WO2003073146A1 - Combination connector - Google Patents

Combination connector Download PDF

Info

Publication number
WO2003073146A1
WO2003073146A1 PCT/US2003/005229 US0305229W WO03073146A1 WO 2003073146 A1 WO2003073146 A1 WO 2003073146A1 US 0305229 W US0305229 W US 0305229W WO 03073146 A1 WO03073146 A1 WO 03073146A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminals
backplane
housing
connector
transmission
Prior art date
Application number
PCT/US2003/005229
Other languages
French (fr)
Other versions
WO2003073146B1 (en
Inventor
Michael J. Gardner
Jerry D. Kachlic
Scott D. Sommers
Original Assignee
Molex Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/080,735 external-priority patent/US6592401B1/en
Application filed by Molex Incorporated filed Critical Molex Incorporated
Priority to AU2003213176A priority Critical patent/AU2003213176A1/en
Publication of WO2003073146A1 publication Critical patent/WO2003073146A1/en
Publication of WO2003073146B1 publication Critical patent/WO2003073146B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1438Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion
    • H05K7/1452Mounting of connectors; Switching; Reinforcing of back panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3817Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres containing optical and electrical conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casing, frames or circuit boards
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • This invention is generally directed to a combination connector which is connected to a backplane or bulkhead type structure and which is used to pass power and signal therethrough in which the power is isolated from the signal, or to pass two different types of transmission sets therethrough in which the first transmission set is isolated from the second transmission set.
  • Prior art connectors which connect to a backplane route signal and power through a common backplane.
  • any signal degradation resulting from passing both power and signal through a common backplane does not result in any real degradation of the signal quality as a result of interference that may be generated by the power signals being routed through the backplane.
  • the interference being generated by passing both power and signal through a common backplane creates interferences that result in unacceptable degradation of the high speed signals.
  • a general object of the present invention is to provide a novel combination connector which is connected to a backplane or bulkhead and which is used Jo pass power and signal therethrough in which the power is isolated from the signal, or to pass two different types of signal sets therethrough in which the first signal set is isolated from the second signal set.
  • An object of the present invention is to provide a novel combination connector which maintains signal integrity. Another object of the present invention is to provide a novel combination connector which connects to a backplane in which the backplane used is less expensive than backplanes used with prior art comiectors. It has been found that by moving alternate signal or power sets out of the backplane and into a bypass transmission media, in certain cases backplane costs can be reduced. Another object of the present invention is to provide a novel combination connector that reduces the total cost of assembling the connector to a backplane or bulkhead while at the same time minimizing the size of the aperture that needs to be placed into the backplane or bulkhead.
  • the combination connector of the present invention overcomes these problems noted in the prior art by isolating the power and high speed signals or multiple signal sets in a manner that offers both cost and performance benefits that cannot be achieved by traditional methods. This is because the circuit board that the combination connector of the present invention is mounted on is simplified because it only has to route power or signal sets, and not both power and signals. This is particularly significant in the instance of high speed signals and/or power, because interference from the power being routed through a circuit board that routes both power and high speed signals can result in a degradation of the signal quality of the high speed signals and/or the power can be contaminated by an overlay of aggressive high speed signals.
  • a connector capable of mating with a backplane that only routes one of the transmission sets being passed through the connector directly to the backplane that it is connected to, for example, power.
  • the other transmission set being passed through the connector such as high speed signals, does not get routed to the same backplane as the connector is mounted on, but rather, is routed elsewhere, such as another circuit board or electronic device, h this case, the connector acts as a passive alignment tool to pass the selected transmission set through the connector and on to an alternate termination point.
  • the connector includes a housing, a first set of terminals provided within the housing, a second set of terminals provided within the housing and being electrically isolated from the first set of terminals.
  • the first set of terminals is capable of mating with the backplane in a conventional manner.
  • the second set of terminals may be comiected to a cable extending from the housing so as to not pass the electrical signals being passed through the second set of terminals to the backplane on which the combination connector is mounted.
  • One of the first set of terminals and the second set of terminals is used to pass power or signal through the housing to the backplane and the other of the first set of terminals and the second set of terminals used to pass signal through the housing without passing the signal to the backplane.
