis Kit" der Fa. Öontech Inc., zur Verfügung. Die einzelnen Unterschritte von der Poly(A+)-RNA zur doppelsträngigen cDNA sind am Beispiel des Verfahrens gemäß dem „SMART PCR cDNA Synthesis Kit" der Fa. Qontech Inc. in der Fig. 11 schematisch dargestellt
Gemäß Schritt (b) des vorstehenden Herstellungsverfahrens wird ausgehend von der cDNA- Bibliothek (oder eines Teils davon) eine Matrize für Ae In titro -Transkription synthetisiert Dies erfolgt erfindungsgemäß insbesondere dadurch, daß Ae erhaltenen cDNA-Fragmente in einen geeigneten RNA-Produktionsvektor cloniert werden. Die geeignete DNA-Matrize und erfindungsgemäß bevorzugte Plasmide sind bereits vorstehend im Zusammenhang mit der Herstellung der mRNA für Ae erfindungsgemäße pharmazeutische Zusammensetzung ange- geben.
Zur In litro -Transkription der im erfindungsgemäßen Schritt (b) hergestellten Matrize wird Aese, wenn sie als zirkuläre Plasmid-(c)DNA vorliegt, zunächst mit einem entsprechenden Restriktionsenzym linearisiert Vorzugsweise wird das so geschnittene Konstrukt vor der ei- genAchen In titro -Transkription noch einmal gereinigt, bspw. durch entsprechende Phenol- Chloroform- und/oder CUoroform/PhenoL^Isoamylalkohol-G-emische. Hierdurch wird insbesondere sichergestellt, daß Ae DNA-Matrize in proteinfreier Form vorliegt Als nächstes erfolgt die enzymatische Synthese der RNA ausgehend von der gereinigten Matrize. Dieser Unterschritt erfolgt in einem entsprechenden Reaktionsgemisch, enthaltend Ae linearisierte, proteinfreie DNA-Matrize in einem geeigneten Puffer, dem vorzugsweise ein Ribonuclease- Inhibitor zugesetzt wird unter Verwendung eines Gemischs der benötigten Ribonucleo- tidtriphosphate (rATP, rCTP, rUTP und rGTP) und einer ausreichenden Menge einer RNA- Polymerase, bspw. T7-Polymerase. Das Reaktionsgemisch liegt dabei in RNase-freiem Wasser vor. Bevorzugt wird bei der eigentlichen enzymatischen Synthese der RNA auch ein CAP- Analogon zugefügt Nach einer entsprechend langen, bspw. 2 h, Inkubation bei 37°Q wird Ae DNA-Matrize durch Zugabe von RNase-freier DNase abgebaut, wobei bevorzugt wieder bei 37°C inkubiert wird
Vorzugsweise wird Ae so hergestellte RNA mittels Ammoniumacetat/Ethanol gefällt und gegebenenfalls ein oder mehrmals mit RNase-freiem Ethanol gewaschen. Schließlich wird Ae so gereinigte RNA getrocknet und gemäß einer bevorzugten Ausführungsform in RNase- freiem Wasser aufgenommen. Des Weiteren kann Ae so hergestellte RNA mehreren Extrak- tionen mit Phenol/Chloroform bzw. Phenol/Ghloroform/Isoamylalkohol unterworfen werden.
Gemäß einer weiteren bevorzugten Ausführungsform des vorstehend definierten Herstel- lungsverfahrens wird nur ein Teil einer Gesamt-cDNA-Bibliothek gewonnen und in entsprechende mRNA-Mbleküle überführt Daher kann erfindungsgemäß auch eine sog. Subtraktionsbibliothek als Teil der Gesamt-cDNA-Bibliothek verwendet werden, um Ae erfindungsgemäßen mRNA-Mbleküle bereitzustellen. Ein bevorzugter Teil der cDNA-Bibliothek des Tumorgewebes codiert für Ae tumorspezifischen Antigene. Bei bestimmten Tumoren sind Ae entsprechenden Antigene bekannt Es kann gemäß einer weiteren bevorzugten Ausführungsform der für Ae tumorspezifischen Antigene coAerende Teil der cDNA-Bibliothek zunächst ermittelt werden (dh. vor Schritt (a) des vorstehend definierten Verfahrens). Dies erfolgt vorzugsweise dadurch, daß die Sequenzen der tumorspezifischen Antigene durch einen Abgleich mit einer entsprechenden cDNA-Bibliothek aus gesundem Gewebe festgestellt werden.
Der erfindungsgemäße Abgleich umfasst insbesondere einen Vergleich der Expressionsmuster des gesunden Gewebes mit dem des in Rede stehenden Tumorgewebes. Entsprechende Expressionsmuster werden können auf Nukleinsäureebene bspw. mit Hilfe geeigneter Hybri- disierungsexperimente bestimmt Herzu können bspw. Ae entsprechenden (m)RNA- oder cDNA-Bibliotheken der Gewebe jeweils in geeigneten Agarose- oder Polyacrylamid-Genen aufgetrennt, auf Membranen überführt und mit entsprechenden NuHeinsäure-Sonden, vorzugsweise OligonuHeotid-Sonden, welche die jeweiligen Gene repräsentieren, hybridisiert werden (Northern- bzw. Southern-Blots). Ein Vergleich der entsprechenden Hybridisierun- gen liefert somit Aejenigen Gene, Ae entweder ausschließlich vom Tumorgewebe oder darin stärker exprämiert werden.
Gemäß einer weiteren bevorzugten Ausführungsform werden Ae genannten Hybridisierungs- experimente mit Hilfe einer Diagnose durch Mikroarrays (ein oder mehrere Mikroaπays). Ein entsprechender DNA-Mikroarray umfaßt eine definierte Anordnung, insbesondere auf kleinem oder kleinstem Raum, von NuHeinsäure-, insbesondere OligonuHeotid-Sonden, wobei jede Sonde bspw. jeweils ein Gen, dessen Anwesenheit oder Abwesenheit in der entspre- chenden (m)RNA- oder cDNA-BiblioAek zu untersuchen ist, repräsentiert In einer entsprechenden Mikroanordnung können so Hunderte, Tausende und sogar Zehn- bis Hundertta- suende von Genen repräsentiert sein. Zur Analyse des Expressionsmusters des jeweiligen Gewebes wird dann entweder Ae Poly(A+)-RNA oder, was bevorzugt ist, Ae entsprechende cDNA mit einem geeigneten Marker, insbesondere werden hierzu Fluoreszenzmarker verwendet, markiert und unter geeigneten Hybridisierimgsbedirigungen mit dem Mikroariay in Kontakt gebracht Bindet eine cDNA-Spezies an einem auf dem Mikroaπay vorhandenen Sondenmolekül, insbesondere einem OligonuHeotid-Sondenmolekül, wird dementsprechend ein mehr oder minder stark ausgeprägtes Fluoreszenzsignal, das mit einem geeigneten Detek- tionsgerät, bspw. einem entsprechend ausgelegten Fluroeszenzspektrometer, gemessen werden kann, beobachtet Je stärker Ae cDNA (oder RNA) -Spezies in der Bibliothek repräsentiert ist, desto größer wird das Signal, bspw. das Fluoreszenzsignal, sein. Das entsprechende M-kroarrayΗybricüsierungsexperiment (bzw. mehrere oder viele davon) wird (werden) getrennt für das Tumorgewebe und das gesunde Gewebe durchgeführt Die Differenz der aus den Mikroarray^Experimenten ausgelesenen Signale läßt daher auf Ae ausschließlich oder vermehrt vom Tumorgewebe exprimierten Gene schließen. Derartige DNA-MikrOarray- Analysen sind bspw. in Schena (2002), Mikroariay Analysis, ISBN 0-471-41443-3, John Wiley & Sons, Inc., New York, dargestellt, wobei der Aesbezügliche Offenbarungsgehalt Aeser Druckschrift vollumfänglich in Ae vorliegende Erfindung aufgenommen ist
Die Erstellung tumorgewebsspezifischer Expressionsmuster ist jedoch keineswegs auf Analysen auf NuHeinsäureebene beschränkt Einem Fachmann sind selbstverständlich auch im Stand der Technik bekannte Verfahren geläufig, welche der Expressionsanalyse auf Protein- ebene Aenen. Her sind insbesondere Techniken der 2DGelelektrophorese und der Mas- sensprektrometrie zu nennen, wobei Aese Techniken vorteilhafterweise auch mit Proteinbio- chips (also Mikroarrays auf Proteinebene, bei denen bspw. ein Proteinextrakt aus gesundem bzw. Tumorgewebe mit auf dem Mikroarray-Substrat aufgetragenen Antikörpern und/oder Peptiden in Kontakt gebracht wird), kombiniert werden können. HnsichAch der massen- spektroskopischen Verfahren sind Aesbezüglich insbesondere MALDI-TOF- („matrix as- sisted laser desoφtion/ionisation-time of flight"-) Verfahren zu nennen. Die genannten Techniken zur proteinchemischen Analyse zur Gewinnung des Expressionsmusters von Tumor- im Vergleich zu gesundem Gewebe sind bspw. in Rehm (2000) Der Experimentator: Proteinbiochemie/Proteomics, Spektrum Akademischer Verlag, Heidelberg, 3. Aufl., beschrieben, auf dessen Aesebezüglichen Offenbarungsgehalt in der vorliegenden Erfindung exprzssis te ήs ausdrücklich Bezug genommen. HnsichAch Protein-MJkroarrays wird außerdem wiederum auf Ae Aesbszüglichen Ausführungen in Schena (2002), supra, verwiesen.
Die Figuren zeigen:
Fig. 1 zeigt in einer graphischen Darstellung Ae Ergebnisse einer Tumor akzinierung von Mäusen (Ratten-Her-2/neu-transgene Tiere), Ae spontan Mammakarzinome entwi- ekeln, mit RNA Es ist Ae Tumormultiplizität auf der y- chse gegen das Alter der
Mäuse auf der x- Achse aufgetragen. Unbehandeke Mäuse (n = 4), Ae als Kontrolle Aenten, wiesen alle in einem Alter von 6 Monaten Tumore auf. Drei Mäusen wurde für Her-2/neu co Aerende DNA injiziert, wobei eine Maus nach 10 Monaten tumorfrei war. Als weitere Negativkontrolle erhielten 4 Mäuse eine zur mRNA für Her- 2/neu komlementäre Antisense-mRNA Diese M use wiesen ebenfalls nach 6 Monaten alle Tumore auf (nicht gezeigt). Im Gegensatz dazu war eine von 4 Mäusen, denen für Her-2/neu coAerende mRNA (also der Sinnstrang) injiziert wurde, nach 9 Monaten tumorfreL
Fig.2 zeigt in einer graphischen Darstellung Ae Ergebnisse von Experimenten zur beta- Galaktosidase (beta-Gal)-spezifischen CTL (cytotoxische T-Lyrnphocyten)-Aktivi»ät durch die Immunisierung mit einer für beta-Gal coAerenden mRNA unter dem Einfluß von GM-CSF. BALB/c-Mäuse wurden durch Injektion in Ae innere Auricula mit 25 μg für beta-Gal coAerender mRNA immunisiert Die Splenocyten wurden in titro mit beta-Gal-Protein stimuliert, und Ae CTL- Aktivität wurde 6 Tage nach der in τε&t>Stimulation unter Verwendung eines Stanc rd-51Q-Freisetzungstests bestimmt Die Zielzellen waren P815 (H 'J-Zellen, Ae mit dem synthetischen Peptid TPHPA- RIGL, das dem H2 d-Epitoρ von beta-Gal entspricht, beladen (■) oder nicht beladen (A.) waren. Es wurden jeweils drei oder zwei Tiere pro Gruppe behandelt Als Nega- tivkontrolle Aenten Tiere, denen i.d in beide Auriculae nur Injektionspuffer injiziert wurden. Als Posrtivkontrolle („DNA") Aenten Tiere, denen in beide Auriculae Ld 10 μg eines für beta-Gal coAerenden Plasmids in PBS injiziert wurde. Die Testgruppen erhielten für beta-Gal coAerende RNA allein bzw. in Kombination mit GM-CSF, der 24 h ("GM-CSF t-1"), 2 h vor der RNA-Injektion ("GM-CSF tO") oder 24 h nach der RNA-Injektion ("GM-CFS t+1") in Aeselbe Stelle (in Ae Auriculae) oder an einer anderen Stelle (s.c. auf dem Rücken) injiziert wurde. Es wurden jeweils drei verschiedene Effekor-/ZielzeUen-Verhätlnisse (200, 44, 10) getestet
Fig.3 zeigt in weiteren graphischen Darstellungen Ae Ergebnisse von für IFN-gamma (A) bzw. IL-4 (B) spezifische EIISA-Standardtests, Ae Ae entsprechende Cytokin- Produktion von Splenocyten dokumentieren, die in titro mit beta-Gal-Protein restimu- liert wurden. BALB/c-Mäuse wurden, wie bereits vorstehend bei Fig. 2 angegeben, immunisiert Die Splenocyten wurden in titro mit beta-Gal-Protein stimuliert, Ae entsprechenden Kulturüberstände wurden gewonnen, und die IFN-gamma- oder IL-4- Konzentration wurde unter Verwendung eines EIISA-Standardtests bestimmt
Fig.4 zeigt wertere graphische Darstellungen, welche Ae Antikörper- Antwort von erfindungsgemäß immunisierten Mäusen demonstriert BALB/c-Mäuse wurden, wie in Fig. 2 angegeben, immunisiert Zwei Wochen nach dem Boost wurde Blut abgenommen und daraus das Blutserum gewonnen. Beta-Gal-spezifische IgGl- (A) und IgG2a- Antikörper (B) wurden mit Hilfe eines ELISA-Test bestimmt Dargestellt ist jeweils Ae Extinktion (OD) bei 405 nm auf der y- Achse, Ae aus der Umsetzung des
Substrats ABTS beim ELISA-Test resultiert Die gezeigten Extinktionen sind Ae Werte, von denen Ae entsprechenden Werte von mit Injektionspuffer behandelten Mäusen subtrahiert sind
Fig.5 zeigt mit X-Gal gefärbte mikroskopische Schnitte der Auricula von M usen, denen für beta-Galaktosidase codierende mRNA in Ae Auricula Id. injiziert wurde. 12 Stunden nach der Injektion von 25 μ RNA in HEPES-NaÖ-Injektionspuffer wurden Ae Ohren entfernt und X-Gal-gefärbte Schnitte angefertigt Blaue Zellen zeigen eine beta- Galaktosidase- Aktivität an. Wie bei beiden Schnitten zu sehen ist, sind nur wenige blaue Zellen vorhanden. Fig.6 zeigt einen der Fig. 5 entsprechenden Schnitt durch eine Auricula einer Maus, der in Ae Auricula für beta-Galaktosidase coAerende mRNA injiziert wurde, welche Prota- min-stabilisiert war. Der mit X-Gal gefärbte mikroskopische Schnitt zeigt einige wenige blau gefärbte Zellen.
Fig.7 zeigt zwei weitere Schnitte durch Ae Auricula von Mausen, wobei pro Schnitt zwei Bilder angefertigt wurden, um einen größeren Ausschnitt darzustellen. In Aesem Fall wurde in Ae Auricula für beta-Galaktosidase coAerende mRNA in einem Puffer injiziert, dem 10 U RNasin, ein enzymatischer RNase-Inhibitor aus Pankreas (erhältlich von Röche oder Promega) direkt vor der Injektion zugefügt wurde. Im Vergleich zu den Schnitten von Fig. 5 und Fig. 6 sind deutlich mehr blau gefärbte Bereiche von Zellen mit beta-Galaktosidase- Aktivität zu erkennen.
Fig. 8 zeigt in einer schematischen Darstellung das Plasmid p'l/iS, das für Ae In titro - Transkription verwendet wurde. Erfindungsgemäße Konstrukte wurden in Ae BgUl- und Spel-Stellen, deren relative Lage zueinander angegeben ist, cloniert. Der schwarz ausgefüllte Bereich enthält Ae 5 -nicht translatierte Region des beta-Globingens aus Xencpus laeώ, während der grau ausgefüllte Bereich eine entsprechende 3 -nicht translatierte Region des beta-Globingens aus X. laeis darstellt Des Weiteren ist Ae relative Lage des T7-Promotors, die zur Sequenzierung verwendete Pstl-Stelle, der Poly(A+)-
Schwanz (AJQ C) sowie mit einem Pfeil Ae Tramlmptiorisrichtung angegeben.
Fig.9 zeigt in einem beispielhaften Ablaufschema den Verlauf einer erfindungsgemäßen RNA-Impftherapie mit unterstützender Gabe von GM-CFS. Die für ein oder mehrere Tumorantigene (MUC1, Her-2/neu, Tilomerase, MAGE-1) coAerende mRNA-
Mbleküle bzw. eine für ein Kontrollantigen (Influenza Matrix Protein (IMP), ein vitales Antigen) coAerende mRNA werden dem Patienten Ld an den Tagen 0, 14, 28 und 42 verabreicht Zusätzlich wird dem Patienten einen Tag nach der RNA-Impfung GM-CFS (Leucomax® (100 μg/m2) von Novartis/Essex Pharma) s.c. injiziert Bei stabilem Verlauf bzw. objektivem Tumoransprechen (komplette Remission (CR) bzw. partielle Remission (PR)) erhalten Ae Patienten Ae Vakzinierungen einmal im Monat s.c. Nach der vierten Injektion (Tag 49) wird das Ansprechen des Tumors raAolo- gisch, laborchemisch bzw. sonographisch sowie Ae durch Ae Therapie induzierten immunologischen Phänomene evaluiert Ab Tag 70 erfolgt Ae Fortführung der Immunisierungstherapie in 4-wöchenAchen Abständen. Am Tag 0, 14, 28, 42 und 49 werden Blutproben zur Bestimmung entsprechender Labotparameter, des Differenzi- alblutbilds (Diff-BB), FACS-Analyse und Cytokbe entnommen. Das Restaging des
Patienten erfolgt ab Tag 49 sowie ggf. alle weitere 4 bis 8 Wochen.
Fig. 10 zeigt in ebem Fließschema Ae Konstruktion von autologer, stabilisierter RNA gemäß dem Herstellungsverfahren der vorliegenden Erfindung. Zunächst wird Tumorgewe- be, bspw. durch Biopsie, gewonnen. Daraus wird Ae Gesamt-RNA extrahiert. Anhand der aus der RNA-Extraktion gewonnenen Poly(A+)-RNA wird ebe cDNA- Bibliothek konstruiert Davon ausgehend wird nach Herstellung eber entsprechenden DNA-Matrize Ae autologe, stabilisierte RNA mittels In titro -Transkription gewonnen.
Fig. 11 zeigt ebem Reaktionsschema Ae Schritte zur Herstellung eber cDNA-Bibliothek, ausgehend von Poly(A+)-RNA beispielhaft für das SMART PCR cDNA Synthesis Kit der Fa. Qontech Inc.
Fig. 12 zeigt ebe fotographische Aufnahme ebes Agarosegels, das Ae typische Größenfrak- tionierung eber cDNA-Bibliothek, erstelk aus humanem Placenta-Gewebe, zeigt In der Spur M ist eb Längenmarker mit Fragmenten der links angegebenen l nge aufgetragen. Die Spur "DS cDNA" enthäk die cDNA-Bibliothek Diejenigen Fragmente, Ae der erwarteten Größenfraktion entsprechen (etwa 200 BP bis 4000 BP) werden für Ae In titro -Transkription verwendet
Fig. 13 zeigt eben beispielhaften BehanAungsplan für Ae erfbdungsgemäße Tumor- Therapie durch Injektion eber Turnor-mRNA-Bibliothek, hier b Kombination mit GM-CSF, für Patienten mit malignem Melanom. Herfür wird aus patienteneigenem Tumorgewebe hergestellte, autologe, stabilisierte RNA verwendet Diese amplifizierte autologe Tumor-RNA wird dem Patienten Ld an den Tagen 0, 14, 28 und 42 verabreicht Zusätzlich wird dem Patienten eben Tag nach der RNA-Injektion GM-CFS (Leucomax® 100 μg/m2 Novartis/Essex Pharma) s.c. bjiziert Zwei Wochen nach der vierten Injektion (Tag 56) wird das Ansprechen des Tumors durch ebe Staging- Untersuchung (u.a. Sonographie, Thorax-Rδntgen, CTusw.) sowie durch Ae Auswertung der durch Ae Therapie bduzierten immunologischen Parameter evaluiert Bei stabilem Krankheitsverlauf bzw. objektivem Tumoransprechen (CR bzw. PR) erhält der Patient alle vier Wochen jeweils ebe weitere Vakzinierung. Weitere Restaging-
Untersuchungen werden am Tag 126 und danach b 12-wöchigem Abstand durchgeführt.
Fig. 14 zeigt noch einmal schematisch den generellen Ablauf eber Therapie mit der erfb- dungsgemäßen pharmazeutischen Zusammensetzung mit autologer, amplifizerter
Tumor-RNA, Ah. Ae b der pharmazeutischen Zusammensetzung enthaltene RNA repräsentiert ebe cDNA-Bibliothek des Tumorgewebes. Es wird zunächst ebe Probe des Tumorgewebes, bspw. über ebe Biopsie, gewonnen. Aus dem Gewebe wird die Gesamt-, dann die Poly(A+)-RNA durch entsprechende Extraktionen hergestellt Ausgehend von der Poly(A+)-RNA wird ebe cDNA-Bibliothek konstruiert, die b einen zur nachfolgenden In ϊέ&o-Transkription geeigneten Vektor Honiert wird Durch In titro -Transkription wird dann eb RNA- Vakzb gewonnen, das dem Patienten, dem das Tumorgewebe entnommen wurde, zur Bekämpfung des Tumors bjiziert wird
Die nachfolgenden Ausführungsbeispiele erläutern Ae vorliegende Erfbdung näher, ohne sie einzuschränken.
BEISPIELE
Beispiel 1: Tumorakzϊnierung mit RNA im Tiermodell
Materialien und Methoden
Gekappte mRNA, coAerend für ebe verkürzte Version des Her-2/neu-Protebs der Ratte („ECD-TM-neu-Ratte", enthaltend Ae extrazelluläre Domäne und Ae Transmembranregion, nicht jedoch Ae cytoplasmatische Region) wurde unter der Verwendung von „SP6 mMessa- gemMachbe" (Ambion) mit Hilfe ebes Plasmids hergestellt, das im wesenAchen dem b Fig. 8 gezeigten Aufbau entsprach, jedoch statt des T7-Promotors eben SP6-Promotor enthielt, und b welchem das ECl TM-neu-Ratte-Korotrukt hbter den SP6-RNA-Polymerase- Promotor eingefügt war. Die hergestellte mRNA wurde b Injektionspuffer (150 mM NaÖ, 10 mM HEPES) bei eber Konzentration von 0,8 mg/ml gelöst und mit Protamb-Sulfat (Sigma) (1 mg Protamb pro 1 mg RNA) gemischt 50 μi Aeser Lösung wurden b Ae Auriculae (je 25 μi pro Ohr) der Mäuse bjiziert Es erfolgten acht Injektionen, jeweils ebe im Alter von 6, 8, 13, 15, 20, 22, 27 und 29 Wochen. Als Kontrollen Aenten Mäuse, denen entsprechende Injektionen mit Injektionspuffer, mit für ECD-TM-neu-Ratte coAerender Plasmid- DNA oder mit eber der erfbdungsgemäßen mRNA entsprechenden Antisense-mRNA ver- abreicht wurden.
Ergebnisse
Weibliche BalB-neu T-Mäuse (BalB/c-Mäuse, Ae das Onkogen Her2/neu der Ratte expri- mieren; vgL Rovero et aL (2000) J. ImmunoL 165(9):5133-5142), Ae spontan Mammakarzi- nome entwickeln, wurden mit für ebe verkürzte Version des Her-2/neu-Protebs („ECD- TM-neu-Ratte", enthaltend Ae extrazelluläre Domäne und die Transmembranregion, nicht jedoch Ae cytoplasmatische Region) coAerender RNA immunisiert Als Negativkontrolle dienten vier mit Injektionspuffer behandelte Mäuse. Eber weiteren Gruppe von drei Mäusen wurde für das verkürzte Her-2/neu coAerende DNA bjiziert Vier Mäuse erhielten Ae erf b- dungsgemäß für das Tumorantigen Her-2/neu (verkürzte Version ECD-TM, siehe oben) coAerende mRNA Als weitere Kontrollgruppe Aenten vier Mäuse, denen Ae entsprechende Antisense-RNA bjiziert wurde. Wie b der Fig. 1 gezeigt, wurde bei den Tieren der unbehan- delten Kontrollgruppe nach 26 Wochen ebe Tumormultiplizität von durchschnittlich 10 be- obachtet, wobei alle Ηere im Alter von etwa 20 Wochen tastbare Brusttumore aufwiesen. Im Gegensatz dazu ist bei der Immunisierurig mit der für ECD-TM-neu-Ratte coAerenden mRNA ebe deuAche Verlangsamung der Karzbomentstehung zu beobachten, insbesondere wird erst im Alter von 30 Wochen ebe Turnormultiplizität von 10 erreicht Des Weiteren ist auch die Tumorgröße vermbdert (nicht gezeigt). Von den 4 mit der erfbdungsgemäßen mRNA behandelten Mäusen war ebe nach 9 Monaten immer noch tumorfreL Diejenige Gruppe von Mäusen, denen Ae Antisense-mRNA bjiziert worden war, zeigten alle im Alter von 6 Monaten Tumore. Die Vergleichsgruppe der Mäuse, denen für Ae verkürzte Version von Her-2/neu coAerende Plamid-DNA bjiziert wurde, zeigten ebenfalls ebe im Vergleich zur unbehandelten Kontrollgruppe verlangsamte Karzbomentstehung (vgL auch bezüglich entsprechender Plasmid-DNA-Experimente bei bttamuskulärer Injektion: Di Carlo et aL (2001) Gin. Cancer Res. 7(3. Ergänzungsband): 830s-837s), wobei jedoch Ae Karzbomentstehung bis zur 27. Lebenswoche nicht so stark verlangsamt war wie bei der Immunisierung mit erfbdungsgemäßer, für Ae verkürzte Version von Her2/neu coAerender mRNA Darüber hinaus sbd bei der Immunisierung mit DNA Ae vorstehend genannten Nachteile, insbesondere Ae Gefahr der Integration der DNA b das Genom, Ae Entstehung von anti- DNA- Antikörpern usw. zu berücksichtigen.
Beispiel 2: Einfluss von GM-CFS auf Ae RNA- Vakzinierung
Materialien und Methoden
Mäuse
6-10 Wochen a e BALB-c AnNCrlBR (H-2" Mäuse (weiblich) wurden von Charles River (Sulzfeld Deutschland) bezogen.
Pϊasniώ rdHerstdhϋigtmKMA
Der für beta-Galaktosidase coAerende ORF (LacZ), flankiert von 5- und 3-nicht- translatierten Sequenzen aus dem beta-Globbgen vonX Laezis, wurde b das Plasmid pT7TS (PA Creek, Austin, TX, USA), um das Plasmid ρT7TS-kozak-5' beta gl-lacZ-3' beta gl- A30C30 herzustellen (vgL Hberr et aL (2000) Eur. J. ImmonoL 30: 1-7). Der generelle Aufbau des Plasmids pT/TS mit den flanHerenden 5 - und 3 - nicht-translatierten Sequenzen aus dem beta-Globbgen von X. Laeds ist b Fig.8 schematisch dargestellt
Das derart hergestellte Plasmid wurde mit Pst I lbearisiert und in titro unter Verwendung des rn-MessagemMachbeT7 Bat (Ambion, Austin, TX USA) transkripiert Die so hergestellte
RNA wurde mittels LiCl-Präzipitation, Phenol/Chlorofoπn-Extraktion und Ammoniumace- tat-Fällung gereinigt Die gereinigte RNA wurde schließlich b eber Konzentration von 0,5 mg/ml b Injektionspuffer (150 mM NaG, 10 mM HEPES) resuspenAert.
Medien undZdlkult r
P815 und P13.1-Zellen wurden b RPMI 1640 (Bio-Whittaker, Verviers, Belgien), ergänzt mit 10% Htze-baktiviertem fötalem Kälberserum (FCS) (PAN Systems, Deutschland), 2 mM -. Glutamin, 100 U/ml Penicillb und 100 mg/ml Streptomycin, kultiviert
CTL-Kulturen wurden b RPMI 1640-MeAum, ergänzt mit 10 % FCS, 2 mM L-Glutamin, 100 U/ml Penicillin, 100 mg ml Streptomycin, 0,05 μM beta-Mercaptoethanol, 50 mg/ml Gentamycb, MEM-Non Essential Ambo Assids (100 x) und 1 mM Natriurnpyruvat, gehalten. CTL wurden für ebe Woche mit 1 mg/ml beta-Galaktosidaseproteb (Sigma, Taufkirchen, Deutschland) restimuliert Am Tag 4 wurden 4 ml Kulturüberstand vorsichtig abpipet- tiert und durch frisches Me Aum, enthaltend 10 U/ml rIL-2 (Endkonzentration) ersetzt
Imrumsientng
3 BALB/c-Mäuse pro Gruppe wurden mit 20 mg Pentobarbital ip. pro Maus betäubt Den Mäusen wurde dann id b beide Auriculae 25 mg für beta-Galaktosidase (beta-Gal) coAerende mRNA Injektionspuffer (150 mM Nad, 10 mM HEPES) bjiziert In einigen Fällen wurde zusätzlich Granomycyten-Makroph-_gen-Kolonie-Stimulisieru---gsfa-^ (GM-CFS) 24 h oder 2 h vor bzw. 24 h nach der RNA-Injektion b Aeselbe Stelle oder b ebe davon entfernte Injektionsstelle (b die Auricula oder s.c. b den Rücken) bjiziert Als Positivkontrolle wurde Tieren jeweils 10 mg ebes für beta-Gal coAerenden DNA-Plasmids b PBS id b beide Auriculae bjiziert Ebe Gruppe von Tieren, denen b beide Auriculae nur Injektionspuffer id appliziert wurde, Aente als Negativkontrolle. Zwei Wochen nach der Erstinjektion wurde ebe Boost-Injektion b jeweils der gleichen Weise wie bei der ersten Injektion durchgeführt Zwei Wochen nach der Boost-Injektion wurde Blut genommen, Ae Mäuse wurden getötet und die Mϊlz entfernt "Cr-Frώetzungtest
Aus der Milz erhaltene Splenocyten wurden in titro mit beta-Gal-Proteb stimuliert und Ae CTL- Aktivität wurde nach 6 Tagen unter Verwendung ebes όstündigen 51-Cr-Standardtests, wie b Rammensee et aL (1989) Immunogenetics 30: 296 - 302, beschrieben, bestimmt Kurz zusammengefasst wurden Zielzellen mit 51Cr markiert und mit dem Peptid TPHPARIGL für 20 mb bei Raumtemperatur beladen. Nach der Co-Inkubation von Effektor- und Zielzellen (bei jeweils drei verschiedenen Verhältnissen von EffektonZielzellen: 200, 44 und 10) b runden Platten mit 96 Vertiefungen für 6 h wurden 50 ml von 200 ml Kulturüberstand b ebe Luma-Szbtillationsplatte ^Packard) mit 96 Vertiefungen pipettiert, und nach dem Trocknen wurde Ae RaAoaktivität mit ebem Szbtillationszähler (1405 Microbeta Plus) gemessen. Die prozentuale spezifische Freisetzung wurde aus der Menge des b das MeAum freigesetzten 51Cr (A) mbus der spontanen Freisetzung (B) geteilt durch Ae Gesamtfreisetzung (Q (unter Verwendung von Triton X-100) mbus der spontanen Freisetzung (B) bestimmt: Prozent spezifische Lyse = 100 (A-B)/(GB).
Cytokin-ELISΛ
Nach 4 Tagen der Restimulierung mit beta-Gal-Proteb wurde der Überstand der Splenocy- tenkultur abpipettiert und bei - 50°C bis zur Verwendung gelagert Auf MaxiSorb-Platten (Nalge Nunc International, Nalge, Dänemari-) wurden über Nacht bei 4°C 100 ml Anti- Maus-Anti-IFN-gamma- oder -ID4-Fängerantikörper (Becton Dickenson, Heidelberg, Deutschland) bei eber Konzentration von 1 mg/ml b Beschichtungspuffer (0,02 % NaN3, 15 mM Na2CO}, 15 M NaHG03, BH 9,6) auspipettiert Nach dreimaligem Waschen mit Waschpuffer (0,05 % Tween 20 b PBS) wurden Ae Platten mit 200 ml Block gpuffer (0,05 % Twen 20, 1 % BSA b PBS) für 2 h bei 37° C abgesättigt Nach dreimaligem Waschen mit Waschpuffer wurden 100 ml der Zellkulturüberstände für 5 h bei 37° C inhibiert Die Platten wurden dann viermal mit Waschpuffer gewaschen, und es wurden 100 ml biotinylierte Anti- Maus-Anti-IFN-gamma- oder -IL-4-Detektionsantikδrper (Becton Dickenson, Heidelberg, Deutschland) pro Vertiefung bei eber Konzentration von 0,5 mg ml b Blockierungspuffer pipettiert und für 1 h bei Raumtemperatur inhibiert Nach dreimaligem Waschen mit Waschpuffer wurden b jede Vertiefung 100 ml eber 1/1000- Verdünnung Spreptavidh-HRP (BD Biosciences, Heidelberg, Deutschland) gegeben. Nach 30 mb bei Raumtemperatur wurden Ae Platten dreimal mit Waschpuffer und zweimal mit bidestilliertem Wasser gewaschen. Danach wurden b jede Vertiefung 100 ml des ABTS-Substrats zugegeben. Nach 15 - 30 mb bei Raumtemperatur wurde Ae Extinktion bei 405 nm mit ebem Sunrise-ELISA-Lesegerät Te- can, Crailsheim, Deutschland) gemessen.
Anäkörper-ELISA
Zwei Wochen nach der Boost-Injektion wurde den M usen Blut über Ae Orbhalvene abge- nommen und Blutserum hergestellt Auf Maxisorb-Platten (Nalge Nunc International, Nalge, Dänemari-) wurden für 2 h bei 37° C 100 ml beta-Gal-Proteb b eber Konzentration von 100 mg/ml b Beschichtungspuffer (0,05 M Tris-HO, 0,15 M NaO, 5 mM CaCl2, pH 7,5) auspipettiert Dann wurden Ae Platten dreimal mit 200 ml Waschpuffer (0,05 M Tris-HG, 0,15 M NaO, 0,01 M EDTA, 0,1 % Tween 20, 1 % BS A, pH 7,4) gewaschen und mit 200 ml Waschpuffer über Nacht bei 4° C mit Proteb abgesättigt Die Platten wurden dreimal mit Waschpuffer gewaschen, und es wurden Blut-Seren b eber Verdünnung von 1/10, 1/30 bzw. 1/90 b Waschpuffer zugegeben. Nach 1 h bei 37° C wurden Ae Platten dreimal mit Waschpuffer gewaschen, und es wurden 100 ml von 1/1000- Verdünnungen von Ziege- Anti- Maus-IgGl- oder -IgG2a- Antikörpern (Galtag, Burlington, CA, USA) zugegeben. Nach 1 h bei Raumtemperatur wurden Ae Vertiefungen dreimal mit Waschpuffer gewaschen, und es wurden 100 ml ABTS-Substrat pro Vertiefung zugefügt Nach 15 - 30 mb bei Raumtemperatur wurde Ae Extinktion bei 405 nm mit ebem Sunrise-ELISA-Lesegerät (Tecan, Crailsheim, Deutschland) gemessen.
Ergebnisse und Diskussion
Es wurde bestätigt, daß die direkte Injektion von RNA, Ae für beta-Galaktosidase coAert, b Ae Auricula von Mäusen ebe Anti-beta-Galakosidase-Iπimunantwört, im wesentlichen vom Th2-Typ, auslöst Es wird ebe Produktion von Anti-beta-Galahosidase-ImmunglobuIben vom IGl-Typ (Fig. 3A) und ebe Sekretion von IL-4 (Fig. 2 B) bei mit beta-Galaktosidase- stimulierten Splenocyten von Mäusen festgestellt, denen Ae für beta-Galaktosidase coAerende RNA bjiziert wurde. Um die Effizienz der RNA-Vakzbe zu verstärken, wurde zusätzlich das Cytokb GM-CFS verabreicht Dieses Cytokb verstärkt Ae Effizienz bei einigen DNA- Vakzben. Darüber hinaus wurde festgestellt, daß der Zeitpunkt der GM-CFS-Injektion im Vergleich zur DNA-Injektion den Typus der Immunantwort beeinflußt (Kusakabe (2000) J. ImmunoL 164: 3102-3111). Erfhdungsgemäß wurde festgestellt, daß GM-CFS Ae durch ebe RNA- Vakzinierung hervorgerufene Immunantwort verstärken kann. Die Injektion von GM- CFS eben Tag vor der Injektion von RNA zeigt kaum eben Einfluß auf Ae Stärke oder den Typus der Immunantwort Im Gegensatz dazu verstärkt Ae Injektion von GM-CFS 2 Stunden vor der Injektion der RNA Ae Immunantwort (vgL Ae ILr4-Freisetzung b Fig. 2B bei den 2 M usen, denen GM-GFS beim Zeitpunk T = 0 bjiziert wurde), beeinflußt jedoch nicht Ae Th2-Polarität Wird GM-CFS dagegen eben Tag nach der RNA-Vakzhe b Aeselbe Stelle oder b ebe davon entfernte Stelle (nicht gezeigt) bjiziert, wird Ae Immunantwort nicht nur insgesamt verstärkt (vgL Ae Antikörper- Antwort gemäß Fig. 3), sondern Ae Immunantwort wird zum Thl-Typ polarisiert (vgL Ae IFN-gamma-Produktion durch beta-Gal- Proteb-stimulierte Splenocyten gemäß Fig. 2A, Ae Produktion von IgG2a- Antikörpern ge- gen beta-Gal gemäß Fig.3B und Ae Produktion aktivierter CTL gemäß Fig. 1). Die Injektion von GM-CFS einige Mbuten oder einige Stunden nach der RNA-Injektion sollte Ae gleiche Auswirkung (Verstärkung und Polarisierung) der Immunantwort ergeben.
Beispiel 3: Auswirkung von RNase-Inhibitor auf Ae mRNA-Expression in vivo
Es wurde nackte oder prota h-assoziierte bzw. -komplexierte mRNA, Ae für beta- Galaktosidase coAert (hergestellt wie b Beispiel 2 angegeben) b Ae Auricula von Mausen b eber Menge von 25 mg RNA b Injektionspuffer (150 mM NaCJ, 10 mM HEPES) bjiziert Weiteren Mäusen wurde Ae für beta-Galaktosidase coAerende mRNA zusammen mit 10 U des RNase-Inhibitors RNasb (eb aus Pankreas extrahierter er-zymatischer RNase-Inhibitor, erhaltlich von Röche oder Promega) bjiziert Der RNase-Inhibitor wurde unmittelbar mit der RNA-Lösung vor der Injektion vermischt Nach 12 Stunden wurden jeweils den Mäusen Ae Ohren abgenommen. Mikroskopische Dünnschnitte der Auriculae wurden hergestellt und mit X-Gal gefärbt Die Injektion nackter oder protamb-assoziierter mRNA führt zu eber detek- tierbaren beta-Galaktosidase-Aktiviώt b einigen wenigen Zellen bei den entsprechenden Dünmchnitten (blaue Zellen b Fig. 5 und 6). Somit haben hier einige Zellen Ae exogene RNA aufgenommen und b das Proteb translatiert Wenn die für beta-Galaktosidase coAe- rende mRNA mit dem IGSIase-Inhibitor RNasb geschützt vorlag, wurden sehr viel mehr blaue Zellen als im Fall der nackten oder protamb-assoziierten RNA beobachtet (Fig.7). Da RNasb RNasen inhibiert, wird Ae Halbwertszeit der bjizierten mRNA-Mbleküle in ti , dort wo die Umgebung (bterstitielles Gewebe) mit RNasen kontaminiert ist, verlängert. Die derar- tage Stabilisierung der RNA führt zu eber verstärkten Aufnahme durch Ae umgebenden Zellen und dadurch zu eber verstärkten Expression des von der exogenen RNA co Aerten Proteins. Diese Phänomen kann daher auch für ebe verstärkte Immunantwort gegen eb von der bjizierten mRNA co Aerten Antigen genutzt werden.
Beispiel 4: RNA- Vakzinierung bei Patienten mit malignen Erkrankungen
Einleitung
Cytotoxische T-Lymphocyten (CTL) erkennen Antigene als kurze Peptide (8-9 Ambosäu- ren), Ae an MHC Klasse I Glykoprotebe gebunden an der Zellbberfläche exprimiert werden (1). Diese Peptide sbd Fragmente btrazellulärer Eiweißmoleküle. Es gibt jedoch Hnweise, daß auch exogen durch Makropbocytose oder Phagocytose aufgenommene Antigene zur CD8+ T-Zell-vermittelten Immunantwort führen können. Die Protebe werden b Proteoso- men gespalten, die hierbei entstehenden Peptide werden aus dem Cytosol b das Lumen des endoplasmatischen Retikulu s transportiert und an MHC Klasse I Moleküle gebunden.
Die so prozessierten Protebe werden als Peptid/MHGKlasse I-Komplex an Ae Zelloberfläche transportiert und den CTL präsentiert. Dieser Vorgang fbdet b jeder Zelle statt und ermöglicht so dem Immunsystem eb genaues Überwachen jeder einzeben Zelle auf das Vor- handenseb körperfremder bzw. veränderter oder embryonaler Protebe, unabhängig davon ob sie von btrazellulären pathogenen Keimen, Onkogenen oder dysregulierten Genen stammen. Dadurch sbd cytotoxische Lymphocyten b der Lage, infizierte bzw. neoplastische Zellen zu erkennen und zu lysieren (2, 3).
In den letzten Jahren ist es gelungen, verschiedene tumor-assozierte Antigene (TAA) und Peptide, Ae von CTL erkannt werden und dadurch zur Lyse von Tumorzellen führen, zu isolieren (21-27). Diese TAA sbd b der Lage, T-Zellen zu stimulieren und antigenspezifische CTL zu bduzieren, wenn sie als Komplex aus HLA-Mblekül und Peptid auf Antigen- präsentierenden Zellen (APC) exprimiert werden.
In zahlreichen Untersuchungen, Ae vor allem bei Patienten mit malignem Melanom durchge- führt wurden, konnte gezeigt werden, dass maligne Zellen beim Fortschreiten der Tumorerkrankung Ae Expression von TAA verlieren. Ahnliches wird auch bei Vakzinierungen mit einzehen Tumorantigenen beobachtet Unter Vakzbierungsώerapien kann es auch zur Selektion von Tumorzellen kommen, was eb Entkommen vom Immunsystem und ebe Progression der Erkrankung trotz Therapie ermöglicht Die Anwendung von mehreren verschiedenen Tumorantigenen wie im erfbdungsgemäßen BehanAungsplan des vorliegenden Beispiels vorgesehen, soll ebe Selektion von Tumorzellen sowie eb Entkommen der malignen Zellen vom Immunsystem durch Antigenverlust verhbdern.
Vor kurzem wurde ebe Methode, mit der DC mit RNA aus ebem Plasmid das eb Tumor- antigen koAert, ttansfiziert werden können, entwickelt (Nair et aL, 1998, Nair et aL, 2000). Die Transfektion von DC mit RNA für CE A oder Telomerase führte zur Induktion von An- tigen-spezifischen CTL. Dieses Verfahren ermöglicht es, CTL sowie T-Helfer Zellen gegen mehrere Epiope auf verschiedenen HLA-Mblekülen aus ebem Tumorantigen zu bduzieren. Eb weiterer Vorteil Aeser Strategie ist Ae Tatsache, dass sie weder Ae Charakterisierung der verwendeten Tumorantigene bzw. Epitope noch Ae Definition des HLA-Haplotyps des Patienten voraussetzt Durch ebe derartige polyvalente Vakzbe könnte Ae Wahrscheinlichksit für das Auftreten von sogenannten Honalen „tumor escape"- Phänomenen deutlich gesenkt werden. Darüber hinaus könnten durch Aesen Ansatz T-Zell- vermittelte Immunantworten gegen auf natürlichem Wege prozessierte und präsentierte Antigene mit eventuell höherer Immundominanz bduziert werden. Durch zusätzliche Beteiligung von MHGKlasse II restririgierten Epitopen könnte Ae bduzierte tumorspezifische Immunantwort verstärkt und länger aufrecht erhalten werden.
Es wird beispielhaft eb erfbdungsgemäßes BehanAungsschema zur Tumor- Vakzbierung von Patienten mit fortgeschrittenen malignen Erkrankungen (Mamma-, Ovarial-, kolorektale,
Pankreas- und Merenzellkarzbome) bereitgestellt Herbei wird RNA die aus Plasmiden, Ae für MUC1, Her-2/neu, Telomerase und MAGE-1 Tumorantigene sowie Influenza-Matrix- Proteb (IMP) (positive Kontrolle) coAeren, hergestellt wurde, Patienten mit oben erwähnten malignen Erkrankungen btra dermal verabreicht. Dadurch wird ebe CTL-Induktion in tito ermöglicht, um so Ae Progression der Erkrankung zu verhbdem bzw. deren Rückbildung zu bewirken. Die genannten Tumorantigene werden auf den malignen Zellen von Mamma-, O- varial-, kolorektalen, Pankreas- und Nϊerenzellkarzbomen exprimiert
Gemäß dem BahanAungsplan (vgL Ae Aesbezüglichen nachstehenden Ausführungen sowie Fig. 9) werden Ae im Labor hergestellten RNA-Spezies, Ae für CEA MUCl, Her-2/neu, Telomerase, Mage-1 und IMP kodieren, den Patienten id, zunächst 4 x an den Tagen 0, 14, 28 und 42, verabreicht Zusätzlich wird den Patienten jeweils eben Tag nach der RNA- Impfung GM-CSF (Leucomax®, 100 μg/m2, Novartis/Essex Pharma) s.c. verabreicht
Bei der erfbdungsgemäßen BehanAung handelt es sich um eben Immunisierungsansatz, der nur minimale Eingriffe beim Patienten (Injektion) erfordert Die Therapie erfolgt ambulant und ist für viele Tumorpatienten geeignet ohne Ae Eimchränkung auf bestimmte HLA- Typen oder definierte T-Zellepitope. Des Weiteren, können durch Aese Therapie polyHonale CD4+-T-Helfer als auch CD8+-CTL bduziert werden.
BehanAungsplan
Die RNAs für mehrere Tumorantigene (MUCl, Her-2/neu, Telomerase, MAGE-1) und für eb Kontrollantigen, dem Influenzamatrixproteb (EMP, vitales Antigen), werden dem Patienten id an den Tagen 0, 14, 28 und 42 verabreicht Zusätzlich erhalten Ae Patienten jeweils eben Tag nach der RNA-Impfung GM-CSF (Leucomax® (100 μg m2) Novartis/Essex Pharma) s.a. Bei stabilem KranHieitsverlauf bzw. ebem objektiven Tumoransprechen (komplette Remission (CR) bzw. partielle Remission (PR)) erhalten Ae Patienten ggf. Ae Vakzinierungen einmal im Monat s.c. Nach der vierten Injektion (Tag 49) wird das Ansprechen des Tumors raAologisch, laborchemisch und/oder sonographisch sowie Ae durch Ae Therapie bduzierten immunologischen Phänomene evaluiert
Ab Tag 70 erfolgt ebe Fortführung der Immunisierungstherapie b 4-wδchteπAchen Abständen. An den Tagen 0, 14, 28, 42 und 49 werden jeweils Blutproben für Labor, Diff-BB, FACS- Anafyse und Cytokbe entnommen (insgesamt 50 ml). Das Restaging der Patienten erfolgt ab Tag 49 sowie ggf. alle weitere 4 bis 8 Wochen.
Der BehanAungsplan ist b der Fig.9 schematisch dargestellt
Labor: Gerinnung, Elektrolyte, IDH, ß2-M, GK, Leberenzyme, Bilirubb, Kreatinb, Harnsäure, Gesamteiweiß, Gerinnung, CRP, Tumormarker (Ca 12-5, Ca 15-3, CEA Ca 19-9): 15 ml Blut
Diff-BB: Differentialblutbild mit Ausstrich (5 ml EDTA-Blut).
Cytokbe: 10 ml Serum.
FACS: lO ml Heparb-Blut
ELIspot: 20 ml Heparb-Blut Multitest Analyse der DTH Reaktion.
DTH: (engL „delayed type hypersensitivity", verspätete T-Zell-vermittelte Reaktion)
Analyse der Reaktion auf btra dermal verabreichte RNA Zusätzlich soll ebe Hautbiopsie bei postiver DTH-Reaktion erfolgen ierfür ist kehe Lokalanäs- thesie erforderlich).
Herstellung von RNA aus Plasmiden
Für Ae Produktion eber Vakzbe auf mRNA-Basis werden nur chemisch synthetisierte und aus Bakterien aufgerebigte Vorstufen benötigt Dies wird vorzugsweise b eber besonders ausgerüsteten RNA-Produktions-Einheit bewerkstelligt. Diese befbdet sich b ebem abgeschlossenen Raum, der als RNase-freie Zone deklariert ist, dh. Arbeiten mit RNase (zJΪ. Ae Aufrebigung von Plasmiden) dürfen nicht ausgeführt werden. Ebenso wird Ae Kontamination mit natürlich vorkommenden RNasen stetig überprüft Dieser Raum ist mit Neugeräten (4°G und -20°GKühlschränke, Heizblock, Sterilbank, Zentrifuge, Pipetten) ausgestattet, welche noch nie b Benutzung für biologische oder klinische Arbeiten waren. Diese RNA- Produktionsehhert wird ausschließlich für Ae enzymatische Produktion (In titro -Transkription) von mRNA genutzt (ohne bakterielle, virale oder Zellkultur- Arbeiten). Das End- produkt umfasst ebe sterile RNA-Lδsung b HEPES/NaÖ-Puffer. Qualitätsanalysen werden auf ebem Formaldehyd- Agarosegel durchgeführt. Zusätzlich wird Ae RNA-Konzentration sowie der Anteil an Proteben photometrisch bestimmt (OD320 < 0,1; Verhältnis von OD260/OD280 > 1,8 bei reber RNA). Ebe mögliche Kontamination durch LPS wird im LAL- Test analysiert Alle RNA-Proben werden vor dem Verabreichen ste ril filtriert
Plasmid-Konstrukte
Die ausgewählten Gene (CEA Mucbl, Her-2/neu, Telomerase, Mage-Al and Influenza Matrix) werden über PCR durch den Einsatz ebes thermostabilen Hgh-Pef ormance-Enzyms (pfu, Stratagene) amplifiziert. Die Gene stammen aus Tumor-cDNA (Mucbl, Her2/neu, Telomerase), oder sie wurden b bakterielle Vektoren Honiert (Influenza Matrix und MAGE- Al). Die PGR-Fragmente werden mit Restriktionsenzymen geschnitten (Mucbl: Bglü-Spel; Her-2/neu: HnDmblunt-Spel; Telomerase: Bglπ-Spel; MAGE-Al: BamHI-Spel; Influenza Matrix Protein: Bglü-Spel) und b das T7TS-Plasmid (vgL Fig. 8) über Ae Bgiπ und Spei Restriktionsstellen Honiert Plasmide hoher Reinheit werden über das Endo-free Maxiprepa- ration Kit (Qiagen, Hlden, Deutschland) erhalten. Die Sequenz des Vektors wird über ebe Doppektr-ing-Sequenzierung vom T7 Promotor bis zur Pstl Stelle kontrolliert und dokumentiert Plasmide, deren insertierte Gensequenz korrekt und ohne Mutationen ist, werden für Ae In titro -Transkription benutzt (Kontrolle über Ae publizierten Sequenzen: Accession Nummern: M11730 für Her-2/neu, NM_002456 für MUCl, NM_003219 für Telomerase TERT, V01099 für Influenza Matrix und M77481 für MAGE-Al).
Figure imgf000038_0001
Produktion ton linearer, pmtά derDNA
500 μg von jedem Plasmid werden b ebem Volumen von 0,8 ml über eb Verdau mit dem Restrihionsenzym Pstl b ebem 2 ml Eppendorf-Reaktionsgefäß Ibearisiert Dieses geschrώ- tene Konstruh wird b Ae RNA-Produktionsebhe überführt 1 ml ebes Gemischs von Phenol/Ghloroform Isoamy lkohol wird zu der lbearisierten DNA gegeben. Das Reaktionsgefäß wird für 2 Mbuten gevortext und für 3 Mbuten bei 15.000 UjpM abzentrifuguiert Die wässerige Phase wird abgenommen und mit 0 ml 2-Propanol b ebem 2 ml Reaktionsgefäß vermischt Dieses Gefäß wird 15 Mbuten bei 15000 UpM zentrifugiert, der Überstand verworfen, und es wird 1 ml 75% Ethanol hinzugefügt Das Reaktionsgefäß wird für 10 Minuten bei 15.000 UpM zetirifugiert, und der Ethanol wird entfernt Das Gefäß wird nochmals für 2 Mbuten zentrifugiert, und Ae Reste des Ethanols werden mit eber Mükroliter- Pipettenspitze entfernt Das DNA-Pellet wird dann b 1 μg/ml b RNase-freiem Wasser aufgelöst
En∑ymxtisdoe Synthese (kr RNA
In ebem 50 ml Falcon-Röhrchen wird folgendes Reaktionsgemisch hergestellt: 100 μg lbe- arisierte proteinfreie DNA, 1 ml 5x Puffer (200mM Tris-HQ (pH 7,9), 30 mMMgCl2, 10 mM Spermidin, 50 mM NaÖ, 50 mM DTI), 2001 Ribonuclease (RNase)-Inhibrtor (rekombinant, 5 000 U), 1 ml rNTP-Mϊx (jeweils 10 mM ATP, CTP, UTP; 2 mM GTP), 1 ml GAP Analo- gon (8 mM), 150 μl T7 Polymerase (3000 V) und 2,55 ml RNase-freies Wasser. Das Gesamtvolumen beträgt 5 mL Das Gemisch wird für 2 Stunden bei 37 °C im Heizblock inhibiert Danach werden 100 U RNase-freie DNase zugefügt, und das Gemisch wird wieder für 30 Mbuten bei 37 °C inhibiert Herbei wird Ae DNA-Matrize enzymatisch abgebaut
Figure imgf000039_0001
T7 Polymerase: aufgereinigt aus ebem E .cdi -Stamm, der eb Plasmid mit dem Gen für Ae Polymerase enthält Diese RNA-Polymerase verwendet als Substrat nur Promotorsequenzen des T7-Phagen; Fa. Feπnentas. NTPs: chemisch synthetisiert und über HPLC aufgereinigt Reinheit über 96%; Fa. Fermen- tas.
GAP Analogon: chemisch synthetisiert und über HPLC aufgereinigt Reinheit über 90%; Institut für Organische Chemie der Universität Tübingen. RNase Inhibitoπ RNasb, zur Injektion, rekombinant hergestellt (E. cdi)', Fa. Promega. DNase: Pulmozym* („dornase alfa"); Fa. Röche Rάn ng
Die mit DNase behandelte RNA wird mit 20 ml von eber Lösung aus 3,3 ml 5 M NH4QAc plus 16,65 ml Ethanol vermischt Das Gemisch wird für 1 Stunde bei -20°C inhibiert und bei 4000 UpM für 1 Stunde zentrifugiert. Der Überstand wird entfernt und das Pellet mit 5 ml 75% RNase-freiem EAanol gewaschen. Das Gefäß wird nochmals bei 4000 UpM für 15 Mbuten zentrifugiert und der Überstand entfernt Das Gefäß wird nochmals unter den vorherigen Bedingungen zentrifugiert und der verbleibende Ethanol mit eber Mikroliterpipetten- spitze entfernt Das Reaktionsgefäß wird geöffnet, und das Pellet wird unter eber Sterilbank im sterilen Umfeld getrocknet
1 ml RNase-freies Wasser wird zur getrockneten RNA hinzugefügt Das Pellet wird bei 4 °C für mbdestens 4 Stunden inhibiert 2 μl der wässerigen Lösung werden eber quantitativen Analyse (Bestimmung der UV-Absorption bei 260 nm) unterzogen. 2 ml eber Phe- nol/CUorofoπii/Isoamylalfehol-Lösung werden zu 1 ml wässeriger RNA-Lδsung hinzugefügt Das Gemisch wird für 2 Mbuten gevortext und bei 4000 UpM für 2 Mbuten zentrifugiert. Die wässerige Phase wird mit eber Mkroliterpipette entfernt und b eb neues Reaktionsgefäß überführt 4 ml eber Lösung aus 0,66 ml 5 M NH4QAc plus 3,33 ml Ethanol werden hinzugefügt Das Gemisch wird für 1 Stunde bei -20°C inhibiert und bei 4000 UpM für 1 Stunde zentrifugiert Der Überstand wird entfernt und das Pellet mit 75% RNase freiem Ethanol gewaschen. Das Gefäß wird nochmals bei 4000 UpM für 15 Mbuten zentrifugiert, und der Überstand wird entfemt Das Gefäß wird nochmals unter den vorherigen Bedingungen zentrifugiert und der verbleibende Ethanol mit eber Mikroliterpipettenspitze entfernt Das Reaktionsgefäß wird geöffnet und unter eber Sterilbank das Pellet im sterilen Umfeld getrocknet
Die RNA wird b RNase-freiem Wasser gelöst und auf ebe Konzentration von 10 mg ml eingestellt Sie wird 12 Stunden bei 4 °C inkubiert. Durch Zugabe von Injektionspuffer (150 mMNaÖ, 10 mM HEPES) wird ebe Endkonzentration von 2 mg ml erreicht Das Endpro- dukt wird vorzugsweise unter GMP-Bedingungen vor Gebrauch sterilfiltriert. Applikation der RNA
Jeder Patient erhält an zwei verschiedenen Stellen ebe btradermale (id) Injektion von je 150 μl der Injektionslösung, b der je 100 μg Antigen-co Aerende mRNA (CEA Her-2/neu, MA- GE-Al, Mucb 1, Telomerase, Influenza Matrix Proteb) gelöst voAegt
Nach der Primärimmunisierung wird alle 14 Tage ebe Booster-Immunisierung durchgeführt, um dann Ae Impfungen b monaAchem Abstand zu wiede rholen. Jeweils eben Tag nach der RNA-Injektion wird den Patienten zusätzlich GM-CSF (Leucomax®, Sandoz/Essex Pharma) sub cutan (s.c.) verabreicht
Bei vorhandenem klinischen Ansprechen bzw. Stabilisierung der Erkrankung wird Aese Therapie b monaAchen Abständen fortgeführt
Weitere immunologische Untersuchungen intitro (optional)
Durchflusscytometrische Untersuchungen von PBMC zur Quantifizierung von CTL- Vorläufern; 51Cr-Freisetzungstests; Lösliche Rezeptoren- und Cytokinspiegel im Serum;
DTH-Reaktion (Hautreaktion auf btra dermal bjizierte RNA, „delayed type hypersensrtivi- ty", T-Lymphocyten vermittelte Reaktion); und
Hautbiopsieproben aus der Injektionsstelle zur histologischen Untersuchung auf T-Zell- Infiltration (Pathologie).
Parameter zur Beurteilung der Wirksamkeit
Um die Frage nach der Wirksamkeit Aeser Immuntherapie beantworten zu können, wird Ae Induktion tumorspezifischer T-Zellen und eber meßbaren Tumorremission herangezogen. Als Parameter gelten in titro und in tito gemessene T-Zellreaktionen sowie Größenänderungen bidimensional erfaßbarer Tumormanifestationen oder kborchemischer Verlaufsparameter. Die objektive Remission ist definiert als bestes Ansprechen b Form eber kompletten oder partiellen Remission, entsprechend den unten aufgeführten Kriterien. Die Remissionsrate berechnet sich aus dem Verhältnis aus der Anzahl der Patienten mit objektiver Remission und der Gesamtzahl auswertbarer Patienten.
Als immunologisches Ansprechen auf Ae Therapie wird ebe Veränderung im Immunstatus, bestimmt durch Immuntypisierung peripherer mononuHeärer Zellen, Erhöhung der antigen- spezifischen CTL- Vorläuferfrequenz im peripheren Blut und Ae Induktion eber anhaltenden tumorspezifischen T-Zellaktivität gewertet Herzu werden in titro Induktionshilturen zur Aktivierung tumorspezifischer CTL etabliert
Ren sionskriterienfgm UICQ
Komplette Remission (CR): Vollständige Rückbildung aller messbaren Tumormanifestatio- nen, dokumentiert durch 2 mbdestens 4 Wochen auseinanderliegende Kontrolluntersuchungen. Partielle Remission (PK): Größenabnahme der Summe der Flächenmaße (Produh zweier
Tumordurchmesser oder Ibeare Messung ebdimensional messbarer Läsionen aller Tumorbefunde um 50 % für mbdestens 4 Wochen). Keb Neuauftreten von Tumormanifestationen oder
Progression ebes Tumorbefunds. „No Change" (NC): Abnahme aller messbaren Tumormanifestationen um weniger als 50 % oder Zunahme eines Tumorbefundes. Progression (PD): Größenzunahme der Tumoφarameter b mbdestens ebem Herd oder Neuauftreten eber Tumormanifestation.
Referenzen
1. Rammensee HG, Falk K, Rotzschke O: Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11: 213, 1993. 2. Bevan MJ: Antigen presentation to cytotoxic T lymphocytes b vivo. J Exp Med 182: 639, 1995.
3. Rock KX: A new foreign policy: MHC class I molecules police Ae outside world Im- munol Today 17:131, 1996.
4. Steinman, AM The dendritic cell System and its role b immunogenicity. Annu. Rev Immunol 9-271, 1991.
5. Steinman RM, Wittner-Pack M, Inaba K: Dendritic cells: antigen presentation, accessory function and clinical relevance. Adv Exp Med Biol 329:1, 1993.
6. Inaba K, Metlay JP, Crowley MT, Steinman RM: Dendritic cells puked wiώ proteb antigens b vitro can prime antigen-specific, MHGrestricted T cells b situ. J Exp Med 172:631, 1990.
7. Austyn JM: New bsight bto Ae mobilisation and phagocytic actrvity of dendritic cells. J Exp Med 183:1287, 1996.
8. Romani N, Koide S, Crowley M, Wrtmer-PackM, livingstone AM, Fathman CG, Steh- man RM: Presentation of exogenous proteb antigens by dendridc cells to T cell clones. J Exp Med 169:1169, 1989.
9. Nair S, Zhou F, Reddy R, Huang L, Rouse BT: Soluble protebs delivered to dendritic cells via pH-sensitive liposomes bduce primary cytotoxic T lymphocyte responses b vitro. J Exp Med 175:609, 1992.
10. Cohen PJ, Cohen PA Rosenberg SA Katz SI, Mule JJ: Mürbe epidermal Langerhans cells and splenic dendritic cells present tumor-associated antigens to primed T cells. Eur J Immunol 24:315, 1994. 11. Porgador A, Gilboa E: Bone-marrow-generated dendritic cells pulsed with a class I- restricted peptide are potent hducers of cytotoxic T lymphocytes. J Exp Mied 182255, 1995.
12. Celluzzi GM, Mayordomo JI, Storkus WJ, ML T. Lotze MT, and L. D. Falo LD: Peptide- puked dendritic cells bduce antigen-specific, CTLrmediated protective tumor immunity. J Exp Med 183283, 1996.
13. Zkvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, C-arke MR, Lotze MT, Storkus WJ: Therapy of murine tumors wiA tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokbes. J Exp Med 183:87, 1996.
14. Porgador Snyder D, Gilboa E: Induction of antitumor immunity usbg bone mar- row-generated dendritic cells. J Immunol 1562918, 1996.
15. Paglia P, Ghiodoni Rodolfo M, Colombo MP: Murine dendritic cells loaded b vitro with soluble proteb prime cytotoxic T lymphocytes agabst tumor antuen b vivo. J Exp Med 183:317, 1996.
16. Brossart P, Goldraώ AW, Butz EA Martin S, Bevan MJ: Adenovirus mediated delivery of antigenic epitopes bto DC by a means of CTL bduction. J Immunol 158: 3270, 1997.
17. Fkch P, Köωer G, Gaώe A HeώstB, WrderD, KohkrH SchaeferHE, Mertekmann R, Brugger W, Kanz L: Generation of antigen-presentbg cells for soluble proteb antigens ex vivo from peripheral blood GD34+hematopoetic progenitor cells b cancer pa- tients. Eur J Immunol 26: 595, 1996.
18. Sallusto F, Celk M, Danieli Q Lanzavecchia A Dendritic cells use macropbocytosis and the mannose receptor to concentrate macromolecules b Ae Major Hstocompatibility Complex class II compartment: Down reguktion by cytokbes and bacterial products. J Exp Med 182:389, 1995.
19. Bernhard H, Disis ML, Heimfeld S, Hand S, Gralow JR, Gheever MA Generetion of --mmunostimuktoπy dendritic cells from human CD34+ hematopoetic progen tor cells of th bone marrow and periphereal blood Cancer Res 55: 1099, 1995.
20. Hsu FJ, Benike Q Fagnoni F, Liks TM, Czerwbsh D, TaiA B, Engelman EG, Levy R: Vaccination of patients wiA B-cell lympnoma usbg autologous antigen-pulsed dendritic celk Nat Med 2: 52, 1996.
21. Robbins PF, Kawakami Y: Human tumor antigens recognized by T cells. Gurr Opb Immunol 8: 628, 1996.
22. Lbehan DQ Goedegebuure PS, Peopks GE, Rogers SO, Eberieb TJ: Tumor-specific and HLA-A2 restricted cytolysis by tumor-associated lymphocytes b human metastatic breast cancer. J Immunol 155: 4486, 1995.
23. Peoples GE, Goedegebuure PS, Snώh R, Lbehan DQ Yoshbo I, Eberleb TJ: Breast and ovarian cancer specific cytotoxic T lymphocytes recognize Ae same HER-2/-neu derived peptide. Proc Nad Acad Sei USA 92: 432, 1995.
24. Fisk B, Blevins TL, Wharton JT, loannides CG: Identification of an immunodomonant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic t lymphocyte lbes. J Exp Med 181: 2109, 1995.
25. Brossart P, Stuhler G, Fkd T, Stevanovic S, Rammensee H-G, Kanz L and Brug- ger W. HER-2/neu derived peptides are tumor-assockted antigens expressed by human renal cell and colon carcboma lbes and are recognized by b vitro bduced specific cytotoxic T lymphocytes. Cancer Res.58: 732-736, 1998. 26. Apostolopoulos, V. and McKenzie, I. F. C, Cellular mucins: targets for immuno- Aerapy. Grit Rev. ImmunoL 14: 293-302, 1995.
27. Brossart P, Heinrich KS, Stevanovic S, Stuhler G, Behnke L, Reichardt VL, Muhm Rammensee H-G, Kanz L, Brugger W. Identification of HLA-A2 restricted T cell epi- topes derived from Ae MUCl tumor antigen for broaAy applicable cancer vaccbes. Blood 93: 4309-4317, 1999
28. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of CTL responses b vivo after vaccinations wiώ peptide pulsed dendritic celk.
Blood 96^ 102-8, 2000
29. Kugler Stuhler G, Waiden P, Zδller G, Zobywakh Brossart P, Trefzer U, Ullrich S, Müller CA, Becker V, Gross AJ, Hemmerleb B, Kanz L, Müller GA Rbgert RH. Re- gression of human metastatic renal cell carcboma after vaccination wiώ tumor cell- dendritic cell hybrids. Nature Med 3: 332-336, 2000 (IF 25,58)
30. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients wiώ peptide- or tumor lysate-pulsed dendritic celk. NatMed 4:328
31. Schuler-Thumer B, Dieckmann D, Keikavoussi P, Bender Maczek Q Jonulek H, Roder Q HaenAe I, Leisgang W, Dunbar R, Cerundolo V, von Den DP, Knop J, Brocker EB, Enk Kampgen E, Schuler G (2000) Mage-3 and influenza-matrix pep- tide-specific cytotoxic T cells are bducibk b termbal stage HLA-A2.1+ melanoma pa- tients by mature monocyte-derived dendritic celk. JJmmunoL 165:3492
32. Thumer B, HaenAe I, Roder Q Dieckmann D, Keikavoussi P, Jonulek H, Bender A
Maczek Q Schreber D, von Den DP, Brocker EB, Steinman RM, Enk Kampgen E, Schuler G (1999) Vaccination wiώ mage-3Al peptide-puked mature, monocyte-derived dendritic celk expands specific cytotoxic T celk and bduces regression of some metas- tases b advanced stage IV melanoma. JJ_.xp.Med 190:1669 Beispiel 5: Vakzinierung mit autologer, amplifizierter Tumor-RNA bei Patienten mit malignem Meknom
Einleitung
Die Inzidenz des malignen Melanoms kt b den letzten Jahren weltwett stark angestiegen. Falls sich Ae Mblanomerkrankung zum Zeitpunh der Diagnosestellung bereits im metasta- sierten StaAum befbdet, so gibt es derze kebe Therapie, Ae den weiteren Krankheitsverkuf mit ausreichender Sicherheit positiv beeinflußt
B lang durchgeführte Vakzbierungsώerap n unter Verwendung von dendritischen Zellen sbd wegen der komplizierten Anzüchtung der Zellen sehr kbor-, kosten- und zeitintens v (GMP-Bedingungen). Weiterhb konzentrierten sich die StuAen bklang vorwiegend auf be- kannte tumorassoziierte Antigene (TAA), wie zum Be piel Melan-A oder Tyroshase.
Ebe Reihe verschiedener immunologischer Phänomene wie unter anderem das Auftreten von spontanen Tumorregressionen oder der spontanen Involution von Metastasen haben das Melanom zum vorrangigen KanAdaten zur Eφrobung immunώerapeutischer Untersuchun- gen gemacht (Parkinson et aL, 1992). Neben Versuchen der unspezifkchen Stimuktion des Immunsystems mittels Interkukb-2, Mistelextrakten, BOG und Interferonen, Ae b her zu keben entscheidenden Durchbrüchen b der Therapie fortgeschrittener Tumorerkranhingen führten, wurde b den letzten Jahren insbesondere Ae Strategie der Induktion verschiedener hochspezifischer cytotoxischer T-Lymphocyten (CTL) verfolgt Diese CTL sbd b der Lage autologe Melanomzellen zu erkennen und abzutöten (Boon et aL, 1994; Hbughton, 1994). Untersuchungen Aeses Vorgangs ergaben, dass Ae CTL defimerte Peptide b Verbbdung mit MHG-Klasse-I-Mblekülen erkennen. Die Präsentation von Peptiden durch Antigen- präsentierende Zellen (AP sbd der physiologische Weg zur Erzeugung von spezifischen Immunantworten durch Lymphocyten (Rammensee, 1993). Dendritische Zelkn haben sich als potente Antigen-präsentierende Zellen erwiesen, Ae auf zwei Wegen zu eber Induktion der Immunantwort führen: Der erste kt d direkte Präsentation von Peptiden gegenüber CD8+-T-Lymphocyten und deren Aktivierung (Schuler & Steinmann, 1985; Inaba et aL, 1987; Romani et aL, 1989), der zweite ist Ae Erzeugung eber protektiven Immunantwort, Ae von CD4+-Helfer-ymphocyten vermittelt wird, und ebe Präsentation von Peptiden über MHG Klasse-H-Moleküle voraussetzt (Grabbe et aL, 1991,1992,1995).
Mittek der Peptidanalyse konnten so verschiedene Tumor-assozierte Antigene (TAA) identifiziert werden, Ae für das Melanom spezif kch sbd und nach Präsentation b Verbbdung m dem MHGMblekül und Erkennung durch die CTL zur Cytolyse der Tumorzellen führen (Schadendorf et aL, 1997, S.21-27).
Die Verwendung von autologen, dendritischen Zellen wurde im Rahmen eber PilotstuAe bei Melanompatienten bezüglich sebes Potentiak, effektiv, schnell und zuverlässig cytotoxkche T-Lymphocyten zu bduzieren, getestet In Aeser StuAe wurden 16 bereits chemotherapeutisch vorbehandelte Melanompatienten im StaAu IV mk Peptid-bekdenen dendritischen Zellen vakziniert Die Ansprechraten lagen über 30% (5/16 Patienten) (Nestle et aL, 1998). In eber weiteren unabhängigen Stud konnte ebe noch höhere Ansprechrate von mehr ak 50% (6/11 Patienten) nach Immunkierung von bereits chemotherapeutisch vorbehandelten, me- tastasierten Melanompatienten mit MAGE-3Al-bekdenen dendritischen Zellen gezeigt werden (Thumer et aL, 1999). Ebenfalk wurde ebe signifikante Expansion von MAGE-A3- spezifkchen CD8+-T-Zellen b 8/11 Patienten beobachtet. Es erfolgte nach der DG Vakzinierung b einigen Fällen ebe Regression der Metastasen. Dies wurde von eber CD8+- T-ZeU-Infikration begleitet Dks zeigte, dass Ae bduzierten T-Zellen in tita aktiv waren. Nachteil Aeser Strategk ist der große kosten- und kbortechnische Aufwand (insbesondere GMP-Bedingungen). Für cüe zeitintensive Generierung der DC werden große Mengen an Patientenblut benötigt Bei der Herstellung der Peptide kann zum eben nur auf bekannte tumorassozikrte Antigene zurüclägegriffen werden, zum anderen sbd je nach HLA-Haplotyp verschiedene Peptide notwendig.
Ebe WekerentwicHung dieses Ansatzes ist Ae Vakzinierung mit RNA-transfizierten DC (Nak et aL, 1998, Nak et aL, 2000). Zahlreiche StuAen bekgen inzwischen, daß DC von Maus und Mensch, Ae mit mRNA transfiziert wurden, ebe effiziente CTL-Antwort in titro und b-vivo auslösen können und zu eber deuAchen Reduktion von Metastasen führen können (BoczkowsH et aL, 1996, 2000; Ashley et aL, 1997; Nak et aL, 1998, 2000; Heiser et aL, 2001; Mitchell and Nak, 2000; Koido et aL, 2000; Schmitt et aL, 2001). Eb großer Vorteil bei der Verwendung von RNA gegenüber Peptiden ist, dass verschiedenste Peptide aus eber für eb TAA coAerenden mRNA prozessiert und präsentiert werden können. Durch ebe derartige polyvalente Vakzbe kann dk Wahrscheinlichkeit für das Auftreten von sogenannten Ho- nalen „tumor escape"- Phänomenen deuAch gesenh werden. Darüber hinaus können durch Aesen Ansatz T-Zell-veπnittelte Immunantworten gegen auf natüAchem Wege prozessierte und präsentierte Antigene mit potentiell höherer Immundominanz bduziert werden. Durch zusätzliche Beteiligung von MHGKJasse-π-restrbgierten Epitopen kann Ae hduzierte tumorspezifische Immunantwort verstärkt und länger aufrecht erhalten werden. Trotzdem ist auch Aeses Verfahren wegen der nötigen Kultivierung der autologen DG nur mit hohem Laboraufwand (GMP-Bedingungen) durchführbar.
Bei der vorliegenden erfbdungsgemäßen Strategie wird mk dem im autologen Tumor des Patienten vorhandenen RNA-Expressionsprofil vakziniert Dadurch wird dem spezifischen Tumoφrofil des Patienten Rechnung getragen, wobei auch unbekannte TAAs b Ae Impfung m eingehen. Dk aufwendige Anzucht der DC entfällt, da bei der Vakzinierung RNA (kebe transf izierten DG) verwendet werden.
Erfbdungsgemäß wird daher ebe Impftherapie unter Verwendung von amplifizkrter autolo- ger Tumor-RNA an Patienten mk metastaskrtem malignem Melanom, insbesondere StaAum m/IV, bereitgestellt
Durch Ae Vakzinierung werden in tito ebe tumorspezifische cytotoxische T-Zellen bduziert, um so eben 1-lbkch-ώeraρeutischen Effekt (Tumor-Response) zu errekhen. Es handek skh um eben Irnmunkkrungsansatz, der nur minimak Eingriffe beim Patienten (Injektion) erfordert Die Therapk kann ambulant erfolgen und kt für viele Tumoφatienten geeignet ohne d Eimchränkurig auf bestimmte HLA-Typen oder definierte TZellepitope. Darüber hinaus können durch d se Therapk polyHonak GD4+ T-Helfer ak auch QD8+-CTL bduziert werden. Von der Strategie her entscheidend ist auch Ae Berücksichtigung bklang unbekannter TAAs beim Impfprotokoll, sowie Ae ausschließliche Verwendung von autologem Material besonders vorteilhaft BehanAungplan
Die amplifizierte autologe Tumor-RNA wird dem Patienten id an den Tagen 0, 14, 28 und 42 verabreicht Zusätzlich erhalten Ae Patienten jeweils eben Tag nach der RNA-Impfung GM-CSF (Leucomax® 100 μg m2, Novartis/Essex) s.c. Jeder Patient erhält an zwei verschiedenen Stellen ebe id Injektion von je 150 μl der Injektionslδsung, b der je 100 μg autologe Tumor-RNA gelöst ist
2 Wochen nach der vierten Injektion (Tag 56) werden gff. das Ansprechen des Tumors durch ebe Staging-Untersuchung (u.a. Sonografie, Rδntgen-Thorax, CT usw.; siehe hierzu dk weiter unten stehenden Ausführungen) sowie durch Ae Auswertung der durch Ae Therapie b- duzierten immunologischen Parmeter evaluiert
Bei stabilem Krankheitsveriauf oder ebem objektiven Tumoransprechen (CR bzw. PR) erhal- ten Ae Patienten Ae Vakzinierungen alle 4 Wochen. Weitere Restagii-ig-Untersuchungen können bspw. Tag 126, dann im 12-wöchigem Abstand vorgesehen werden.
Der BehanAungsplan ist b der Fig. 13 schematisch dargestellt
Herstellung autologer Tumor-RNA
Ziel kt Ae Herstellung autologer Poly(A+)-RNA Herfür wird aus patienteneigenen Tumorgewebe Poly(A+)-RNA isolkrt Diese kolierte RNA ist an skh sehr instabil und b ihrer Menge limitiert Deshalb wird Ae genetische Information b ebe wesenAch stabilere cDNA- Biblioώek umeschrkben und somk konserviert Ausgehend von der patienteneigenen cDNA-B oώek kann für den gesamten BehanAungszeitraum stabilkkrte autologe RNA hergestellt werden. Das erf bdungsgemäße Vorgehen kt b der Fig. 10 schematisch dargestellt
RNA-Isdiena^
Zur Isolierung von Gesamt-RNA aus eber Tumorgewebe-Biopsie wird eb Verfahren der Fa. Röche AG angewendet Herbei wird das Hgh Pure RNA Isoktion Kk (Bestelbummer 1828665) nach Herstellerangaben eingesetzt Poly(A+)-RNA wird aus der Gesamt-RNA über eb weiteres Verfahren der Röche AG mit dem Hgh Pure RNA Tksue Kk (Bestelbummer 2033674) isoliert
HerstikmgάneriDNA MiϋMi
Die cDNA Bibliothek wird mit dem „SMART PCR cDNASynώesk Kk" (Fa. Clontech Inc., USA Bestelbummer PT3041-1) gemäß den Angaben des Herstellers konstrukrt
Herbei wird Ae einzekträngige Poly(A+)-RNA über eben speziellen Primer revers transkribiert Über eben poly-GÜberhang am 3 '-Ende der neu synthetisierten DNA kann eb weiterer Primer hybridkieren, über den das Konstruh durch PCR amplifiziert werden kann. Die doppekträngigen cDNA-Fragmente stehen nun zur Klonkrung b eben geeigneten RNA- Produktionsvehor (z.B. pT7TS; vgL Fig.8) berek
Das Verfahren zur Herstellung der cDNA-Biblioώek aus der Poly-A+-RNA mit Hlfe des obigen Kits ist b der Fig. 11 schematisch dargestellt
Flasnid-Kamtrukte
Die cDNA-PCR-Fragmente werden mk den Restriktionsenzymen Notl und Spei geschnitten und b dk entsprechenden Restriktionsstelkn des pT7TS Vektors analog der im Beispiel 4 angegebenen Vorgehensweise Honiert Plasmide hoher Reinhek werden über das Endo-free Maxφreparation Kk (Qiagen, Hlden, Deutschland) erhalten. Plasmide, deren einHonierte Gensequenz der erwarteten Grösserrfraktionierung (200bp-4000bp) der cDNA-Biblioώek entsprechen, werden für Ae In titro -Transkription benutzt Eb Bekpiel eber Auftrennung eber repräsentativen cDNA-Biblioώek b ebem Agarosegel kt b der Fig. 12 gezeigt
In titro -Transkription und RNA- Applikation
Die In titro -Transkription und Ae Verabreichung der RNA erfolgen wie im vorstehenden Bekpkl 4 beschrieben. Untersuchungen während der BehanAung
Vor jeder Impfung (am Tag der Impfung): Körperliche Untersuchung (einschließlich RR, Fieber); Blutabnahme Routbe-Laborwerte
1. Blutbild Differential-Blutbild 3 ml
2. Ekktrolyte, LDH, CK, Leberenzyme, Bilirubin, Kreatinin, Harnsäure, Gesamteiweiß, CRP: 5 l 3. Blutsenkung: 2 ml; und bei Wiede Aolungsimpfungen zusätzlich: Inspektion der Injektionsstellen.
Am Tag 1 nach jeder Impfung:
Körperliche Untersuchung (einschließlich RR, Fieber); und Inspektion der Injektionsstellen.
Bei Staging-Untersuchungen am Tag 56 und 126 nach der ersten Impfung, dann alle 12 Wochen, zusätzlich:
Erweiterte Routine-Blutentnahme: 1. TumorrnarkerS100 (7 ml)
2. G^rbnungswerte (3 ml);
Blutentnahme Immunmonitoring (30 ml);
Allgemebbefbden (EGOG-Score);
Bildgebende Verfahren ( öntgen-Thorax, Sonographie, Shlettszbtigramm, CT-Abdomen, Becken, Thorax, Schädel); und
EKG.
Weitere immunologische Untersuchungen in titro
Es wird gg . Ae rektive Häufigkeit von antigen-spezif ischen CTL- Vorlauf erzellen im periphe- ren Blut des Patienten im zeiAchen Veriauf der Impftherapie gemessen. Zum eben werden hierbei mit FACS-Analysen (Tetramerfärbung) CTL- Vorläuferzellen quantifiziert, Ae gegen von Melanomzellen im besonderen Maße exprimierte Antigene gerichtet sbd (Tyrosbase, MAGE-3, Melan-A GP100). Zum anderen werden ELIspot- Untersuchungen durchgeführt, Ae so ausgelegt sbd dass zusätzlich CTL- Vorläuferzzellen erfasst werden, Ae spezifkch gegen bklang unbekannte Antigene gerichtet sbd Dazu werden autologe dendritische Zellen, Ae aus dem peripheren Blut der Patienten kultivkrt werden, mit der gleichen RNA bkubkrt, mit der auch Ae Impfung durchgeführt wurde. Diese Aenen dann ak Stimuktorzelkn b der ELIspot-Untersuchung. Die Messung erfasst somk das gesamte Impfspehrum. Für Aese Untersuchungen können Blutentnahmen für das Immunmo- nitoring im Rahmen der Staging-Untersuchungen und zusätzlich an den Tagen 0, 14, 28 und 42 von insgesamt 30 ml (20 ml ELIspot, 10 ml FACS- Analyse) vorgesehen werden, sowie ebe einmalige Abnahme von 100 ml an Tag 70 zur Anzucht der DG
Des Weiteren können Fkutbiopsieproben aus der Injektionsstelle zur hktologischen Unter- suchung hinsichAch eber T-Zell-Infiltration gewonnen werden.
Parameter zur Beurteilung der Wirksamkeit
Die Wirksamkek der erfbdungsgemäßen Therapie wird anhand der vorstehend im Bekpiel 4 angegebenen Parameter bewertet
Referenzen
An hini, Mortarini, R., Maccalli, G, Squarcina, P., Fkkhhauer, K., Mascheroni, L., Par- miani, G. (1996). Cytotoxic T celk directed to tumor antigens not expressed on normal melanocytes dombate HLA-A2.1-restricted immune repertoire to melanoma. J. Immu- noL 156, 208-217.
Ashky, DM., Faiola, B., Nak, S., Haie, LP., Bigner, DD, Gilboa, E. (1997). Bone marrow- generated dendritic celk pu ed wiώ tumor extracts or tumor RNA bduce anti-tumor immunity agabst cent al nervous System tumors. J. Exp. Med 186, 1177-1182. BoczkowsH, D., Nak, SK., Synder, D., Gilboa, E. (1996). Dendritic celk puked wiώ RNA are potent antigen-presentbg cells b vitro and b vivo. J. Exp. Med 184, 465-472.
BoczkowsH, D., Nak, SK., Nam, J., Lyerly, K., Gilboa, E. (2000). Induction of tumor immu- rώy and cytotoxic T lymphocyte responses using dendritic celk transfected wiώ messenger RNA amplified from tumor cells. Cancer Res.60, 1028- 1034.
Boon, T, Coul J»., Marchand M., Weynants, P., Wölfel, T, Brichard V. (1994). Genes cod- ing for tumor rejection antigens: perspectives for specific immunoώerapy. In Impor- tant Advances b Oncology 1994. De Vita, VT, Hellman, S., Rosenberg, SA cd (Phik- delphia: Iippbcott Co), pp.53-69.
Garbe, Q Orfanos, CE (1989): Epidemiologie des malignen Melanoms b der Bundesrepublik Deutschland im bternationalen Vergleich. Onkologie 12, 253-262.
Grabbe, S., Bruvers, S., Gallo, RX., Knisely, TX., Nazareno, R., and Granstein, RD. (1991). Tumor antigen presentation by murine epidermal celk. J ImmunoL 146, 3656-3661.
Grabbe, S., Bruvers, S., Lbdgren, AM., Hbsoi, J., Tan, K.G, and Granstein, RD. (1992). Tumor antigen presentation by epidermal antigen-presentbg celk b ώe mouse: modu- ktion by granulocyte-macrophage colonystimukting factor, tumor necrosk factor al- pha, and ultraviokt radktion. J Leukoc BioL 52, 209-217.
Grabbe, S., Beksert, S., Schwarz, T., and Granstein, RD. (1995). Dendritic cells as bitiators of tumor immune responses: a possible strategy for tumor immunoώerapy?. Immu- noLToday 16, 117-121.
Grünebach, F, Müller, MR, Nencioni, A Brugger, W, and Brossart, P (2002). Transfection of dendritic cells wiώ RNA bduces cytotoxic T lymphocytes agabst breast and renal cell carcbomas and reveals ώe immunodombacnce of presented T cell epitopes. sub- tnkxed. Heker, A, Maurice, MA, Yancey, DR., Goleman, DM, Dahm, P., Vieweg, J. (2001). Human dendritic celk transfected wiώ renal tumor RNA stimukte polyclonal T cell responses agabst antigens expressed by primary and metastatic tumors. Cancer Res. 61, 3388- 3393.
Heker, A, Maurice, MA, Yancey, DK, Wu, NZ., Dahm, P., Pruitt, SK., BoczkowsH, D., Nak, SK., Ballo, MS., Gilboa, E., Vieweg, J. (2001). Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected wiώ amplified tumor RNA J. ImmunoL 166, 2953-2960.
Hberr, I, Obst, R, Rammensee, HG, Jung, G (2000). In vivo application of RNA leads to bduction of specific cytotoxic T lymphocytes and antibodks. Eur J ImmunoL 30, 1-7.
Hbughton, AN (1994). Cancer antigens: immune recognition of seif and altered seif. J ExpMed 180, 1-4
Inaba, K, Young, JW and Steinman, RM (1987). Direct activation of CD8+ cytotoxic T lymphocytes by dendritic celk. JXxpMed 166, 182-194.
Koido, S., Kashiwaba, M, Ghen, D., GenAer, S., Kufe, D, Gong, J. (2000). Induction of antitumor immurώy by vaccination of dendritic celk transfected wiώ MUCl RNA J. ImmunoL 165, 5713-5719.
Mitchell, DA, Nak, SK. (2000). RNA-transfected dendritic celk b cancer immunoώerapy. J. O . Invest 106, 1065-1069.
Nak, S., BoczkowsH, S., Synder, D, Gilboa, E. (1998). Antigen presentbg cells puked wiώ unfractionated tumor-derived peptides are potent tumor vaccbes. Eur. J. ImmunoL 27, 589-597.
Nak, S., Heker, A, BoczkowsH, D., Majumdar, A, Naoe, M, LebkowsH, JS., Vieweg, J., Gilboa, E. (2000). Induction of cytotoxic T cell responses and tumor immunity aga st unrekted tumors using telomerase reverse transcriptase RNA transfected dendritic celk. Nat Med 6, 1011-1017.
Nestle, F.O., Alijagic, S., Gilliet, M, Sun, Y., Grabbe, S., Dummer, R., Burg, G., and Scha- dendorf, D. (1998). Vaccbation of melanoma patients wiώ peptide- or tumor lysate- puked dendritic celk. NatMed 4, 328-332.
Parkinson, DR, H ughton, AN, Hersey, P, Borden, EG (1992). Biologie therapy for mek- noma. I Cutaneous melanoma. Balch, GM, Hbughton, AN, Mϊlton GW, Soober, AJ, Soong, SJ, ed (Lippbcott Co), pp.522-541
Rammensee, HG., Falk, K., and Rotzschke, O. (1993). Peptides naturally presented by MHC class I molecuks. Armu-Rev-ImmunoL 11, 213-244.
Romani N, Koide S, Crowley M, Wrtmer-Pack M, livingstone AM, Fathman CG, Steinman RM Presentation of exogenous proteb antigens by dendritk celk to T cell clones. J Exp -Med 169:1169, 1989.
Schadendorf, D, Grabbe, S, Nestle, FO (1997). Vaccination wiώ Dendritic Cells - A specific Immunomoduktory Approach. In Strategies for Immunobtervention b Dermatoilogy.
Burg, G, Dummer, RG, ed (Heidelberg, New York: Springer- Verlag),
Schmitt, WE., Stassar, MJJG., Schmitt, W, Iitdee, M, Cochlovius, B. (2001). In vitro bduc- tion of a bladder cancer-specific T-cell response by mRNA-transfected dendritic cells. J. Cancer Res. Ob. OncoL 127, 203-206.
Schmoll HJ, HÖffken K, Possinger K (1997): KompenAum Internktische Onkologie, 2. Aufl., Springer- Verlag Berlin, Teil 2, 1415.
Schuler G and Steinmann RM (1985). Murine epidermal Langerhans cells mature bto potent immunostimuktory dendritic cells b vitro. JJixpMed 161, 526-546. Thumer, B., HaenAe, L, Roder, G et aL (1999). Vaccination wiώ Mage-3A1 peptide-puked mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and bduces regression of some metastases b advanced stage IV melanoma. J. Exp. Med 190, 1669-1678.

Claims

Patentansprüche
1. Pharmazeutische Zusammensetzung, enthaltend mbdestens ebe mRNA, umfassend mbdestens eben für mbdestens eb Antigen aus ebem Tumor coAerenden Bereich, b Verbbdung mk ebem wässerigen Lösungsm teL
2. Pharmazeutische Zusammensetzung nach Anspmch 1, wobei der für das oder Ae Antigen(e) aus ebem Tumor coAerende Bereich und/oder der 5'- und/oder der 3'- mcht-transktierte Bereich der mRNA gegenüber der Wπdtyp-mRNA derart verändert ist, dass erkebe destabilkierenden Sequenzelemente aufwekt
3. Pharmazeutische Zusammensetzung nach Anspruch 1 oder 2, wobei Ae mRNA ebe 5'-Gp-Struktur und/oder eben Poly(A+)-Schwanz von mbdestens etwa 25
Nucleotiden und/oder mbdestens ebe IRES und/oder mbdestens ebe 5'- Stabilkierungssequenz und/oder mbdestens ebe 3'-Stabilkkrungssequenz aufweist
4. Pharmazeutische Zusammensetzung nach Anspruch 3, wobei Ae 5'- und/oder dk 3,-Stabilkkrur^ssequenz(en) aus der Gruppe, bestehend aus nicht-transktierten Sequenzen (UTR) des ß-Globingens und eber Stabilkierungssequenz der allgemeben Formel (C/UCCAlNςCCG(U/^PyxUC(C U)GQ ausgewählt kt/sbd
5. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bis 4, wobei dk mRNA mbdestens eb Anologes natürlich vorkommender Nucleotide aufwekt
6. Pharmazeutische Zusammensetzung nach Anspruch 5, wobei das Analoge aus der Gruppe, bestehend aus Phosphorthioaten, Phosphoramidaten, Peptidnucleotiden, Meώylphosphonaten, 7-Deazaguanosin, 5-Meώylcytosb und Inosin, ausgewählt ist
7. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bis 6, wobei das oder Ae Antigen(e) aus ebem Tumor eb Polyepkop von Antigenen aus ebem Tumor kt sbd
8. Pharmazeutische Zusammensetzung nach Anspruch 7, wobei das Polyepitop durch
Deletion, Addition und/oder Substitution ebes oder mehrerer Ambosäurereste modifiziert kt
9. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bis 8, wobei Ae mRNA zusätzlich für mbdestens eb Cytokb coAert
10. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bk 9, welche weiter eb oder mehrere Adjuvanzien enthält
11. Pharmazeutische Zusammensetzung nach Anspruch 10, wobei das Adjuvans aus der
Gruppe, bestehend aus Iipopolysaccharid TNF-o-, GD40-Iigand GP96, Oligonu- ckotiden mk dem CpG-Mbtiv, Aumimumhydroxid Freud'sches Adjuvans, Iipo- peptiden und CytoHnen, ausgewählt ist
12. Pharmazeutische Zusammensetzung nach Anspruch 11, wobei das Cytokb GM-
CSF kt
13. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bis 12, wobei dk mRNA mk mbdestens ebem kationischen oder polykationkchen Agens komple- xiert oder kondensiert vorliegt
14. Pharmazeutische Zusammensetzung nach Anspruch 13, wobei das kationische oder polykationkche Agens aus der Gruppe, bestehend aus Protamin, Poly-L-Lysin, Poly- L-Aigbb und Hstonen, ausgewählt kt
15. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bis 14, welche weiter mbdestens eben RNase-Inhibitor enthält
16. Pharmazeutische Zusammensetzung nach Anspmch 15, wobei der RNase-Inhibkor RNasb ist
17. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bis 16, Ae ebe Mehrzahl von mRNA-Mblekülen enthält, welche ebe cDNA-Bibliothek oder eben Teil davon ebes Tumorgewebes repräsentieren,
18. Pharmazeutische Zusammensetzung nach Anspruch 17, wobei der Teil der cDNA- Bibliothekfür Ae tumorspezifischen Antigene coAert.
19. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bk 18, wobei das oder Ae Antigen(e) aus ebem Tumor aus der Gruppe, bestehend aus 707- AP, AFP,
ART-4, BAGE, ß-Catenb/m, Bcr-abl, CAMEL, CAP-1, CASP-8, CDC27/m, CDK4/m, CEA CT, Cyp-B, DAM, ELF2M, ETV6-AML1, G250, GAGE, GnT-V, GplOO, HAGE, HER-2/neu, HLA-A*0201-R170I, HPV-E7, HSP70-2M, HAST-2, hTERT (oder hTR ), iCE, KIAA0205, LAGE, LDLR/FUT, MAGE, MART- 1/Melan-A MC1R, Myosb/m, MUCl, MUM-1, -2, -3, NA88-A NY-ESO-1, pl90 mbor bcr-abl, Pml/RARa, PRAME, PSA PSM, RAGE, RU1 oder RU2, SAGE, SART-1 oder SART-3, TEL/AML1, TPI/m, TRP-1, TRP-2, TRP-2/INT2 und WT1, ausgewählt ist sbd
20. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bk 19, wobei Ae mRNA eben Sequenzbereich enthält, welcher der Erhöhung der Transktionsrate Aent
21. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bk 20, enthaltend mbdestens eben werteren pharmazeutisch vertraglichen Träger und/oder mbdestens eb weiteres pharmazeutisch verträgliches VehikeL
22. Pharmazeutische Zusammensetzung nach ebem der Ansprüche 1 bk 21 zur Therapk und/oder Prophylaxe gegen Krebs.
23. Verfahren zur Herstellung eber pharmazeutischen Zusammensetzung nach ebem der Ansprüche 1 bk 22, umfassend Ae Schritte:
(a) Herstellen eber cDNA-B oώek oder ebes Teik davon aus Tumorgewebe ebes Patienten,
(b) Herstellen eber Matrize für Ae In titro -Transkription von RNA anhand der cDNA-Biblioώekoder ebes Teils davon und (c) In titro -Transkribieren der Matrize.
24. Verfahren nach Anspruch 23, wobei der Teil der cDNA-Biblioώek des Tumorgewebes für dk tumorspezifischen Antigene coAert.
25. Vefahren nach Anspruch 24, b welchem vor Schritt (a) Ae Sequenzen der tumorspezifischen Antigene ermittelt werden.
26. Verfahren nach Ansprach 25, wobei das Ermitteb der Sequenzen der tumorspezifischen Antigene eben Abgleich mit eber cDNA-Biblioώek aus gesundem Gewebe umfasst
27. Verfahren nach Anspruch 25 oder 26, wobei das Ermitteb der Sequenzen der tumorspezifischen Antigene ebe Diagnose durch eben Müsroarray umfasst
PCT/EP2002/014577 2001-12-19 2002-12-19 Stabilisierte mrna tumor-vakzine WO2003051401A2 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA2473135A CA2473135C (en) 2001-12-19 2002-12-19 Stabilised mrna tumour vaccine
AU2002360055A AU2002360055B2 (en) 2001-12-19 2002-12-19 Stabilised mRNA tumour vaccine
EP02795235A EP1458410B1 (de) 2001-12-19 2002-12-19 Verfahren zur Herstellung einer mRNA Tumorantigen Bibliothek
DE50211485T DE50211485D1 (de) 2001-12-19 2002-12-19 Verfahren zur Herstellung einer mRNA Tumorantigen Bibliothek
US10/870,110 US8217016B2 (en) 2001-12-19 2004-06-18 Application of mRNA for use as a therapeutic agent for tumorous diseases
US13/106,548 US20110311472A1 (en) 2001-12-19 2011-05-12 Application of mrna for use as a therapeutic against tumour diseases
US14/325,850 US9155788B2 (en) 2001-12-19 2014-07-08 Application of mRNA for use as a therapeutic against tumour diseases
US14/840,305 US9439956B2 (en) 2001-12-19 2015-08-31 Application of mRNA for use as a therapeutic against tumour diseases
US14/965,551 US9433670B2 (en) 2001-12-19 2015-12-10 Application of mRNA for use as a therapeutic against tumour diseases
US14/965,613 US9655955B2 (en) 2001-12-19 2015-12-10 Application of mRNA for use as a therapeutic against tumour diseases
US14/965,340 US9463228B2 (en) 2001-12-19 2015-12-10 Application of mRNA for use as a therapeutic against tumour diseases
US14/965,485 US9433669B2 (en) 2001-12-19 2015-12-10 Application of mRNA for use as a therapeutic against tumor diseases
US14/965,418 US20160089425A1 (en) 2001-12-19 2015-12-10 APPLICATION OF mRNA FOR USE AS A THERAPEUTIC AGAINST TUMOUR DISEASES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10162480A DE10162480A1 (de) 2001-12-19 2001-12-19 Die Applikation von mRNA für den Einsatz als Therapeutikum gegen Tumorerkrankungen
DE10162480.8 2001-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/870,110 Continuation US8217016B2 (en) 2001-12-19 2004-06-18 Application of mRNA for use as a therapeutic agent for tumorous diseases

Publications (2)

Publication Number Publication Date
WO2003051401A2 true WO2003051401A2 (de) 2003-06-26
WO2003051401A3 WO2003051401A3 (de) 2003-12-18

Family

ID=7709862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014577 WO2003051401A2 (de) 2001-12-19 2002-12-19 Stabilisierte mrna tumor-vakzine

Country Status (8)

Country Link
US (9) US8217016B2 (de)
EP (4) EP1925317A1 (de)
AT (1) ATE382712T1 (de)
AU (1) AU2002360055B2 (de)
CA (1) CA2473135C (de)
DE (2) DE10162480A1 (de)
ES (1) ES2298418T3 (de)
WO (1) WO2003051401A2 (de)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016376A1 (de) * 2003-08-05 2005-02-24 Curevac Gmbh Transfektion von blutzellen mit mrna zur immunstimulation und gentherapie
EP1604688A1 (de) * 2001-06-05 2005-12-14 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt und optimierter Codon Usage für die Gentherapie
WO2006008154A1 (de) * 2004-07-21 2006-01-26 Curevac Gmbh mRNA-GEMISCH ZUR VAKZINIERUNG GEGEN TUMORERKRANKUNGEN
WO2006024518A1 (de) 2004-09-02 2006-03-09 Curevac Gmbh Kombinationstherapie zur immunstimulation
WO2009144230A1 (en) * 2008-05-26 2009-12-03 Universität Zürich Protamine/rna nanoparticles for immunostimulation
WO2010002983A3 (en) * 2008-07-03 2010-05-20 Duke University Composition and methods for eliciting an immune response
US8217016B2 (en) 2001-12-19 2012-07-10 Curevac Gmbh Application of mRNA for use as a therapeutic agent for tumorous diseases
US8216582B2 (en) 2006-06-23 2012-07-10 Alethia Biotherapeutics Inc. Polynucleotides and polypeptide sequences involved in cancer
EP2484770A1 (de) 2007-09-04 2012-08-08 CureVac GmbH Komplexe von RNA und kationischen Peptiden zur Transfektion und Immunstimulation
WO2013151665A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of proteins associated with human disease
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
US8580257B2 (en) 2008-11-03 2013-11-12 Alethia Biotherapeutics Inc. Antibodies that specifically block the biological activity of kidney associated antigen 1 (KAAG1)
US8937163B2 (en) 2011-03-31 2015-01-20 Alethia Biotherapeutics Inc. Antibodies against kidney associated antigen 1 and antigen binding fragments thereof
WO2015034928A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
EP1685844B1 (de) 2002-07-03 2015-03-18 CureVac GmbH Immunstimulation durch chemisch modifizierte RNA
WO2016170176A1 (en) 2015-04-22 2016-10-27 Curevac Ag Rna containing composition for treatment of tumor diseases
WO2017049245A2 (en) 2015-09-17 2017-03-23 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2017066791A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Sugar substituted mrna cap analogs
WO2017066782A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Hydrophobic mrna cap analogs
WO2017066789A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified sugar
WO2017066781A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified phosphate linkage
WO2017066793A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs and methods of mrna capping
WO2017112865A1 (en) 2015-12-22 2017-06-29 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2017180587A2 (en) 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Regulated biocircuit systems
WO2017218704A1 (en) 2016-06-14 2017-12-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018033254A2 (en) 2016-08-19 2018-02-22 Curevac Ag Rna for cancer therapy
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018170306A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2018170336A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Lipid nanoparticle formulation
US10106800B2 (en) 2005-09-28 2018-10-23 Biontech Ag Modification of RNA, producing an increased transcript stability and translation efficiency
US10155031B2 (en) 2012-11-28 2018-12-18 Biontech Rna Pharmaceuticals Gmbh Individualized vaccines for cancer
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2019036638A1 (en) 2017-08-18 2019-02-21 Modernatx, Inc. METHODS FOR PREPARING MODIFIED RNA
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. METHODS OF MANUFACTURING LIPID NANOPARTICLES
WO2019077001A1 (en) 2017-10-19 2019-04-25 Curevac Ag NEW ARTIFICIAL NUCLEIC ACID MOLECULES
EP2714071B1 (de) 2011-05-24 2019-07-10 BioNTech RNA Pharmaceuticals GmbH Individualisierte impfstoffe gegen krebs
US10485884B2 (en) 2012-03-26 2019-11-26 Biontech Rna Pharmaceuticals Gmbh RNA formulation for immunotherapy
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
US10564165B2 (en) 2014-09-10 2020-02-18 Genentech, Inc. Identification of immunogenic mutant peptides using genomic, transcriptomic and proteomic information
WO2020061367A1 (en) 2018-09-19 2020-03-26 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2020061457A1 (en) 2018-09-20 2020-03-26 Modernatx, Inc. Preparation of lipid nanoparticles and methods of administration thereof
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
WO2020160430A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Vortex mixers and associated methods, systems, and apparatuses thereof
WO2020160397A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Methods of preparing lipid nanoparticles
US10738355B2 (en) 2011-05-24 2020-08-11 Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh Individualized vaccines for cancer
US10898584B2 (en) 2013-11-01 2021-01-26 Curevac Ag Modified RNA with decreased immunostimulatory properties
US11084872B2 (en) 2012-01-09 2021-08-10 Adc Therapeutics Sa Method for treating breast cancer
WO2021204175A1 (en) 2020-04-09 2021-10-14 Suzhou Abogen Biosciences Co., Ltd. Lipid nanoparticle composition
WO2021204179A1 (en) 2020-04-09 2021-10-14 Suzhou Abogen Biosciences Co., Ltd. Nucleic acid vaccines for coronavirus
US11156617B2 (en) 2015-02-12 2021-10-26 BioNTech RNA Pharmaceuticals GbmH Predicting T cell epitopes useful for vaccination
US11173120B2 (en) 2014-09-25 2021-11-16 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
WO2022002040A1 (en) 2020-06-30 2022-01-06 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
US11222711B2 (en) 2013-05-10 2022-01-11 BioNTech SE Predicting immunogenicity of T cell epitopes
WO2022037652A1 (en) 2020-08-20 2022-02-24 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
US11298426B2 (en) 2003-10-14 2022-04-12 BioNTech SE Recombinant vaccines and use thereof
WO2022152141A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Polymer conjugated lipid compounds and lipid nanoparticle compositions
WO2022152109A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
EP4035659A1 (de) 2016-11-29 2022-08-03 PureTech LYT, Inc. Exosome zur ausgabe von therapeutischen wirkstoffen
US11492628B2 (en) 2015-10-07 2022-11-08 BioNTech SE 3′-UTR sequences for stabilization of RNA
WO2022247755A1 (en) 2021-05-24 2022-12-01 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023044343A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Acyclic lipids and methods of use thereof
WO2023044333A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Cyclic lipids and methods of use thereof
EP4159741A1 (de) 2014-07-16 2023-04-05 ModernaTX, Inc. Verfahren zur herstellung eines chimären polynukleotids zur kodierung eines polypeptids mit einer triazolhaltigen internukleotid-bindung
EP4162950A1 (de) 2021-10-08 2023-04-12 Suzhou Abogen Biosciences Co., Ltd. Nukleinsäureimpfstoffe gegen coronavirus
WO2023056917A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023056914A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023122752A1 (en) 2021-12-23 2023-06-29 Renagade Therapeutics Management Inc. Constrained lipids and methods of use thereof
WO2023196931A1 (en) 2022-04-07 2023-10-12 Renagade Therapeutics Management Inc. Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents
US11865159B2 (en) 2017-02-28 2024-01-09 Sanofi Therapeutic RNA
WO2024037578A1 (en) 2022-08-18 2024-02-22 Suzhou Abogen Biosciences Co., Ltd. Composition of lipid nanoparticles

Families Citing this family (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2354607T3 (es) 2002-06-28 2011-03-16 Protiva Biotherapeutics Inc. Procedimiento y aparato para producir liposomas.
JP2007538112A (ja) * 2004-01-29 2007-12-27 ピナクル ファーマシューティカルズ β−シクロデキストリン誘導体およびそれらの炭疽致死毒に対する使用
GB0501125D0 (en) * 2005-01-19 2005-02-23 Ribostem Ltd Method of genotypically modifying cells by administration of rna
DE102005023170A1 (de) * 2005-05-19 2006-11-23 Curevac Gmbh Optimierte Formulierung für mRNA
HUE043492T2 (hu) 2005-08-23 2019-08-28 Univ Pennsylvania Módosított nukleozidokat tartalmazó RNS és eljárások az alkalmazására
DE102006035618A1 (de) * 2006-07-31 2008-02-07 Curevac Gmbh Nukleinsäure der Formel (I): GlXmGn, insbesondere als immunstimulierendes Adjuvanz
AU2007280690C1 (en) 2006-07-31 2012-08-23 Curevac Gmbh Nucleic acid of formula (I): GIXmGn, or (II): CIXmCn, in particular as an immune-stimulating agent/adjuvant
DE102007001370A1 (de) * 2007-01-09 2008-07-10 Curevac Gmbh RNA-kodierte Antikörper
EP3097923B1 (de) 2007-01-31 2022-07-27 Yeda Research And Development Co., Ltd. Wiederbestimmte, genetisch-modifizierte t regulierende zellen und ihre verwendung zur hemmung von autoimmune und entzungungsbedingten krankheiten
US9408909B2 (en) * 2007-09-14 2016-08-09 Vrije Universiteit Brussel Enhancing the T-cell stimulatory capacity of human antigen presenting cells in vitro and in vivo and its use in vaccination
US20130108663A1 (en) * 2007-09-14 2013-05-02 Vrije Universiteit Brussel Enhancing the t-cell stimulatory capacity of human antigen presenting cells in vitro and in vivo and their use in vaccination
WO2009046739A1 (en) 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating prostate cancer (pca)
RU2545701C2 (ru) 2008-01-31 2015-04-10 Куревак Гмбх НУКЛЕИНОВЫЕ КИСЛОТЫ ФОРМУЛЫ (I) (NuGlXmGnNv)a И ИХ ПРОИЗВОДНЫЕ В КАЧЕСТВЕ ИММУННОСТИМУЛИРУЮЩИХ АГЕНТОВ/АДЪЮВАНТОВ
WO2010037408A1 (en) * 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
AU2010326132B9 (en) 2009-12-01 2014-10-02 Translate Bio, Inc. Delivery of mRNA for the augmentation of proteins and enzymes in human genetic diseases
WO2011069529A1 (en) 2009-12-09 2011-06-16 Curevac Gmbh Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids
DK2449113T3 (en) 2010-07-30 2016-01-11 Curevac Ag Complex formation of nucleic acids with the disulfide cross-linked cationic components for transfection and immunostimulation
CA2807552A1 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2012019630A1 (en) 2010-08-13 2012-02-16 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein
EP4108671A1 (de) 2010-10-01 2022-12-28 ModernaTX, Inc. Modifizierte nukleoside, nukleotide und nukleinsäuren und ihre verwendungen
RS56923B1 (sr) * 2010-10-26 2018-05-31 Univ Friedrich Alexander Er Dendritske ćelije manipulisane nfkb signalnom putanjom
US8853377B2 (en) 2010-11-30 2014-10-07 Shire Human Genetic Therapies, Inc. mRNA for use in treatment of human genetic diseases
WO2012089225A1 (en) 2010-12-29 2012-07-05 Curevac Gmbh Combination of vaccination and inhibition of mhc class i restricted antigen presentation
WO2012116715A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in newborns and infants
WO2012113413A1 (en) 2011-02-21 2012-08-30 Curevac Gmbh Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
AU2012236099A1 (en) 2011-03-31 2013-10-03 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
KR102128248B1 (ko) 2011-06-08 2020-07-01 샤이어 휴먼 지네틱 테라피즈 인크. Mrna 전달을 위한 지질 나노입자 조성물 및 방법
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
CN103974724B (zh) 2011-10-03 2019-08-30 现代泰克斯公司 修饰的核苷、核苷酸和核酸及其用途
CA2859387A1 (en) 2011-12-16 2013-06-20 Moderna Therapeutics, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
WO2013113326A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen
WO2013120499A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen
WO2013120500A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen
WO2013120497A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein
WO2013120498A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen
BR112014023898A2 (pt) 2012-03-27 2017-07-11 Curevac Gmbh moléculas de ácido nucleico artificiais compreendendo 5''utr top
AU2013242404B2 (en) 2012-03-27 2018-08-30 CureVac SE Artificial nucleic acid molecules for improved protein or peptide expression
SG10201607962RA (en) 2012-03-27 2016-11-29 Curevac Ag Artificial nucleic acid molecules
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US20150267192A1 (en) 2012-06-08 2015-09-24 Shire Human Genetic Therapies, Inc. Nuclease resistant polynucleotides and uses thereof
US9512456B2 (en) 2012-08-14 2016-12-06 Modernatx, Inc. Enzymes and polymerases for the synthesis of RNA
JP6144355B2 (ja) 2012-11-26 2017-06-07 モデルナティエックス インコーポレイテッドModernaTX,Inc. 化学修飾mRNA
DK3292873T3 (da) 2013-02-22 2019-06-03 Curevac Ag Kombination af vaccination og hæmning af PD-1-vejen
KR102134056B1 (ko) 2013-02-22 2020-07-15 큐어백 아게 Pd―1 경로의 억제 및 백신접종의 조합물
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
WO2014160243A1 (en) 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Purification and purity assessment of rna molecules synthesized with modified nucleosides
DK2970456T3 (da) 2013-03-14 2021-07-05 Translate Bio Inc Fremgangsmåder og sammensætninger til levering af mrna-kodede antistoffer
BR112015022868B1 (pt) 2013-03-14 2023-05-16 Ethris Gmbh Composições de mrna de cftr e usos e métodos relacionados
KR20150128687A (ko) 2013-03-14 2015-11-18 샤이어 휴먼 지네틱 테라피즈 인크. 메신저 rna의 정제 방법
WO2014152027A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Manufacturing methods for production of rna transcripts
ES2795249T3 (es) 2013-03-15 2020-11-23 Translate Bio Inc Mejora sinérgica de la administración de ácidos nucleicos a través de formulaciones mezcladas
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
WO2014152030A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Removal of dna fragments in mrna production process
WO2014144767A1 (en) 2013-03-15 2014-09-18 Moderna Therapeutics, Inc. Ion exchange purification of mrna
LT3019619T (lt) 2013-07-11 2021-12-10 Modernatx, Inc. Sintetinius polinukleotidus apimančios kompozicijos, koduojančios susijusius su crispr baltymus ir sintetines sgrnas, ir jų naudojimo būdai
CN105451779A (zh) 2013-08-21 2016-03-30 库瑞瓦格股份公司 增加rna编码蛋白表达的方法
CN110195072A (zh) 2013-08-21 2019-09-03 库瑞瓦格股份公司 狂犬病疫苗
WO2015024669A1 (en) 2013-08-21 2015-02-26 Curevac Gmbh Combination vaccine
MX369469B (es) 2013-08-21 2019-11-08 Curevac Ag Vacuna contra el virus respiratorio sincitial.
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
EP3052511A4 (de) 2013-10-02 2017-05-31 Moderna Therapeutics, Inc. Polynukleotidmoleküle und verwendungen davon
EA201690675A1 (ru) 2013-10-03 2016-08-31 Модерна Терапьютикс, Инк. Полинуклеотиды, кодирующие рецептор липопротеинов низкой плотности
EP3060258A1 (de) 2013-10-22 2016-08-31 Shire Human Genetic Therapies, Inc. Mrna-therapie für phenylketonurie
EP3501605B1 (de) 2013-10-22 2023-06-28 Translate Bio, Inc. Mrna-therapie für argininosuccinat-synthase-mangel
WO2015101416A1 (en) 2013-12-30 2015-07-09 Curevac Gmbh Methods for rna analysis
CA2927254C (en) 2013-12-30 2023-10-24 Curevac Ag Artificial nucleic acid molecules
US11254951B2 (en) 2014-12-30 2022-02-22 Curevac Ag Artificial nucleic acid molecules
WO2015101414A2 (en) 2013-12-30 2015-07-09 Curevac Gmbh Artificial nucleic acid molecules
WO2015135558A1 (en) 2014-03-12 2015-09-17 Curevac Gmbh Combination of vaccination and ox40 agonists
CA2936286A1 (en) 2014-04-01 2015-10-08 Curevac Ag Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant
CA3177878A1 (en) 2014-04-23 2015-10-29 Modernatx, Inc. Nucleic acid vaccines
AU2015249312B2 (en) 2014-04-25 2021-07-29 Translate Bio, Inc. Methods for purification of messenger RNA
MX2016016170A (es) 2014-06-10 2017-03-28 Curevac Ag Metodos y medios para aumentar la produccion de arn.
EP3157573A4 (de) 2014-06-19 2018-02-21 Moderna Therapeutics, Inc. Alternative nukleinsäuremoleküle und verwendungen davon
AU2015289656A1 (en) 2014-07-16 2017-02-16 Modernatx, Inc. Circular polynucleotides
WO2022081604A1 (en) * 2020-10-12 2022-04-21 Hpvvax, Llc Composition and method for treating cancer using a vaccine as a first therapueutic active ingredient in combination with a second active ingredient
DE202015010000U1 (de) 2014-12-12 2023-07-03 CureVac SE Artifizielle Nukleinsäuremoleküle für eine verbesserte Proteinexpression
WO2016165825A1 (en) 2015-04-13 2016-10-20 Curevac Ag Method for producing rna compositions
WO2016165831A1 (en) 2015-04-17 2016-10-20 Curevac Ag Lyophilization of rna
EP3289101B1 (de) 2015-04-30 2021-06-23 CureVac AG Immobilisierte poly(n)polymerase
WO2016180430A1 (en) 2015-05-08 2016-11-17 Curevac Ag Method for producing rna
MX2017014538A (es) 2015-05-15 2018-03-02 Curevac Ag Regimenes de cebado-refuerzo que implican la administracion de al menos un constructo de arnm.
WO2016184575A1 (en) 2015-05-20 2016-11-24 Curevac Ag Dry powder composition comprising long-chain rna
CN107530448A (zh) 2015-05-20 2018-01-02 库瑞瓦格股份公司 包含长链rna的干粉组合物
EP4098743A1 (de) 2015-05-29 2022-12-07 CureVac AG Verfahren zum hinzufügen von kappenstrukturen zu rns mittels immobilisierter enzyme
PL4108769T3 (pl) 2015-05-29 2024-02-05 CureVac Manufacturing GmbH Sposób wytwarzania i oczyszczania rna obejmujący co najmniej jeden etap filtracji o przepływie stycznym
US10501768B2 (en) 2015-07-13 2019-12-10 Curevac Ag Method of producing RNA from circular DNA and corresponding template DNA
TW201718638A (zh) 2015-07-21 2017-06-01 現代治療公司 傳染病疫苗
US11364292B2 (en) 2015-07-21 2022-06-21 Modernatx, Inc. CHIKV RNA vaccines
WO2017049286A1 (en) 2015-09-17 2017-03-23 Moderna Therapeutics, Inc. Polynucleotides containing a morpholino linker
AU2016336344A1 (en) 2015-10-05 2018-04-19 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
US11225682B2 (en) 2015-10-12 2022-01-18 Curevac Ag Automated method for isolation, selection and/or detection of microorganisms or cells comprised in a solution
US11866754B2 (en) 2015-10-16 2024-01-09 Modernatx, Inc. Trinucleotide mRNA cap analogs
JP2018531290A (ja) 2015-10-22 2018-10-25 モデルナティーエックス, インコーポレイテッド 性感染症ワクチン
AU2016342045A1 (en) 2015-10-22 2018-06-07 Modernatx, Inc. Human cytomegalovirus vaccine
EP3718565B1 (de) 2015-10-22 2022-04-27 ModernaTX, Inc. Impfstoffe gegen atemwegsvirus
WO2017070624A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Tropical disease vaccines
EP3364980A4 (de) 2015-10-22 2019-07-10 ModernaTX, Inc. Nukleinsäure-impfstoffe für varicella zoster virus (vzv)
EP3373965A1 (de) 2015-11-09 2018-09-19 CureVac AG Rotavirus-impfstoffe
AU2016375021B2 (en) 2015-12-22 2022-02-03 CureVac SE Method for producing RNA molecule compositions
WO2017109161A1 (en) 2015-12-23 2017-06-29 Curevac Ag Method of rna in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof
BR112018013967A2 (pt) 2016-01-19 2019-02-05 Pfizer vacinas contra o câncer
WO2017140905A1 (en) 2016-02-17 2017-08-24 Curevac Ag Zika virus vaccine
JP2019512263A (ja) * 2016-02-22 2019-05-16 オーシャンサイド バイオテクノロジー 免疫療法におけるネオ抗原組成物及び同組成物を使用する方法
WO2017149139A1 (en) 2016-03-03 2017-09-08 Curevac Ag Rna analysis by total hydrolysis
EP3440206B1 (de) 2016-04-08 2020-10-28 Translate Bio, Inc. Multimere codierende nukleinsäuren und verwendungen davon
US11596699B2 (en) 2016-04-29 2023-03-07 CureVac SE RNA encoding an antibody
EP3452493A1 (de) 2016-05-04 2019-03-13 CureVac AG Nukleinsäuremoleküle und verwendungen davon
EP3452101A2 (de) 2016-05-04 2019-03-13 CureVac AG Rna-codierung eines therapeutischen proteins
BR112018075479A2 (pt) 2016-06-09 2019-03-19 Curevac Ag portadores híbridos para carga de ácido nucleico
AU2017283479B2 (en) 2016-06-13 2023-08-17 Translate Bio, Inc. Messenger RNA therapy for the treatment of ornithine transcarbamylase deficiency
EP3472193A4 (de) * 2016-06-20 2020-01-08 The Board of Trustees of the Leland Stanford Junior University Zirkuläre rna und deren verwendung in der immunmodulation
MA46584A (fr) 2016-10-21 2019-08-28 Modernatx Inc Vaccin contre le cytomégalovirus humain
WO2018089851A2 (en) 2016-11-11 2018-05-17 Modernatx, Inc. Influenza vaccine
US11279923B2 (en) 2016-11-28 2022-03-22 Curevac Ag Method for purifying RNA
WO2018104540A1 (en) 2016-12-08 2018-06-14 Curevac Ag Rnas for wound healing
WO2018107088A2 (en) 2016-12-08 2018-06-14 Modernatx, Inc. Respiratory virus nucleic acid vaccines
US11464836B2 (en) 2016-12-08 2022-10-11 Curevac Ag RNA for treatment or prophylaxis of a liver disease
US11524066B2 (en) 2016-12-23 2022-12-13 CureVac SE Henipavirus vaccine
US11464847B2 (en) 2016-12-23 2022-10-11 Curevac Ag Lassa virus vaccine
EP3558356A2 (de) 2016-12-23 2019-10-30 CureVac AG Mers-coronavirus-impfstoff
MA47515A (fr) 2017-02-16 2019-12-25 Modernatx Inc Compositions immunogènes très puissantes
EP3585417B1 (de) 2017-02-27 2023-02-22 Translate Bio, Inc. Methode der herstellung von codon-optimierter cftr-mrna
US11576961B2 (en) 2017-03-15 2023-02-14 Modernatx, Inc. Broad spectrum influenza virus vaccine
US11045540B2 (en) 2017-03-15 2021-06-29 Modernatx, Inc. Varicella zoster virus (VZV) vaccine
WO2018170260A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Respiratory syncytial virus vaccine
WO2018170256A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Herpes simplex virus vaccine
SG11201906297QA (en) 2017-03-24 2019-10-30 Curevac Ag Nucleic acids encoding crispr-associated proteins and uses thereof
US11905525B2 (en) 2017-04-05 2024-02-20 Modernatx, Inc. Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
WO2018191657A1 (en) 2017-04-13 2018-10-18 Acuitas Therapeutics, Inc. Lipids for delivery of active agents
CA3063531A1 (en) 2017-05-16 2018-11-22 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr
US10034951B1 (en) 2017-06-21 2018-07-31 New England Biolabs, Inc. Use of thermostable RNA polymerases to produce RNAs having reduced immunogenicity
EP3648791A1 (de) 2017-07-04 2020-05-13 CureVac AG Neuartige nukleinsäuremoleküle
BR112020000413A2 (pt) * 2017-07-11 2020-07-21 Pfizer Inc. composições imunogênicas compreendendo cea muc1 e tert
US11602557B2 (en) 2017-08-22 2023-03-14 Cure Vac SE Bunyavirales vaccine
MA50253A (fr) 2017-09-14 2020-07-22 Modernatx Inc Vaccins à arn contre le virus zika
WO2019092153A1 (en) 2017-11-08 2019-05-16 Curevac Ag Rna sequence adaptation
WO2019115635A1 (en) 2017-12-13 2019-06-20 Curevac Ag Flavivirus vaccine
CA3084061A1 (en) 2017-12-20 2019-06-27 Translate Bio, Inc. Improved composition and methods for treatment of ornithine transcarbamylase deficiency
EP3728634A1 (de) 2017-12-21 2020-10-28 CureVac AG Lineare doppelsträngige, mit einem einzelträger oder einem tag gekoppelte dna und verfahren zur herstellung der besagten linearen doppelsträngigen dna
MA54676A (fr) 2018-01-29 2021-11-17 Modernatx Inc Vaccins à base d'arn contre le vrs
WO2020041793A1 (en) 2018-08-24 2020-02-27 Translate Bio, Inc. Methods for purification of messenger rna
AU2019355177A1 (en) 2018-10-04 2021-05-06 New England Biolabs, Inc. Methods and compositions for increasing capping efficiency of transcribed RNA
US11072808B2 (en) 2018-10-04 2021-07-27 New England Biolabs, Inc. Methods and compositions for increasing capping efficiency of transcribed RNA
US11351242B1 (en) 2019-02-12 2022-06-07 Modernatx, Inc. HMPV/hPIV3 mRNA vaccine composition
CN110331147A (zh) * 2019-06-21 2019-10-15 苏州吉玛基因股份有限公司 一种mRNA的制备方法及其在肿瘤治疗中的应用
US11576966B2 (en) 2020-02-04 2023-02-14 CureVac SE Coronavirus vaccine
US11241493B2 (en) 2020-02-04 2022-02-08 Curevac Ag Coronavirus vaccine
JP2023532663A (ja) 2020-06-25 2023-07-31 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 環状rna翻訳を駆動する遺伝エレメント及び使用方法
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
AU2021405281A1 (en) 2020-12-22 2023-07-06 CureVac SE Rna vaccine against sars-cov-2 variants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011092A1 (en) * 1989-03-21 1990-10-04 Vical, Inc. Expression of exogenous polynucleotide sequences in a vertebrate
WO1998034640A2 (en) * 1997-02-07 1998-08-13 Merck & Co., Inc. Synthetic hiv gag genes
WO1999014346A2 (en) * 1997-09-19 1999-03-25 Sequitur, Inc. SENSE mRNA THERAPY
EP1083232A1 (de) * 1999-09-09 2001-03-14 Jung, Günther, Prof. Dr. Transfer von mRNAs unter Verwendung von polykationischen Verbindungen
WO2002098443A2 (de) * 2001-06-05 2002-12-12 Curevac Gmbh Stabilisierte mrna mit erhöhtem g/ c- gehalt und otimierter codon usage für die gentherapie

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906092A (en) 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
US5132418A (en) 1980-02-29 1992-07-21 University Patents, Inc. Process for preparing polynucleotides
US4500707A (en) 1980-02-29 1985-02-19 University Patents, Inc. Nucleosides useful in the preparation of polynucleotides
US4458066A (en) 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4973679A (en) 1981-03-27 1990-11-27 University Patents, Inc. Process for oligonucleo tide synthesis using phosphormidite intermediates
US4415732A (en) 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
US4668777A (en) 1981-03-27 1987-05-26 University Patents, Inc. Phosphoramidite nucleoside compounds
US4401796A (en) 1981-04-30 1983-08-30 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4373071A (en) 1981-04-30 1983-02-08 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4737462A (en) 1982-10-19 1988-04-12 Cetus Corporation Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of interferon-β
US4588585A (en) 1982-10-19 1986-05-13 Cetus Corporation Human recombinant cysteine depleted interferon-β muteins
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4959314A (en) 1984-11-09 1990-09-25 Cetus Corporation Cysteine-depleted muteins of biologically active proteins
US5116943A (en) 1985-01-18 1992-05-26 Cetus Corporation Oxidation-resistant muteins of Il-2 and other protein
US4688777A (en) * 1985-11-01 1987-08-25 The Budd Company Pair of stacked springs for a railway car
US5017691A (en) 1986-07-03 1991-05-21 Schering Corporation Mammalian interleukin-4
US5153319A (en) 1986-03-31 1992-10-06 University Patents, Inc. Process for preparing polynucleotides
US4879111A (en) 1986-04-17 1989-11-07 Cetus Corporation Treatment of infections with lymphokines
US5047524A (en) 1988-12-21 1991-09-10 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5262530A (en) 1988-12-21 1993-11-16 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US6214804B1 (en) 1989-03-21 2001-04-10 Vical Incorporated Induction of a protective immune response in a mammal by injecting a DNA sequence
JPH07503372A (ja) 1992-01-23 1995-04-13 バイカル・インコーポレイテッド 生体外遺伝子導入
WO1993014776A1 (en) 1992-01-27 1993-08-05 Icos Corporation Icam-related protein
US6174666B1 (en) 1992-03-27 2001-01-16 The United States Of America As Represented By The Department Of Health And Human Services Method of eliminating inhibitory/instability regions from mRNA
EP0609739A1 (de) 1993-02-02 1994-08-10 American Cyanamid Company Methode der Umkehrung der Immunsuppression in Vakzinen
ATE272113T1 (de) 1994-02-16 2004-08-15 Crucell Holland Bv Melanoma-assoziierte antigene, epitope davon und impstoffe gegen melanoma
IL112820A0 (en) 1994-03-07 1995-05-26 Merck & Co Inc Coordinate in vivo gene expression
US5965720A (en) 1994-03-18 1999-10-12 Lynx Therapeutics, Inc. Oligonucleotide N3'→P5' phosphoramidates
WO1995026204A1 (en) 1994-03-25 1995-10-05 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5570642A (en) * 1995-01-06 1996-11-05 Lehrman; David Adjustable ironing board assembly
US5700642A (en) 1995-05-22 1997-12-23 Sri International Oligonucleotide sizing using immobilized cleavable primers
US6051429A (en) 1995-06-07 2000-04-18 Life Technologies, Inc. Peptide-enhanced cationic lipid transfections
US6265387B1 (en) 1995-10-11 2001-07-24 Mirus, Inc. Process of delivering naked DNA into a hepatocyte via bile duct
US20030143204A1 (en) 2001-07-27 2003-07-31 Lewis David L. Inhibition of RNA function by delivery of inhibitors to animal cells
US6090391A (en) 1996-02-23 2000-07-18 Aviron Recombinant tryptophan mutants of influenza
US5853719A (en) 1996-04-30 1998-12-29 Duke University Methods for treating cancers and pathogen infections using antigen-presenting cells loaded with RNA
CA2258568A1 (en) 1996-06-21 1997-12-24 Merck & Co., Inc. Vaccines comprising synthetic genes
US6114148C1 (en) 1996-09-20 2012-05-01 Gen Hospital Corp High level expression of proteins
US6610661B1 (en) 1996-10-11 2003-08-26 The Regents Of The University Of California Immunostimulatory polynucleotide/immunomodulatory molecule conjugates
EP0839912A1 (de) 1996-10-30 1998-05-06 Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) Ansteckende Klone von RNA-Viren und darauf basierende Impfstoffe und diagnostisches Verfahren
EP0855184A1 (de) 1997-01-23 1998-07-29 Grayson B. Dr. Lipford Pharmazeutisches Präparat das ein Polynukleotid und ein Antigen enthält, insbesondere zur Impfung
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6589940B1 (en) 1997-06-06 2003-07-08 Dynavax Technologies Corporation Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
ATE432348T1 (de) 1997-06-06 2009-06-15 Univ California Inhibitoren von immunstimulatorischen dna sequenz aktivität
BR9812945A (pt) 1997-10-20 2000-08-08 Genzyme Transgenics Corp Sequências de ácido nucléico modificadas e processos para aumentar os nìveis de mrna e expressão de sistemas celulares
ATE550042T1 (de) 1997-11-20 2012-04-15 Vical Inc Behandlung von krebs mithilfe cytokin- exprimierender polynukleotide und zusammensetzungen dafür
US6432925B1 (en) 1998-04-16 2002-08-13 John Wayne Cancer Institute RNA cancer vaccine and methods for its use
US6924365B1 (en) 1998-09-29 2005-08-02 Transkaryotic Therapies, Inc. Optimized messenger RNA
US6207643B1 (en) * 1998-11-13 2001-03-27 The United States Of America As Represented By The Secretary Of Agriculture Mimetic insect allatostatin analogs for insect control
CA2369119A1 (en) 1999-03-29 2000-05-25 Statens Serum Institut Nucleotide construct with optimised codons for an hiv genetic vaccine based on a primary, early hiv isolate and synthetic envelope
AU776268B2 (en) 1999-06-08 2004-09-02 Aventis Pasteur Immunostimulant oligonucleotide
US6514948B1 (en) 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
AU783681B2 (en) 1999-07-09 2005-11-24 Wyeth Methods and compositions for preventing the formation of aberrant RNA during transcription of a plasmid sequence
US20050112141A1 (en) 2000-08-30 2005-05-26 Terman David S. Compositions and methods for treatment of neoplastic disease
US20040106567A1 (en) 1999-09-07 2004-06-03 Hagstrom James E. Intravascular delivery of non-viral nucleic acid
US6864066B1 (en) * 1999-09-08 2005-03-08 The Regents Of The University Of California Epithelial protein lost in neoplasm (EPLIN)
AU7398200A (en) 1999-09-17 2001-04-24 Aventis Pasteur Limited Chlamydia antigens and corresponding dna fragments and uses thereof
WO2002064799A2 (en) 1999-09-28 2002-08-22 Transkaryotic Therapies, Inc. Optimized messenger rna
US6239118B1 (en) * 1999-10-05 2001-05-29 Richard A. Schatz Method for preventing restenosis using a substituted adenine derivative
US6552006B2 (en) 2000-01-31 2003-04-22 The Regents Of The University Of California Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen
AU2001275294A1 (en) 2000-06-07 2001-12-17 Biosynexus Incorporated. Immunostimulatory RNA/DNA hybrid molecules
JP2004513616A (ja) 2000-06-23 2004-05-13 ワイス・ホールディングズ・コーポレイション 改変モルビリウイルスタンパク質
US20040005667A1 (en) 2000-07-03 2004-01-08 Giuloi Ratti Immunisation against chlamydia pneumoniae
KR100874552B1 (ko) 2000-07-21 2008-12-16 글락소 그룹 리미티드 코돈-최적화 파필로마 바이러스 서열
CA2425152A1 (en) 2000-10-04 2002-04-11 The Trustees Of The University Of Pennsylvania Highly expressible genes
US20030077604A1 (en) 2000-10-27 2003-04-24 Yongming Sun Compositions and methods relating to breast specific genes and proteins
US6652006B1 (en) * 2000-10-31 2003-11-25 Frank Digiacomo Fluid transfer device
US20020132788A1 (en) 2000-11-06 2002-09-19 David Lewis Inhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo
DE10119005A1 (de) 2001-04-18 2002-10-24 Roche Diagnostics Gmbh Verfahren zur Proteinexpression ausgehend von stabilisierter linearer kurzer DNA in zellfreien in vitro-Transkription/Translations-Systemen mit Exonuklease-haltigen Lysaten oder in einem zellulären System enthaltend Exonukleasen
KR100845057B1 (ko) 2001-04-23 2008-07-09 아막사 아게 전기 천공을 위한 완충 용액 및 이의 이용을 포함하는 방법
US7547551B2 (en) 2001-06-21 2009-06-16 University Of Antwerp. Transfection of eukaryontic cells with linear polynucleotides by electroporation
US7785610B2 (en) 2001-06-21 2010-08-31 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same—III
AR045702A1 (es) 2001-10-03 2005-11-09 Chiron Corp Composiciones de adyuvantes.
DE10148886A1 (de) 2001-10-04 2003-04-30 Avontec Gmbh Inhibition von STAT-1
US7276489B2 (en) 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
DE10162480A1 (de) * 2001-12-19 2003-08-07 Ingmar Hoerr Die Applikation von mRNA für den Einsatz als Therapeutikum gegen Tumorerkrankungen
AU2003235707A1 (en) 2002-01-18 2003-07-30 Curevac Gmbh Immunogenic preparations and vaccines on the basis of mrna
CA2474709A1 (en) 2002-02-04 2003-08-14 Biomira, Inc. Immunostimulatory, covalently lipidated oligonucleotides
US8153141B2 (en) 2002-04-04 2012-04-10 Coley Pharmaceutical Gmbh Immunostimulatory G, U-containing oligoribonucleotides
DE10229872A1 (de) 2002-07-03 2004-01-29 Curevac Gmbh Immunstimulation durch chemisch modifizierte RNA
DE60336736D1 (de) 2002-07-16 2011-05-26 VGX Pharmaceuticals LLC Codon-optimierte synthetische plasmide
EP1393745A1 (de) 2002-07-29 2004-03-03 Hybridon, Inc. Modulierung der immunstimulierenden Eigenschaften von Oligonukleotiden und Analoga durch optimale Darstellung der 5'-Enden
JP2006516099A (ja) 2002-12-23 2006-06-22 ダイナバックス テクノロジーズ コーポレイション 分枝状の免疫調節化合物及び該化合物の使用方法
US20040242502A1 (en) 2003-04-08 2004-12-02 Galenica Pharmaceuticals, Inc. Semi-synthetic saponin analogs with carrier and immune stimulatory activities for DNA and RNA vaccines
DE10335833A1 (de) 2003-08-05 2005-03-03 Curevac Gmbh Transfektion von Blutzellen mit mRNA zur Immunstimulation und Gentherapie
IL162933A0 (en) 2004-07-08 2005-11-20 Brombine Compounds Ltd Novel fire retardants
DE102004035227A1 (de) 2004-07-21 2006-02-16 Curevac Gmbh mRNA-Gemisch zur Vakzinierung gegen Tumorerkrankungen
DE102004042546A1 (de) 2004-09-02 2006-03-09 Curevac Gmbh Kombinationstherapie zur Immunstimulation
US20060241076A1 (en) 2005-04-26 2006-10-26 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhanced immunostimulatory activity
HUE043492T2 (hu) 2005-08-23 2019-08-28 Univ Pennsylvania Módosított nukleozidokat tartalmazó RNS és eljárások az alkalmazására

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011092A1 (en) * 1989-03-21 1990-10-04 Vical, Inc. Expression of exogenous polynucleotide sequences in a vertebrate
WO1998034640A2 (en) * 1997-02-07 1998-08-13 Merck & Co., Inc. Synthetic hiv gag genes
WO1999014346A2 (en) * 1997-09-19 1999-03-25 Sequitur, Inc. SENSE mRNA THERAPY
EP1083232A1 (de) * 1999-09-09 2001-03-14 Jung, Günther, Prof. Dr. Transfer von mRNAs unter Verwendung von polykationischen Verbindungen
WO2002098443A2 (de) * 2001-06-05 2002-12-12 Curevac Gmbh Stabilisierte mrna mit erhöhtem g/ c- gehalt und otimierter codon usage für die gentherapie

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOCZKOWSKI D ET AL: "DENDRITIC CELLS PULSED WITH RNA ARE POTENT ANTIGEN-PRESENTING CELLSIN VITRO AND IN VIVO" JOURNAL OF EXPERIMENTAL MEDICINE, TOKYO, JP, Bd. 184, Nr. 2, August 1996 (1996-08), Seiten 465-472, XP002921123 ISSN: 0022-1007 *
HOERR INGMAR ET AL: "In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies." EUROPEAN JOURNAL OF IMMUNOLOGY, Bd. 30, Nr. 1, Januar 2000 (2000-01), Seiten 1-7, XP002243972 ISSN: 0014-2980 *
HOLCIK MARTIN ET AL: "Four highly stable eukaryotic mRNAs assemble 3' untranslated region RNA-protein complexes sharing cis and trans components." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, Bd. 94, Nr. 6, 1997, Seiten 2410-2414, XP002243974 1997 ISSN: 0027-8424 *

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305699A1 (de) * 2001-06-05 2011-04-06 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt und optimierter Codon Usage für die Gentherapie
EP1604688A1 (de) * 2001-06-05 2005-12-14 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt und optimierter Codon Usage für die Gentherapie
US10188748B2 (en) 2001-06-05 2019-01-29 Curevac Ag Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
US10568972B2 (en) 2001-06-05 2020-02-25 Curevac Ag Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
EP1800697A2 (de) * 2001-06-05 2007-06-27 CureVac GmbH Pharmazeutische Zusammensetzung, enthaltend eine stabilisierte und für die Translation in ihren codierenden Bereichen optimierte mRNA
EP1832603A2 (de) * 2001-06-05 2007-09-12 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt und optimierter Codon Usage für die Gentherapie
EP1832603A3 (de) * 2001-06-05 2007-10-31 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt und optimierter Codon Usage für die Gentherapie
EP1800697A3 (de) * 2001-06-05 2007-10-31 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt und optimierter Codon Usage für die Gentherapie
EP1857122A2 (de) * 2001-06-05 2007-11-21 CureVac GmbH Pharmazeutische Zusammensetzung, enthaltend eine stabilisierte und für die Translation in ihren codierenden Bereichen optimierte mRNA
US11135312B2 (en) 2001-06-05 2021-10-05 Curevac Ag Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
EP1903054A3 (de) * 2001-06-05 2008-07-23 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt und optimierter Codon Usage für die Gentherapie
EP1857122A3 (de) * 2001-06-05 2008-11-19 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt und optimierter Codon Usage für die Gentherapie
US11369691B2 (en) 2001-06-05 2022-06-28 Curevac Ag Pharmaceutical composition containing a stabilised mRNA optimised for translation in its coding regions
EP2842964A1 (de) * 2001-06-05 2015-03-04 Curevac GmbH Virtuelles Verfahren zur Ermittlung einer modifzierten mRNA-Sequenz
US9433669B2 (en) 2001-12-19 2016-09-06 Curevac Ag Application of mRNA for use as a therapeutic against tumor diseases
US9433670B2 (en) 2001-12-19 2016-09-06 Curevac Ag Application of mRNA for use as a therapeutic against tumour diseases
US9439956B2 (en) 2001-12-19 2016-09-13 Curevac Ag Application of mRNA for use as a therapeutic against tumour diseases
US9155788B2 (en) 2001-12-19 2015-10-13 Curevac Gmbh Application of mRNA for use as a therapeutic against tumour diseases
US9463228B2 (en) 2001-12-19 2016-10-11 Curevac Ag Application of mRNA for use as a therapeutic against tumour diseases
US8217016B2 (en) 2001-12-19 2012-07-10 Curevac Gmbh Application of mRNA for use as a therapeutic agent for tumorous diseases
US9655955B2 (en) 2001-12-19 2017-05-23 Curevac Ag Application of mRNA for use as a therapeutic against tumour diseases
EP2216028B1 (de) 2002-07-03 2017-12-06 CureVac AG Immunstimulation durch chemisch modifizierte eingelsträngige RNA
EP1685844B1 (de) 2002-07-03 2015-03-18 CureVac GmbH Immunstimulation durch chemisch modifizierte RNA
EP1797886B1 (de) 2002-07-03 2019-07-10 CureVac AG Immunstimulation durch chemisch modifizierte RNA
EP1938833A1 (de) * 2003-08-05 2008-07-02 CureVac GmbH Transfektion von Blutzellen mit mRNA zur Immunstimulation und Gentherapie
WO2005016376A1 (de) * 2003-08-05 2005-02-24 Curevac Gmbh Transfektion von blutzellen mit mrna zur immunstimulation und gentherapie
US11298426B2 (en) 2003-10-14 2022-04-12 BioNTech SE Recombinant vaccines and use thereof
WO2006008154A1 (de) * 2004-07-21 2006-01-26 Curevac Gmbh mRNA-GEMISCH ZUR VAKZINIERUNG GEGEN TUMORERKRANKUNGEN
WO2006024518A1 (de) 2004-09-02 2006-03-09 Curevac Gmbh Kombinationstherapie zur immunstimulation
US10106800B2 (en) 2005-09-28 2018-10-23 Biontech Ag Modification of RNA, producing an increased transcript stability and translation efficiency
US8216582B2 (en) 2006-06-23 2012-07-10 Alethia Biotherapeutics Inc. Polynucleotides and polypeptide sequences involved in cancer
EP2484770A1 (de) 2007-09-04 2012-08-08 CureVac GmbH Komplexe von RNA und kationischen Peptiden zur Transfektion und Immunstimulation
EP2772251A1 (de) * 2008-05-26 2014-09-03 Universität Zürich Protamin-/RNA-Nanopartikel für die Immunstimulierung
WO2009144230A1 (en) * 2008-05-26 2009-12-03 Universität Zürich Protamine/rna nanoparticles for immunostimulation
AU2009253160B2 (en) * 2008-05-26 2015-03-05 Universitat Zurich Protamine/RNA nanoparticles for immunostimulation
WO2010002983A3 (en) * 2008-07-03 2010-05-20 Duke University Composition and methods for eliciting an immune response
US8580257B2 (en) 2008-11-03 2013-11-12 Alethia Biotherapeutics Inc. Antibodies that specifically block the biological activity of kidney associated antigen 1 (KAAG1)
US9855291B2 (en) 2008-11-03 2018-01-02 Adc Therapeutics Sa Anti-kidney associated antigen 1 (KAAG1) antibodies
US8937163B2 (en) 2011-03-31 2015-01-20 Alethia Biotherapeutics Inc. Antibodies against kidney associated antigen 1 and antigen binding fragments thereof
US9393302B2 (en) 2011-03-31 2016-07-19 Alethia Biotherapeutics Inc. Antibodies against kidney associated antigen 1 and antigen binding fragments thereof
US10597450B2 (en) 2011-03-31 2020-03-24 Adc Therapeutics Sa Antibodies against kidney associated antigen 1 and antigen binding fragments thereof
US9828426B2 (en) 2011-03-31 2017-11-28 Adc Therapeutics Sa Antibodies against kidney associated antigen 1 and antigen binding fragments thereof
EP3473267B1 (de) 2011-05-24 2021-09-08 BioNTech RNA Pharmaceuticals GmbH Individualisierte impfstoffe gegen krebs
US10738355B2 (en) 2011-05-24 2020-08-11 Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh Individualized vaccines for cancer
EP3892295B1 (de) 2011-05-24 2023-04-26 BioNTech SE Individualisierte impfstoffe gegen krebs
US11248264B2 (en) 2011-05-24 2022-02-15 Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh Individualized vaccines for cancer
EP2714071B1 (de) 2011-05-24 2019-07-10 BioNTech RNA Pharmaceuticals GmbH Individualisierte impfstoffe gegen krebs
US11084872B2 (en) 2012-01-09 2021-08-10 Adc Therapeutics Sa Method for treating breast cancer
US11559587B2 (en) 2012-03-26 2023-01-24 Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh RNA formulation for immunotherapy
US10485884B2 (en) 2012-03-26 2019-11-26 Biontech Rna Pharmaceuticals Gmbh RNA formulation for immunotherapy
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
WO2013151668A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of secreted proteins
WO2013151736A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics In vivo production of proteins
EP3978030A1 (de) 2012-04-02 2022-04-06 ModernaTX, Inc. Modifizierte polynukleotide zur herstellung von proteinen im zusammenhang mit erkrankungen beim menschen
WO2013151665A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of proteins associated with human disease
EP3501550A1 (de) 2012-04-02 2019-06-26 Moderna Therapeutics, Inc. Modifizierte polynukleotide zur herstellung von proteinen im zusammenhang mit erkrankungen beim menschen
US11504419B2 (en) 2012-11-28 2022-11-22 BioNTech SE Individualized vaccines for cancer
US10155031B2 (en) 2012-11-28 2018-12-18 Biontech Rna Pharmaceuticals Gmbh Individualized vaccines for cancer
US11222711B2 (en) 2013-05-10 2022-01-11 BioNTech SE Predicting immunogenicity of T cell epitopes
WO2015034928A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
US10898584B2 (en) 2013-11-01 2021-01-26 Curevac Ag Modified RNA with decreased immunostimulatory properties
EP4159741A1 (de) 2014-07-16 2023-04-05 ModernaTX, Inc. Verfahren zur herstellung eines chimären polynukleotids zur kodierung eines polypeptids mit einer triazolhaltigen internukleotid-bindung
US10564165B2 (en) 2014-09-10 2020-02-18 Genentech, Inc. Identification of immunogenic mutant peptides using genomic, transcriptomic and proteomic information
US11173120B2 (en) 2014-09-25 2021-11-16 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
US11156617B2 (en) 2015-02-12 2021-10-26 BioNTech RNA Pharmaceuticals GbmH Predicting T cell epitopes useful for vaccination
EP3173092B1 (de) 2015-04-22 2019-06-26 CureVac AG Rna-haltige zusammensetzung zur behandlung von tumorerkrankungen
EP3173092A2 (de) 2015-04-22 2017-05-31 CureVac AG Rna-haltige zusammensetzung zur behandlung von tumorerkrankungen
WO2016170176A1 (en) 2015-04-22 2016-10-27 Curevac Ag Rna containing composition for treatment of tumor diseases
EP3603661A2 (de) 2015-04-22 2020-02-05 CureVac AG Rna-haltige zusammensetzung zur behandlung von tumorerkrankungen
EP3326641A1 (de) 2015-04-22 2018-05-30 CureVac AG Rna-haltige zusammensetzung zur behandlung von tumorerkrankungen
EP4286012A2 (de) 2015-09-17 2023-12-06 ModernaTX, Inc. Verbindungen und zusammensetzungen zur intrazellulären verabreichung von therapeutischen wirkstoffen
WO2017049245A2 (en) 2015-09-17 2017-03-23 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
EP3736261A1 (de) 2015-09-17 2020-11-11 ModernaTX, Inc. Verbindungen und zusammensetzungen zur intrazellulären verabreichung von therapeutischen wirkstoffen
US11492628B2 (en) 2015-10-07 2022-11-08 BioNTech SE 3′-UTR sequences for stabilization of RNA
WO2017066789A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified sugar
WO2017066793A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs and methods of mrna capping
WO2017066791A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Sugar substituted mrna cap analogs
WO2017066781A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified phosphate linkage
EP4086269A1 (de) 2015-10-16 2022-11-09 ModernaTX, Inc. Mrna-cap-analoga mit modifizierter phosphatverbindung
WO2017066782A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Hydrophobic mrna cap analogs
EP4036079A2 (de) 2015-12-22 2022-08-03 ModernaTX, Inc. Verbindungen und zusammensetzungen zur intrazellulären verabreichung von wirkstoffen
WO2017112865A1 (en) 2015-12-22 2017-06-29 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2017180587A2 (en) 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Regulated biocircuit systems
WO2017218704A1 (en) 2016-06-14 2017-12-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018033254A2 (en) 2016-08-19 2018-02-22 Curevac Ag Rna for cancer therapy
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
EP4035659A1 (de) 2016-11-29 2022-08-03 PureTech LYT, Inc. Exosome zur ausgabe von therapeutischen wirkstoffen
US11865159B2 (en) 2017-02-28 2024-01-09 Sanofi Therapeutic RNA
WO2018170306A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
EP4186888A1 (de) 2017-03-15 2023-05-31 ModernaTX, Inc. Verbindung und zusammensetzungen zur intrazellulären verabreichung von therapeutischen wirkstoffen
WO2018170336A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Lipid nanoparticle formulation
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2019036638A1 (en) 2017-08-18 2019-02-21 Modernatx, Inc. METHODS FOR PREPARING MODIFIED RNA
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. METHODS OF MANUFACTURING LIPID NANOPARTICLES
WO2019077001A1 (en) 2017-10-19 2019-04-25 Curevac Ag NEW ARTIFICIAL NUCLEIC ACID MOLECULES
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
WO2020061367A1 (en) 2018-09-19 2020-03-26 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2020061457A1 (en) 2018-09-20 2020-03-26 Modernatx, Inc. Preparation of lipid nanoparticles and methods of administration thereof
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
WO2020160397A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2020160430A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Vortex mixers and associated methods, systems, and apparatuses thereof
WO2021204175A1 (en) 2020-04-09 2021-10-14 Suzhou Abogen Biosciences Co., Ltd. Lipid nanoparticle composition
WO2021204179A1 (en) 2020-04-09 2021-10-14 Suzhou Abogen Biosciences Co., Ltd. Nucleic acid vaccines for coronavirus
WO2022002040A1 (en) 2020-06-30 2022-01-06 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022037652A1 (en) 2020-08-20 2022-02-24 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022152109A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022152141A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Polymer conjugated lipid compounds and lipid nanoparticle compositions
WO2022247755A1 (en) 2021-05-24 2022-12-01 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023044333A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Cyclic lipids and methods of use thereof
WO2023044343A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Acyclic lipids and methods of use thereof
WO2023056914A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023056917A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
EP4162950A1 (de) 2021-10-08 2023-04-12 Suzhou Abogen Biosciences Co., Ltd. Nukleinsäureimpfstoffe gegen coronavirus
WO2023122752A1 (en) 2021-12-23 2023-06-29 Renagade Therapeutics Management Inc. Constrained lipids and methods of use thereof
WO2023196931A1 (en) 2022-04-07 2023-10-12 Renagade Therapeutics Management Inc. Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents
WO2024037578A1 (en) 2022-08-18 2024-02-22 Suzhou Abogen Biosciences Co., Ltd. Composition of lipid nanoparticles

Also Published As

Publication number Publication date
CA2473135C (en) 2012-05-08
US9433670B2 (en) 2016-09-06
US20160089425A1 (en) 2016-03-31
US20160089424A1 (en) 2016-03-31
US9155788B2 (en) 2015-10-13
ES2298418T3 (es) 2008-05-16
CA2473135A1 (en) 2003-06-26
US20050059624A1 (en) 2005-03-17
US20160089426A1 (en) 2016-03-31
AU2002360055A1 (en) 2003-06-30
US20150030633A1 (en) 2015-01-29
EP1458410B1 (de) 2008-01-02
EP1905844A2 (de) 2008-04-02
US9433669B2 (en) 2016-09-06
US8217016B2 (en) 2012-07-10
EP1458410A2 (de) 2004-09-22
EP1925317A1 (de) 2008-05-28
DE50211485D1 (de) 2008-02-14
US9655955B2 (en) 2017-05-23
WO2003051401A3 (de) 2003-12-18
DE10162480A1 (de) 2003-08-07
US20160095912A1 (en) 2016-04-07
US20160082092A1 (en) 2016-03-24
US9439956B2 (en) 2016-09-13
US9463228B2 (en) 2016-10-11
US20110311472A1 (en) 2011-12-22
ATE382712T1 (de) 2008-01-15
US20160095911A1 (en) 2016-04-07
EP2769733A1 (de) 2014-08-27
EP1905844A3 (de) 2008-04-09
AU2002360055B2 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
EP1458410B1 (de) Verfahren zur Herstellung einer mRNA Tumorantigen Bibliothek
EP1615662B1 (de) Transfektion von blutzellen mit mrna zur immunstimulation und gentherapie
EP1768703A1 (de) mRNA-GEMISCH ZUR VAKZINIERUNG GEGEN TUMORERKRANKUNGEN
EP1658097B1 (de) Nucleotid und zelluläre vakzine-zusammensetzung
JP5797190B2 (ja) ワクチン免疫療法
CN109310739A (zh) 新抗原及其使用方法
CN108025048A (zh) 共有的新抗原
DE102004026135A1 (de) An MHC-Moleküle bindende Tumor-assoziierte Peptide
CN115845040A (zh) 用于免疫疗法的核/壳结构平台
CN102245197A (zh) 预防乳腺癌复发的疫苗
WO2003039591A2 (de) Allogene vakzine enthaltend eine ein costimulatorisches polypeptid exprimierende tumorzelle
Class et al. Patent application title: APPLICATION OF mRNA FOR USE AS A THERAPEUTIC AGAINST TUMOUR DISEASES Inventors: Ingmar Hoerr (Tubingen, DE) Florian Von Der MÜlbe (Stuttgart, DE) Florian Von Der MÜlbe (Stuttgart, DE) Steve Pascolo (Tubingen, DE) Steve Pascolo (Tubingen, DE) Assignees: CureVac AG

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10870110

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002795235

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002360055

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2473135

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2002795235

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2002795235

Country of ref document: EP