WO2003079418A1 - Aligner and device manufacuring method - Google Patents

Aligner and device manufacuring method Download PDF

Info

Publication number
WO2003079418A1
WO2003079418A1 PCT/JP2003/003003 JP0303003W WO03079418A1 WO 2003079418 A1 WO2003079418 A1 WO 2003079418A1 JP 0303003 W JP0303003 W JP 0303003W WO 03079418 A1 WO03079418 A1 WO 03079418A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
liquid
control system
circulating
control
Prior art date
Application number
PCT/JP2003/003003
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Kosugi
Tetsuo Taniguchi
Naoyuki Kobayashi
Yoshitomo Nagahashi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003577318A priority Critical patent/JPWO2003079418A1/en
Priority to AU2003220867A priority patent/AU2003220867A1/en
Priority to KR10-2004-7014135A priority patent/KR20040102033A/en
Publication of WO2003079418A1 publication Critical patent/WO2003079418A1/en
Priority to US10/938,633 priority patent/US20050088634A1/en
Priority to US11/204,110 priority patent/US20060007415A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Definitions

  • the present invention relates to an exposure apparatus for projecting and exposing a pattern image of a mask onto a substrate such as a wafer in a device manufacturing process of a semiconductor element or a liquid crystal display element, and transferring a device pattern to the substrate.
  • the present invention relates to a device manufacturing method.
  • a pattern image of a photomask or a reticle (hereinafter collectively referred to as a “reticle”) is projected onto a photosensitive substrate via a projection optical system.
  • a projection exposure apparatus that projects onto a shot area is used.
  • this type of projection exposure apparatus includes a photosensitive substrate mounted on a two-dimensionally movable stage, and the stage is used to move the photosensitive substrate in a stepwise manner so that a reticle pattern image is transferred onto a photosensitive substrate such as a wafer.
  • a so-called step 'and' rebeat type exposure apparatus for example, a reduction projection type exposure apparatus (stepper), which repeats an operation of sequentially exposing each shot area to a shot area, is often used.
  • a so-called step-and-scan type exposure apparatus has been used, in which a reticle and a wafer are synchronously moved during wafer exposure, thereby sequentially exposing each shot area on the wafer. ing.
  • microdevices such as semiconductor devices are formed by laminating a large number of circuit patterns on a wafer coated with a photosensitive material as a photosensitive substrate, so that the second and subsequent circuit patterns are projected and exposed on the wafer.
  • the position of each shot area on the wafer where a circuit pattern has already been formed and the pattern image of the reticle to be exposed from now on It is necessary to precisely perform alignment, that is, alignment between the wafer and the reticle.
  • Patent Document 1 discloses a method of aligning wafers when performing overlay exposure on a single wafer in which a shot area where a circuit pattern is exposed is arranged in a matrix.
  • the so-called Enhanced-Global Arrangement (EGA) has become mainstream.
  • the EGA method specifies at least three areas (hereinafter referred to as EGA shots) among a plurality of shot areas formed on a wafer (object) and attaches them to each shot area.
  • the coordinate position of the alignment mark (mark) is measured by the alignment sensor.
  • error parameters offset, scale, rotation, orthogonality
  • array characteristics positional information
  • the design coordinate values of all shot areas on the wafer are corrected, and the wafer stage is stepped according to the corrected coordinate values to position the wafer. It is a method to do.
  • the projected image of the reticle pattern and each of the plurality of shot areas on the wafer are processed points set in the shot area (the reference points at which coordinate values are measured or calculated. (The center of the dot area), and the exposure is performed with the overlap.
  • an alignment sensor for measuring an alignment mark on a wafer a method using an off-axis type alignment system arranged near a projection optical system is known.
  • the wafer stage is moved by a fixed amount related to a base line amount, which is a distance between the projection optical system and the off-axis alignment system.
  • the reticle pattern can be immediately superimposed on the shot area on the wafer and exposed.
  • the baseline amount is a very important manipulated variable in a photolithographic process, strictly accurate measurement values are required.
  • the above-mentioned baseline amount may fluctuate during exposure (baseline drift) due to thermal expansion or thermal deformation of an alignment system or the like due to heat generated by various processes.
  • baseline drift due to thermal expansion or thermal deformation of an alignment system or the like due to heat generated by various processes.
  • an error occurs in the positioning of the wafer, and the overlay accuracy
  • a baseline check was performed each time a predetermined number of wafers were exposed to prevent the overlay accuracy from deteriorating (Japanese Patent Laid-Open No. No. 61-444492).
  • the exposure apparatus of the step-and-repeat type to the step-and-scan type (hereinafter referred to as “scan type”) is becoming mainstream.
  • the scanning method since both the wafer and the reticle scan during exposure (during pattern transfer), not only the wafer stage but also the reticle stage tends to have heat under the influence of the motor, etc. Gradually deforms.
  • the position of the stage is measured using an interference system, but if the distance between the moving mirror and the reticle changes due to the deformation of the stage, the baseline will fluctuate, and the overlay accuracy will deteriorate. In addition, the temperature of the atmosphere around the stage rises due to the heat generated by the stage, and the stage positioning accuracy deteriorates due to the fluctuation of the optical path of the interferometer.
  • cooling is performed by sending (circulating) the refrigerant to the heat generating part while controlling the refrigerant temperature with a temperature controller.
  • the wafer stage ⁇ reticle stage which generates heat intensely in 1/10 ° C units
  • the projection optical system alignment system whose temperature must be controlled in 1Z100 ° C units
  • the cooling capacity of the wafer stage / reticle stage which changes greatly, will not be sufficient, and conversely, the temperature of the wafer stage / reticle stage will decrease.
  • the precise (fine) temperature control required for the projection optical system alignment system cannot be performed.
  • the amount of heat generated is extremely large, and it is difficult to control the temperature with the same control system as the projection optical system alignment system.
  • the temperature control is not sufficiently performed, a problem occurs in that the baseline variation becomes large and the overlay accuracy is deteriorated. Disclosure of the invention
  • the present invention has been made in consideration of the above points, and has as its object to provide an exposure apparatus and a device manufacturing method capable of controlling the temperature required for each component and suppressing baseline fluctuation. I do.
  • the present invention employs the following configuration corresponding to FIGS. 1 to 10 showing the embodiment.
  • An exposure apparatus is an exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system.
  • the first control system controls the temperature of the first liquid by circulating the first liquid whose temperature has been set to at least one of the projection optical system and the substrate stage, and controls the temperature of the second liquid.
  • a second control system that controls the temperature of the reticle stage by circulating the set second liquid to the reticle stage and setting the temperature independently of the first control system.
  • the first and second control systems are characterized in that they have different setting capabilities in terms of the size of the temperature range described above.
  • the projection optical system and the substrate stage are controlled, for example, in units of 1Z100 ° C. by circulating the first liquid in the first control system, and the second control system controls the second optical system.
  • the reticle stage can be independently controlled, for example, in units of 10 to 10 ° C.
  • the first and second control systems individually according to the temperature range required for the projection optical system and the reticle stage, it becomes possible to control the temperature with the accuracy required for each device. Baseline fluctuations caused by temperature fluctuations can be suppressed.
  • the exposure apparatus of the present invention is an exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system.
  • the second circulating condition for circulating the second liquid to the stage is set independently of the first circulating condition, and the second liquid is circulated under the second circulating condition.
  • a second control system for controlling a temperature of the stage, a first detecting means for detecting a temperature of the first liquid before circulating the object, and a temperature of the first liquid after circulating the object, respectively, a reticle stage And a second detection unit for detecting a temperature of the second liquid before circulating through the reticle stage and a temperature of the second liquid after circulating through the reticle stage, respectively.
  • the first control system sets the first circulation condition based on the detection result
  • the second control system sets the second circulation condition based on the detection result of the second detection means.
  • the projection optical system and the substrate stage are controlled, for example, in units of 1/1000 ° C. by circulating the first liquid under the first circulation condition, and the second control system performs By circulating the two liquids, the reticle stage can be independently controlled, for example, in units of 110 ° C.
  • the first and second control systems individually according to the temperature range required for the projection optical system and the reticle stage, it becomes possible to control the temperature with the accuracy required for each device, The resulting baseline fluctuation can be suppressed.
  • the first and second circulating conditions are set based on the temperatures of the first and second liquids detected before and after circulating in each device.
  • highly accurate temperature control can be performed based on the temperature change of the second liquid.
  • An exposure apparatus is an exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system.
  • the substrate stage has a plurality of drive sources, and among the plurality of drive sources and the projection optical system, the first control that performs temperature control for the first control object with the heat generation or temperature change within the first fixed amount System, and a plurality of drive sources and a projection optical system, in which a heat generation amount or a temperature change amount larger than a first predetermined amount is set as a second control target, and a second control for performing temperature control independently of the first control system.
  • the first control system controls the drive source and the projection optical system of the substrate stage having a small heat value or a small temperature change amount as the first control object, and the heat value or the temperature change amount is relatively small.
  • the large reticle stage drive source can be controlled independently by the second control system with the second control target.
  • the temperature control can be performed with the accuracy required for each device, and the baseline caused by the temperature fluctuation can be obtained. Fluctuations can be suppressed.
  • the device manufacturing method of the present invention includes a step of transferring a pattern formed on a reticle onto a substrate using the exposure apparatus according to any one of claims 1 to 26. Is what you do.
  • FIG. 1 is a schematic configuration diagram of an exposure apparatus of the present invention.
  • FIG. 2 is an external perspective view of a reticle stage included in the exposure apparatus.
  • FIG. 3 is an external perspective view of a wafer stage constituting the exposure apparatus.
  • FIG. 4 is a diagram showing a temperature control system relating to the entire exposure apparatus in the first embodiment.
  • FIG. 5 is a diagram showing a temperature control system related to the reticle stage.
  • FIG. 6 is a diagram showing a temperature control system related to the wafer stage.
  • FIG. 7 is a flowchart illustrating an example of a semiconductor device manufacturing process.
  • FIG. 8 is a diagram schematically showing a temperature control system relating to the entire exposure apparatus in the second embodiment.
  • FIG. 9 is a diagram schematically showing a temperature control system relating to the entire exposure apparatus in the third embodiment.
  • FIG. 10 shows a simplified temperature control system for the reticle stage in the fourth embodiment.
  • FIG. 11A to 11C are diagrams showing a modification of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION a first embodiment of an exposure apparatus and a device manufacturing method according to the present invention will be described with reference to FIGS.
  • a scanning ⁇ stepper that transfers a circuit pattern of a semiconductor device formed on a reticle onto a wafer while synchronously moving the reticle and the wafer during exposure (during pattern transfer). This will be explained using an example of the case of using.
  • the exposure apparatus 1 shown in FIG. 1 includes an illumination optical system IU that illuminates a rectangular (or arc) illumination area on a reticle (mask) R with uniform illumination by exposure illumination light from a light source (not shown).
  • a stage apparatus 4 including a reticle stage (mask stage) 2 for holding and moving the reticle R and a reticle surface plate 3 for supporting the reticle stage 2; and a wafer (substrate) for illuminating light emitted from the reticle R.
  • the direction of the optical axis of the projection optical system PL is defined as the Z direction
  • the direction of the synchronous movement of the reticle R and the wafer W in the direction orthogonal to the Z direction is defined as the Y direction
  • the direction of the asynchronous movement is defined as the X direction.
  • the rotation directions around each axis are ⁇ ⁇ , ⁇ , ⁇ ⁇ .
  • the illumination optical system I U is supported by a support column 9 fixed to the upper surface of the reaction frame 8.
  • the illumination light for exposure includes, for example, ultraviolet bright lines (g-line, i-line) and KrF excimer laser light (wavelength) emitted from an ultra-high pressure mercury lamp.
  • Deep ultraviolet light such as 248 nm
  • ArF excimer laser light wavelength 19
  • the reaction frame 8 is installed on a base plate 10 horizontally placed on the floor, and has upper and lower sides formed with stepped portions 8a and 8b protruding inward, respectively. ing.
  • the reticle surface plate 3 is supported almost horizontally on the step portion 8a of the reaction frame 8 at each corner via the vibration isolating unit 11 (note that the reticle surface plate 3 is located on the back side of the drawing).
  • An aperture 3a through which a pattern image formed on reticle R passes is formed in the center of the scut (not shown).
  • metal or ceramics can be used as the material of the reticle surface plate 3.
  • the anti-vibration unit 11 has a configuration in which an air mount 12 whose internal pressure is adjustable and a voice coil motor 13 are arranged in series on the step 8a. With these vibration isolation units 11, micro vibrations transmitted to the reticle surface plate 3 via the base plate 10 and the reaction frame 8 are isolated at the micro G level (G is the gravitational acceleration ).
  • a reticle stage 2 is supported on the reticle base 3 so as to be two-dimensionally movable along the reticle base 3.
  • a plurality of air bearings (air pads) 14 are fixed to the bottom surface of the reticle stage 2, and the reticle stage 2 floats on the reticle surface plate 3 with a clearance of about several microns by the air bearings 14. Supported.
  • the reticle stage 2 will be described in detail. As shown in FIG. 2, the reticle stage 2 is fixed on the reticle surface plate 3 in the Y-axis direction by a pair of Y linear motors (drive sources) 15 and 15. A reticle coarse movement stage 16 driven by a stroke, and a pair of X voice coil motors (drive sources) 17 X and a pair of Y voice coil motors (drive sources) are moved on the reticle coarse movement stages 16. A reticle fine movement stage 18 that is finely driven in the X, ⁇ , and ⁇ directions by 17 Y is provided (note that these are shown as one stage in FIG. 1). .
  • Each peliner motor 15 has a plurality of non-contact bearings on the reticle surface plate 3.
  • An air bearing (air pad) 19 is supported by the stator 20 which is levitated and supported in the Y-axis direction, and is provided corresponding to the stator 20 and is fixed to the reticle coarse movement stage 16 via the connecting member 22. Mover 2 1. Therefore, the stator 20 moves in the one Y direction as a counter mass according to the movement of the reticle coarse movement stage 16 in the + Y direction according to the law of conservation of the movement amount. The movement of the stator 20 cancels the reaction force caused by the movement of the reticle coarse movement stage 16 and also prevents the center of gravity from changing.
  • a trim motor 72 (drive source; not shown in FIG. 2; see FIG. 5) for correcting the movement fi so that the stator 20 reaches a predetermined position is provided. I have.
  • the reticle coarse movement stage 16 is fixed to the upper surface of the upper protruding portion 3b formed in the center of the reticle surface plate 3 and guided in the Y-axis direction by a pair of Y guides 51, 51 extending in the Y-axis direction. It is supposed to be. Further, reticle coarse movement stage 16 is supported in a non-contact manner by an air bearing (not shown) with respect to Y guides 51 and 51.
  • the reticle fine movement stage 18 is configured to hold the reticle R by suction via a vacuum chuck (not shown).
  • a pair of Y-moving mirrors 52 a and 52 b made of a corner cube are fixed to one end of the reticle fine movement stage 18 in the Y direction, and to a + X end of the reticle fine movement stage 18.
  • the X movable mirror 53 composed of a plane mirror extending in the Y-axis direction is fixed.
  • three laser interferometers (all not shown) that irradiate the measuring beams to these movable mirrors 52 a, 52 b, and 53 measure the distance between each movable mirror and the reticle.
  • the position of the stage 2 in the X, Y, and ⁇ (rotation around the ⁇ axis) direction is measured with high accuracy.
  • both the object plane (reticle R) side and the image plane (wafer W) side are telecentric and have a circular projection field, and quartz or fluorite is used as the optical glass material.
  • a 1/4 (or 1/5) diopter optical system composed of a refractive optical element (lens element) is used. For this reason, reticle R is irradiated with illumination light. Then, of the circuit pattern on the reticle R, the imaging light flux from the part illuminated with the illumination light enters the projection optical system PL, and a partially inverted image of the circuit pattern is projected onto the image plane of the projection optical system PL.
  • an image is formed with a slit-like shape limited.
  • the projected partial inverted image of the circuit pattern is formed on the resist layer on the surface of one of the shot areas of the plurality of shot areas on the wafer W arranged on the imaging plane of the projection optical system PL. It is reduced and transferred.
  • a flange 23 integrated with the lens barrel is provided on the outer periphery of the lens barrel of the projection optical system PL.
  • the projection optical system PL is mounted on a barrel base 25 composed of an object or the like that is supported substantially horizontally on a step 8 b of the reaction frame 8 via an anti-vibration unit 24. Is inserted from above with the Z direction, and the flanges 23 are engaged.
  • the anti-vibration unit 24 is disposed at each corner of the lens barrel base 25 (the anti-vibration unit at the back of the drawing is not shown), and an air mount 26 and a voice that can adjust the internal pressure are provided.
  • the coil motor 27 is arranged in series on the step 8b. Micro vibration transmitted to the lens barrel base 25 (and, consequently, the projection optical system PL) via the base plate 10 and the reaction frame 8 by the vibration isolating unit 24 at the microphone port G level. It is becoming more and more rude.
  • the stage device 7 includes a wafer stage 5, a wafer surface plate 6 that supports the wafer stage 5 so as to be movable in a two-dimensional direction along the XY plane, and a sample stage that is provided integrally with the wafer stage 5 and that holds the wafer W by suction. It mainly comprises an X guide bar XG that supports the ST, the wafer stage 5 and the sample stage ST so as to be relatively movable.
  • a plurality of air bearings (air pads) 28, which are non-contact bearings, are fixed to the bottom surface of the wafer stage 5, and these air bearings 28 move the wafer stage 5 onto the wafer surface plate 6, for example, a It is levitated and supported through the clearance of the mouth.
  • the wafer surface plate 6 is supported almost horizontally above the base plate 10 via a vibration isolation unit 29.
  • the anti-vibration units 29 are arranged at each corner of the wafer platen 6 (the anti-vibration units on the back side of the drawing are not shown), and the air mount 30 and the voice coil motor whose internal pressure can be adjusted. 3 and 1 are parallel on base plate 10 It is configured to be arranged in.
  • vibration isolating units 29 micro vibrations transmitted to the wafer surface plate 6 via the base plate 10 are insulated at a micro G level.
  • the X guide bar XG has a long shape along the X direction, and movers 36 and 36 composed of armature units are provided at both ends in the length direction. ing.
  • the stators 37, 37 having magnet units corresponding to the movers 36, 36 are provided on support portions 32, 32 projecting from the base plate 10 (see FIG. 1). (See FIG. 1 for simplified illustration of the mover 36 and the stator 37.)
  • a moving coil type rear motor (drive source) 33, 33 is constituted by the mover 36 and the stator 37, and the mover 36 is connected to the stator 37 by electromagnetic force.
  • the X guide bar XG moves in the Y direction by being driven by the interaction, and rotates in the ⁇ direction by adjusting the drive of the linear motors 33, 33. That is, the wafer stage 5 (and the sample stage ST, hereinafter simply referred to as the sample stage ST) is driven in the Y direction and the ⁇ direction by the linear motor 33 almost integrally with the X guide bar XG. I have.
  • the mover of the X trim motor 34 is attached to one X direction side of the X guide bar XG.
  • the X trim motor 34 adjusts the position of the X guide bar XG in the X direction by generating a thrust in the X direction.
  • the stator (not shown) is provided on the reaction frame 8. . Therefore, a reaction force when driving the wafer stage 5 in the X direction is transmitted to the base plate 10 via the reaction frame 8.
  • the sample stage ST maintains a predetermined gap in the Z-direction between the X-guide bar XG and the X-guide bar XG via a magnetic guide composed of a magnet and an actuator so as to be relatively movable in the X-direction. Supported and held in contact. Further, the wafer stage 5 is driven in the X direction by electromagnetic interaction with an X linear motor (drive source) 35 having a stator embedded in an X guide bar XG. The mover of the X linear motor is not shown, but is attached to the wafer stage 5. Wafer W is fixed on the upper surface of sample stage ST via wafer holder 41 by vacuum suction or the like. (See Fig. 1, not shown in Fig. 3.)
  • the position of the wafer stage 5 in the X direction is measured by measuring the position change of the moving mirror 43 fixed to a part of the wafer stage 5 with reference to the reference mirror 42 fixed to the lower end of the barrel of the projection optical system PL.
  • the laser interferometer 44 measures in real time with a predetermined resolution, for example, a resolution of about 0.5 to 1 nm.
  • the position of the wafer stage 5 in the Y direction is measured by a reference mirror, a laser interferometer, and a movable mirror (not shown) which are arranged substantially orthogonal to the reference mirror 42, the movable mirror 43, and the laser interferometer 44. Is done.
  • At least one of these laser interferometers is a multi-axis interferometer having two or more measuring axes. Based on the measured values of these laser interferometers, the wafer stage 5 (and thus the wafer W) is used. In addition to the XY position, ⁇ the amount of rotation or, in addition to these, the amount of leveling can be obtained.
  • three laser interferometers 45 are fixed to the flange 23 of the projection optical system PL at three different places (however, in FIG. 1, one of these laser interferometers is representative). ). Openings 25a are respectively formed in portions of the lens barrel base 25 facing each of the laser interferometers 45, and the laser interferometers 45 from the laser interferometer 45 in the Z direction are formed through these openings 25a. A laser beam (measuring beam) is applied to the wafer surface plate 6. A reflection surface is formed on the upper surface of the wafer surface plate 6 at a position facing each measurement beam. For this reason, three different Z positions of the wafer surface plate 6 are measured by the three laser interferometers 45 with reference to the flange 23. .
  • FIG. 4 shows a temperature control system for the entire exposure apparatus
  • FIG. 5 shows a temperature control system for the reticle stage 2
  • FIG. 6 shows a temperature control system for the wafer stage 5.
  • a medium (refrigerant) for temperature control it is possible to use HFE (Hydro-Furushiro-'ether)) florinate, but in this embodiment, it has a low global warming potential and ozone depletion. Since the coefficient is zero, HFE is used from the viewpoint of global environmental protection.
  • HFE Hydro-Furushiro-'ether
  • This temperature control system uses a projection optical system PL and an
  • the first control system 61 controls and controls the temperature of the reticle stage AL and the wafer stage 5 using the refrigerant as the second liquid. It is broadly divided into a second control system 62 that controls and manages temperature independently of the system 61.
  • the projection optical system PL and the alignment system AL whose heat generation amount (temperature change amount) is within a predetermined amount (first predetermined amount) are subjected to the first temperature control, and the heat generation amount is the predetermined amount.
  • the larger reticle stage 2 and wafer stage 5 are subject to the second temperature control.
  • the refrigerant in the tank 63 whose temperature has been adjusted in the first control system 61 passes through a pump 64, a circulation system C1 that sequentially circulates through an alignment system AL and a projection optical system PL, and an evaporator 65. It is branched into a cooling system C2 to be cooled.
  • the temperature of the refrigerant immediately after being discharged from the pump 64 is detected by the sensor 66 and output to the controller 67.
  • the projection optical system PL has a wide temperature control range by the refrigerant by being helically piped around the lens barrel 68. In the present embodiment, in FIG.
  • the refrigerant is configured to circulate from the top to the bottom through a spirally arranged pipe around the lens barrel 68, but the present invention is not limited to this, and the coolant is circulated from the bottom to the top.
  • the refrigerant may be helically circulated.
  • a sensor 69 for detecting the refrigerant temperature before circulating in the projection optical system PL is provided, and the detection result is output to the controller 67.
  • the temperature of the projection optical system PL is controlled by arranging a spiral pipe around almost the entire surface of the lens barrel 68 as described above, but the present invention is not limited to this.
  • the present invention is not limited to this, and a so-called flange temperature control method may be adopted in which a pipe is arranged at a portion of the member (flange 23) holding the projection optical system PL to perform temperature control.
  • a laser beam such as He-Ne is applied to a dot array of alignment marks on wafer W, and the light diffracted or scattered by the mark is used.
  • LSA Laser Step Alignment
  • FIA Field Image Alignment
  • a diffraction grating alignment mark is irradiated with two coherent beams (semiconductor lasers, etc.) inclined in the pitch direction, causing the two generated diffracted lights to interfere with each other.
  • the LIA (Laser Interferometric Alignment) method that measures the position of the mark can be used.However, the LSA method is used here, and the circulating system C1 uses the refrigerant in the alignment system AL for the alignment light source in the alignment system AL. Is circulated to control the temperature.
  • the circulation system for example, similarly to the projection optical system PL, it is possible to spirally pipe a housing for housing the light source.
  • the temperature may be adjusted by circulating the refrigerant not only in the alignment light source but also in a housing that houses the alignment optical system.
  • the temperature can be adjusted by circulating the refrigerant.
  • the refrigerant that has circulated through the alignment system A L and the projection optical system PL in the circulation system C 1 is returned to the upper chamber of the tank 63 which is divided into two upper and lower sections.
  • the refrigerant in the cooling system C2 is branched into a path C3, which is cooled by the evaporator 65 and returns to the upper chamber of the tank 63, and a path C4 toward the heat exchanger 70.
  • the evaporator 65 is cooled by a refrigerator 73 that circulates a gaseous refrigerant.
  • the cooled refrigerant is used for heat exchange in the heat exchanger 70 in the route C4, and then returns to the upper chamber of the tank 63 and is cooled again.
  • a heater 71 controlled by a controller 67 is disposed in the lower chamber of the tank 63, and the controller 67 drives the heater 71 based on the detection results of the sensors 66, 69.
  • the controller 67 drives the heater 71 based on the detection results of the sensors 66, 69.
  • the first control system 61 circulates the refrigerant whose temperature has been adjusted by the heater 71 at the same flow rate for each temperature control target.
  • the refrigerant as the second liquid cooled in the heat exchanger 70 passes through the pump 74 and then circulates through the reticle stage 2 through the circulating system C5 and the wafer stage. It is branched to a circulation system C 6 which circulates through page 5.
  • the coolant in the second control system 62 is configured to circulate in a closed system without returning to the tank 63.
  • a heater ⁇ 5 is provided downstream of the pump 74, and the refrigerant temperature before circulating through the reticle stage 2 and the refrigerant temperature after circulating through the reticle stage 2 are controlled.
  • Sensors (second detection means) 76a and 76b for detecting the respective sensors are provided, and the detection results of the sensors 76a and 76b are output to the controller 77.
  • the controller 77 simply averages the input detection results of the sensors 76 a 76 b and controls the driving of the heater 75 based on the obtained refrigerant temperature, thereby controlling the temperature of the reticle stage 2 to, for example, Control (manage) to 23 C ⁇ 0.1 C.
  • the refrigerant cooled by the heat exchanger 70 is configured to circulate through the pump 74.
  • the pump 74 is connected to the heat exchanger.
  • Arranged upstream from 70 and the point where the return refrigerant (refrigerant after circulating through each stage 2, 5) to the circulation system C5 C6 joins is located upstream of the pump 74. May be configured.
  • the position of the temperature control target (reticle stage 2, more precisely, the motor for driving the reticle stage 2 described later) is determined as much as possible in any of the sensors. It is desirable to place it as close as possible. However, if it is not possible to get close to the temperature control target due to restrictions on the layout or the influence of the magnetic force of the motor, etc., some distance from the temperature control target within a range (location) that is not affected by external heat It is also possible to provide them at different positions.
  • the arrangement interval between each sensor and the temperature control target should be approximately the same as the arrangement interval between the sensors (the interval between sensor 76a and reticle stage 2, and the interval between sensor 77b and reticle stage). It is desirable that the intervals be approximately the same.)
  • the arrangement of each sensor is not limited to this as long as it is within the range described above (within the range not affected by external heat).
  • the circulatory system. 5 includes a circulating system C7C7 that circulates the movers 21 and 21 of the Y linear motor 15 to control the temperature, and a trim motor 72 and 72.
  • Circulating systems C 8 and C 8 that circulate and control the temperature
  • a circulating system C 9 that circulates the Y voice coil motor 17 and temperature control
  • Each of the circulation systems C7 to C10 is provided with a valve (adjustment means) 80 which is located upstream of each motor and adjusts the flow rate of the refrigerant.
  • One of the circulation systems C7 is provided near the mover 21 and detects a refrigerant temperature before circulating through the mover 21 (first temperature detecting means) 76a.
  • a temperature sensor (second temperature detecting means) 76b for detecting the coolant temperature after the circulation of the child 21 is provided.
  • a heater 78 is provided downstream of the pump 74, and the refrigerant temperature before circulating through the wafer stage 5 and the refrigerant temperature after circulating through the wafer stage 5 are controlled.
  • Temperature sensors (first detecting means) 79a and 79b for detecting the respective temperatures are provided, and the detection results of the temperature sensors 79a and 79b are output to the controller 77.
  • the controller 77 averages the detection results of the input temperature sensors 79a and 79b, and controls the driving of the heater 78 based on the obtained refrigerant temperature, thereby reducing the temperature of the wafer stage 5 to, for example, 2 Control (manage) to 3 ° C ⁇ 0.1 ° C.
  • the refrigerant circulated through the stages 2 and 5 in the circulation systems C5 and C6 joins after being cooled by the heat exchanger 70.
  • the temperature control target (the wafer stage 5, more accurate In other words, it is desirable to place it as close as possible to the motor that drives the wafer stage 5 described later. However, if it is not possible to get close to the temperature control target due to restrictions on the arrangement or the influence of the magnetic force of the motor, etc., if the temperature control target is within the range (location) that is not affected by external heat, It is also possible to provide them at some distance.
  • the circulation system C 6 includes the movers 36 and 36 of the linear motor 33.
  • the circulation system is divided into a circulation system C11, C11 that circulates and controls the temperature, and a circulation system C12 that circulates the X linear motor 35 to control the temperature.
  • Each of the circulation systems C11 to C12 is provided with a valve 84 located upstream of each motor and for adjusting the flow rate of the refrigerant.
  • one of the circulation systems CI 1 includes the sensors 79 a and 79 described above for detecting the refrigerant temperature before circulating through the mover 36 and the refrigerant temperature after circulating through the mover 36, respectively. b is provided.
  • the circulating systems CI 3 to C 15 are also provided for the three voice coil motors 81 to 83 for performing leveling adjustment (and focus adjustment) of the wafer stage 5 (sample stage ST).
  • a pipe 85 is provided in each circulating system with a valve 85 that is located upstream of the motor and regulates the flow rate of the refrigerant.
  • the driving frequency of the voice coil motors 81 to 83 is determined by the linear motors 33 and 3. 5 and the amount of heat generated during operation is small, so that these circulating systems C13 to C15 are temperature-controlled by the refrigerant branched from the circulating system C1 of the first control system 61. .
  • the circulating system for controlling the temperature of not only the voice coil motors 81 to 83 but also a motor having a small heat generation during driving includes a first control system. Temperature control may be performed using a refrigerant branched from the circulation system C 1 of FIG.
  • the temperature sensors 66, 69, 76a, 76b, 79a, 79b are ⁇ 0.1 in the present embodiment.
  • the temperature control accuracy required for the reticle stage 2 and the wafer stage 5 is ⁇ 0.1 ° C in the second control system 62, so the temperature sensor 76 a , 76b, 79a, and 79b, it is also possible to use a temperature sensor having a detection capability corresponding to this accuracy.
  • the temperature measurement sampling interval by the temperature sensor for example, when the control accuracy is severe or when the temperature change is large, the sampling interval is shortened, and the required temperature control accuracy and the projection to be controlled It is also preferable to change according to the temperature change (heat generation) of the optical system PL and stages 2 and 5.
  • each temperature sensor is disposed inside a flow path (pipe) so that the refrigerant temperature can be directly measured.
  • the detector is suspended near the center of the cross section of the pipe.) State).
  • the temperature sensor may be configured to be replaceable.
  • an insertion port is provided in the pipe, and the pipe is detachable through the inlet, or the temperature sensor is fixed to the pipe by welding or the like, and a part of the pipe including the temperature sensor is replaceable. Can be adopted.
  • a predetermined rectangular illumination area on the reticle R is illuminated with uniform illuminance by exposure illumination light from the illumination optical system Iu during exposure.
  • the wafer W is scanned with respect to an exposure area conjugate with respect to the illumination area and the projection optical system PL.
  • the illumination light transmitted through the pattern area of the reticle R is reduced to 1/4 times by the projection optical system PL, and irradiated onto the wafer W coated with the resist.
  • the pattern of the reticle R is sequentially transferred to the exposure area on the wafer W, and the entire surface of the pattern area on the reticle R is transferred to the shot area on the wafer W by one scan.
  • the stator 20 moves in the ⁇ Y direction, so that the momentum is preserved and the reaction force accompanying the movement of the reticle coarse movement stage 16 is reduced. This cancels out and prevents the position of the center of gravity from changing. Also, at this time, the trim motor 72 is operated so that the stator 20 can reach a predetermined position against the coupling between the mover 21 and the stator 20.
  • the illumination light generates heat in the projection optical system PL (heat absorption in the projection optical system PL due to the illumination light irradiation), and the alignment light generates heat in the alignment system AL ( In addition to heat absorption in the alignment optical system due to alignment light irradiation, heat is generated from each motor as the stages 2 and 5 are driven.
  • the controller 67 sets conditions (first circulation condition) for circulating the refrigerant based on the detection results of the temperature sensors 66, 69, and drives the heater 71.
  • the temperature of the projection optical system PL and the alignment system AL is controlled within a range of ⁇ 0.01 ° C.
  • the controller 77 Based on the detection results of the temperature sensors 76a, 76b, 79a, and 79b, the conditions for circulating the refrigerant (second circulation conditions) are set, and the heaters 75, 78 are driven. By controlling the temperature, the reticle stage 2 and the wafer stage 5 are each temperature-controlled within a range of ⁇ 0.1 ° C.
  • the controller 77 simply averages the refrigerant temperatures detected by the temperature sensors 76a and 76b, and based on the obtained refrigerant temperature, the first temperature management unit Adjust and manage the drive of heater 75
  • the temperature sensors 76a and 76b are provided in the circulation system C7 that circulates the mover 21 of the Y linear motor 15 that has the largest amount of drive and the largest amount of heat generation, and The temperature of the circulation system C8 to C10 is controlled based on the circulation system C7. For this reason, in the present embodiment, the correlation between the process and the optimal refrigerant flow rate is obtained and stored in advance by experiments, simulations, and the like, and based on the stored information, each circulation system C7 to Adjust valve 80 for C10.
  • the heat generation factors to be considered in the process include various driving states of each motor 15, 17 X, 17 Y, and 72, that is, the driving amount and speed of each motor, the number of rotations, and other factors.
  • a state when driven in combination with a motor is exemplified. Therefore, for the voice coil motors 17 ⁇ and 17 that generate a small amount of heat (or drive) in the process, the refrigerant flow rate is reduced and the heat generation (or drive) is large.
  • the valve 80 By adjusting the valve 80 so that the coolant flow rate is increased for 72, appropriate temperature control according to the output (heat generation) of each motor becomes possible.
  • a method of adjusting the valve 80 a method in which an operator adjusts each process based on the stored information or a driving mechanism of the valve 80 is provided, and the process is performed based on the stored information. It is possible to adopt a method in which the controller 77 adjusts this drive mechanism for each time.
  • the target to be adjusted for each process is not limited to the flow rate, and the coolant temperature (the temperature set by the heater) may be changed for each process.
  • the controller 77 simply averages the refrigerant temperatures detected by the temperature sensors 79a and 79b, and based on the obtained refrigerant temperature, Adjusts and manages the operation of heaters 78 as a temperature management unit.
  • the temperature sensors 79a and 79b are provided in the circulating system CI1 that circulates through the mover 36 of the linear motor 33 that has the largest amount of driving and generates a large amount of heat.
  • the temperature of 2 is controlled based on the circulation system C 11. Therefore, in the present embodiment, the correlation between the process and the optimum refrigerant flow rate is obtained and stored in advance by experiments, simulations, and the like, and based on the stored information, each circulation system C 11 Adjust the valves 85, C12. As in the case of the reticle stage 2, the valve 85 can be adjusted manually or automatically.
  • the temperature of the voice coil motors 81 to 83 provided on the wafer stage 5 is controlled by the circulation system CI 3 to C 15 of the first control system 61 because the amount of heat generated is very small.
  • the correlation between the process and the optimal refrigerant flow rate is obtained and stored in advance by experiments, simulations, and the like, and the valves of each circulation system C13 to C15 are provided for each process based on the stored information. Adjust the flow rate of 8 5 by manual adjustment by the operator or automatic adjustment by the controller 6 7.
  • the first control system 61 and the second control system 62 have different setting capabilities in the temperature range when setting the refrigerant temperature, the required temperature control accuracy is required.
  • the temperature can be controlled and managed independently for the projection optical system PL and the stages 2 and 5, which are different from each other, and the optimal cooling conditions can be set according to the heat value of each device. Therefore, it is possible to suppress the baseline fluctuation that occurs when the temperature is not sufficiently controlled, and to suppress the deterioration of the overlay accuracy.
  • the refrigerant temperature is measured not for all motors but for the motor having the largest amount of heat generation, and other motors are determined based on the refrigerant temperature. Since the temperature of the circulating system is controlled, it is not necessary to provide a temperature and temperature sensor for each motor, and the size and cost of the device can be reduced.
  • the refrigerant inlet side to each motor Temperature (Refrigerant temperature before circulating through each motor Degree) is the same temperature regardless of the motor, but the outlet temperature of the refrigerant for each motor (refrigerant temperature after flowing through each motor) differs for each motor according to the degree of heat generation of each motor . Therefore, in order to keep the average temperature of the refrigerant circulating in each motor (the average temperature of the refrigerant at the inlet and the outlet of the motor) at a constant desired value for all motors, the outlet side of each motor is required.
  • a temperature sensor that measures the refrigerant temperature at least at the outlet side of each motor is provided (the temperature sensor that measures the inlet side temperature is Only one motor is typically provided for the motor that generates the largest amount of heat.)
  • the flow rate of the refrigerant circulated through each motor is adjusted so that the outlet temperature of the refrigerant at each motor becomes a constant value.
  • the motor may be configured to be adjusted by a corresponding valve for each motor.
  • the stage In setting the flow rate, the stage is driven under running conditions (eg, a condition where the number of exposure shots is large and the stage movement is large), or when the stage is driven (running). Under a typical exposure condition (stage driving state), when the stage is driven, the flow rate of the refrigerant circulating through each motor is set so that the above-mentioned outlet temperature becomes a constant value. It is desirable to do. If space and price allow, a temperature sensor for measuring the refrigerant temperature on the inlet side of the motor may be provided for each motor.
  • a micro device such as a semiconductor device has a step 201 for designing the function and performance of the micro device, a step 202 for manufacturing a reticle R based on the design step, and a silicon material.
  • Step of manufacturing wafer W from wafer 203 Exposure processing step 204 of projecting and exposing the pattern of reticle R onto wafer W by projection exposure apparatus 1 of the above-described embodiment, and developing wafer W, device assembly It is manufactured through steps (including dicing process, bonding process, and package process) 205 and inspection step 206.
  • the correlation between the process and the optimum refrigerant flow rate is determined and stored in advance, and the valve of each circulation system is adjusted for each process based on the stored information.
  • the temperature In addition to providing a sensor, a calculation means for calculating the ratio of the amount of heat generation among a plurality of motors is provided, and the flow rate of the refrigerant circulating through the motors is adjusted according to the ratio of the amount of heat generation calculated based on the detected refrigerant temperature. It is also possible.
  • FIG. 8 is a view showing a second embodiment of the exposure apparatus of the present invention.
  • the same elements as those of the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and the description and illustration thereof will be simplified.
  • the circulation system C 1 of the first control system 61 controls the projection optical system and the alignment system (and the leveling adjustment system of the wafer stage 5 described above) as a temperature control object.
  • the circulating system C5 of the second control system 62 controls the reticle stage 2 for temperature control, and the third control system 86 provided independently of the first and second control systems 61 and 62.
  • the circulating system C6 controls the wafer stage 5 for temperature control.
  • those having the same functions as the evaporator 65 and the heater 71 shown in FIG. 4 are simplified as a temperature controller 87.
  • those having functions equivalent to those of the heat exchanger 70 and the heaters 75 and 78 shown in FIG. 4 are schematically illustrated as temperature controllers 88 and 89.
  • two temperature sensors 76a, 76b and 79a, 79b are arranged for stages 2 and 5, respectively. This is shown as 9.
  • the heat generation amount is the largest. Motors are selected for each control system, and temperature sensors are installed for each of the selected motors (at two points on the inlet side and the outlet side of each motor). The same temperature control of the refrigerant as described in the first embodiment may be performed.
  • each of the plurality of motors whose temperature is controlled by the second control system 62 and the plurality of motors whose temperature is controlled by the third control system 86 are respectively controlled.
  • a temperature sensor is installed on the outlet side (the inlet side temperature sensor is installed for only one typical motor in each control system), and the outlet side temperature is controlled to a constant value (second control).
  • the system circulates through each motor provided on reticle stage 2.
  • the third control system 86 controls each motor so that the outlet temperature of the refrigerant circulating through each motor provided on the wafer stage 5 is maintained at a constant value so that the outlet temperature of the refrigerant is constant.
  • the flow rate of the flowing refrigerant may be adjusted by each valve.
  • the temperature sensor 69 which is the third detecting means, detects the temperature of the refrigerant circulating in the projection optical system PL, and the controller 67 detects the refrigerant based on the detection result.
  • the temperature of the projection optical system PL is controlled within a range of ⁇ 0.01 ° C.
  • the temperature sensor 76 detects the temperature of the refrigerant circulating in the reticle stage 2, and the controller 77 controls the driving of the temperature controller 88 based on the detection result. Control the temperature of reticle stage 2 within the range of ⁇ 0.1 ° C.
  • the temperature sensor 79 detects the temperature of the refrigerant circulating in the wafer stage 5, and the controller 90 controls the drive of the temperature controller 89 based on the detection result.
  • the temperature of the wafer stage 5 is controlled within a range of ⁇ 0.1 ° C.
  • the projection optical systems PL and PL are independently controlled by the control systems 61, 62, and 86, respectively. Since the temperature of the reticle stage 2 and the wafer stage 5 are controlled, it is possible to perform more accurate temperature management according to the heat generation amount of each control target.
  • FIG. 9 shows a third embodiment of the exposure apparatus according to the present invention.
  • the first control system 61 controls the projection optical system PL and the wafer stage 5 as a temperature control target
  • the second control system 62 controls the reticle stage 2 as a temperature control target.
  • the temperature of a circulation system C1 circulating through the projection optical system P L and the alignment system A L and a circulation system C 6 circulating through the wafer stage 5 are controlled by a single temperature controller 87.
  • the temperature of the refrigerant circulating in the projection optical system PL is detected by the temperature sensor 69, and the controller 67 controls the temperature controller 8 based on the detected result.
  • the temperature of the wafer stage 5 is controlled within a range of ⁇ 0.01 ° C., similarly to the projection optical system PL.
  • the temperature of the wafer stage 5 is controlled within a range of ⁇ 0.01 ° C., similarly to the projection optical system PL.
  • the reticle stage 2 is independent of the first control system 61, and The temperature will be controlled in the range of 0.1 ° C.
  • the first control system 61 can control the refrigerant temperatures of the two circulation systems C1 and C6, so that the device configuration can be simplified.
  • FIG. 10 is a view showing a fourth embodiment of the exposure apparatus of the present invention. In this figure, only the temperature control system related to reticle stage 2 is shown.
  • the second control system 62 includes a temperature sensor 91, a controller 77, and a temperature controller 88 shown in FIGS. , 92 and a Peltier element 93 as a second regulator.
  • Peltier element 93 is arranged closer to reticle stage 2 than temperature controller 88, and its drive is controlled by controller 77.
  • the temperature sensor 91 is arranged on the upstream side of the Peltier element 93, and the temperature sensor 92 is arranged on the downstream side of the Peltier element 93, and the refrigerant temperature detected by each of the temperature sensors 91 and 92 is determined by the controller. Output to 7 7.
  • the controller 77 controls the driving of the temperature controller 88 based on the temperature detection result of the temperature sensor 76, and controls the driving of the Peltier element 93 based on the temperature detection results of the temperature sensors 91 and 92. I do. Other configurations are the same as those of the second and third embodiments.
  • the controller 77 supercools the refrigerant temperature of the circulation system C5 to a temperature lower than a predetermined temperature by controlling the temperature controller 88. Then, the controller 77 raises the refrigerant to a predetermined temperature by energizing the Peltier element 93 based on the refrigerant temperature detected by the temperature sensors 91 and 92.
  • the configuration is not limited to the configuration in which the refrigerant is supercooled by the temperature controller 88 and heated by the Peltier element 93, but may be a configuration in which the refrigerant is overheated by the temperature controller 88 and cooled by the Peltier element 93.
  • a heater may be used instead of the Peltier element 93.
  • the controller 67 controls the driving of the temperature controller 87 based on the detection result of the temperature sensor 69, and the second control system 62
  • the controller 77 controls the driving of the temperature controller 88 based on the detection result of the temperature sensor 76, but in the present embodiment, these temperature sensors 69, 76 are not provided.
  • the controller 67 calculates the amount of heat generated by driving the wafer stage 5 based on the data (exposure recipe) relating to the exposure processing, and sets the coolant temperature based on the calculated amount of heat, thereby setting the temperature controller 87 Control the drive.
  • the controller 77 calculates the amount of heat generated by driving the reticle stage 2 based on the exposure data, and sets the coolant temperature based on the calculated amount of heat.
  • the operator selects a process program on the OA panel, and based on the selected process information and the information registered in the exposure data, the amount of power required to drive the motor on the calculation circuit
  • the calorific value is calculated and the driving of the temperature controllers 87 and 88 is controlled.
  • the ratio between the drive voltage applied to the motor and the amount of heat generation (change in temperature) may be determined for each motor, and the flow rate may be adjusted in accordance with the ratio to the drive voltage.
  • the temperature of the controlled object is controlled by adjusting the flow rate of the refrigerant.
  • the present invention is not limited to this. At least one of the temperature, the flow velocity, and the flow rate of the refrigerant is used.
  • the temperature controller and the pump for driving the refrigerant are partially shared. However, they are separated for each control target (circulation system) or shared by all circulation systems.
  • Various configurations such as can be adopted. For example, when both a cooler and a heater are provided, the heater may be shared and a cooler may be provided for each control target. In this case, the final temperature adjustment must take place in the cooler. And '
  • the configuration is such that the refrigerant temperature before circulating the stages 2 and 5 and the refrigerant temperature after circulating are simply averaged, but a weighted average may be used.
  • the following method can be adopted as a method of weighted averaging. (1) If the distance from the heat source such as a motor to the installation position of the inlet-side temperature sensor is different from the distance from the heat source to the installation position of the outlet-side temperature sensor, the closer the distance, the smaller the temperature sensor Weighting is performed according to the distance, such as increasing the weight.
  • the material that forms the vicinity of the inlet of the heat source such as a motor is different from the material that forms the vicinity of the outlet, it is weighted according to the material of the material, such as thermal conductivity. The greater the conductivity, the greater the weight of the material).
  • weighting is performed according to the presence or absence of the different heat source and the amount of heat generated. For example, when another heat source exists on the flow path, the weight of the temperature sensor output on the side closer to the other heat source is increased. If another heat source exists outside the flow path, the heat generated by the other heat source is transmitted to the temperature sensor via air, so the weight of the output of the temperature sensor near the other heat source is increased.
  • the storage operation is repeated for each baseline measurement. Then, based on the plurality of accumulated data sets, an estimation is performed to determine which weight is given to the inlet-side temperature or the outlet-side temperature and how much the baseline fluctuation is reduced. Then, a weighted average is performed based on the estimated weights.
  • HFE refrigerant
  • the temperature is controlled by the refrigerant circulating in one direction for one temperature control target (motor or the like).
  • the present invention is not limited to this, and the temperature is controlled in a plurality of directions.
  • the temperature may be controlled using a circulating refrigerant.
  • the control target 2 1 (here, as an example, In this case, two circulating systems C 7a and C 7b having different circulation directions are connected to each other, and the circulating systems C 7a and C 7b are connected to each other. Refrigerant is circulated from opposite directions (the refrigerant inlet and outlet are reversed between the two circulation systems).
  • the temperature gradient that may occur in the control target 21 may be reduced. The temperature can be controlled more accurately and accurately.
  • the temperature control section (flow path, piping) is subdivided and the temperature of the control target is controlled, so that the temperature on the control target is controlled. There can be no gradient.
  • Fig. 11 (B) three different circulation systems (flow paths, pipes) C7c, C7d, and C7e are provided for the control target 21 as shown in the figure, and each circulation system is controlled. The refrigerant is circulated in the direction of the arrow in the figure.
  • four different circulation systems (flow paths, pipes) C7f, C7g, C7h, and C7i are provided for the control target 21 as shown in the figure. The refrigerant is circulated in each circulation system in the direction of the arrow in the figure.
  • the temperature sensors 76a and 76b are provided on the inlet and outlet sides of each of the circulation systems C7a to C7i.
  • a temperature sensor may be provided for only one circulating system, or a temperature sensor may be provided only for the outlet side of each circulating system. How to use these temperature sensors is the same as in each of the above embodiments.
  • Figs. 11 (A) to 11 (C) are particularly effective when the control target is large (long) or when the heat generation amount (drive amount) of the control target is large.
  • An example of such a control target is a Y linear motor 15 of the reticle coarse movement stage 16. (Motor driven in scan direction), stator 20 extending in Y direction, or mover 36 or stator 3 7 of linear motor 33 on wafer stage. .
  • the configurations shown in FIGS. 11 (A) to 11 (C) are also effective especially for a control target where a temperature gradient-free state is required.
  • Such control targets include, for example, a drive source arranged near the wafer / reticle (for example, voice coil motor 8:!
  • the locations to which the configuration of FIG. 11 is applied are not limited to the locations described here, and the configuration shown in FIG. 11 may be applied to locations where a situation without a temperature gradient is desired. .
  • the substrate of the present embodiment includes not only a semiconductor wafer W for a semiconductor device, but also a glass substrate for a liquid crystal display device, a ceramic wafer for a thin film magnetic head, or a mask or reticle used in an exposure apparatus.
  • Original plate synthetic quartz, silicon wafer
  • a step-and-scan running exposure apparatus (scanning stepper; US Pat. No. 5,473,410) in which a reticle R and a wafer W are synchronously moved and a pattern of the reticle R is scanned and exposed.
  • the present invention is also applicable to a step-and-repeat type projection exposure apparatus (stepper) that exposes the pattern of the reticle R while the reticle R and the wafer W are stationary and sequentially moves the wafer W in steps. Can be.
  • the type of the exposure apparatus 1 is not limited to an exposure apparatus for manufacturing a semiconductor device that exposes a semiconductor device pattern onto a wafer W, and is not limited to an exposure apparatus for manufacturing a liquid crystal display element, a thin film magnetic head, an image pickup device (CCD), or the like. It can be widely applied to exposure devices for manufacturing reticles and the like.
  • emission lines g-line (433 nm), h-line (404.7 nm), i-line (365 nm)), r F excimer laser (248 nm), Ar F excimer laser (193 nm), F 2 laser (157 nm), as well as charged particle beams such as X-rays and electron beams
  • an electron gun when using an electron beam, use an electron gun as a thermionic emission type lantern. Kisabolite (L a B 6 ) and tantalum (T a) can be used.
  • a configuration using a reticle R may be used, or a configuration in which a pattern is directly formed on a wafer without using the reticle R may be used.
  • a high frequency such as a YAG laser or a semiconductor laser may be used.
  • the magnification of the projection optical system PL may be not only a reduction system but also any of an equal magnification system and an enlargement system.
  • the projection optical system PL when far ultraviolet rays such as an excimer laser are used, a material which transmits far ultraviolet rays such as quartz or fluorite is used as a glass material, and when a F 2 laser or X-ray is used, a catadioptric system is used.
  • An optical system of a refraction system (a reticle R of a reflection type is also used), and when an electron beam is used, an electron optical system composed of an electron lens and a deflector may be used as the optical system.
  • the optical path through which the electron beam passes is in a vacuum state.
  • the present invention can also be applied to a proximity exposure apparatus that exposes the pattern of the reticle R by bringing the reticle R and the wafer W into close contact with each other without using the projection optical system PL.
  • each of the stages 2 and 5 may be of a type that moves along a guide or a guideless type that does not have a guide.
  • the drive mechanism for each of the stages 2 and 5 consists of a magnet unit (permanent magnet) with a two-dimensionally arranged magnet and an armature unit with a two-dimensionally arranged coil.
  • a driving flat motor may be used.
  • one of the magnet unit and the armature unit is connected to the stages 2 and 5, and the other of the magnet unit and the armature unit is on the moving surface side (base) of the stages 2 and 5. It may be provided.
  • the exposure apparatus 1 controls various subsystems including the respective components listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • Manufactured by assembling Before and after this assembly, achieve the optical accuracy of various optical systems to ensure these various accuracy. Adjustments to achieve mechanical accuracy for various mechanical systems, and adjustments to achieve electrical accuracy for various electrical systems.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connection, wiring connection of electric circuits, and piping connection of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure device.

Abstract

The suppression of a fluctuation of a base line by a temperature control necessary for each constituent apparatus. An aligner has a first control system for setting the temperature of a first liquid, and for circulating the first liquid with a set temperature through at least one object of a projection optical system and a board stage to control the temperature of the object, and a second control for setting the temperature of a second liquid independently of setting by the first control system, and for circulating the second liquid with a set temperature through a reticle stage to control the temperature of the reticle stage. The first and second control systems have different set capabilities in the point of the size of a temperature range in setting a liquid temperature.