  • FIG. 1 is a perspective view of a combination connector which incorporates the features of the invention and a backplane;
  • FIG. 2 is a perspective view of a plurality of the combination comiectors which incorporates the features of the invention and a backplane;
  • FIG. 3 is a side elevational view of the combination connector
  • FIG. 4 is a top plan view of the combination com ector
  • FIG. 5 is a side elevational view of the combination connector without a cable attached thereto;
  • FIG. 6 is an exploded, perspective view illustrating one method of installing the transmission set that is passed through the backplane without passing the transmission set to the backplane.
  • a combination connector 20 is used to for transmission, which is the process of conducting radiant energy through a transmission medium. This includes, but is not limited to, optical and electrical transmission. h one embodiment of the combination connector 20, the combination connector is used to pass power and signal therethrough in which the power set is isolated from the signal set. Alternatively, two different types of transmission sets are passed therethrough in which the first transmission set is isolated from the second transmission set.
  • This combination connector 20 is particularly suitable for use in high speed systems.
  • the combination connector 20 can be used to pass electrical power and electrical signal therethrough, electrical signal and optical signal theretlirough, or optical signal and electrical power therethrough or any other combination of transmissions
  • the combination connector 20 is adapted for mounting to a backplane 22, see FIGS. 1 and 2, and can be used in an electronic enclosure, such as a server or a router which contains a backplane or mid-plane for the attacliment of sub-components or devices such as hard drives, tape drives, DNDs, compact discs and the like. Both the sub-components and the hard drives require a single attachment point which provide power and signal. In the application where power is bussed across the backplane 22 to the combination connector 20, the signal does not enter the backplane 22 and instead directly connects to the sub-component or device.
  • the combination connector 20 has a dielectric housing 24 having a first end 26 and a second end 28. As shown, the housing 24 is elongated and rectangular, but can take other suitable forms.
  • first and second passageways 30, 32 are provided through the housing 24 from the first end 26 to the second end 28 and are separated from each other by a dielectric wall 34.
  • the wall 34 may be integrally formed with the housing 24 or as a separate component which is suitably attached to the housing 24.
  • the dielectric wall 34 could be replaced by a conductive shielding wall in the event additional electrical separation is desired.
  • a first set of terminals 36 are provided within the first passageways 30 at the first portion 31 of the housing (see FIG. 6) and extend through the housing 24 generally from the first end 26 to the second end 28.
  • Each terminal 36 in the first set includes a tail portion 38 which extends from the second end 28 of the housing for 24 attachment to the backplane 22 in a conventional manner.
  • a second set of terminals 40 are provided within the second passageways 32 at the second portion of the housing (see FIG. 6) and extend through the housing 24 generally from the first end 26 to the second end 28.
  • Each terminal 40 in the second set includes a tail portion 42 (see FIG. 5 which illustrates the tail portions 42) which extends from the second end 28 of the housing 24 for attachment to an alternate transmission medium, in this case, a cable 44 as described herein.
  • the cable is preferably a flexible cable, but the invention is not so limited.
  • the first set of terminals 36 are electrically isolated from the second set of terminals 40 by the housing 24 and the wall 34.
  • the combination connector 20 includes a pair of board mounting posts 46 which extend from the second end 28 of the housing 24 for insertion into corresponding mounting holes 48 on the backplane 22.
  • a pair of posts 50 extend from the first end 26 of the housing 24 for mounting the mating device (not shown) thereto.
  • the cable 44 is attached to the tail portions 42 of the second set of terminals 40.
  • the cable 44 can be permanently attached to the tail portions 42 of the second set of terminals 40, such as by soldering or other means.
  • the cable 44 can be releasably attached to the tail portions 42 of the second set of terminals 40 such that the cable 44 can be easily attached and disengaged from the second set of terminals 40, such as with a connector 45 mounted on the cable 44 that mates with the tail portions 42.
  • the combination connector 20 is adapted for mounting to the backplane 22 through which power from a source or signals from an associated device are passed.
  • the backplane 22 includes conventional means, such as tracings (not shown), for passing power to the combination connector 20 from a source (not shown).
  • the backplane 22 includes mounting apertures 52 to allow insertion of the tail portions 38 of the first set of terminals 36 therein to allow the first set of terminals 36 to mate with the tracings. It is to be understood that other means for mounting the tail portions 38 to the backplane 22 can be provided, such as circuit traces to mount surface mount tails to the backplane, hi addition to the mounting apertures 52 and the mounting holes 48, the backplane 22 includes an aperture 54 therethrough through which the cable 44 is inserted.
  • first set of terminals 36 are inserted into the corresponding mounting apertures 52 in the backplane 22, the mounting posts 46 of the combination connector 20 are seated into the corresponding apertures 48 in the backplane 22, and the cable 44 is passed through the aperture 54 in the backplane 22.
  • first set of terminals 36 is described and shown herein as being plated through hole mounted, it is to be understood that the first set of terminals 36 can be mounted to the backplane 22 by surface mounting techniques.
  • signal can be passed directly through the combination connector 20 by way of the second set of terminals 40 and the cable 44, and not onto the backplane 22, this signal is isolated from the power being routed through the backplane 22.
  • This allows for the direct transmission of high speed signals through the combination connector 20 by the second set of terminals 40 and the attached cable 44.
  • the cable 44 can be designed with differing lengths, the termination point of the signal is not directly related to the backplane 22, i.e., the system to which the cable 44 is attached can be isolated from the backplane 22.
  • backplanes have physical limits in terms of the signal travel length for high speed signals.
  • the use of an alternate transmission medium, such as a cable provides system designers with additional options for creating an optimized system because of the ability to extend the signal travel length.
  • combination connectors 20 can be connected to the same backplane 22, see FIG. 2, in the same manner as described herein.
  • the following configurations are possible using the combination connector 20:
  • configuration number 1 the power is routed onto the backplane 22 and the signal is routed through the second set of terminals 40 and the cable 44.
  • This configuration maintains signal integrity, and a less expensive backplane can be used, especially in high speed backplanes used in enterprise storage devices, routers, switches, hubs.
  • h configuration number 2 either the optical signal or the electrical signal can terminate onto the backplane 22 for routing to an appropriate device. The other of the optical signal or the electrical signal is routed through the second set of terminals 40 and the cable 44.
  • hi configuration number 3 devices attached to backplane 22 can be powered, but the signal is allowed to pass therethrough. Applications for this configuration, among others, include telecom and medical.
  • the properties of the optical fibers provide for ideal serial links in many applications (no effect from the EMIXRFI properties of the power).
  • An additional situation can have the power routed within a printed circuit board and component and device signals attached to the backplane 22 would be interconnected by cabling.
  • An example would be a hard disk drive control module plugged into a backplane 22 alongside a bank of drives. The power is supplied through the printed circuit board and signal cables are run between the control module and the individual drives.
  • a third set of terminals within the housing 24 which is electrically isolated from the first set of terminals 36 and the second set of terminals 40 can be provided.
  • the third set of terminals may have a cable attached to its tail portions or the terminals may have tail portions terminated to the backplane.
  • the second configuration of the three-way combination could be used in a dual Signal bay +power connector or a Serial SCSI.
  • FIG. 6 illustrates a novel method of assembling the cable 44 to the combination connector 20.
  • Combination connector 20 includes the first set of terminals 36 installed within the passageways 30 of the first portion 31 of the housing, but the second set of terminals 40 are not yet installed into the combination connector 20. Rather, the second set of terminals 40 are installed directly to the cable 44 to comprise a completed cable assembly 47. Preferably, after the terminals 40 are terminated to the cable 44, the region of the termination 49 is overloaded to provide robustness to the terminal 40/cable 44 interface.
  • Installing the combination connector of FIG. 6 to the backplane 22 involves placing the combination connector 20 onto the backplane 22 such that the first terminals 36 are received within the mounting apertures 52 located on the backplane 22.
  • the cable assembly 47 is placed through the aperture 54 in the backplane 22 and the second terminals 40 are then positioned within the second portion 33 of the housing 24.
  • the cable assembly 47 can be mounted to the combination connector 20 prior to the combination connector 20 being installed to the backplane 22, and the installation of the combination connector 20 to the backplane 22 would involve placing the free end 51 of the cable assembly 47 through the aperture 54 prior to installing the combination connector 20 to the backplane 22.
  • the benefits of the methods of installation described above include minimizing the size of the aperture 54 that needs to be put into the backplane 22, which results in less wasted "real estate" on the backplane, which can be very valuable to designers, particularly in instances where miniaturization is required, i addition, the cable assemblies 47 can be made separately from the combination connector 20, thereby dispensing with the need to terminate the cable 44 to the second terminals 40 after the combination connector 20 is installed onto the backplane 22. However, one could choose to terminate the cable 44 to the second terminals 40 after the combination connector 20 is installed onto the backplane if one so desired.

Abstract

A connector is capable of mating with a backplane. The connector includes a housing having at least a first portion and a second portion. The first portion of the housing transmits a first transmission to the backplane and the second portion of the housing transmits a second transmission through the backplane without transmitting the second transmission to the backplane.

Description

COMBINATION CONNECTOR
Field of the Invention;
This invention is generally directed to a combination connector which is connected to a backplane or bulkhead type structure and which is used to pass power and signal therethrough in which the power is isolated from the signal, or to pass two different types of transmission sets therethrough in which the first transmission set is isolated from the second transmission set.
Background of the Invention:
Prior art connectors which connect to a backplane route signal and power through a common backplane. When dealing with relatively low speed signals or clean power feeds, any signal degradation resulting from passing both power and signal through a common backplane does not result in any real degradation of the signal quality as a result of interference that may be generated by the power signals being routed through the backplane. However, with today's requirement to pass signals at ever increasing speeds and potentially contaminated or noisy power feeds, the interference being generated by passing both power and signal through a common backplane creates interferences that result in unacceptable degradation of the high speed signals. To overcome these problems in the past, designers have had to design complex circuit boards that would be capable of passing both power and high speed signals theretlirough while at the same time preventing electrical interference so as to not cause unacceptable signal degradation. Additionally, combinations with fiber optics was generally avoided due to the complexities encountered in routing fiber optic signals directly onto a backplane.
A combination connector which overcomes the problems presented in the prior art and which provides additional advantages over the prior art is provided. Such advantages will become clear upon a reading of the attached specification in combination with a study of the drawings.
Objects and Summary of the Invention:
A general object of the present invention is to provide a novel combination connector which is connected to a backplane or bulkhead and which is used Jo pass power and signal therethrough in which the power is isolated from the signal, or to pass two different types of signal sets therethrough in which the first signal set is isolated from the second signal set.
An object of the present invention is to provide a novel combination connector which maintains signal integrity. Another object of the present invention is to provide a novel combination connector which connects to a backplane in which the backplane used is less expensive than backplanes used with prior art comiectors. It has been found that by moving alternate signal or power sets out of the backplane and into a bypass transmission media, in certain cases backplane costs can be reduced. Another object of the present invention is to provide a novel combination connector that reduces the total cost of assembling the connector to a backplane or bulkhead while at the same time minimizing the size of the aperture that needs to be placed into the backplane or bulkhead.
The combination connector of the present invention overcomes these problems noted in the prior art by isolating the power and high speed signals or multiple signal sets in a manner that offers both cost and performance benefits that cannot be achieved by traditional methods. This is because the circuit board that the combination connector of the present invention is mounted on is simplified because it only has to route power or signal sets, and not both power and signals. This is particularly significant in the instance of high speed signals and/or power, because interference from the power being routed through a circuit board that routes both power and high speed signals can result in a degradation of the signal quality of the high speed signals and/or the power can be contaminated by an overlay of aggressive high speed signals. Alternatively, more complex and expensive boards, i.e., boards requiring additional layers to provide for isolation between the transmissions received by the board, had to be devised to handle both power and high speed signals so as to not have an unacceptable degradation of the signal quality of the high speed signals.
Briefly, and in accordance with the foregoing, a connector capable of mating with a backplane is provided that only routes one of the transmission sets being passed through the connector directly to the backplane that it is connected to, for example, power. The other transmission set being passed through the connector, such as high speed signals, does not get routed to the same backplane as the connector is mounted on, but rather, is routed elsewhere, such as another circuit board or electronic device, h this case, the connector acts as a passive alignment tool to pass the selected transmission set through the connector and on to an alternate termination point.
In one embodiment of the combination connector of the present invention, the connector includes a housing, a first set of terminals provided within the housing, a second set of terminals provided within the housing and being electrically isolated from the first set of terminals. The first set of terminals is capable of mating with the backplane in a conventional manner. The second set of terminals may be comiected to a cable extending from the housing so as to not pass the electrical signals being passed through the second set of terminals to the backplane on which the combination connector is mounted. One of the first set of terminals and the second set of terminals is used to pass power or signal through the housing to the backplane and the other of the first set of terminals and the second set of terminals used to pass signal through the housing without passing the signal to the backplane.
Brief Description of the Drawings: The organization and manner of the structure and operation of the invention, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in connection with the accompanying drawings, wherein like reference numerals identify like elements in which:
FIG. 1 is a perspective view of a combination connector which incorporates the features of the invention and a backplane;
