WO2003056095A1 - Binder for glass fiber, glass fiber for olefin resin reinforcement, and process for producing olefin resin composition for fiber-reinforced molding - Google Patents

Binder for glass fiber, glass fiber for olefin resin reinforcement, and process for producing olefin resin composition for fiber-reinforced molding Download PDF

Info

Publication number
WO2003056095A1
WO2003056095A1 PCT/JP2002/013795 JP0213795W WO03056095A1 WO 2003056095 A1 WO2003056095 A1 WO 2003056095A1 JP 0213795 W JP0213795 W JP 0213795W WO 03056095 A1 WO03056095 A1 WO 03056095A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin resin
resin
fiber
sizing agent
acid
Prior art date
Application number
PCT/JP2002/013795
Other languages
English (en)
French (fr)
Inventor
Yoshiro Niino
Original Assignee
Asahi Fiber Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co., Ltd. filed Critical Asahi Fiber Glass Co., Ltd.
Priority to EP02793443.9A priority Critical patent/EP1460166B1/en
Priority to US10/497,550 priority patent/US6984699B2/en
Publication of WO2003056095A1 publication Critical patent/WO2003056095A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/30Polyolefins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/40Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments

Definitions

  • the present invention relates to a sizing agent for a glass fiber (hereinafter simply referred to as “fiber”) for reinforcing an olefin resin, a fiber for reinforcing an olefin resin, and a method for producing an olefin resin composition for a fiber-reinforced molded article.
  • fiber a glass fiber
  • a resin composition containing a olefin resin such as polyethylene or polypropylene and a fiber has been widely used as a composition for obtaining a molded article reinforced with a fiber.
  • a sizing agent is added to the fiber surface in order to improve the affinity between the resin and the fiber.
  • Molded articles molded from the fiber reinforced resin composition are directly mixed with the resin and cut into fiber bundles (chopped strands) and spray-molded, or both are kneaded and mixed with an extruder once. Extrusion and cutting into short fiber pellets followed by injection molding, or by aligning the fibers, impregnating with molten resin, drawing out, cutting into long fiber pellets, and injection molding the pellets It is manufactured by doing.
  • the Orrefin resin has no polar group in the molecular chain due to its chemical structure and has poor surface activity, even if the above pellet is created, the adhesiveness of the Orefin resin to the fiber is inferior and is expected in molded products. There is little improvement in strength. It also has the disadvantage that the fibers are easily loosened and scattered from the obtained composition. Olefin resin as the base resin There is such a problem in a resin composition for a fiber-reinforced molded article formed by punch molding, and improvement thereof has been desired.
  • a modified olefin resin when used as a component of the sizing agent, it is necessary to impart water dispersibility to the modified olefin resin and impart it to the fiber. It is necessary to add an activator, and depending on the treatment method for water dispersibility or water solubility, the modified olefin resin does not sufficiently adhere to the fiber surface, the fiber bunching property is poor, and pellets and molded products As a short fiber pellet and a long fiber pellet, there was a problem that the molded article had poor mechanical strength when molded.
  • an object of the present invention is to provide a fiber sizing agent that provides a molded article having excellent strength without causing the fibers and the resin, which is a matrix resin, to adhere firmly to the raw material and the molded article.
  • An object of the present invention is to provide a fiber for fat reinforcement and an olefin resin composition for a fiber reinforced molded product. Disclosure of the invention
  • the present invention provides a sizing agent for a glass fiber for reinforcing an olefin resin (hereinafter, “glass fiber” is simply referred to as “fiber”), which comprises at least the following components a) and b). a) an acid-modified resin resin neutralized with an amine; and
  • the acid-modified olefin resin has a number average molecular weight of 5,000 or more, and the amine is at least one selected from ethylenediamine and morpholine. It is preferable that the amino group of the silane coupling agent is a primary and / or secondary amino group. Further, in the present invention, the fiber bundle treated with the sizing agent is preferably provided with 0.1 to 2.0% by mass of the sizing agent as a solid content with respect to the total amount.
  • the present invention is characterized in that a continuous material of the fiber bundle treated with the sizing agent is impregnated with a melt of an orifice resin supplied from an extruder to a crosshead while being pulled through a crosshead.
  • a method for producing an olefin resin composition for a long fiber reinforced molded article, and a kneaded strand obtained by cutting a fiber bundle treated with the sizing agent, and an olefin resin are kneaded and extruded.
  • a method for producing a olefin resin composition for a short fiber reinforced molded article which is characterized by cutting.
  • the olefin resin is preferably polypropylene.
  • the acid-modified olefin resin which is a main component of the sizing agent, is neutralized with an amine, whereby the sizing properties of the fibers are excellent, the fluffing of the treated fiber bundle is suppressed, and the treated fiber
  • an amine When a resin composition containing is molded, the mechanical strength of the molded article is improved.
  • Such amines have lower reactivity with acid groups than sodium hydroxide and potassium hydroxide, which have relatively strong alkalinity, which are other neutralizing agents.
  • the amine is easily dissociated from the acid group, and the acid group that is freed by the liberation of the amine reacts with the silane coupling agent to improve the adhesion between the fiber surface and the olefin resin, which is a matrix resin. .
  • the acid-modified olefin resin may be water-dispersible or water-dispersible.
  • Another method to make the resin soluble is to emulsify the acid-modified olefin resin using a surfactant.However, surfactants alone cause a large amount of surfactant due to the poor hydrophilicity of the acid-modified olefin resin. If no agent is used, it is difficult to uniformly emulsify or disperse the acid-modified resin in water, and the use of a large amount of a surfactant impairs the excellent adhesion between the fiber and the matrix resin.
  • the sizing agent of the present invention is characterized by containing at least an acid-modified olefin resin neutralized with an amine and a silane coupling agent having an amino group as essential components.
  • the acid-modified olefin resin used in the sizing agent of the present invention may be obtained by converting the olefin resin into a sulfonic group after chlorsulfonation, or by directly sulfonating the olefin resin, or by polymerizing the olefin resin during production of the olefin resin. It can be obtained by a method such as copolymerizing an unsaturated unsaturated carbonate compound or a derivative thereof, or graft polymerizing an addition polymerizable unsaturated carboxylic acid compound or a derivative thereof to an olefin resin.
  • any one selected from a homopolymer of olefin and a copolymer of two or more types of olefin can be used.
  • Specific examples thereof include, for example, Examples include polyethylene, polypropylene, polymethylpentene, ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene- ⁇ -olefin copolymer, and propylene- ⁇ -olefin copolymer.
  • Preferable sulfonated olefin resins include those obtained by reacting the above-mentioned olefin resin with chlorine and sulfur dioxide or chlorosulfonic acid to form chlorosulfonate, and converting this to a sulfone group. And directly sulfonated resin resins. More preferred are sulfonated polyethylene and sulfonated polypropylene.
  • the acid-modified olefin resin modified with an unsaturated carboxylic acid compound or a derivative thereof include homopolymers of olefins and copolymers of two or more olefins, such as the resins exemplified above as olefin resins.
  • examples thereof include those obtained by random or block copolymerization, and those obtained by graft polymerization of an unsaturated carboxylic acid or a derivative thereof.
  • examples of the unsaturated carboxylic acid used for carboxylic acid modification include maleic acid, fumaric acid, itaconic acid, acrylic acid, and methacrylic acid.
  • examples of unsaturated carboxylic acid derivatives include anhydrides, esters, amides, imides, and metal salts of these acids. Specific examples thereof include maleic anhydride, itaconic anhydride, and acrylic acid.
  • examples thereof include dimethyl ester, acrylamide, methacrylamide, maleic acid monoamide, maleic acid diamide, fumaric acid monoamide, maleimide, N-butylmaleimide, and sodium methacrylate.
  • those having no free carboxylic acid group generate a carboxylic acid group by hydrolysis or the like after polymerization.
  • glycidyl esters of acrylic acid and methacrylic acid and anhydrous maleic acid preferred are glycidyl esters of acrylic acid and methacrylic acid and anhydrous maleic acid.
  • the ethylene resin include a resin obtained by modifying maleic anhydride by graft polymerization of an ethylene resin and a resin containing ethylene or Z or propylene as a main resin structural unit, and an resin mainly containing ethylene, ethylene, or propylene. (Meth) acid modified by copolymerization with glycidyl acrylate or maleic anhydride.
  • Such acid-modified olefin resin preferably has a number average molecular weight of 5,000 or more, more preferably has a number average molecular weight of 10,000 or more, and has a number average molecular weight of 15,500 to 5,000. Most preferably, 0, 0 0 0. If the number average molecular weight is less than 50,000, the convergence of the glass fiber is reduced, which is insufficient.
  • the sizing agent contains at least an amine in order to make the acid-modified olefin resin water-soluble or water-dispersible as described above, in order to neutralize the acid group with amine.
  • the amine used in the present invention include ethylenediamine, ammonia, morpholine, diethylenetriamine, and hydroxyethylpiperazine. Of these, ethylenediamine, morpholine and ammonia are preferred, and ethylenediamine and morpholine are particularly preferred in terms of ease of handling and stability of the aqueous solution or aqueous dispersion.
  • the amount of the amine used is preferably 0.5 to 1.5 equivalents, and more preferably 0.8 to 1.2 equivalents, when the acid group of the acid-modified olefin resin is 1 equivalent. It is preferable to use it.
  • the acid-modified olefin resin used in the sizing agent of the present invention in addition to the amine, as a neutralizing agent, a sizing agent preparation tank, and a stable water dispersibility in Apriquet over which the sizing agent is applied to the fiber bundle.
  • an alkali metal hydroxide such as a hydroxylated sodium hydroxide or sodium hydroxide may be used in combination.
  • the acid-modified olefin resin is used in an appropriate amount. These surfactants can be used together to make them water-dispersible or water-soluble.
  • the surface activity is not particularly limited.
  • the acid-modified olefin resin is preferably contained in an amount of 50 to 95% by mass, more preferably 70 to 90% by mass, based on the total mass of the components a) and b). If the above value is less than 50% by mass, the compatibility with the matrix resin and the mechanical strength of the molded article will be poor.
  • the sizing agent of the present invention is required to contain a silane coupling agent having an amino group (aminosilane) in addition to the acid-modified olefin resin.
  • the silane coupling agent has an effect of improving the adhesion between the acid-modified olefin resin and the fiber, and also improving the adhesion between the olefin resin as a matrix resin and the fiber later.
  • the silane coupling agent is not particularly limited as long as it has an amino group, but the amino group of the aminosilane is preferably a primary and / or secondary amino group, and furthermore, aminopropyltriethoxysilane N-iS- (aminoethyl) -aminopropyltrimethoxysilane, N- / 3- (aminoethyl) -1-N'- ⁇ - (aminoethyl) -1-aminopropyltrimethoxysilane, ⁇ -anilinopropyltrimethoxysilane Such aminosilanes are preferred.
  • Aminosilane is considered to have particularly high reactivity with the acid-modified polyolefin in the sizing agent, which improves the sizing properties of the fiber, improves the adhesion to the resin, and has excellent mechanical strength. preferable. Further, it is more preferable to use aminopropyltriethoxysilane.
  • the silane coupling agent is used in an amount of 5 to 50% by mass, more preferably 10 to 30% by mass, based on the total mass of the components a) and b). If the amount of the silane coupling agent is too low, the binding between the fiber and the sizing agent and the adhesion between the treated fiber and the matrix resin will be insufficient. Obtained in This is not preferable because the resin composition may be colored yellow.
  • the sizing agent may be a resin component in addition to the components a) and b), for example, a biel acetate resin, an acrylic resin, a polyester resin, a polyether resin, a phenoxy resin, a polyamide resin, and an epoxy resin. It is possible to use a resin such as an olefin resin or a modified product thereof, or an oligomer such as a wax represented by an olefin resin-based wax in combination.
  • the above resins and oligomers are usually used in the form of an aqueous dispersion obtained by water dispersibility with a surfactant, or the neutralization or hydration of carboxylic acid groups or amide groups present in the skeleton of the resin or oligomer. It is generally used in the form of an aqueous solution obtained by water-solubilization. Further, in order to impart lubrication performance to the sizing agent, a lubricant can be further contained.
  • lubricant those used in conventional sizing agents can be used.
  • plant-based waxes such as capadeline wax, carnauba wax, wood wax, animal waxes such as beeswax, lanolin, and whale wax, mineral waxes such as montan wax and petroleum wax, fatty acid amides, and Fatty acid ester type, aromatic ester type, fatty acid ether type, aromatic ether type surfactants and the like are preferably used. If the amount of this lubricant is too large, the adhesion between the fiber and the matrix resin will be hindered.If the amount is insufficient, sufficient lubricating performance cannot be obtained. It is appropriate to add about 0.1 to 0.5% by mass.
  • the above-mentioned sizing agent is an antistatic agent represented by inorganic salts such as lithium chloride and lithium iodide, and quaternary ammonium salts such as ammonium chloride-ammonium sulfate.
  • a lubricant represented by an aliphatic ester-based, aliphatic ether-based, aromatic ester-based, or aromatic ether-based surfactant may be contained.
  • Such a sizing agent of the present invention is in the form of an aqueous dispersion or an aqueous solution.
  • the solid concentration of the sizing agent is usually 0.01 to 0.5% by mass.
  • the total amount of the components a) and b) when other components are added is the solid content of the sizing agent including the components a) ′ and b).
  • the total amount is 100 parts by mass, it is preferably contained in an amount of 50 parts by mass or more.
  • the fiber treated with the sizing agent preferably has an average monofilament diameter of 6 to 23 m, more preferably 10 to 17 m.
  • the average diameter of the monofilament is less than 6 ⁇ m, the pellet becomes expensive when the pellet is impregnated with the matrix resin later, and when the average diameter exceeds 23 m, the above pellet has poor mechanical properties. It is not preferable because it is inferior.
  • the method for treating fibers with the sizing agent of the present invention is not particularly limited, and any treatment method may be used.
  • the sizing agent of the present invention is provided as 0.1 to 2.0% by mass as a solid content with respect to the total amount of the fibers to which the sizing agent is provided. If the applied amount is less than 0.1% by mass, the sizing properties of the fibers are insufficient and the fibers tend to fluff, and the adhesion between the fibers and the matrix resin is inferior, which is not preferable. On the other hand, if the applied amount exceeds 2.0% by mass. It is not preferable because the fibrillation of the fiber bundle at the time of the impregnation with the matrix resin becomes insufficient and a defect is caused by the presence of the unfibrillated fiber bundle in the matrix resin.
  • the present invention relates to an orifice resin composition (long fiber pellets) reinforced with long fibers by impregnating the fiber bundle with a matrix resin mainly composed of an orefin resin while pulling a continuum of the fiber bundle treated with the sizing agent.
  • a matrix resin mainly composed of an orefin resin
  • the use of fiber bundles treated with a sizing agent containing an acid-modified olefin resin is particularly effective in the production of (g) to enhance the reinforcing effect of the fibers.
  • olefin resin is reinforced with short fibers such as chopped strands.
  • short fiber pellet a fiber treated with a sizing agent containing an epoxy resin or a urethane resin is generally used, and its reinforcing promoting effect is recognized.
  • short fibers such as chopped strands treated with the sizing agent are used in the present invention, the effect of promoting reinforcement is recognized as in the case of long fiber pellets.
  • an olefin resin composition for a long-fiber reinforced molded product comprising a fiber bundle treated with the sizing agent and a matrix resin impregnated in the fiber bundle.
  • the matrix resin a resin mainly composed of an olefin resin is used.
  • the matrix resin is mainly composed of an olefin resin, which is used in combination with the same acid-modified olefin resin as the main component of the sizing agent. The reinforcing effect of the fiber can be synergistically enhanced, and the mechanical strength of the molded article is dramatically improved.
  • the olefin resin used as the matrix resin similarly to the above-mentioned olefin resin, any one selected from a homopolymer of olefin and a copolymer of two or more types of olefin can be used. These resin may be used as a mixture of two or more kinds.
  • these off-line resins in the present invention, from the viewpoints of resin extrudability, moldability, and various properties of the obtained resin composition, those mainly composed of polyethylene or polypropylene are preferable, and particularly, Preferably, it is mainly composed of polypropylene.
  • the modified resin which is preferably used in combination with the above-mentioned resin as the matrix resin
  • any of those described in detail as the above-mentioned acid-modified resin can be used.
  • These acid-modified resin resins can be used as a mixture of two or more kinds.
  • the acid-modified resin is used in a proportion of 1 to 60 parts by mass with respect to 99 to 40 parts by mass of the resin, whereby the sizing agent is combined with the above-described treatment of the fiber with the sizing agent.
  • a particularly preferred composition is a ratio of 3 to 20 parts by mass of the acid-modified resin to 97 to 80 parts by mass of the resin.
  • an olefin resin and an acid-modified olefin resin are used in combination as the matrix resin, it is preferable to use a combination in which the main resin constituent units are the same.
  • the main resin constituent units include polyethylene as a main component, and a copolymer of ethylene and glycidyl methacrylate as an auxiliary component (acid-modified olefin resin) or acid-modified ethylene / butene obtained by grafting maleic anhydride.
  • examples include a combination of polymers, a combination of acid-modified polypropylene in which the main component is polypropylene, and a minor component in which maleic anhydride is grafted.
  • a polymer that is preferably used in combination with the olefin resin is a chlorinated or sulphonated olefin resin.
  • a chlorinated or sulphonated olefin resin is about the compounding quantity of such resin, etc., it is the same as that of the said acid-modified olefin resin.
  • the long fiber reinforced resin composition of the present invention can be obtained by impregnating the fiber bundle with the matrix resin while pulling a continuous fiber bundle for reinforcement treated with the sizing agent described above.
  • the impregnation method is a conventionally known method and is not particularly limited.
  • the compounding amount of the reinforcing fiber in the obtained resin composition is 5 to 80% by mass (in the composition). If the compounding amount is less than 5% by mass, the reinforcing effect by the fiber is small, while if it exceeds 80% by mass, the processability in the preparation or molding of the resin composition is extremely poor, and the strength is further improved by increasing the amount of fiber. Can hardly be expected.
  • the preferred amount of fiber is 20 to 70% by mass. (In the composition), particularly preferably 30 to 65% by mass (in the composition).
  • the reinforcing fibers have a length of 2 mm or more and are arranged substantially in parallel to each other. If the fiber length is less than 2 mm, when such a resin composition is molded, a sufficient improvement in strength of the molded product cannot be expected.
  • the resin composition in order to provide a molded product with excellent strength without sacrificing injection moldability, which can be used for injection molding, which is easy to mold and process, the resin composition must be a pellet with a length of 2 to 50 mm ( It is preferable to use a wire-shaped composition in which the fibers are arranged at substantially the same length as the pellet.
  • thermoplastic resins in the resin composition of the present invention, one or more of other thermoplastic resins may be used in a small amount in an auxiliary manner as long as the object and the effect thereof are not significantly impaired.
  • known substances generally added to thermoplastic resins for example, stabilizers such as antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, flame retardants, Flame retardant aids, coloring agents such as dyes and pigments, lubricants, plasticizers, crystallization accelerators, crystal nucleating agents, and the like can be further added.
  • plate-like or powdery inorganic compounds such as glass flakes, my strength, glass powder, glass beads, talc, clay, alumina, force pump racks, wollastonite, and whiskers may be used in combination.
  • a pultrusion molding method As the method for producing the long fiber reinforced resin composition of the present invention, a pultrusion molding method is preferable.
  • the pultrusion molding method basically involves impregnating the matrix resin into the fiber bundle while pulling the continuous reinforcing fiber bundle treated with the sizing agent.
  • Emulsion, suspension or solution of a matrix resin Impregnating the matrix resin by passing the fiber bundle into the impregnation bath containing the matrix resin, spraying the matrix resin powder onto the fiber bundle, or passing the matrix resin powder through the fiber bundle in the tank containing the powder, and then applying the matrix resin powder to the fiber.
  • the matrix resin After adhering, the matrix resin is melted and And a method of supplying a matrix resin from an extruder or the like to the cross head while passing the fiber bundle through the cross head and impregnating the fiber bundle. Any of these known methods can be used. Particularly preferred is a method using a crosshead.Although the operation of impregnating the matrix resin in these pultrusion moldings is generally performed in one stage, it can be performed in two or more stages. It doesn't matter.
  • a method of impregnation in a single-stage impregnation operation using a melt obtained by mixing these at a predetermined ratio, an impregnation operation Into two or more stages, and in each impregnation step, a method of impregnating the fiber bundle with a matrix resin having an arbitrary ratio of an olefin resin and an acid-modified olefin resin to finally obtain a desired resin composition In the present invention, a melt-kneading method can be used for producing such a resin composition.
  • a matrix resin in a molten state and a fiber bundle treated with a sizing agent are kneaded by an extruder.
  • the matrix resin is melted by a twin-screw extruder, and the sizing agent is fed through a feed port on the way.
  • There are a method of feeding the treated fiber bundle and a method of melt-kneading a matrix resin preblended by a twin-screw or single-screw extruder and a fiber bundle treated with a sizing agent.
  • a form of the fiber bundle treated with the sizing agent a continuous fiber bundle can be used, but a chopped strand which is a type cut in advance is often used.
  • a resin obtained by melt-kneading an olefin resin and an unsaturated carboxylic acid or a derivative thereof together with an organic peroxide is used to impregnate the fiber bundle treated with the sizing agent. And a reaction between a part of the olefin resin and an unsaturated carboxylic acid or a derivative thereof.
  • a molten matrix resin for impregnating a fiber bundle is provided.
  • the temperature of the fat is preferably 180 to 320 ° C., and the above temperature is particularly preferable when a resin mainly composed of polypropylene is used as the olefin resin.
  • the shape of the resin composition of the present invention obtained as described above, and any shape such as a strand shape, a sheet shape, a flat plate shape, or a pellet bunch obtained by cutting the strand into an appropriate length is possible.
  • a wire composition having a length of 2 to 50 mm for application to injection molding, which is easy to mold.
  • a sizing agent (aqueous dispersion) was prepared using the same amount of% and was uniformly applied to the surface of a fiber having a diameter of 13 m. After the fibers were bundled, they were cut to a length of 3 mm and dried to produce chopped strands.
  • Blend value (g) Measured by Asahi Fiber One Glass Co., Ltd. measurement method.
  • a chopped strand was prepared in the same manner as in Example 1 except that the maleic acid-modified polypropylene emulsion used was a morpholine-neutralized product, and was evaluated in the same manner as described above. Table 1 shows the measurement results.
  • a chopped strand was prepared in the same manner as in Example 1 except that the number average molecular weight of the polypropylene resin used for the maleic acid-modified polypropylene emulsion was 4,500, and the evaluation was performed in the same manner as described above. Carried out. Table 1 shows the measurement results.
  • a chopped strand was prepared in the same manner as in Example 3 except that ⁇ -glycidoxypropyltrimethoxysilane was used as a silane coupling agent, and was evaluated in the same manner as described above. Table 1 shows the measurement results.
  • a chopped strand was prepared in the same manner as in Example 1, except that the maleic acid-modified polypropylene emulsion used was a potassium hydroxide neutralized product, and was evaluated in the same manner as described above. Table 1 shows the measurement results.
  • a chopped strand was prepared in the same manner as in Example 3 except that the maleic acid-modified polypropylene emulsion used was a neutralized product of a hydroxylating power, and evaluation was performed in the same manner as described above. Table 1 shows the measurement results. (Comparative Example 4)
  • a chopped strand was prepared in the same manner as in Comparative Example 3 except that aglycidoxypropyl trimethoxysilane was used as a silane coupling agent, and was evaluated in the same manner as described above. Table 1 shows the measurement results.
  • t solid content of the sizing agent based on the total amount of glass fibers including the sizing agent (% by mass)
  • Winder fluff volume (mg) Measured by Asahi Fiber Glass Corporation measurement method. The amount of fluff generated when winding while applying tension.
  • 95 parts by mass of the polypropylene resin and 5 parts by mass of the maleic anhydride-modified polypropylene mouth resin are mixed and melted, and the above-mentioned mouth-hole is introduced into the molten resin using an impregnation die, and the molten resin is cooled while being taken off. Then, by cutting into 6 mm length, long fiber reinforced polypropylene resin pellets were produced, and various test pieces were molded by an injection molding machine. The fiber content was 40% by weight.
  • a roving was prepared in the same manner as in Example 4 except that ⁇ -glycidoxypropyltrimethoxysilane was used as a silane coupling agent, and evaluation was performed in the same manner as described above. The measurement results are shown in Table 2, (Comparative Example 6).
  • the robin was prepared in the same manner as in Example 4 except that the number average molecular weight of the polypropylene resin used in the maleic acid-modified polypropylene emulsion used was 150,000, and that it was a neutralized hydroxide. Then, evaluation was performed in the same manner as described above. Table 2 shows the measurement results.
  • the polypropylene resin used in the maleic acid-modified polypropylene emulsion used had a number average molecular weight of 4,500 except for the number average molecular weight. Rovings were prepared in the same manner as in Comparative Example 6, and evaluated in the same manner as described above. Table 2 shows the measurement results.
  • a roving was prepared in the same manner as in Comparative Example 7 except that aglycidoxypropyltrimethoxysilane was used as a silane coupling agent, and evaluation was performed in the same manner as described above. Table 2 shows the measurement results.
  • Loss on ignition solid content of sizing agent (% by mass) based on total amount of glass fibers including sizing agent
  • the olefin resin and the fiber are firmly adhered to each other, and the raw material and the molded product do not have fluffing, and the fiber sizing agent and the olefin resin reinforcing agent provide a molded product with excellent strength.
  • the fiber and the resin composition for fiber-reinforced molded articles can be provided.

Description

明 細 書 ガラス繊維用集束剤、 ォレフィン樹脂強化用ガラス繊維、 および繊 維強化成形用ォレフィン樹脂組成物の製造方法 技術分野 '
本発明は、 ォレフィン樹脂を強化するガラス繊維(以下単に「繊維」 と略称する) 用の集束剤、 ォレフィン樹脂強化用繊維、 および繊維強 化成形品用ォレフィン樹脂組成物の製造方法に関する。 背景技術
ポリエチレン、 ポリプロピレンなどのォレフィン榭脂と繊維とを含 む樹脂組成物は、 繊維で強化された成形品を得るための組成物として 広く使用されている。 これらの組成物においては、 ォレフィ ン樹脂と 繊維との馴染みを良好ならしめるために繊維表面に集束剤が附与さ れる。
繊維強化ォレフィン樹脂組成物から成形される成形品は、 ォレフィ ン樹脂と繊維束切断物 (チヨップドストランド) とを直接混合して射 出成形するか、 あるいは両者を一旦押出機などにより混練および押出 し、 および切断してショートファイバーペレツ トとした後射出成形す るか、 あるいは繊維を引き揃えて溶融樹脂を含浸させて引き抜き、 切 断してロングファイバーペレツ トとし、 このペレツ トを射出成形する ことによって製造される。
しかしながら、 ォレフィ ン樹脂は化学構造上、 分子鎖に極性基がな く、 表面活性に乏しいため、 上記ペレッ トを作成したとしても、 繊維 に対するォレフィン樹脂の密着性は劣り、 成形品において期待される 程の強度の向上は少ない。 また、 得られた組成物から繊維がほぐれて 飛散し易いという欠点も有する。 ォレフィン樹脂を基本樹脂とした引 抜き成形による繊維強化成形品用樹脂組成物においてはかかる問題 があり、 その改善が切望されていた。
このような問題を解決するために、 例えば、 特許第 2 9 4 1 3 2 0 号公報では、 繊維に含浸するマトリックス樹脂としてォレフィン樹脂 とともに特定の変性を行った変性ォレフィン樹脂を併用することに より、 ロングファイバ一ペレッ トとしたときに、 繊維用集束剤による 処理との相乗的効果が発現し、 成形品の機械的強度などが飛躍的に向 上することが提案されている。 さらに、 前記公報では、 ガラス繊維の 集束剤の成分として、 変性ォレフィン樹脂を用いることが記載されて いる。
しかしながら、 集束剤の成分として変性ォレフィン樹脂を用いた場 合、 変性ォレフィ ン樹脂に水分散性をもたせて、 繊維に付与する必要 があり、 変性ォレフィン樹脂に中和剤を添加するか、 または界面活性 剤を添加する必要があり、 この水分散性化または水溶性化の処理方法 によっては、 繊維表面に変性ォレフィン榭脂が十分に付着せず、 繊維 の集束性が劣り、 ペレッ トや成形品に毛羽が発生し、 ショートフアイ バ一ペレツ トおよびロングファイバーペレツ トとして、 成形した際の 成形品の機械的強度が劣るといった問題を有していた。
従って、 本発明の目的は、 マトリックス樹脂であるォレフィ ン樹脂 と繊維とが強固に密着し、 原料および成形品に毛羽立ちが発生せず、 優れた強度の成形品を与える繊維用集束剤、 ォレフィン榭脂強化用繊 維、 および繊維強化成形品用ォレフィン樹脂組成物を提供することで ある。 発明の開示
本発明は、 少なくとも下記成分 a ) および b ) を含むことを特徴と するォレフィン樹脂強化用ガラス繊維(以下「ガラス繊維」 を単に「繊 維」 という) 用集束剤を提供する。 a ) ァミンで中和された酸変性のォレフィ ン樹脂、 および
b ) アミノ基を有するシランカップリング剤
また、 上記酸変性ォレフィ ン樹脂の数平均分子量は、 5 , 0 0 0以 上であること、 および上記ァミンが、 エチレンジァミンおよびモルホ リンから選ばれる少なくとも 1種であること、 また、 上記アミノ基を 有するシランカップリング剤のアミノ基が 1級および/または 2級 アミノ基であることが好ましい。 また、 本発明においては、 上記集束 剤で処理された繊維束は、 その全量に対して、 上記集束剤が固形分と して 0 . 1〜 2 . 0質量%付与されていることが好ましい。
また、 本発明は、 上記集束剤で処理された繊維束の連続物を、 クロ スヘッ ドを通して引きながら、 押出機からクロスへッ ドに供給される ォレフィ ン樹脂の溶融物で含浸することを特徴とする長繊維強化成 形品用ォレフィン樹脂組成物の製造方法、 および上記集束剤で処理さ れた繊維束を切断してなるチヨップドストランドと、 ォレフィン樹脂 とを混練して押出し、 これを切断することを特徴とする短繊維強化成 形品用ォレフイ ン樹脂組成物の製造方法を提供する。 ここで、 ォレフ ィン樹脂がポリプロピレンであることが好ましい。
本発明によれば、 集束剤の主要成分である酸変性のォレフィン樹脂 をァミンで中和することによって、 繊維の集束性が優れ、 処理された 繊維束の毛羽立ちが抑制され、 また、 該処理繊維を含有する樹脂組成 物を成形した場合において成形品の機械的強度が向上する。 かかるァ ミンは、 他の中和剤である比較的アル力リ性が強い水酸化ナトリゥム や水酸化カリウムに比べ、 酸基との反応性が低いため、 集束剤を繊維 に付着させた後に、 酸基からァミンが解離し易く、 ァミンが遊離して フリーとなつた酸基が、 シランカップリング剤と反応し、 繊維の表面 とマトリ ツクス樹脂であるォレフィン樹脂との密着を良好にすると 考えられる。
上記本発明に対して、 酸変性ォレフィ ン樹脂を、 水分散性または水 溶性にする別の方法としては、 酸変性ォレフィン樹脂を界面活性剤を 用いて乳化する方法も考えられるが、 界面活性剤のみでは、 酸変性ォ レフィン樹脂の親水性が劣るため、 多量の界面活性剤を用いなければ- 酸変性ォレフィ ン樹脂を水中に均一に乳化あるいは分散させること が困難であり、 多量の界面活性剤の使用は繊維とマトリックス樹脂と の優れた密着性を阻害する。 発明を実施するための最良の形態
次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。 本発明の集束剤は、 少なくともアミンで中和された酸変性ォレフィン 樹脂とアミノ基を有するシランカップリング剤とを必須成分として 含むことを特徴としている。
本発明の集束剤に使用する酸変性ォレフィン樹脂は、 ォレフィ ン樹 脂をクロルスルホン化した後にスルホン基に変換させるか、 直接スル ホン化するか、 さらにはォレフイン樹脂の製造時に、 ォレフィンに重 合性不飽和カルンボン酸化合物またはその誘導体を共重合させるか、 さらにはォレフィン樹脂に、 付加重合性不飽和カルボン酸化合物また はその誘導体をグラフト重合させるなどの方法で得ることができる。 上記の如く酸変性されるォレフィン樹脂としては、 ォレフィ ンの単 独重合体および 2種以上のォレフィンの共重合体から選ばれたもの がいずれも使用可能であり、 その具体例としては、 例えば、 ポリェチ レン、 ポリプロピレン、 ポリメチルペンテン、 エチレン—プロピレン ランダム共重合体、 エチレン—プロピレンブロック共重合体、 ェチレ ンー α—ォレフィン共重合体、 プロピレン一 α—ォレフィン共重合体 などが挙げられる。
スルホン化された好ましいォレフィン樹脂としては、 上記の如きォ レフィン樹脂に塩素と二酸化イオウ、 またはクロルスルホン酸を反応 させクロルスルホン化し、 これをスルホン基に変化させたもの、 およ び直接スルホン化したォレフィン樹脂が挙げられる。 より好ましいの はスルホン化ポリエチレンおよびスルホン化ポリプロピレンである。 不飽和カルボン酸化合物またはその誘導体で変性された酸変性ォ レフィン樹脂としては、 ォレフィンの単独重合体または 2種以上のォ レフインの共重合体、 例えば、 ォレフィン樹脂として上記で例示した 樹脂などに不飽和カルボン酸化合物またはその誘導体をグラフ ト重 合したもの、 ォレフィンから選ばれた 1種または 2種以上の単量体と 不飽和カルボン酸化合物またはその誘導体から選ばれた 1種または 2種以上をランダムまたはブロック共重合したもの、 およびこれにさ らに不飽和カルボン酸またはその誘導体をグラフ ト重合したものが 挙げられる。
ここで、 カルボン酸変性のために使用される不飽和カルボン酸とし ては、 例えば、 マレイン酸、 フマル酸、 ィタコン酸、 アクリル酸、 メ タクリル酸などが挙げられる。 また、 不飽和カルボン酸の誘導体とし てはこれらの酸の無水物、 エステル、 アミ ド、 イミ ド、 金属塩などが あり、 その具体例としては、 無水マレイン酸、 無水ィタコン酸、 ァク リル酸メチル、 アクリル酸ェチル、 アクリル酸プチル、 アクリル酸グ リシジル、 メ夕クリル酸メチル、 メ夕クリル酸ェチル、 メタクリル酸 グリシジル、 マレイン酸モノェチルエステル、 マレイン酸ジェチルェ ステル、 フマル酸モノメチルエステル、 フマル酸ジメチルエステル、 ァクリルアミ ド、 メ夕クリルアミ ド、 マレイン酸モノアミ ド、 マレイ ン酸ジアミ ド、 フマル酸モノアミ ド、 マレイミ ド、 N —ブチルマレイ ミ ド、 メタクリル酸ナトリウムなどを挙げることができる。 これらの 化合物のうちでフリーのカルボン酸基を有さないものは、 重合後に加 水分解などによりカルボン酸基を生成させる。
上記の不飽和カルボン酸化合物およびその誘導体のうち、 好ましい のはアクリル酸およびメタクリル酸のグリシジルエステルおよび無 水マレイン酸であり、 これらにより変性された好ましい酸変性ォレフ ィン樹脂としてば、 エチレンおよび Zまたはプロピレンを主たる樹脂 構成単位とするォレフィ ン樹脂に無水マレイン酸をグラフ ト重合す ることにより変性したもの、 エチレンおよびノまたはプロピレンを主 体とするォレフィ ンと (メタ) アクリル酸グリシジルエステルまたは 無水マレイン酸とを共重合することにより酸変性したものが挙げら れる。
かかる酸変性ォレフィ ン樹脂は、 その数平均分子量が 5 , 0 0 0以 上が好ましく、 より好ましい数平均分子量は 1 0, 0 0 0以上であり 数平均分子量が 1 5 , 0 0 0〜 5 0 , 0 0 0であることが最も好まし い。 数平均分子量が 5 , 0 0 0未満では、 ガラス繊維の集束性が低下 するため不十分である。
本発明は、 以上の如き酸変性ォレフィン樹脂を水溶性化または水分 散性化させるためには、 酸の基をァミンで中和するために、 集束剤中 にアミンが少なくとも含有されていることを必須とする。本発明で使 用するァミンとしては、 例えば、 エチレンジァミン、 アンモニア、 モ ルホリン、 ジエチレントリァミン、 ヒドロキシェチルピペラジンなど が挙げられる。 なかでも、 取り扱い易さおよび水溶液または水分散液 の安定性の点から、 エチレンジァミン、 モルホリンおよびアンモニア を用いることが好ましく、 特にエチレンジァミンおよびモルホリンを 用いることが好ましい。 かかるァミンの使用量は、 酸変性ォレフィン 樹脂の酸の基を 1当量とした場合、 0 . 5〜 1 . 5当量の割合で使用 することが好ましく、 さらに 0 . 8〜 1 . 2当量の割合で使用するこ とが好ましい。
本発明の集束剤に用いる酸変性ォレフィン樹脂は、 前記ァミンの他 に、 中和剤として、 集束剤の調合タンクや、 集束剤を繊維束に付与さ せるアプリケ一夕での安定した水分散性または水溶性を得るために、 水酸化力リゥムゃ水酸化ナトリゥムなどのアル力リ金属水酸化物を 併用しても構わない。 また、 上記酸変性ォレフィン樹脂は、 適当な量 の界面活性剤を併用して水分散性化または水溶性化させることがで きる。 界面活性としては特に限定はない。 上記酸変性ォレフィン樹脂 は、前記 a )成分および b )成分の合計質量に対し、 5 0〜 9 5質量% 含有されていることが好ましく、 7 0〜 9 0質量%であることがより 好ましい。 前記値が 5 0質量%未満であるとマトリックス樹脂との相 溶性および成形品の機械的強度が劣り、 一方、 9 5質量%を超えると 後述するシランカップリング剤の量が少なくなり好ましくない。
本発明の集束剤は、 前記酸変性ォレフィン樹脂に加えて、 アミノ基 を有するシランカツプリング剤 (アミノシラン) を含有することを必 須とする。 該シランカップリング剤は、 酸変性ォレフィン樹脂と繊維 との密着性を向上させ、 かつ後にマトリックス樹脂であるォレフィン 樹脂と繊維との密着性も向上させる作用を有する。
上記シランカップリング剤としては、 アミノ基を有するものであれ ば特に限定しないが、 前記アミノシランのアミノ基が 1級および /ま たは 2級のアミノ基であることが好ましく、 さらにァーァミノプロピ ルトリエトキシシラン、 N— iS — (アミノエチル) ー ァ一ァミノプロ ピルトリメ トキシシラン、 N— /3— (アミノエチル) 一 N ' 一 β— (ァ ミノェチル) 一ァ一ァミノプロピルトリメ トキシシラン、 τ 一ァニリ ノプロビルトリメ トキシシランのようなアミノシランが好ましい。 前 記アミノシランは、 集束剤中の酸変性ポリオレフィンとの反応性が特 に高いと考えられ、 繊維の集束性が向上し、 また、 樹脂との密着性を 高め、 機械的強度などが優れる点で好ましい。 さらにァーァミノプロ ピルトリエトキシシランを用いることがより好ましい。
上記シランカップリング剤は、 前記 a ) 成分および b ) 成分の合計 質量に対して 5〜 5 0質量%、 より好ましくは 1 0〜 3 0質量%で使 用する。 シランカツプリング剤の使用量は低過ぎると繊維と集束剤の 結合、 および処理された繊維とマトリックス樹脂との密着性が不足し. 一方、 シランカップリング剤の使用量が多すぎると、 最終的に得られ る樹脂組成物が黄変着色するので好ましくない。
前記集束剤は、 前記 a ) 成分および b ) 成分の他に、 樹脂成分とし て、 例えば、 さらに、 酢酸ビエル樹脂、 アクリル樹脂、 ポリエステル 樹脂、 ポリエーテル樹脂、 フエノキシ樹脂、 ポリアミ ド樹脂、 ェポキ シ樹脂、 ォレフィ ン樹脂などの樹脂またはその変性物、 あるいはォレ フィン樹脂系ワックスに代表されるワックス類などのオリゴマーを 併用することが可能である。 ただし、 上記の樹脂やオリゴマーは、 通 常界面活性剤による水分散性化によって得られた水分散液、 あるいは 樹脂やオリゴマーの骨格中に存在するカルボン酸基やアミ ド基の中 和や水和による水溶性化によって得られる水溶液といった形態で使 用されるのが一般的である。 さらに、 集束剤に潤滑性能を付与するた めに、 さらに潤滑剤を含有させることができる。
上記潤滑剤としては、 従来の集束剤に用いられているものが使用で きる。 例えば、 キヤデリンワックス、 カルナウバヮックス、 木ろうな どの植物系ワックス、 みつろう、 ラノリン、 鯨ろうなどの動物系ヮッ クス、 モンタンワックス、 石油ワックスなどの鉱物系ワックス、 脂肪 酸アミ ド、 および脂肪酸エステル系、 芳香族エステル系、 脂肪酸エー テル系、 芳香族ェ一テル系の界面活性剤などが好ましく使用される。 この潤滑剤は、 多すぎると繊維とマトリックス樹脂との接着を妨げる ことになり、 不足すれば充分な潤滑性能が得られないため、 使用する 場合は、 集束剤全体に対して固形分として 0 . 0 1〜 0 . 5質量%程 度添加するのが適当である。
さらに、 上記集束剤は、 上記の成分以外に塩化リチウムやヨウ化力 リゥムなどの無機塩や、 アンモニゥムクロライ ド型ゃアンモニゥムェ トサルフェート型などの 4級アンモニゥム塩に代表される帯電防止 剤、 あるいは脂肪族エステル系、 脂肪族エーテル系、 芳香族エステル 系、 芳香族エーテル系の界面活性剤に代表される潤滑剤などを含んで いてもよい。 このような本発明の集束剤は、 水分散液または水溶液の形態であり . その固形分濃度は通常 0 . 0 1〜 0 . 5質量%である。 また、 集束剤 として前記 a ) 成分および b ) 成分の他に、 他成分を添加した場合の a ) 成分および b ) 成分の合計量は、 a ) '成分および b ) 成分を含む 集束剤の固形分全量を 1 0 0質量部としたとき、 5 0質量部以上含有 されていることが好ましい。
本発明において上記集束剤によって処理される繊維については、 モ ノフイラメントの平均径が 6〜 2 3 mであることが好ましく、 より 好ましくは 1 0〜 1 7 mである。 モノフィラメントの平均径が 6 u m未満の場合は、 後にマトリックス樹脂を含浸させてペレツ トとした 場合にペレッ トがコスト高になり、 2 3 mを超える場合は、 上記べ レツ トが機械的物性が劣るために好ましくない。
本発明の集束剤による繊維の処理方法については特に限定される ものではなく、 いずれの処理方法であってもよい。
本発明の集束剤は、 該集束剤が付与された繊維の全量に対し固形分 として 0 . 1〜 2 . 0質量%付与されていることが好ましい。 付与量 が 0 . 1質量%未満であると繊維の集束性が不十分で毛羽立ち易く、 また、 繊維とマトリックス樹脂との接着が劣り好ましくなく、 一方、 付与量が 2 . 0質量%を越えるとマトリックス樹脂の含浸時における 繊維束の解繊が不十分となり、 マトリックス樹脂中で未解繊の繊維束 が存在することによる欠点を生じさせるため好ましくない。
本発明は、 上記の集束剤で処理された繊維束の連続物を引きながら. ォレフィン樹脂を主体とするマトリックス樹脂を繊維束に含浸させ、 長繊維で強化されたォレフィン樹脂組成物 (ロングファイバーペレツ ト) を製造する場合、 酸変性ォレフィン樹脂を含有する集束剤で処理 した繊維束の使用が、 繊維による補強効果を高めるうえで特に有効で ある。 '
一方、 チヨップドストランドなどの短繊維でォレフィン榭脂を強化 する、 いわゆるショートファイバ一ペレッ トの場合においては、 ェポ キシ樹脂あるいはウレタン樹脂を含有してなる集束剤で処理したも のが一般的に用いられ、 また、 その補強促進効果が認められているが. 本発明において前記集束剤で処理したチョップドストランドなどの 短繊維を用いても、 ロングファイバーペレッ トの場合と同様に補強促 進効果は認められる。
次に、 上記集束剤で処理された繊維束と該繊維束に含浸させるマト リ ックス樹脂とからなる長繊維強化成形品用ォレフィン樹脂組成物 について説明する。 上記マ卜リックス樹脂としてはォレフイ ン樹脂を 主体とするものが用いられる。 特に好ましくはマトリックス樹脂とし てォレフィ ン樹脂を主体とし、 これと前記集束剤の主成分と同様な酸 変性ォレフィン榭脂を併用したものであり、 これにより、 前述した特 定の集束剤で処理した繊維による補強効果を相乗的に高めることが でき、 成形品の機械的強度などが飛躍的に向上する。
ここでマトリックス樹脂として用いるォレフィン樹脂としては、 前 記ォレフィ ン樹脂と同様に、 ォレフィンの単独重合体および 2種以上 のォレフィ ンの共重合体から選ばれたものがいずれも使用可能であ る。 これらのォレフィ ン樹脂は 2種以上混合して使用してもよい。 こ れらのォレフィ ン樹脂のうち、 本発明においては、 樹脂の押出加工性. 成形性、 得られた樹脂組成物の諸特性などから考えて、 ポリエチレン もしくはポリプロピレンを主体とするものが好ましく、 特に好ましく はポリプロピレンを主体とするものである。
また、 マトリックス榭脂として、 かかるォレフィン樹脂と併用する のが好ましい変性ォレフィン樹脂としては、 前記酸変性ォレフィン樹 脂として詳述したものがいずれも使用できる。 これらの酸変性ォレフ ィン榭脂は 2種以上混合して使用することも可能である。 本発明にお いて、 集束処理した繊維束に含浸するマトリックス樹脂として、 かか る酸変性ォレフィ ン樹脂をォレフイ ン樹脂と併用する場合において は、 ォレフィン樹脂 9 9〜 4 0質量部に対し酸変性ォレフィ ン樹脂を 1〜 6 0質量部の割合で用いるのが好ましく、 これにより、 前述した 繊維の集束剤による処理の作用と相まって集束剤で処理した繊維束 に対するマトリックス樹脂の含浸性および繊維との密着性が一段と 良くなり、 強度が飛躍的に向上した成形品を与える樹脂組成物が得ら れる。特に好ましい組成はォレフイン樹脂 9 7〜 8 0質量部に対して 酸変性ォレフィン樹脂 3〜 2 0質量部の割合である。
また、 本発明において、 マトリックス榭脂としてォレフィン樹脂と 酸変性ォレフィン樹脂とを併用する場合においては、 その主たる樹脂 構成単位が同一である組合せとするのが好ましい。 その具体例として は、 主成分がポリエチレンで、 副成分 (酸変性ォレフィ ン樹脂) がェ チレンとメタクリル酸グリシジルの共重合体、 あるいは無水マレイン 酸をグラフ 卜させた酸変性エチレン ·ブテン一 1共重合体の組合せ、 主成分がポリプロピレンであり、 副成分が無水マレイン酸をグラフト させた酸変性ポリプロピレンの組合せなどが挙げられる。 また、 ォレ フィン樹脂と併用するのが好ましい重合体の別の例としては、 塩素化 またはク口ルスルホン化されたォレフィン樹脂が挙げられる。 かかる 樹脂の配合量などについては、 上記酸変性ォレフィン樹脂と同様であ る。
本発明の長繊維強化ォレフィン樹脂組成物は、 前述した集束剤で処 理した強化用繊維束の連続物を引きながら、 該繊維束に上記マトリッ クス樹脂を含浸させて得られる。 含浸方法は従来公知の方法でよく特 に限定されない。 得られた樹脂組成物中の強化用繊維の配合量は、 5 〜 8 0質量% (組成物中) である。 配合量が 5質量%未満では繊維に よる補強効果は小さく、 逆に 8 0質量%を超えると樹脂組成物の調製 あるいはその成形における加工性が著しく劣り、 また、 繊維量の増加 によるさらなる強度向上も殆ど期待できない。 補強効果と加工性など のパランスを考慮すると、 好ましい繊維の配合量は 2 0〜 7 0質量% (組成物中) であり、 特に好ましくは 3 0〜 6 5質量% (組成物中) である。
また、 本発明の長繊維強化ォレフィ ン樹脂組成物は、 強化用繊維が 実質上全て 2 m m以上の長さを有し、 且つ互いにほぼ平行な状態で配 列していることが好ましい。 繊維長が 2 mm未満では、 かかる樹脂組 成物を成形した時、 成形品において十分な強度向上は期待できない。 特に成形加工操作が容易な射出成形に供し、 射出成形性を損なうこと なく、 優れた強度を保持した成形品を得るためには、 樹脂組成物は長 さ 2 〜 5 0 m mのペレッ ト状 (線材状) で、 繊維がペレツ トと実質上 同一長さで配列した線材状組成物とするのが好ましい。
また、 本発明のかかる樹脂組成物には、 その目的および効果を大き く阻害しない範囲で他の熱可塑性樹脂の 1種または 2種以上を補助 的に少量併用することも可能である。 また、 目的に応じ所望の特性を 付与するため、 一般に熱可塑性樹脂に添加される公知の物質、 例えば. 酸化防止剤、 耐熱安定剤、 紫外線吸収剤などの安定剤、 帯電防止剤、 難燃剤、 難燃助剤、 染料や顔料などの着色剤、 潤滑剤、 可塑剤、 結晶 化促進剤、 結晶核剤などをさらに配合することも可能である。 また、 ガラスフレーク、 マイ力、 ガラス粉、 ガラスビ一ズ、 タルク、 クレー. アルミナ、 力一ポンプラック、 ウォラストナイ トなどの板状や粉粒状 の無機化合物、 ゥイスカーなどを併用してもよい。
本発明の長繊維強化ォレフィン樹脂組成物の製造方法としては、 引 抜成形法がが好ましい。 引抜成形法は、 基本的には前記集束剤で処理 された連続した強化用繊維束を引きながら、 該繊維束に前記マトリッ クス樹脂を含浸するものであり、 マトリックス樹脂のェマルジョン、 サスペンジョ ンあるいは溶液を入れた含浸浴の中に繊維束を通して マトリックス樹脂を含浸する方法、 マトリックス樹脂の粉末を繊維束 に吹きつけるか、 粉末を入れた槽の中を繊維束を通し、 繊維にマトリ ックス樹脂粉末を付着させた後マトリックス樹脂を溶融し、 繊維束中 に含浸する方法、 クロスへッ ドの中を繊維束を通しながら押出機など からクロスへッ ドにマトリックス樹脂を供給し、 繊維束に含浸する方 法などが知られているが、 本発明においてはかかる公知の方法がいず れも利用できる。 特に好ましいのはクロスへッ ドを用いる方法である, また、 これらの引抜成形におけるマトリックス樹脂の含浸操作は 1 段で行うのが一般的であるが、 これを 2段以上に分けて行ってもかま わない。 特に繊維束に含浸させるマトリックス樹脂として、 ォレフィ ン樹脂と酸変性ォレフィン樹脂を併用した場合には、 これらを所定の 割合で混合した溶融物を用いた 1段の含浸操作で含浸する方法、 含浸 操作を 2段以上にわけ、 各含浸工程ではォレフィン榭脂と酸変性ォレ フィ ン樹脂との任意の割合としたマトリ ックス樹脂を繊維束に含浸 し、 最終的に所望の樹脂組成物とする方法などがいずれも可能である, また、 本発明においては、 かかる樹脂組成物を製造するにあたり、 溶融混練法を用いることもできる。 溶融混練法は、 溶融状態のマトリ ックス榭脂と集束剤で処理した繊維束とを押出機で混練させる方法 であり、 2軸押出機でマトリックス樹脂を溶融し、 途中のフィード口 より集束剤で処理した繊維束を投入する方法と、 2軸または単軸押出 機で予めプリブレンドしたマトリ ツクス樹脂と集束剤で処理した繊 維束とを溶融混練させる方法がある。 集束剤で処理した繊維束の形態 としては連続した繊維束でも使用できるが、 予め切断したタイプであ るチョップドス トランドが用いられることが多い。
また、 集束剤で処理した繊維束に含浸させるマトリックス樹脂とし てォレフィ ン樹脂と不飽和カルボン酸またはその誘導体を有機過酸 化物とともに溶融混練したものを用い、 集束剤で処理した繊維束の含 浸を行うとともに、 ォレフィ ン樹脂の一部と不飽和カルボン酸または その誘導体との反応を行わせてもよい。
上記の如き引抜成形または混練成形を用いた本発明の樹脂組成物 の製造方法において、 繊維束に含浸させるための溶融マトリックス樹 脂の温度は、 1 8 0〜 3 20 °Cとするめが好ましく、 ォレフィン樹脂 としてポリプロピレンを主体とするものを用いる場合にあたっては 上記温度は特に好ましい。
以上の如く して得られる本発明の樹脂組成物の形状に制約はなく、 ストランド状、 シート状、 平板状あるいはストランドを適当な長さに 裁断したペレツ ト茯などの任意の形状が可能である。 特に成形加工の 容易な射出成形への適用のため、 長さ 2〜 5 0 mmの線材状組成物と するのが好ましい。 また、 かかる樹脂組成物を成形するにあたっては. これを成形した時、 集束剤で処理した繊維が 1 mm以上の質量平均繊 維長で分散した成形品とするのが好ましく、 これにより高度の機械的 強度を保持した成形品とすることができる。 実施例
次に実施例および比較例を挙げて本発明をさらに具体的に説明す る。
(実施例 1 )
ァ―ァミノプロピルトリエトキシシランを固形分として 0. 5質 量%、 およびマレイン酸変性ポリプロピレンのェマルジヨン (数平均 分子量 1 5, 0 0 0、 エチレンジァミン中和物) を固形分で 3. 0質 量%を用いて集束剤 (水分散液) を調合し、 1 3 ^m径の繊維表面に 均一に塗布した。 この繊維を集束させた後、 長さ 3mmに切断および 乾燥してチョップドストランドを作製した。
上記チヨ ップドストランドの性状は、 下記に定める方法で測定した t その測定結果を後記表 1に示す。
'強熱減量 (%) : J I S R 342 0に従う。
• ブレンド値 (g) : 旭ファイバ一グラス社測定法による測定。
3 k gの試料を 1 5分間 Vプレンダ一にて攪拌した際に発生し た毛羽の量。 • モノフィラメント率 (%) :旭ファイバ一グラス社測定法による 測定。 チヨップドストランドに含まれる細かいフィラメントの割 合。
-嵩比重 (一) :旭ファイバ一グラス社測定法による測定。 自然落 下嵩比重。
次に、 このチョップドストランド 3 0質量部とポリプロピレン樹脂 6 9質量部および無水マレイン酸変性ポリプロピレン樹脂 1質量部 とを押出し機にて溶融混合して、 線状に押出した後、 冷却した後 3 m m長に切断し、短繊維強化ポリプロピレン樹脂ペレツ ト(F R— P P ) を作製し、 射出成形機にて各種試験片を成形した。
<集束性 (総合評価) >
「評価方法」
(実施例 1 〜 3、 比較例 1 〜 4 (チョップドストランド) )
ガラス繊維束および樹脂組成物の生産時の毛羽発生状況を考慮し て、 ブレンド値とモノフィラメント率の結果から毛羽の総合評価を行 つた。 評価基準は下記の通りである。
「評価基準」
チョップドストランド
プレンド値およびモノフイラメント率の評価において、
◎ : どちらもレベル 1を満たすもの
〇 : 一方がレベル 1、 他方がレベル 2 X : 一方がレベル 3、 他方がレベル 4
X X : どちらもレベル 4を満たすもの
(実施例 4、 比較例 5〜 8 (口一ビング) )
ガラス繊維束および樹脂組成物の生産時の毛羽発生状況を考慮し て、 ブレンド値とモノフイラメント率の結果から毛羽の総合評価を行 つた。 評価基準は下記の通りである。
「評価基準」
ロービング
「評価の内容」
◎:樹脂組成物の製造時にチヨップドストランドまたは口一ビング の毛羽立ちが殆ど確認されず、 問題なく生産が可能なレベル。
〇:樹脂組成物の製造時にチヨップドストランドまたは口一ビング ■ の毛羽立ちが若干確認されるが、 問題なく生産が可能なレベル,
X:樹脂組成物の製造時にチヨップドストランドまたは口一ビング の毛羽立ちが発生しショートフアイバーペレツ ト成形におい ては、 短時間でフィーダ一等に毛羽玉が詰まり長時間連続して' 押し出し成形ができず、 またロングファイバーペレッ トの成形 においては、 口一ビングの糸切れが発生し生産性の劣るレベル < X X :チョップドストランドまたはロービングの作製時に毛羽が発 生し、 チョップスドトランドの生産効率が劣り、 口一ビング では糸もつれ等により糸の繰り出しが困難なレベル。 <F R - P P物性〉
' 引張り強度 (MP a) : J I S K 7 1 1 3に従う。
• I Z D O衝撃強度 ( k J Zm 2) : J I S K 7 1 1 0に従う, (実施例 2 ) .
使用したマレイン酸変性ポリプロピレンのェマルジョ ンがモルホ リン中和物である以外は実施例 1 と同じようにしてチョップドス ト ランドを作製し、 前記と同様に評価を実施した。 その測定結果を表 1 に示す。
(実施例 3 )
使用したマレイン酸変性ポリプロピレンのェマルジョンに用いら れたポリプロピレン樹脂の数平均分子量が 4, 5 0 0である以外は実 施例 1 と同じようにしてチョップドス トランドを作製し、 前記と同様 に評価を実施した。 その測定結果を表 1.に示す。
(比較例 1 )
シランカツプリ ング剤としてァ一グリシドキシプロピルトリメ ト キシシランを使用した以外は、 実施例 3と同じようにしてチョップド ストランドを作製し、 前記と同様に評価を実施した。 その測定結果を 表 1に示す。
(比較例 2 )
使用したマレイン酸変性ポリプロピレンのェマルジョ ンが水酸化 カリウム中和物である以外は実施例 1 と同じようにしてチョ ップド ストランドを作製し、 前記と同様に評価を実施した。 その測定結果を 表 1に示す。
(比較例 3 )
使用したマレイン酸変性ポリプロピレンのェマルジョ ンが水酸化 力リゥム中和物である以外は実施例 3 と同じようにしてチョップド ストランドを作製し、 前記と同様に評価を実施した。 その測定結果を 表 1に示す。 (比較例 4 )
シランカップリング剤としてァーグリシドキシプロビルトリメ ト キシシランを使用した以外は、 比較例 3と同じようにしてチヨップド ストランドを作製し、 前記と同様に評価を実施した。 その測定結果を 表 1 に示す。
表 1
t:集束剤を含むガラス繊維全量に対する集束剤の固形分量 (質量%)
* 1 : γ —ァミ ノプロピルエトキシシラン
* 2 : γ —グ、) シ ドキシプロピル卜リメ トキシシラン
(実施例 4 )
Τ —ァミノプロビルトリエトキシシランを固形分で 0 . 5質量%、 マレイン酸変性ポリプロピレンのェマルジョン (数平均分子量 2 5 , 0 0 0、 エチレンジァミン中和物) を固形分で 3 . 0質量%を用いて 集束剤 (水分散液) を調合し、 1 6 径の繊維表面に均一に塗布し た。 この繊維を 4 , 0 0 0本集束させた後、 乾燥してロービングを作 製した。 ロービングの性状は、 下記に定める方法で測定した。 その測 定結果を表 2に示す。
' 強熱減量 (%) : J I S R 3 4 2 0に従う。
• ワインダ一毛羽量 (m g ) :旭ファイバ一グラス社測定法による 測定。 テンションをかけながら巻き取った時に発生した毛羽量。 次に、 ポリプロピレン樹脂 9 5質量部と無水マレイン酸変性ポリプ 口ピレン樹脂 5質量部を混合溶融させ、 含浸ダイを用いて上記口一ビ ングを溶融樹脂中に導入し、 これを引き取りながら冷却し、 6 m m長 に切断することによって、 長繊維強化ポリプロピレン榭脂ペレツ トを 作製し、 射出成形機にて各種試験片を成形した。 繊維含有率は 4 0重 量%とした。
(比較例 5 )
シランカップリング剤としてァ一グリシドキシプロピルトリメ ト キシシランを使用した以外は、 実施例 4と同じようにしてロービング を作製し、 前記と同様に評価を実施した。 その測定結果を表 2に示す, (比較例 6 )
使用したマレイン酸変性ポリプロピレンのェマルジョンに用いら れたポリプロピレン樹脂の数平均分子量が 1 5, 0 0 0であり、 水酸 化力リゥム中和物である以外は実施例 4と同じようにしてロービン グを作製し、 前記と同様にして評価を実施した。 その測定結果を表 2 に示す。
(比較例 7 )
使用したマレイン酸変性ポリプロピレンのェマルジヨンに用いら れたポリプロピレン樹脂の数平均分子量が 4 , 5 0 0である以外は比 較例 6と同じようにしてロービングを作製し、 前記と同様にして評価 を実施した。 その測定結果を表 2に示す。
(比較例 8 )
シランカップリング剤としてァ―グリシドキシプロピルトリメ ト キシシランを使用した以外は、 比較例 7と同じようにしてロービング を作製し、 前記と同様に評価を実施した。 その測定結果を表 2に示す, 表 2
強熱減量:集束剤を含むガラス繊維全量に対する集束剤の固形分量(質量%)
* 1 : y —ァミノプロピルエトキシシラン
* 2: ァーグリ シ ドキシプロピルト リメ トキシシラン なお、 繊維の集束剤として、 ァミン中和された酸変性のォレフィ ン樹脂を用いた実施例 1 〜 4は、 繊維の集束性は良好であり、 毛羽立 ちが見られなかったが、 シランカップリング剤としてァーグリシドキ シプロピルトリメ トキシシランを用いた比較例 1 、 4、 5および?〜 8は繊維の集束性および機械的強度が劣った。 一方、 ァミン中和がさ れていない酸変性のォレフィ ン樹脂を用いた比較例 2 〜 4および比 較例 6〜 8は、 集束性が劣り毛羽の発生が多く見られるものであった, 産業上の利用可能性
以上の如き本発明によれば、 ォレフィン樹脂と繊維とが強固に密 着し、 原料および成形品に毛羽立ちが発生せず、 優れた強度の成形品 を与える繊維用集束剤、 ォレフィ ン樹脂強化用繊維、 および繊維強化 成形品用ォレフィ ン樹脂組成物を提供することができる。

Claims

請 求 の 範 囲
1 . 少なく とも下記成分 a ) および b ) を含むことを特徴とするォレ フィン樹脂強化用ガラス繊維用集束剤。
a ) ァミンで中和された酸変性のォレフィン樹脂、 および b ) アミノ基を有するシランカップリング剤
2 . 前記酸変性ォレフィ ン樹脂の数平均分子量が、 5 , 0 0 0以上で ある請求の範囲第 1項に記載のガラス繊維用集束剤。
3 . 前記ァミンが、 エチレンジァミンおよびモルホリンから選ばれる 少なく とも 1種である請求の範囲第 1項に記載のガラス繊維用 集束剤。
4 . 前記アミノ基を有するシランカップリング剤のアミノ基が、 1級 および/または 2級ァミノ基である請求の範囲第 1項に記載の ォレフィン榭脂強化用ガラス繊維用集束剤。
5 . 請求の範囲第 1項〜第 4項の何れか 1項に記載のガラス繊維用集 束剤が、 該集束剤を含むガラス繊維全量に対して、 固形分として 0 . 1〜 2 . 0質量%付与されていることを特徴とするォレフィ ン樹脂強化用ガラス繊維。
6 . 請求の範囲第 1項〜第 4項の何れか 1項に記載の集束剤で処理さ れたガラス繊維束の連続物を、 クロスヘッ ドを通して引きながら, 押出機からクロスへッ ドに供給されるォレフィ ン樹脂の溶融物 で含浸することを特徴とする長繊維強化成形品用ォレフィン樹 脂組成物の製造方法。 .
7 . 請求の範囲第 1項〜第 4項の何れか 1項に記載の集束剤で処理さ れたガラス繊維束を切断してなるチョップドストランドと、 ォレ フィン樹脂とを混練して線状に押出し、 これを切断することを特 徴とする短繊維強化成形品用ォレフィン樹脂組成物の製造方法。
8 . ォレフィ ン樹脂が、 ポリプロピレンである請求の範囲第 6項また は第 7項に記載の繊維強化成形品用ォレフィン樹脂組成物の製 造方法。
PCT/JP2002/013795 2001-12-27 2002-12-27 Binder for glass fiber, glass fiber for olefin resin reinforcement, and process for producing olefin resin composition for fiber-reinforced molding WO2003056095A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02793443.9A EP1460166B1 (en) 2001-12-27 2002-12-27 Binder for glass fiber, glass fiber for olefin resin reinforcement, and process for producing olefin resin composition for fiber-reinforced molding
US10/497,550 US6984699B2 (en) 2001-12-27 2002-12-27 Binder for glass fibers, glass fibers for olefin resin reinforcement, and process for producing olefin resin composition for fiber-reinforced molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001396181 2001-12-27
JP2001-396181 2001-12-27

Publications (1)

Publication Number Publication Date
WO2003056095A1 true WO2003056095A1 (en) 2003-07-10

Family

ID=19189067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013795 WO2003056095A1 (en) 2001-12-27 2002-12-27 Binder for glass fiber, glass fiber for olefin resin reinforcement, and process for producing olefin resin composition for fiber-reinforced molding

Country Status (4)

Country Link
US (1) US6984699B2 (ja)
EP (1) EP1460166B1 (ja)
CN (1) CN100363388C (ja)
WO (1) WO2003056095A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2620419A1 (en) 2012-01-27 2013-07-31 3B Fibreglass Polyamide based sizing composition for glass fibres
WO2013139732A2 (en) 2012-03-20 2013-09-26 Dsm Ip Assets B.V. Two part sizing composition for coating glass fibres and composite reinforced with such glass fibres

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585563B2 (en) * 2001-05-01 2009-09-08 Ocv Intellectual Capital, Llc Fiber size, sized reinforcements, and articles reinforced with such reinforcements
US7732047B2 (en) 2001-05-01 2010-06-08 Ocv Intellectual Capital, Llc Fiber size, sized reinforcements, and articles reinforced with sized reinforcements
GB0114684D0 (en) * 2001-06-15 2001-08-08 Dow Chemical Co Automobile assembly
EP1734020B1 (en) * 2004-03-25 2012-08-08 Owens Corning Manufacturing Ltd. Process for production of copped strands
FR2885362B1 (fr) * 2005-05-04 2007-06-08 Saint Gobain Vetrotex Composition d'ensimage pour granules de fils de verre a forte teneur en verre
WO2007064374A2 (en) * 2005-08-12 2007-06-07 Sugarcrm, Inc. Customer relationship management system and method
CN101360593A (zh) * 2006-02-06 2009-02-04 日东纺绩株式会社 含有扁平玻璃纤维的粒料、含有扁平玻璃纤维的热塑性树脂成型物以及它们的制造方法
US20070236049A1 (en) * 2006-03-31 2007-10-11 Dow Global Technologies Inc. Modular assembly for a vehicle
WO2007136552A2 (en) * 2006-05-09 2007-11-29 Jeffrey Jacob Cernohous Compatibilized polymer processing additives
KR20100091196A (ko) * 2007-10-26 2010-08-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 수성 결합제 또는 사이징 조성물
US20110178229A1 (en) * 2008-09-30 2011-07-21 Hirofumi Goda Fiber-reinforced resin composition and molded body thereof
TW201100460A (en) 2009-03-18 2011-01-01 Saudi Basic Ind Corp Process for making thermoplastic polyesters
KR101837219B1 (ko) 2010-07-13 2018-03-09 데이진 가부시키가이샤 탄소섬유다발 및 그 제조 방법, 및 그로부터의 성형품
KR101838909B1 (ko) 2010-08-05 2018-03-16 마쓰모토유시세이야쿠 가부시키가이샤 강화 섬유용 사이징제, 합성섬유 스트랜드 및 섬유 강화 복합재료
DE102011117760A1 (de) * 2011-11-07 2013-05-08 Hans-Joachim Brauer Thermoplastischer Werkstoff enthaltend Recycling-Polyolefin und Glasfasern
EP2900442A1 (en) 2012-09-25 2015-08-05 Saudi Basic Industries Corporation Use of pellets
CN104718056B (zh) 2012-10-04 2017-05-31 沙特基础工业公司 用于制造纤维增强聚合物复合物的设备和方法
KR20150115861A (ko) 2013-02-01 2015-10-14 사우디 베이식 인더스트리즈 코포레이션 펠릿의 처리 및 제조 방법
US9738015B2 (en) 2013-09-05 2017-08-22 Sabic Global Technologies B.V. Process for the preparation of a reinforced article
US10448939B2 (en) * 2014-10-01 2019-10-22 Brainchild Surgical Devices Llc Fascial closure device
CN109789423B (zh) 2016-07-18 2021-06-01 Sabic环球技术有限责任公司 用于将线股切割成独立段的切割模块和方法
WO2018035712A1 (en) 2016-08-23 2018-03-01 Dow Global Technologies Llc Adhesive for binding polyolefin membrane to glass fibers
EP3551695B1 (en) 2016-12-12 2023-09-06 SABIC Global Technologies B.V. Pellet comprising thermoplastic polymer sheath surrounding glass filaments having reduced emissions
WO2018109118A1 (en) 2016-12-15 2018-06-21 Sabic Global Technologies B.V. Pellet comprising an axial core and a polymer sheath, and its manufacture
CN107227611B (zh) * 2017-07-06 2018-03-27 清远凯荣德玻璃纤维有限公司 表面处理剂及其制备方法
US20210363313A1 (en) 2017-08-07 2021-11-25 Zoltek Corporation Polyvinyl alcohol-sized fillers for reinforcing plastics
JP6901573B2 (ja) * 2017-08-29 2021-07-14 三井化学株式会社 繊維収束剤、無機強化材、樹脂組成物および成形体
WO2019122318A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Tape of a plurality of sheathed continous multifilament strands
ES2962144T3 (es) * 2018-04-25 2024-03-15 Asahi Chemical Ind Moldeado de resina reforzado con fibra continua y método para la fabricación de la misma
CN114007839A (zh) 2019-05-13 2022-02-01 Sabic环球技术有限责任公司 生产玻璃纤维增强的组合物的方法
WO2020229410A1 (en) 2019-05-13 2020-11-19 Sabic Global Technologies B.V. Process for production of fiber reinforced tape
WO2020234024A1 (en) 2019-05-17 2020-11-26 Sabic Global Technologies B.V. Process for producing polypropylene composition
US20220234308A1 (en) 2019-06-21 2022-07-28 Sabic Global Technologies B.V. Fiber reinforced profiled object
EP3862380A1 (en) 2020-02-04 2021-08-11 SABIC Global Technologies B.V. Glass fiber-reinforced thermoplastic polymer composition
CN112159595B (zh) * 2020-10-16 2021-11-23 深圳市久和丝印器材有限公司 用于移印不同款手表面板玻璃的胶头及其制备方法
US20240067781A1 (en) 2020-12-18 2024-02-29 Sabic Global Technologies B.V. Glass fiber-reinforced thermoplastic polymer composition, and methods of manufacture
EP4263164A1 (en) 2020-12-18 2023-10-25 SABIC Global Technologies B.V. Pellets of a glass fiber-reinforced thermoplastic polymer composition, and method of their manufacture
EP4267362A1 (en) 2020-12-28 2023-11-01 SABIC Global Technologies B.V. Glass fiber reinforced thermoplastic polymer composition comprising a thermoplastic polymer composition with high flowability
WO2022207549A1 (en) 2021-03-30 2022-10-06 Sabic Global Technologies B.V. Process for the production of a glass fiber reinforced polymer tape, and tape so produced
WO2023067151A1 (en) 2021-10-22 2023-04-27 Sabic Global Technologies B.V. Thermoformed article, and method of its manufacture
WO2023108614A1 (en) 2021-12-17 2023-06-22 Sabic Global Technologies B.V. Article comprising a layer with dispersed glass fibers and a layer with continuous glass fibers
WO2023123343A1 (en) 2021-12-31 2023-07-06 Sabic Global Technologies B.V. A process to improve the utility of recycled polypropylene
CN116426071B (zh) * 2023-05-25 2024-03-19 江苏大易材料科技有限公司 一种高力学性能热塑性连续纤维带材及其生产工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374177A (en) * 1981-12-24 1983-02-15 Ppg Industries, Inc. Aqueous sizing composition for glass fibers and sized glass fibers for thermoplastic reinforcement
JPS5957931A (ja) * 1982-09-29 1984-04-03 Toshiba Silicone Co Ltd ガラス繊維の集束方法
JPH0380135A (ja) * 1989-08-24 1991-04-04 Nippon Glass Fiber Co Ltd サイジング剤およびサイジング剤で被覆されたガラス繊維
JPH0680438A (ja) * 1992-08-31 1994-03-22 Komatsu Ltd ガラス繊維
JPH06107442A (ja) * 1991-12-17 1994-04-19 Sanyo Chem Ind Ltd 無機繊維用集束剤
US5340879A (en) * 1992-03-19 1994-08-23 Bayer Aktiengesellschaft Polymer resins and use thereof
US5728369A (en) * 1994-10-05 1998-03-17 Immunomedics, Inc. Radioactive phosphorus labeling of proteins for targeted radiotherapy
JPH10131048A (ja) * 1996-10-28 1998-05-19 Mitsui Chem Inc 無機繊維処理剤
JPH10297943A (ja) * 1997-04-25 1998-11-10 Nippon Glass Fiber Co Ltd ガラス繊維用集束剤およびそれを塗布したガラス繊維

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853605A (en) * 1970-12-01 1974-12-10 Ppg Industries Inc Process for applying a coating composition to glass fibers and the resulting coated fibers
US4147833A (en) * 1977-05-27 1979-04-03 Ppg Industries, Inc. Glass fiber coating composition
US5130197A (en) * 1985-03-25 1992-07-14 Ppg Industries, Inc. Glass fibers for reinforcing polymers
FR2646164B1 (fr) * 1989-04-19 1992-12-11 Saint Gobain Vetrotex Emulsion aqueuse a base de polyolefines greffees procede d'obtention et emploi, notamment dans les compositions d'appret
FR2707976B1 (fr) * 1993-07-22 1995-09-22 Vetrotex France Sa Fibres de verre destinées au renforcement de matrices organiques.
US5646207A (en) * 1994-03-14 1997-07-08 Ppg Industries, Inc. Aqueous sizing compositions for glass fibers providing improved whiteness in glass fiber reinforced plastics
GB2326164B (en) * 1997-06-13 2001-02-21 Eastman Chem Co Emulsification process for functionalized polyolefins and emulsions made therefrom
US20010016259A1 (en) * 1999-02-16 2001-08-23 Les E. Campbell Sizing composition for glass fibers used to reinforce thermoplastic or thermosetting matrix polymers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374177A (en) * 1981-12-24 1983-02-15 Ppg Industries, Inc. Aqueous sizing composition for glass fibers and sized glass fibers for thermoplastic reinforcement
JPS5957931A (ja) * 1982-09-29 1984-04-03 Toshiba Silicone Co Ltd ガラス繊維の集束方法
JPH0380135A (ja) * 1989-08-24 1991-04-04 Nippon Glass Fiber Co Ltd サイジング剤およびサイジング剤で被覆されたガラス繊維
JPH06107442A (ja) * 1991-12-17 1994-04-19 Sanyo Chem Ind Ltd 無機繊維用集束剤
US5340879A (en) * 1992-03-19 1994-08-23 Bayer Aktiengesellschaft Polymer resins and use thereof
JPH0680438A (ja) * 1992-08-31 1994-03-22 Komatsu Ltd ガラス繊維
US5728369A (en) * 1994-10-05 1998-03-17 Immunomedics, Inc. Radioactive phosphorus labeling of proteins for targeted radiotherapy
JPH10131048A (ja) * 1996-10-28 1998-05-19 Mitsui Chem Inc 無機繊維処理剤
JPH10297943A (ja) * 1997-04-25 1998-11-10 Nippon Glass Fiber Co Ltd ガラス繊維用集束剤およびそれを塗布したガラス繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1460166A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2620419A1 (en) 2012-01-27 2013-07-31 3B Fibreglass Polyamide based sizing composition for glass fibres
WO2013110515A1 (en) 2012-01-27 2013-08-01 3B-Fibreglass Sprl Polyamide based sizing composition for glass fibres
WO2013139732A2 (en) 2012-03-20 2013-09-26 Dsm Ip Assets B.V. Two part sizing composition for coating glass fibres and composite reinforced with such glass fibres
WO2013139708A2 (en) 2012-03-20 2013-09-26 3B Fibreglass Sprl Two part sizing composition for coating glass fibres and composite reinforced with such glass fibres

Also Published As

Publication number Publication date
US20050014906A1 (en) 2005-01-20
EP1460166B1 (en) 2015-10-21
EP1460166A1 (en) 2004-09-22
CN100363388C (zh) 2008-01-23
US6984699B2 (en) 2006-01-10
EP1460166A4 (en) 2009-11-11
CN1610778A (zh) 2005-04-27

Similar Documents

Publication Publication Date Title
WO2003056095A1 (en) Binder for glass fiber, glass fiber for olefin resin reinforcement, and process for producing olefin resin composition for fiber-reinforced molding
JP2883369B2 (ja) 長繊維強化成形用ポリオレフィン樹脂組成物の製造法
JP3343381B2 (ja) 長繊維強化ポリオレフィン樹脂構造体からなる成形品
JP3811857B2 (ja) ガラス繊維用集束剤、オレフィン樹脂強化用ガラス繊維、および繊維強化成形用オレフィン樹脂組成物の製造方法
CN1191303C (zh) 含纤维增强材料的聚烯烃组合物以及使用该组合物的纤维增强树脂模塑制品
JP2941320B2 (ja) 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法
WO2007105497A1 (ja) ガラス繊維強化ポリアミド樹脂組成物の製造方法
JP2011063029A (ja) 被熱処理炭素長繊維強化樹脂ペレットの製造方法
JP4341566B2 (ja) 水性分散体およびそれを用いて処理された無機繊維並びにこの無機繊維を含む無機繊維強化熱可塑性樹脂組成物
CN104822736A (zh) 颗粒混合物、碳纤维强化聚丙烯树脂组合物、成形体及颗粒混合物的制造方法
JP4217284B2 (ja) ガラス繊維強化ポリオレフィン系樹脂ペレット
WO2008114459A1 (ja) 炭素長繊維強化樹脂成形品及びその製造方法
JP4648052B2 (ja) 被熱処理炭素長繊維強化樹脂ペレット
JP2007112041A (ja) 炭素長繊維強化樹脂成形品及びその製造方法
JP2005170691A (ja) ガラス繊維集束剤及びガラス繊維
JP4743593B2 (ja) 長繊維強化ポリプロピレン樹脂成形材料の製造方法
JP4074863B2 (ja) 長繊維強化ポリプロピレン樹脂成形材料
JP3935468B2 (ja) 長繊維強化ポリオレフィン樹脂用ロービング及びそれを用いた樹脂成形用材料
JP4779300B2 (ja) 繊維−ポリプロピレン樹脂複合体とそのペレット、および繊維強化樹脂成形品
JP4093369B2 (ja) 長繊維強化ポリプロピレン樹脂成形材料用ガラス繊維、及び長繊維強化ポリプロピレン樹脂成形材料
JP3641237B2 (ja) ガラスマスターバッチペレットを用いた成形品およびその製造方法
JP5226595B2 (ja) 脂肪族ポリエステル樹脂組成物およびそれらを成形してなる成形体
WO2022181010A1 (ja) ガラス繊維強化プロピレン系樹脂組成物
JP2008106281A (ja) 長繊維強化ポリプロピレン樹脂成形材料の製造方法
JPH08133794A (ja) 直接射出成形用ガラス繊維及びガラス繊維強化熱可塑性樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002793443

Country of ref document: EP

Ref document number: 10497550

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028263324

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002793443

Country of ref document: EP