Description

明細書 露光装置及びデバイス製造方法 技術分野 本発明は、 半導体素子や液晶表示素子等のデバイス製造工程において、 マスク のパターン像をウェハ等の基板上に投影露光する露光装置および基板にデバィス パターンを転写するデバィス製造方法に関するものである。  TECHNICAL FIELD The present invention relates to an exposure apparatus for projecting and exposing a pattern image of a mask onto a substrate such as a wafer in a device manufacturing process of a semiconductor element or a liquid crystal display element, and transferring a device pattern to the substrate. The present invention relates to a device manufacturing method.
本出願は、 日本国特許出願 2 0 0 2 - 7 2 6 4 0号及び 2 0 0 3— 2 2 8 5号 を基礎としており、 その内容を本明細書に組み込む。 背景技術 半導体デバイスまたは液晶表示デバイス等をフォ トリソグラフイエ程で製造す る際に、 フォ トマスク又はレチクル (以下 「レチクル」 と総称する) のパターン 像を投影光学系を介して感光基板上の各ショット領域に投影する投影露光装置が 使用されている。 近年、 この種の投影露光装置としては、 感光基板 2次元的に 移動自在なステージ上に載置し、 このステージにより感光基板をステップ移動さ せて、 レチクルのパターン像をウェハ等の感光基板上の各ショット領域に順次露 光する動作を繰り返す、 いわゆるステップ 'アンド ' リビート方式の露光装置、 例えば縮小投影型の露光装置 (ステッパー) が多用されている。 また、 近年では、 ウェハの露光中に、 レチクルとウェハとを同期移動させることにより、 ウェハ上 の各ショッ ト領域を順次露光していく、 いわゆるステップ · アンド ·スキャン方 式の露光装置も使用されている。  This application is based on Japanese Patent Application Nos. 2000-72026 and 2000-22885, the contents of which are incorporated herein. BACKGROUND ART When manufacturing a semiconductor device or a liquid crystal display device by a photolithographic process, a pattern image of a photomask or a reticle (hereinafter collectively referred to as a “reticle”) is projected onto a photosensitive substrate via a projection optical system. A projection exposure apparatus that projects onto a shot area is used. In recent years, this type of projection exposure apparatus includes a photosensitive substrate mounted on a two-dimensionally movable stage, and the stage is used to move the photosensitive substrate in a stepwise manner so that a reticle pattern image is transferred onto a photosensitive substrate such as a wafer. A so-called step 'and' rebeat type exposure apparatus, for example, a reduction projection type exposure apparatus (stepper), which repeats an operation of sequentially exposing each shot area to a shot area, is often used. In recent years, a so-called step-and-scan type exposure apparatus has been used, in which a reticle and a wafer are synchronously moved during wafer exposure, thereby sequentially exposing each shot area on the wafer. ing.
例えば半導体デバイスなどのマイクロデバイスは、 感光基板として、 感光材が 塗布されたウェハ上に多数層の回路パターンを重ねて形成されるので、 2層目以 降の回路パターンをウェハ上に投影露光する際には、 ウェハ上の既に回路パター ンが形成された各ショッ ト領域とこれから露光するレチクルのパターン像との位 置合わせ、 即ちウェハとレチクルとの位置合わせ (ァライメント) を精確に行う 必要がある。 例えば、 回路パターンが露光されるショ ッ ト領域をマ トリ ックス状 に配置した一枚のウェハに対して、 重ね合わせ露光を行う際にウェハをァライメ ントする方式としては、 例えば特許文献 1に開示されている、 いわゆるェンハン ス ド - グローバル . ァライメント (E G A ) が主流となっている。 For example, microdevices such as semiconductor devices are formed by laminating a large number of circuit patterns on a wafer coated with a photosensitive material as a photosensitive substrate, so that the second and subsequent circuit patterns are projected and exposed on the wafer. In this case, the position of each shot area on the wafer where a circuit pattern has already been formed and the pattern image of the reticle to be exposed from now on It is necessary to precisely perform alignment, that is, alignment between the wafer and the reticle. For example, Patent Document 1 discloses a method of aligning wafers when performing overlay exposure on a single wafer in which a shot area where a circuit pattern is exposed is arranged in a matrix. The so-called Enhanced-Global Arrangement (EGA) has become mainstream.
E G A方式とは、 ウェハ (物体) 上に形成された複数のショ ッ ト領域のうち、 少なく とも三つの領域 (以下 E G Aショ ッ トと称する) を指定し、 各ショ ッ ト領 域に付随したァライメントマーク (マーク) の座標位置をァライメントセンサに て計測する。 その後、 計測値と設計値とに基づいてウェハ上のショッ ト領域の配 列特性 (位置情報) に関する誤差パラメータ (オフセッ ト、 スケール、 回転、 直 交度) を最小二乗法等により統計演算処理して決定する。 そして、 この決定され たパラメータの値に基づいて、 ウェハ上の全てのショット領域に対してその設計 上の座標値を補正し、 この補正された座標値に従ってウェハステージをステツピ ングさせてウェハを位置決めする方式である。 この結果、 レチクルパターンの投 影像とウェハ上の複数のショッ ト領域のそれぞれとが、 ショッ ト領域内に設定さ れた加工点 (座標値が計測、 又は算出される基準点であり、 例えばショ ッ ト領域 の中心) において正確に重ね合わされて露光されることになる。  The EGA method specifies at least three areas (hereinafter referred to as EGA shots) among a plurality of shot areas formed on a wafer (object) and attaches them to each shot area. The coordinate position of the alignment mark (mark) is measured by the alignment sensor. After that, error parameters (offset, scale, rotation, orthogonality) related to array characteristics (positional information) of the shot area on the wafer are statistically calculated based on the measured values and the design values by the least square method or the like. To decide. Then, based on the determined parameter values, the design coordinate values of all shot areas on the wafer are corrected, and the wafer stage is stepped according to the corrected coordinate values to position the wafer. It is a method to do. As a result, the projected image of the reticle pattern and each of the plurality of shot areas on the wafer are processed points set in the shot area (the reference points at which coordinate values are measured or calculated. (The center of the dot area), and the exposure is performed with the overlap.
従来、 ウェハ上のァライメントマークを計測するァライメントセンサとしては、 投影光学系近傍に配設されたオファクシス方式のァライメント系を用いる方法が 知られている。 この方法は、 オファクシス方式のァライメント系を用いてァライ メントマ一クイ立置を計測した後、 投影光学系とオファクシスァラィメント系との 間の距離であるベースライン量に関する一定量だけウェハステージを送り込むだ けで、 直ちにレチクルのパターンをウェハ上のショッ ト領域に正確に重ね合わせ て露光することができるものである。 このように、 ベースライン量は、 フォ トリ ソグラフイエ程において極めて重要な操作量であるため、 厳密に正確な計測値が 要求されている。  Conventionally, as an alignment sensor for measuring an alignment mark on a wafer, a method using an off-axis type alignment system arranged near a projection optical system is known. In this method, after measuring an alignment mark using an alignment system of an off-axis system, the wafer stage is moved by a fixed amount related to a base line amount, which is a distance between the projection optical system and the off-axis alignment system. By simply feeding the wafer, the reticle pattern can be immediately superimposed on the shot area on the wafer and exposed. As described above, since the baseline amount is a very important manipulated variable in a photolithographic process, strictly accurate measurement values are required.
ところが、 上記のベースライン量は、 各種処理に伴って発生する熱でァラィメ ント系等に熱膨張や熱変形が生じることで、 露光中に変動 (ベースラインドリフ ト) する虞がある。 この場合、 ウェハの位置決めに誤差が生じ、 重ね合わせ精度 に悪影響を及ぼす可能性があるため、 従来ではウェハを所定枚数露光する毎にベ ースラインチヱックを実施することで、 重ね合わせ精度が悪化してしまうことを 防いでいた (特開昭 6 1 - 4 4 4 2 9号公報) 。 However, the above-mentioned baseline amount may fluctuate during exposure (baseline drift) due to thermal expansion or thermal deformation of an alignment system or the like due to heat generated by various processes. In this case, an error occurs in the positioning of the wafer, and the overlay accuracy In the past, a baseline check was performed each time a predetermined number of wafers were exposed to prevent the overlay accuracy from deteriorating (Japanese Patent Laid-Open No. No. 61-444492).
しかしながら、 上述したような従来の露光装置及ぴデバイス製造方法には、 以 下のような問題が存在する。  However, the conventional exposure apparatus and device manufacturing method as described above have the following problems.
近年では、 パターンの更なる微細化に伴って、 ステップ 'アンド · リピート方 式からステップ · アンド · スキャン方式 (以下、 スキャン方式) の露光装置が主 流と成りつつある。 スキャン方式は、 ウェハ及びレチクルの双方が露光中 (パタ ーン転写中) に走査するため、 ウェハステージのみならずレチクルステージもモ ータ等の影響で熱を持ちやすくなり、 ステージやその周辺部が徐々に変形を起こ す。  In recent years, with the further miniaturization of patterns, the exposure apparatus of the step-and-repeat type to the step-and-scan type (hereinafter referred to as “scan type”) is becoming mainstream. In the scanning method, since both the wafer and the reticle scan during exposure (during pattern transfer), not only the wafer stage but also the reticle stage tends to have heat under the influence of the motor, etc. Gradually deforms.
ステージの位置は、 干渉系を用いて計測されるが、 ステージの変形により移動 鏡とレチクル間の距離が変化するとベースラインが変動してしまい、 重ね合わせ 精度が悪化してしまう。 また、 ステージの発熱によりステージ周辺の雰囲気の温 度が上昇してしまい、 干渉計光路の揺らぎなどの影響でステージの位置決め精度 が悪化するという問題も生じる。  The position of the stage is measured using an interference system, but if the distance between the moving mirror and the reticle changes due to the deformation of the stage, the baseline will fluctuate, and the overlay accuracy will deteriorate. In addition, the temperature of the atmosphere around the stage rises due to the heat generated by the stage, and the stage positioning accuracy deteriorates due to the fluctuation of the optical path of the interferometer.
そこで、 従来では温度調節器によって冷媒温度を制御しながら発熱部位に冷媒 を送って (循環させて) 冷却を行っている。 ところが、 1 / 1 0 °C単位で激しく 発熱するウェハステージゃレチクルステージと、 1 Z 1 0 0 °C単位で温度を制御 しなければならない投影光学系ゃァライメント系とを一つの温度調節器で冷却を 行う場合、 投影光学系の温度を基準にして冷媒温度を制御すると、 温度変化が大 きいウェハステージゃレチクルステージの冷却能力が充分でなくなり、 逆にゥェ ハステージゃレチクルステージの温度を基準にして冷媒温度を制御すると、 投影 光学系ゃァライメント系に必要な精密 (微細) な温度制御ができなくなる。 特に、 レチクルステージは、 ウェハステージに対して投影倍率に応じた距離、 速度で移 動するため、 発熱量が非常に大きく、 投影光学系ゃァライメント系と同一の制御 系で温度を管理することは困難である。 このように、 温度管理が充分にされない と、 結果として、 ベースライン変動が大きくなり重ね合わせ精度が悪化するとい う問題が生じてしまう。 発明の開示 Therefore, conventionally, cooling is performed by sending (circulating) the refrigerant to the heat generating part while controlling the refrigerant temperature with a temperature controller. However, the wafer stage ゃ reticle stage, which generates heat intensely in 1/10 ° C units, and the projection optical system alignment system, whose temperature must be controlled in 1Z100 ° C units, can be controlled by a single temperature controller. When cooling, if the coolant temperature is controlled based on the temperature of the projection optical system, the cooling capacity of the wafer stage / reticle stage, which changes greatly, will not be sufficient, and conversely, the temperature of the wafer stage / reticle stage will decrease. If the refrigerant temperature is controlled on the basis of the standard, the precise (fine) temperature control required for the projection optical system alignment system cannot be performed. In particular, since the reticle stage moves at a distance and speed corresponding to the projection magnification with respect to the wafer stage, the amount of heat generated is extremely large, and it is difficult to control the temperature with the same control system as the projection optical system alignment system. Have difficulty. As described above, if the temperature control is not sufficiently performed, a problem occurs in that the baseline variation becomes large and the overlay accuracy is deteriorated. Disclosure of the invention
本発明は、 以上のような点を考慮してなされたもので、 各構成機器に必要な温 度制御が可能で、 ベースライン変動を抑制できる露光装置及びデバイス製造方法 を提供することを目的とする。 The present invention has been made in consideration of the above points, and has as its object to provide an exposure apparatus and a device manufacturing method capable of controlling the temperature required for each component and suppressing baseline fluctuation. I do.
上記の目的を達成するために本発明は、 実施の形態を示す図 1ないし図 1 0に 対応付けした以下の構成を採用している。  In order to achieve the above object, the present invention employs the following configuration corresponding to FIGS. 1 to 10 showing the embodiment.
本発明の露光装置は、 レチクルステージ上に保持されたレチクルのパターン像 を、 基板ステージ上に保持された基板上に投影光学系を介して投影する露光装置 であって、 第 1液体の温度を設定するとともに、 温度設定した第 1液体を投影光 学系と基板ステージとの少なく とも一方の物体に対して循環させて、 物体の温度 を制御する第 1制御系と、 第 2液体の温度を第 1制御系とは独立に設定し、 温度 設定した第 2液体をレチクルステージに対して循環させて、 レチクルステージの 温度を制御する第 2制御系とを有し、 液体の温度を設定する際の温度範囲の大き さの点において、 第 1、 第 2制御系は互いに異なる設定能力を持つことを特徴と するものである。  An exposure apparatus according to the present invention is an exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system. The first control system controls the temperature of the first liquid by circulating the first liquid whose temperature has been set to at least one of the projection optical system and the substrate stage, and controls the temperature of the second liquid. A second control system that controls the temperature of the reticle stage by circulating the set second liquid to the reticle stage and setting the temperature independently of the first control system. The first and second control systems are characterized in that they have different setting capabilities in terms of the size of the temperature range described above.
従って、 本発明の露光装置では、 第 1制御系において第 1液体を循環させるこ とで投影光学系や基板ステージを例えば 1 Z 1 0 0 °C単位で制御し、 第 2制御系 において第 2液体を循環させることでレチクルステージを例えば 1ノ 1 0 °C単位 でそれぞれ独立して制御することが可能になる。 すなわち、 投影光学系やレチク ルステージに要求される温度範菌に応じて第 1、 第 2制御系を個別に設定するこ とで、 各機器に求められる精度での温度制御が可能になり、 温度変動に起因する ベースライン変動を抑制することができる。 ,„ また、 本発明の露光装 ¾は、 レチクルステージ上に保持されたレチクルのパタ ーン像を、 基板ステージ上に保持された基板上に投影光学系を介して投影する露 光装置であって、 投影光学系と基板ステージとのうちの少なく とも一方の物体に 対して第 1液体を循環させる際の第 1循環条件を設定するとともに、 第 1循環条 件の下で第 1液体を循環させて、 物体の温度を制御する第 1制御系と、 Therefore, in the exposure apparatus of the present invention, the projection optical system and the substrate stage are controlled, for example, in units of 1Z100 ° C. by circulating the first liquid in the first control system, and the second control system controls the second optical system. By circulating the liquid, the reticle stage can be independently controlled, for example, in units of 10 to 10 ° C. In other words, by setting the first and second control systems individually according to the temperature range required for the projection optical system and the reticle stage, it becomes possible to control the temperature with the accuracy required for each device. Baseline fluctuations caused by temperature fluctuations can be suppressed. The exposure apparatus of the present invention is an exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system. Setting the first circulating condition for circulating the first liquid to at least one of the projection optical system and the substrate stage, A first control system for controlling the temperature of the object by circulating the first liquid under the condition;
ステージに対して第 2の液体を循環させる際の第 2循環条件を、 第 1循環条件と は独立して設定するとともに、 第 2循環条件の下で第 2の液体を循環させて、 レ チクルステージの温度を制御する第 2制御系と、 物体に循環させる前の第 1液体 の温度と、 物体を循環させた後の第 1液体の温度とをそれぞれ検出する第 1検出 手段と、 レチクルステージに循環させる前の第 2液体の温度と、 レチクルステー ジを循環させた後の第 2液体の温度とをそれぞれ検出する第 2検出手段とを有し、 第 1制御系は、 第 1検出手段の検出結果に基づいて第 1循環条件を設定し、 第 2 制御系は、 第 2検出手段の検出結果に基づいて第 2循環条件を設定することを特 徴とするものである。 The second circulating condition for circulating the second liquid to the stage is set independently of the first circulating condition, and the second liquid is circulated under the second circulating condition. A second control system for controlling a temperature of the stage, a first detecting means for detecting a temperature of the first liquid before circulating the object, and a temperature of the first liquid after circulating the object, respectively, a reticle stage And a second detection unit for detecting a temperature of the second liquid before circulating through the reticle stage and a temperature of the second liquid after circulating through the reticle stage, respectively. The first control system sets the first circulation condition based on the detection result, and the second control system sets the second circulation condition based on the detection result of the second detection means.
従って、 本発明の露光装置では、 第 1循環条件で第 1液体を循環させることで 投影光学系や基板ステージを例えば 1 / 1 0 0 °C単位で制御し、 第 2制御系にお いて第 2液体を循環させることでレチクルステージを例えば 1 1 0 °C単位でそ れぞれ独立して制御することが可能になる。 すなわち、 投影光学系ゃレチクルス テージに要求される温度範囲に応じて第 1、 第 2制御系を個別に設定することで、 各機器に求められる精度での温度制御が可能になり、 温度変動に起因するベース ライン変動を抑制することができる。 このとき、 第 1、 第 2循環条件は、 各機器 に循環させる前と後とで検出した第 1、 第 2液体の温度に基づいて設定するので、 各機器を循環することで生じた第 1、 第 2液体の温度変化に基づいて高精度な温 度制御を実施できる。  Therefore, in the exposure apparatus of the present invention, the projection optical system and the substrate stage are controlled, for example, in units of 1/1000 ° C. by circulating the first liquid under the first circulation condition, and the second control system performs By circulating the two liquids, the reticle stage can be independently controlled, for example, in units of 110 ° C. In other words, by setting the first and second control systems individually according to the temperature range required for the projection optical system and the reticle stage, it becomes possible to control the temperature with the accuracy required for each device, The resulting baseline fluctuation can be suppressed. At this time, the first and second circulating conditions are set based on the temperatures of the first and second liquids detected before and after circulating in each device. In addition, highly accurate temperature control can be performed based on the temperature change of the second liquid.
そして、 本発明の露光装置は、 レチクルステージ上に保持されたレチクルのパ ターン像を、 基板ステージ上に保持された基板上に投影光学系を介して投影する 露光装置であって、 レチクルステージ及ぴ基板ステージは、 それぞれ複数の駆動 源を備え、 複数の駆動源及び投影光学系のうち、 発熱量又は温度変化量が第 1所 定量以内のものを第 1制御対象として温度制御する第 1制御系と、 複数の駆動源 及び投影光学系のうち、 発熱量又は温度変化量が第 1所定量より大きいものを第 2制御対象として、 第 1制御系とは独立して温度制御する第 2制御系と、 を有す ることを特徴とするものである。 従って、 本発明の露光装置では、 発熱量又は温度変化量が小さい基板ステージ の駆動源や投影光学系を第 1制御対象として第 1制御系で制御し、 発熱量又は温 度変化量が比較的大きいレチクルステージの駆動源を第 2制御対象として第 2制 御系でそれぞれ独立して制御することが可能になる。 すなわち、 投影光学系ゃス テージの駆動源の発熱量又は温度変化量に応じて制御対象とすることで、 各機器 に求められる精度での温度制御が可能になり、 温度変動に起因するベースライン 変動を抑制することができる。 An exposure apparatus according to the present invention is an exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system.ぴ The substrate stage has a plurality of drive sources, and among the plurality of drive sources and the projection optical system, the first control that performs temperature control for the first control object with the heat generation or temperature change within the first fixed amount System, and a plurality of drive sources and a projection optical system, in which a heat generation amount or a temperature change amount larger than a first predetermined amount is set as a second control target, and a second control for performing temperature control independently of the first control system. It is characterized by having a system and Therefore, in the exposure apparatus according to the present invention, the first control system controls the drive source and the projection optical system of the substrate stage having a small heat value or a small temperature change amount as the first control object, and the heat value or the temperature change amount is relatively small. The large reticle stage drive source can be controlled independently by the second control system with the second control target. In other words, by making the control target according to the heat generation amount or the temperature change amount of the drive source of the projection optical system stage, the temperature control can be performed with the accuracy required for each device, and the baseline caused by the temperature fluctuation can be obtained. Fluctuations can be suppressed.
また、 本発明のデバイス製造方法は、 請求項 1から 2 6の何れか一項に記載の 露光装置を用いて、 レチクル上に形成されたパターンを基板上に転写する工程を 含むことを特徴とするものである。  Further, the device manufacturing method of the present invention includes a step of transferring a pattern formed on a reticle onto a substrate using the exposure apparatus according to any one of claims 1 to 26. Is what you do.
従って、 本発明のデバイス製造方法では、 必要な温度制御が実施された状態で パターンを基板上に転写することが可能になり、 温度変動に起因するベースライ ン変動を抑制して重ね合わせ精度に優れたデバイスを得ることができる。 図面の簡単な説明 図 1は本発明の露光装置の概略構成図である。  Therefore, in the device manufacturing method of the present invention, it is possible to transfer a pattern onto a substrate in a state where necessary temperature control has been performed, and to suppress a baseline variation caused by a temperature variation, thereby achieving an excellent overlay accuracy. Device can be obtained. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of an exposure apparatus of the present invention.
図 2は同露光装置を構成するレチクルステージの外観斜視図である。  FIG. 2 is an external perspective view of a reticle stage included in the exposure apparatus.
図 3は同露光装置を構成するウェハステージの外観斜視図である  FIG. 3 is an external perspective view of a wafer stage constituting the exposure apparatus.
図 4は第 1の実施形態において露光装置全体に係る温度制御系を示す図である。 図 5はレチクルステージに係る温度制御系を示す図である。  FIG. 4 is a diagram showing a temperature control system relating to the entire exposure apparatus in the first embodiment. FIG. 5 is a diagram showing a temperature control system related to the reticle stage.
図 6はウェハステージに係る温度制御系を示す図である。  FIG. 6 is a diagram showing a temperature control system related to the wafer stage.
図 7は半導体デバイスの製造工程の一例を示すフローチヤ一ト図である。  FIG. 7 is a flowchart illustrating an example of a semiconductor device manufacturing process.
図 8は第 2の実施形態において露光装置全体に係る温度制御系を簡略的に示す 図である。  FIG. 8 is a diagram schematically showing a temperature control system relating to the entire exposure apparatus in the second embodiment.
図 9は第 3の実施形態において露光装置全体に係る温度制御系を簡略的に示す 図である。  FIG. 9 is a diagram schematically showing a temperature control system relating to the entire exposure apparatus in the third embodiment.
図 1 0は第 4の実施形態においてレチクルステージに係る温度制御系を簡略的 に示す図である。 , 図 1 1 A〜Cは本発明の変形例を示す図である。 発明を実施するための最良の形態 以下、 本発明の露光装置及びデバイス製造方法の第 1の実施形態を、 図 1ない し図 7を参照して説明する。 ここでは、 例えば露光装置として、 露光中 (パター ン転写中) にレチクルとウェハとを同期移動しつつ、 レチクルに形成された半導 体デバイスの回路パターンをウェハ上に転写する、 スキャニング ' ステツパを使 用する場合の例を用いて説明する。 FIG. 10 shows a simplified temperature control system for the reticle stage in the fourth embodiment. FIG. 11A to 11C are diagrams showing a modification of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a first embodiment of an exposure apparatus and a device manufacturing method according to the present invention will be described with reference to FIGS. Here, for example, as an exposure apparatus, a scanning ス stepper that transfers a circuit pattern of a semiconductor device formed on a reticle onto a wafer while synchronously moving the reticle and the wafer during exposure (during pattern transfer). This will be explained using an example of the case of using.
図 1に示す露光装置 1は、 光源 (不図示) からの露光用照明光により レチクル (マスク) R上の矩形状 (あるいは円弧状) の照明領域を均一な照度で照明する 照明光学系 I Uと、 レチクル Rを保持して移動するレチクルステージ (マスクス テージ) 2および該レチクルステージ 2を支持するレチクル定盤 3を含むステ一 ジ装置 4と、 レチクル Rから射出される照明光をウェハ (基板) W上に投影する 投影光学系 P Lと、 試料であるウェハ Wを保持して移動するウェハステージ (基 板ステージ) 5および該ウェハステージ 5を保持するウェハ定盤 6を含むステー ジ装置 7と、 上記ステージ装置 4および投影光学系 P Lをま持するリアクション フレーム 8とから概略構成されている。 なお、 ここで投影光学系 P Lの光軸方向 を Z方向とし、 この Z方向と直交する方向でレチクル Rとウェハ Wの同期移動方 向を Y方向とし、 非同期移動方向を X方向とする。 また、 それぞれの軸周りの回 転方向を Θ Ζ、 ΘΥ、 Θ Χとする。  The exposure apparatus 1 shown in FIG. 1 includes an illumination optical system IU that illuminates a rectangular (or arc) illumination area on a reticle (mask) R with uniform illumination by exposure illumination light from a light source (not shown). A stage apparatus 4 including a reticle stage (mask stage) 2 for holding and moving the reticle R and a reticle surface plate 3 for supporting the reticle stage 2; and a wafer (substrate) for illuminating light emitted from the reticle R. A projection optical system PL for projecting onto the W, a wafer stage (substrate stage) 5 for holding and moving a wafer W as a sample, and a stage device 7 including a wafer surface plate 6 for holding the wafer stage 5; It roughly comprises a stage device 4 and a reaction frame 8 having a projection optical system PL. Here, the direction of the optical axis of the projection optical system PL is defined as the Z direction, the direction of the synchronous movement of the reticle R and the wafer W in the direction orthogonal to the Z direction is defined as the Y direction, and the direction of the asynchronous movement is defined as the X direction. Also, the rotation directions around each axis are Θ Ζ, Θ, Θ Χ.
照明光学系 I Uは、 リアクションフレーム 8の上面に固定された支持コラム 9 によって支持される。 なお、 露光用照明光としては、 例えば超高圧水銀ランプか ら射出される紫外域の輝線 (g線、 i線) および K r Fエキシマレーザ光 (波長 The illumination optical system I U is supported by a support column 9 fixed to the upper surface of the reaction frame 8. The illumination light for exposure includes, for example, ultraviolet bright lines (g-line, i-line) and KrF excimer laser light (wavelength) emitted from an ultra-high pressure mercury lamp.
2 4 8 n m ) 等の遠紫外光 (D U V光) や、 A r Fエキシマレーザ光 (波長 1 9Deep ultraviolet light (DUV light) such as 248 nm, and ArF excimer laser light (wavelength 19
3 n m ) および F 2レーザ光 (波長 1 5 7 n m ) 等の真空紫外光 (V U V ) など が用いられる。 リアクションフレーム 8は、 床面に水平に载置されたベースプレート 1 0上に 設置されており、 その上部側および下部側には、 内側に向けて突出する段部 8 a および 8 bがそれぞれ形成されている。 3 nm) and F 2 laser beam (wavelength: 1 5 7 nm) vacuum ultraviolet light such as (VUV) and the like. The reaction frame 8 is installed on a base plate 10 horizontally placed on the floor, and has upper and lower sides formed with stepped portions 8a and 8b protruding inward, respectively. ing.
ステージ装置 4の中、 レチクル定盤 3は、 各コーナーにおいてリアクションフ レーム 8の段部 8 aに防振ュニッ ト 1 1を介してほぼ水平に支持されており (な お、 紙面奥側の防振ュュッ トについては図示せず) 、 その中央部にはレチクル R に形成されたパターン像が通過する開口 3 aが形成されている。 なお、 レチクル 定盤 3の材料として金属やセラミックスを用いることができる。 防振ュニッ ト 1 1は、 内圧が調整可能なエアマウント 1 2とボイスコイルモータ 1 3とが段部 8 a上に直列に配置された構成になっている。 これら防振ユニッ ト 1 1によって、 ベ一スプレート 1 0およびリアクションフレーム 8を介してレチクル定盤 3に伝 わる微振動がマイクロ Gレベルで絶縁されるようになっている (Gは重力加速 度) 。  In the stage device 4, the reticle surface plate 3 is supported almost horizontally on the step portion 8a of the reaction frame 8 at each corner via the vibration isolating unit 11 (note that the reticle surface plate 3 is located on the back side of the drawing). An aperture 3a through which a pattern image formed on reticle R passes is formed in the center of the scut (not shown). Note that metal or ceramics can be used as the material of the reticle surface plate 3. The anti-vibration unit 11 has a configuration in which an air mount 12 whose internal pressure is adjustable and a voice coil motor 13 are arranged in series on the step 8a. With these vibration isolation units 11, micro vibrations transmitted to the reticle surface plate 3 via the base plate 10 and the reaction frame 8 are isolated at the micro G level (G is the gravitational acceleration ).
レチクル定盤 3上には、 レチクルステージ 2が該レチクル定盤 3に沿って 2次 元的に移動可能に支持されている。 レチクルステージ 2の底面には、 複数のエア ベアリング (エアパッド) 1 4が固定されており、 これらのエアベアリング 1 4 によってレチクルステージ 2がレチクル定盤 3上に数ミクロン程度のクリアラン スを介して浮上支持されている。 また、 レチクルステージ 2の中央部には、 レチ クル定盤 3の開口 3 aと連通し、 レチクル Rのパターン像が通過する開口 2 aが 形成されている。  A reticle stage 2 is supported on the reticle base 3 so as to be two-dimensionally movable along the reticle base 3. A plurality of air bearings (air pads) 14 are fixed to the bottom surface of the reticle stage 2, and the reticle stage 2 floats on the reticle surface plate 3 with a clearance of about several microns by the air bearings 14. Supported. At the center of the reticle stage 2, there is formed an opening 2a which communicates with the opening 3a of the reticle surface plate 3 and through which the pattern image of the reticle R passes.
レチクルステージ 2について詳述すると、 図 2に示すように、 レチクルステー ジ 2は、 レチクル定盤 3上を一対の Yリニアモータ (駆動源) 1 5、 1 5によつ て Y軸方向に所定ス トロ一クで駆動されるレチクル粗動ステージ 1 6 と、 このレ チクル粗動ステージ 1 6上を一対の Xボイスコイルモータ (駆動源) 1 7 Xと一 対の Yボイスコイルモータ (駆動源) 1 7 Yとによって X、 Υ、 Θ Ζ方向に微小 駆動されるレチクル微動ステージ 1 8とを備えた構成になっている (なお、 図 1 では、 これらを 1つのステージとして図示している) 。  The reticle stage 2 will be described in detail. As shown in FIG. 2, the reticle stage 2 is fixed on the reticle surface plate 3 in the Y-axis direction by a pair of Y linear motors (drive sources) 15 and 15. A reticle coarse movement stage 16 driven by a stroke, and a pair of X voice coil motors (drive sources) 17 X and a pair of Y voice coil motors (drive sources) are moved on the reticle coarse movement stages 16. A reticle fine movement stage 18 that is finely driven in the X, Υ, and Ζ directions by 17 Y is provided (note that these are shown as one stage in FIG. 1). .
各 Υリニァモータ 1 5は、 レチクル定盤 3上に非接触ベアリングである複数の エアベアリング (エアパッド) 1 9によって浮上支持され Y軸方向に延びる固定 子 2 0と、 この固定子 2 0に対応して設けられ、 連結部材.2 2を介してレチクル 粗動ステージ 1 6に固定された可動子 2 1 とから構成されている。 このため、 運 動量保存の法則により、 レチクル粗動ステージ 1 6の + Y方向の移動に応じて、 固定子 2 0はカウンターマスとして一 Y方向に移動する。 この固定子 2 0の移動 によりレチクル粗動ステージ 1 6の移動に伴う反力を相殺するとともに、 重心位 置の変化を防ぐことができる。 なお、 Yリニアモータ 1 5における移動子 2 1 と 固定子 2 0とはカップリングされているため、 これらが相対移動した際には、 元 の位置に止まろうとする力が作用する。 そのため、 本実施の形態では、 固定子 2 0が所定の位置に到達するようにその移動 fiを補正する トリムモータ 7 2 (駆動 源; 図 2では図示せず、 図 5参照) が設けられている。 Each peliner motor 15 has a plurality of non-contact bearings on the reticle surface plate 3. An air bearing (air pad) 19 is supported by the stator 20 which is levitated and supported in the Y-axis direction, and is provided corresponding to the stator 20 and is fixed to the reticle coarse movement stage 16 via the connecting member 22. Mover 2 1. Therefore, the stator 20 moves in the one Y direction as a counter mass according to the movement of the reticle coarse movement stage 16 in the + Y direction according to the law of conservation of the movement amount. The movement of the stator 20 cancels the reaction force caused by the movement of the reticle coarse movement stage 16 and also prevents the center of gravity from changing. In addition, since the moving element 21 and the stator 20 in the Y linear motor 15 are coupled, when they relatively move, a force acts to stop at the original position. For this reason, in the present embodiment, a trim motor 72 (drive source; not shown in FIG. 2; see FIG. 5) for correcting the movement fi so that the stator 20 reaches a predetermined position is provided. I have.
レチクル粗動ステージ 1 6は、 レチクル定盤 3の中央部に形成された上部突出 部 3 bの上面に固定され Y軸方向に延びる一対の Yガイ ド 5 1、 5 1によって Y 軸方向に案内されるようになっている。 また、 レチクル粗動ステージ 1 6は、 こ れら Yガイ ド 5 1、 5 1に対して不図示のエアベアリングによって非接触で支持 されている。  The reticle coarse movement stage 16 is fixed to the upper surface of the upper protruding portion 3b formed in the center of the reticle surface plate 3 and guided in the Y-axis direction by a pair of Y guides 51, 51 extending in the Y-axis direction. It is supposed to be. Further, reticle coarse movement stage 16 is supported in a non-contact manner by an air bearing (not shown) with respect to Y guides 51 and 51.
レチクル微動ステージ 1 8には、 不図示のバキュームチャックを介してレチク ル Rが吸着保持されるようになつている。 レチクル微動ステージ 1 8の一 Y方向 の端部には、 コーナキューブからなる一対の Y移動鏡 5 2 a、 5 2 bが固定され、 また、 レチクル微動ステージ 1 8の + X方向の端部には、 Y軸方向に延びる平面 ミラーからなる X移動鏡 5 3が固定されている。 そして、 これら移動鏡 5 2 a、 5 2 b、 5 3に対して測長ビームを照射する 3つのレーザ干渉計 (いずれも不図 示) が各移動鏡との距離を計測することにより、 レチクルステージ 2の X、 Y、 Θ Ζ ( Ζ軸回りの回転) 方向の位置が高精度に計測される。  The reticle fine movement stage 18 is configured to hold the reticle R by suction via a vacuum chuck (not shown). A pair of Y-moving mirrors 52 a and 52 b made of a corner cube are fixed to one end of the reticle fine movement stage 18 in the Y direction, and to a + X end of the reticle fine movement stage 18. The X movable mirror 53 composed of a plane mirror extending in the Y-axis direction is fixed. Then, three laser interferometers (all not shown) that irradiate the measuring beams to these movable mirrors 52 a, 52 b, and 53 measure the distance between each movable mirror and the reticle. The position of the stage 2 in the X, Y, and Θ (rotation around the Ζ axis) direction is measured with high accuracy.
図 1に戻り、 投影光学系 P Lとして、 ここでは物体面 (レチクル R ) 側と像面 (ウェハ W) 側の両方がテレセントリックで円形の投影視野を有し、 石英や蛍石 を光学硝材とした屈折光学素子 (レンズ素子) からなる 1ノ4 (または 1ノ 5 ) 縮小倍率の屈折光学系が使用されている。 このため、 レチクル Rに照明光が照射 されると、 レチクル R上の回路パターンのうち、 照明光で照明された部分からの 結像光束が投影光学系 P Lに入射.し、 その回路パターンの部分倒立像が投影光学 系 P Lの像面側の円形視野の中央にスリット状に制限されて結像される。 これに より、 投影された回路パターンの部分倒立像は、 投影光学系 P Lの結像面に配置 されたウェハ W上の複数のショット領域のうち、 1つのショッ ト領域表面のレジ ス ト層に縮小転写される。 投影光学系 P Lの鏡筒部の外周には、 該鏡筒部に一体 化されたフランジ 2 3が設けられている。 そして、 投影光学系 P Lは、 リアクシ ョンフレーム 8の段部 8 bに防振ュニッ ト 2 4を介してほぼ水平に支持された鎳 物等で構成された鏡筒定盤 2 5に、 光軸方向を Z方向として上方から挿入される とともに、 フランジ 2 3が係合している。 Returning to Fig. 1, as the projection optical system PL, here, both the object plane (reticle R) side and the image plane (wafer W) side are telecentric and have a circular projection field, and quartz or fluorite is used as the optical glass material. A 1/4 (or 1/5) diopter optical system composed of a refractive optical element (lens element) is used. For this reason, reticle R is irradiated with illumination light. Then, of the circuit pattern on the reticle R, the imaging light flux from the part illuminated with the illumination light enters the projection optical system PL, and a partially inverted image of the circuit pattern is projected onto the image plane of the projection optical system PL. At the center of the circular field of view on the side, an image is formed with a slit-like shape limited. As a result, the projected partial inverted image of the circuit pattern is formed on the resist layer on the surface of one of the shot areas of the plurality of shot areas on the wafer W arranged on the imaging plane of the projection optical system PL. It is reduced and transferred. A flange 23 integrated with the lens barrel is provided on the outer periphery of the lens barrel of the projection optical system PL. The projection optical system PL is mounted on a barrel base 25 composed of an object or the like that is supported substantially horizontally on a step 8 b of the reaction frame 8 via an anti-vibration unit 24. Is inserted from above with the Z direction, and the flanges 23 are engaged.
防振ュニッ ト 2 4は、 鏡筒定盤 2 5の各コーナーに配置され (なお、 紙面奥側 の防振ユニッ トについては図示せず) 、 内圧が調整可能なエアマウント 2 6とボ イスコイルモータ 2 7とが段部 8 b上に直列に配置された構成になっている。 こ れら防振ュニッ ト 2 4によって、 ベ一スプレート 1 0およぴリアクションフレー ム 8を介して鏡筒定盤 2 5 (ひいては投影光学系 P L ) に伝わる微振動がマイク 口 Gレベルで絶,禄されるようになつている。  The anti-vibration unit 24 is disposed at each corner of the lens barrel base 25 (the anti-vibration unit at the back of the drawing is not shown), and an air mount 26 and a voice that can adjust the internal pressure are provided. The coil motor 27 is arranged in series on the step 8b. Micro vibration transmitted to the lens barrel base 25 (and, consequently, the projection optical system PL) via the base plate 10 and the reaction frame 8 by the vibration isolating unit 24 at the microphone port G level. It is becoming more and more rude.
ステージ装置 7は、 ウェハステージ 5、 このウェハステージ 5を X Y平面に沿 つた 2次元方向に移動可能に支持するウェハ定盤 6、 ウェハステージ 5 と一体的 に設けられウェハ Wを吸着保持する試料台 S T、 これらウェハステージ 5および 試料台 S Tを相対移動自在に支持する Xガイ ドバー X Gを主体に構成されている。 ウェハステージ 5の底面には、 非接触ベアリングである複数のエアベアリング (エアパッ ド) 2 8が固定されており、 これらのエアベアリング 2 8によってゥ ェハステージ 5がウェハ定盤 6上に、 例えば数ミク口ン程度のクリアランスを介 して浮上支持されている。  The stage device 7 includes a wafer stage 5, a wafer surface plate 6 that supports the wafer stage 5 so as to be movable in a two-dimensional direction along the XY plane, and a sample stage that is provided integrally with the wafer stage 5 and that holds the wafer W by suction. It mainly comprises an X guide bar XG that supports the ST, the wafer stage 5 and the sample stage ST so as to be relatively movable. A plurality of air bearings (air pads) 28, which are non-contact bearings, are fixed to the bottom surface of the wafer stage 5, and these air bearings 28 move the wafer stage 5 onto the wafer surface plate 6, for example, a It is levitated and supported through the clearance of the mouth.
ウェハ定盤 6は、 ベースプレート 1 0の上方に、 防振ユニッ ト 2 9を介してほ ぼ水平に支持されている。 防振ユニッ ト 2 9は、 ウェハ定盤 6の各コーナーに配 置され (なお、 紙面奥側の防振ユニッ トについては図示せず) 、 内圧が調整可能 なエアマウント 3 0とボイスコイルモータ 3 1とがベースプレート 1 0上に並列 に配置された構成になっている。 これら防振ユニッ ト 2 9によって、 ベースプレ ート 1 0を介してウェハ定盤 6に伝わる微振動がマイクロ Gレベルで絶縁される ようになっている。 The wafer surface plate 6 is supported almost horizontally above the base plate 10 via a vibration isolation unit 29. The anti-vibration units 29 are arranged at each corner of the wafer platen 6 (the anti-vibration units on the back side of the drawing are not shown), and the air mount 30 and the voice coil motor whose internal pressure can be adjusted. 3 and 1 are parallel on base plate 10 It is configured to be arranged in. By these vibration isolating units 29, micro vibrations transmitted to the wafer surface plate 6 via the base plate 10 are insulated at a micro G level.
図 3に示すように、 Xガイ ドバー X Gは、 X方向に沿った長尺形状を呈してお り、 その長さ方向両端には電機子ユニットからなる可動子 3 6 , 3 6がそれぞれ 設けられている。 これらの可動子 3 6 , 3 6に対応する磁石ユニッ トを有する固 定子 3 7, 3 7は、 ベースプレート 1 0に突設された支持部 3 2、 3 2に設けら れている (図 1参照、 なお図 1では可動子 3 6および固定子 3 7を簡略して図示 している) 。 そして、 これら可動子 3 6および固定子 3 7によってムービングコ ィル型のリエァモータ (駆動源) 3 3、 3 3が構成されており、 可動子 3 6が固 定子 3 7との間の電磁気的相互作用により駆動されることで、 Xガイ ドバー X G は Y方向に移動するとともに、 リニアモータ 3 3、 3 3の駆動を調整することで Θ Ζ方向に回転移動する。 すなわち、 このリニアモータ 3 3によって Xガイ ドバ 一 X Gとほぼ一体的にウェハステージ 5 (および試料台 S T、 以下単に試料台 S Tと称する) が Y方向および Θ Ζ方向に駆動されるようになつている。  As shown in Fig. 3, the X guide bar XG has a long shape along the X direction, and movers 36 and 36 composed of armature units are provided at both ends in the length direction. ing. The stators 37, 37 having magnet units corresponding to the movers 36, 36 are provided on support portions 32, 32 projecting from the base plate 10 (see FIG. 1). (See FIG. 1 for simplified illustration of the mover 36 and the stator 37.) A moving coil type rear motor (drive source) 33, 33 is constituted by the mover 36 and the stator 37, and the mover 36 is connected to the stator 37 by electromagnetic force. The X guide bar XG moves in the Y direction by being driven by the interaction, and rotates in the Θ direction by adjusting the drive of the linear motors 33, 33. That is, the wafer stage 5 (and the sample stage ST, hereinafter simply referred to as the sample stage ST) is driven in the Y direction and the Ζ direction by the linear motor 33 almost integrally with the X guide bar XG. I have.
また、 Xガイ ドバー X Gの一 X方向側には、 X トリムモータ 3 4の可動子が取 り付けられている。 Xトリムモータ 3 4は、 X方向に推力を発生することで Xガ イ ドバー X Gの X方向の位置を調整するものであって、 その固定子 (不図示) は リアクションフレーム 8に設けられている。 このため、 ウェハステージ 5を X方 向に駆動する際の反力は、 リアクションフレーム 8を介してベースプレート 1 0 に伝達される。  The mover of the X trim motor 34 is attached to one X direction side of the X guide bar XG. The X trim motor 34 adjusts the position of the X guide bar XG in the X direction by generating a thrust in the X direction. The stator (not shown) is provided on the reaction frame 8. . Therefore, a reaction force when driving the wafer stage 5 in the X direction is transmitted to the base plate 10 via the reaction frame 8.
試料台 S Tは、 Xガイ ドバー X Gとの間に Z方向に所定量のギャップを維持す .る磁石およびァクチユエータからなる磁気ガイ ドを介して、 Xガイ ドバー X Gに X方向に相対移動自在に非接触で支持 ·保持されている。 また、 ウェハステージ 5は、 Xガイ ドバー X Gに埋設された固定子を有する Xリニアモータ (駆動源) 3 5による電磁気的相互作用により X方向に駆動される。 なお、 Xリニアモータ の可動子は図示していないが、 ウェハステージ 5に取り付けられている。 試料台 S Tの上面には、 ウェハホルダ 4 1を介してウェハ Wが真空吸着等によって固定 される (図 1参照、 図 3では図示略) 。 The sample stage ST maintains a predetermined gap in the Z-direction between the X-guide bar XG and the X-guide bar XG via a magnetic guide composed of a magnet and an actuator so as to be relatively movable in the X-direction. Supported and held in contact. Further, the wafer stage 5 is driven in the X direction by electromagnetic interaction with an X linear motor (drive source) 35 having a stator embedded in an X guide bar XG. The mover of the X linear motor is not shown, but is attached to the wafer stage 5. Wafer W is fixed on the upper surface of sample stage ST via wafer holder 41 by vacuum suction or the like. (See Fig. 1, not shown in Fig. 3.)
ウェハステージ 5の X方向の位置は、 投影光学系 P Lの鏡筒下端に固定された 参照鏡 4 2を基準として、 ウェハステージ 5の一部に固定された移動鏡 4 3の位 置変化を計測するレーザ干渉計 4 4によって所定の分解能、 例えば 0 . 5〜 1 n m程度の分解能でリ アルタイムに計測される。 なお、 上記参照鏡 4 2、 移動鏡 4 3、 レーザ干渉計 4 4とほぼ直交するように配置された不図示の参照鏡、 レーザ 干渉計および移動鏡によってウェハステージ 5の Y方向の位置が計測される。 な お、 これらレーザ干渉計の中、 少なく とも一方は、 測長軸を 2軸以上有する多軸 干渉計であり、 これらレーザ干渉計の計測値に基づいてウェハステージ 5 (ひい てはウェハ W) の X Y位置のみならず、 Θ回転量あるいはこれらに加え、 レベリ ング量をも求めることができるようになつている。  The position of the wafer stage 5 in the X direction is measured by measuring the position change of the moving mirror 43 fixed to a part of the wafer stage 5 with reference to the reference mirror 42 fixed to the lower end of the barrel of the projection optical system PL. The laser interferometer 44 measures in real time with a predetermined resolution, for example, a resolution of about 0.5 to 1 nm. Note that the position of the wafer stage 5 in the Y direction is measured by a reference mirror, a laser interferometer, and a movable mirror (not shown) which are arranged substantially orthogonal to the reference mirror 42, the movable mirror 43, and the laser interferometer 44. Is done. At least one of these laser interferometers is a multi-axis interferometer having two or more measuring axes. Based on the measured values of these laser interferometers, the wafer stage 5 (and thus the wafer W) is used. In addition to the XY position, Θ the amount of rotation or, in addition to these, the amount of leveling can be obtained.
さらに、 投影光学系 P Lのフランジ 2 3には、 異なる 3力所に 3つのレーザ干 渉計 4 5が固定されている (ただし、 図 1においてはこれらのレーザ干渉計のう ち 1つが代表的に示されている) 。 各レーザ干渉計 4 5に対向する鏡筒定盤 2 5 の部分には、 開口 2 5 aがそれぞれ形成されており、 これらの開口 2 5 aを介し て各レーザ干渉計 4 5から Z方向のレーザビーム (測長ビーム) がウェハ定盤 6 に向けて照射される。 ウェハ定盤 6の上面の各測長ビームの対向位置には、 反射 面がそれぞれ形成されている。 このため、 上記 3つのレーザ干渉計 4 5によって ウェハ定盤 6の異なる 3点の Z位置がフランジ 2 3を基準としてそれぞれ計測さ れる。 .  Furthermore, three laser interferometers 45 are fixed to the flange 23 of the projection optical system PL at three different places (however, in FIG. 1, one of these laser interferometers is representative). ). Openings 25a are respectively formed in portions of the lens barrel base 25 facing each of the laser interferometers 45, and the laser interferometers 45 from the laser interferometer 45 in the Z direction are formed through these openings 25a. A laser beam (measuring beam) is applied to the wafer surface plate 6. A reflection surface is formed on the upper surface of the wafer surface plate 6 at a position facing each measurement beam. For this reason, three different Z positions of the wafer surface plate 6 are measured by the three laser interferometers 45 with reference to the flange 23. .
次に、 露光装置 1における温度制御系を図 4乃至図 6を用いて説明する。 ' 図 4に露光装置全体に係る温度制御系を示し、 図 5にレチクルステージ 2に係 る温度制御系を示し、 図 6にウェハステージ 5に係る温度制御系を示す。 なお、 温度調節用の媒体 (冷媒) としては、 H F E (ハイ ドロ · フル才ロ 'エーテル) ゃフロリナ一トを用いることが可能だが、 本実施の形態では地球温暖化係数が低 く、 オゾン破壊係数がゼロであるため、 地球環境保護の観点から H F Eを用いて いる。  Next, a temperature control system in the exposure apparatus 1 will be described with reference to FIGS. FIG. 4 shows a temperature control system for the entire exposure apparatus, FIG. 5 shows a temperature control system for the reticle stage 2, and FIG. 6 shows a temperature control system for the wafer stage 5. As a medium (refrigerant) for temperature control, it is possible to use HFE (Hydro-Furushiro-'ether)) florinate, but in this embodiment, it has a low global warming potential and ozone depletion. Since the coefficient is zero, HFE is used from the viewpoint of global environmental protection.
この温度制御系は、 第 1液体としての冷媒を用いて投影光学系 P L及ぴァライ メント系 A Lを第 1温度制御対象として温度制御 ·管理する第 1制御系 6 1 と、 第 2液体としての冷媒を用いてレチクルステージ 2及ぴウェハステージ 5を第 2 制御対象として、 第 1制御系 6 1とは独立して温度制御 ·管理する第 2制御系 6 2とに大別される。 なお、 この温度制御系では、 発熱量 (温度変化量) が所定量 (第 1所定量) 以内である投影光学系 P L及びァライメント系 A Lを第 1温度制 御対象とし、 発熱量が前記所定量より大きいレチクルステージ 2及ぴウェハステ ージ 5を第 2温度制御対象としている。 This temperature control system uses a projection optical system PL and an The first control system 61 controls and controls the temperature of the reticle stage AL and the wafer stage 5 using the refrigerant as the second liquid. It is broadly divided into a second control system 62 that controls and manages temperature independently of the system 61. In this temperature control system, the projection optical system PL and the alignment system AL whose heat generation amount (temperature change amount) is within a predetermined amount (first predetermined amount) are subjected to the first temperature control, and the heat generation amount is the predetermined amount. The larger reticle stage 2 and wafer stage 5 are subject to the second temperature control.
第 1制御系 6 1において温度調節が施されたタンク 6 3内の冷媒は、 ポンプ 6 4を経た後にァライメント系 A L及び投影光学系 P Lを順次循環する循環系 C 1 と、 蒸発器 6 5で冷却される冷却系 C 2とに分岐される。 ポンプ 6 4から吐出さ れた直後の冷媒温度はセンサ 6 6で検出されコントローラ 6 7に出力される。 循環系 C 1に関して、 投影光学系 P Lは、 鏡筒 6 8の周りを螺旋状に配管され ることで冷媒による温度調節範囲が広く設定されている。 本実施形態では、 図 4 において、 冷媒が鏡筒 6 8の周りを螺旋状に配された配管を介して上から下へ循 環されるように構成したが、 これに限らず下から上へ螺旋状に冷媒を循環させる ように構成してもよい。 また、 この循環系 C 1では、 投影光学系 P Lを循環する 前の冷媒温度を検出するセンサ 6 9が設けられており、 その検出結果はコント口 ーラ 6 7に出力される。 なお、 本実施の形態では、 上述の如く鏡筒 6 8の周りを ほぼ全面に亘つて螺旋状に配管を配することで投影光学系 P Lの温調を行ってい るが、 本発明はこれに限らず、 投影光学系 P Lを保持する部材 (フランジ 2 3 ) の部分に配管を配して温調を行う、 いわゆるフランジ温調方式採用するようにし てもよい。  The refrigerant in the tank 63 whose temperature has been adjusted in the first control system 61 passes through a pump 64, a circulation system C1 that sequentially circulates through an alignment system AL and a projection optical system PL, and an evaporator 65. It is branched into a cooling system C2 to be cooled. The temperature of the refrigerant immediately after being discharged from the pump 64 is detected by the sensor 66 and output to the controller 67. Regarding the circulating system C1, the projection optical system PL has a wide temperature control range by the refrigerant by being helically piped around the lens barrel 68. In the present embodiment, in FIG. 4, the refrigerant is configured to circulate from the top to the bottom through a spirally arranged pipe around the lens barrel 68, but the present invention is not limited to this, and the coolant is circulated from the bottom to the top. The refrigerant may be helically circulated. Further, in the circulation system C1, a sensor 69 for detecting the refrigerant temperature before circulating in the projection optical system PL is provided, and the detection result is output to the controller 67. In the present embodiment, the temperature of the projection optical system PL is controlled by arranging a spiral pipe around almost the entire surface of the lens barrel 68 as described above, but the present invention is not limited to this. However, the present invention is not limited to this, and a so-called flange temperature control method may be adopted in which a pipe is arranged at a portion of the member (flange 23) holding the projection optical system PL to perform temperature control.
オファクシス系のァライメント系 A Lとしては、 H e - N e等のレーザ光をゥ ェハ W上のドッ ト列状のァライメントマークに照射し、 そのマークにより回折ま たは散乱された光を用いてマーク位置を検出する L S A ( Laser Step Alignment) 方式や、 ハロゲンランプ等を光源とする波長帯域幅の広い光で照明 し、 C C Dカメラなどで撮像したァラィメントマークの画像データを画像処理し てマーク位置を計測する F I A (Field Image Al ignment) 方式、 ウェハ W上の 回折格子状のァライメントマークにピッチ方向に対照的に傾斜した 2つのコヒー レントビーム (半導体レーザ等) を照射し、 発生した 2つの回折光を干渉させ、 そ の位相力 ら ァ ラ イ メ ン ト マー ク の位置を計測する L I A ( Laser Interferometric Alignment) 方式等を採用可能であるが、 ここでは L S A方式 を用いており、 循環系 C 1ではァライメント系 A Lの中、 ァライメント光源に対 して冷媒を循環させて温度調節を行っている。 循環方式としては、 例えば投影光 学系 P Lと同様に、 光源を収納する筐体に螺旋状に配管することが可能である。 なお、 ァライメント系 A Lにおいて、 ァライメント光源のみならず、 ァライメ ント用光学系を収納する筐体に対しても冷媒を循環させて温度調節を実施する構 成としてもよい。 また、 オファクシス系ではなく、 投影光学系 P Lを介してゥェ ハ W上のマーク を検出する T T R ( Through The Reticle ) 方式や T T L (Through The Lens) 方式においても同様に、 ァライメント光源や筐体に対して 冷媒を循環させて温度調節を行うことができる。 As an off-axis alignment AL, a laser beam such as He-Ne is applied to a dot array of alignment marks on wafer W, and the light diffracted or scattered by the mark is used. LSA (Laser Step Alignment) method to detect the mark position by using a light source such as a halogen lamp, etc. FIA (Field Image Alignment) method to measure mark position, on wafer W A diffraction grating alignment mark is irradiated with two coherent beams (semiconductor lasers, etc.) inclined in the pitch direction, causing the two generated diffracted lights to interfere with each other. The LIA (Laser Interferometric Alignment) method that measures the position of the mark can be used.However, the LSA method is used here, and the circulating system C1 uses the refrigerant in the alignment system AL for the alignment light source in the alignment system AL. Is circulated to control the temperature. As the circulation system, for example, similarly to the projection optical system PL, it is possible to spirally pipe a housing for housing the light source. In addition, in the alignment system AL, the temperature may be adjusted by circulating the refrigerant not only in the alignment light source but also in a housing that houses the alignment optical system. Similarly, in an alignment light source and a housing, not only in an off-axis system but also in a TTR (through the reticle) system or a TTL (through the lens) system that detects a mark on a wafer W via a projection optical system PL. On the other hand, the temperature can be adjusted by circulating the refrigerant.
循環系 C 1でァライメント系 A L及ぴ投影光学系 P Lを循環した冷媒は、 上下 2段に連通して仕切られたタンク 6 3の上側チャンバに還流する。  The refrigerant that has circulated through the alignment system A L and the projection optical system PL in the circulation system C 1 is returned to the upper chamber of the tank 63 which is divided into two upper and lower sections.
一方、 冷却系 C 2の冷媒は、 蒸発器 6 5で冷却された後にタンク 6 3の上側チ ヤンバに還流する経路 C 3と、 熱交換器 7 0に向かう経路 C 4とに分岐される。 なお、 蒸発器 6 5は、 気体冷媒を循環させる冷凍機 7 3により冷却されている。 冷却された冷媒は、 経路 C 4で熱交換器 7 0で熱交換に使用された後に、 タンク 6 3の上側チャンバに還流し改めて冷却される。  On the other hand, the refrigerant in the cooling system C2 is branched into a path C3, which is cooled by the evaporator 65 and returns to the upper chamber of the tank 63, and a path C4 toward the heat exchanger 70. The evaporator 65 is cooled by a refrigerator 73 that circulates a gaseous refrigerant. The cooled refrigerant is used for heat exchange in the heat exchanger 70 in the route C4, and then returns to the upper chamber of the tank 63 and is cooled again.
タンク 6 3の下側チャンバにはコントローラ 6 7に制御されたヒータ 7 1が配 設されており、 コントローラ 6 7は、 センサ 6 6、 6 9の検出結果に基づいてヒ ータ 7 1の駆動を制御することで、 冷媒を介してァライメント系 A L及び投影光 学系 P Lの温度を、 例えば 2 3 °C± 0 . 0 1。Cに制御 (管理) する。 なお、 第 1 制御系 6 1は、 上記ヒータ 7 1で温調された冷媒を各温度制御対象に対して同じ 流量ずつ循環させるようになっている。  A heater 71 controlled by a controller 67 is disposed in the lower chamber of the tank 63, and the controller 67 drives the heater 71 based on the detection results of the sensors 66, 69. By controlling the temperature of the alignment system AL and the projection optical system PL via the refrigerant, for example, 23 ° C. ± 0.01. Control (manage) to C. The first control system 61 circulates the refrigerant whose temperature has been adjusted by the heater 71 at the same flow rate for each temperature control target.
第 2制御系 6 2では、 熱交換器 7 0で冷却された第 2液体としての冷媒は、 ポ ンプ 7 4を経た後に、 レチクルステージ 2を循環する循環系 C 5と、 ウェハステ ージ 5を循環する循環系 C 6とに分岐される。 なお、 第 2制御系 6 2における冷 媒は、 タンク 6 3に還流せずに閉じた系で循環する構成になっている。 In the second control system 62, the refrigerant as the second liquid cooled in the heat exchanger 70 passes through the pump 74 and then circulates through the reticle stage 2 through the circulating system C5 and the wafer stage. It is branched to a circulation system C 6 which circulates through page 5. The coolant in the second control system 62 is configured to circulate in a closed system without returning to the tank 63.
循環系 C 5には、 ポンプ 7 4の下流に位置してヒータ Ί 5が設けられるととも に、 レチクルステージ 2に循環させる前の冷媒温度及びレチクルステージ 2を循 環させた後の冷媒温度をそれぞれ検出するセンサ (第 2検出手段) 7 6 a 7 6 bが設けられており、 センサ 7 6 a、 7 6 bの検出結果はコントローラ 7 7に出 力される。 コントローラ 7 7は、 入力したセンサ 7 6 a 7 6 bの検出結果を単 純平均し、 得られた冷媒温度に基づいてヒータ 7 5の駆動を制御することで、 レ チクルステージ 2の温度を例えば 2 3 C± 0 . 1 Cに制御 (管理) する。  In the circulation system C5, a heater Ί5 is provided downstream of the pump 74, and the refrigerant temperature before circulating through the reticle stage 2 and the refrigerant temperature after circulating through the reticle stage 2 are controlled. Sensors (second detection means) 76a and 76b for detecting the respective sensors are provided, and the detection results of the sensors 76a and 76b are output to the controller 77. The controller 77 simply averages the input detection results of the sensors 76 a 76 b and controls the driving of the heater 75 based on the obtained refrigerant temperature, thereby controlling the temperature of the reticle stage 2 to, for example, Control (manage) to 23 C ± 0.1 C.
なお、 本実施形態では、 熱交換器 7 0で冷却した冷媒をポンプ 7 4 循環させ るに構成したが、 熱交換器 7 0の圧力損失が大きい場合には、 ポンプ 7 4を熱交 換器 7 0よりも上流に配置し、 そして循環系 C 5 C 6への戻り冷媒 (各ステー ジ 2、 5を循環した後の冷媒) の合流地点をそのポンプ 7 4よりも上流の位置と するように構成すればよい。  In this embodiment, the refrigerant cooled by the heat exchanger 70 is configured to circulate through the pump 74. However, when the pressure loss of the heat exchanger 70 is large, the pump 74 is connected to the heat exchanger. Arranged upstream from 70 and the point where the return refrigerant (refrigerant after circulating through each stage 2, 5) to the circulation system C5 C6 joins is located upstream of the pump 74. May be configured.
上記温度センサ 7 6 a、 7 6 bの配置位置としては、 何れのセンサにおいても、 出来る限り温度制御対象 (レチクルステージ 2、 更に正確に言えば後述するレチ クルステージ 2を駆動するモータ) のなるぺく近くに配置することが望ましい。 しかしながら配置上の制約あるいはモータの磁力の影響などで温度制御対象の間 近におけない場合には、 外部からの熱の影響を受けない範囲内 (場所) であれば、 温度制御対象からある程度離れた位置に設けておくことも可能である。  Regarding the position of the temperature sensors 76a and 76b, the position of the temperature control target (reticle stage 2, more precisely, the motor for driving the reticle stage 2 described later) is determined as much as possible in any of the sensors. It is desirable to place it as close as possible. However, if it is not possible to get close to the temperature control target due to restrictions on the layout or the influence of the magnetic force of the motor, etc., some distance from the temperature control target within a range (location) that is not affected by external heat It is also possible to provide them at different positions.
また各センサと温度制御対象との間の配置間隔としては、 两センサ間でほぼ同 程度の配置間隔とする (センサ 7 6 aとレチクルステージ 2との間隔、 センサ 7 7 bとレチクルステージとの間隔をほぼ同一間隔とする) ことが望ましいが、 上 述した範囲内 (外部からの熱の影響を受けない範囲内) であれば各センサの配置 はこれに限られるものではない。  In addition, the arrangement interval between each sensor and the temperature control target should be approximately the same as the arrangement interval between the sensors (the interval between sensor 76a and reticle stage 2, and the interval between sensor 77b and reticle stage). It is desirable that the intervals be approximately the same.) However, the arrangement of each sensor is not limited to this as long as it is within the range described above (within the range not affected by external heat).
以下、 レチクルステージ 2に対する温度制御系についてさらに詳述する。  Hereinafter, the temperature control system for reticle stage 2 will be described in more detail.
図 5に示すように、 循環系。 5は、 Yリニァモータ 1 5の可動子 2 1、 2 1を それぞれ循環して温度制御する循環系 C 7 C 7と、 トリムモータ 7 2、 7 2を それぞれ循環して温度制御する循環系 C 8、 C 8と、 Yボイスコイルモータ 1 7 Yを循環して温度制御する循環系 C 9と、 Xボイスコイルモータ 1 7 Xを循環し て温度制御する循環系 C 1 0との複数の分岐流路に分岐される。 As shown in Figure 5, the circulatory system. 5 includes a circulating system C7C7 that circulates the movers 21 and 21 of the Y linear motor 15 to control the temperature, and a trim motor 72 and 72. Circulating systems C 8 and C 8 that circulate and control the temperature, a circulating system C 9 that circulates the Y voice coil motor 17 and temperature control, and a circulating system that controls the temperature by circulating the X voice coil motor 17 X It is branched into a plurality of branch channels with the circulation system C10.
各循環系 C 7〜C 1 0には、 各モータの上流に位置して冷媒の流量を調節する バルブ (調節手段) 8 0がそれぞれ設けられている。 また、 循環系 C 7の一方に は、 可動子 2 1の近傍に設けられ、 可動子 2 1に循環させる前の冷媒温度を検出 する温度センサ (第 1温度検出手段) 7 6 a と、 可動子 2 1を循環させた後の冷 媒温度を検出する温度センサ (第 2温度検出手段) 7 6 bが設けられている。 循環系 C 6には、 ポンプ 7 4の下流に位置してヒータ 7 8が設けられるととも に、 ウェハステージ 5に循環させる前の冷媒温度及びウェハステージ 5を循環さ せた後の冷媒温度をそれぞれ検出する温度センサ (第 1検出手段) 7 9 a、 7 9 bが設けられており、 温度センサ 7 9 a、 7 9 bの検出結果はコントローラ 7 7 に出力される。 コントローラ 7 7は、 入力した温度センサ 7 9 a、 7 9 bの検出 結果を平均し、 得られた冷媒温度に基づいてヒータ 7 8の駆動を制御することで、 ウェハステージ 5の温度を例えば 2 3 °C± 0 . 1 °Cに制御 (管理) する。 循環系 C 5、 C 6においてステージ 2、 5を循環した冷媒は、 熱交換器 7 0で冷却され た後に合流する。  Each of the circulation systems C7 to C10 is provided with a valve (adjustment means) 80 which is located upstream of each motor and adjusts the flow rate of the refrigerant. One of the circulation systems C7 is provided near the mover 21 and detects a refrigerant temperature before circulating through the mover 21 (first temperature detecting means) 76a. A temperature sensor (second temperature detecting means) 76b for detecting the coolant temperature after the circulation of the child 21 is provided. In the circulation system C6, a heater 78 is provided downstream of the pump 74, and the refrigerant temperature before circulating through the wafer stage 5 and the refrigerant temperature after circulating through the wafer stage 5 are controlled. Temperature sensors (first detecting means) 79a and 79b for detecting the respective temperatures are provided, and the detection results of the temperature sensors 79a and 79b are output to the controller 77. The controller 77 averages the detection results of the input temperature sensors 79a and 79b, and controls the driving of the heater 78 based on the obtained refrigerant temperature, thereby reducing the temperature of the wafer stage 5 to, for example, 2 Control (manage) to 3 ° C ± 0.1 ° C. The refrigerant circulated through the stages 2 and 5 in the circulation systems C5 and C6 joins after being cooled by the heat exchanger 70.
上記温度センサ 7 9 a、 7 9 bの配置位置としては、 上述したセンサ 7 6 a、 7 6 bの場合と同様に、 何れのセンサにおいても、 出来る限り温度制御対象 (ゥ ェハステージ 5、 更に正確に言えば後述するウェハステージ 5を駆動するモー タ) のなるベく近くに配置することが望ましい。 しかしながら配置上の制約ある いはモータの磁力の影響などで温度制御対象の間近におけない場合には、 外部か らの熱の影響を受けない範囲内 (場所) であれば、 温度制御対象からある程度離 れた位置に設けておくことも可能である。  As for the position of the temperature sensors 79a and 79b, as with the sensors 76a and 76b described above, in any of the sensors, the temperature control target (the wafer stage 5, more accurate In other words, it is desirable to place it as close as possible to the motor that drives the wafer stage 5 described later. However, if it is not possible to get close to the temperature control target due to restrictions on the arrangement or the influence of the magnetic force of the motor, etc., if the temperature control target is within the range (location) that is not affected by external heat, It is also possible to provide them at some distance.
センサ 7 9 a、 7 9 bの配置位置については、 センサ 7 6 a、 7 6 bの配置に 関して既述したことと同等のことが言えるので、 ここでの記載は省略する。  Regarding the arrangement position of the sensors 79a and 79b, it can be said that it is the same as that described for the arrangement of the sensors 76a and 76b, so the description is omitted here.
続いて、 ウェハステージ 5に対する温度制御系について詳述する。  Next, the temperature control system for the wafer stage 5 will be described in detail.
図 6に示すように、 循環系 C 6は、 リニアモータ 3 3の可動子 3 6、 3 6をそ れぞれ循環して温度制御する循環系 C 1 1、 C 1 1と、 Xリニアモータ 3 5を循 環して温度制御する循環系 C 1 2とに分岐される。 各循環系 C 1 1〜C 1 2には、 各モータの上流に位置して冷媒の流量を調節するバルブ 84がそれぞれ設けられ ている。 また、 循環系 C I 1の一方には、 可動子 3 6に循環させる前の冷媒温度 及び可動子 3 6を循環させた後の冷媒温度をそれぞれ検出するための、 上述した センサ 7 9 a、 79 bが設けられている。 As shown in FIG. 6, the circulation system C 6 includes the movers 36 and 36 of the linear motor 33. The circulation system is divided into a circulation system C11, C11 that circulates and controls the temperature, and a circulation system C12 that circulates the X linear motor 35 to control the temperature. Each of the circulation systems C11 to C12 is provided with a valve 84 located upstream of each motor and for adjusting the flow rate of the refrigerant. In addition, one of the circulation systems CI 1 includes the sensors 79 a and 79 described above for detecting the refrigerant temperature before circulating through the mover 36 and the refrigerant temperature after circulating through the mover 36, respectively. b is provided.
なお、 ウェハステージ 5 (試料台 S T) のレべリ ング調整 (及びフォーカス調 整) を実施するための 3つのボイスコイルモータ 8 1〜83に対しても、 循環系 C I 3〜C 1 5が配管され、 各循環系には、 モータの上流に位置して冷媒の流量 を調節するバルブ 8 5がそれぞれ設けられる力;、 ボイスコイルモータ 8 1〜8 3 の駆動頻度がリニアモータ 3 3、 3 5に比較して少なく、 また駆動時の発熱量も 小さいことから、 これら循環系 C 1 3〜C 1 5は第 1制御系 6 1の循環系 C 1を 分岐した冷媒にて温度制御される。 このボイスコイルモータ 8 1〜 8 3に限らず、 駆動時の発熱量の小さいモータ (例えば上述のトリムモータ 72や Xボイスコィ ルモータ 1 7 Xなど) の温度管理を行う循環系は、 第 1制御系 6 1の循環系 C 1 を分岐した冷媒にて温度制御を行うようにしてもよい。  The circulating systems CI 3 to C 15 are also provided for the three voice coil motors 81 to 83 for performing leveling adjustment (and focus adjustment) of the wafer stage 5 (sample stage ST). A pipe 85 is provided in each circulating system with a valve 85 that is located upstream of the motor and regulates the flow rate of the refrigerant. The driving frequency of the voice coil motors 81 to 83 is determined by the linear motors 33 and 3. 5 and the amount of heat generated during operation is small, so that these circulating systems C13 to C15 are temperature-controlled by the refrigerant branched from the circulating system C1 of the first control system 61. . The circulating system for controlling the temperature of not only the voice coil motors 81 to 83 but also a motor having a small heat generation during driving (for example, the trim motor 72 and the X voice coil motor 17X described above) includes a first control system. Temperature control may be performed using a refrigerant branched from the circulation system C 1 of FIG.
なお、 上記温度センサ 66、 6 9、 76 a、 7 6 b、 79 a、 79 bとしては、 本実施形態では ±0. 1。Cを検出できる精度のものを使用しているが、 第 2制御 系 6 2では、 レチクルステージ 2及びウェハステージ 5に必要とされる温度制御 精度が ±0. 1 °Cなので、 温度センサ 76 a、 76 b、 7 9 a、 7 9 bに関して はこの精度に応じた検出能力をもつ温度センサを使用することも可能である。 ま た、 温度センサによる温度計測サンプリング間隔に関しても、 例えば、 制御精度 が厳しい場合や温度変化量が大きい場合にはサンプリング間隔を短くする等、 要 求される温度制御精度や、 制御対象となる投影光学系 P L、 ステージ 2、 5の温 度変化量 (発熱量) に応じて変更することも好ましい。  The temperature sensors 66, 69, 76a, 76b, 79a, 79b are ± 0.1 in the present embodiment. Although a sensor with an accuracy capable of detecting C is used, the temperature control accuracy required for the reticle stage 2 and the wafer stage 5 is ± 0.1 ° C in the second control system 62, so the temperature sensor 76 a , 76b, 79a, and 79b, it is also possible to use a temperature sensor having a detection capability corresponding to this accuracy. Regarding the temperature measurement sampling interval by the temperature sensor, for example, when the control accuracy is severe or when the temperature change is large, the sampling interval is shortened, and the required temperature control accuracy and the projection to be controlled It is also preferable to change according to the temperature change (heat generation) of the optical system PL and stages 2 and 5.
また、 各温度センサの配置としては、 本実施形態では、 直接冷媒温度を計測で きるように流路 (配管) の内部に設置しているが、 その他にも、 温度センサの検 知部が管の壁面から離間した位置 (管の断面の中央付近に検知部が中吊りされた 状態) に配置する構成とすることができる。 この場合、 センサの検知部が管壁に 非接触となるので、 管壁面を介して外部環境の悪影響を受けづらくなる。 また、 温度センサは交換可能とする構成としてもよい。 この場合、 管に挿入口を設け、 この揷入口を介して着脱可能とする構成や、 溶接等により温度センサを管に固定 しておき、 温度センサを含む管の一部を交換可能とする構成を採用可能である。 さらに、 管の外表面に温度センサを設置して、 管を介して冷媒温度を計測する構 成とすることも可能である。 In addition, in the present embodiment, each temperature sensor is disposed inside a flow path (pipe) so that the refrigerant temperature can be directly measured. (The detector is suspended near the center of the cross section of the pipe.) State). In this case, since the detecting portion of the sensor does not contact the pipe wall, the external environment is less likely to be adversely affected through the pipe wall. Further, the temperature sensor may be configured to be replaceable. In this case, an insertion port is provided in the pipe, and the pipe is detachable through the inlet, or the temperature sensor is fixed to the pipe by welding or the like, and a part of the pipe including the temperature sensor is replaceable. Can be adopted. Furthermore, it is also possible to install a temperature sensor on the outer surface of the pipe and measure the refrigerant temperature via the pipe.
上記の構成の露光装置 1では、 露光時に照明光学系 I uからの露光用照明光に より、 レチクル R上の所定の矩形状の照明領域が均一な照度で照明される。 この 照明領域に対してレチクル Rが Y方向に走査されるのに同期して、 この照明領域 と投影光学系 P Lに関して共役な露光領域に対してウェハ Wを走査する。 これに より、 レチクル Rのパターン領域を透過した照明光が投影光学系 P Lにより 1 / 4倍に縮小され、 レジス トが塗布されたウェハ W上に照射される。 そして、 ゥェ ハ W上の露光領域には、 レチクル Rのパターンが逐次転写され、 1回の走査でレ チクル R上のパターン領域の全面がウェハ W上のショ ット領域に転写される。  In the exposure apparatus 1 having the above configuration, a predetermined rectangular illumination area on the reticle R is illuminated with uniform illuminance by exposure illumination light from the illumination optical system Iu during exposure. In synchronization with the scanning of the reticle R in the Y direction with respect to the illumination area, the wafer W is scanned with respect to an exposure area conjugate with respect to the illumination area and the projection optical system PL. As a result, the illumination light transmitted through the pattern area of the reticle R is reduced to 1/4 times by the projection optical system PL, and irradiated onto the wafer W coated with the resist. Then, the pattern of the reticle R is sequentially transferred to the exposure area on the wafer W, and the entire surface of the pattern area on the reticle R is transferred to the shot area on the wafer W by one scan.
レチクル粗動ステージ 1 6が、 例えば + Y方向に移動した場合には固定子 2 0 が— Y方向に移動することで、 運動量が保存され、 レチクル粗動ステージ 1 6の 移動に伴う反力を相殺するとともに、 重心位置の変化を防ぐことができる。 また、 このとき トリムモータ 7 2が作動することで、 移動子 2 1 と固定子 2 0とのカツ プリングに抗して、 固定子 2 0を所定の位置に到達させることができる。  When the reticle coarse movement stage 16 moves in the + Y direction, for example, the stator 20 moves in the −Y direction, so that the momentum is preserved and the reaction force accompanying the movement of the reticle coarse movement stage 16 is reduced. This cancels out and prevents the position of the center of gravity from changing. Also, at this time, the trim motor 72 is operated so that the stator 20 can reach a predetermined position against the coupling between the mover 21 and the stator 20.
これらの一連の露光処理に闋しては、 照明光により投影光学系 P Lに熱が生じ (照明光照射による投影光学系 P Lでの熱吸収) 、 ァライメント光によりァライ メント系 A Lに熱が生じる (ァライメント光照射によるァライメント光学系での 熱吸収) とともに、 ステージ 2、 5の駆動に伴い各モータから熱が生じる。 第 1 制御系 6 1については、 コントローラ 6 7が温度センサ 6 6、 6 9の検出結果に 基づいて、 冷媒を循環させる際の条件 (第 1循環条件) を設定し、 ヒータ 7 1の 駆動を制御することで、 投影光学系 P L及ぴァライメント系 A Lを ± 0 . 0 1 °C の範囲で温度制御する。 また、 第 2制御系 6 2については、 コントローラ 7 7が 温度センサ 7 6 a、 7 6 b、 7 9 a , 7 9 bの検出結果に基づいて、 冷媒を循環 させる際の条件 (第 2循環条件) を設定し、 ヒータ 7 5、 7 8の駆動を制御する ことで、 レチクルステージ 2及びウェハステージ 5を ± 0 . 1 °Cの範囲でそれぞ れ温度制御する。 In these series of exposure processes, the illumination light generates heat in the projection optical system PL (heat absorption in the projection optical system PL due to the illumination light irradiation), and the alignment light generates heat in the alignment system AL ( In addition to heat absorption in the alignment optical system due to alignment light irradiation, heat is generated from each motor as the stages 2 and 5 are driven. For the first control system 61, the controller 67 sets conditions (first circulation condition) for circulating the refrigerant based on the detection results of the temperature sensors 66, 69, and drives the heater 71. By controlling, the temperature of the projection optical system PL and the alignment system AL is controlled within a range of ± 0.01 ° C. Also, for the second control system 62, the controller 77 Based on the detection results of the temperature sensors 76a, 76b, 79a, and 79b, the conditions for circulating the refrigerant (second circulation conditions) are set, and the heaters 75, 78 are driven. By controlling the temperature, the reticle stage 2 and the wafer stage 5 are each temperature-controlled within a range of ± 0.1 ° C.
これを詳述すると、 まずレチクルステージ 2については、 コントローラ 7 7は、 温度センサ 7 6 a、 7 6 bが検出した冷媒温度を単純平均し、 得られた冷媒温度 に基づいて第 1温度管理部としてヒータ 7 5の駆動を調節、 管理する。 ここで、 温度センサ 7 6 a、 7 6 bは最も駆動量が多く、 発熱量が最も大きい Yリニアモ ータ 1 5の可動子 2 1を循潆する循環系 C 7に設けられており、 他の循環系 C 8 〜C 1 0については循環系 C 7を基準にして温度制御される。 そのため、 本実施 の形態では、 プロセスと最適な冷媒流量との相関関係を実験ゃシミュレーション 等により予め求めて記憶しておき、 その記憶された情報に基づいて、 プロセス毎 に各循環系 C 7〜C 1 0のバルブ 8 0を調整する。  More specifically, for the reticle stage 2, first, the controller 77 simply averages the refrigerant temperatures detected by the temperature sensors 76a and 76b, and based on the obtained refrigerant temperature, the first temperature management unit Adjust and manage the drive of heater 75 Here, the temperature sensors 76a and 76b are provided in the circulation system C7 that circulates the mover 21 of the Y linear motor 15 that has the largest amount of drive and the largest amount of heat generation, and The temperature of the circulation system C8 to C10 is controlled based on the circulation system C7. For this reason, in the present embodiment, the correlation between the process and the optimal refrigerant flow rate is obtained and stored in advance by experiments, simulations, and the like, and based on the stored information, each circulation system C7 to Adjust valve 80 for C10.
ここで、 プロセスにより考慮すべき発熱要因としては、 各モータ 1 5、 1 7 X、 1 7 Y、 7 2における種々の駆動状態、 すなわち各モータの駆動量や速度、 回転 数、 さらには他のモータと組み合わされて駆動した場合の状態等が挙げられる。 従って、 プロセスにおける発熱量 (あるいは駆動量) が小さいボイスコイルモー タ 1 7 Χ、 1 7 Υに対しては冷媒流量を少なく し、 発熱量 (あるいは駆動量) が 大きい Υリニァモータ 1 5やトリムモータ 7 2に対しては冷媒流量を多くするよ うにバルブ 8 0を調整することで、 各モータの出力 (発熱) に応じた適正な温度 制御が可能になる。 なお、 バルブ 8 0の調整方法としては、 記憶された情報に基 づいてプロセス毎に作業者が調整する方法や、 バルブ 8 0の駆動機構を設けてお き、 記憶された情報に基づいてプロセス毎にコントローラ 7 7がこの駆動機構を 調整する方法等が採用可能である。 なお、 このプロセス毎に調整する対象として は、 流量に限られるものではなく、 冷媒の温度 (ヒータにより設定する温度) も プロセス毎に設定値を変えるようにしてもよレ、。  Here, the heat generation factors to be considered in the process include various driving states of each motor 15, 17 X, 17 Y, and 72, that is, the driving amount and speed of each motor, the number of rotations, and other factors. A state when driven in combination with a motor is exemplified. Therefore, for the voice coil motors 17Χ and 17 that generate a small amount of heat (or drive) in the process, the refrigerant flow rate is reduced and the heat generation (or drive) is large. By adjusting the valve 80 so that the coolant flow rate is increased for 72, appropriate temperature control according to the output (heat generation) of each motor becomes possible. In addition, as a method of adjusting the valve 80, a method in which an operator adjusts each process based on the stored information or a driving mechanism of the valve 80 is provided, and the process is performed based on the stored information. It is possible to adopt a method in which the controller 77 adjusts this drive mechanism for each time. The target to be adjusted for each process is not limited to the flow rate, and the coolant temperature (the temperature set by the heater) may be changed for each process.
同様に、 ウェハステージ 5については、 コントローラ 7 7は、 温度センサ 7 9 a、 7 9 bが検出した冷媒温度を単純平均し、 得られた冷媒温度に基づいて第 2 温度管理部としてヒータ 7 8の駆動を調節、 管理する。 ここで、 温度センサ 7 9 a、 7 9 bは最も駆動量が多く、 発熱量が大きいリニァモータ 3 3の可動子 3 6 を循環する循環系 C I 1に設けられており、 他の循環系 C 1 2については循環系 C 1 1を基準にして温度制御される。 そのため、 本実施の形態では、 プロセスと 最適な冷媒流量との相関関係を実験やシミュレーション等により予め求めて記憶 しておき、 その記憶された情報に基づいて、 プロセス毎に各循環系 C 1 1、 C 1 2のバルブ 8 5を調整する。 バルブ 8 5の調整方法としては、 レチクルステージ 2の場合と同様に、 手動や自動による方法を採用できる。 Similarly, for the wafer stage 5, the controller 77 simply averages the refrigerant temperatures detected by the temperature sensors 79a and 79b, and based on the obtained refrigerant temperature, Adjusts and manages the operation of heaters 78 as a temperature management unit. Here, the temperature sensors 79a and 79b are provided in the circulating system CI1 that circulates through the mover 36 of the linear motor 33 that has the largest amount of driving and generates a large amount of heat. The temperature of 2 is controlled based on the circulation system C 11. Therefore, in the present embodiment, the correlation between the process and the optimum refrigerant flow rate is obtained and stored in advance by experiments, simulations, and the like, and based on the stored information, each circulation system C 11 Adjust the valves 85, C12. As in the case of the reticle stage 2, the valve 85 can be adjusted manually or automatically.
なお、 ウェハステージ 5に設けられたボイスコイルモータ 8 1〜 8 3の温度は、 発熱量が微小なので第 1制御系 6 1の循環系 C I 3〜C 1 5で制御されるが、 こ の場合も、 プロセスと最適な冷媒流量との相関関係を実験やシミュレーション等 により予め求めて記憶しておき、 その記憶された情報に基づいて、 プロセス毎に 各循環系 C 1 3〜C 1 5のバルブ 8 5を作業者による手動調整またはコントロー ラ 6 7による自動調整で流量調整する。  In addition, the temperature of the voice coil motors 81 to 83 provided on the wafer stage 5 is controlled by the circulation system CI 3 to C 15 of the first control system 61 because the amount of heat generated is very small. In addition, the correlation between the process and the optimal refrigerant flow rate is obtained and stored in advance by experiments, simulations, and the like, and the valves of each circulation system C13 to C15 are provided for each process based on the stored information. Adjust the flow rate of 8 5 by manual adjustment by the operator or automatic adjustment by the controller 6 7.
このように本実施の形態では、 第 1制御系 6 1 と第 2制御系 6 2とが冷媒温度 を設定する際の温度範囲において異なる設定能力を有しているので、 要求される 温度制御精度が異なる投影光学系 P Lとステージ 2、 5に対しても、 それぞれ独 立して温度を制御 ·管理することが可能であり各機器の発熱量に応じた最適な冷 却条件を設定できる。 そのため、 充分に温度制御がされない場合に生じるベース ライン変動を抑制して重ね合わせ精度の悪化を抑えることが可能になる。  As described above, in the present embodiment, since the first control system 61 and the second control system 62 have different setting capabilities in the temperature range when setting the refrigerant temperature, the required temperature control accuracy is required. However, the temperature can be controlled and managed independently for the projection optical system PL and the stages 2 and 5, which are different from each other, and the optimal cooling conditions can be set according to the heat value of each device. Therefore, it is possible to suppress the baseline fluctuation that occurs when the temperature is not sufficiently controlled, and to suppress the deterioration of the overlay accuracy.
また、 本実施の形態では、 レチクルステージ 2及びウェハステージ 5において、 全てのモータにではなく、 最も発熱量の大きいモータに対して冷媒温度を計測し、 その冷媒温度を基準にして、 他のモータに対する循環系の温度を制御しているの で、 各モータ毎に温度温度センサを設ける必要がなくなり、 装置の小型化、 低価 格化を実現することができる。  Further, in the present embodiment, in reticle stage 2 and wafer stage 5, the refrigerant temperature is measured not for all motors but for the motor having the largest amount of heat generation, and other motors are determined based on the refrigerant temperature. Since the temperature of the circulating system is controlled, it is not necessary to provide a temperature and temperature sensor for each motor, and the size and cost of the device can be reduced.
ところで、 レチクルステージ 2及ぴウェハステージ 5にそれぞれ設けられた上 述の各モータを流れる冷媒は、 同一の第 2制御系 6 2で温度制御 ·管理されてい るため、 各モータに対する冷媒の入口側温度 (各モータを循環する前の冷媒温 度) はモータによらずに同一温度となるが、 各モータに対する冷媒の出口側温度 (各モータを流れた後の冷媒温度) はモータ個々の発熱の度合いに応じてモータ 毎に異なるものとなる。 このため、 各モータを循環する冷媒の平均温度 (モータ の入口側と出口側における冷媒の平均温度) を、 どのモータに対しても一定の所 望値とするためには、 各モータの出口側での冷媒温度をどのモータに対しても一 定の値となるように制御する必要がある。 そこで、 より高精度な温度制御を行う ために、 各モータの少なく とも出口側における冷媒温度を測定する温度センサ (出口側温度センサ) を設けておき (入口側の温度を測定する温度センサは、 代 表的に発熱量の最も大きなモータに対してのみ 1つだけ設けておく) 、 各モータ における冷媒の出口温度が一定値となるように、 各モータに循環させる冷媒の流 量を、 個々のモータ毎に対応するバルブで調整するように構成してもよい。 この 流量設定の際には、 予めなるベく厳しい露光条件 (例えば露光ショット数が多く、 ステージの動きが多くなる条件) においてステージを駆動 (ランニング) させた 時の状態下で、 あるいは、 使用される典型的な露光条件 (ステージ駆動状態) に おいてステージを駆動させた時の状態下で、 上述の出口温度が一定値となるよう に、 各モータを循環させる冷媒の流量を設定するようにすることが望ましい。 なお、 スペースや価格的に許されるのであれば、 モータの入口側の冷媒温度を 測定する温度センサも各モータ毎に設置するようにしてもよい。 By the way, since the refrigerant flowing through each of the motors provided on the reticle stage 2 and the wafer stage 5 is temperature-controlled and managed by the same second control system 62, the refrigerant inlet side to each motor Temperature (Refrigerant temperature before circulating through each motor Degree) is the same temperature regardless of the motor, but the outlet temperature of the refrigerant for each motor (refrigerant temperature after flowing through each motor) differs for each motor according to the degree of heat generation of each motor . Therefore, in order to keep the average temperature of the refrigerant circulating in each motor (the average temperature of the refrigerant at the inlet and the outlet of the motor) at a constant desired value for all motors, the outlet side of each motor is required. It is necessary to control the temperature of the refrigerant at a constant value for any motor. Therefore, in order to perform more accurate temperature control, a temperature sensor (outlet temperature sensor) that measures the refrigerant temperature at least at the outlet side of each motor is provided (the temperature sensor that measures the inlet side temperature is Only one motor is typically provided for the motor that generates the largest amount of heat.) However, the flow rate of the refrigerant circulated through each motor is adjusted so that the outlet temperature of the refrigerant at each motor becomes a constant value. The motor may be configured to be adjusted by a corresponding valve for each motor. In setting the flow rate, the stage is driven under running conditions (eg, a condition where the number of exposure shots is large and the stage movement is large), or when the stage is driven (running). Under a typical exposure condition (stage driving state), when the stage is driven, the flow rate of the refrigerant circulating through each motor is set so that the above-mentioned outlet temperature becomes a constant value. It is desirable to do. If space and price allow, a temperature sensor for measuring the refrigerant temperature on the inlet side of the motor may be provided for each motor.
なお、 半導体デバイス等のマイクロデバイスは、 図 7に示すように、 マイクロ デバイスの機能 ·性能設計を行うステップ 2 0 1、 この設計ステップに基づいた レチクル Rを製作するステップ 2 0 2、 シリ コン材料からウェハ Wを製造するス テツプ 2 0 3、 前述した実施形態の投影露光装置 1により レチクル Rのパターン をウェハ Wに投影露光し、 そのウェハ Wを現像する露光処理ステップ 2 0 4、 デ バイス組み立てステップ (ダイシング工程、 ボンディング工程、 パッケージ工程 を含む) 2 0 5、 検査ステップ 2 0 6等を経て製造される。  As shown in Fig. 7, a micro device such as a semiconductor device has a step 201 for designing the function and performance of the micro device, a step 202 for manufacturing a reticle R based on the design step, and a silicon material. Step of manufacturing wafer W from wafer 203, Exposure processing step 204 of projecting and exposing the pattern of reticle R onto wafer W by projection exposure apparatus 1 of the above-described embodiment, and developing wafer W, device assembly It is manufactured through steps (including dicing process, bonding process, and package process) 205 and inspection step 206.
また、 上記実施の形態では、 プロセスと最適な冷媒流量との相関関係を予め求 めて記憶しておき、 その記憶された情報に基づいて、 プロセス毎に各循環系のバ ルブを調整する構成としたが、 この方法以外にも、 例えば複数のモータ毎に温度 センサを設けるとともに、 複数のモータ間における発熱量の比を算出する算出手 段を設け、 検出された冷媒温度に基づき算出された発熱量の比に応じてモータを 循環させる冷媒の流量を調節することも可能である。 Further, in the above embodiment, the correlation between the process and the optimum refrigerant flow rate is determined and stored in advance, and the valve of each circulation system is adjusted for each process based on the stored information. However, besides this method, for example, the temperature In addition to providing a sensor, a calculation means for calculating the ratio of the amount of heat generation among a plurality of motors is provided, and the flow rate of the refrigerant circulating through the motors is adjusted according to the ratio of the amount of heat generation calculated based on the detected refrigerant temperature. It is also possible.
図 8は、 本発明の露光装置の第 2の実施形態を示す図である。 この図において、 図 1乃至図 7に示す第 1の実施形態の構成要素と同一の要素については同一符号 を付し、 その説明及ぴ図示を簡略化する。  FIG. 8 is a view showing a second embodiment of the exposure apparatus of the present invention. In this figure, the same elements as those of the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and the description and illustration thereof will be simplified.
この図に示すように、 本実施形態では、 第 1制御系 6 1による循環系 C 1が投 影光学系とァライメント系 (及ぴ既述したウェハステージ 5のレベリング調整 系) とを温度制御対象とし、 第 2制御系 6 2による循環系 C 5がレチクルステー ジ 2を温度制御対象とし、 第 1、 第 2制御系 6 1、 6 2とは独立して設けられた 第 3制御系 8 6による循環系 C 6がウェハステージ 5を温度制御対象としている。 なお、 図 8では、 図 4で示した蒸発器 6 5、 ヒータ 7 1 と同等の機能を有するも のを温度調節器 8 7として簡略化してある。 同様に、 図 4で示した熱交換器 7 0、 ヒータ 7 5、 7 8と同等の機能を有するものを温度調節器 8 8、 8 9として簡略 的に図示している。 また、 図 4ではステージ 2、 5に対してそれぞれ 2つの温度 センサ 7 6 a、 7 6 b及ぴ 7 9 a、 7 9 bを配置したが、 図 8では代表的に温度 センサ 7 6、 7 9として図示している。  As shown in this figure, in the present embodiment, the circulation system C 1 of the first control system 61 controls the projection optical system and the alignment system (and the leveling adjustment system of the wafer stage 5 described above) as a temperature control object. The circulating system C5 of the second control system 62 controls the reticle stage 2 for temperature control, and the third control system 86 provided independently of the first and second control systems 61 and 62. The circulating system C6 controls the wafer stage 5 for temperature control. In FIG. 8, those having the same functions as the evaporator 65 and the heater 71 shown in FIG. 4 are simplified as a temperature controller 87. Similarly, those having functions equivalent to those of the heat exchanger 70 and the heaters 75 and 78 shown in FIG. 4 are schematically illustrated as temperature controllers 88 and 89. Also, in Fig. 4, two temperature sensors 76a, 76b and 79a, 79b are arranged for stages 2 and 5, respectively. This is shown as 9.
この温度センサ 7 6、 7 9に関しては、 上記第 1の実施形態のように、 第 2制 御系 6 2、 第 3制御系 8 6それぞれが制御する複数のモータのうち、 最も発熱量 の大きいモータを各制御系毎にそれぞれ選定し、 その選定された各モータに対し て温度センサをそれぞれ設置 (各モータの入口側と出口側の 2力所に) し、 この 温度センサに基づいて上記第 1の実施形態で述べたのと同様な冷媒の温度制御を 行うようにしてもよレヽ。  Regarding the temperature sensors 76 and 79, as in the first embodiment described above, of the plurality of motors controlled by the second control system 62 and the third control system 86, respectively, the heat generation amount is the largest. Motors are selected for each control system, and temperature sensors are installed for each of the selected motors (at two points on the inlet side and the outlet side of each motor). The same temperature control of the refrigerant as described in the first embodiment may be performed.
また、 上記第 1の実施形態の変形例として記載したように、 第 2制御系 6 2が 温度制御する複数のモータ、 及び第 3制御系 8 6が温度制御する複数のモータの それぞれに対して、 出口側に温度センサを設置し (入口側温度センサは、 各制御 系ともに代表的なモータ 1つに対してのみ設置) 、 この出口側温度を一定値に制 御するように (第 2制御系はレチクルステージ 2に設けられた各モータを循環す る冷媒の出口側温度を一定値にするように、 第 3制御系 8 6はウェハステージ 5 に設けられた各モータを循環する冷媒の出口側温度を一定値にするように、 ) 各 モータに流す冷媒の流量をそれぞれのバルブで調整するようにしてもよい。 Further, as described as a modified example of the first embodiment, each of the plurality of motors whose temperature is controlled by the second control system 62 and the plurality of motors whose temperature is controlled by the third control system 86 are respectively controlled. A temperature sensor is installed on the outlet side (the inlet side temperature sensor is installed for only one typical motor in each control system), and the outlet side temperature is controlled to a constant value (second control). The system circulates through each motor provided on reticle stage 2. The third control system 86 controls each motor so that the outlet temperature of the refrigerant circulating through each motor provided on the wafer stage 5 is maintained at a constant value so that the outlet temperature of the refrigerant is constant. The flow rate of the flowing refrigerant may be adjusted by each valve.
本実施の形態では、 第 1制御系 6 1において、 投影光学系 P Lを循環する冷媒 温度を第 3検出手段である温度センサ 6 9が検出し、 コントローラ 6 7がこの検 出結果に基づいて冷媒の循環条件 (第 3循環条件) を設定し、 温度調節器 8 7の 駆動を制御することで、 投影光学系 P Lの温度を ± 0 . 0 1 °Cの範囲で管理する。 また、 第 2制御系 6 2において、 レチクルステージ 2を循環する冷媒温度を温度 センサ 7 6が検出し、 コントローラ 7 7がこの検出結果に基づいて温度調節器 8 8の駆動を制御することで、 レチクルステージ 2の温度を ± 0 . 1 °Cの範囲で管 理する。 同様に、 第 3制御系 8 6において、 ウェハステージ 5を循環する冷媒温 度を温度センサ 7 9が検出し、 コントローラ 9 0がこの検出結果に基づいて温度 調節器 8 9の駆動を制御することで、 ウェハステージ 5の温度を ± 0 . 1 °Cの範 囲で管理する。  In the present embodiment, in the first control system 61, the temperature sensor 69, which is the third detecting means, detects the temperature of the refrigerant circulating in the projection optical system PL, and the controller 67 detects the refrigerant based on the detection result. By setting the circulating condition (third circulating condition) and controlling the driving of the temperature controller 87, the temperature of the projection optical system PL is controlled within a range of ± 0.01 ° C. Further, in the second control system 62, the temperature sensor 76 detects the temperature of the refrigerant circulating in the reticle stage 2, and the controller 77 controls the driving of the temperature controller 88 based on the detection result. Control the temperature of reticle stage 2 within the range of ± 0.1 ° C. Similarly, in the third control system 86, the temperature sensor 79 detects the temperature of the refrigerant circulating in the wafer stage 5, and the controller 90 controls the drive of the temperature controller 89 based on the detection result. The temperature of the wafer stage 5 is controlled within a range of ± 0.1 ° C.
このように、 本実施の形態では、 上記第 1の実施形態と同様の作用 ·効果が得 られることに加えて、 制御系 6 1、 6 2、 8 6でそれぞれ独立して投影光学系 P L、 レチクルステージ 2、 ウェハステージ 5を温度制御するので、 各制御対象毎 の発熱量に応じてより高精度な温度管理を実施することが可能になる。  As described above, in the present embodiment, in addition to obtaining the same operation and effect as in the first embodiment, the projection optical systems PL and PL are independently controlled by the control systems 61, 62, and 86, respectively. Since the temperature of the reticle stage 2 and the wafer stage 5 are controlled, it is possible to perform more accurate temperature management according to the heat generation amount of each control target.
図 9に、 本発明に係る露光装置の第 3の実施形態を示す。  FIG. 9 shows a third embodiment of the exposure apparatus according to the present invention.
本実施の形態では、 第 1制御系 6 1が投影光学系 P Lとウェハステージ 5とを 温度制御対象とし、 第 2制御系 6 2がレチクルステージ 2を温度制御対象として いる。 第 1制御系 6 1では、 投影光学系 P L及びァライメント系 A Lを循環する 循環系 C 1 とウェハステージ 5を循環する循環系 C 6とが一基の温度調節器 8 7 で温度制御される。 この温度制御は、 投影光学系 P Lを循環する冷媒温度を温度 センサ 6 9で検出し、 検出した結果に基づいてコントローラ 6 7が温度調節器 8 In the present embodiment, the first control system 61 controls the projection optical system PL and the wafer stage 5 as a temperature control target, and the second control system 62 controls the reticle stage 2 as a temperature control target. In the first control system 61, the temperature of a circulation system C1 circulating through the projection optical system P L and the alignment system A L and a circulation system C 6 circulating through the wafer stage 5 are controlled by a single temperature controller 87. In this temperature control, the temperature of the refrigerant circulating in the projection optical system PL is detected by the temperature sensor 69, and the controller 67 controls the temperature controller 8 based on the detected result.
7の駆動を制御することで実施される。 この場合、 ウェハステージ 5は、 投影光 学系 P Lと同様に、 ± 0 . 0 1 °Cの範囲で温度制御されることになる。 なお、 第It is implemented by controlling the drive of 7. In this case, the temperature of the wafer stage 5 is controlled within a range of ± 0.01 ° C., similarly to the projection optical system PL. In addition,
2制御系 6 2では、 レチクルステージ 2が第 1制御系 6 1 と独立して単体で、 士 0 . 1 °Cの範囲で温度制御されることになる。 2 In the control system 62, the reticle stage 2 is independent of the first control system 61, and The temperature will be controlled in the range of 0.1 ° C.
本実施の形態でも、 発熱量が最も大きいレチクルステージ 2を発熱量が比較的 小さい投影光学系 P L、 ウェハステージ 5と独立して個別に温度制御することが 可能であり、 各機器の発熱量に応じた最適な冷却条件を設定できる。 しかも、 第 2の実施形態と比較して、 第 1制御系 6 1で 2つの循環系 C 1、 C 6の冷媒温度 を制御できるので、 装置構成を簡素化することができる。  Also in the present embodiment, it is possible to control the temperature of the reticle stage 2 having the largest amount of heat independently of the projection optical system PL and the wafer stage 5 having relatively small amounts of heat. Optimal cooling conditions can be set accordingly. In addition, compared to the second embodiment, the first control system 61 can control the refrigerant temperatures of the two circulation systems C1 and C6, so that the device configuration can be simplified.
図 1 0は、 本発明の露光装置の第 4の実施形態を示す図である。 なお、 この図 では、 レチクルステージ 2に係る温度制御系のみを図示している。  FIG. 10 is a view showing a fourth embodiment of the exposure apparatus of the present invention. In this figure, only the temperature control system related to reticle stage 2 is shown.
この図に示すように、 第 2制御系 6 2には、 図 8、 図 9に示した温度センサ 7 6、 コントローラ 7 7、 温度調節器 8 8を含む実施形態に対して、 温度センサ 9 1 、 9 2と第 2調節器としてのペルチヱ素子 9 3とが付設されている。 ペルチェ 素子 9 3は、 温度調節器 8 8よりもレチクルステージ 2の近傍に配置されており、 コン トローラ 7 7によりその駆動を制御される。 温度センサ 9 1はペルチェ素子 9 3の上流側に、 温度センサ 9 2はペルチェ素子 9 3の下流側にそれぞれ配笸さ れており、 各温度センサ 9 1 、 9 2が検出した冷媒温度はコントローラ 7 7に出 力される。 コントローラ 7 7は、 温度センサ 7 6の温度検出結果に基づいて温度 調節器 8 8の駆動を制御するとともに、 温度センサ 9 1、 9 2の温度検出結果に 基づいてペルチェ素子 9 3の駆動を制御する。 他の構成は、 上記第 2、 第 3の実 施形態と同様である。  As shown in this figure, the second control system 62 includes a temperature sensor 91, a controller 77, and a temperature controller 88 shown in FIGS. , 92 and a Peltier element 93 as a second regulator. Peltier element 93 is arranged closer to reticle stage 2 than temperature controller 88, and its drive is controlled by controller 77. The temperature sensor 91 is arranged on the upstream side of the Peltier element 93, and the temperature sensor 92 is arranged on the downstream side of the Peltier element 93, and the refrigerant temperature detected by each of the temperature sensors 91 and 92 is determined by the controller. Output to 7 7. The controller 77 controls the driving of the temperature controller 88 based on the temperature detection result of the temperature sensor 76, and controls the driving of the Peltier element 93 based on the temperature detection results of the temperature sensors 91 and 92. I do. Other configurations are the same as those of the second and third embodiments.
上記の構成では、 コントローラ 7 7は、 温度調節器 8 8を制御することにより、 循環系 C 5の冷媒温度を所定温度よりも低い温度に過冷却する。 そして、 コント ローラ 7 7は、 温度センサ 9 1、 9 2が検出した冷媒温度に基づいてペルチェ素 子 9 3に通電することで、 冷媒を所定温度に上昇させる。  In the above configuration, the controller 77 supercools the refrigerant temperature of the circulation system C5 to a temperature lower than a predetermined temperature by controlling the temperature controller 88. Then, the controller 77 raises the refrigerant to a predetermined temperature by energizing the Peltier element 93 based on the refrigerant temperature detected by the temperature sensors 91 and 92.
本実施の形態では、 レチクルステージ 2を駆動する際に急激な温度上昇が生じ でも、 過冷却された冷媒を循環させることで所定温度に温度制御することが可能 であり、 機器の急激な温度変化に対しても容易に対応することができる。 なお、 冷媒を温度調節器 8 8で過冷却し、 ペルチェ素子 9 3で加熱する構成に限られず、 温度調節器 8 8で過加熱し、 ペルチヱ素子 9 3で冷却する構成としてもよい。 ま 03 03003 In the present embodiment, even if the temperature rises sharply when driving reticle stage 2, it is possible to control the temperature to a predetermined temperature by circulating the supercooled refrigerant, and a rapid temperature change of the equipment can be achieved. Can be easily dealt with. The configuration is not limited to the configuration in which the refrigerant is supercooled by the temperature controller 88 and heated by the Peltier element 93, but may be a configuration in which the refrigerant is overheated by the temperature controller 88 and cooled by the Peltier element 93. Ma 03 03003
. 25 . twenty five
た、 過冷却された冷媒を加熱する場合には、 ペルチェ素子 9 3の代わりにヒータ を用いてもよレ、。 When heating the supercooled refrigerant, a heater may be used instead of the Peltier element 93.
続いて、 本発明の露光装置の第 5の実施形態について説明する。  Next, a fifth embodiment of the exposure apparatus of the present invention will be described.
例えば図 9に示した第 3の実施形態では、 第 1制御系 6 1において温度センサ 6 9の検出結果に基づきコントローラ 6 7が温度調節器 8 7の駆動を制御し、 第 2制御系 6 2において温度センサ 7 6の検出結果に基づきコントローラ 7 7が温 度調節器 8 8の駆動を制御する構成としたが、 本実施形態では、 これらの温度セ ンサ 6 9、 7 6を設けずに、 露光処理に係るデータ (露光レシピ) に基づいて、 コントローラ 6 7がウェハステージ 5の駆動に伴い発生する熱量を算出し、 算出 した熱量に基づいて冷媒温度を設定することで温度調節器 8 7の駆動を制御する。 同様に、 第 2制御系 6 2では、 露光データに基づいて、 コントローラ 7 7がレチ クルステージ 2の駆動に伴い発生する熱量を算出し、 算出した熱量に基づいて冷 媒温度を設定することで温度調節器 8 8の駆動を制御する。  For example, in the third embodiment shown in FIG. 9, in the first control system 61, the controller 67 controls the driving of the temperature controller 87 based on the detection result of the temperature sensor 69, and the second control system 62 In the embodiment, the controller 77 controls the driving of the temperature controller 88 based on the detection result of the temperature sensor 76, but in the present embodiment, these temperature sensors 69, 76 are not provided. The controller 67 calculates the amount of heat generated by driving the wafer stage 5 based on the data (exposure recipe) relating to the exposure processing, and sets the coolant temperature based on the calculated amount of heat, thereby setting the temperature controller 87 Control the drive. Similarly, in the second control system 62, the controller 77 calculates the amount of heat generated by driving the reticle stage 2 based on the exposure data, and sets the coolant temperature based on the calculated amount of heat. Temperature controller 8 8 Drive control.
具体的な制御方法としては、 例えばオペレータ (ユーザー) が O Aパネル上で プロセスプログラムを選択し、 選択したプロセス情報と露光データに登録されて いる情報とから、 計算回路上でモータ駆動に掛かる電力量及び発熱量を算出し、 温度調節器 8 7、 8 8の駆動を制御する。  As a specific control method, for example, the operator (user) selects a process program on the OA panel, and based on the selected process information and the information registered in the exposure data, the amount of power required to drive the motor on the calculation circuit The calorific value is calculated and the driving of the temperature controllers 87 and 88 is controlled.
本実施の形態では、 温度センサ等の温度検出手段を設ける必要がなくなるので、 装置の小型化及び低価格化に寄与することができる。 なお、 各モータ毎にモータ に付与される駆動電圧と発熱量 (温度変化量) との比を求め、 駆動電圧との比に 応じた流量調節を行うものとしてもよい。  In the present embodiment, since there is no need to provide a temperature detecting means such as a temperature sensor, it is possible to contribute to a reduction in the size and cost of the device. The ratio between the drive voltage applied to the motor and the amount of heat generation (change in temperature) may be determined for each motor, and the flow rate may be adjusted in accordance with the ratio to the drive voltage.
なお、 上記各実施の形態では、 冷媒流量を調整することで制御対象の温度制御 を行う構成としたが、 これに限定されるものではなく、 冷媒の温度、 流速、 流量 のうちの少なく とも 1つを含めばよい。 また、 上記実施の形態では、 温度調節器 ゃ冷媒駆動用のポンプを一部共用する構成としたが、 制御対象 (循環系) 毎にそ れぞれ分離したり、 全ての循環系で共用する等、 種々の構成を採用可能である。 例えば冷却器とヒータとが双方設けられる場合は、 ヒータを共用にして冷却器を 制御対象毎に設けてもよい。 この場合、 最終的な温度調節は冷却器で行われるこ とになる。 ' In each of the above embodiments, the temperature of the controlled object is controlled by adjusting the flow rate of the refrigerant. However, the present invention is not limited to this. At least one of the temperature, the flow velocity, and the flow rate of the refrigerant is used. One. In the above embodiment, the temperature controller and the pump for driving the refrigerant are partially shared. However, they are separated for each control target (circulation system) or shared by all circulation systems. Various configurations such as can be adopted. For example, when both a cooler and a heater are provided, the heater may be shared and a cooler may be provided for each control target. In this case, the final temperature adjustment must take place in the cooler. And '
また、 上記各実施の形態では、 ステージ 2、 5を循環させる前の冷媒温度と循 環させた後の冷媒温度とを単純平均する構成としたが、 重み付け平均としてもよ い。 重み付け平均する方法としては以下の方式を採用可能である。 (1 ) モータ 等の熱源から入口側温度センサの設置位置までの距離と、 熱源から出口側温度セ ンサの設置位置までの距離とが異なる場合には、 距離が近い温度センサほどその 検出結果の重みが大きくなる等、 距離に応じた重み付けを行う。 (2 ) モータ等 の熱源の入口近傍を構成する材料が出口近傍を構成する材料と異なる場合には、 熱伝導率等、 その材料の材質に応じて重み付けする (吸熱される割合が大きい (熱伝導率が大きい) 材料ほど重みを大きくする) 。 (3 ) 入口近傍または出口 近傍に別の熱源が存在する場合には、 その別熱源の有無や発熱量に応じた重み付 けを行う。 例えば、 流路上に別熱源が存在する場合には、 別熱源に近い側の温度 センサ出力の重みを大きくする。 また、 流路外に別熱源が存在する場合には、 別 熱源の発熱が空気を介して温度センサに伝達されるため、 別熱源に近い側の温度 センサ出力の重みを大きくする。 (4 ) ベースライン計測時に、 入口側温度セン サの検出温度、 出口側温度センサの検出温度、 冷媒の制御温度 (単純平均で算出 された制御温度) と計測されたベースライン量 (またはベースライン量の変動 量) とを組で記憶し、 この記憶動作をベースライン計測毎に繰り返す。 そして、 蓄積された複数のデータ組に基づいて、 入口側温度と出口側温度とのいずれに、 どの程度重みを持たせればベースライン変動が小さくなるかを推定演算する。 そ して、 推定された重みに基づいて重み付け平均を行う。  Further, in each of the above embodiments, the configuration is such that the refrigerant temperature before circulating the stages 2 and 5 and the refrigerant temperature after circulating are simply averaged, but a weighted average may be used. The following method can be adopted as a method of weighted averaging. (1) If the distance from the heat source such as a motor to the installation position of the inlet-side temperature sensor is different from the distance from the heat source to the installation position of the outlet-side temperature sensor, the closer the distance, the smaller the temperature sensor Weighting is performed according to the distance, such as increasing the weight. (2) If the material that forms the vicinity of the inlet of the heat source such as a motor is different from the material that forms the vicinity of the outlet, it is weighted according to the material of the material, such as thermal conductivity. The greater the conductivity, the greater the weight of the material). (3) If another heat source exists near the inlet or outlet, weighting is performed according to the presence or absence of the different heat source and the amount of heat generated. For example, when another heat source exists on the flow path, the weight of the temperature sensor output on the side closer to the other heat source is increased. If another heat source exists outside the flow path, the heat generated by the other heat source is transmitted to the temperature sensor via air, so the weight of the output of the temperature sensor near the other heat source is increased. (4) At the time of baseline measurement, the detected temperature of the inlet-side temperature sensor, the detected temperature of the outlet-side temperature sensor, the control temperature of the refrigerant (control temperature calculated by a simple average), and the measured baseline amount (or baseline) And the storage operation is repeated for each baseline measurement. Then, based on the plurality of accumulated data sets, an estimation is performed to determine which weight is given to the inlet-side temperature or the outlet-side temperature and how much the baseline fluctuation is reduced. Then, a weighted average is performed based on the estimated weights.
また、 上記各実施の形態では、 同一種類の冷媒 (H F E ) を用いる構成とした が、 各循環系に要求される温度制御精度や設置環境に応じて、 各循環系毎に異な る冷媒を用いてもよい。  In the above embodiments, the same type of refrigerant (HFE) is used. However, different refrigerants are used for each circulating system according to the temperature control accuracy required for each circulating system and the installation environment. You may.
なお、 上記各実施の形態では、 1つの温度制御対象 (モータ等) に対して 1方 向に循環する冷媒で温度制御するように構成したが、 本発明はこれに限られず、 複数の方向に循環する冷媒を用いて温調するように構成してもよい。  In each of the above embodiments, the temperature is controlled by the refrigerant circulating in one direction for one temperature control target (motor or the like). However, the present invention is not limited to this, and the temperature is controlled in a plurality of directions. The temperature may be controlled using a circulating refrigerant.
例えば、 図 1 1 ( A) に示すように、 制御対象 2 1 (ここでは一例として Yリ ニァモータ 1 5の可動子 2 1を用いて説明する) に対して、 2つの循環方向の異 なる循環系 C 7 a、 C 7 bを配管し、 その各循環系 C 7 a、 C 7 bに互いに逆方 向から冷媒を循環させるようにする (2つの循環系間での、 冷媒の入口側と出口 側とを逆にする) 。 このように構成することで、 循環系が 1つしか設けられてい ない場合に制御対象 2 1に生じる (1つの循環系の入口側と出口側との間で生じ る) 虞のある温度勾配をなくすことができ、 より高精度、 且つ正確な温調を行う ことができる。 For example, as shown in Fig. 11 (A), the control target 2 1 (here, as an example, In this case, two circulating systems C 7a and C 7b having different circulation directions are connected to each other, and the circulating systems C 7a and C 7b are connected to each other. Refrigerant is circulated from opposite directions (the refrigerant inlet and outlet are reversed between the two circulation systems). With this configuration, when only one circulation system is provided, the temperature gradient that may occur in the control target 21 (between the inlet side and the outlet side of one circulation system) may be reduced. The temperature can be controlled more accurately and accurately.
また、 図 1 1 (B) や図 1 1 (C) に示すように、 温調部 (流路、 配管) を細 分化して、 制御対象を温調することで、 制御対象上での温度勾配が無い状態とす ることもできる。 図 1 1 (B) では、 図示の如く制御対象 2 1に対して 3つの異 なる循環系 (流路、 配管) C 7 c、 C 7 d、 C 7 eを配設し、 それぞれの循環系 に図中の矢印の方向に冷媒を循環させている。 また、 図 1 1 (C) では、 図示の 如く、 制御対象 2 1に対して 4つの異なる循環系 (流路、 配管) C 7 f 、 C 7 g、 C 7 h、 C 7 iを配設し、 それぞれの循環系に図中の矢印の方向に冷媒を循環さ せている。 このように細分化した温調を行う構成とすることでも、 制御対象上の 温度勾配を無くすことができる。  In addition, as shown in Fig. 11 (B) and Fig. 11 (C), the temperature control section (flow path, piping) is subdivided and the temperature of the control target is controlled, so that the temperature on the control target is controlled. There can be no gradient. In Fig. 11 (B), three different circulation systems (flow paths, pipes) C7c, C7d, and C7e are provided for the control target 21 as shown in the figure, and each circulation system is controlled. The refrigerant is circulated in the direction of the arrow in the figure. Also, in Fig. 11 (C), four different circulation systems (flow paths, pipes) C7f, C7g, C7h, and C7i are provided for the control target 21 as shown in the figure. The refrigerant is circulated in each circulation system in the direction of the arrow in the figure. By adopting such a configuration in which the temperature control is segmented, the temperature gradient on the control target can be eliminated.
なお、 図 1 1 (B) の循環系 C 7 cと C 7 e、 或いは図 1 1 (C) の循環系 C 7 f と C 7 h、 或いは C 7 gと C 7 iのように、 対向配置された循環系において は、 冷媒の循環方向を図示の如く逆方向にすることが、 温度勾配を無くす観点か ら望ましい。  In addition, as shown in the circulation system C 7 c and C 7 e in FIG. 11 (B) or the circulation system C 7 f and C 7 h or the circulation system C 7 g and C 7 i in FIG. 11 (C), In the disposed circulation system, it is desirable to make the circulation direction of the refrigerant reverse as shown in the figure from the viewpoint of eliminating the temperature gradient.
なお、 この図 1 1 (A) 〜 (C) の例では、 各循環系 C 7 a〜C 7 iのそれぞ れの入口側と出口側に温度センサ 76 a、 76 bを設ける構成としたが、 ある 1 つの循環系のみに対して温度センサを設けるようにしてもよいし、 或いは各循環 系の出口側だけに温度センサを設けるようにしてもよい。 これら温度センサの使 用方法は、 上述の各実施の形態と同様である。  In the examples of Figs. 11 (A) to 11 (C), the temperature sensors 76a and 76b are provided on the inlet and outlet sides of each of the circulation systems C7a to C7i. However, a temperature sensor may be provided for only one circulating system, or a temperature sensor may be provided only for the outlet side of each circulating system. How to use these temperature sensors is the same as in each of the above embodiments.
この図 1 1 (A) 〜 (C) に示した構成は、 制御対象が大きい (長い) 場合や、 制御対象の発熱量 (駆動量) が大きい場合に、 特に有効である。 このような制御 対象としては、 一例として、 レチクル粗動ステージ 1 6の Yリニアモータ 1 5 (スキャン方向に駆動するモータ) の可動子 2 1や、 Y方向に長く延在する固定 子 2 0、 或いはウェハステージのリニアモータ 3 3の可動子 3 6や固定子 3 7な どが考えられる。 また、 図 1 1 ( A ) 〜 (C ) に示した構成は、 特に温度勾配が 無い状態が要求される箇所の制御対象に対しても有効である。 このような制御対 象としては、 一例としてウェハゃレチクルの近くに配置されている駆動源 (例え ばボイスコィノレモータ 8 :!〜 8 3や、 レチクノレ ί敷動ステージの Yボイスコイルモ ータ 1 7 Υなど) が考えられる。 図 1 1の構成の適用箇所としては、 ここに記載 した箇所に限られるものではなく、 温度勾配の無い状況が望まれる箇所に、 図 1 1に示した構成を採用すればよい。 . The configurations shown in Figs. 11 (A) to 11 (C) are particularly effective when the control target is large (long) or when the heat generation amount (drive amount) of the control target is large. An example of such a control target is a Y linear motor 15 of the reticle coarse movement stage 16. (Motor driven in scan direction), stator 20 extending in Y direction, or mover 36 or stator 3 7 of linear motor 33 on wafer stage. . The configurations shown in FIGS. 11 (A) to 11 (C) are also effective especially for a control target where a temperature gradient-free state is required. Such control targets include, for example, a drive source arranged near the wafer / reticle (for example, voice coil motor 8:! ~ 83, or a reticule / Y voice coil motor 17 of the mounting stage). Υ etc.) can be considered. The locations to which the configuration of FIG. 11 is applied are not limited to the locations described here, and the configuration shown in FIG. 11 may be applied to locations where a situation without a temperature gradient is desired. .
なお、 本実施の形態の基板としては、 半導体デバイス用の半導体ウェハ Wのみ ならず、 液晶ディスプレイデバイス用のガラス基板や、 薄膜磁気ヘッド用のセラ ミ ックウェハ、 あるいは露光装置で用いられるマスクまたはレチクルの原版 (合 成石英、 シリ コンウェハ) 等が適用される。  The substrate of the present embodiment includes not only a semiconductor wafer W for a semiconductor device, but also a glass substrate for a liquid crystal display device, a ceramic wafer for a thin film magnetic head, or a mask or reticle used in an exposure apparatus. Original plate (synthetic quartz, silicon wafer) etc. are applied.
露光装置 1 としては、 レチクル Rとウェハ Wとを同期移動してレチクル Rのパ ターンを走査露光するステップ · アンド · スキャン方式の走查型露光装置 (スキ ャニング .ステッパー; USP5, 473, 410) の他に、 レチクル Rとウェハ Wとを静止 した状態でレチクル Rのパターンを露光し、 ウェハ Wを順次ステツプ移動させる ステップ ' アンド ' リ ピート方式の投影露光装置 (ステッパー) にも適用するこ とができる。  As the exposure apparatus 1, a step-and-scan running exposure apparatus (scanning stepper; US Pat. No. 5,473,410) in which a reticle R and a wafer W are synchronously moved and a pattern of the reticle R is scanned and exposed. In addition, the present invention is also applicable to a step-and-repeat type projection exposure apparatus (stepper) that exposes the pattern of the reticle R while the reticle R and the wafer W are stationary and sequentially moves the wafer W in steps. Can be.
露光装置 1の種類としては、 ウェハ Wに半導体デバイスパターンを露光する半 導体デバイス製造用の露光装置に跟られず、 液晶表示素子製造用の露光装置や、 薄膜磁気ヘッド、 撮像素子 (C C D ) あるいはレチクルなどを製造するための露 光装置などにも広く適用できる。  The type of the exposure apparatus 1 is not limited to an exposure apparatus for manufacturing a semiconductor device that exposes a semiconductor device pattern onto a wafer W, and is not limited to an exposure apparatus for manufacturing a liquid crystal display element, a thin film magnetic head, an image pickup device (CCD), or the like. It can be widely applied to exposure devices for manufacturing reticles and the like.
また、 露光用照明光の光源として、 超高圧水銀ランプから発生する輝線 (g線 ( 4 3 6 n m) 、 h線 (4 0 4 . 7 n m) 、 i線 (3 6 5 n m) ) 、 K r Fェキ シマレーザ ( 2 4 8 n m) 、 A r Fエキシマレーザ ( 1 9 3 n m) 、 F 2レーザ ( 1 5 7 n m) のみならず、 X線や電子線などの荷電粒子線を用いることができ る。 例えば、 電子線を用いる場合には電子銃として、 熱電子放射型のランタンへ キサボライ ト (L a B 6 ) 、 タンタル (T a ) を用いることができる。 さらに、 電子線を用いる場合は、 レチクル Rを用いる構成としてもよいし、 レチクル Rを 用いずに直接ウェハ上にパターンを形成する構成としてもよい。 また、 Y A Gレ 一ザや半導体レーザ等の高周波などを用いてもよい。 In addition, emission lines (g-line (433 nm), h-line (404.7 nm), i-line (365 nm)), r F excimer laser (248 nm), Ar F excimer laser (193 nm), F 2 laser (157 nm), as well as charged particle beams such as X-rays and electron beams Can be done. For example, when using an electron beam, use an electron gun as a thermionic emission type lantern. Kisabolite (L a B 6 ) and tantalum (T a) can be used. Further, when an electron beam is used, a configuration using a reticle R may be used, or a configuration in which a pattern is directly formed on a wafer without using the reticle R may be used. Alternatively, a high frequency such as a YAG laser or a semiconductor laser may be used.
投影光学系 P Lの倍率は、 縮小系のみならず等倍系および拡大系のいずれでも よい。 また、 投影光学系 P Lとしては、 エキシマレーザなどの遠紫外線を用いる 場合は硝材として石英や蛍石などの遠紫外線を透過する材料を用い、 F 2レーザ や X線を用いる場合は反射屈折系または屈折系の光学系にし (レチクル Rも反射 型タイプのものを用いる) 、 また電子線を用いる場合には光学系として電子レン ズおよび偏向器からなる電子光学系を用いればよい。 なお、 電子線が通過する光 路は、 真空状態にすることはいうまでもない。 また、 投影光学系 P Lを用いるこ となく、 レチクル Rとウェハ Wとを密接させてレチクル Rのパターンを露光する プロキシミティ露光装置にも適用可能である。 The magnification of the projection optical system PL may be not only a reduction system but also any of an equal magnification system and an enlargement system. Further, as the projection optical system PL, when far ultraviolet rays such as an excimer laser are used, a material which transmits far ultraviolet rays such as quartz or fluorite is used as a glass material, and when a F 2 laser or X-ray is used, a catadioptric system is used. An optical system of a refraction system (a reticle R of a reflection type is also used), and when an electron beam is used, an electron optical system composed of an electron lens and a deflector may be used as the optical system. It goes without saying that the optical path through which the electron beam passes is in a vacuum state. Further, the present invention can also be applied to a proximity exposure apparatus that exposes the pattern of the reticle R by bringing the reticle R and the wafer W into close contact with each other without using the projection optical system PL.
ウェハステージ 5やレチクルステージ 2にリニァモータ (USP5, 623, 853または USP5, 528, 118参照) を用いる場合は、 エアベアリングを用いたエア浮上型および ローレンツ力またはリアクタンスカを用いた磁気浮上型のどちらを用いてもよい。 また、 各ステージ 2、 5は、 ガイ ドに沿って移動するタイプでもよく、 ガイ ドを 設けないガイ ドレスタイプであってもよい。  When using a linear motor (see USP5, 623, 853 or USP5, 528, 118) for the wafer stage 5 and reticle stage 2, either an air levitation type using an air bearing or a magnetic levitation type using a Lorentz force or a reactor tanker May be used. Further, each of the stages 2 and 5 may be of a type that moves along a guide or a guideless type that does not have a guide.
各ステージ 2、 5の駆動機構としては、 二次元に磁石を配置した磁石ユニッ ト (永久磁石) と、 二次元にコイルを配置した電機子ユニットとを対向させ電磁力 により各ステージ 2、 5を駆動する平面モータを用いてもよい。 この場合、 磁石 ユニッ トと電機子ユニッ トとのいずれか一方をステージ 2、 5に接続し、 磁石ュ ニッ トと電機子ユニッ トとの他方をステージ 2、 5の移動面側 (ベース) に設け ればよい。  The drive mechanism for each of the stages 2 and 5 consists of a magnet unit (permanent magnet) with a two-dimensionally arranged magnet and an armature unit with a two-dimensionally arranged coil. A driving flat motor may be used. In this case, one of the magnet unit and the armature unit is connected to the stages 2 and 5, and the other of the magnet unit and the armature unit is on the moving surface side (base) of the stages 2 and 5. It may be provided.
以上のように、 本願実施形態の露光装置 1は、 本願特許請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学 的精度を保つように、 組み立てることで製造される。 これら各種精度を確保する ために、 この組み立ての前後には、 各種光学系については光学的精度を達成する ための調整、 各種機械系については機械的精度を達成するための調整、 各種電気 系については電気的精度を達成するための調整が行われる。 各種サブシステムか ら露光装置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回 路の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露 光装置への組み立て工程の前に、 各サブシステム個々の組み立て工程があること はいうまでもない。 各種サブシステムの露光装置への組み立て工程が終了したら、 総合調整が行われ、 露光装置全体としての各種精度が確保される。 なお、 露光装 置の製造は温度おょぴクリーン度等が管理されたクリーンルームで行うことが望 ましい。 産業上の利用可能性 以上説明したように、 本発明では、 要求される温度制御精度が異なる機器に対 しても、 それぞれ独立して温度を制御 ·管理することが可能であり、 各機器の発 熱量に応じた最適な冷却条件を設定できるため、 温度制御がされないことに起因 するベースライン変動を抑制して重ね合わせ精度の悪化を抑えることが可能にな る。 また、 本発明では、 装置の小型化及び低価格化に寄与できるという効果を奏 する。 As described above, the exposure apparatus 1 according to the embodiment of the present invention controls various subsystems including the respective components listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. Before and after this assembly, achieve the optical accuracy of various optical systems to ensure these various accuracy. Adjustments to achieve mechanical accuracy for various mechanical systems, and adjustments to achieve electrical accuracy for various electrical systems. The process of assembling the exposure apparatus from various subsystems includes mechanical connection, wiring connection of electric circuits, and piping connection of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure device. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled. INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to control and manage the temperature independently even for devices having different required temperature control accuracy. Since the optimal cooling conditions can be set according to the amount of heat generated, it is possible to suppress the baseline fluctuation caused by the temperature control not being performed and the deterioration of the overlay accuracy. Further, the present invention has an effect that it can contribute to miniaturization and cost reduction of the device.

Claims

請求の範囲 The scope of the claims
1 . レチクルステージ上に保持されたレチクルのパターン像を、 基板ステージ 上に保持された基板上に投影光学系を介して投影する露光装置であって、 第 1液体の温度を設定するとともに、 該温度設定した前記第 1液体を前記投影 光学系と前記基板ステージとの少なく とも一方の物体に対して循環させて、 前記 物体の温度を制御する第 1制御系と、 1. An exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system, and sets the temperature of the first liquid, A first control system configured to circulate the temperature-set first liquid to at least one of the projection optical system and the substrate stage for controlling the temperature of the object;
第 2液体の温度を前記第 1制御系とは独立に設定し、 該温度設定した前記第 2 液体を前記レチクルステージに対して循環させて、 前記レチクルステージの温度 を制御する第 2制御系とを有し、  A second control system that sets the temperature of the second liquid independently of the first control system, circulates the set second liquid to the reticle stage, and controls the temperature of the reticle stage. Has,
前記液体の温度を設定する際の温度範囲の大きさの点において、 前記第 1、 第 2制御系は互いに異なる設定能力を持つ。  The first and second control systems have different setting abilities in terms of the size of the temperature range when setting the temperature of the liquid.
2 . 請求項 1に記載の露光装置であって、 2. The exposure apparatus according to claim 1, wherein
前記物体は、 前記基板ステージであり、  The object is the substrate stage,
前記第 1制御系は、 前記基板ステージの駆動に伴い発生する熱量を算出すると ともに、 該算出した熱量に基づいて前記第 1液体の温度を設定し、  The first control system calculates the amount of heat generated by driving the substrate stage, and sets the temperature of the first liquid based on the calculated amount of heat,
前記第 2制御系は、 前記レチクルステージの駆動に伴い発生する熱量を算出す るとともに、 該算出した熱量に基づいて前記第 2液体の温度を設定する。  The second control system calculates the amount of heat generated by driving the reticle stage, and sets the temperature of the second liquid based on the calculated amount of heat.
3 . 請求項 1または 2に記載の露光装置であって、 3. The exposure apparatus according to claim 1 or 2, wherein
前記物体に循環させる前の前記第 1液体の温度と、 前記物体を循環させた後の 前記第 1液体の温度とをそれぞれ検出する第 1検出手段と、  First detection means for detecting a temperature of the first liquid before circulating through the object and a temperature of the first liquid after circulating the object, respectively;
前記レチクルステージに循環させる前の前記第 2液体の温度と、 前.記レチクル ステージを循環させた後の前記第 2液体の温度とをそれぞれ検出する第 2検出手 段と、 を有し、  And a second detection means for detecting a temperature of the second liquid before circulating through the reticle stage and a temperature of the second liquid after circulating through the reticle stage, respectively.
前記第 1制御系は、 前記第 1検出手段の検出結果に基づいて前記第 1液体の温 度を設定し、 前記第 2制御系は、 前記第 2検出手段の検出結果に基づいて前記第 2液体の温 度を設定する。 The first control system sets a temperature of the first liquid based on a detection result of the first detection unit, The second control system sets the temperature of the second liquid based on the detection result of the second detection means.
4 . 請求項 1から 3の何れか一項に記載の露光装置であって、 4. The exposure apparatus according to any one of claims 1 to 3, wherein
前記レチクルステージは複数の駆動源を備えており、  The reticle stage has a plurality of driving sources,
前記第 2制御系は、 前記レチクルステージ上の複数の駆動源のうち、 発熱量の 最も大きな所定の駆動源における発熱量に関する情報に基づいて、 前記第 2液体 の温度を設定する。  The second control system sets the temperature of the second liquid based on information on a heat generation amount of a predetermined drive source having the largest heat generation amount among a plurality of drive sources on the reticle stage.
5 . 請求項 4に記載の露光装置であって、 5. The exposure apparatus according to claim 4, wherein
前記第 2制御系は、 前記温度設定した第 2液体を、 前記複数の駆動源の各々に 対して循環させる複数の分岐流路と、  The second control system includes: a plurality of branch flow paths that circulate the temperature-set second liquid to each of the plurality of drive sources;
前記複数の分岐流路上の、 前記第 2液体が前記複数の駆動源の各々に供給され る前の位置に設置されるとともに、 前記各駆動源に供給される前記第 2液体の流 量を調節する複数の調節手段と、 を含む。  It is installed at a position on the plurality of branch channels before the second liquid is supplied to each of the plurality of driving sources, and adjusts a flow rate of the second liquid supplied to each of the driving sources. And a plurality of adjusting means.
6 . 請求項 5に記載の露光装置であって、 6. The exposure apparatus according to claim 5, wherein
前記第 2制御系は、 前記複数の駆動源の間における発熱量の比を算出する算出 手段を更に有し、  The second control system further includes a calculating unit that calculates a ratio of a calorific value between the plurality of drive sources,
前記複数の調節手段は、 前記算出された発熱量の比に応じて、 前記複数の駆動 源に対してそれぞれ循環させる前記第 2液体の流量をそれぞれ調節する。  The plurality of adjusting means adjust the flow rates of the second liquid respectively circulated to the plurality of driving sources according to the calculated ratio of the calorific values.
7 . 請求項 4から 6の何れか一項に記載の露光装置であって、 7. The exposure apparatus according to any one of claims 4 to 6, wherein
前記所定の駆動源の近傍に設けられ、 前記所定の駆動源に対して循環させる前 の前記第 2液体の温度を検出する第 1温度検出手段と、 ·  First temperature detection means provided in the vicinity of the predetermined drive source and configured to detect a temperature of the second liquid before being circulated to the predetermined drive source;
前記所定の駆動源の近傍に設けられ、 前記所定の駆動源を循環した後の前記第 The first drive source is provided near the predetermined drive source, and the second drive source after circulating the predetermined drive source is provided.
2液体の温度を検出する第 2温度検出手段とを有し、 2 having a second temperature detecting means for detecting the temperature of the liquid,
前記第 2制御系は、 前記第 1及び第 2温度検出手段の検出結果に基づいて、 前 記第 2液体の温度を設定する。 The second control system, based on the detection results of the first and second temperature detecting means, Set the temperature of the second liquid.
8 . 請求項 1から 7の何れか一項に記載の露光装置であって、 8. The exposure apparatus according to any one of claims 1 to 7, wherein
前記第 1制御系は、 少なくとも前記投影光学系を制御対象としており、 第 3液体の温度を前記第 1、 第 2制御系とは独立に設定し、 該温度設定した前 記第 3液体を前記基板ステージに対して循環させて、 前記基板ステージの温度を 制御する第 3制御系を更に有する。  The first control system sets at least the projection optical system as a control target, sets the temperature of the third liquid independently of the first and second control systems, and sets the temperature of the third liquid to the third liquid. And a third control system that circulates through the substrate stage to control the temperature of the substrate stage.
9 . 請求項 1から 7の何れか一項に記載の露光装置であって、 前記第 1制御系 は、 前記投影光学系と前記基板ステージとの両方を制御対象とする。 9. The exposure apparatus according to any one of claims 1 to 7, wherein the first control system controls both the projection optical system and the substrate stage.
1 0 . レチクルステージ上に保持されたレチクルのパターン像を、 基板ステー ジ上に保持された基板上に投影光学系を介して投影する露光装置であって、 前記投影光学系と前記基板ステージとのうちの少なく とも一方の物体に対して 第 1液体を循環させる際の第 1循環条件を設定するとともに、 前記第 1循環条件 の下で前記第 1液体を循環させて、 前記物体の温度を制御する第 1制御系と、 前記レチクルステージに対して第 2の液体を循環させる際の第 2循環条件を、 前記第 1循環条件とは独立して設定するとともに、 前記第 2循環条件の下で前記 第 2の液体を循環させて、 前記レチクルステージの温度を制御する第 2制御系と、 前記物体に循環させる前の前記第 1液体の温度と、 前記物体を循環させた後の 前記第 1液体の,温度とをそれぞれ検出する第 1検出手段と、 10. An exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system, wherein the projection optical system, the substrate stage, A first circulation condition for circulating the first liquid to at least one of the objects is set, and the first liquid is circulated under the first circulation condition to reduce a temperature of the object. A first control system to be controlled, and a second circulation condition for circulating the second liquid to the reticle stage, independently of the first circulation condition, and under the second circulation condition. A second control system for circulating the second liquid to control the temperature of the reticle stage; a temperature of the first liquid before circulating the object; and a second control system after circulating the object. 1 liquid, temperature and First detecting means for detecting,
前記レチクルステージに循環させる前の前記第 2液体の温度と、 前記レチクル ステージを循環させた後の前記第 2液体の温度どをそれぞれ検出する第 2検出手 段とを有し、  A temperature of the second liquid before circulating through the reticle stage; and a second detection means for detecting a temperature of the second liquid after circulating through the reticle stage, respectively.
前記第 1制御系は、 前記第 1検出手段の検出結果に基づいて前記第 1循環条件 を設定し、  The first control system sets the first circulation condition based on a detection result of the first detection unit,
前記第 2制御系は、 前記第 2検出手段の検出結果に基づいて前記第 2循環条件 を設定する。 The second control system sets the second circulation condition based on the detection result of the second detection means.
1 1 . 請求項 1 0に記載の露光装置であって、 11. The exposure apparatus according to claim 10, wherein
前記第 1循環条件は、 前記物体に前記第 1液体を循環させる前に設定される前 記第 1液体の温度、 流速、 流量のうちの少なくとも 1つを含み、  The first circulation condition includes at least one of a temperature, a flow rate, and a flow rate of the first liquid set before circulating the first liquid through the object,
前記第 2循環条件は、 前記レチクルステージに前記第 2液体を循環させる前に 設定される前記第 2液体の温度、 流速、 流量のうちの少なくとも 1つを含む。  The second circulation condition includes at least one of a temperature, a flow rate, and a flow rate of the second liquid set before circulating the second liquid through the reticle stage.
1 2 . 請求項 1 0または 1 1に記載の露光装置であって、 12. The exposure apparatus according to claim 10 or 11, wherein
前記レチクルステージは複数の駆動源を備えており、  The reticle stage has a plurality of driving sources,
前記第 2検出手段は、 前記レチクルステージ上の複数の駆動源のうち、 発熱量 の最も大きな所定の駆動源の近傍に設けられ、 前記所定の駆動源に対して循環さ せる前の前記第 2液体の温度を検出する第 1センサと、 前記所定の駆動源の近傍 に設けられ、 前記所定の駆動源に対して循環させた後の前記第 2液体の温度を検 出する第 2センサと、 を含む。  The second detection means is provided in the vicinity of a predetermined drive source having the largest heat generation amount among the plurality of drive sources on the reticle stage, and the second detection unit before being circulated to the predetermined drive source. A first sensor for detecting a temperature of the liquid, a second sensor provided near the predetermined drive source and detecting a temperature of the second liquid after being circulated with respect to the predetermined drive source; including.
1 3 . 請求項 1 2に記載の露光装置であって、 13. The exposure apparatus according to claim 12, wherein
前記第 2制御系は、 前記温度設定した第 2液体を前記複数の駆動源の各々に対 して循環させる複数の分岐流路と、  The second control system includes: a plurality of branch channels that circulate the temperature-set second liquid to each of the plurality of driving sources;
前記複数の分岐流路上の、 前記第 2液体が前記複数の駆動源の各々に供給され る前の位置に設置されるとともに、 前記各駆動源に供給される前記第 2液体の流 量を調節する複数の調節手段と、 を含む。  It is installed at a position on the plurality of branch channels before the second liquid is supplied to each of the plurality of driving sources, and adjusts a flow rate of the second liquid supplied to each of the driving sources. And a plurality of adjusting means.
1 4 . 請求項 1 3に記載の露光装置であって、 14. The exposure apparatus according to claim 13, wherein
前記第 2制御系は、 前記複数の駆動源の間における発熱量の比を算出する算出 手段を更に有し、  The second control system further includes a calculating unit that calculates a ratio of a calorific value between the plurality of drive sources,
前記複数の調節手段は、 前記算出された発熱量の比に応じて、 前記複数の駆動 源に対してそれぞれ循環させる前記第 2液体の流量をそれぞれ調節する。 The plurality of adjusting means adjust the flow rates of the second liquid respectively circulated to the plurality of driving sources according to the calculated ratio of the calorific values.
1 5 . 請求項 1 0から 1 4の何れか一項に記載の露光装置であって、 前記第 1 制御系は、 少なく とも前記基板ステージを制御対象とし、 15. The exposure apparatus according to any one of claims 10 to 14, wherein the first control system is configured to control at least the substrate stage,
前記投影光学系に対して第 3液体を循環させる際の第 3循環条件を、 前記第 1 及び第 2制御系とは独立して設定するとともに、 前記第 3循環条件の下で前記第 3液体を循環させて、 前記投影光学系の温度を制御する第 3制御系と、  A third circulation condition for circulating the third liquid with respect to the projection optical system is set independently of the first and second control systems, and the third liquid is circulated under the third circulation condition. A third control system for controlling the temperature of the projection optical system by circulating
前記投影光学系に循環させる前記第 3液体の温度を検出する第 3検出手段と、 を更に有し、  Third detecting means for detecting the temperature of the third liquid circulated through the projection optical system, further comprising:
前記第 3制御系は、 前記第 3検出手段の検出結果に基づいて前記第 3循璣条件 を設定する。  The third control system sets the third circulation condition based on a detection result of the third detection means.
1 6 . レチクルステージ上に保持されたレチクルのパターン像を、 基板ステー ジ上に保持された基板上に投影光学系を介して投影する露光装置であって、 前記レチクルステージ及び前記基板ステージは、 それぞれ複数の駆動源を備え、 前記複数の駆動源及び前記投影光学系のうち、 発熱量又は温度変化量が第 1所 定量以内のものを第 1制御対象として温度制御する第 1制御系と、 16. An exposure apparatus that projects a pattern image of a reticle held on a reticle stage onto a substrate held on a substrate stage via a projection optical system, wherein the reticle stage and the substrate stage include: A first control system comprising a plurality of drive sources, and a temperature control of the plurality of drive sources and the projection optical system having a heat generation amount or a temperature change amount within a first predetermined amount as a first control target;
前記複数の駆動源及び前記投影光学系のうち、 発熱量又は温度変化量が第 1所 定量より大きいものを第 2制御対象として、 前記第 1制御系とは独立して温度制 御する第 2制御系と、 を有する。  Of the plurality of drive sources and the projection optical system, those having a heat generation amount or a temperature change amount larger than a first fixed amount are set as a second control target, and a second temperature control is performed independently of the first control system. And a control system.
1 7 . 請求項 1 6に記載の露光装置であって、 17. The exposure apparatus according to claim 16, wherein
前記第 1制御系は、 前記第 1制御対象に対して第 1液体を循環させる際の第 1 循環条件を設定するとともに、 前記第 1循環条件の下で前記第 1液体を循環させ て前記第 1制御対象の温度を制御し、  The first control system sets a first circulation condition when circulating the first liquid with respect to the first control target, and circulates the first liquid under the first circulation condition to form the first liquid. 1 Control the temperature of the controlled object,
前記第 2制御系は、 前記第 2制御対象に対して第 2液体を循環させる際の第 2 循環条件を設定するとともに、 前記第 2循環条件の下で前記第 2液体を循環させ て前記第 2制御対象の温度を制御する。  The second control system sets a second circulation condition when circulating the second liquid with respect to the second control target, and circulates the second liquid under the second circulation condition to perform the second circulation. 2 Control the temperature of the control target.
1 8 . 請求項 1 7に記載の露光装置であって、 前記第 1循環条件は、 前記物体に前記第 1液体を循環させる前に設定される前 記第 1液体の温度、 流速、 流量のうちの少なくとも 1つを含み、 18. The exposure apparatus according to claim 17, wherein The first circulation condition includes at least one of a temperature, a flow rate, and a flow rate of the first liquid set before circulating the first liquid through the object,
前記第 2循環条件は、 前記レチクルステージに前記第 2液体を循環させる前に 設定される前記第 2液体の温度、 流速、 流量のうちの少なく とも 1つを含む。  The second circulation condition includes at least one of a temperature, a flow rate, and a flow rate of the second liquid set before circulating the second liquid through the reticle stage.
1 9 . 請求項 1 7または 1 8に記載の露光装置であって、 19. The exposure apparatus according to claim 17 or 18, wherein
前記第 1制御対象に含まれる複数の制御対象のうち、 前記発熱量又は前記温度 変化量の最も大きな制御対象の近傍に設けられ、 前記第 1液体の温度を測定する 第 1検出手段と、  A plurality of control targets included in the first control target, provided near the control target having the largest amount of heat generation or the temperature change, and a first detection unit that measures the temperature of the first liquid;
前記第 2制御対象に含まれる複数の制御対象のうち、 前記発熱量又は前記温度 変化量の最も大きな制御対象の近傍に設けられ、 前記第 2液体の温度を測定する 第 2検出手段とを更に有し、  And a second detection unit that is provided near the control target having the largest heat generation amount or the temperature change amount among the plurality of control targets included in the second control target, and that measures the temperature of the second liquid. Have
前記第 1、 第 2制御系はそれぞれ、 前記第 1、 第 2検出手段による検出結果に 基づいて、 前記第 1、 第 2循環条件を設定する。  The first and second control systems respectively set the first and second circulation conditions based on detection results by the first and second detection means.
2 0 . 請求項 1 6から 1 9の何れか一項に記載の露光装置であって、 20. The exposure apparatus according to any one of claims 16 to 19,
前記第 1制御対象は、 前記投影光学系と、 前記基板ステージに設けられた一部 の駆動源とを含み、  The first control target includes the projection optical system and a part of a driving source provided on the substrate stage,
前記第 2制御対象は、 前記レチクルステージに設けられた複数の駆動源を含む。  The second control target includes a plurality of driving sources provided on the reticle stage.
2 1 . 請求項 1 6から 2 0の何れか一項に記載の露光装置であって、 21. The exposure apparatus according to any one of claims 16 to 20, wherein
前記第 2制御対象は、 前記レチクルステージに設けられた複数の駆動源と、 前 記基板ステージに設けられた複数の駆動源とを含み、  The second control target includes a plurality of drive sources provided on the reticle stage, and a plurality of drive sources provided on the substrate stage.
前記第 2制御系は、 前記レチクルステージに設けられた複数の駆動源の温度を 管理する第 1温度管理部と、  A first temperature management unit that manages temperatures of a plurality of driving sources provided on the reticle stage;
前記基板ステージに設けられた前記複数の駆動源の温度を、 前記第 1温度管理 部とは独立して管理する第 2温度管理部と、 を含む。 A second temperature management unit that manages the temperature of the plurality of driving sources provided on the substrate stage independently of the first temperature management unit.
2 2 . 請求項 4又は 1 0〜1 5又は 1 9の何れか一項に記載の露光装置であつ て、 22. The exposure apparatus according to any one of claims 4 or 10 to 15 or 19,
前記第 1制御系は、 前記制御対象に循環させる前の前記第 1液体の温度と、 前 記制御対象を循環させた後の前記第 1液体の温度との平均温度に基づいて前記設 定を行い、  The first control system sets the setting based on an average temperature of a temperature of the first liquid before circulating the control target and a temperature of the first liquid after circulating the control target. Do
前記第 2制御系は、 前記レチクルステージに循環させる前の前記第 2液体の温 度と、 前記レチクルステージを循環させた後の前記第 2液体の温度との平均温度 に基づいて前記設定を行う。  The second control system performs the setting based on an average temperature of a temperature of the second liquid before circulating through the reticle stage and a temperature of the second liquid after circulating through the reticle stage. .
2 3 . 請求項 1から 2 2の何れか一項に記載の露光装置であって、 23. The exposure apparatus according to any one of claims 1 to 22, wherein
前記第 2制御系は、 前記第 2液体の温度を所定温度よりも過冷却または過加熱 する第 1調節器と、  A first controller for supercooling or overheating the temperature of the second liquid at a temperature lower than a predetermined temperature;
前記第 1調節器よりも前記レチクルステージの近傍に設置され、 前記第 1調節 器により温度設定された前記第 2液体の温度を前記所定温度に調節する第 2調節 器と、 を含む。  A second adjuster that is installed closer to the reticle stage than the first adjuster and adjusts the temperature of the second liquid, the temperature of which is set by the first adjuster, to the predetermined temperature.
2 4 . 請求項 1から 2 3の何れか一項に記載の露光装置であって、 前記温度制 御に使用される各液体は、 同一種類の液体である。 24. The exposure apparatus according to any one of claims 1 to 23, wherein the liquids used for the temperature control are the same type of liquid.
2 5 . 請求項 1から 2 4の何れか一項に記載の露光装置であって、 前記第 1制 御系と前記第 2制御系との少なく とも一方は、 1つの制御対象に対して前記液体 を循環させる際の循環経路を複数有する。 25. The exposure apparatus according to any one of claims 1 to 24, wherein at least one of the first control system and the second control system is the one for one control target. It has multiple circulation paths for circulating liquid.
2 6 . 請求項 2 5に記載の露光装置であって、 26. The exposure apparatus according to claim 25, wherein
前記複数の循環経路をそれぞれ循環する冷媒の、 前記制御対象に対する循環方 向は、 前記循環経路毎に互いに異なる。  Circulation directions of the refrigerant circulating through the plurality of circulation paths with respect to the control target are different from each other for each of the circulation paths.
2 7 . デバイス製造方法であって、 請求項 1から 2 6の何れか一項に記載の露光装置を用いて、 前記レチクル上 形成されたパターンを前記基板上に転写する工程を含む。 2 7. A device manufacturing method, And transferring the pattern formed on the reticle onto the substrate using the exposure apparatus according to any one of claims 1 to 26.
PCT/JP2003/003003 2002-03-15 2003-03-13 Aligner and device manufacuring method WO2003079418A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003577318A JPWO2003079418A1 (en) 2002-03-15 2003-03-13 Exposure apparatus and device manufacturing method
AU2003220867A AU2003220867A1 (en) 2002-03-15 2003-03-13 Aligner and device manufacuring method
KR10-2004-7014135A KR20040102033A (en) 2002-03-15 2003-03-13 Aligner and device manufacturing method
US10/938,633 US20050088634A1 (en) 2002-03-15 2004-09-13 Exposure system and device production process
US11/204,110 US20060007415A1 (en) 2002-03-15 2005-08-16 Exposure system and device production process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-072640 2002-03-15
JP2002072640 2002-03-15
JP2003002285 2003-01-08
JP2003-002285 2003-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/938,633 Continuation US20050088634A1 (en) 2002-03-15 2004-09-13 Exposure system and device production process

Publications (1)

Publication Number Publication Date
WO2003079418A1 true WO2003079418A1 (en) 2003-09-25

Family

ID=28043731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003003 WO2003079418A1 (en) 2002-03-15 2003-03-13 Aligner and device manufacuring method

Country Status (5)

Country Link
JP (1) JPWO2003079418A1 (en)
KR (1) KR20040102033A (en)
AU (1) AU2003220867A1 (en)
TW (1) TWI300953B (en)
WO (1) WO2003079418A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222165A (en) * 2005-02-08 2006-08-24 Canon Inc Exposure device
JP2006235205A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Temperature control device and temperature control method
JP2006269762A (en) * 2005-03-24 2006-10-05 Nikon Corp Exposure device
JP2007180535A (en) * 2005-12-22 2007-07-12 Asml Netherlands Bv Lithographic device, method for manufacturing device and method for calibrating the lithographic device
JP2008060567A (en) * 2006-08-29 2008-03-13 Asml Netherlands Bv Lithography apparatus and motor cooling device
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2012009861A (en) * 2010-06-23 2012-01-12 Asml Netherlands Bv Lithography device and method of cooling lithography device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8243254B2 (en) 2005-12-06 2012-08-14 Nikon Corporation Exposing method, exposure apparatus, and device fabricating method
US8902401B2 (en) 2006-05-09 2014-12-02 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8913228B2 (en) * 2006-04-06 2014-12-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025126B2 (en) 2007-07-31 2015-05-05 Nikon Corporation Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
JP2017526952A (en) * 2014-07-23 2017-09-14 エーエスエムエル ネザーランズ ビー.ブイ. Adjustment system and lithographic apparatus comprising the adjustment system
JP2017223980A (en) * 2011-11-17 2017-12-21 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102395439B1 (en) * 2020-05-18 2022-05-06 성균관대학교산학협력단 Device for lift-off process
JP2022020088A (en) * 2020-06-26 2022-02-01 キヤノン株式会社 Cooling device, semiconductor manufacturing apparatus and semiconductor manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916340A (en) * 1988-01-22 1990-04-10 Canon Kabushiki Kaisha Movement guiding mechanism
JPH0422118A (en) * 1990-05-17 1992-01-27 Canon Inc Semiconductor aligner
US5959732A (en) * 1996-04-10 1999-09-28 Nikon Corporation Stage apparatus and a stage control method
JP2000216079A (en) * 1999-01-25 2000-08-04 Nikon Corp Stage device and aligner
US6153877A (en) * 1997-07-11 2000-11-28 Oki Electric Industry Co. Ltd. Projection exposure apparatus
US6226073B1 (en) * 1998-04-23 2001-05-01 Canon Kabushiki Kaisha Stage system with driving mechanism, and exposure apparatus having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916340A (en) * 1988-01-22 1990-04-10 Canon Kabushiki Kaisha Movement guiding mechanism
JPH0422118A (en) * 1990-05-17 1992-01-27 Canon Inc Semiconductor aligner
US5959732A (en) * 1996-04-10 1999-09-28 Nikon Corporation Stage apparatus and a stage control method
US6153877A (en) * 1997-07-11 2000-11-28 Oki Electric Industry Co. Ltd. Projection exposure apparatus
US6226073B1 (en) * 1998-04-23 2001-05-01 Canon Kabushiki Kaisha Stage system with driving mechanism, and exposure apparatus having the same
JP2000216079A (en) * 1999-01-25 2000-08-04 Nikon Corp Stage device and aligner

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US10345710B2 (en) 2004-01-20 2019-07-09 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus and measuring device for a projection lens
US8605252B2 (en) 2004-02-04 2013-12-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101309428B1 (en) * 2004-02-04 2013-09-23 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US10048602B2 (en) 2004-02-04 2018-08-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006222165A (en) * 2005-02-08 2006-08-24 Canon Inc Exposure device
JP2006235205A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Temperature control device and temperature control method
JP2006269762A (en) * 2005-03-24 2006-10-05 Nikon Corp Exposure device
US8724077B2 (en) 2005-04-18 2014-05-13 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8243254B2 (en) 2005-12-06 2012-08-14 Nikon Corporation Exposing method, exposure apparatus, and device fabricating method
US8547520B2 (en) 2005-12-06 2013-10-01 Nikon Corporation Exposing method, exposure apparatus, and device fabricating method
JP2007180535A (en) * 2005-12-22 2007-07-12 Asml Netherlands Bv Lithographic device, method for manufacturing device and method for calibrating the lithographic device
US7746447B2 (en) 2005-12-22 2010-06-29 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and method of calibrating a lithographic apparatus
JP4602317B2 (en) * 2005-12-22 2010-12-22 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, device manufacturing method, and lithographic apparatus calibration method
US8913228B2 (en) * 2006-04-06 2014-12-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9810996B2 (en) 2006-05-09 2017-11-07 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8902401B2 (en) 2006-05-09 2014-12-02 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
JP2008060567A (en) * 2006-08-29 2008-03-13 Asml Netherlands Bv Lithography apparatus and motor cooling device
US7916267B2 (en) 2006-08-29 2011-03-29 Asml Netherlands B.V. Lithographic apparatus, and motor cooling device
US8879044B2 (en) 2006-08-29 2014-11-04 Asml Netherlands B.V. Lithographic apparatus, and motor cooling device
US9025126B2 (en) 2007-07-31 2015-05-05 Nikon Corporation Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
JP2012009861A (en) * 2010-06-23 2012-01-12 Asml Netherlands Bv Lithography device and method of cooling lithography device
JP2017223980A (en) * 2011-11-17 2017-12-21 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2017526952A (en) * 2014-07-23 2017-09-14 エーエスエムエル ネザーランズ ビー.ブイ. Adjustment system and lithographic apparatus comprising the adjustment system
US10114298B2 (en) 2014-07-23 2018-10-30 Asml Netherlands B.V. Conditioning system and lithographic apparatus comprising a conditioning system

Also Published As

Publication number Publication date
TW200305925A (en) 2003-11-01
AU2003220867A1 (en) 2003-09-29
JPWO2003079418A1 (en) 2005-07-21
KR20040102033A (en) 2004-12-03
TWI300953B (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4505668B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US20060007415A1 (en) Exposure system and device production process
JP4205054B2 (en) Exposure system and device manufacturing method
US7253875B1 (en) Lithographic apparatus and device manufacturing method
KR101619280B1 (en) Projection system and lithographic apparatus
KR100938913B1 (en) Lithographic apparatus having encoder type position sensor system
WO2003079418A1 (en) Aligner and device manufacuring method
KR20060018879A (en) Heat pipe with temperature control
JP5455166B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2005276932A (en) Aligner and device-manufacturing method
JP4432139B2 (en) Stage apparatus and exposure apparatus
US7460213B2 (en) Alignment apparatus, exposure apparatus, and device manufacturing method using exposure apparatus
US8836913B2 (en) Lithographic apparatus having an encoder type position sensor system
JP2005064229A (en) Electromagnetic actuator cooling device, stage device, and exposure system
JP2005136004A (en) Aligner and manufacturing method for device
EP1124161A2 (en) Lithographic projection apparatus having a temperature controlled heat shield
JP4759930B2 (en) Exposure apparatus and device manufacturing method
JP2004153092A (en) Aligner
JP2012033922A (en) Exposure apparatus, and method for manufacturing device
JP2010200452A (en) Motor device, stage device, and aligner
JP2009049168A (en) Temperature adjustment structure, stage apparatus and exposure apparatus
JP2004235461A (en) Exposure system
JP2014157899A (en) Drive device, exposure device, and method of manufacturing device
JP2006066687A (en) Method of regulating temperature, stage device, exposure device and method of manufacturing device
JP2010141196A (en) Temperature control unit, temperature control method, stage device, and exposure device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003577318

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047014135

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10938633

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047014135

Country of ref document: KR

122 Ep: pct application non-entry in european phase