FIG. 2 is a perspective view of a plurality of the combination comiectors which incorporates the features of the invention and a backplane;
FIG. 3 is a side elevational view of the combination connector;
FIG. 4 is a top plan view of the combination com ector; FIG. 5 is a side elevational view of the combination connector without a cable attached thereto; and
FIG. 6 is an exploded, perspective view illustrating one method of installing the transmission set that is passed through the backplane without passing the transmission set to the backplane. Detailed Description of the Illustrated Embodiments:
While the invention may be susceptible to embodiment in different forms, there is shown in the drawings, and herein will be described in detail, a specific embodiment with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that as illustrated and described herein.
A combination connector 20 is used to for transmission, which is the process of conducting radiant energy through a transmission medium. This includes, but is not limited to, optical and electrical transmission. h one embodiment of the combination connector 20, the combination connector is used to pass power and signal therethrough in which the power set is isolated from the signal set. Alternatively, two different types of transmission sets are passed therethrough in which the first transmission set is isolated from the second transmission set. This combination connector 20 is particularly suitable for use in high speed systems. For example, the combination connector 20 can be used to pass electrical power and electrical signal therethrough, electrical signal and optical signal theretlirough, or optical signal and electrical power therethrough or any other combination of transmissions
The combination connector 20 is adapted for mounting to a backplane 22, see FIGS. 1 and 2, and can be used in an electronic enclosure, such as a server or a router which contains a backplane or mid-plane for the attacliment of sub-components or devices such as hard drives, tape drives, DNDs, compact discs and the like. Both the sub-components and the hard drives require a single attachment point which provide power and signal. In the application where power is bussed across the backplane 22 to the combination connector 20, the signal does not enter the backplane 22 and instead directly connects to the sub-component or device.
The combination connector 20 has a dielectric housing 24 having a first end 26 and a second end 28. As shown, the housing 24 is elongated and rectangular, but can take other suitable forms.
As shown in FIG. 4, first and second passageways 30, 32 are provided through the housing 24 from the first end 26 to the second end 28 and are separated from each other by a dielectric wall 34. The wall 34 may be integrally formed with the housing 24 or as a separate component which is suitably attached to the housing 24. Alternatively the dielectric wall 34 could be replaced by a conductive shielding wall in the event additional electrical separation is desired.
A first set of terminals 36 are provided within the first passageways 30 at the first portion 31 of the housing (see FIG. 6) and extend through the housing 24 generally from the first end 26 to the second end 28. Each terminal 36 in the first set includes a tail portion 38 which extends from the second end 28 of the housing for 24 attachment to the backplane 22 in a conventional manner. A second set of terminals 40 are provided within the second passageways 32 at the second portion of the housing (see FIG. 6) and extend through the housing 24 generally from the first end 26 to the second end 28. Each terminal 40 in the second set includes a tail portion 42 (see FIG. 5 which illustrates the tail portions 42) which extends from the second end 28 of the housing 24 for attachment to an alternate transmission medium, in this case, a cable 44 as described herein. The cable is preferably a flexible cable, but the invention is not so limited. The first set of terminals 36 are electrically isolated from the second set of terminals 40 by the housing 24 and the wall 34.
The combination connector 20 includes a pair of board mounting posts 46 which extend from the second end 28 of the housing 24 for insertion into corresponding mounting holes 48 on the backplane 22. A pair of posts 50 extend from the first end 26 of the housing 24 for mounting the mating device (not shown) thereto. The cable 44 is attached to the tail portions 42 of the second set of terminals 40. The cable 44 can be permanently attached to the tail portions 42 of the second set of terminals 40, such as by soldering or other means. Alternatively, the cable 44 can be releasably attached to the tail portions 42 of the second set of terminals 40 such that the cable 44 can be easily attached and disengaged from the second set of terminals 40, such as with a connector 45 mounted on the cable 44 that mates with the tail portions 42.
The combination connector 20 is adapted for mounting to the backplane 22 through which power from a source or signals from an associated device are passed. The backplane 22 includes conventional means, such as tracings (not shown), for passing power to the combination connector 20 from a source (not shown). The backplane 22 includes mounting apertures 52 to allow insertion of the tail portions 38 of the first set of terminals 36 therein to allow the first set of terminals 36 to mate with the tracings. It is to be understood that other means for mounting the tail portions 38 to the backplane 22 can be provided, such as circuit traces to mount surface mount tails to the backplane, hi addition to the mounting apertures 52 and the mounting holes 48, the backplane 22 includes an aperture 54 therethrough through which the cable 44 is inserted. When the combination connector 20 is attached to the backplane 22, the tail portions
38 of the first set of terminals 36 are inserted into the corresponding mounting apertures 52 in the backplane 22, the mounting posts 46 of the combination connector 20 are seated into the corresponding apertures 48 in the backplane 22, and the cable 44 is passed through the aperture 54 in the backplane 22. While the first set of terminals 36 is described and shown herein as being plated through hole mounted, it is to be understood that the first set of terminals 36 can be mounted to the backplane 22 by surface mounting techniques.
Because signal can be passed directly through the combination connector 20 by way of the second set of terminals 40 and the cable 44, and not onto the backplane 22, this signal is isolated from the power being routed through the backplane 22. This allows for the direct transmission of high speed signals through the combination connector 20 by the second set of terminals 40 and the attached cable 44. Because the cable 44 can be designed with differing lengths, the termination point of the signal is not directly related to the backplane 22, i.e., the system to which the cable 44 is attached can be isolated from the backplane 22. hi addition to enhanced isolation, backplanes have physical limits in terms of the signal travel length for high speed signals. The use of an alternate transmission medium, such as a cable, provides system designers with additional options for creating an optimized system because of the ability to extend the signal travel length.
Multiple combination connectors 20 can be connected to the same backplane 22, see FIG. 2, in the same manner as described herein. The following configurations are possible using the combination connector 20:
1. electrical signal\electrical power;
2. electrical signal\optical signal; and
3. optical signal\electrical power;
In configuration number 1, the power is routed onto the backplane 22 and the signal is routed through the second set of terminals 40 and the cable 44. This configuration maintains signal integrity, and a less expensive backplane can be used, especially in high speed backplanes used in enterprise storage devices, routers, switches, hubs. h configuration number 2, either the optical signal or the electrical signal can terminate onto the backplane 22 for routing to an appropriate device. The other of the optical signal or the electrical signal is routed through the second set of terminals 40 and the cable 44. hi configuration number 3, devices attached to backplane 22 can be powered, but the signal is allowed to pass therethrough. Applications for this configuration, among others, include telecom and medical. The properties of the optical fibers provide for ideal serial links in many applications (no effect from the EMIXRFI properties of the power).
Other configurations may be possible which are not listed above and the above list is not intended to limit the applications of the combination connector 20. Moreover, whereas the above configurations indicate that the power is routed onto the backplane, there may be instances where one would choose to route the power through the alternate transmission medium, in this case, the cable 44. i a situation where a hard drive is provided, the power is routed through a simple, low cost printed circuit board. The signals pass through the backplane 22 and are routed directly to the printed circuit board where the silicon is located. One end of the cable 44 is coimected to the combination connector 20. The opposite end of the cable 44 is terminated to a connector which plugs to the control printed circuit board.
An additional situation can have the power routed within a printed circuit board and component and device signals attached to the backplane 22 would be interconnected by cabling. An example would be a hard disk drive control module plugged into a backplane 22 alongside a bank of drives. The power is supplied through the printed circuit board and signal cables are run between the control module and the individual drives.
In addition, it is possible to have more than two sets of terminals 36, 40 in the combination comiector. 20 For example, a third set of terminals (not shown) within the housing 24 which is electrically isolated from the first set of terminals 36 and the second set of terminals 40 can be provided. The third set of terminals may have a cable attached to its tail portions or the terminals may have tail portions terminated to the backplane. In such a three-way combination, the following configurations are possible:
1. optical signal\electrical signal\electrical power; and
2. electrical signal\electrical signal\electrical power.
The second configuration of the three-way combination could be used in a dual Signal bay +power connector or a Serial SCSI.
Other three-way configurations may be possible which are not listed above and the above list is not intended to limit the applications of the combination connector.
FIG. 6 illustrates a novel method of assembling the cable 44 to the combination connector 20. Combination connector 20 includes the first set of terminals 36 installed within the passageways 30 of the first portion 31 of the housing, but the second set of terminals 40 are not yet installed into the combination connector 20. Rather, the second set of terminals 40 are installed directly to the cable 44 to comprise a completed cable assembly 47. Preferably, after the terminals 40 are terminated to the cable 44, the region of the termination 49 is overloaded to provide robustness to the terminal 40/cable 44 interface. Installing the combination connector of FIG. 6 to the backplane 22 involves placing the combination connector 20 onto the backplane 22 such that the first terminals 36 are received within the mounting apertures 52 located on the backplane 22. After the combination connector 20 is placed on the backplane, the cable assembly 47 is placed through the aperture 54 in the backplane 22 and the second terminals 40 are then positioned within the second portion 33 of the housing 24. Alternatively, the cable assembly 47 can be mounted to the combination connector 20 prior to the combination connector 20 being installed to the backplane 22, and the installation of the combination connector 20 to the backplane 22 would involve placing the free end 51 of the cable assembly 47 through the aperture 54 prior to installing the combination connector 20 to the backplane 22. The benefits of the methods of installation described above include minimizing the size of the aperture 54 that needs to be put into the backplane 22, which results in less wasted "real estate" on the backplane, which can be very valuable to designers, particularly in instances where miniaturization is required, i addition, the cable assemblies 47 can be made separately from the combination connector 20, thereby dispensing with the need to terminate the cable 44 to the second terminals 40 after the combination connector 20 is installed onto the backplane 22. However, one could choose to terminate the cable 44 to the second terminals 40 after the combination connector 20 is installed onto the backplane if one so desired.
While a preferred embodiment of the present invention is shown and described, it is envisioned that those skilled in the art may devise various modifications of the present invention without departing from the spirit and scope of the appended claims.

Claims

CLAIMS:
1. A connector capable of mating with a backplane, the connector comprising: a housing; a first set of terminals provided within the housing, the first set of terminals being capable of mating with the backplane; a second set of terminals provided within the housing and being isolated from the first set of terminals; and an alternate transmission medium extending from the second set of terminals and passing through the backplane, one of the first set of terminals and the second set of terminals being used to pass power or signal through the housing and the other of the first set of terminals and the second set of terminals being used to pass signal through the housing.
2. The connector of claim 1 , wherein the alternate transmission medium is permanently attached to the second set of terminals.
3. The connector of claim 1, wherein the alternate transmission medium is capable of being easily detached from the second set of terminals.
4. The connector of claim 1 , wherein the alternate transmission medium is a cable.
5. A combination, comprising: a backplane; and a connector including a housing, a first set of terminals provided within the housing, the first set of terminals being capable of mating with the backplane, a second set of terminals provided within the housing and being isolated from the first set of terminals, and an alternate transmission medium extending from the housing, the alternate transmission medium being attached to the second set of terminals, one of the first set of terminals and the second set of terminals being used to pass power or signal through the housing and the other of the first set of terminals and the second set of terminals being used to pass signal through the housing.
6. The combination of claim 5, wherein the alternate transmission medium is permanently attached to the second set of terminals.
7. The combination of claim 5, wherein the alternate transmission is capable of being releasably detached from the second set of terminals.
8. The combination of claim 5, wherein the first set of terminals and the second set of terminals are electrically isolated from each other within the housing by a wall.
9. The combination of claim 5, wherein the alternate transmission medium is a cable.
10. The combination of claim 9, wherein the backplane includes an aperture therethrough, the cable being passed through the aperture in the backplane.
11. A connector capable of mating with a backplane, the connector comprising: a housing; a first set of terminals provided within the housing, the first set of terminals being capable of mating with the backplane; a second set of terminals provided within the housing and being isolated from the first set of terminals, the second set of terminals passing through the backplane without being mated to the backplane.
12. The connector of claim 11, wherein a cable is attached to the second set of terminals.
13. The connector of claim 12, wherein a second connector is terminated to the cable, and the second connector mates to the second set of terminals.
14. A connector capable of mating with a backplane, the connector comprising: a housing; a first portion of the housing, the first portion of the housing being capable of mating to the backplane to transmit a first transmission to the backplane; and a second portion of the housing, the second portion of the housing being capable of transmitting a second transmission through the backplane without transmitting the second transmission to the backplane.
15. The connector of claim 14, wherein the first transmission is power.
16. The connector of claim 14, wherein the second transmission is a high speed signal.
17. The connector of claim 14, wherein the second transmission is an optical signal.
18. The connector of claim 14, wherein the second transmission is power.
19. The connector of 14, including a third portion of the housing, the third portion of the housing being capable of transmitting a third transmission to the backplane.
20. The connector of 14, including a third portion of the housing, the third portion of the housing being capable of transmitting a third transmission through the backplane without transmitting the third transmission to the backplane.
21. A combination connector comprising: a housing, the housing including a first portion and a second portion; a first transmission set provided within the first portion of the housing; and a second transmission set terminated to an alternate transmission medium to form an assembly, the assembly being attachable to the second portion of the housing.
PCT/US2003/005229 2002-02-22 2003-02-18 Combination connector WO2003073146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003213176A AU2003213176A1 (en) 2002-02-22 2003-02-18 Combination connector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/080,735 US6592401B1 (en) 2002-02-22 2002-02-22 Combination connector
US10/080,735 2002-02-22
US36644302P 2002-03-21 2002-03-21
US60/366,443 2002-03-21

Publications (2)

Publication Number Publication Date
WO2003073146A1 true WO2003073146A1 (en) 2003-09-04
WO2003073146B1 WO2003073146B1 (en) 2003-11-27

Family

ID=29552544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/005229 WO2003073146A1 (en) 2002-02-22 2003-02-18 Combination connector

Country Status (3)

Country Link
AU (1) AU2003213176A1 (en)
TW (1) TW573794U (en)
WO (1) WO2003073146A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064632A1 (en) * 2005-11-29 2007-06-07 Tyco Electronics Corporation Connector family for board mounting and cable applications
EP2423721A1 (en) * 2010-08-25 2012-02-29 CCS Technology, Inc. Adapter for receiving a hybrid connector part and a fiber optic connector part
CN104779458A (en) * 2014-01-09 2015-07-15 泰科电子公司 Backplane or midplane communication system and electrical connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597631A (en) * 1982-12-02 1986-07-01 The United States Of America As Represented By The Secretary Of The Navy Printed circuit card hybrid
US4808115A (en) * 1987-07-28 1989-02-28 Amp Incorporated Line replaceable connector assembly for use with printed circuit boards
US6105088A (en) * 1998-07-10 2000-08-15 Northrop Grumman Corporation Backplane assembly for electronic circuit modules providing electronic reconfigurable connectivity of digital signals and manual reconfigurable connectivity power, optical and RF signals
EP1102097A2 (en) * 1999-11-19 2001-05-23 Yazaki Corporation Hybrid connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597631A (en) * 1982-12-02 1986-07-01 The United States Of America As Represented By The Secretary Of The Navy Printed circuit card hybrid
US4808115A (en) * 1987-07-28 1989-02-28 Amp Incorporated Line replaceable connector assembly for use with printed circuit boards
US6105088A (en) * 1998-07-10 2000-08-15 Northrop Grumman Corporation Backplane assembly for electronic circuit modules providing electronic reconfigurable connectivity of digital signals and manual reconfigurable connectivity power, optical and RF signals
EP1102097A2 (en) * 1999-11-19 2001-05-23 Yazaki Corporation Hybrid connector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064632A1 (en) * 2005-11-29 2007-06-07 Tyco Electronics Corporation Connector family for board mounting and cable applications
EP2423721A1 (en) * 2010-08-25 2012-02-29 CCS Technology, Inc. Adapter for receiving a hybrid connector part and a fiber optic connector part
CN104779458A (en) * 2014-01-09 2015-07-15 泰科电子公司 Backplane or midplane communication system and electrical connector

Also Published As

Publication number Publication date
AU2003213176A1 (en) 2003-09-09
WO2003073146B1 (en) 2003-11-27
TW573794U (en) 2004-01-21

Similar Documents

Publication Publication Date Title
US6592401B1 (en) Combination connector
US6535397B2 (en) Interconnect structure for interconnecting electronic modules
US6233376B1 (en) Embedded fiber optic circuit boards and integrated circuits
US5013247A (en) Fiber optic connector assembly adapted for providing circuit card charging
US6386919B2 (en) High speed interface converter module
EP1315991B1 (en) Electro-optic connector module
CA2455568C (en) Stacked backplane assembly
US4432604A (en) Self-adjusting fiberoptic connector assembly
US5432486A (en) Capacitive and inductive coupling connector
US7309173B2 (en) Optical transponder module with dual board flexible circuit
US4592606A (en) Breakaway jumper edge connector
US8597036B2 (en) Transceiver assembly
US7497739B2 (en) Electrical connector assembly
JP5199479B2 (en) Computer bus with configurable configuration
JPS6178079A (en) Connector assembly
CN2537151Y (en) Assembled electric connector
US9500814B2 (en) Optical adapter module with managed connectivity
CN2596607Y (en) Electric connector
US6146153A (en) Adapter apparatus and method for transmitting electronic data
US6050831A (en) Method of selectable connecting different date access device to the same circuit board and related connector module
US5620331A (en) Feed-thru IDC terminator
US7361053B1 (en) Network element connector assembly including stacked connector interfaces
US6425691B1 (en) Flexible circuits with strain relief
KR20000022614A (en) Selective termination connector assembly
WO2003073146A1 (en) Combination connector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Free format text: 20030908

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP