WO2003071345A1 - Light sensitive display - Google Patents

Light sensitive display Download PDF

Info

Publication number
WO2003071345A1
WO2003071345A1 PCT/US2003/005300 US0305300W WO03071345A1 WO 2003071345 A1 WO2003071345 A1 WO 2003071345A1 US 0305300 W US0305300 W US 0305300W WO 03071345 A1 WO03071345 A1 WO 03071345A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
light
electrode layer
transistor
light sensitive
Prior art date
Application number
PCT/US2003/005300
Other languages
French (fr)
Inventor
Adiel Abileah
Willem Den Boer
Original Assignee
Planar Systems, Nc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/217,798 external-priority patent/US7408598B2/en
Application filed by Planar Systems, Nc. filed Critical Planar Systems, Nc.
Priority to AU2003213188A priority Critical patent/AU2003213188A1/en
Publication of WO2003071345A1 publication Critical patent/WO2003071345A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03542Light pens for emitting or receiving light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04109FTIR in optical digitiser, i.e. touch detection by frustrating the total internal reflection within an optical waveguide due to changes of optical properties or deformation at the touch location
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light

Definitions

  • the present invention relates to touch sensitive displays.
  • Touch sensitive screens are devices that typically mount over a
  • touching the option directly.
  • Common techniques employed in these devices for detecting the location of a touch include mechanical buttons, crossed beams of infrared light, acoustic surface waves, capacitance sensing, and resistive materials.
  • the touch position is determined by coordinating the position of the CRT raster
  • the optically-based touch screen increases the expense of the display, and increases the complexity of the display.
  • a computer calculates the location of the touch source with reference to the screen.
  • the inclusion of the photosensors and associated computer increases the expense of the display, and increases the complexity of the display.
  • U.S. Patent No. 5,105,186 discloses a liquid crystal touch screen that includes an upper glass sheet and a lower glass sheet separated by spacers. Sandwiched between the glass sheets is a thin layer of liquid crystal material. The inner surface of each piece of glass is coated with a transparent, conductive layer of metal oxide. Affixed to the outer surface of the upper glass sheet is an upper polarizer which comprises the display's viewing surface. Affixed to the outer surface of glass sheet is a lower polarizer. Forming the back surface of the liquid crystal display is a transflector adjacent to the lower polarizer. A transflector transmits some of the light striking its surface and reflects some light.
  • Adjacent to transflector is a light detecting array of light dependent resistors whose resistance varies with the intensity of light detected. The resistance increases as the light intensity decreases, such as occurs when a shadow is cast on the viewing surface.
  • the light detecting array detect a change in the light transmitted through the transflector caused by a touching of viewing surface.
  • touch sensitive structures affixed to the front of the liquid crystal stack Similar to touch sensitive structures affixed to the front of the liquid crystal stack, the light sensitive material affixed to the rear of the liquid crystal stack similarly pose potential problems limiting contrast of the display, increasing the expense of the display, and increasing the complexity of the display.
  • Touch screens that have a transparent surface which mounts between the user and the display's viewing surface have several drawbacks.
  • the transparent surface, and other layers between the liquid crystal material and the transparent surface may result in multiple reflections which decreases the display's contrast and produces glare.
  • adding an additional touch panel to the display increases the manufacturing expense of the display and increases the complexity of the display.
  • the incorporation of the touch screen reduces the overall manufacturing yield of the display.
  • a touch screen that does not significantly decrease the contrast ratio, does not significantly increase the glare, does not significantly increase the expense of the display, and does not significantly increase the complexity of the display.
  • HG. 1 is a cross sectional view of a traditional active matrix liquid crystal display.
  • FIG. 2 is a schematic of the thin film transistor array.
  • FIG. 3 is a layout of the thin film transistor array of FIG. 2.
  • FIGS. 4A-4H is a set of steps suitable for constructing pixel electrodes and amorphous silicon thin-film transistors.
  • FIG. 5 illustrates pixel electrodes, color filters, and a black matrix.
  • FIG. 6 illustrates a schematic of the active matrix elements, pixel electrode, photo TFT, readout TFT, and a black matrix.
  • FIG. 7 illustrates a pixel electrode, photo TFT, readout TFT, and a black matrix.
  • FIG. 8 is a layout of the thin film transistor array of FIGS. 6 and 7.
  • FIG. 9 is a graph of the capacitive charge on the light sensitive elements as a
  • FIG. 10 is a graph of the capacitive charge on the light sensitive elements as a
  • FIG. 11 is a graph of the photo-currents in an amorphous silicon TFT array.
  • FIG. 12 is a graph of the capacitive charge on the light sensitive elements as a
  • FIG. 13 is an alternative layout of the pixel electrodes.
  • FIG. 14 illustrates a timing set for the layout of FIG. 13.
  • FIG. 15 illustrates a handheld device together with an optical wand.
  • FIG. 16 illustrates even/odd frame addressing.
  • FIG. 17 illustrates a front illuminated display
  • FIG. 18 illustrates total internal reflections.
  • FIG. 19 illustrates a small amount of diffraction of the propagating light.
  • FIG. 20 illustrates significant diffraction as a result of a plastic pen.
  • FIG. 21 illustrates a shadow of a pointing device and a shadow with illuminated region of a pointing device.
  • FIG. 22 illustrates a modified black matrix arrangement
  • FIG. 23 illustrates a light reflecting structure
  • FIG. 24 illustrates a pen
  • FIG. 25 illustrates a light guide and finger.
  • FIG. 26 illustrates a display with multiple sensor densities and optical elements.
  • FIG. 27 illustrates a display with memory maintaining material.
  • FIG. 28 illustrates another pen
  • FIG. 29 illustrates another pen.
  • FIG. 30 illustrates another pen.
  • FIG. 31 illustrates another pen.
  • FIG. 32 illustrates another light guide.
  • FIG. 33 illustrates an image acquisition and processing technique.
  • a liquid crystal display (LCD) 50 (indicated by a bracket) comprises generally, a backlight 52 and a light valve 54 (indicated by a bracket). Since liquid crystals do not emit light, most LCD panels are backlit with fluorescent tubes or arrays of light- emitting diodes (LEDs) that are built into the sides or back of the panel. To disperse the light and obtain a more uniform intensity over the surface of the display, light from the backlight 52 typically passes through a diffuser 56 before impinging on the light valve 54.
  • LEDs light- emitting diodes
  • the transmittance of light from the backlight 52 to the eye of a viewer 58, observing an image displayed on the front of the panel, is controlled by the light valve 54.
  • the light valve 54 normally includes a pair of polarizers 60 and 62 separated by a layer of liquid crystals 64 contained in a cell gap between glass or plastic plates, and the polarizers.
  • Light from the backlight 52 impinging on the first polarizer 62 comprises electromagnetic waves vibrating in a plurality of planes. Only that portion of the light vibrating in the plane of the optical axis of the polarizer passes through the polarizer.
  • the optical axes of the first 62 and second 60 polarizer are typically arranged at an angle so that light passing through the first polarizer would normally be blocked from passing through the second polarizer in the series.
  • the orientation of the translucent crystals in the layer of liquid crystals 64 can be locally controlled to either "twist" the vibratory plane of the light into alignment with the optical axes of the polarizer, permitting light to pass through the light valve creating a bright picture element or pixel, or out of alignment with the optical axis of one of the polarizes, attenuating the light and creating a darker area of the screen or pixel.
  • the surfaces of the a first glass substrate 61 and a second glass substrate 63 form the walls of the cell gap are buffed to produce microscopic grooves to physically align the molecules of liquid crystal 64 immediately adjacent to the walls.
  • Molecular forces cause adjacent liquid crystal molecules to attempt to align with their neighbors with the result that the orientation of the molecules in the column of molecules spanning the cell gap twist over the length of the column.
  • the plane of vibration of light transiting the column of molecules will be "twisted" from the optical axis of the first polarizer 62 to a plane determined by the orientation of the liquid crystals at the opposite wall of the cell gap.
  • a voltage typically controlled by a thin film transistor, is applied to an electrode in an array of transparent electrodes deposited on the walls of the cell gap.
  • the liquid crystal molecules adjacent to the electrode are attracted by the field produced by the voltage and rotate to align with the field.
  • the column of crystals is "untwisted," and the optical axes of the crystals adjacent to the cell wall are rotated progressively out of alignment with the optical axis of the corresponding polarizer progressively reducing the local transmittance of the light valve 54 and attenuating the luminance of the corresponding pixel.
  • a normally white twisted nematic device there are generally two modes of operation, one without a voltage applied to the molecules and one with a voltage applied to the molecules.
  • a voltage applied e.g., driven mode
  • the molecules rotate their polarization axis which results in inhibiting the passage of light to the viewer.
  • the polarization axis is not rotated so that the passage of light is not inhibited to the viewer.
  • the polarizers and buffing of the light valve can be arranged to produce a "normally black" LCD having pixels that are dark (light is blocked) when the electrodes are not energized and light when the electrodes are energized.
  • Color LCD displays are created by varying the intensity of transmitted light for each of a plurality of primary color (typically, red, green, and blue) sub-pixels that make up a displayed pixel.
  • a twisted nematic device was described with respect to a twisted nematic device.
  • this description is only an example and other devices may likewise be used, including but not limited to, multi-domain vertical alignment, patterned vertical alignment, in- plane switching, and super-twisted nematic type LCDs.
  • other devices such as for example, plasma displays, organic displays, active matrix organic light emitting display, electroluminescent displays, liquid crystal on silicon displays, reflective liquid crystal devices may likewise be used.
  • the light emitting portion of the display, or portion of the display that permits the display of selected portions of light may be considered to selectively
  • the inner surface of the second glass substrate 63 is normally coated with a continuous electrode while the first glass substrate 61 is patterned into individual pixel electrodes.
  • the continuous electrode may be constructed using a transparent electrode, such as indium tin oxide.
  • the first glass substrate 61 may include thin film transistors (TFTs) which act as individual switches for each pixel electrode (or group of pixel electrodes) corresponding to a pixel (or group of pixels).
  • TFTs thin film transistors
  • the TFTs are addressed by a set of multiplexed electrodes running along the gaps between the pixel electrodes.
  • the pixel electrodes may be on a different layer from the TFTs.
  • a pixel is addressed by applying voltage (or current) to a selected line, which switches the TFT on and allows charge from the data line to flow onto the rear pixel electrodes.
  • the combination of voltages between the front electrode and the pixel electrodes sets up a voltage across the pixels and turns the respective pixels on.
  • the thin-film transistors are typically constructed from amorphous silicon, while other types of switching devices may likewise be used, such as for example, metal-insulator-metal diode and polysilicon thin-film transistors.
  • the TFT array and pixel electrodes may alternatively be on the top of the liquid crystal material. Also, the continuous electrode may be patterned or portions selectively selected, as desired. Also the light sensitive elements may likewise be located on the top, or otherwise above, of the liquid crystal material, if desired.
  • the active matrix layer may include a set of data lines and a set of select lines. Normally one data line is included for each column of pixels across the display and one select line is included for each row of pixels down the display, thereby creating an array of conductive lines.
  • a set of voltages are imposed on the respective data lines 204 which imposes a voltage on the sources 202 of latching transistors 200.
  • the selection of a respective select line 210, interconnected to the gates 212 of the respective latching transistors 200, permits the voltage imposed on the sources 202 to be passed to the drain 214 of the latching transistors 200.
  • the drains 214 of the latching transistors 200 are electrically connected to respective pixel electrodes and are capacitively coupled to a respective common line 221 through a respective Cst capacitor 218.
  • a respective capacitance exists between the pixel electrodes enclosing the liquid crystal material, noted as capacitances Clc 222 (between the pixel electrodes and the common electrode on the color plate).
  • the common line 221 provides a voltage reference.
  • the voltage data (representative of the image to be displayed) is loaded into the data lines for a row of latching transistors 200 and imposing a voltage on the select line 210 latches that data into the holding capacitors and hence the pixel electrodes.
  • the display may be operated based upon current levels.
  • the pixel electrodes 230 are generally grouped into a "single" effective pixel so that a corresponding set of pixel electrodes 230 may be associated with respective color filters (e.g., red, green, blue).
  • the latching transistors 200 interconnect the respective pixel electrodes 230 with the data lines and the select line.
  • the pixel electrodes 230 may be interconnected to the common line 221 by the capacitors Cst 218.
  • the pixels may include any desirable shape, any number of sub-pixels, and any set of color filters.
  • the active matrix layer may be constructed using an amorphous silicon thin-film transistor fabrication process. The steps may include gate metal deposition (FIG.
  • FIG. 4A a photolithography/etch (FIG. 4B), a gate insulator and amorphous silicon deposition (FIG. 4C), a photolithography/etch (FIG. 4D), a source/drain metal deposition (FIG. 4E), a photolithography/etch (FIG. 4F), an HO deposition (FIG. 4G), and a photolithography/etch (FIG.4H).
  • Other processes may likewise be used, as desired.
  • the present inventors considered different potential architectural touch panel schemes to incorporate additional optical layers between the polarizer on the front of the liquid crystal display and the front of the display.
  • additional layers include, for example, glass plates, wire grids, transparent electrodes, plastic plates, spacers, and other materials.
  • the present inventors considered the additional layers with different optical characteristics, such as for example, birefringence, non-birefringence, narrow range of wavelengths, wide range of wavelengths, etc.
  • the present inventors determined that an optimized touch screen is merely a tradeoff between different undesirable properties. Accordingly, the design of an optimized touch screen is an ultimately unsolvable task.
  • the present inventors came to the realization that modification of the structure of the active matrix liquid crystal device itself could provide an improved touch screen capability without all of the attendant drawbacks to the touch screen configuration located on the front of the display. Referring to FIG. 5, with particular attention to the latching transistors of the pixel
  • a black matrix 240 is overlying the latching transistors so that significant ambient
  • Color filters 242 may be located above the pixel electrodes.
  • the display is rendered effectively inoperative.
  • transistors within the active matrix layer may be used as a basis upon which to detect the existence of or non-existence of ambient light incident thereon (e.g., relative values thereto).
  • a modified active matrix layer may include a photo-sensitive structure or elements.
  • the preferred photo-sensitive structure includes a photo-sensitive thin
  • a capacitor Cst2 may interconnect the common line to the transistors. Referring to FIG. 7, a black
  • the black matrix may be in an overlying relationship to the readout TFT.
  • the black matrix is preferably an opaque material or otherwise the structure of the display selectively inhibiting the transmission of
  • the black matrix is completely
  • the black matrix is completely non- overlying the amorphous silicon portion of the photo TFT, and at least partially non-overlying the amorphous silicon portion of the photo TFT. Overlying does not necessarily denote direct
  • the black matrix is preferably fabricated on a layer other than the active plate, such as the color plate.
  • the active plate is normally referred to as the plate supporting the thin-film transistors.
  • the location of the black matrix on the color plate (or other non-active plate) results in limited additional processing or otherwise modification the fabrication of the active matrix.
  • the black matrix inhibits ambient light from impacting the amorphous silicon portion of the readout TFT to an extent greater than inhibiting ambient light from impacting the amorphous silicon portion of the photo TFT.
  • a gate metal, or other light inhibiting material may inhibit the photo-sensitive elements from the back light.
  • the photo-sensitive areas are generally rectangular in shape, although other shapes may be used.
  • the opening in the black matrix is preferably wider (or longer) than the corresponding channel area. In this manner the channel area and the opening in the black matrix are overlapping, with the opening extending in a first dimension (e.g., width) greater than the channel area and in a second dimension (e.g., length) less than the channel area.
  • This alignment alleviates the need for precise registration of the layers while ensuring reasonable optical passage of light to the light sensitive element.
  • Other relative seizes may likewise be used, as described.
  • the common line may be set at a negative voltage potential, such as -10 volts.
  • a voltage is imposed on the select line which causes the voltage on the readout line to be coupled to the drain of the photo TFT and the drain of the readout TFT, which results in a voltage potential across Cst2.
  • the voltage coupled to the drain of the photo TFT and the drain of the readout TFT is approximately ground (e.g., zero volts) with the non-inverting input of the operational amplifier connected to ground.
  • the voltage imposed on the select line is removed so that the readout TFT will turn "off.
  • a person touches the front of the display in a region over the opening in the black matrix or
  • the photo TFT transistor will be in an "off state. If the photo
  • a voltage is imposed on the select line which causes the gate of the readout TFT to interconnect the imposed voltage on Cst2 to the readout line. If the voltage imposed on the readout line as a result of activating the readout TFT is substantially unchanged, then the output of the operational amplifier will be substantially
  • the system is able to determine whether the light to the
  • the system will determine that the screen has been touched at the corresponding portion of the display with the photo TFT.
  • the voltage imposed on the select line causes the voltage
  • the voltage coupled to the drain of the photo TFT and the drain of the readout TFT is approximately ground (e.g., zero volts) with the non-inverting input of the operational amplifier connected to ground.
  • the voltage imposed on the select line is removed so that the readout TFT will turn "off. In this
  • the photo TFT transistor will be in an "on" state. If the photo
  • a voltage is imposed on the select line which causes the gate of the readout TFT to interconnect the imposed voltage to
  • the system is able to determine whether the light to the device has been uninhibited, in which case the system will determine that the screen has not been touched at the corresponding portion of the display with the photo TFT.
  • a layout of the active matrix layer may include the photo TFT, the capacitor Cst2, the readout TFT in a region between the pixel electrodes.
  • Light sensitive elements are preferably included at selected intervals within the active matrix layer.
  • the device may include touch panel sensitivity without the need for additional touch panel layers attached to the front of the display.
  • the additional photo TFT, readout TFT, and capacitor may be fabricated together with the remainder of the active matrix layer, without the need for specialized processing.
  • the complexity of the fabrication process is only slightly increased so that the resulting manufacturing yield will remain substantially unchanged. It is to be understood that other light sensitive elements may likewise be used.
  • other light sensitive electrical architectures may likewise be used.
  • Line 300 illustrates a dark ambient environment with the gate connected to the source of the photo TFT. It will be noted that the leakage currents are low and relatively stable over a range of voltages.
  • Line 302 illustrates a dark ambient environment with a floating gate of the photo TFT. It will be noted that the leakage currents are generally low and relatively unstable over a range of voltages (significant slope).
  • Line 304 illustrates a low ambient environment with the gate connected to the source of the photo TFT. It will be noted that the leakage currents are three orders of magnitude higher than the corresponding dark ambient conditions and relatively stable over a range of voltages.
  • Line 306 illustrates a low ambient environment with a floating gate of the photo TFT. It will be noted that the leakage currents are generally three orders of magnitude higher and relatively unstable over a range of voltages
  • Line 308 illustrates a high ambient environment with the gate connected to
  • Line 310 illustrates a high ambient environment with a floating gate of the
  • leakage currents are generally 4.5 orders of magnitude
  • the system may
  • the architecture preferably permits the leakage currents to be within one order of magnitude over the central 50%, more preferably over the central 75%, of the voltage range used for displaying images.
  • the Cst2 capacitor will not fully discharge, as illustrated by the downward spike in the graph.
  • downward spike in the graph provides location information related to the region of the display that has been touched.
  • the Cst2 capacitor will discharge to a significantly less
  • display may be determined as localized minimums. In other embodiments, depending on the
  • the location(s) where the user inhibits light from reaching the display may be determined as localized maximums or otherwise some measure from the additional components.
  • the value of the capacitor Cst2 may be selected
  • a smaller capacitance may be selected so that the device is more sensitive to changes in light.
  • a larger capacitance may be selected so that the device is more sensitive to changes in light.
  • the device may be selected so that the device is less sensitive to changes in light.
  • the device may be selected so that the device is less sensitive to changes in light.
  • the dimensions of the phototransistor may be selected to change the photo-leakage current. Also, one set of light sensitive elements (e.g., the photo TFT and the capacitance) within the display
  • the display may be optimized for low ambient lighting conditions while another set of light sensitive elements (e.g., the photo TFT and the capacitance) within the display may be optimized for high
  • the data from light sensitive elements for low ambient conditions and the data from light sensitive elements for high ambient conditions are separately
  • the same display device may be used for high and low ambient lighting conditions.
  • multiple levels of sensitivity may be used for high and low ambient lighting conditions.
  • alternative architecture may be used for sensing the decrease and/or increase in ambient light.
  • Another structure that may be included is selecting the value of the capacitance so
  • an optical pointing device such as a light wand or laser pointer, might be used to point at the display to further discharge particular regions of the display.
  • the region of the display that the optical pointing device remains pointed at may be detected as local maximums (or otherwise).
  • those regions of the display where light is inhibited will appear as local minimums (or otherwise). This provides the capability of
  • a graph illustrates local minimums (upward peaks) from added light and local maximums (downward peaks) from a lack of light.
  • one set of light sensitive elements e.g., the photo TFT and the capacitance
  • within the display may be optimized for ambient lighting conditions to detect the absence of light
  • display may be optimized for ambient lighting conditions to detect the additional light imposed thereon.
  • a switch associated with the display may be provided to select among a plurality of different sets of light sensitive elements. For example, one of the switches may select between low, medium, and high ambient lighting conditions. For example, another switch may select
  • the optical pointing device may communicate to the display, such as through a
  • a light sensor configured to automatically change to the optical sensing mode.
  • the light sensitive elements may be used to sense the ambient lighting conditions to select among
  • the sensor and/or one or more light sensitive elements are different sets of light sensitive elements. Also the sensor and/or one or more light sensitive elements. Also the sensor and/or one or more light sensitive elements.
  • elements may be used to select, (1) to sense the absence of light, (2) select to sense the addition
  • the corresponding color filters for (e.g., above) some or all
  • the light sensitive elements may be omitted or replaced by a clear (or substantially clear) material. In this manner the light reaching some of the light sensitive elements will not be
  • the light sensitive elements may likewise be
  • the sensing devices may be, for example, photo resistors and photo diodes.
  • light sensitive elements may be provided between the rear polarizing element and the active matrix layer.
  • the light sensitive elements are preferably fabricated on the polarizer, or otherwise a film attached to the polarizer.
  • the light sensitive elements may be provided on a thin glass plate between the polarizer and the liquid crystal material.
  • the black matrix or otherwise light inhibiting material is preferably arranged so as to inhibit ambient light from striking the readout TFT while free from inhibiting light from striking the photo TFT.
  • a light blocking material is provided between the photo TFT and/or the readout TFT and the backlight, such as gate metal, if provided, to inhibit the light from the backlight from reaching the photo TFT and/or the readout TFT.
  • light sensitive elements may be provided between the front polarizing element and the liquid crystal material.
  • the light sensitive elements are preferably fabricated on the polarizer, or otherwise a film attached to the polarizer.
  • the light sensitive elements may be provided on a thin glass plate between the polarizer and the liquid crystal material.
  • the light sensitive elements may likewise be fabricated within the front electrode layer by patterning the front electrode layer and including suitable fabrication techniques.
  • a black matrix or otherwise light inhibiting material is preferably arranged so as to inhibit ambient light from striking the readout TFT while free from inhibiting light from striking the photo TFT.
  • a light blocking material is provided between the photo TFT and/or the readout TFT and the backlight, if provided, to inhibit the light from the backlight from reaching the photo TFT and/or the readout TFT.
  • light sensitive elements may be provided between the front of the display and the rear of the display, normally fabricated on one of the layers therein or fabricated on a separate layer provided within the stack of layers within the display.
  • the light sensitive elements are preferably provided between the front of the display and the backlight material. The position of the light sensitive elements are
  • This may be particularly useful for reflective displays where the pixel electrodes are
  • any reflective conductive electrodes should be any reflective conductive electrodes.
  • the light sensitive elements are preferably fabricated on one or more of the
  • otherwise light inhibiting material is preferably arranged so as to inhibit ambient light from
  • a light blocking material is provided between the photo TFT and/or the readout TFT and the backlight, if provided, to inhibit the light from the backlight from reaching the photo TFT and/or the readout TFT.
  • the integrated light sensitive elements within the display stack may be used as a measure of the ambient lighting conditions to control the intensity of the
  • averaging may be used, or a plurality of light sensitive element may be used together with additional processing, such as averaging.
  • the readout line may be included in a periodic manner within the display sufficient to generally identify the location of the "touch". For example the readout line may be periodically added at each 30 th column. Spacing the readout lines at a significant number of pixels apart result in a display that nearly maintains its previous brightness because most of the pixel electrodes have an unchanged size. However, after considerable testing it was determined that such periodic spacing results in a noticeable non-uniform gray scale because of differences in the size of the active region of the pixel electrodes.
  • One potential resolution of the non-uniform gray scale is to modify the frame data in a manner consistent with the non- uniformity, such as increasing the gray level of the pixel electrodes with a reduced size or otherwise reducing the gray levels of the non-reduced size pixel electrodes, or a combination thereof. While a potential resolution, this requires additional data processing which increases the computational complexity of the system.
  • a more desirable resolution of the non-uniform gray scale is to modify the display to include a readout line at every third pixel, or otherwise in a manner consistent with the pixel electrode pattern of the display (red pixel, green pixel, blue pixel).
  • a readout line is included at least every 12 th pixel (36 pixel electrodes of a red, blue, green arrangement), more preferably at least every 9 th pixel (27 pixel electrodes of a red, blue, green arrangement), even more preferably at least every 6 th pixel (18 pixel electrodes of a red, blue, green arrangement or 24 pixel electrodes of a red, blue, blue green arrangement), and most preferably at least every 3 rd pixel (3 pixel electrodes of a red, blue, green arrangement).
  • the readout lines are preferably included for at least a pattern of four times the spacing between readout lines (e.g., 12 th pixel times 4 equals 48 pixels, 9 th pixel times 4 equals 36 pixels). More preferably the patten of readout lines is included over a majority of the display.
  • the resulting display may include more readout lines than are necessary to accurately determine the location of the "touch”.
  • a selection of the readout lines may be free from interconnection or otherwise not operationally interconnected with readout electronics.
  • the readout lines not operationally interconnected with readout electronics may likewise be free from an associated light sensitive element.
  • additional non- operational readout lines may be included within the display to provide a gray scale display with increased uniformity.
  • one or more of the non-operational readout lines may be replaced with spaces.
  • the gray scale display may include increased uniformity, albeit with additional spaces within the pixel electrode matrix.
  • the present inventors considered the selection of potential pixel electrodes and came to the realization that the electrode corresponding to "blue” light does not contribute to the overall white transmission to the extent that the "green” or “red” electrodes. Accordingly, the system may be designed in such a manner that the light sensitive elements are associated with the “blue” electrodes to an extent greater than their association with the "green” or “red” electrodes. In this manner, the "blue” pixel electrodes may be decreased in size to accommodate the light sensitive elements while the white transmission remains substantially unchanged. Experiments have shown that reducing the size of the "blue” electrodes to approximately 85% of their original size, with the "green” and “red” electrodes remaining unchanged, results in a reduction in the white transmission by only about 3 percent.
  • the reduction of pixel apertures results in a reduction of brightness normally by at least 5 percent and possibly as much as 15 percent depending on the resolution and layout design rules employed.
  • the manufacturing yield is decreased because the readout line has a tendency to short to its neighboring data line if the processing characteristics are not accurately controlled.
  • the data line and readout line may be approximately 6-10 microns apart along a majority of their length.
  • the present inventors came to the realization that the readout of the photo-sensitive circuit and the writing of data to the pixels may be combined on the same bus line, or otherwise a set of lines that are electrically interconnected to one another.
  • a switch 418 may select between providing new data 420 to the selected pixels and reading data 414 from the selected pixels. With the switch 418 set to interconnect the new data 420 with the selected pixels, the data from a frame buffer or otherwise the video data stream may be provided to the pixels associated with one of the select lines.
  • Multiple readout circuits may be used, or one or more multiplexed readout circuits maybe used.
  • the new data 420 provided on data line 400 may be 4.5 volts which is latched to the pixel electrode 402 and the photo TFT 404 by imposing a suitable voltage on the select line 406. In this manner, the data voltage is latched to both the pixel electrode and a corresponding photosensitive circuit.
  • the display is illuminated in a traditional manner and the voltage imposed on the photo TFT 404 may be modified in accordance with the light incident on the photo-sensitive circuit, as previously described.
  • the photo TFT 404 is normally a N- type transistor which is reverse biased by setting the voltage on the common line 408 to a voltage lower than an anticipated voltage on the photo TFT 404, such as -10 or -15 volts.
  • the data for the current frame may be stored in a frame buffer for later usage. Prior to writing the data for another frame, such as the next frame, the data (e.g., voltage) on the readout TFT 410 is read out.
  • the switch 418 changes between the new data 420 to the readout line 414 interconnected to the charge readout amplifier 412.
  • the select line 406 is again selected to couple the remaining voltage on the photo TFT 404 through the readout TFT 410 to the data line 400.
  • the coupled voltage (or current) to the data line 400 is provided as an input to the charge readout amplifier 412 which is compared against the corresponding data from the previous frame 422, namely, the voltage originally imposed on the photo TFT 404.
  • the difference between the readout line 414 and the data from the previous frame 422 provides an output to the amplifier 412.
  • the output of the amplifier 412 is provided to the processor.
  • the greater the drain of the photo TFT 404 normally as a result of sensing light, results in a greater output of the amplifier 412. Referring to FIG. 14, an exemplary timing for the writing and readout on the shared data line 400 is illustrated.
  • the integrated optical touch panel is not expected to operate well to the touch of the finger because there will be an insufficient (or none) difference between the signals from the surrounding area and the touched area.
  • a light pen or laser pointer may be used (e.g., light source), as previously described.
  • the light source may be operably interconnected to the display such as by a wire or wireless communication link. With the light source operably interconnected to the display the intensity of the light source may be controlled, at least in part, by feedback from the photo-sensitive elements or otherwise the display, as illustrated in FIG. 15. When the display determines that sufficient ambient light exists, such as ambient light exceeding a threshold value, the light source is turned
  • the light source is turned "on". In this manner, touching or
  • the intensity of the light from the light source may be varied, such as step-wise, linearly, non-
  • the light source may include its own ambient light detector so that feedback from the display is unnecessary and likewise communication between the light source and the display may be unnecessary.
  • light may be turned on and off in some manner, such as blinking at a rate synchronized with the display line scanning or frames.
  • An exemplary timing for an odd/even frame arrangement is
  • the illumination of some types of displays involves scanning the display in a row-by-row manner.
  • the differential signal may be improved by modifying the timing of the light pulses in accordance with the timing of the gate pulse (e.g., scanning) for the respective pixel electrodes. For example, in a top-down scanning display the light pulse should be earlier when the light source is directed toward the top of the display as opposed to the bottom of the display.
  • the synchronization may be based upon feedback from the display, if desired.
  • the light source may blink at a rate synchronized with the display line scanning.
  • the light source may use the same driver source as the image pixel electrodes.
  • the use of sequential (or otherwise) frames may be subtracted from one another which results in significant different between signal and ambient conditions.
  • the light sensitive elements have a dynamic range greater than 2 decades, and more preferably a dynamic range greater than 4 decades. If desired, the system may use two sequential fields of scanning (all lines) subtracted from the next two fields of scanning (all lines) so that all the lines of the display are used.
  • Another technique for effective operation of the display in dark or low level ambient conditions is using a pen or other device with a light reflecting surface that is proximate (touching or near touching) the display when interacting with the display.
  • the light from the backlight transmitted through the panel is then reflected back into the photo-sensitive element and the readout signal will be greater at the touch location than the surrounding area.
  • another type of reflective liquid crystal display typically used on handheld computing devices, involves incorporating a light guide in front of the liquid crystal material, which is normally a glass plate or clear plastic material.
  • the light guide is constructed from an opaque material having an index of refraction between 1.4 and 1.6, more typically between 1.45 and 1.50, and sometimes of materials having an index of refraction of 1.46.
  • the light guide may further include anti-glare and anti-reflection coatings.
  • the light guide is frequently illuminated with a light source, frequently disposed to the side of the light guide.
  • the light source may be any suitable device, such as for example, a cold cathode fluorescent lamp, an incandescent lamp, and a light emitting diode.
  • a reflector may be included behind the lamp to reflect light that is emitted away from the light guide, and to re-direct the light into the light guide.
  • the light propagating within the light guide bounces between the two surfaces by total internal reflections. The total internal reflections will occur for angles that are above the critical angle, measured relative to the normal to the surfaces, as illustrated in FIG. 18.
  • one suitable technique for the localized diffusion of light involves using a plastic pen to touch the front of the display.
  • the internally reflected light coincident with the location that the pen touches the display will significantly diffuse and be directed toward the photo sensitive elements within the display.
  • the plastic pen, or other object including the finger or the eraser of a pencil preferably has an index of refraction within 0.5, more preferably within 0.25, of the index of refraction of the light guide.
  • the index of refraction of the light guide may be between 1.2 and 1.9, and more
  • the plastic pen preferably has sufficient
  • reflectivity of light as opposed to being non-reflective material, such as for example, black felt.
  • the light guide results in a darkened region with generally consistent optical properties
  • the light sensitive elements are
  • liquid crystal material or otherwise the light valve or electroluminescent material
  • the illuminated region has an illumination brighter in relation to the remainder of the darkened region.
  • a center of gravity technique may be located by any suitable technique, such as for example, a center of gravity technique.
  • the display screen will have a relatively light colored region, such as white or tan, which is used as a virtual button for operating software.
  • a relatively light colored region such as white or tan, which is used as a virtual button for operating software.
  • the light colored region is indicative of light passing through the liquid crystal
  • a pointing instrument includes a generally reflective material the light passing through the display may be reflected back through the display. The light reflected back through the display may be sensed by the light sensitive elements.
  • the device may "hover" at a location above the display. Normally, during this hovering
  • the illuminated region is beneficial because it provides a technique for the
  • the sensitivity to hovering may be related to the light sensitive elements
  • the black matrix may include central
  • the openings may be considered a non-continuous opening or otherwise the spatial opening for a particular pixel is non- continuous.
  • “touching” is to temporally model the "shadow” region (e.g., light impeded region of the display). In one embodiment, when the user is typically touching the display then the end of the shadow region (e.g., light impeded region of the display).
  • the shadow will typically remain stationary for a period of time, which may be used as a basis, at least in part, of "touching". In another embodiment, the shadow will typically enlarge as the
  • pointing device approaches the display and shrinks as the pointing device recedes from the display, where the general time between enlarging and receding may be used as a basis, at least in
  • the shadow will typically enlarge as the pointing
  • the shadow will typically
  • pointing device is touching the display, where the general time where the shadow maintains the same general shade may be used as a basis, at least in part, of "touching".
  • the light directing structure may be used.
  • One such light directing structure is shown in FIG. 23.
  • the light directing structure is preferably included around a portion of the periphery of the display and may reflect ambient light across the frontal region of the display. The reflected light then
  • display may be used, at least in part, to detect the touching of the display or otherwise inhibiting light to the display.
  • the handheld portion of the display may use any recognition technique,
  • the refresh rate of the display is typically generally 60 hertz
  • the refresh rate of the handwriting portion of the display is typically generally 100 hertz.
  • the light-sensitive elements should be sampled at a sampling rate corresponding
  • ambient lighting conditions low ambient lighting conditions, regular ambient lighting
  • the display is alleviated of a dependency on the ambient lighting conditions.
  • the illumination point is more pronounced and thus easier to extract.
  • the present inventors came to the realization that by providing light to the light guide of a limited selection of wavelengths and selectively filtering
  • the wavelengths of light within the display the difference between touched and un-touched may be increased.
  • the light from the light source provided to the light guide is
  • the light source may provide light of a range of wavelengths, such as 600-700nm, or 400-500 and 530-580, or 630.
  • the light provided to the light guide has a range of wavelengths (in any significant amount) less than white light or otherwise the range of wavelengths of ambient light. Accordingly, with the light provided to the light guide having a limited color gamut (or reduced color spectrum) the touching of the pointing device on the display results in the limited color gamut light being locally directed toward the light-sensitive elements.
  • a color filter may be included between the light guide and the light-sensitive elements to filter out at least a portion of the light not included within the limited color gamut.
  • the color filter reduces the transmission of ambient light to an extent greater than the transmission of light from the light source or otherwise within the light guide.
  • the ambient light may be considered as "white” light while the light guide has primarily "red” light therein.
  • a typical transmission of a red color filter for ambient white light may be around 20%, while the same color filter will transmit about 85% of the red light.
  • the transmission of ambient light through the color filter is less than 75% (greater than 25% attenuation) (or 60%, 50%, 40%, 30%) while the transmission of the respective light within the light guide is greater than 25% (less than 25% attenuation) (or 40%, 50%, 60%, 70%), so that in this manner there is sufficient attenuation of selected wavelengths of the ambient light with respect to the wavelengths of light within the light guide to increase the ability to accurately detect the touching.
  • the light source to the light guide may include a switch or otherwise automatic modification to "white" light when operated in low ambient lighting conditions. In this manner, the display may be more effective viewed at low ambient lighting conditions.
  • the present inventors determined that if the light source providing light to the display was modulated in some fashion an improvement in signal detection may be achieved.
  • a pointing device with a light source associated therewith may modulate the light source in accordance with the frame rate of the display. With a frame rate of 60 hertz the pointing device may for example modulate the light source at a rate of 30 hertz, 20 hertz, 10 hertz, etc. which results in additional light periodically being sensed by the light sensitive elements.
  • the light source is modulated ("blinked") at a rate synchronized with the display line scanning, and uses the same raw drivers as the image thin-film transistors.
  • the resulting data may be processed in a variety of different ways.
  • the signals from the light sensitive elements are used, as captured.
  • the resulting improvement in signal to background ratio is related to the pulse length of the light relative to the frame time. This provides some additional improvement in signal detection between the light generated by the pointing device relative to the ambient light (which is constant in time).
  • multiple frames are compared against one another to detect the presence and absence of the additional light resulting from the modulation.
  • subsequent frames one without additional light and one with additional light
  • the data from the light sensitive elements may be subtracted from one another.
  • the improvement in signal to background ratio is related to the periodic absence of the additional light.
  • this processing technique is especially suitable for low ambient lighting and high ambient lighting conditions.
  • the dynamic range of the sensors is at least 4 decades, and two sequential frames with additional light and two sequential frames without additional light are used so that all of the scanning lines are encompassed.
  • a pressure based mechanism may be used.
  • One pressure based mechanism may include pressure sensitive tape between a pair of layers of the display or between the display and a support for the display.
  • Another pressure based mechanism may include an electrical or magnetic sensor operably connected to the display. In either case, the pressure based mechanism provides a signal to the display electronics indicating the sensing of pressure (e.g., touch) or alternatively the absence of pressure (e.g., non-touch).
  • one configuration of an elongate light emitting device includes an infra-red light emitting diode that periodically or continuously emits an infra-red beam.
  • the infra-red beam is transmitted from the light emitting device and reflects off the display.
  • the reflected infra-red beam will not strike the light pen.
  • the reflected infra-red beam will strike the light pen and is sensed by an infra-red sensor within the light pen.
  • Infra-red light is preferred, while any suitable wavelength may be used that the light sensitive elements of the display are generally insensitive to.
  • the visible light emitting diode When the infra-red sensor senses the reflected infra-red light the visible light emitting diode is turned on to illuminate the pixel.
  • the visible light emitting diode preferably provides a wavelength that the light sensitive elements of the display are sensitive to. After a predetermined duration or otherwise while the infra-red light is not being sensed by the infra-red sensor the visible light emitting diode is turned off. In this manner, battery power within the light pen is conserved.
  • the edge or shape of the visible light from the visible light emitting diode may be used to determine the spacing between the light pen and the display.
  • the beam from the visible light emitting diode may be varied based upon the signal sensed by the infra-red sensor.
  • the present inventors Upon reconsidering the display with a light guide, as illustrated in FIG. 17, the present inventors realized that those portions of the light guide that are in contact with the high portion of the user's fingerprints will tend to diffuse and scatter light toward the light sensitive elements, as illustrated in FIG. 25. Those portions of the light guide that are not in contact with the high portion of the user's fingerprints (i.e., valleys) will not tend to diffuse and scatter light toward the light sensitive elements. Depending on the thickness of the light guide and liquid crystal material together with the density of the light sensitive elements, the details observable in the fingerprint will vary. To increase the ability to detect the fingerprint, the display may be designed with multiple densities of light sensitive elements.
  • the density of the light sensitive elements may be increased such as including a light sensitive element at every sub-pixel.
  • the display includes multiple densities of light sensitive elements.
  • the display may likewise be used for sensing other items, such as for example, bar codes. In some cases there may be excessive parallax which causes a smeared image to
  • a separate sensor structure may be included within the display.
  • the sensor structure may include a lens between the light guide and the light sensitive elements.
  • the lens may be any suitable lens structure, such as for example, a small focus lens or a SELFOC lens (variable index of refraction fiber optics).
  • the color filters in the fingerprint sensing region may be omitted, f desired.
  • the display may include two (or more) different densities of light sensitive elements across the display.
  • the light guide and lens may be omitted and a high density of light sensitive elements included for fingerprint sensing. It is to be understood that other items may likewise be sensed with the high density light sensitive elements.
  • the light sensitive elements will tend to observe very high ambient lighting conditions when the finger is not present rendering their ability to detect high contrast images difficult.
  • a color filter may be provided in an overlying relationship to the light sensitive elements.
  • the light source may be selected in relation to the color filter.
  • a blue filter may be used together with a blue light source.
  • the illumination may be modulated and synchronized with the sensors.
  • the light source may be illuminated with relatively short pulses together with the triggering of the sensing by the light sensitive elements.
  • the light is pulsed in relation to the frame rate it is preferably pulsed at half the frame rate. In this manner the light pulses will be ensured to be sensed during different frames.
  • a light inhibiting material may closely surround the region where the finger is locate to reduce stray ambient light,
  • Sweat is primarily water with an index of refraction of approximately 1.3.
  • Typical glass has an index of refraction of approximately 1.5 which is sufficiently different than 1.3, and accordingly sweat will not significantly negatively impact image sensing.
  • oils have an index of refraction of approximately 1.44 to 1.47 which is considerably closer to 1.5, and accordingly oil will tend to significantly impact image sensing.
  • the glass may be replaced with glass having a higher index of refraction or glass coated with a material having a higher index of refraction, such as for example, 1.55 or more.
  • the display may include a signature portion that includes a memory maintaining material.
  • the memory maintaining material may sense the writing of the signature, such as by pressure exerted thereon or light sensitive material.
  • the memory material may be a pair of flexible layers with fluid there between that is displaced while writing the signature. After writing the name the user may press a button or otherwise touch another portion of the display indicating that the signature is completed.
  • the display may sense the signature by a sufficient change in the optical properties of the memory maintaining
  • the display may then capture an image of the signature. For example, the image of the
  • the signature is in transmissive ("white") mode.
  • the signature may be cleared in any manner, such as
  • the display may include a signature mode that captures the user's
  • the signature may be captured on a predetermined region of the
  • the system detects the decrease in ambient light
  • the "path" of the signature maybe determined and thereafter used in any suitable manner.
  • the pen may include a
  • a light emitting diode provides a beam of light that
  • optical path is channeled through the optical path.
  • the optical path is in a
  • the light sensitive elements may detect the intensity of the transmitted light and determine the pressure that is being exerted against the display by the user. This capability is particular useful for pressure sensitive applications, such as Photoshop by Adobe.
  • a cylindrical tubular tip portion is movable with respect to the pen that extends and retracts based upon pressed exerted on the display.
  • a lens Within the cylindrical tubular tip portion is a lens.
  • the lens focuses the light emitted from a light emitting diode, which preferably is maintained stationary with respect to the pen and/or moves with respect to the cylindrical tubular tip portion.
  • the light emitting diode may be connected to the tip portion of the pen.
  • light may be more focused on the display (light sensitive elements) than when the cylindrical tubular tip portion is in an extended state.
  • the lens may be modified so that it operates in a reversed manner.
  • the focus of the beam may be detected in any suitable manner by the light sensitive elements (e.g., size and/or intensity) to determine the pressure that is being exerted against the display by the user.
  • a cylindrical tubular tip portion or optical light guide is movable with respect to the pen that extends and retracts based upon pressure exerted on the display.
  • the variable resistive element changes.
  • the variable resistive element is interconnected to a light emitting diode which changes intensity based upon the change in the variable resistance.
  • the intensity of light sensed by the light sensitive elements, or otherwise the change in intensity sensed by the light sensitive elements, may be used to determine the pressure that is being exerted against the display by the user.
  • An optional lens focuses a beam from a light emitting diode. When the pen is farther from the display a
  • the intensity of the light and/or the size of the spot sensed by the pen is closer to the display.
  • polarizers may be included on the lower surface of the light guide.
  • other polarizers may be included on the lower surface of the light guide.
  • other polarizers may be included on the lower surface of the light guide.
  • the surface of the light guide preferably matches (+/- 5 degrees, +/- 2 degrees) the orientation of the
  • the polarizers may include anti-
  • FIG. 33 an exemplary image processing technique is illustrated for processing the data from the display to determine the location of the touch.
  • the display is
  • a calibration image module initially calibrated by a calibration image module.
  • an image is obtained with the display covered by a black cloth or otherwise blocked from receiving ambient light.
  • reference image may be referred to as 10. Then an image may be obtained under normal uniform
  • a comparison between 10 and II may be performed to calibrate the display.
  • the image is initially captured by a capture image module.
  • a 60 x 60 sensor matrix may be captured.
  • a set of consecutive frames may then be averaged by an average frame module in order to reduce the noise in the signal, such as
  • An AGC module may perform an automatic gain control function in order to adjust for an offset in the value.
  • Ie is the signal after equalization.
  • Is is the sensor signal as captured or after averaging.
  • 10 is the stored sensor reading for the black reference image.
  • II is the stored sensor reading for the bright (e.g., ambient lighting conditions) reference image.
  • the equalization module uses 10 to adjust for the potential non-zero value at dark conditions. In particular, this adjustment is made by the calculation of Is-10.
  • the resulting comparison e.g., division
  • of the captured signal versus the stored bright reference signals adjusts the level of the signal.
  • the output of the equalization is a normalized signal with a range from 0 to 1 in the case that Is ⁇ H. Ie may then be used to adjust the gain of the output of the average frame module ro captured image value.
  • the AGC module thus effectively corrects for dark level non-uniformity and for sensor gain non-uniformity.
  • a smoothing module may be used to average proximate values together to compensate for non-uniformity in the characteristics of the display.
  • a suitable filter is an averaging of the 8 adjacent pixels to a central pixel.
  • the system provides relatively sharp edges from the signals which may be used directly.
  • a preferred edge detection technique uses a 3x3 matrix, such as for example: ⁇ (-1 -1 -1) (-1 8 -1) (-1 -1 -1) ⁇ .
  • the effect of the edge detection module is to enhance or otherwise determine those regions of the image that indicate an edge.
  • Other edge detection techniques may likewise be used, such as for example, a Sobel edge detection technique, a 1 st derivative technique, and a Robert's cross technique.
  • a threshold module may be used to set all values below a predetermined threshold value to zero, or otherwise indicate that they are not edges or regions being touched. In the case that the system provides negative values the predetermined threshold value may be less than an absolute value. The use of threshold values assists in the discrimination between the end of the finger touching the display and the shade from the hand itself. If there are an insufficient number of pixels as a result of the threshold module that are non-thresholded then the system returns to the start.
  • the system determines the largest region of non-thresholded values using a max location module. In this manner, smaller regions of a few values may be removed so that the predominant region of non-thresholded values may be determined.
  • a center of gravity module may be used to determine the center of the maximum region from the max location module.
  • An x-y coordinates module may be used to provide the x and y display coordinates and a plot cross module maybe used to display a cross on the display at the x-y coordinates of the center of gravity.
  • the cross module may provide data regarding the existence of the "touch" and its location to the system and return control back to the start.
  • the display may become scratched or otherwise a foreign object will be stuck to the front of the display. In this case the display will tend to provide false readings that the scratch or foreign object is indicative of a touch.
  • one or more bright reference images II may be obtained over a period of time. The set of one or more bright reference images II may be averaged if an insubstantial difference exists between the images. This reduces the likelihood that the display was touched during one or more of the image acquisitions. In the event that the images are substantially different then the images may be reacquired until an insubstantial difference exists.

Abstract

A light sensitive display including a front electrode layer, a rear electrode layer comprising a plurality of pixel electrodes (402), a liquid crystal material located between the front electrode layer and the rear electrode layer, a front polarizer located towards the front of the liquid crystal device relative to the front electrode layer, a rear polarizer located towards the rear of the liquid crystal later relative to the rear electrode layer and a plurality of light sensitive elements located within the display wherein each of the light sensitive element includes a first transistor (200) that senses ambient light and a second transistor that is inhibited from sensing ambient light with respect to the first transistor.

Description

LIGHT SENSITIVE DISPLAY
BACKGROUND OF THE INVENTION
This application claims priority of U.S. Serial Number 10/329,217 filed December
23, 2002; U.S. Serial Number 10/307,106 filed November 27,2002; U.S. Serial Number
10/217,798 filed August 12, 2002, claims the benefit of U.S. Serial Number 60,359,263 filed
February 20, 2002.
The present invention relates to touch sensitive displays.
Touch sensitive screens ("touch screens") are devices that typically mount over a
display such as a cathode ray tube. With a touch screen, a user can select from options displayed
on the display's viewing surface by touching the surface adjacent to the desired option, or, in
some designs, touching the option directly. Common techniques employed in these devices for detecting the location of a touch include mechanical buttons, crossed beams of infrared light, acoustic surface waves, capacitance sensing, and resistive materials.
For example, Kasday, U.S. Patent No. 4,484,179 discloses an optically-based touch screen comprising a flexible clear membrane supported above a glass screen whose edges
are fitted with photodiodes. When the membrane is flexed into contact with the screen by a touch, light which previously would have passed through the membrane and glass screen is
trapped between the screen surfaces by total internal reflection. This trapped light travels to the
edge of the glass screen where it is detected by the photodiodes which produce a corresponding output signal. The touch position is determined by coordinating the position of the CRT raster
beam with the timing of the output signals from the several photodiodes. The optically-based touch screen increases the expense of the display, and increases the complexity of the display.
Denlinger , U.S. Patent No. 4,782,328 on the other hand, relies on reflection of ambient light from the actual touch source, such as a finger or pointer, into a pair of photosensors
mounted at corners of the touch screen. By measuring the intensity of the reflected light received by each photosensor, a computer calculates the location of the touch source with reference to the screen. The inclusion of the photosensors and associated computer increases the expense of the display, and increases the complexity of the display.
May, U.S. Patent No. 5,105,186, discloses a liquid crystal touch screen that includes an upper glass sheet and a lower glass sheet separated by spacers. Sandwiched between the glass sheets is a thin layer of liquid crystal material. The inner surface of each piece of glass is coated with a transparent, conductive layer of metal oxide. Affixed to the outer surface of the upper glass sheet is an upper polarizer which comprises the display's viewing surface. Affixed to the outer surface of glass sheet is a lower polarizer. Forming the back surface of the liquid crystal display is a transflector adjacent to the lower polarizer. A transflector transmits some of the light striking its surface and reflects some light. Adjacent to transflector is a light detecting array of light dependent resistors whose resistance varies with the intensity of light detected. The resistance increases as the light intensity decreases, such as occurs when a shadow is cast on the viewing surface. The light detecting array detect a change in the light transmitted through the transflector caused by a touching of viewing surface. Similar to touch sensitive structures affixed to the front of the liquid crystal stack, the light sensitive material affixed to the rear of the liquid crystal stack similarly pose potential problems limiting contrast of the display, increasing the expense of the display, and increasing the complexity of the display. Touch screens that have a transparent surface which mounts between the user and the display's viewing surface have several drawbacks. For example, the transparent surface, and other layers between the liquid crystal material and the transparent surface may result in multiple reflections which decreases the display's contrast and produces glare. Moreover, adding an additional touch panel to the display increases the manufacturing expense of the display and increases the complexity of the display. Also, the incorporation of the touch screen reduces the overall manufacturing yield of the display.
Accordingly, what is desired is a touch screen that does not significantly decrease the contrast ratio, does not significantly increase the glare, does not significantly increase the expense of the display, and does not significantly increase the complexity of the display.
BRIEF DESCRIPTION OF THE DRAWINGS
HG. 1 is a cross sectional view of a traditional active matrix liquid crystal display.
FIG. 2 is a schematic of the thin film transistor array.
FIG. 3 is a layout of the thin film transistor array of FIG. 2.
FIGS. 4A-4H is a set of steps suitable for constructing pixel electrodes and amorphous silicon thin-film transistors.
FIG. 5 illustrates pixel electrodes, color filters, and a black matrix.
FIG. 6 illustrates a schematic of the active matrix elements, pixel electrode, photo TFT, readout TFT, and a black matrix.
FIG. 7 illustrates a pixel electrode, photo TFT, readout TFT, and a black matrix. FIG. 8 is a layout of the thin film transistor array of FIGS. 6 and 7.
FIG. 9 is a graph of the capacitive charge on the light sensitive elements as a
result of touching the display at high ambient lighting conditions.
FIG. 10 is a graph of the capacitive charge on the light sensitive elements as a
result of touching the display at low ambient lighting conditions.
FIG. 11 is a graph of the photo-currents in an amorphous silicon TFT array.
FIG. 12 is a graph of the capacitive charge on the light sensitive elements as a
result of touching the display and providing light from a light pen.
FIG. 13 is an alternative layout of the pixel electrodes.
FIG. 14 illustrates a timing set for the layout of FIG. 13.
FIG. 15 illustrates a handheld device together with an optical wand.
FIG. 16 illustrates even/odd frame addressing.
FIG. 17 illustrates a front illuminated display.
FIG. 18 illustrates total internal reflections.
FIG. 19 illustrates a small amount of diffraction of the propagating light.
FIG. 20 illustrates significant diffraction as a result of a plastic pen.
FIG. 21 illustrates a shadow of a pointing device and a shadow with illuminated region of a pointing device.
FIG. 22 illustrates a modified black matrix arrangement.
FIG. 23 illustrates a light reflecting structure.
FIG. 24 illustrates a pen.
FIG. 25 illustrates a light guide and finger. FIG. 26 illustrates a display with multiple sensor densities and optical elements.
FIG. 27 illustrates a display with memory maintaining material.
FIG. 28 illustrates another pen
FIG. 29 illustrates another pen.
FIG. 30 illustrates another pen.
FIG. 31 illustrates another pen.
FIG. 32 illustrates another light guide.
FIG. 33 illustrates an image acquisition and processing technique.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIG. 1, a liquid crystal display (LCD) 50 (indicated by a bracket) comprises generally, a backlight 52 and a light valve 54 (indicated by a bracket). Since liquid crystals do not emit light, most LCD panels are backlit with fluorescent tubes or arrays of light- emitting diodes (LEDs) that are built into the sides or back of the panel. To disperse the light and obtain a more uniform intensity over the surface of the display, light from the backlight 52 typically passes through a diffuser 56 before impinging on the light valve 54.
The transmittance of light from the backlight 52 to the eye of a viewer 58, observing an image displayed on the front of the panel, is controlled by the light valve 54. The light valve 54 normally includes a pair of polarizers 60 and 62 separated by a layer of liquid crystals 64 contained in a cell gap between glass or plastic plates, and the polarizers. Light from the backlight 52 impinging on the first polarizer 62 comprises electromagnetic waves vibrating in a plurality of planes. Only that portion of the light vibrating in the plane of the optical axis of the polarizer passes through the polarizer. In an LCD light valve, the optical axes of the first 62 and second 60 polarizer are typically arranged at an angle so that light passing through the first polarizer would normally be blocked from passing through the second polarizer in the series. However, the orientation of the translucent crystals in the layer of liquid crystals 64 can be locally controlled to either "twist" the vibratory plane of the light into alignment with the optical axes of the polarizer, permitting light to pass through the light valve creating a bright picture element or pixel, or out of alignment with the optical axis of one of the polarizes, attenuating the light and creating a darker area of the screen or pixel.
The surfaces of the a first glass substrate 61 and a second glass substrate 63 form the walls of the cell gap are buffed to produce microscopic grooves to physically align the molecules of liquid crystal 64 immediately adjacent to the walls. Molecular forces cause adjacent liquid crystal molecules to attempt to align with their neighbors with the result that the orientation of the molecules in the column of molecules spanning the cell gap twist over the length of the column. Likewise, the plane of vibration of light transiting the column of molecules will be "twisted" from the optical axis of the first polarizer 62 to a plane determined by the orientation of the liquid crystals at the opposite wall of the cell gap. If the wall of the cell gap is buffed to align adjacent crystals with the optical axis of the second polarizer, light from the backlight 52 can pass through the series of polarizers 60 and 62 to produce a lighted area of the display when viewed from the front of the panel (a "normally white" LCD).
To darken a pixel and create an image, a voltage, typically controlled by a thin film transistor, is applied to an electrode in an array of transparent electrodes deposited on the walls of the cell gap. The liquid crystal molecules adjacent to the electrode are attracted by the field produced by the voltage and rotate to align with the field. As the molecules of liquid crystal are rotated by the electric field, the column of crystals is "untwisted," and the optical axes of the crystals adjacent to the cell wall are rotated progressively out of alignment with the optical axis of the corresponding polarizer progressively reducing the local transmittance of the light valve 54 and attenuating the luminance of the corresponding pixel. In other words, in a normally white twisted nematic device there are generally two modes of operation, one without a voltage applied to the molecules and one with a voltage applied to the molecules. With a voltage applied (e.g., driven mode) to the molecules the molecules rotate their polarization axis which results in inhibiting the passage of light to the viewer. Similarly, without a voltage applied (e.g., non- driven mode) the polarization axis is not rotated so that the passage of light is not inhibited to the viewer.
Conversely, the polarizers and buffing of the light valve can be arranged to produce a "normally black" LCD having pixels that are dark (light is blocked) when the electrodes are not energized and light when the electrodes are energized. Color LCD displays are created by varying the intensity of transmitted light for each of a plurality of primary color (typically, red, green, and blue) sub-pixels that make up a displayed pixel.
The aforementioned example was described with respect to a twisted nematic device. However, this description is only an example and other devices may likewise be used, including but not limited to, multi-domain vertical alignment, patterned vertical alignment, in- plane switching, and super-twisted nematic type LCDs. In addition other devices, such as for example, plasma displays, organic displays, active matrix organic light emitting display, electroluminescent displays, liquid crystal on silicon displays, reflective liquid crystal devices may likewise be used. For such displays the light emitting portion of the display, or portion of the display that permits the display of selected portions of light may be considered to selectively
cause the pixels to provide light.
For an active matrix LCD (AMLCD) the inner surface of the second glass substrate 63 is normally coated with a continuous electrode while the first glass substrate 61 is patterned into individual pixel electrodes. The continuous electrode may be constructed using a transparent electrode, such as indium tin oxide. The first glass substrate 61 may include thin film transistors (TFTs) which act as individual switches for each pixel electrode (or group of pixel electrodes) corresponding to a pixel (or group of pixels). The TFTs are addressed by a set of multiplexed electrodes running along the gaps between the pixel electrodes. Alternatively the pixel electrodes may be on a different layer from the TFTs. A pixel is addressed by applying voltage (or current) to a selected line, which switches the TFT on and allows charge from the data line to flow onto the rear pixel electrodes. The combination of voltages between the front electrode and the pixel electrodes sets up a voltage across the pixels and turns the respective pixels on. The thin-film transistors are typically constructed from amorphous silicon, while other types of switching devices may likewise be used, such as for example, metal-insulator-metal diode and polysilicon thin-film transistors. The TFT array and pixel electrodes may alternatively be on the top of the liquid crystal material. Also, the continuous electrode may be patterned or portions selectively selected, as desired. Also the light sensitive elements may likewise be located on the top, or otherwise above, of the liquid crystal material, if desired.
Referring to FIG. 2, the active matrix layer may include a set of data lines and a set of select lines. Normally one data line is included for each column of pixels across the display and one select line is included for each row of pixels down the display, thereby creating an array of conductive lines. To load the data to the respective pixels indicating which pixels should be illuminated, normally in a row-by-row manner, a set of voltages are imposed on the respective data lines 204 which imposes a voltage on the sources 202 of latching transistors 200. The selection of a respective select line 210, interconnected to the gates 212 of the respective latching transistors 200, permits the voltage imposed on the sources 202 to be passed to the drain 214 of the latching transistors 200. The drains 214 of the latching transistors 200 are electrically connected to respective pixel electrodes and are capacitively coupled to a respective common line 221 through a respective Cst capacitor 218. In addition, a respective capacitance exists between the pixel electrodes enclosing the liquid crystal material, noted as capacitances Clc 222 (between the pixel electrodes and the common electrode on the color plate). The common line 221 provides a voltage reference. In other words, the voltage data (representative of the image to be displayed) is loaded into the data lines for a row of latching transistors 200 and imposing a voltage on the select line 210 latches that data into the holding capacitors and hence the pixel electrodes. Alternatively, the display may be operated based upon current levels.
Referring to FIG. 3, a schematic layout is shown of the active matrix layer. The pixel electrodes 230 are generally grouped into a "single" effective pixel so that a corresponding set of pixel electrodes 230 may be associated with respective color filters (e.g., red, green, blue). The latching transistors 200 interconnect the respective pixel electrodes 230 with the data lines and the select line. The pixel electrodes 230 may be interconnected to the common line 221 by the capacitors Cst 218. The pixels may include any desirable shape, any number of sub-pixels, and any set of color filters. Referring to FIG. 4, the active matrix layer may be constructed using an amorphous silicon thin-film transistor fabrication process. The steps may include gate metal deposition (FIG. 4A), a photolithography/etch (FIG. 4B), a gate insulator and amorphous silicon deposition (FIG. 4C), a photolithography/etch (FIG. 4D), a source/drain metal deposition (FIG. 4E), a photolithography/etch (FIG. 4F), an HO deposition (FIG. 4G), and a photolithography/etch (FIG.4H). Other processes may likewise be used, as desired.
The present inventors considered different potential architectural touch panel schemes to incorporate additional optical layers between the polarizer on the front of the liquid crystal display and the front of the display. These additional layers include, for example, glass plates, wire grids, transparent electrodes, plastic plates, spacers, and other materials. In addition, the present inventors considered the additional layers with different optical characteristics, such as for example, birefringence, non-birefringence, narrow range of wavelengths, wide range of wavelengths, etc. After an extensive analysis of different potential configurations of the touch screen portion added to the display together with materials having different optical properties and further being applied to the different types of technologies (e.g., mechanical switches, crossed beams of infrared light, acoustic surface waves, capacitance sensing, and resistive membranes), the present inventors determined that an optimized touch screen is merely a tradeoff between different undesirable properties. Accordingly, the design of an optimized touch screen is an ultimately unsolvable task. In contrast to designing an improved touch screen, the present inventors came to the realization that modification of the structure of the active matrix liquid crystal device itself could provide an improved touch screen capability without all of the attendant drawbacks to the touch screen configuration located on the front of the display. Referring to FIG. 5, with particular attention to the latching transistors of the pixel
electrodes, a black matrix 240 is overlying the latching transistors so that significant ambient
light does not strike the transistors. Color filters 242 may be located above the pixel electrodes.
Ambient light striking the latching transistors results in draining the charge imposed on the pixel
electrodes through the transistor. The discharge of the charge imposed on the pixel electrodes results in a decrease in the operational characteristics of the display, frequently to the extent that
the display is rendered effectively inoperative. With the realization that amorphous silicon
transistors are sensitive to light incident thereon, the present inventors determined that such
transistors within the active matrix layer may be used as a basis upon which to detect the existence of or non-existence of ambient light incident thereon (e.g., relative values thereto).
Referring to FIG. 6, a modified active matrix layer may include a photo-sensitive structure or elements. The preferred photo-sensitive structure includes a photo-sensitive thin
film transistor (photo TFT) interconnected to a readout thin film transistor (readout TFT). A capacitor Cst2 may interconnect the common line to the transistors. Referring to FIG. 7, a black
matrix may be in an overlying relationship to the readout TFT. The black matrix is preferably an opaque material or otherwise the structure of the display selectively inhibiting the transmission of
light to selective portions of the active matrix layer. Preferably the black matrix is completely
overlying the amorphous silicon portion of the readout TFT, and at least partially overlying the
amorphous silicon portion of the readout TFT. Preferably the black matrix is completely non- overlying the amorphous silicon portion of the photo TFT, and at least partially non-overlying the amorphous silicon portion of the photo TFT. Overlying does not necessarily denote direct
contact between the layers, but is intended to denote in the general sense the stacked structure of materials. The black matrix is preferably fabricated on a layer other than the active plate, such as the color plate. The active plate is normally referred to as the plate supporting the thin-film transistors. The location of the black matrix on the color plate (or other non-active plate) results in limited additional processing or otherwise modification the fabrication of the active matrix. In some embodiments, the black matrix inhibits ambient light from impacting the amorphous silicon portion of the readout TFT to an extent greater than inhibiting ambient light from impacting the amorphous silicon portion of the photo TFT. A gate metal, or other light inhibiting material, may inhibit the photo-sensitive elements from the back light.
Typically the photo-sensitive areas (channels of the transistors) are generally rectangular in shape, although other shapes may be used. The opening in the black matrix is preferably wider (or longer) than the corresponding channel area. In this manner the channel area and the opening in the black matrix are overlapping, with the opening extending in a first dimension (e.g., width) greater than the channel area and in a second dimension (e.g., length) less than the channel area. This alignment alleviates the need for precise registration of the layers while ensuring reasonable optical passage of light to the light sensitive element. Other relative seizes may likewise be used, as described.
As an example, the common line may be set at a negative voltage potential, such as -10 volts. During the previous readout cycle, a voltage is imposed on the select line which causes the voltage on the readout line to be coupled to the drain of the photo TFT and the drain of the readout TFT, which results in a voltage potential across Cst2. The voltage coupled to the drain of the photo TFT and the drain of the readout TFT is approximately ground (e.g., zero volts) with the non-inverting input of the operational amplifier connected to ground. The voltage imposed on the select line is removed so that the readout TFT will turn "off.
Under normal operational conditions ambient light from the front of the display
passes through the black matrix and strikes the amorphous silicon of the photo TFT. However, if
a person touches the front of the display in a region over the opening in the black matrix or
otherwise inhibits the passage of light through the front of the display in a region over the
opening in the black matrix, then the photo TFT transistor will be in an "off state. If the photo
TFT is "off then the voltage across the capacitor Cst2 will not significantly discharge through
the photo TFT. Accordingly, the charge imposed across Cst2 will be substantially unchanged. In
essence, the voltage imposed across Cst2 will remain substantially unchanged if the ambient light
is inhibited from striking the photo TFT.
To determine the voltage across the capacitor Cst2, a voltage is imposed on the select line which causes the gate of the readout TFT to interconnect the imposed voltage on Cst2 to the readout line. If the voltage imposed on the readout line as a result of activating the readout TFT is substantially unchanged, then the output of the operational amplifier will be substantially
unchanged (e.g., zero). In this manner, the system is able to determine whether the light to the
device has been inhibited, in which case the system will determine that the screen has been touched at the corresponding portion of the display with the photo TFT.
During the readout cycle, the voltage imposed on the select line causes the voltage
on the respective drain of the photo TFT and the drain of the readout TFT to be coupled to the
respective readout line, which results in resetting the voltage potential across Cst2. The voltage coupled to the drain of the photo TFT and the drain of the readout TFT is approximately ground (e.g., zero volts) with the non-inverting input of the operational amplifier connected to ground. The voltage imposed on the select line is removed so that the readout TFT will turn "off. In this
manner, the act of reading the voltage simultaneously acts to reset the voltage potential for the
next cycle.
Under normal operational conditions ambient light from the front of the display
passes through the black matrix and strikes the amorphous silicon of the photo TFT. If a person
does not touch the front of the display in a region over the opening in the black matrix or
otherwise inhibits the passage of light through the front of the display in a region over the opening in the black matrix, then the photo TFT transistor will be in an "on" state. If the photo
TFT is "on" then the voltage across the capacitor Cst2 will significantly discharge through the
photo TFT, which is coupled to the common line. In essence the voltage imposed across Cst2
will decrease toward the common voltage. Accordingly, the charge imposed across Cst2 will be substantially changed in the presence of ambient light. Moreover, there is a substantial
difference in the voltage potential across the hold capacitor when the light is not inhibited versus when the light is inhibited.
Similarly, to determine the voltage across the capacitor Cst2, a voltage is imposed on the select line which causes the gate of the readout TFT to interconnect the imposed voltage to
the readout line. If the voltage imposed on the readout line as a result of activating the readout
TFT is substantially changed or otherwise results in an injection of current, then the output of the operational amplifier will be substantially non-zero. The output voltage of the operational
amplifier is proportional or otherwise associated with the charge on the capacitor Cst2. In this manner, the system is able to determine whether the light to the device has been uninhibited, in which case the system will determine that the screen has not been touched at the corresponding portion of the display with the photo TFT.
Referring to FIG. 8, a layout of the active matrix layer may include the photo TFT, the capacitor Cst2, the readout TFT in a region between the pixel electrodes. Light sensitive elements are preferably included at selected intervals within the active matrix layer. In this manner, the device may include touch panel sensitivity without the need for additional touch panel layers attached to the front of the display. In addition, the additional photo TFT, readout TFT, and capacitor may be fabricated together with the remainder of the active matrix layer, without the need for specialized processing. Moreover, the complexity of the fabrication process is only slightly increased so that the resulting manufacturing yield will remain substantially unchanged. It is to be understood that other light sensitive elements may likewise be used. In addition, it is to be understood that other light sensitive electrical architectures may likewise be used.
Referring to FIG. 11, a graph of the photo-currents within amorphous silicon TFTs is illustrated. Line 300 illustrates a dark ambient environment with the gate connected to the source of the photo TFT. It will be noted that the leakage currents are low and relatively stable over a range of voltages. Line 302 illustrates a dark ambient environment with a floating gate of the photo TFT. It will be noted that the leakage currents are generally low and relatively unstable over a range of voltages (significant slope). Line 304 illustrates a low ambient environment with the gate connected to the source of the photo TFT. It will be noted that the leakage currents are three orders of magnitude higher than the corresponding dark ambient conditions and relatively stable over a range of voltages. Line 306 illustrates a low ambient environment with a floating gate of the photo TFT. It will be noted that the leakage currents are generally three orders of magnitude higher and relatively unstable over a range of voltages
(significant slope). Line 308 illustrates a high ambient environment with the gate connected to
the source of the photo TFT. It will be noted that the leakage currents are 4.5 orders of
magnitude higher than the corresponding dark ambient conditions and relatively stable over a
range of voltages. Line 310 illustrates a high ambient environment with a floating gate of the
photo TFT. It will be noted that the leakage currents are generally 4.5 orders of magnitude
higher and relatively unstable over a range of voltages (significant slope). With the significant
difference between the dark state, the low ambient state, and the high ambient state, together with the substantially flat responses over a voltage range (source-drain voltage), the system may
readily process the data in a confident manner, especially with the gate connected to the source.
In general, the architecture preferably permits the leakage currents to be within one order of magnitude over the central 50%, more preferably over the central 75%, of the voltage range used for displaying images.
Referring to FIG. 9, under high ambient lighting conditions the photo TFT will tend to completely discharge the Cst2 capacitor to the common voltage, perhaps with an offset voltage because of the photo TFT. In this manner, all of the photo TFTs across the display will
tend to discharge to the same voltage level. Those regions with reduced ambient lighting
conditions or otherwise where the user blocks ambient light from reaching the display, the Cst2 capacitor will not fully discharge, as illustrated by the downward spike in the graph. The
downward spike in the graph provides location information related to the region of the display that has been touched.
Referring to FIG. 10, under lower ambient lighting conditions the photo TFT will tend to partially discharge the Cst2 capacitor to the common voltage. In this manner, all of the
photo TFTs across the display will tend to discharge to some intermediate voltage levels. Those
regions with further reduced ambient lighting conditions or otherwise where the user blocks
ambient light from reaching the display, the Cst2 capacitor will discharge to a significantly less
extent, as illustrated by the downward spike in the graph. The downward spike in the graph
provides location information related to the region of the display that has been touched. As
shown in FIGS. 9 and 10, the region or regions where the user inhibits light from reaching the
display may be determined as localized minimums. In other embodiments, depending on the
circuit topology, the location(s) where the user inhibits light from reaching the display may be determined as localized maximums or otherwise some measure from the additional components.
In the circuit topology illustrated, the value of the capacitor Cst2 may be selected
such that it is suitable for high ambient lighting conditions or low ambient lighting conditions. For low ambient lighting conditions, a smaller capacitance may be selected so that the device is more sensitive to changes in light. For high ambient lighting conditions, a larger capacitance
may be selected so that the device is less sensitive to changes in light. In addition, the
dimensions of the phototransistor may be selected to change the photo-leakage current. Also, one set of light sensitive elements (e.g., the photo TFT and the capacitance) within the display
may be optimized for low ambient lighting conditions while another set of light sensitive elements (e.g., the photo TFT and the capacitance) within the display may be optimized for high
ambient lighting conditions. Typically, the data from light sensitive elements for low ambient conditions and the data from light sensitive elements for high ambient conditions are separately
processed, and the suitable set of data is selected. In this manner, the same display device may be used for high and low ambient lighting conditions. In addition, multiple levels of sensitivity
may be provided. It is to be understood that a single architecture may be provided with a wide
range of sensitivity from low to high ambient lighting conditions. In addition, any suitable
alternative architecture may be used for sensing the decrease and/or increase in ambient light.
Another structure that may be included is selecting the value of the capacitance so
that under normal ambient lighting conditions the charge on the capacitor only partially
discharges. With a structure where the capacitive charge only partially discharges, the present
inventors determined that an optical pointing device, such as a light wand or laser pointer, might be used to point at the display to further discharge particular regions of the display. In this
manner, the region of the display that the optical pointing device remains pointed at may be detected as local maximums (or otherwise). In addition, those regions of the display where light is inhibited will appear as local minimums (or otherwise). This provides the capability of
detecting not only the absence of light (e.g., touching the panel) but likewise those regions of the
display that have increased light incident thereon. Referring to FIG. 12, a graph illustrates local minimums (upward peaks) from added light and local maximums (downward peaks) from a lack of light. In addition, one set of light sensitive elements (e.g., the photo TFT and the capacitance)
within the display may be optimized for ambient lighting conditions to detect the absence of light
while another set of light sensitive elements (e.g., the photo TFT and the capacitance) within the
display may be optimized for ambient lighting conditions to detect the additional light imposed thereon.
A switch associated with the display may be provided to select among a plurality of different sets of light sensitive elements. For example, one of the switches may select between low, medium, and high ambient lighting conditions. For example, another switch may select
between a touch sensitive operation (absence of light) and an optical pointing device (addition of
light). In addition, the optical pointing device may communicate to the display, such as through a
wire or wireless connection, to automatically change to the optical sensing mode. A light sensor
(external photo-sensor to the light sensitive elements in the active layer) and/or one or more of
the light sensitive elements may be used to sense the ambient lighting conditions to select among
different sets of light sensitive elements. Also the sensor and/or one or more light sensitive
elements may be used to select, (1) to sense the absence of light, (2) select to sense the addition
of light, and/or (3) adjust the sensing levels of the electronics.
In some embodiments the corresponding color filters for (e.g., above) some or all
of the light sensitive elements may be omitted or replaced by a clear (or substantially clear) material. In this manner the light reaching some of the light sensitive elements will not be
filtered by a color filter. This permits those light sensitive elements to sense a greater dynamic range or a different part of the dynamic range than those receiving filtered light.
It is noted that the teachings herein are likewise applicable to transmissive active matrix liquid crystal devices, reflective active matrix liquid crystal devices, transflective active
matrix liquid crystal devices, etc. In addition, the light sensitive elements may likewise be
provided within a passive liquid crystal display. The sensing devices may be, for example, photo resistors and photo diodes.
Alternatively, light sensitive elements may be provided between the rear polarizing element and the active matrix layer. In this arrangement, the light sensitive elements are preferably fabricated on the polarizer, or otherwise a film attached to the polarizer. In addition, the light sensitive elements may be provided on a thin glass plate between the polarizer and the liquid crystal material. In addition, the black matrix or otherwise light inhibiting material is preferably arranged so as to inhibit ambient light from striking the readout TFT while free from inhibiting light from striking the photo TFT. Moreover, preferably a light blocking material is provided between the photo TFT and/or the readout TFT and the backlight, such as gate metal, if provided, to inhibit the light from the backlight from reaching the photo TFT and/or the readout TFT.
Alternatively, light sensitive elements may be provided between the front polarizing element and the liquid crystal material. In this arrangement, the light sensitive elements are preferably fabricated on the polarizer, or otherwise a film attached to the polarizer. In addition, the light sensitive elements may be provided on a thin glass plate between the polarizer and the liquid crystal material. The light sensitive elements may likewise be fabricated within the front electrode layer by patterning the front electrode layer and including suitable fabrication techniques. In addition, a black matrix or otherwise light inhibiting material is preferably arranged so as to inhibit ambient light from striking the readout TFT while free from inhibiting light from striking the photo TFT. Moreover, preferably a light blocking material is provided between the photo TFT and/or the readout TFT and the backlight, if provided, to inhibit the light from the backlight from reaching the photo TFT and/or the readout TFT.
Alternatively, light sensitive elements may be provided between the front of the display and the rear of the display, normally fabricated on one of the layers therein or fabricated on a separate layer provided within the stack of layers within the display. In the case of a liquid crystal device with a backlight the light sensitive elements are preferably provided between the front of the display and the backlight material. The position of the light sensitive elements are
preferably between (or at least partially) the pixel electrodes, when viewed from a plan view of
the display. This may be particularly useful for reflective displays where the pixel electrodes are
opaque. In addition for reflective displays, any reflective conductive electrodes should be
arranged so that they do not significantly inhibit light from reaching the light sensitive elements
In this arrangement, the light sensitive elements are preferably fabricated on one or more of the
layers, or otherwise a plate attached to one or more of the layers. In addition, a black matrix or
otherwise light inhibiting material is preferably arranged so as to inhibit ambient light from
striking the readout TFT while free from inhibiting light from striking the photo TFT. Moreover,
preferably a light blocking material is provided between the photo TFT and/or the readout TFT and the backlight, if provided, to inhibit the light from the backlight from reaching the photo TFT and/or the readout TFT.
In many applications it is desirable to modify the intensity of the backlight for
different lighting conditions. For example, in dark ambient lighting conditions it may be beneficial to have a dim backlight. In contrast, in bright ambient lighting conditions it may be
beneficial to have a bright backlight. The integrated light sensitive elements within the display stack may be used as a measure of the ambient lighting conditions to control the intensity of the
backlight without the need for an additional external photo-sensor. One light sensitive element
may be used, or a plurality of light sensitive element may be used together with additional processing, such as averaging.
In one embodiment, the readout line may be included in a periodic manner within the display sufficient to generally identify the location of the "touch". For example the readout line may be periodically added at each 30th column. Spacing the readout lines at a significant number of pixels apart result in a display that nearly maintains its previous brightness because most of the pixel electrodes have an unchanged size. However, after considerable testing it was determined that such periodic spacing results in a noticeable non-uniform gray scale because of differences in the size of the active region of the pixel electrodes. One potential resolution of the non-uniform gray scale is to modify the frame data in a manner consistent with the non- uniformity, such as increasing the gray level of the pixel electrodes with a reduced size or otherwise reducing the gray levels of the non-reduced size pixel electrodes, or a combination thereof. While a potential resolution, this requires additional data processing which increases the computational complexity of the system.
A more desirable resolution of the non-uniform gray scale is to modify the display to include a readout line at every third pixel, or otherwise in a manner consistent with the pixel electrode pattern of the display (red pixel, green pixel, blue pixel). Alternatively, a readout line is included at least every 12th pixel (36 pixel electrodes of a red, blue, green arrangement), more preferably at least every 9th pixel (27 pixel electrodes of a red, blue, green arrangement), even more preferably at least every 6th pixel (18 pixel electrodes of a red, blue, green arrangement or 24 pixel electrodes of a red, blue, blue green arrangement), and most preferably at least every 3rd pixel (3 pixel electrodes of a red, blue, green arrangement). The readout lines are preferably included for at least a pattern of four times the spacing between readout lines (e.g., 12th pixel times 4 equals 48 pixels, 9th pixel times 4 equals 36 pixels). More preferably the patten of readout lines is included over a majority of the display. The resulting display may include more readout lines than are necessary to accurately determine the location of the "touch". To reduce the computational complexity of the display, a selection of the readout lines may be free from interconnection or otherwise not operationally interconnected with readout electronics. In addition, to further reduce the computational complexity of the display and to increase the size of the pixel electrodes, the readout lines not operationally interconnected with readout electronics may likewise be free from an associated light sensitive element. In other words, additional non- operational readout lines may be included within the display to provide a gray scale display with increased uniformity. In an alternative embodiment, one or more of the non-operational readout lines may be replaced with spaces. In this manner, the gray scale display may include increased uniformity, albeit with additional spaces within the pixel electrode matrix.
The present inventors considered the selection of potential pixel electrodes and came to the realization that the electrode corresponding to "blue" light does not contribute to the overall white transmission to the extent that the "green" or "red" electrodes. Accordingly, the system may be designed in such a manner that the light sensitive elements are associated with the "blue" electrodes to an extent greater than their association with the "green" or "red" electrodes. In this manner, the "blue" pixel electrodes may be decreased in size to accommodate the light sensitive elements while the white transmission remains substantially unchanged. Experiments have shown that reducing the size of the "blue" electrodes to approximately 85% of their original size, with the "green" and "red" electrodes remaining unchanged, results in a reduction in the white transmission by only about 3 percent.
While such an additional set of non-operational readout lines provides for increased uniform gray levels, the reduction of pixel apertures results in a reduction of brightness normally by at least 5 percent and possibly as much as 15 percent depending on the resolution and layout design rules employed. In addition, the manufacturing yield is decreased because the readout line has a tendency to short to its neighboring data line if the processing characteristics are not accurately controlled. For example, the data line and readout line may be approximately 6-10 microns apart along a majority of their length.
Referring to FIG. 13, to increase the potential manufacturing yield and the brightness of the display, the present inventors came to the realization that the readout of the photo-sensitive circuit and the writing of data to the pixels may be combined on the same bus line, or otherwise a set of lines that are electrically interconnected to one another. To facilitate the use of the same bus line, a switch 418 may select between providing new data 420 to the selected pixels and reading data 414 from the selected pixels. With the switch 418 set to interconnect the new data 420 with the selected pixels, the data from a frame buffer or otherwise the video data stream may be provided to the pixels associated with one of the select lines. Multiple readout circuits may be used, or one or more multiplexed readout circuits maybe used. For example, the new data 420 provided on data line 400 may be 4.5 volts which is latched to the pixel electrode 402 and the photo TFT 404 by imposing a suitable voltage on the select line 406. In this manner, the data voltage is latched to both the pixel electrode and a corresponding photosensitive circuit.
The display is illuminated in a traditional manner and the voltage imposed on the photo TFT 404 may be modified in accordance with the light incident on the photo-sensitive circuit, as previously described. In the topology illustrated, the photo TFT 404 is normally a N- type transistor which is reverse biased by setting the voltage on the common line 408 to a voltage lower than an anticipated voltage on the photo TFT 404, such as -10 or -15 volts. The data for the current frame may be stored in a frame buffer for later usage. Prior to writing the data for another frame, such as the next frame, the data (e.g., voltage) on the readout TFT 410 is read out. The switch 418 changes between the new data 420 to the readout line 414 interconnected to the charge readout amplifier 412. The select line 406 is again selected to couple the remaining voltage on the photo TFT 404 through the readout TFT 410 to the data line 400. The coupled voltage (or current) to the data line 400 is provided as an input to the charge readout amplifier 412 which is compared against the corresponding data from the previous frame 422, namely, the voltage originally imposed on the photo TFT 404. The difference between the readout line 414 and the data from the previous frame 422 provides an output to the amplifier 412. The output of the amplifier 412 is provided to the processor. The greater the drain of the photo TFT 404, normally as a result of sensing light, results in a greater output of the amplifier 412. Referring to FIG. 14, an exemplary timing for the writing and readout on the shared data line 400 is illustrated.
At low ambient lighting conditions and at dark lighting conditions, the integrated optical touch panel is not expected to operate well to the touch of the finger because there will be an insufficient (or none) difference between the signals from the surrounding area and the touched area. To alleviate the inability to effectively sense at the low and dark ambient lighting conditions a light pen or laser pointer may be used (e.g., light source), as previously described. The light source may be operably interconnected to the display such as by a wire or wireless communication link. With the light source operably interconnected to the display the intensity of the light source may be controlled, at least in part, by feedback from the photo-sensitive elements or otherwise the display, as illustrated in FIG. 15. When the display determines that sufficient ambient light exists, such as ambient light exceeding a threshold value, the light source is turned
"off. In this manner, touching the light source against the display results in the same effect as
touching a finger against the display, namely, impeding ambient light from striking the display.
When the display determines that insufficient ambient light exists, such as ambient light failing
to exceed a threshold value, the light source is turned "on". In this manner, touching or
otherwise directing the light from the light source against the display results in a localized
increase in the received light relative to the ambient light level. This permits the display to be
operated in dark ambient lighting conditions or by feedback from the display. In addition, the intensity of the light from the light source may be varied, such as step-wise, linearly, non-
linearly, or continuously, depending upon the ambient lighting conditions. Alternatively, the light source may include its own ambient light detector so that feedback from the display is unnecessary and likewise communication between the light source and the display may be unnecessary.
While using light from an external light source while beneficial it may still be difficult to accurately detect the location of the additional light because of background noise
within the system and variable lighting conditions. The present inventors considered this
situation and determined that by providing light during different frames, such as odd frames or
even frames, or odd fields or even fields, or every third frame, or during selected frames, a more defined differential signal between the frames indicates the "touch" location. In essence, the
light may be turned on and off in some manner, such as blinking at a rate synchronized with the display line scanning or frames. An exemplary timing for an odd/even frame arrangement is
shown in FIG. 16. In addition, the illumination of some types of displays involves scanning the display in a row-by-row manner. In such a case, the differential signal may be improved by modifying the timing of the light pulses in accordance with the timing of the gate pulse (e.g., scanning) for the respective pixel electrodes. For example, in a top-down scanning display the light pulse should be earlier when the light source is directed toward the top of the display as opposed to the bottom of the display. The synchronization may be based upon feedback from the display, if desired.
In one embodiment, the light source may blink at a rate synchronized with the display line scanning. For example, the light source may use the same driver source as the image pixel electrodes. In another embodiment the use of sequential (or otherwise) frames may be subtracted from one another which results in significant different between signal and ambient conditions. Preferably, the light sensitive elements have a dynamic range greater than 2 decades, and more preferably a dynamic range greater than 4 decades. If desired, the system may use two sequential fields of scanning (all lines) subtracted from the next two fields of scanning (all lines) so that all the lines of the display are used.
Another technique for effective operation of the display in dark or low level ambient conditions is using a pen or other device with a light reflecting surface that is proximate (touching or near touching) the display when interacting with the display. The light from the backlight transmitted through the panel is then reflected back into the photo-sensitive element and the readout signal will be greater at the touch location than the surrounding area.
Referring to FIG. 17, another type of reflective liquid crystal display, typically used on handheld computing devices, involves incorporating a light guide in front of the liquid crystal material, which is normally a glass plate or clear plastic material. Normally, the light guide is constructed from an opaque material having an index of refraction between 1.4 and 1.6, more typically between 1.45 and 1.50, and sometimes of materials having an index of refraction of 1.46. The light guide may further include anti-glare and anti-reflection coatings. The light guide is frequently illuminated with a light source, frequently disposed to the side of the light guide. The light source may be any suitable device, such as for example, a cold cathode fluorescent lamp, an incandescent lamp, and a light emitting diode. To improve the light collection a reflector may be included behind the lamp to reflect light that is emitted away from the light guide, and to re-direct the light into the light guide. The light propagating within the light guide bounces between the two surfaces by total internal reflections. The total internal reflections will occur for angles that are above the critical angle, measured relative to the normal to the surfaces, as illustrated in FIG. 18. To a first order approximation, the critical angle β maybe defined by Sin(β) = 1/n where n is the index of refraction of the light guide. Since the surfaces of the light guide are not perfectly smooth there will be some dispersion of the light, which causes some illumination of the display, as shown in FIG. 19.
The present inventors came to the realization that the' critical angle and the disruption of the total internal reflections may be modified in such a manner as to provide a localized increase in the diffusion of light. Referring to FIG. 20, one suitable technique for the localized diffusion of light involves using a plastic pen to touch the front of the display. The internally reflected light coincident with the location that the pen touches the display will significantly diffuse and be directed toward the photo sensitive elements within the display. The plastic pen, or other object including the finger or the eraser of a pencil, preferably has an index of refraction within 0.5, more preferably within 0.25, of the index of refraction of the light guide. For example, the index of refraction of the light guide may be between 1.2 and 1.9, and more
preferably between 1.4 and 1.6. With the two indexes of refraction sufficiently close to one
another the disruption of the internal reflections, and hence amount of light directed toward the
photo-sensitive elements, is increased. In addition, the plastic pen preferably has sufficient
reflectivity of light as opposed to being non-reflective material, such as for example, black felt.
Referring to FIG. 21, after further consideration the present inventors were
surprised to note that a white eraser a few millimeters away from the light guide results in a darkened region with generally consistent optical properties while a white eraser in contact with
the light guide results in a darkened region with generally consistent optical properties together
with a smaller illuminated region. In the preferred embodiment, the light sensitive elements are
positioned toward the front of the display in relation to the liquid crystal material (or otherwise the light valve or electroluminescent material) so that a clearer image may be obtained. It is to be
understood that any suitable pointing device may be used. The illuminated region has an illumination brighter in relation to the remainder of the darkened region. The illuminated region
may be located by any suitable technique, such as for example, a center of gravity technique.
In some cases the display screen will have a relatively light colored region, such as white or tan, which is used as a virtual button for operating software. Within this light colored
region is typically textual information in relatively dark letters. In liquid crystal display
technology the light colored region is indicative of light passing through the liquid crystal
material. Accordingly, if a pointing instrument includes a generally reflective material the light passing through the display may be reflected back through the display. The light reflected back through the display may be sensed by the light sensitive elements. After further consideration of the illuminated region the present inventors came to
the realization that when users use a "touch panel" display, there is a likelihood that the pointing
device (or finger) may "hover" at a location above the display. Normally, during this hovering
the user is not actually selecting any portion of the display, but rather still deciding where to
select. In this manner, the illuminated region is beneficial because it provides a technique for the
determination between when the user is simply "hovering" and the user has actually touched
(e.g., "touching") the display.
In part, the sensitivity to hovering may be related to the light sensitive elements
being primarily sensitive to collimated light which is inhibited by the finger or other element in
proximity to the device because of the alignment of the opening in the black matrix to the pixel electrodes. To reduce the dependency to collimated light the black matrix may include central
material aligned with the respective pixel electrodes so that the light sensitive elements have an increased sensitivity to non-collimated light (or otherwise non-perpendicular or otherwise angled
incident light), as illustrated in FIG. 22. In some embodiments, the openings may be considered a non-continuous opening or otherwise the spatial opening for a particular pixel is non- continuous.
Another potential technique for the determination between "hovering" and
"touching" is to temporally model the "shadow" region (e.g., light impeded region of the display). In one embodiment, when the user is typically touching the display then the end of the
shadow will typically remain stationary for a period of time, which may be used as a basis, at least in part, of "touching". In another embodiment, the shadow will typically enlarge as the
pointing device approaches the display and shrinks as the pointing device recedes from the display, where the general time between enlarging and receding may be used as a basis, at least in
part, of "touching". In another embodiment, the shadow will typically enlarge as the pointing
device approaches the display and maintain the same general size when the pointing device is
touching the display, where the general time where the shadow maintains the same size may be
used as a basis, at least in part, of "touching". In another embodiment, the shadow will typically
darken as the pointing device approaches the display and maintain the same shade when the
pointing device is touching the display, where the general time where the shadow maintains the same general shade may be used as a basis, at least in part, of "touching".
To further distinguish between the finger or other devices being close to the
display (or touching) or alternatively being spaced sufficiently apart from the display, a light
directing structure may be used. One such light directing structure is shown in FIG. 23. The light directing structure is preferably included around a portion of the periphery of the display and may reflect ambient light across the frontal region of the display. The reflected light then
reflects off the finger or other device thus increasing the light striking the light sensitive element
when the finger or other device is spaced sufficiently apart from the display. The light reflecting off the finger or other device decreases when the finger or other device is near the display because of the angular reflections of light. The differences in the reflected light striking the
display may be used, at least in part, to detect the touching of the display or otherwise inhibiting light to the display.
While attempting to consider implementation of such techniques on a handheld device it came to the inventor's surprise that the display portion of a handheld device has a
refresh rate generally less than the refresh rate of the portion of the handwriting recognition portion of the display. The handheld portion of the display may use any recognition technique,
such as Palm OS™ based devices. The refresh rate of the display is typically generally 60 hertz
while the refresh rate of the handwriting portion of the display is typically generally 100 hertz.
Accordingly, the light-sensitive elements should be sampled at a sampling rate corresponding
with the refresh rate of the respective portion of the display.
The technique described with respect to FIG. 20 operates reasonably well in dark
ambient lighting conditions, low ambient lighting conditions, regular ambient lighting
conditions, and high ambient lighting conditions. During regular and high ambient lighting
conditions, the display is alleviated of a dependency on the ambient lighting conditions. In addition, with such lighting the illumination point is more pronounced and thus easier to extract.
Unfortunately, during the daytime the ambient light may be sufficiently high causing the detection of the pointing device difficult. In addition, shades of the ambient light may also
interfere with the detection techniques.
The present inventors considered improving the robustness of the detection techniques but came to the realization that with sufficient "noise" in the system the creation of
such sufficiently robust techniques would be difficult. As opposed to the traditional approach of
improving the detection techniques, the present inventors came to the realization that by providing light to the light guide of a limited selection of wavelengths and selectively filtering
the wavelengths of light within the display the difference between touched and un-touched may be increased. As an initial matter the light from the light source provided to the light guide is
modified, or otherwise filtered, to provide a single color. Alternatively, the light source may provide light of a range of wavelengths, such as 600-700nm, or 400-500 and 530-580, or 630. Typically, the light provided to the light guide has a range of wavelengths (in any significant amount) less than white light or otherwise the range of wavelengths of ambient light. Accordingly, with the light provided to the light guide having a limited color gamut (or reduced color spectrum) the touching of the pointing device on the display results in the limited color gamut light being locally directed toward the light-sensitive elements. With a limited color gamut light being directed toward the display as a result of touching the light guide (or otherwise touching the front of the display), a color filter may be included between the light guide and the light-sensitive elements to filter out at least a portion of the light not included within the limited color gamut. In other words, the color filter reduces the transmission of ambient light to an extent greater than the transmission of light from the light source or otherwise within the light guide. For example, the ambient light may be considered as "white" light while the light guide has primarily "red" light therein. A typical transmission of a red color filter for ambient white light may be around 20%, while the same color filter will transmit about 85% of the red light. Preferably the transmission of ambient light through the color filter is less than 75% (greater than 25% attenuation) (or 60%, 50%, 40%, 30%) while the transmission of the respective light within the light guide is greater than 25% (less than 25% attenuation) (or 40%, 50%, 60%, 70%), so that in this manner there is sufficient attenuation of selected wavelengths of the ambient light with respect to the wavelengths of light within the light guide to increase the ability to accurately detect the touching.
In another embodiment, the light source to the light guide may include a switch or otherwise automatic modification to "white" light when operated in low ambient lighting conditions. In this manner, the display may be more effective viewed at low ambient lighting conditions.
In another embodiment, the present inventors determined that if the light source providing light to the display was modulated in some fashion an improvement in signal detection may be achieved. For example, a pointing device with a light source associated therewith may modulate the light source in accordance with the frame rate of the display. With a frame rate of 60 hertz the pointing device may for example modulate the light source at a rate of 30 hertz, 20 hertz, 10 hertz, etc. which results in additional light periodically being sensed by the light sensitive elements. Preferably, the light source is modulated ("blinked") at a rate synchronized with the display line scanning, and uses the same raw drivers as the image thin-film transistors. The resulting data may be processed in a variety of different ways.
In one embodiment, the signals from the light sensitive elements are used, as captured. The resulting improvement in signal to background ratio is related to the pulse length of the light relative to the frame time. This provides some additional improvement in signal detection between the light generated by the pointing device relative to the ambient light (which is constant in time).
In another embodiment, multiple frames are compared against one another to detect the presence and absence of the additional light resulting from the modulation. In the case of subsequent frames (sequential or non-sequential), one without additional light and one with additional light, the data from the light sensitive elements may be subtracted from one another. The improvement in signal to background ratio is related to the periodic absence of the additional light. In addition, this processing technique is especially suitable for low ambient lighting and high ambient lighting conditions. Preferably the dynamic range of the sensors is at least 4 decades, and two sequential frames with additional light and two sequential frames without additional light are used so that all of the scanning lines are encompassed. When the system charges a sensor it takes a whole frame for it to discharge by the light. Since the first line will start at time zero and take a frame time, the last line will be charged after almost a frame and will take another frame time to discharge. Therefore, the system should preferably use two frames with additional illumination and then two frames without additional illumination.
While the light sensitive elements may be used to determine "touch" and the location of the "touch", it is sometimes problematic to distinguish between "hovering" and "touch". To assist in the determination of actual touching of the display a pressure based mechanism may be used. One pressure based mechanism may include pressure sensitive tape between a pair of layers of the display or between the display and a support for the display. Another pressure based mechanism may include an electrical or magnetic sensor operably connected to the display. In either case, the pressure based mechanism provides a signal to the display electronics indicating the sensing of pressure (e.g., touch) or alternatively the absence of pressure (e.g., non-touch).
Referring to FIG. 24, one configuration of an elongate light emitting device includes an infra-red light emitting diode that periodically or continuously emits an infra-red beam. The infra-red beam is transmitted from the light emitting device and reflects off the display. When the light pen is spaced sufficiently far from the display the reflected infra-red beam will not strike the light pen. When the light pen is spaced sufficiently close to the display the reflected infra-red beam will strike the light pen and is sensed by an infra-red sensor within the light pen. Infra-red light is preferred, while any suitable wavelength may be used that the light sensitive elements of the display are generally insensitive to. When the infra-red sensor senses the reflected infra-red light the visible light emitting diode is turned on to illuminate the pixel. The visible light emitting diode preferably provides a wavelength that the light sensitive elements of the display are sensitive to. After a predetermined duration or otherwise while the infra-red light is not being sensed by the infra-red sensor the visible light emitting diode is turned off. In this manner, battery power within the light pen is conserved. In addition, the edge or shape of the visible light from the visible light emitting diode may be used to determine the spacing between the light pen and the display. Also, the beam from the visible light emitting diode may be varied based upon the signal sensed by the infra-red sensor.
Upon reconsidering the display with a light guide, as illustrated in FIG. 17, the present inventors realized that those portions of the light guide that are in contact with the high portion of the user's fingerprints will tend to diffuse and scatter light toward the light sensitive elements, as illustrated in FIG. 25. Those portions of the light guide that are not in contact with the high portion of the user's fingerprints (i.e., valleys) will not tend to diffuse and scatter light toward the light sensitive elements. Depending on the thickness of the light guide and liquid crystal material together with the density of the light sensitive elements, the details observable in the fingerprint will vary. To increase the ability to detect the fingerprint, the display may be designed with multiple densities of light sensitive elements. For example, in the region where the fingerprint is normally located the density of the light sensitive elements may be increased such as including a light sensitive element at every sub-pixel. In this manner, the display includes multiple densities of light sensitive elements. Moreover, the display may likewise be used for sensing other items, such as for example, bar codes. In some cases there may be excessive parallax which causes a smeared image to
be detected. In addition, oil and sweat on the fingers may tend to reduce the contrast between the high and low point of the user's fingerprint. Referring to FIG. 26, a separate sensor structure may be included within the display. The sensor structure may include a lens between the light guide and the light sensitive elements. The lens may be any suitable lens structure, such as for example, a small focus lens or a SELFOC lens (variable index of refraction fiber optics). The color filters in the fingerprint sensing region may be omitted, f desired.
To increase the ability of the light sensitive elements to detect the details that may be present within a fingerprint it is desirable to have a greater density of light sensitive elements in the region where the fingerprint is to be sensed. In this manner the display may include two (or more) different densities of light sensitive elements across the display. Alternatively, the light guide and lens may be omitted and a high density of light sensitive elements included for fingerprint sensing. It is to be understood that other items may likewise be sensed with the high density light sensitive elements.
The light sensitive elements will tend to observe very high ambient lighting conditions when the finger is not present rendering their ability to detect high contrast images difficult. To increase the effective sensitivity of the light sensitive elements a color filter may be provided in an overlying relationship to the light sensitive elements. In addition, the light source may be selected in relation to the color filter. For example, a blue filter may be used together with a blue light source. In addition, the illumination may be modulated and synchronized with the sensors. In this case, the light source may be illuminated with relatively short pulses together with the triggering of the sensing by the light sensitive elements. In the case where the light is pulsed in relation to the frame rate it is preferably pulsed at half the frame rate. In this manner the light pulses will be ensured to be sensed during different frames. Also, a light inhibiting material may closely surround the region where the finger is locate to reduce stray ambient light,
thus increasing contrast.
For the detection of fingerprints, sweat and oil from the fingers may impact the ability to accurate sense the fingerprint. Sweat is primarily water with an index of refraction of approximately 1.3. Typical glass has an index of refraction of approximately 1.5 which is sufficiently different than 1.3, and accordingly sweat will not significantly negatively impact image sensing. However, oils have an index of refraction of approximately 1.44 to 1.47 which is considerably closer to 1.5, and accordingly oil will tend to significantly impact image sensing. In order to improve the contrast, hence image sensing, the glass may be replaced with glass having a higher index of refraction or glass coated with a material having a higher index of refraction, such as for example, 1.55 or more.
Attempting to record signatures may be problematic with many touch sensitive displays because the response time of the recording system is inadequate or otherwise the software has a slow sampling rate. However, the user normally prefers immediate feedback. Referring to FIG. 27 the display may include a signature portion that includes a memory maintaining material. The memory maintaining material may sense the writing of the signature, such as by pressure exerted thereon or light sensitive material. For example, the memory material may be a pair of flexible layers with fluid there between that is displaced while writing the signature. After writing the name the user may press a button or otherwise touch another portion of the display indicating that the signature is completed. Alternatively, the display may sense the signature by a sufficient change in the optical properties of the memory maintaining
material. The display may then capture an image of the signature. For example, the image of the
signature may come from ambient light passing through the memory maintaining material or
otherwise from light reflected off the memory maintaining material, especially when the display
is in transmissive ("white") mode. The signature may be cleared in any manner, such as
electrical erasure or physical erasure by any suitable mechanism. In this manner, the temporal
limitations of writing a signature are reduced.
Alternatively the display may include a signature mode that captures the user's
signature over several frames. The signature may be captured on a predetermined region of the
display r otherwise any portion of the display. The system detects the decrease in ambient light
over a series of frames as the signature is written. I this manner the "path" of the signature maybe determined and thereafter used in any suitable manner.
In many cases the user desires the tactile response of pen pressure against the
display. In this manner, the user has greater comfort with the pen and display for writing, drawing, or otherwise indicating a response. Referring to FIG. 28, the pen may include a
movable optical path (e.g., a fiber optic bundle) with respect to the pen that extends and retracts based upon pressure exerted on the display. A light emitting diode provides a beam of light that
is channeled through the optical path. As it may be observed, when the optical path is in a
retracted state that more light passes through the optical path than when the optical path is in an
extended state. In this manner, the light sensitive elements may detect the intensity of the transmitted light and determine the pressure that is being exerted against the display by the user. This capability is particular useful for pressure sensitive applications, such as Photoshop by Adobe.
Referring to FIG. 29 another pen pressure embodiment is illustrated. A cylindrical tubular tip portion is movable with respect to the pen that extends and retracts based upon pressed exerted on the display. Within the cylindrical tubular tip portion is a lens. The lens focuses the light emitted from a light emitting diode, which preferably is maintained stationary with respect to the pen and/or moves with respect to the cylindrical tubular tip portion. Alternatively, the light emitting diode may be connected to the tip portion of the pen. As it may be observed, when the cylindrical tubular tip portion is in a retracted state light may be more focused on the display (light sensitive elements) than when the cylindrical tubular tip portion is in an extended state. The lens may be modified so that it operates in a reversed manner. The focus of the beam may be detected in any suitable manner by the light sensitive elements (e.g., size and/or intensity) to determine the pressure that is being exerted against the display by the user.
Referring to FIG. 30 another pen pressure embodiment is illustrated. A cylindrical tubular tip portion or optical light guide is movable with respect to the pen that extends and retracts based upon pressure exerted on the display. As the cylindrical tubular tip portion moves with respect to the pen the resistance of a variable resistive element changes. The variable resistive element is interconnected to a light emitting diode which changes intensity based upon the change in the variable resistance. The intensity of light sensed by the light sensitive elements, or otherwise the change in intensity sensed by the light sensitive elements, may be used to determine the pressure that is being exerted against the display by the user.
Referring to FIG. 31 another pen pressure embodiment is illustrated. An optional lens focuses a beam from a light emitting diode. When the pen is farther from the display a
larger spot size and/or intensity is sensed by the light sensitive elements with respect to when the
pen is closer to the display. The intensity of the light and/or the size of the spot sensed by the
light sensitive elements or otherwise the change in intensity and/or size may be used to determine
the pressure that is being exerted against the display by the user.
Referring to FIG. 32, a modified light guide type structure is shown. A polarizer
may be included on the lower surface of the light guide. In addition, other polarizers may be
included on the front and rear surfaces of the liquid crystal display. The polarizer on the lower
surface of the light guide preferably matches (+/- 5 degrees, +/- 2 degrees) the orientation of the
polarizer on the front surface of the liquid crystal display. The polarizers may include anti-
reflection coatings if desired. With the top two polarizers being included together with proper alignment between them more of the light from the pen will tend to pass through to the liquid crystal display.
Referring to FIG. 33 an exemplary image processing technique is illustrated for processing the data from the display to determine the location of the touch. The display is
initially calibrated by a calibration image module. For calibration, an image is obtained with the display covered by a black cloth or otherwise blocked from receiving ambient light. The black
reference image may be referred to as 10. Then an image may be obtained under normal uniform
(e.g., without significant shadows or light spots) ambient lighting conditions and referred to as II. A comparison between 10 and II may be performed to calibrate the display.
During operation, the image is initially captured by a capture image module. For
example, a 60 x 60 sensor matrix may be captured. Optionally a set of consecutive frames may then be averaged by an average frame module in order to reduce the noise in the signal, such as
for example four frames.
An AGC module may perform an automatic gain control function in order to adjust for an offset in the value. One particular implementation may be described by the following equation: le = { (Is-IO)/(Il-IO) } . Ie is the signal after equalization. "Is" is the sensor signal as captured or after averaging. 10 is the stored sensor reading for the black reference image. II is the stored sensor reading for the bright (e.g., ambient lighting conditions) reference image. The equalization module uses 10 to adjust for the potential non-zero value at dark conditions. In particular, this adjustment is made by the calculation of Is-10. The resulting comparison (e.g., division) of the captured signal versus the stored bright reference signals adjusts the level of the signal. Moreover, the output of the equalization is a normalized signal with a range from 0 to 1 in the case that Is<H. Ie may then be used to adjust the gain of the output of the average frame module ro captured image value. The AGC module thus effectively corrects for dark level non-uniformity and for sensor gain non-uniformity.
A smoothing module may be used to average proximate values together to compensate for non-uniformity in the characteristics of the display. A suitable filter is an averaging of the 8 adjacent pixels to a central pixel. Inherently the system provides relatively sharp edges from the signals which may be used directly. However, with the capability in some embodiments of detecting positive and negative outputs it was determined that using an edge detection module is beneficial. A preferred edge detection technique uses a 3x3 matrix, such as for example: {(-1 -1 -1) (-1 8 -1) (-1 -1 -1)}. The effect of the edge detection module is to enhance or otherwise determine those regions of the image that indicate an edge. Other edge detection techniques may likewise be used, such as for example, a Sobel edge detection technique, a 1st derivative technique, and a Robert's cross technique.
A threshold module may be used to set all values below a predetermined threshold value to zero, or otherwise indicate that they are not edges or regions being touched. In the case that the system provides negative values the predetermined threshold value may be less than an absolute value. The use of threshold values assists in the discrimination between the end of the finger touching the display and the shade from the hand itself. If there are an insufficient number of pixels as a result of the threshold module that are non-thresholded then the system returns to the start.
If there are a sufficient number of pixels as a result of the threshold module that are non-thresholded then the system determines the largest region of non-thresholded values using a max location module. In this manner, smaller regions of a few values may be removed so that the predominant region of non-thresholded values may be determined. A center of gravity module may be used to determine the center of the maximum region from the max location module. An x-y coordinates module may be used to provide the x and y display coordinates and a plot cross module maybe used to display a cross on the display at the x-y coordinates of the center of gravity. The cross module may provide data regarding the existence of the "touch" and its location to the system and return control back to the start.
Periodically the display may become scratched or otherwise a foreign object will be stuck to the front of the display. In this case the display will tend to provide false readings that the scratch or foreign object is indicative of a touch. In order to reduce the effects of scratches and foreign objects one or more bright reference images II may be obtained over a period of time. The set of one or more bright reference images II may be averaged if an insubstantial difference exists between the images. This reduces the likelihood that the display was touched during one or more of the image acquisitions. In the event that the images are substantially different then the images may be reacquired until an insubstantial difference exists.
When operated at low ambient lighting conditions it is difficult to detect the touching of the display. While under normal ambient lighting conditions it is desirable to adjust the output of the display in relation to the black reference image (10). However, it has been determined that under low ambient lighting conditions it is desirable to adjust the output of the display in relation to the bright reference image (II). Accordingly, one particular implementation may be described by the following equation: Ie = { (Is-Il )/(Il -10) } . The switching to night mode (low ambient lighting conditions) may be automatic or in response to a switch.
All references cited herein are hereby incorporated by reference.
The terms and expressions which have been employed in the foregoing specification_are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims

1. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to
change the polarization of the light incident thereon; and
(e) a plurality of light sensitive elements located together with said rear electrode
layer.
2. The device of claim 1 wherein each of said light sensitive elements include a transistor.
3. The device of claim 2 wherein each of said light sensitive elements includes a first transistor that senses ambient light, and a second transistor that is inhibited from sensing ambient light with respect to said first transistor.
4. The device of claim 3 wherein at least one of said first transistor and said second transistor is a thin-film transistor.
5. The device of claim 4 wherein said thin-film transistor is amorphous silicon.
6. The device of claim 3 wherein a terminal of said first transistor is connected to a terminal
of said second transistor with a first conductor.
7. The device of claim 6 wherein said first conductor is capacitively coupled to a common
line.
8. The device of claim 7 wherein said common line has a voltage potential less than said first conductor.
9. The device of claim 1 wherein said device is an active matrix liquid crystal device.
10. A light sensitive display comprising:
(a) a light valve including a front polarizing element, a rear polarizing element, and light rotating material located between said first polarizing element and said rear polarizing element; and
(b) a plurality of light sensitive elements located between said rear polarizing element and said light rotating material.
11. The display of claim 10 wherein said display is an active matrix liquid crystal device.
12. The display of claim 10 wherein each of said light sensitive elements includes a first transistor that senses ambient light, and a second transistor that is inhibited from sensing ambient light with respect to said first transistor.
13. The display of claim 10 further comprising a processor that receives information from said light sensitive elements and determines at least one of regions of said display where ambient light is inhibited from reaching said light sensitive elements and regions of said display where light in excess of said ambient light reaches said light sensitive elements.
14. The display of claim 10 further comprising a processor that receives information from said light sensitive elements and determines regions of said display where ambient light is inhibited from reaching said light sensitive elements.
15. The display of claim 10 further comprising a processor that receives information from said light sensitive elements and determines regions of said display where light in excess of said ambient light reaches said light sensitive elements.
16. A light sensitive display comprising:
(a) a light valve including a front electrode layer, a rear electrode layer, and light rotating material located between said first electrode layer and said rear electrode layer;
(b) said front and rear electrode layer defining a plurality of pixels within said light rotating material; and
(c) a plurality of light sensitive elements located within said light sensitive display located at least partially between said pixels.
17. The display of claim 16 wherein said display is a reflective liquid crystal device.
18. The display of claim 16 wherein said plurality of light sensitive elements located said at least partially between said pixels, with respect to a perpendicular direction to the front of said display.
19. The display of claim 16 wherein each of said light sensitive elements includes a first transistor that senses ambient light, and a second transistor that is inhibited from sensing ambient light with respect to said first transistor.
20. The display of claim 16 further comprising a processor that receives information from said light sensitive elements and determines at least one of regions of said display where ambient light is inhibited from reaching said light sensitive elements and regions of said display where light in excess of said ambient light reaches said light sensitive elements.
21. The display of claim 16 further comprising a processor that receives information from said light sensitive elements and determines regions of said display where ambient light is inhibited from reaching said light sensitive elements.
22. The display of claim 16 further comprising a processor that receives information from said light sensitive elements and determines regions of said display where light in excess
of said ambient light reaches said light sensitive elements.
23. A light sensitive display comprising:
(a) a light valve including a front polarizing element, a rear polarizing element, and light rotating material located between said first polarizing element and said rear polarizing element; and
(b) a plurality of light sensitive elements located between said front polarizing element and said light rotating material.
24. The display of claim 23 wherein each of said light sensitive elements includes a first transistor that senses ambient light, and a second transistor that is inhibited from sensing ambient light with respect to said first transistor.
25. The display of claim 23 further comprising a processor that receives information from said light sensitive elements and determines at least one of regions of said display where ambient light is inhibited from reaching said light sensitive elements and regions of said display where light in excess of said ambient light reaches said light sensitive elements.
26. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer comprising a plurality of pixel electrodes; (c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) a front polarizing element located toward the front of said liquid crystal device relative to said front electrode layer;
(e) a rear polarizing element located toward the rear of said liquid crystal device relative to said rear electrode layer;
(f) changing an electrical potential between said rear electrode layer and said front electrode layer to selectively modify portions of said liquid crystal material to change the polarization of the light incident thereon; and
(g) a plurality of light sensitive elements located at least partially between said pixel electrodes, with respect to a perpendicular direction to the front of said device, and between said liquid crystal material and said rear polarizing element.
27. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) a plurality of light sensitive elements located within said display, wherein said light sensitive elements are transistors.
28. The display of claim 27 wherein said display is a liquid crystal display.
29. The display of claim 27 wherein said light valve includes liquid crystal material.
30. The display of claim 27 wherein each of said light sensitive elements includes a first transistor that senses ambient light, and a second transistor that is inhibited from sensing ambient light with respect to said first transistor.
31. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) a plurality of light sensitive elements located within said display;
(c) a processor that receives information from said light sensitive elements and determines regions of said display where ambient light is inhibited from reaching said light sensitive elements and regions of said display where light in excess of said ambient light reaches said light sensitive elements.
32. The display of claim 31 wherein said display is a liquid crystal display.
33. The display of claim 32 wherein said liquid crystal display is active matrix. '
34. The display of claim 32 wherein said liquid crystal display is passive.
35. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) a plurality of light sensitive elements located within said display;
(c) a processor that receives information from said light sensitive elements and determines regions of said display where light in excess of said ambient light
reaches said light sensitive elements.
36. The light sensitive display of claim 35 said light in excess results from an optical pointing
device.
37. The light sensitive display of claim 36 wherein said optical pointing device is a laser
pointer.
38. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer comprising a plurality of pixel electrodes;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer; and
(d) a plurality of light sensitive elements located within said display wherein each of .
said light sensitive elements includes a first transistor that senses ambient light, a second transistor that is inhibited from sensing ambient light with respect to said
first transistor.
39. The device of claim 38 wherein a terminal of said first transistor is connected to a terminal of said second transistor with a first conductor.
40. The device of claim 39 wherein said first conductor is capacitively coupled to another
line with a capacitor.
41. The device of claim 40 wherein said another line has a voltage potential less than said
first conductor.
42. The device of claim 38 wherein said device is an active matrix liquid crystal device.
43. A display comprising:
(a) said display selectively causing pixels to provide light; and
(b) a plurality of light sensitive elements located within said display wherein each of
said light sensitive elements includes a first transistor that senses ambient light,
and a second transistor that is inhibited from sensing ambient light with respect to said first transistor.
44. The device of claim 43 wherein said device is at least one of multi-domain vertical
alignment liquid crystal display, patterned vertical alignment liquid crystal display, in- plane switching liquid crystal display, super-twisted nematic type liquid crystal display,
plasma display, electroluminescent display, liquid crystal on silicon display, and reflective liquid crystal device.
45. A light sensitive display comprising: (a) said display selectively causing pixels to provide light;
(b) a backlight within said display;
(c) at least one light sensitive element located within said display; and
(d) modifying the intensity of said backlight based upon said light sensitive element.
46. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) a plurality of light sensitive elements located within said display;
(c) a processor that receives information from said light sensitive elements and determines at least one of:
(i) regions of said display where ambient light is inhibited from reaching said light sensitive elements, and (ii) regions of said display where light in excess of said ambient light reaches said light sensitive elements;
(d) a plurality of pixel electrodes within said display wherein data provided to said pixel electrodes is modified in a manner in a manner consistent with the size of said pixel electrodes within said display.
47. The display of claim 46 wherein the data corresponding with said pixel electrodes having a size decreased by said light sensitive elements is modified.
48. The display of claim 47 wherein said data corresponding with said pixel electrodes having a decreased size is increased.
49. The display of claim 47 wherein said data corresponding with said pixel electrodes
having a decreased size remains unchanged while the data corresponding with a plurality
of other pixel electrodes is modified.
50. The display of claim 49 wherein said data corresponding with said other pixel electrodes
is decreased.
51. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer comprising a plurality of pixel electrodes;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) a plurality of light sensitive elements located within said display wherein each of
said light sensitive elements corresponds with a selected one of said pixel electrodes; and
(e) a plurality of elongate conductors each of which is electrically interconnected with
a respective one of said light sensitive elements wherein said elongate conductors are arranged in a manner consistent with the pattern of said pixel electrodes.
52. The device of claim 51 wherein said elongate conductors are said arranged at least within every 12th pixel of said display.
53. The device of claim 52 wherein said elongate conductors are said arranged at least within
every 9th pixel of said display.
54. The device of claim 53 wherein said elongate conductors are said arranged at least within every 6th pixel of said display.
55. The device of claim 54 wherein said elongate conductors are said arranged at least within every 3rd pixel of said display.
56. The device of claim 52 wherein there are at least four elongate conductors.
57. The device of claim 53 wherein there are at least four elongate conductors.
58. The device of claim 54 wherein there are at least four elongate conductors.
59. The device of claim 55 wherein there are at least four elongate conductors.
60. The device of claim 51 wherein said elongate conductors are said arranged over a majority of said device.
61. The device of claim 51 wherein at least one of said plurality of elongate conductors is free
from being operationally interconnected with any of said light sensitive elements.
62. The device of claim 51 wherein at least one of said plurality of elongate conductors is free
from being operationally interconnected with readout electronics.
63. The device of claim 51 wherein the spacing between at least one pair of pixel electrodes having at least one said elongate conductors there between is substantially the same as the
spacing between another pair of pixel electrodes free from having one of said elongate
conductors there between.
64. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer comprising a plurality of pixel electrodes;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) a plurality of light sensitive elements located within said display wherein each of
said light sensitive elements corresponds with a selected one of said pixel
electrodes;
(e) a plurality of elongate conductors each of which is electrically interconnected with a respective one of said light sensitive elements; and
(f) said plurality of elongate conductors each of which is also electrically interconnected with at least a respective one of said pixel electrodes.
65. The device of claim 64 wherein said elongate conductors are arranged at least within
every 12th pixel of said display.
66. The device of claim 65 wherein said elongate conductors are arranged at least within every 9th pixel of said display.
67. The device of claim 66 wherein said elongate conductors are arranged at least within every 6th pixel of said display.
68. The device of claim 67 wherein said elongate conductors are arranged at least within every 3rd pixel of said display.
69. The device of claim 64 wherein data is simultaneously provided to a respective pair of light sensitive elements and pixel electrodes.
70. The device of claim 64 wherein data is provided to a respective pair of light sensitive elements and pixel electrodes during a scan time of a scanning electrode.
71. A liquid crystal device comprising: (a) a front electrode layer; (b) a rear electrode layer comprising a plurality of pixel electrodes; '
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) a plurality of light sensitive elements located within said display wherein each of
said light sensitive elements corresponds with a selected one of said pixel
electrodes; and
(e) wherein data is provided to a respective pair of light sensitive elements and pixel
electrodes during a scan time of a scanning electrode.
72. The device of claim 71 further comprising a plurality of elongate conductors each of
which is electrically interconnected with a respective one of said light sensitive elements.
73. The device of claim 72 further comprising said plurality of elongate conductors each of
which is also electrically interconnected with at least a respective one of said pixel electrodes.
74. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light during a frame;
(b) a plurality of light sensitive elements located within said display;
(c) a processor that receives information from said light sensitive elements for said frame and determines at least one of:
(i) regions of said display where ambient light is inhibited from reaching said Ught sensitive elements; (ii) regions of said display where light in excess of said ambient light reaches
said light sensitive elements; (d) wherein said determination is further based upon data from a previous frame.
75. The display of claim 74 wherein said previous frame is the immediately proceeding
frame.
76. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light during a current frame;
(b) a plurality of light sensitive elements located within said display;
(c) a processor that receives information from said light sensitive elements for said current frame and determines a location where said display has been touched;
(d) wherein said determination is further based upon data from a previous frame.
77. The display of claim 76 wherein said previous frame is the immediately proceeding frame.
78. The display of claim 76 wherein said determination is made based upon a change in the
data provided to one of said light sensitive elements during said previous frame and the data readout from said one of said light sensitive elements during said current frame.
79. A light sensitive display comprising:
(a) said display selectively causing pixels to provide;
(b) a plurality of light sensitive elements located within said display;
(c) a processor that receives information from said light sensitive elements and
determines a location where said display has been touched;
(d) wherein said determination is further based upon data provided to said light
sensitive elements prior to said receiving said information from said light
sensitive elements.
80. The display of claim 79 wherein said display is selectively illuminated during a time
between said receiving said information and providing said data.
81. The display of claim 79 wherein said determination is made based upon a change in the
data provided to one of said light sensitive elements during a previous frame and the data readout from said one of said light sensitive elements during a current frame.
82. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) at least one light sensitive element located within said display; and
(d) modifying the intensity of a portable external light source directed at said display based upon said at least one light sensitive element.
83. The display of claim 82 wherein said display is sized to fit in the palm of the hand.
84. The display of claim 82 wherein said portable external light source is electrically
connected to said display.
85. The display of claim 84 wherein said light source is a generally elongate device.
86. The display of claim 82 wherein said portable external light source is operably
interconnected to said display via a wireless communication link.
87. The display of claim 82 wherein said portable external light source selectively provides
light based upon ambient light conditions.
88. The display of claim 87 wherein said portable external light source provides light if the ambient light conditions below a threshold.
89. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) at least one light sensitive element located within said display; and
(d) modifying the intensity of a portable external light source directed at said display based upon ambient lighting conditions.
90. The display of claim 89 wherein said display is sized to fit in the palm of the hand.
91. The display of claim 89 wherein said portable external light source is electrically
connected to said display.
92. The display of claim 89 wherein said portable external light source is operably interconnected to said display via a wireless communication link.
93. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) at least one light sensitive element located within said display; and
(d) modifying the intensity of an external light source directed at said display based
upon the addressing of said display.
94. The display of claim 93 wherein said display is sized to fit in the palm of the hand.
95. The display of claim 93 wherein said external light source is electrically connected to said
display.
96. The display of claim 93 wherein said external light source is operably interconnected to said display via a wireless communication link.
97. The display of claim 93 wherein said addressing includes the scanning of said display.
98. The display of claim 93 wherein said addressing includes different frames.
99. The display of claim 93 wherein said addressing includes odd and even frames or fields.
100. The display of claim 93 wherein said addressing includes where in said display said light
source is directed.
101. The display of claim 100 wherein said where in said display is the top and bottom of said display.
102. The display of claim 100 wherein said addressing is further based upon data provided to
said light source from said display.
103. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer comprising a plurality of pixel electrodes;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to change the polarization of the light incident thereon;
(e) a light guide together with an associated light source located in front of said front
electrode layer to provide light thereto;
(f) a plurality of light sensitive elements located within said display; and
(g) wherein the total internal reflections of said light guide is disrupted by contacting
said display with a pointing device, where the pointing device has an index of
refraction within 0.5 of the index of refraction of said light guide.
104. The device of claim 103 wherein the index of refraction of said light guide is between 1.4
and 1.6
105. The device of claim 104 wherein the index of refraction of said light guide is between 1.45 and 1.50.
106. The device of claim 104 wherein the index of refraction of said pointing device is between 1.2 and 1.9.
107. The device of claim 106 wherein the index of refraction of said pointing device is between 1.4 and 1.6.
108. A liquid crystal device comprising:
(a) a front electrode layer; (b) a rear electrode layer comprising a plurality of pixel electrodes;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front electrode layer to selectively modify portions of said liquid crystal material to change the polarization of the light incident thereon;
(e) a light guide together with an associated light source located in front of said front electrode layer to provide light thereto;
(f) a plurality of light sensitive elements located within said display; and
(g) a processor determining the location of touching of said display by sensing a light inhibited region by said light sensitive elements wherein light has been inhibited from reaching said light sensitive elements with an interior region to said inhibited region having greater illumination.
A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer comprising a plurality of pixel electrodes;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front electrode layer to selectively modify portions of said liquid crystal material to change the polarization of the light incident thereon; (e) a plurality of light sensitive elements located within said display; and
(f) a processor determining the location of touching of said display by sensing a light inhibited region by said light sensitive elements wherein light has been inhibited from reaching said light sensitive elements with an interior region to said inhibited
region having greater illumination.
110. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) a plurality of light sensitive elements located within said display;
(c) a processor that receives information from said light sensitive elements and determines regions of said display where ambient light is inhibited from reaching said light sensitive elements, wherein data from said light sensitive elements is temporally analyzed.
111. The display of claim 110 wherein said temporal analysis determines whether a pointing device is "hovering" with respect to said display or touching said display.
112. The display of claim 110 wherein said temporal analysis determines whether a pointing device remains stationary for a period of time.
113. The display of claim 110 wherein said temporal analysis determines whether a pointing device approaches the display and thereafter recedes from the display.
114. The display of claim 113 wherein the general time between approaching and receding is used as a basis for said pointing device touching said display.
115. The display of claim 110 wherein said temporal analysis determines whether a pointing device approaches said display and said pointing device maintains the same general size, where the general time when the shadow maintains the same size is used as a basis for said pointing device touching said display.
116. The display of claim 110 wherein said display is a liquid crystal display.
117. The display of claim 110 wherein said liquid crystal display is active matrix.
118. The display of claim 110 wherein said liquid crystal display is passive.
119. A light sensitive display comprising:
(a) said display selectively causing pixels to provide light;
(b) a plurality of light sensitive elements located within said display;
(c) a sampling circuit that reads data from said plurality of light sensitive elements at a rate corresponding with the refresh rate of the corresponding portion of said display, wherein the display includes at least two different refresh rates.
120. A liquid crystal device comprising: (a) a front electrode layer;
(b) a rear electrode layer comprising a plurality of pixel electrodes;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to
change the polarization of the light incident thereon;
(e) a plurality of light sensitive elements located within said display;
(f) a light guide together with an associated light source located in front of said front
electrode layer to provide light thereto, wherein said light has a color spectrum
less than ambient light; and
(g) a color filter positioned between said light guide and at least one of said light sensitive elements, wherein said color reduces the transmission of said ambient light to an extent greater than said light from said light source.
121. The device of claim 120 wherein said ambient light is white light.
122. The device of claim 120 wherein said color filter has a transmission of said ambient light less than 75%.
123. The device of claim 120 wherein said color filter has a transmission of said ambient light less than 60%.
124. The device of claim 120 wherein said color filter has a transmission of said ambient light
less than 50%.
125. The device of claim 120 wherein said color filter has a transmission of said ambient light
less than 40%.
126. The device of claim 120 wherein said color filter has a transmission of said ambient light
less than 30%.
127. The device of claim 120 wherein said color filter has a transmission of said light from
said light source greater than 25%.
128. The device of claim 120 wherein said color filter has a transmission of said light from said light source greater than 40%.
128. The device of claim 120 wherein said color filter has a transmission of said light from said light source greater than 50%.
130. The device of claim 120 wherein said color filter has a transmission of said light from , said light source greater than 60%.
131. The device of claim 120 wherein said color filter has a transmission of said light from said light source greater than 70%.
132. A light sensitive display system comprising:
(a) said display selectively causing pixels to provide light during subsequent frames;
(b) a plurality of light sensitive elements located within said display;
(c) a first amount of additional light provided to said light sensitive elements during
at least one of said subsequent frames;
(d) a second amount of said additional light selectively provided to said light sensitive
elements during at least one other of said subsequent frames, wherein said first
and second additional light are different; and
(e) said display system determining the location of said additional light on said
display based upon sensing a portion of said first and second additional light.
133. The display of claim 132 wherein said first amount of said additional light is greater than said second amount of said additional light.
134. The display of claim 132 wherein said subsequent frames are sequential frames.
135. A method of sensing with a display comprising:
(a) a plurality of light sensitive elements located within said display;
(b) modifying an amount of additional light provided to said light sensitive elements during multiple frames; and (c) system determining the location of said additional light on said display based
upon sensing said additional light.
136. The display of claim 135 wherein said first amount of said additional light is greater than
said second amount of said additional light.
137. The display of claim 135 wherein said multiple frames are non-sequential.
138. The display of claim 135 wherein said multiple frames are sequential.
139. The display of claim 135 wherein said modifying includes providing no-light.
140. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer comprising a plurality of pixel electrodes, wherein a first
plurality of said pixel electrodes is associated with blue, a second plurality of said
pixel electrodes is associated green, and a third plurality of said pixel electrodes is
associated with red;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) a plurality of light sensitive elements located within said display wherein each of
said light sensitive elements corresponds with a selected one of said pixel electrodes, wherein at least one of:
(i) a greater number of said light sensitive elements are associated with said
blue pixel electrodes, than said green pixel electrodes;
(ii) a greater number of said light sensitive elements are associated with said
blue pixel electrodes, than said red pixel electrodes;
(iii) a greater number of said light sensitive elements are associated with said
blue pixel electrodes, than non-blue said pixel electrodes.
A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front electrode layer to selectively modify portions of said liquid crystal material to
change the polarization of the light incident thereon;
(e) a plurality of light sensitive elements located together with said rear electrode layer; and
(f) a light blocking layer forwardly disposed from said front electrode layer that
inhibits ambient light from striking a plurality of said light sensitive elements while defining openings therein to permit ambient light to strike a plurality of other said light sensitive elements.
142. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to
change the polarization of the light incident thereon; and
(e) a plurality of light sensitive elements located together with said rear electrode
layer.
(f) a light blocking layer forwardly disposed from said front electrode layer that defines openings therein to permit ambient light to strike a plurality of said light
sensitive elements, wherein said openings are smaller in at least one dimension than at least one dimension of the channel of said light sensitive element.
143. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to change the polarization of the light incident thereon;
(e) a plurality of light sensitive elements located together with said rear electrode
layer;
(f) a substantially non-filtered optical path from said plurality of said light sensitive
elements to a viewer of said display.
144. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front electrode layer to selectively modify portions of said liquid crystal material to
change the polarization of the light incident thereon; and
(e) a plurality of light sensitive elements located together with said rear electrode layer.
(f) a light blocking layer forwardly disposed from said front electrode layer that
defines openings therein to permit ambient light to strike a plurality of said light
sensitive elements, wherein said openings include a portion of said light blocking layer.
145. A liquid crystal device comprising: (a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to change the polarization of the light incident thereon; and
(e) a plurality of light sensitive elements located together with said rear electrode
layer.
(f) a light blocking layer forwardly disposed from said front electrode layer that defines a non-continuous opening therein to permit ambient light to strike a respective said light sensitive element.
A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to change the polarization of the light incident thereon;
(e) a plurality of light sensitive elements located together with said rear electrode layer; and (f) a pen that provides a signal to said light sensitive elements indicative of the
pressure exerted against said device.
A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to
change the polarization of the light incident thereon;
(e) said rear electrode layer comprising a plurality of select electrodes and a plurality of data electrodes such that one of said select electrodes in combination with a
plurality of said data electrodes selectively change said electrical potential for a
plurality of different portion of said liquid crystal material;
(f) a first transistor comprising: (i) a first terminal;
(ii) a second terminal;
(iii) a third terminal;
(g) a second transistor comprising: (i) a first terminal; (ii) a second terminal;
(iii) a third terminal;
(h) said first terminal of said first transistor electrically interconnected to a conductive
electrode;
(i) said second terminal of said first transistor electrically interconnected to said
conductive electrode; (j) said first terminal of said first transistor and said second terminal of said first transistor electrically interconnected to one another;
(k) said second terminal of said first transistor is a gate of said first transistor;
(1) said third terminal of said first transistor electrically interconnected to said first
terminal of said second transistor;
(m) said second terminal of said second transistor electrically connected to one of said select electrodes;
(n) said second terminal of said second transistor is a gate of said second transistor;
(o) said third terminal of said second transistor is electrically interconnected to a readout system;
(p) said second transistor substantially inhibited from receiving ambient light thereon relative said first transistor receiving ambient light thereon; and
(q) said first transistor and said second transistor being together with said rear
electrode layer.
The device of claim 147 wherein at least one of said first transistor and said second transistor is a thin-film transistor.
149. The device of claim 148 wherein said first transistor and said second transistor are thin-
film transistors.
150. The device of claim 149 wherein the semiconductor material of said first transistor and
said second transistor is amorphous silicon.
151. The device of claim 150 wherein said third terminal of said first transistor is capacitively
coupled to said conductive electrode.
152. The device of claim 151 wherein said conductive electrode has a voltage potential less
than said third terminal of said second transistor.
153. The device of claim 147 wherein said device is an active matrix liquid crystal device.
154. The device of claim 147 wherein said second transistor provides an output in response to
a decrease in the amount of ambient light reaching said first transistor.
155. The device of claim 148 wherein said conductive electrode is said one of said select electrodes. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front electrode layer to selectively modify portions of said liquid crystal material to change the polarization of the light incident thereon;
(e) said rear electrode layer comprising a plurality of select electrodes and a plurality of data electrodes such that one of said select electrodes in combination with a plurality of said data electrodes selectively change said electrical potential for a plurality of different portion of said liquid crystal material;
(f) a first transistor comprising: (i) a first terminal;
(ii) a second terminal; (iii) a third terminal;
(g) a second transistor comprising: (i) a first terminal;
(ii) a second terminal; (iii) a third terminal; (h) said first terminal of said first transistor electrically interconnected to said second terminal of said first transistor; (i) said first terminal of said first transistor and said second terminal of said first
transistor electrically interconnected to one of a conductive electrode and to said
first terminal of said second transistor;
(j) said second terminal of said first transistor is a gate of said first transistor;
(k) said third terminal of said first transistor electrically interconnected to the other of
said conductive electrode and said first terminal of said second transistor;
(1) said second terminal of said second transistor electrically connected to one of said
select electrodes; (m) said second terminal of said second transistor is a gate of said second transistor; (n) said third terminal of said second transistor is electrically interconnected to a
readout system;
(o) said second transistor substantially inhibited from receiving ambient light thereon relative said first transistor receiving ambient light thereon; and
(p) said first transistor and said second transistor being together with said rear electrode layer.
157. The device of claim 156 wherein at least one of said first transistor and said second transistor is a thin-film transistor.
158. The device of claim 157 wherein said first transistor and said second transistor are thin- film transistors.
159. The device of claim 158 wherein the semiconductor material of said first transistor and
said second transistor is amorphous silicon.
160. The device of claim 159 wherein said third terminal of said first transistor is capacitively
coupled to said conductive electrode.
161. The device of claim 156 wherein said device is an active matrix liquid crystal device.
162. The device of claim 156 wherein said second transistor provides an output in response to
a decrease in the amount of ambient light reaching said first transistor.
163. The device of claim 156 wherein said conductive electrode is said one of said select
electrodes.
164. A liquid crystal device comprising:
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front electrode layer to selectively modify portions of said liquid crystal material to
change the polarization of the light incident thereon; (e) said rear electrode layer comprising a plurality of select electrodes and a plurality
of data electrodes such that one of said select electrodes in combination with a
plurality of said data electrodes selectively change said electrical potential for a
plurality of different portions of said liquid crystal material;
(f) a light sensitive element comprising:
(i) a first terminal;
(ii) a second terminal;
(g) a first transistor comprising:
(i) a first terminal;
(ii) a second terminal;
(iii) a third terminal; (h) said first terminal of said light sensitive element electrically interconnected to a
conductive electrode;
(i) said second terminal of said light sensitive element electrically interconnected to said first terminal of said first transistor;
(j) said second terminal of said first transistor electrically connected, to one of said select electrodes;
(k) said second terminal of said first transistor is a gate of said first transistor;
(1) said third terminal of said first transistor is electrically interconnected to a readout system;
(m) said first transistor substantially inhibited from receiving ambient light thereon
relative said light sensitive element receiving ambient light thereon; and (n) said readout system determining when light sensed by said light sensitive element
is less than said ambient light.
165. The device of claim 164 wherein said light sensitive element and said first transistor
being together with said rear electrode layer.
166. The device of claim 165 wherein said first transistor is a thin-film transistor.
167. The device of claim 166 wherein the semiconductor material of said first transistor is
amorphous silicon.
168. The device of claim 167 wherein said second terminal of said light sensitive element is
capacitively coupled to said conductive electrode.
169. The device of claim 168 wherein said conductive electrode has a voltage potential less than said third terminal of said first transistor.
170. The device of claim 165 wherein said first transistor provides an output in response to a
decrease in the amount of ambient light reaching said light sensitive element.
171. The device of claim 165 wherein said conductive electrode is said one of said select electrodes. A liquid crystal device comprising;
(a) a front electrode layer;
(b) a rear electrode layer;
(c) a liquid crystal material located between said front electrode layer and said rear
electrode layer;
(d) changing an electrical potential between said rear electrode layer and said front
electrode layer to selectively modify portions of said liquid crystal material to
change the polarization of the light incident thereon;
(e) said rear electrode layer comprising a plurality of select electrodes and a plurality
of data electrodes such that one of said select electrodes in combination with a
plurality of said data electrodes selectively change said electrical potential for a
plurality of different portions of said liquid crystal material;
(f) a first transistor comprising:
(i) a first terminal;
(ii) a second terminal;
(iii) a third terminal;
(g) a first element comprising:
(i) a first terminal;
(ii) a second terminal;
(h) said first terminal of said first transistor electrically interconnected to a conductive electrode;
(i) said second terminal of said first transistor electrically interconnected to said conductive electrode;
(j) said first terminal of said first transistor and said second terminal of said first
transistor electrically interconnected to one another;
(k) said second terminal of said first transistor is a gate of said first transistor;
(1) said third terminal of said first transistor electrically interconnected to said first
terminal of said first element;
(m) said second terminal of said first element is electrically interconnected to a
readout system;
(n) said first element substantially inhibited from receiving ambient light thereon
relative said first transistor receiving ambient light thereon; and
(o) said readout system determining when light sensed by said light sensitive element is less than said ambient light.
173. The device of claim 172 wherein said first element and said first transistor being together with said rear electrode layer.
174. The device of claim 173 wherein said first transistor is a thin-film transistor.
175. The device of claim 174 wherein the semiconductor material of said first transistor is amorphous silicon.
176. The device of claim 175 wherein said second terminal of said first transistor is capacitively coupled to said conductive electrode.
The device of claim 176 wherein said conductive electrode is said one of said select electrodes.
PCT/US2003/005300 2002-02-20 2003-02-20 Light sensitive display WO2003071345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003213188A AU2003213188A1 (en) 2002-02-20 2003-02-20 Light sensitive display

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US35926302P 2002-02-20 2002-02-20
US60/359,263 2002-02-20
US10/217,798 US7408598B2 (en) 2002-02-20 2002-08-12 Light sensitive display with selected interval of light sensitive elements
US10/217,798 2002-08-12
US10/307,106 2002-11-27
US10/307,106 US6995743B2 (en) 2002-02-20 2002-11-27 Light sensitive display
US10/329,217 2002-12-23
US10/329,217 US6947102B2 (en) 2002-02-20 2002-12-23 Light sensitive display which senses decreases in light

Publications (1)

Publication Number Publication Date
WO2003071345A1 true WO2003071345A1 (en) 2003-08-28

Family

ID=27761559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/005300 WO2003071345A1 (en) 2002-02-20 2003-02-20 Light sensitive display

Country Status (2)

Country Link
AU (1) AU2003213188A1 (en)
WO (1) WO2003071345A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589408A2 (en) * 2004-04-22 2005-10-26 Toshiba Matsushita Display Technology Co., Ltd. Display device having optical input function
US7298367B2 (en) 2003-11-25 2007-11-20 3M Innovative Properties Company Light emitting stylus and user input device using same
US7348969B2 (en) 2003-12-30 2008-03-25 3M Innovative Properties Company Passive light stylus and user input device using same
WO2008157237A2 (en) * 2007-06-13 2008-12-24 Apple Inc. Integrated multi-touch surface having varying sensor granularity
CN101614893B (en) * 2008-06-24 2011-08-17 乐金显示有限公司 Liquid crystal display
CN101400856B (en) * 2006-03-17 2011-08-24 Sca卫生产品股份公司 Laminated paper article and paper web
US8063877B2 (en) 2006-06-14 2011-11-22 Hannstar Display Corporation Driving circuit and driving method for input display
US8350827B2 (en) 2006-09-26 2013-01-08 Lg Display Co., Ltd. Display with infrared backlight source and multi-touch sensing function
CN103176676A (en) * 2013-02-28 2013-06-26 合肥京东方光电科技有限公司 Touch screen touch point location detection circuit, touch screen and display device
US9304575B2 (en) 2013-11-26 2016-04-05 Apple Inc. Reducing touch sensor panel power consumption
DE102007034773B4 (en) * 2006-09-26 2016-04-07 Lg Display Co., Ltd. Display with infrared edge illumination and multi-touch detection function
US9893102B2 (en) 2011-11-12 2018-02-13 Cross Match Technologies, Inc. Ambient light illumination for non-imaging contact sensors
US10024655B2 (en) 2011-11-11 2018-07-17 Cross Match Technologies, Inc. Ambient light rejection for non-imaging contact sensors
CN110073361A (en) * 2016-12-19 2019-07-30 指纹卡有限公司 Capacitance type fingerprint sensing device including display function
CN111933665A (en) * 2020-08-05 2020-11-13 维沃移动通信有限公司 Display module and electronic equipment
WO2022129008A1 (en) * 2020-12-14 2022-06-23 Em Microelectronic-Marin Sa Method for comparing a plurality of storage elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568292A (en) * 1992-09-09 1996-10-22 Goldstar Co., Ltd. Position-sensitive liquid crystal display and process for producing the same
US5990988A (en) * 1995-09-01 1999-11-23 Pioneer Electric Corporation Reflection liquid crystal display and a semiconductor device for the display
US6295113B1 (en) * 1998-12-16 2001-09-25 Picvue Electronics, Ltd. Twisted nematic color liquid crystal display
US20010046013A1 (en) * 1998-09-16 2001-11-29 Kazuto Noritake Reflection type liquid crystal display
US6380995B1 (en) * 1998-08-06 2002-04-30 Lg.Philips Lcd Co., Ltd. Transflective liquid crystal display device with asymmetry reflective electrode having a transparent portion facing a main viewing angle
US20020126240A1 (en) * 2001-01-15 2002-09-12 Masahiro Seiki Liquid crystal display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568292A (en) * 1992-09-09 1996-10-22 Goldstar Co., Ltd. Position-sensitive liquid crystal display and process for producing the same
US5990988A (en) * 1995-09-01 1999-11-23 Pioneer Electric Corporation Reflection liquid crystal display and a semiconductor device for the display
US6380995B1 (en) * 1998-08-06 2002-04-30 Lg.Philips Lcd Co., Ltd. Transflective liquid crystal display device with asymmetry reflective electrode having a transparent portion facing a main viewing angle
US20010046013A1 (en) * 1998-09-16 2001-11-29 Kazuto Noritake Reflection type liquid crystal display
US6295113B1 (en) * 1998-12-16 2001-09-25 Picvue Electronics, Ltd. Twisted nematic color liquid crystal display
US20020126240A1 (en) * 2001-01-15 2002-09-12 Masahiro Seiki Liquid crystal display

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298367B2 (en) 2003-11-25 2007-11-20 3M Innovative Properties Company Light emitting stylus and user input device using same
US7348969B2 (en) 2003-12-30 2008-03-25 3M Innovative Properties Company Passive light stylus and user input device using same
EP1589408A3 (en) * 2004-04-22 2008-04-09 Toshiba Matsushita Display Technology Co., Ltd. Display device having optical input function
EP1589408A2 (en) * 2004-04-22 2005-10-26 Toshiba Matsushita Display Technology Co., Ltd. Display device having optical input function
CN101400856B (en) * 2006-03-17 2011-08-24 Sca卫生产品股份公司 Laminated paper article and paper web
US8063877B2 (en) 2006-06-14 2011-11-22 Hannstar Display Corporation Driving circuit and driving method for input display
DE102007034773B4 (en) * 2006-09-26 2016-04-07 Lg Display Co., Ltd. Display with infrared edge illumination and multi-touch detection function
US8350827B2 (en) 2006-09-26 2013-01-08 Lg Display Co., Ltd. Display with infrared backlight source and multi-touch sensing function
DE102007034772B4 (en) * 2006-09-26 2016-04-07 Lg Display Co., Ltd. Display with infrared backlight source and multi-touch detection function
US9772667B2 (en) 2007-06-13 2017-09-26 Apple Inc. Integrated multi-touch surface having varying sensor granularity
US10642330B2 (en) 2007-06-13 2020-05-05 Apple Inc. Intergrated multi-touch surface having varying sensor granularity
WO2008157237A3 (en) * 2007-06-13 2009-07-16 Apple Inc Integrated multi-touch surface having varying sensor granularity
WO2008157237A2 (en) * 2007-06-13 2008-12-24 Apple Inc. Integrated multi-touch surface having varying sensor granularity
US10025366B2 (en) 2007-06-13 2018-07-17 Apple Inc. Intergrated multi-touch surface having varying sensor granularity
US9870041B2 (en) 2007-06-13 2018-01-16 Apple Inc. Integrated multi-touch surface having varying sensor granularity
CN101614893B (en) * 2008-06-24 2011-08-17 乐金显示有限公司 Liquid crystal display
US10024655B2 (en) 2011-11-11 2018-07-17 Cross Match Technologies, Inc. Ambient light rejection for non-imaging contact sensors
US9893102B2 (en) 2011-11-12 2018-02-13 Cross Match Technologies, Inc. Ambient light illumination for non-imaging contact sensors
CN103176676A (en) * 2013-02-28 2013-06-26 合肥京东方光电科技有限公司 Touch screen touch point location detection circuit, touch screen and display device
CN103176676B (en) * 2013-02-28 2015-10-14 合肥京东方光电科技有限公司 A kind of touch screen touch point positioning detecting circuit, touch-screen and display device
US9323408B2 (en) 2013-02-28 2016-04-26 Hefei Boe Optoelectronics Technology Co., Ltd. Touch point positioning and detecting circuit for a touch panel, touch panel and display device
US9830034B2 (en) 2013-11-26 2017-11-28 Apple Inc. Reducing touch sensor panel power consumption
US10318086B2 (en) 2013-11-26 2019-06-11 Apple Inc. Reducing touch sensor panel power consumption
US9304575B2 (en) 2013-11-26 2016-04-05 Apple Inc. Reducing touch sensor panel power consumption
CN110073361A (en) * 2016-12-19 2019-07-30 指纹卡有限公司 Capacitance type fingerprint sensing device including display function
CN110073361B (en) * 2016-12-19 2023-04-04 指纹卡安娜卡敦知识产权有限公司 Capacitive fingerprint sensing device including display function
CN111933665A (en) * 2020-08-05 2020-11-13 维沃移动通信有限公司 Display module and electronic equipment
CN111933665B (en) * 2020-08-05 2023-04-07 维沃移动通信有限公司 Display module and electronic equipment
WO2022129008A1 (en) * 2020-12-14 2022-06-23 Em Microelectronic-Marin Sa Method for comparing a plurality of storage elements
TWI792758B (en) * 2020-12-14 2023-02-11 瑞士商艾姆微體電子 馬林公司 Method for comparing a plurality of storage elements

Also Published As

Publication number Publication date
AU2003213188A1 (en) 2003-09-09

Similar Documents

Publication Publication Date Title
US9971456B2 (en) Light sensitive display with switchable detection modes for detecting a fingerprint
US8207946B2 (en) Light sensitive display
US7009663B2 (en) Integrated optical light sensitive active matrix liquid crystal display
US20080048995A1 (en) Light sensitive display
US7053967B2 (en) Light sensitive display
EP3200183A1 (en) Integrated light sensitive liquid-crystal display
WO2003071345A1 (en) Light sensitive display

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP