WO2003081001A1 - Filtre en nid d'abeille pour clarification de gaz d'echappement - Google Patents

Filtre en nid d'abeille pour clarification de gaz d'echappement Download PDF

Info

Publication number
WO2003081001A1
WO2003081001A1 PCT/JP2003/003495 JP0303495W WO03081001A1 WO 2003081001 A1 WO2003081001 A1 WO 2003081001A1 JP 0303495 W JP0303495 W JP 0303495W WO 03081001 A1 WO03081001 A1 WO 03081001A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
material layer
sealing material
filter
honeycomb
Prior art date
Application number
PCT/JP2003/003495
Other languages
English (en)
French (fr)
Inventor
Toshiaki Shibata
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=28449114&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003081001(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to JP2003578709A priority Critical patent/JP4229843B2/ja
Priority to US10/508,415 priority patent/US20050169819A1/en
Priority to EP03712833A priority patent/EP1489277B2/en
Priority to DE60317174T priority patent/DE60317174T3/de
Publication of WO2003081001A1 publication Critical patent/WO2003081001A1/ja
Priority to US12/033,417 priority patent/US7713325B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2462Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure the outer peripheral sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2466Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the adhesive layers, i.e. joints between segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths

Definitions

  • the present invention relates to an exhaust gas purification honeycomb filter used as a filter for removing particulate matter and the like in exhaust gas exhausted from an internal combustion engine such as a diesel engine.
  • a large number of through holes 11 are made of cordierite or the like arranged in parallel in the longitudinal direction with the wall 13 separated.
  • a structure having a sealing material layer 14 formed on the outer periphery of the columnar body 15 has been proposed.
  • a wall 13 separating the through holes 11 functions as a filter. (See, for example, real equity 7–183).
  • the columnar body 15 is formed of a single sintered body, and the through holes 11 formed in the columnar body 15 have the inlet side of the exhaust gas as shown in FIG. 1 (b). Or, any one of the outlet side is sealed by the filler 12 and the exhaust gas which has flowed into one through hole 11 always passes through the wall portion 13 separating the through holes 11 and then the other through holes Discharge from 1 1 It is supposed to be
  • the sealing material layer 14 is provided for the purpose of reinforcing the outer peripheral portion of the columnar body 15 or improving the heat insulating property of the honeycomb filter 10.
  • honeycomb filter made of a sintered silicon carbide is often used.
  • the inlet or outlet end of the exhaust gas is filled with the filler 32.
  • the gas which has been sealed and flows into one through hole 31 always passes through the partition 33 which necessarily separates the through hole 31 and then flows out from the other through hole 31.
  • the sealing material layer 24 is provided for the purpose of preventing the exhaust gas from leaking out from the outer peripheral portion of the ceramic block 25 when the honeycomb filter 20 is installed in the exhaust passage of the internal combustion engine. is there.
  • a honeycomb filter 10 having such a configuration is installed in an exhaust passage of an internal combustion engine, and particulates in exhaust gas discharged from the internal combustion engine pass through the honeycomb filter as a wall portion.
  • the exhaust gas is trapped by 13 and partition walls 3 3.
  • honeycomb filter 20 shown in FIG. 2 is extremely excellent in heat resistance and easy to be regenerated, etc., it is used in various large vehicles, vehicles equipped with diesel engines, etc. It is done.
  • the above-mentioned sealing material layer was not a completely compact body, and a slight amount of exhaust gas flowed into the inside thereof. Therefore, when a honeycomb filter containing a large amount of organic components in the seal material layer as described above is installed and used in an exhaust passage of a large vehicle, a vehicle equipped with a diesel engine, etc., it flows into the seal material layer.
  • the above-mentioned organic components were discharged to the outside by the exhaust gas, and the amount of organic components (HC) in the exhaust gas was to be greatly increased.
  • a honeycomb filter supporting a catalyst is also proposed for the purpose of decomposing and removing the organic components in the exhaust gas discharged to the outside.
  • the above-mentioned catalyst could not sufficiently decompose and remove the organic component. Summary of the invention
  • the present invention has been made to solve these problems, and it is possible to add most of the amount of organic components in the exhaust gas to be discharged, even if a relatively large number of sealing material layers are present therein. It is an object of the present invention to provide an exhaust gas purifying honeycomb filter.
  • a sheath material layer is formed on the outer peripheral portion of a porous ceramic columnar body in which a large number of through holes are arranged in parallel in the longitudinal direction with the wall portions separated.
  • the ratio S a of the area occupied by the sozole material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 0.5% or more, and A ratio V ⁇ of the organic component to the exhaust gas purification honeycomb filter is not more than 0.5% by weight.
  • a large number of through holes are separated.
  • a plurality of rectangular column-shaped porous ceramic members arranged side by side in the longitudinal direction across the wall are united via the sealing material layer to form a ceramic block, and the sealing material layer is also formed on the outer peripheral portion of the ceramic block.
  • An exhaust gas purification honeycomb filter configured such that partition walls separating the through holes function as a particle collection filter;
  • the ratio S ⁇ of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the exhaust gas purification honeycomb filter is 2% or more, and for exhaust gas purifying honeycomb filter, and is characterized in that the ratio V] 3 of the organic component is 0. 5 wt ° / 0 or less.
  • honeycomb filter for exhaust gas purification according to the first invention is simply referred to as the honeycomb filter according to the first invention
  • the honeycomb filter for exhaust gas purification according to the second invention may be referred to simply as the honeycomb filter of the present invention, unless the two are particularly distinguished.
  • FIG. 1 (a) is a perspective view schematically showing an example of the first exhaust gas purifying honeycomb filter of the present invention
  • FIG. 1 (b) is a longitudinal sectional view along line AA thereof.
  • FIG. 2 is a perspective view schematically showing an example of the exhaust gas purification honeycomb filter of the second present invention.
  • Fig. 3 (a) is a perspective view schematically showing a porous ceramic member used in the second-embodimentd eight-cam filter of the present invention shown in Fig. 2, and Fig. 3 (b) is a B-B view thereof.
  • FIG. 1 is a perspective view schematically showing a porous ceramic member used in the second-embodimentd eight-cam filter of the present invention shown in Fig. 2, and Fig. 3 (b) is a B-B view thereof.
  • FIG. 4 is a side view schematically showing how to manufacture the honeycomb filter of the second present invention.
  • FIG. 5 is a graph showing the results of evaluation test 1 and evaluation test 2 of honeycomb filters according to Examples 1 to 4 and Comparative Example 1.
  • FIG. 6 is a graph showing the results of evaluation test 1 and evaluation test 2 of honeycomb filters according to Examples 5 to 8 and Comparative Example 2.
  • FIG. 7 is a graph showing the results of evaluation test 1 and evaluation test 2 of honeycomb filters according to Examples 9 to 12 and Comparative Example 3.
  • FIG. 8 is a graph showing the results of evaluation test 1 and evaluation test 2 of honeycomb filters according to Comparative Examples 4 to 8.
  • FIG. 9 is a graph showing the results of evaluation test 1 and evaluation test 2 of honeycomb filters according to Examples 1 to 16 and Comparative Example 9.
  • FIG. 10 is a graph showing the results of evaluation test 1 and evaluation test 2 of honeycomb filters according to Examples 1 to 20 and Comparative Example 10.
  • FIG. 11 is a graph showing the results of evaluation test 1 and evaluation test 2 of honeycomb filters according to Examples 2 to 24 and Comparative Example 1.
  • FIG. 12 is a graph showing the results of evaluation test 1 and evaluation test 2 of the fly cam filter according to Comparative Examples 12 to 16. Explanation of sign
  • honeycomb filter of the first invention will be described.
  • the seal material layer is formed on the outer peripheral portion of a porous ceramic columnar body in which a large number of through holes are arranged in parallel in the longitudinal direction with wall portions separated.
  • the wall is configured to act as a particle collection filter ⁇
  • the ratio S a of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the exhaust gas cleaning honeycomb filter is 0.5% or more.
  • a ratio V of the organic component to the exhaust gas purification honeycomb filter is not more than 0.5% by weight.
  • honeycomb filter of the first invention for example, one substantially similar to the honeycomb filter 10 shown in FIG. 1 can be mentioned, and a large number of through holes separate the wall portions in the longitudinal direction.
  • a sealing material layer is formed on the outer periphery of the juxtaposed columnar bodies. Further, a wall portion separating the through holes functions as a filter.
  • the sealing material layer is provided for the purpose of reinforcing the outer peripheral portion of the columnar body or improving the heat insulating property of the honeycomb filter of the first present invention.
  • the shape of the first honeycomb filter of the present invention is not limited to the cylindrical shape as shown in FIG. 1, and it may be, for example, an optional shape such as an elliptic cylindrical shape or a prismatic shape. it can.
  • the sealing material layer is formed only on the outer periphery of the columnar body, and the sealing material with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the ratio of the area occupied by the layer S ⁇ is 0.5% or more. That is, in the fly cam filter according to the first aspect of the present invention, a relatively large number of seal material layers are present. Note that, for example, when the radius of the circle formed by the sealing material layer 14 and the columnar body 15 at the end face of the cylindrical honeycomb filter 10 shown in FIG. It is defined by (S 2 / S 1) X 100 from the area S 1 represented by r 2 and the area S 2 of the sealing material layer 14 at the end face.
  • the seal material layer present in the cross section including the through holes in the direction perpendicular to the through holes of the honeycomb filter is very thin. Exhaust gas does not easily flow in. Therefore, even if a large amount of organic component is contained, for example, the ratio of the organic component to the honeycomb filter to be described later exceeds 0.5% by weight, this organic component is difficult to be discharged to the outside As a result, when the honeycomb filter is used, the increase in the amount of organic components in the exhaust gas discharged to the outside is very small. However, if the above-mentioned S ⁇ is less than 0.5%, the area of the sealing material layer is too small, so that the isostatic strength (isotropic pressure failure strength) of the cam filter becomes insufficient. .
  • the ratio V ⁇ of the organic component to the fly cam filter of the first present invention is 0.5% by weight or less.
  • V CK when the total weight of the honeycomb filter of the first invention of the present invention is V 1 and the total weight of the organic components contained in the above fly cam filter is V 2, (V 2 ⁇ VI) X It is defined by 100.
  • the ratio of the organic component to the first honeycomb filter of the present invention is desirably 0.1% by weight or less.
  • the fly cam filter according to the first aspect of the present invention in which a relatively large number of sealing material layers are present, the amount of organic components in the exhaust gas exhausted to the outside can be further reduced.
  • the organic component present in the sealing material layer is added with the catalyst In the heat treatment for absorbing the slurry containing the catalyst and fixing the catalyst, the sealing material layer is prevented from causing rapid expansion and the like to reduce the sealing performance of the sealing material layer.
  • the organic components present in the sealing material layer can prevent the catalyst from being interfered with to prevent the catalytic action of the catalyst from being interfered with, so that more exhaust gas can be purified. Presumed.
  • the ratio V a of the organic component to the honeycomb filter of the first invention there is no particular limitation on the method of reducing the content to 0.5% by weight or less, for example, a method of adjusting the raw material of the sealing material layer constituting the honeycomb filter of the first present invention described later, the blending ratio, etc. After manufacturing a honeycomb structure containing the organic component of the above, a method of heating the honeycomb structure to decompose and remove the organic component can be mentioned.
  • the material constituting the sealing material layer is not particularly limited, and examples thereof include materials comprising an inorganic binder, an organic binder, inorganic fibers and inorganic particles.
  • examples of the inorganic binder include silica sol, alumina sol and the like. These may be used alone or in combination of two or more. Among the above inorganic binders, silica sol is desirable.
  • the lower limit of the content of the inorganic binder is preferably 1% by weight, and more preferably 5% by weight / 0 in solid content.
  • the upper limit of the content of the inorganic binder is preferably 30% by weight, more preferably 15% by weight, and still more preferably 9% by weight in terms of solid content. If the content of the inorganic binder is less than 1% by weight, the adhesive strength may be reduced, while if it exceeds 30% by weight, the thermal conductivity may be reduced.
  • the organic binder include polyvinyl alcohol, methyl cellulose, ethyl cellulose, and carboxymethyl cellulose. These may be used alone or in combination of two or more. Of the above organic binders, carboxymethylcellulose is preferred.
  • the lower limit of the content of the organic binder is a solid content of 0.1 weight 0 /. Is desirable, 0.2% by weight is more desirable, and 0.4% by weight is even more desirable.
  • the upper limit of the content of the organic binder is a solid 5. 0 wt% is desirable 1. 0 wt%, more preferably 0. 6 wt ° / 0 is further desirable. If the content of the organic binder is less than 0.1% by weight, it may be difficult to suppress the migration of the sealing material layer.
  • the ratio V of the organic component to the honeycomb filter to be manufactured may exceed 0.5% by weight, and it is necessary to carry out a heat treatment as a post-process when manufacturing the honeycomb filter.
  • the inorganic fibers include ceramic fibers such as silica-alumina, mullite, alumina, silica and the like. These may be used alone or in combination of two or more. Among the above-mentioned inorganic fibers, silica-aluminum fibers are desirable.
  • the lower limit of the content of the inorganic fiber is preferably 10% by weight, more preferably 20% by weight in terms of solid content.
  • the upper limit of the content of the inorganic fiber is preferably 70% by weight, more preferably 40% by weight, and still more preferably 30% by weight in terms of solid content. If the content of the inorganic fiber is less than 10% by weight, the elasticity may be reduced, while if it exceeds 70% by weight, the thermal conductivity is reduced and the effect as an elastic body is reduced. Sometimes.
  • the inorganic particles include carbides, nitrides, and the like, and specific examples include inorganic powders or whiskers made of silicon carbide, silicon nitride, boron nitride, and the like. These may be used alone or in combination of two or more. Among the above-mentioned inorganic particles, silicon carbide which is excellent in thermal conductivity is desirable.
  • the lower limit of the content of the inorganic particles is 3 wt. /. Is desirable, 10% by weight is more desirable, and 20% by weight is even more desirable.
  • the upper limit of the content of the inorganic particles is preferably 80% by weight / 0 , more preferably 60% by weight, and still more preferably 40% by weight in terms of solid content. If the content of the inorganic particles is less than 3% by weight, the thermal conductivity may be lowered, while 80% by weight. If / 0 is exceeded, the adhesion strength may be reduced if the wood veneer layer is exposed to high temperatures.
  • the lower limit of the shot content of the inorganic fiber is preferably 1% by weight, and the upper limit is preferably 10% by weight, more preferably 5% by weight, and still more preferably 3% by weight.
  • the lower limit of the fiber length is preferably 1 mm, the upper limit is preferably 10 O mm, more preferably 5 O mm, and still more preferably 20 mm.
  • the shot content less than 1% by weight is difficult in terms of production, and when the shot content exceeds 10% by weight, the outer periphery of the columnar body may be damaged.
  • the fiber length is less than 1 mm, it is difficult to form a honeycomb filter having inertia, and if it exceeds 10 O mm, it becomes easy to take a form like a pill, so As the scattering becomes worse, the thickness of the sealing material layer can not be reduced.
  • the lower limit of the particle diameter of the inorganic particles is preferably 0. ⁇ ⁇ ⁇ ⁇ , and more preferably 0. ⁇ ⁇ ⁇ .
  • the upper limit of the particle size of the inorganic particles is preferably 100 ⁇ m, more preferably 15 ⁇ m, and still more preferably 10 ⁇ . If the particle size of the inorganic particles is less than 0.01 / xm, the cost may be high. On the other hand, if the particle size of the inorganic particles exceeds 100 Aim, the adhesive strength and the thermal conductivity decrease. Can lead to
  • the organic component contained in the honeycomb filter of the first present invention is the organic binder, and the ratio V ⁇ of the organic binder to the honeycomb filter of the first present invention is It is 0.5% by weight or less.
  • the first present invention HAKUM filter according to the first present invention has a relatively small amount of organic components even though there are relatively many sealing material layers.
  • the catalyst is actually used, the above-mentioned hydrocarbons, CO, NO x and other toxic gases contained in the exhaust gas exhausted to the outside are hardly added, and are attributed to the organic components contained in the honeycomb filter. Problem does not occur.
  • the material of the porous body made of the porous ceramic is not particularly limited.
  • nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, titanium nitride, etc., silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, Examples thereof include carbide ceramics such as tungsten carbide, oxide ceramics such as alumina, zirconia, cojujuite and mullite, etc.
  • oxide ceramics such as cordierite are used. It can be manufactured inexpensively, has a relatively low thermal expansion coefficient, and is not oxidized during use.
  • a silicon-containing ceramic in which metallic silicon is compounded, or a ceramic bonded with silicon or a silicate compound.
  • the average pore diameter of the first honeycomb filter of the present invention is preferably 5 to 100 ⁇ . If the average pore size is less than 5 t m, particulates may easily clog. On the other hand, when the average pore diameter exceeds 100 ⁇ , the particulate film may pass through the pores, and the particulates may not be collected and may not function as a filter.
  • the pore diameter of the above-mentioned porous ceramic member can be measured by a conventionally known method such as measurement with a mercury penetration method or a scanning electron microscope (S E M).
  • the porosity of the fly cam filter according to the first aspect of the present invention is not particularly limited, but preferably 40 to 80%. If the porosity is less than 40%, clogging may occur immediately. On the other hand, if the porosity exceeds 80%, the strength of the columnar body may decrease and it may be easily broken.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, and a measurement by a scanning electron microscope (S ⁇ ).
  • the particle size of the ceramic used in producing such a columnar body there is no particular limitation on the particle size of the ceramic used in producing such a columnar body, but it is preferable that the shrinkage is small in the subsequent firing step, for example, an average particle size of about 0.3 to 50 ⁇ m. It is desirable that a combination of 100 parts by weight of the powder having the powder and 5 to 6 parts by weight of the powder having an average particle diameter of about 0.1 to 1.0 ⁇ m. By mixing the ceramic powder of the above particle size in the above composition, a cylindrical body made of porous ceramic can be manufactured.
  • the exhaust gas purification catalyst be carried on the columnar body of the first honeycomb filter of the present invention.
  • the honeycomb filter according to the first aspect of the present invention functions as a filter for collecting particulates in the exhaust gas, and also contains HC, CO, and the like in the exhaust gas. This is because it can function as a catalytic converter that reliably purifies harmful components such as NO x and HC and the like generated from organic components slightly contained in the first honeycomb filter of the present invention.
  • the exhaust gas purification catalyst is not particularly limited, and examples thereof include noble metals such as platinum, palladium and rhodium. These noble metals may be used alone or in combination of two or more.
  • the above-mentioned exhaust gas catalyst for oxidizing exhaust gas which is made of the above-mentioned noble metal
  • the above-mentioned catalyst for purifying exhaust gas is not limited to the above-mentioned noble metal.
  • the catalyst can purify harmful components such as HC and NO x, any catalyst such as rare earth, alkali metal, alkaline earth metal and the like can be mentioned.
  • the exhaust gas purification catalyst is supported on the honeycomb filter of the first present invention, C 0, HC, NO X and the like contained in the exhaust gas discharged from the internal combustion engine such as an engine etc.
  • the reaction shown in the following reaction formulas (1) to (3) is promoted mainly by the contact between the harmful components of the catalyst and the catalyst for purifying exhaust gas.
  • c of the first aspect of the present invention - the catalyst for the exhaust gas purification to cam the filter is carried, CO contained in the exhaust gas, harmful components such as HC and NO X, C_ ⁇ 2, H 2 It will be purified to 0 and N 2 and discharged to the outside.
  • the ratio of the area occupied by the seal material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 0.5.
  • the ratio of the organic component present in the inside is 0.5 weight. / 0 or less and for very little, even the first of the onset Ming honeycomb filter A if installed and used in an exhaust passage of an internal combustion engine such as an engine, the organic components in exhaust gases to be discharged There is almost no increase.
  • the honeycomb filter according to the first aspect of the present invention supports the exhaust gas purification catalyst on the columnar body and functions as a filter that collects particulates in the exhaust gas.
  • the organic component slightly contained in the honeycomb filter according to the first aspect of the present invention is discharged to the outside when the catalyst is also functioned as a catalytic converter, the organic component can be reliably removed from the exhaust gas.
  • the catalyst is decomposed and purified.
  • the ceramic block of the present invention is a ceramic block in which a plurality of rectangular column shaped porous ceramic members, in which a large number of through holes are arranged in parallel in the longitudinal direction with a partition wall separated
  • An exhaust gas purification cam filter having a sealing material layer also formed on the outer peripheral portion of the ceramic block, and the partition walls separating the through holes functioning as a particle collection filter.
  • the ratio S ⁇ of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the exhaust gas purification honeycomb filter is 2% or more, and It is characterized in that the ratio V of the organic component to the exhaust gas purification honeycomb filter is 0.5% by weight or less.
  • the honeycomb filter of the second invention for example, one substantially similar to the honeycomb filter 20 shown in FIG. 2 can be mentioned, and a plurality of porous ceramic members are united through the sheath material layer. As a result, a ceramic block is formed, and a sealing material layer is also formed around the ceramic block. Further, in this porous ceramic member, a large number of through holes are arranged in parallel in the longitudinal direction, and a partition wall separating the through holes functions as a filter.
  • the shape of the second main filter of the honeycomb filter is as shown in FIG.
  • the shape There is no limitation to the shape, and for example, one having an arbitrary shape such as an elliptic cylindrical shape or a prismatic shape can be mentioned.
  • the sealing material layer is formed between the porous ceramic members and on the outer periphery of the ceramic block, and the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the ratio S of the area occupied by the sealing material layer to the above is 2% or more. That is, in the honeycomb filter of the second invention, a relatively large number of sealing material layers are present.
  • the seal material layer present in the cross section including the through holes in the direction perpendicular to the through holes of the cam filter is very thin, and the exhaust gas is absorbed in the seal material layer. It is hard to flow. Therefore, even if the organic component is contained in a large amount such that the ratio V of the organic component to the honeycomb filter described later exceeds 0.5% by weight, this organic component is discharged to the outside. The increase in the amount of organic components in the exhaust gas exhausted to the outside when the honeycomb filter is used becomes very small. However, if the above S / 3 is less than 2%, the area of the sealing material layer is small! Because of too much, the isostatic strength (isotropic pressure failure strength) of the honeycomb filter becomes insufficient.
  • the ratio of the organic component to the second inventive honeycomb filter is not more than 0.5% by weight.
  • the ratio V 1 of organic components to the honeycomb filter of the second present invention is desirably 0.1% by weight or less.
  • the honeycomb filter of the second invention of the present invention in which a relatively large number of sealing material layers are present, the amount of organic components in exhaust gas discharged to the outside can be further reduced.
  • the organic component present in the sealing material layer is added with the catalyst In the heat treatment for absorbing the slurry containing the catalyst and fixing the catalyst, the sealing material layer is prevented from causing rapid expansion and the like to reduce the sealing performance of the sealing material layer.
  • the organic components present in the sealing material layer can prevent the catalyst from being interfered with to prevent the catalytic action of the catalyst from being interfered with, so that more exhaust gas can be purified. Presumed.
  • the method of setting the ratio V / 3 of the organic component to 0.5% by weight or less to the honeycomb filter of the second invention is not particularly limited.
  • the fly cam of the second invention described later After manufacturing a honeycomb structure containing a large amount of organic components and a method of adjusting the raw materials of the sealing material layer constituting the filter, the compounding ratio, etc., the honeycomb structure is heated to decompose the organic components. And removal methods.
  • the material constituting the sealing material layer is not particularly limited.
  • the same inorganic binder, organic binder, inorganic fiber and inorganic particles as the material of the sealing material layer described in the fly cam filter of the first invention described above It is possible to mention things that consist of
  • the organic component contained in the second cam filter of the present invention is the organic binder
  • the ratio V of the organic binder to the honeycomb filter of the second present invention is 0.5 weight. /. It is below.
  • the cam filter in which a relatively large number of sealing material layers are present, contains such an organic component, when heated in an atmosphere containing sufficient oxygen, the organic component is , C ⁇ 2 and H 2 0 are easily decomposed and become toxic gases. Yes. Because the exhaust gas purification honeycomb filter is installed at the part where exhaust gas from the engine with less oxygen is discharged, organic components are not completely decomposed, and hydrocarbons such as methane, methane, ethylene, propylene, etc. It is easily emitted as toxic gases such as CO, NO x etc.
  • the HACAM filter of the second invention of the present invention has a very small amount of organic components even if there are relatively many seal material layers, so the HACAM of the second invention of the present invention.
  • the above-mentioned hydrocarbons such as hydrocarbons, CO, and NO x contained in the exhaust gas discharged to the outside hardly increase, and the organic components contained in the Hayucam filter There is no problem caused by
  • the material of the porous ceramic member is not particularly limited, and examples thereof include nitride ceramics, carbide ceramics, oxide ceramics and the like similar to the material of the columnar body described in the first present honeycomb filter described above. Of these, it is desirable to use carbon dioxide which has high heat resistance, excellent mechanical properties and high thermal conductivity. It is possible to use a silicon-containing ceramic in which metallic silicon is mixed with the above-mentioned ceramic, or a ceramic bonded with silicon or a silicate mixture. .
  • the average pore diameter and the porosity of the porous ceramic member are not particularly limited, and are preferably the same as the average pore diameter and the porosity of the first honeycomb filter of the present invention described above, and such porous
  • the particle size of the ceramic used in producing the ceramic member is not particularly limited either, and it is desirable to be similar to the fly cam filter of the first invention described above.
  • porous ceramic member of the second cam filter of the present invention carry an exhaust gas purification catalyst similar to that of the above-mentioned first honeycomb filter of the present invention.
  • the ratio V of the organic components present in the inside is very small at 0.5% by weight or less. Even when the honeycomb filter is installed and used in the exhaust passage of an internal combustion engine such as an engine, the organic component in the exhaust gas to be discharged hardly increases.
  • the honeycomb filter of the second invention is made to support the exhaust gas purification catalyst so as to function as a filter for collecting particulates in exhaust gas and also function as a catalyst converter, the second main Even when the organic component slightly contained in the honeycomb filter of the invention is discharged to the outside, the organic component is surely decomposed and purified by the exhaust gas purification catalyst.
  • a binder and a dispersant solution are added to the above-mentioned ceramic powder to prepare a raw material paste.
  • the above-mentioned binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethinoresenoresulose, hydroxyacetinolecenolerose, polyethylene glycolonole, phenol resin, epoxy resin and the like.
  • the amount of the binder to be added is usually about 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic powder.
  • the dispersion medium is not particularly limited, and examples thereof include: organic solvents such as benzene; alcohols such as methanol; water and the like.
  • the dispersion medium solution is blended in an appropriate amount so that the viscosity of the mixed composition falls within a predetermined range.
  • the ceramic powder, the binder, and the dispersion medium are mixed by an attritor or the like, and then sufficiently kneaded by a kneader or the like, and substantially the same shape as the columnar body 15 shown in FIG. A columnar ceramic compact is produced.
  • a molding auxiliary may be added to the above-mentioned raw material paste, if necessary.
  • the forming aid is not particularly limited, and examples thereof include ethylene glycol, dexstryn, fatty acid iron oxide, polyalcohol and the like.
  • sealing material For example, the thing similar to the said raw material paste can be mentioned.
  • the ceramic molded body that has undergone the above-mentioned sealing treatment is degreased and fired under predetermined conditions to manufacture a columnar body 15 made of porous ceramic.
  • a sealing material layer forming step of forming a layer of the sealing material layer 14 on the outer periphery of the columnar body 15 manufactured as described above is performed.
  • the columnar body 15 is rotatably supported in its longitudinal direction.
  • the rotational speed of the columnar body 15 is not particularly limited, but is preferably 2 to 1 O min 1 1 .
  • a sealing material paste is attached to the outer periphery of the rotating columnar body 15 to form a sealing material paste layer.
  • the above-mentioned paste of pasture material is not particularly limited, and, for example, those containing an inorganic binder, an organic binder, an inorganic fiber and an inorganic particle as described above can be used.
  • the paste paste may contain a small amount of water, solvent, etc. Force such moisture, solvent, etc. is usually scattered by heating after applying the paste paste.
  • the sealing material paste contains the above-mentioned inorganic fiber, inorganic binder, organic binder, and inorganic particles in order to make the sealing material paste flexible and to impart fluidity to facilitate application.
  • the adhesive paste may have a viscosity of about 1 to 25 Pa a s (about 10,000 to about 65 wt% of water, other acetone, or a solvent such as alcohol). ⁇ 20,000 cps (c P)) is desirable.
  • the sealing material layer corresponds to the total area of the cross section including the through hole in the direction perpendicular to the through hole.
  • the ratio of the occupied area S ⁇ is 0.5% or more. Therefore, in the sealing material layer forming step, it is necessary to adjust the thickness of the sealing material paste layer so that the sulfur content after manufacturing the honeycomb filter is 0.5% or more.
  • the organic component contained in the first honeycomb filter of the present invention is specifically an organic binder contained in the sealing material paste. . Therefore, it is necessary to adjust in advance the materials constituting the sealing material paste, the compounding ratio, and the like so that the ratio V of the organic component contained in the manufactured honeycomb filter is 0.5% by weight or less. desirable.
  • the sealing material layer forming step without adjusting the material and the compounding ratio of the sealing material paste in advance, for example, about 500 to 700 ° C., about 10 to 90 minutes. by performing heat treatment under the conditions, the organic components present in the sealant layer decomposition, removal, and the ratio V a of the organic component is 0.
  • the sealing material paste layer thus formed is dried at a temperature of about 120 ° C. to evaporate the moisture to form a sealing material layer 14, and as shown in FIG.
  • the manufacturing of the first honeycomb honeycomb substrate 10 according to the present invention having the sealing material layer 14 formed on the outer periphery of the present invention is completed.
  • a ceramic laminate to be 25 is manufactured.
  • a plurality of rectangular porous ceramic members 30 in which a large number of through holes 31 are provided in parallel in the longitudinal direction across the partition walls 33 are united with a plurality of sealing material layers 23 interposed therebetween. It is a columnar structure.
  • a binder and a dispersant solution are added to the ceramic powder as described above to prepare a mixed composition.
  • the method for preparing the mixed composition is not particularly limited, and, for example, the same method as the raw material paste described in the method for manufacturing a honeycomb filter of the first present invention can be mentioned.
  • the above mixed composition is mixed with an attritor or the like, and sufficiently kneaded with a kneader etc. After that, a columnar green body having substantially the same shape as that of the porous ceramic member 30 shown in FIG. 3 is produced by extrusion molding or the like.
  • the above-mentioned green body is dried using a microwave drier or the like, then a sealing treatment for filling a sealing material in predetermined through holes is performed, and the drying process is again performed using a microwave drier or the like.
  • a sealing treatment for filling a sealing material in predetermined through holes is performed, and the drying process is again performed using a microwave drier or the like.
  • said sealing material For example, the thing similar to the said mixed composition can be mentioned.
  • the formed body which has undergone the above-mentioned sealing treatment is degreased by heating to about 400 ° C. to about 500 ° C. in an oxygen-containing atmosphere to volatilize the binder and the like, and to decompose and disappear, substantially ceramic powder. Only leave it.
  • the ceramic powder is sintered by heating to about 140 to 220 ° C. in an inert gas atmosphere such as nitrogen, argon, etc. to sinter the ceramic powder to obtain porous material.
  • an inert gas atmosphere such as nitrogen, argon, etc.
  • the porous ceramic member 30 is configured to have a V-shaped cross section so that it can be stacked in an inclined state.
  • the porous ceramic member 30 is placed in an inclined state on the pedestal 40, and then the seal layer 23 is formed on the two side faces 30a and 30b facing upward.
  • the material paste is applied with a uniform thickness to form a paste layer 41, and the process of sequentially laminating another porous ceramic member 30 on this paste layer is repeated, and a predetermined size of A columnar ceramic laminate is produced.
  • a triangular prismatic porous ceramic member 30c produced by cutting the square pole-shaped porous ceramic member into two, and A porous ceramic member 30 having the same shape as the porous ceramic member 30c and a double-sided adhesive tape or the like which is easy to peel is used, and after lamination of the porous ceramic member 30 is completed,
  • the ceramic laminate may be polygonal in cross section by removing all the resin members 42 constituting the four corners of the laminate. By this, it is possible to reduce the amount of waste made of a porous ceramic member which is discarded after cutting the outer peripheral portion of the ceramic laminate to produce a ceramic block.
  • porous ceramic members at the four corners are omitted according to the shape of the honeycomb filter to be produced.
  • a method, a method of combining triangular porous ceramic members, and the like can be used.
  • the ceramic laminate is heated at a temperature of about 50 ° C. for about 1 hour to dry and solidify the paste layer to form a sealing material layer 23.
  • the ceramic block 25 is manufactured by cutting the outer peripheral portion into a shape as shown in FIG.
  • the material constituting the sealing material paste to be the sealing material layer 23 is not particularly limited, and, for example, the same as the sealing material paste described in the first method of manufacturing a cam filter according to the first aspect of the present invention Materials can be mentioned.
  • the sealing material layer 2 is formed on the outer periphery of the ceramic block 25 by performing a sealing material forming step of forming a layer of the sheet material layer 24 around the ceramic block 25 manufactured in this manner.
  • the production of the second inventive inventive cam filter 20 is completed.
  • the sealing material layer forming process is not particularly limited, and, for example, the same process as the sealing material layer forming process described in the first method for manufacturing a honeycomb filter of the present invention can be mentioned.
  • the organic component contained in the honeycomb filter of the second invention is specifically, the sealing material sheet. It is the organic binder included in the strike. Therefore, prepare in advance the materials that make up the sealing material paste, the compounding ratio, and so on so that the ratio V
  • the sealing material layer forming step is performed without preparing the material and the compounding ratio of the sealing material paste in advance, for example, about 500 to 700 ° (about 10 to 90 minutes). by performing heat treatment under the conditions, the organic components present in the sealant layer decomposition, removal, and the proportion of the organic component V j3 is 0.
  • the honeycomb filter of the present invention may be loaded with a catalyst for purifying exhaust gas
  • the honeycomb filter of the present invention on which the catalyst for purifying exhaust gas is thus loaded is a catalyst in exhaust gas. It functions as a filter that collects curate, and as a catalytic converter that purifies the gas generated from harmful components such as HC, CO, and NOx in the exhaust gas and organic components that are slightly contained in the honeycomb filter of the present invention. Function BEST MODE FOR CARRYING OUT THE INVENTION
  • talc having an average particle size of 10 ⁇ m
  • force orin having an average particle size of 9 ⁇ m
  • 7 parts by weight of alumina 1 having an average particle size of 9.5 ⁇ m
  • 6 parts by weight of 1 ⁇ m hydroxyaluminium 5 parts by weight of silica 15 having an average particle diameter of 10 ⁇ m
  • 6 parts by weight of a molding aid (6 parts by weight of water), 16 parts by weight of water
  • a paste was prepared.
  • the above raw material paste is filled into an extrusion molding machine, and a ceramic molded body having substantially the same shape as the honeycomb filter 10 shown in FIG. 1 is produced at an extrusion rate of 10 cm / min.
  • the paste is dried using a re-drier and then degreased at 400 ° C. Baking at 140 ° C for 3 hours under normal pressure argon atmosphere As a result, as shown in FIG. 1, a cylindrical pillar made of cordierite was produced.
  • this sealing material paste layer is 0.5 mm and the diameter of the end surface is 1 as shown in FIG. 4
  • a cylindrical cam structure was manufactured with a diameter of 3.8 mm.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the manufactured honeycomb structure is 1.4% relative to the above honeycomb structure.
  • the proportion of the organic component was 0.60% by weight.
  • honeycomb filter was manufactured, in which the ratio of the area occupied by S was 1.4% and the ratio of the organic component V was 0.5%.
  • a honeycomb structure was manufactured. Then, by heating this honeycomb structure under an oxygen atmosphere at 600 ° C. for 60 minutes, the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured, in which the ratio of the area occupied by S.sub. ⁇ was 1.4% and the ratio of the organic component V was 0.10% by weight.
  • a honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 1. Then, by heating the honeycomb structure under an oxygen atmosphere at 500 ° C. for 30 minutes, the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured, in which the ratio of the area occupied by S ⁇ was 1.4% and the ratio of the organic component V was 0.20% by weight. (Example 4)
  • honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 1. Then, the honeycomb structure is heated under conditions of 500 ° C. for 10 minutes in an oxygen atmosphere, so that the area occupied by the grain material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter having a ratio S of 1.4% and a ratio V of organic components of 0.5% by weight was produced.
  • a columnar body was produced in the same manner as in (1) of Example 1.
  • a sealing material paste layer was formed on the outer periphery of the above-mentioned columnar body using the same sealing material paste as the sealing material paste used in (2) of Example 1.
  • the seal paste paste layer is dried at 120 ° C., and as shown in FIG. 1, a cylindrical fly cam with a thickness of the seal material layer of 0.5 mm and an end surface diameter of 143.8 mm. I made a filter.
  • the ratio S a of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the honeycomb filter manufactured in Comparative Example 1 is 1.4%, and the honeycomb The ratio Va of the organic component to the filter was 0.60% by weight.
  • the cam filters manufactured in Examples 1 to 4 and Comparative Example 1 were installed in the exhaust passage of the engine, and the engine was operated at maximum speed (3700 rpm, ONm) with no load.
  • FIG. 5 is a graph showing the results of evaluation test 1 and evaluation test 2 of the honeycomb filters according to Examples 1 to 4 and Comparative Example 1.
  • a columnar body was produced in the same manner as in (1) of Example 1.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through hole in the direction perpendicular to the through hole in the manufactured hard cam structure is 0.6%, and the above fly cam structure
  • the ratio of the organic component to the component was 0.60% by weight.
  • honeycomb structure is heated at 700 ° C. for 90 minutes in an oxygen-containing atmosphere, whereby the area occupied by the sealing material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was produced with a ratio S ⁇ of 0.6% and a ratio of organic components V ⁇ of 0.5% by weight.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) of Example 5.
  • the seal material layer occupies the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter having an area ratio S ⁇ of 0.6% and an organic component ratio V ⁇ of 0.10% by weight was produced.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) of Example 5. Then, by heating this honeycomb structure under an oxygen atmosphere at 500 ° C. for 30 minutes, the seal material layer corresponds to the total area of the cross section including the through holes in the direction perpendicular to the through holes. The ratio of the area occupied by S ⁇ is 0.6 ° /. Then, a fly cam filter was manufactured with an organic component ratio Va of 0.20% by weight. (Example 8)
  • honeycomb structure was manufactured in the same manner as (1) and (2) of Example 5. Then, the fly cam structure is heated at 500 ° C. for 10 minutes in an oxygen atmosphere, so that the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the ratio of S is 0.6% and the ratio of organic components V ⁇ is 0.50 weight.
  • a / 0 honeycomb filter was manufactured.
  • a columnar body was produced in the same manner as (1) in Example 5.
  • a sealing material paste layer was formed on the outer periphery of the columnar body using the same sealing material paste as the sealing material paste used in (2) of Example 5.
  • the sealing material paste layer is dried at 120 ° C., and as shown in FIG. 1, a cylindrical honeycomb honeycomb filter with a thickness of the sealing material layer of 0.2 mm and an end surface diameter of 143.8 mm. Manufactured.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the ha-cam filter manufactured in Comparative Example 2 is 0.6%
  • the ratio Vo of the organic component to the above Hacam filter was 0.60% by weight.
  • evaluation tests similar to the evaluation tests 1 and 2 performed on the above Examples 1 to 4 and Comparative Example 1 were performed. The results are shown in Table 2 and Figure 6 below.
  • FIG. 6 is a graph showing the results of evaluation test 1 and evaluation test 2 of the honeycomb filters according to Examples 5 to 8 and Comparative Example 2. Table 2
  • a columnar body was produced in the same manner as in (1) of Example 1.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 0.5%, and the above-mentioned cam structure The ratio of the organic component to that of was 0.60% by weight.
  • the above honeycomb structure is heated at 700.degree. C. for 90 minutes in an oxygen-containing atmosphere.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 0.5% of the area S and the ratio V of the organic component is 0.5.
  • a 5% by weight honeycomb filter was produced.
  • a honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 9. Then, the honeycomb structure is heated under a condition of 600 ° C. for 60 minutes in an oxygen atmosphere to obtain a seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • ratio S alpha 0 of the area occupied. 5%, the proportion of the organic component V alpha is to produce a 0. 1 0 by weight% of the honeycomb filter.
  • honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 9. Then, by heating this honeycomb structure under an oxygen atmosphere at 500 ° C. for 30 minutes, the seal material layer relative to the total area of the cross section including the through holes in the direction perpendicular to the through holes is obtained.
  • a honeycomb filter was manufactured with an area ratio S occupied by 0.5% and an organic component ratio V ⁇ of 0.20% by weight.
  • a honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 9. Then, by heating this honeycomb structure under an oxygen atmosphere at 500 ° C. for 10 minutes, the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a fly cam filter was produced, in which the proportion of the area occupied by S ⁇ was 0.5 ° / 0 and the proportion of the organic component V was 0.50% by weight.
  • a columnar body was produced in the same manner as (1) in Example 9.
  • a sealing material paste layer was formed on the outer periphery of the above-mentioned columnar body using the same sealing material paste as the sealing material paste used in (2) of Example 9.
  • this sealing material paste layer is dried at 120 ° C., and as shown in FIG. 1, the thickness of the sealing material layer is 0.17 mm, and the diameter of the end surface is 143.8 mm.
  • a cylindrical cam filter was manufactured.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the honeycomb filter manufactured in Comparative Example 3 is 0.5%, The ratio Va of the organic component to the cam filter was 0.60% by weight.
  • the same evaluation tests as Evaluation Tests 1 and 2 performed on Examples 1 to 4 and Comparative Example 1 were performed. The results are shown in Table 3 and Figure 7 below.
  • FIG. 7 is a graph showing the results of evaluation test 1 and evaluation test 2 of the honeycomb filters according to Examples 9 to 12 and Comparative Example 3.
  • a columnar body was produced in the same manner as in (1) of Example 1.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the manufactured honeycomb structure is 0.3% relative to the above honeycomb structure.
  • the proportion of organic components is 0.60 by weight. /. Met.
  • the sealing material layer corresponds to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a ratio S alpha is 0.3% of the area occupied, Ha ratio V Higa 0.0 5 wt 0/0 of the organic component - to produce a cam filter.
  • a honeycomb structure was manufactured in the same manner as in Comparative Example 4 (1) and (2). Then, by heating this heavy cam structure under an oxygen atmosphere at 600 ° C. for 60 minutes, the entire area of the cross section including the through hole in the direction perpendicular to the through hole is confronted, seal The proportion of the area occupied by the wood layer S ⁇ is 0.3%, the proportion of the organic component V ⁇ is 0.10 weight 0 /.
  • honeycomb structure was manufactured in the same manner as in (1) and (2) of Comparative Example 4, a honeycomb structure was manufactured. Then, the honeycomb structure is heated at 500 ° C. for 30 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes. A honeycomb filter having a ratio S of 0.3% and a ratio of organic components V ⁇ of 0.2% by weight was produced.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) of Example 5. Then, by heating this honeycomb structure under an oxygen atmosphere at 500 ° C. for 10 minutes, the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes. the ratio S alpha of the area occupied 0. 3%, to prepare a honeycomb filter of the ratio V alpha force S 0. 5 0 by weight 0/0 of the organic component.
  • a columnar body was produced in the same manner as (1) in Comparative Example 4.
  • a sealing material paste layer was formed on the outer periphery of the above-mentioned columnar body using the same sealing material paste as the sealing material paste used in (2) of Comparative Example 4.
  • this sealing material paste layer is dried at 120 ° C., and as shown in FIG. 1, the thickness of the sealing material layer is 0.1 mm and the diameter of the end surface is 143.8 mm.
  • a cylindrical honeycomb filter was manufactured.
  • the ratio S a of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the honeycomb filter manufactured in Comparative Example 8 is 0.3%, and the honeycomb Ratio of organic component to filter V is 0.60 weight. /. Met. Also for the honeycomb filters manufactured in Comparative Examples 4 to 8, the same evaluation tests as the evaluation tests 1 and 2 performed on the above Examples 1 to 4 and Comparative Example 1 were performed.
  • FIG. 8 is a graph which shows the result of evaluation test 1 and evaluation test 2 of the honey-comb filter which concerns on Comparative Examples 4-8.
  • Comparative example 8 0. 3 0. 60 8 5 From the results of evaluation test 1, the increase rate of HC in the honeycomb filters according to comparative examples 4 to 8 is very small at 0.8 to 8%, and from the results of evaluation test 2, the catalyst according to comparative examples 4 to 8 is obtained. The increase rate of HC in the honeycomb filter supporting the carbon fiber was also very small, 0 to 5%.
  • the honeycomb filters according to Examples 1 to 12 and Comparative Examples 1 to 8 have a structure in which the sealing material layer is formed only on the outer periphery of the columnar body, and Examples 1 to 12 and In each of the fly cam filters according to Comparative Examples 1 to 3, the ratio S o; of the seal material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the honeycomb filter is 0.5. % Or more.
  • the ratio of organic component V was 0.50 by weight.
  • the honeycomb filters according to Examples 1 to 2 having a ratio of 0 or less the amount of the organic component discharged from the sealing material layer decreases, and HC in the exhaust gas discharged hardly increases.
  • the increase rate of HC discharged to the outside can be made extremely small.
  • the ratio of the seal material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the honeycomb filter If the ratio is less than 0.5%, even if the ratio V of the organic component exceeds 0.5% by weight, the amount of the organic component discharged from the above-mentioned grain material layer decreases. HC in the exhaust gas discharged hardly increases. That is, in the honeycomb filter having the above S S 0.5%, even if the ratio of the organic component present in the sealing material layer is large, the exhaust as shown in Comparative Examples 1 to 3 can be obtained. There is no problem of an increase in the amount of HC in the exhaust gas emitted.
  • an organic binder methylcellulose
  • 10 parts by weight of water were added and kneaded to obtain a kneaded product.
  • a small amount of a plasticizer and a lubricant were added to the above-mentioned mixture, and the mixture was further kneaded, followed by extrusion molding to produce a formed body.
  • the formed product is dried using a microwave dryer, and a paste having the same composition as the formed product is filled in predetermined through holes, and then dried again using a dryer, By degreasing at 00 ° C and firing at 220 ° C for 3 hours under argon atmosphere at normal pressure, its size is 34 mm x 34 mm x as shown in Figure 3.
  • a porous ceramic member made of a silicon carbide sintered body having a diameter of 30 0 mm, a number of through holes of 31 / cm 2 and a partition thickness of 0.3 mm was produced.
  • a sealing material paste layer was formed on the outer peripheral portion of the ceramic block using the sealing material paste. Then, the sealing material paste layer is dried at 120 ° C., and is formed between the porous ceramic members such as the fly cam filter 20 shown in FIG. 2 and on the outer periphery of the ceramic block.
  • a cylindrical honeycomb structure having a thickness of 1.0 mm and a diameter of 14.48 mm was manufactured.
  • the honeycomb structure is heated under conditions of 700 ° C. for 90 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a fly cam filter was produced with a ratio S ⁇ of 7.4% and a ratio of organic components V ⁇ of 0.05% by weight.
  • honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 13. Then, the honeycomb structure is heated under conditions of 600 ° C. for 60 minutes in an oxygen atmosphere so that the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter having a ratio S of 7.4% and a ratio V of organic components V 3 of 0.1% by weight was manufactured.
  • a honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 13. Then, by heating this hard cam structure in an oxygen atmosphere at 500 ° C. for 30 minutes, the seal material layer is to the total area of the cross section including the through holes in the direction perpendicular to the through holes. The ratio of the area occupied by S] 3 is 7.4 ° /. Then, a honeycomb filter having a ratio of organic components V] 3 of 0.2% by weight was produced.
  • a honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 13. Then, the honeycomb structure is heated at 500 ° C. for 10 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the ratio of S / 3 is 7. 4. /.
  • a honeycomb filter having a ratio V 0 of 0.50% by weight of organic components was manufactured.
  • a porous ceramic member was produced in the same manner as in (1) of Example 13.
  • a sealing material paste layer was formed on the outer periphery of the ceramic block using the sealing material paste. Then, the sealing material paste layer is dried at 120 ° C., and the seal formed between the porous ceramic members such as the honeycomb filter 20 shown in FIG. 2 and on the outer periphery of the ceramic block A cylindrical honeycomb filter with a thickness of 1. O mm and a diameter of 1 4 5 8 mm was manufactured.
  • the ratio S of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 7.
  • honeycomb filters according to Examples 1 to 16 and Comparative Example 9 the same evaluation tests as the evaluation tests 1 and 2 performed on the above Examples 1 to 4 and Comparative Example 1 were performed.
  • FIG. 9 is a graph showing the results of evaluation test 1 and evaluation test 2 of the honeycomb filters according to Examples 13 to 16 and Comparative Example 9.
  • a porous ceramic member was produced in the same manner as in (1) of Example 13.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through hole in the direction perpendicular to the through hole is 3.8%, and the above honeycomb structure The ratio of the organic component to that of was 0.60% by weight.
  • honeycomb structure is heated under conditions of 700 ° C. for 90 minutes in an oxygen atmosphere, so that the area occupied by the grain material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was produced, in which the ratio of S] 3 was 3.8% and the ratio of the organic component V0 was 0.05% by weight.
  • a honeycomb structure was produced in the same manner as in (1) and (2) of Example 17. Then, the honeycomb structure is heated under conditions of 600 ° C. for 60 minutes in an oxygen atmosphere so that the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the ratio of organic component V] 3 is 0.10 weight, with the ratio S / 3 3. 8%.
  • a / 0 h cam filter was manufactured. (Example 1 9)
  • honeycomb structure was produced in the same manner as in (1) and (2) of Example 17. Then, by heating the honeycomb structure under an oxygen atmosphere at 500 ° C. for 30 minutes, the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the honeycomb filter was manufactured such that the ratio of the area occupied by S] 3 was 3.8% and the ratio V of the organic component was 0.20% by weight.
  • a honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 13. Then, by heating the heavy cam structure under an oxygen atmosphere at 500 ° C. for 10 minutes, the seal relative to the total area of the cross section including the through hole in the direction perpendicular to the through hole is obtained.
  • a porous ceramic member was produced in the same manner as in (1) of Example 17.
  • a honeycomb filter was manufactured in the same manner.
  • Comparative Example 10 In the honeycomb filter manufactured in 0, the ratio S of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 4.0%, The ratio V / 3 of the organic component to the fly cam filter was 0.60% by weight. Evaluation tests similar to evaluation tests 1 and 2 performed on the above examples 1 to 4 and comparative example 1 were also performed for the honeycomb filters according to examples 1 to 20 and comparative example 1 ⁇ .
  • FIG. 10 is a graph showing the results of evaluation test 1 and evaluation test 2 of the honeycomb filters according to Examples 1 to 20 and Comparative Example 10. Table 6
  • a porous ceramic member was produced in the same manner as in (1) of Example 13.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the manufactured honeycomb structure is 2.0%, and the above eight-cam structure
  • the ratio of the organic component is 0.60 by weight 0 /. Met.
  • the honeycomb structure is heated at 700 ° C. for 90 minutes in an oxygen atmosphere, whereby the seal material layer occupies the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the area ratio S is 1. 9%, the ratio of organic components V] 3 is 0.55 weight.
  • a / 0 honeycomb filter was manufactured.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) in Example 2 1. Then, the honeycomb structure is heated under conditions of 600 ° C. for 60 minutes in an oxygen atmosphere so that the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a Ha-Cam filter was manufactured with an S ratio of 1.9% and an organic component ratio V] 3 of 0.10% by weight.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) in Example 2 1. Then, by heating this honeycomb structure under an oxygen atmosphere at 500 ° C. for 30 minutes, the seal material layer corresponds to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured, in which the ratio of the area occupied by S] 3 was 1.9% and the ratio V of the organic component was 0.20% by weight.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) in Example 2 1. Then, by heating this hard cam structure under an oxygen atmosphere at 500 ° C. for 10 minutes, the seal material with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes is obtained.
  • a HAKUM filter was produced, in which the proportion of the area occupied by the layer S 0 was 1.9% and the proportion of the organic component V ⁇ was 0.50% by weight.
  • Example 2 A porous ceramic member was produced in the same manner as in (1) of 1). (2) Example 2 (2) of Comparative Example 9 except that the same paste paste as the paste paste used in (2) of 1 was used, and the thickness of the laminate layer was set to 0.5 mm. A honeycomb filter was manufactured in the same manner as in.
  • Comparative Example 1 In the honeycomb filter manufactured in 1), the above in the direction perpendicular to the through holes The ratio S / 3 of the area occupied by the sealing material layer to the total area of the cross section including the through holes is 2.0%, and the ratio V 0 of the organic component to the honeycomb filter is 0.60. /. Met. Also in the honeycomb filters according to Examples 21 to 24 and Comparative Example 11, evaluation tests similar to the evaluation tests 1 and 2 performed on the above Examples 1 to 4 and Comparative Example 1 were performed.
  • FIG. 11 is a graph showing the results of evaluation test 1 and evaluation test 2 of the HAKUM filter according to Examples 21 to 24 and Comparative Example 11.
  • a porous ceramic member was produced in the same manner as in (1) of Example 13.
  • the ratio of the area occupied by the sealing material layer to the total area of cross sections including the through holes in the direction perpendicular to the through holes in the manufactured honeycomb structure is 0.8%, relative to the above honeycomb structure.
  • the proportion of the organic component was 0.60% by weight.
  • the honeycomb structure is heated under conditions of 700 ° C. for 90 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a HAKUM filter having a ratio S] 3 of 0.8% and a ratio V ⁇ of organic components of 0.05% by weight was produced.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) in Comparative Example 12. Then, the honeycomb structure is heated under conditions of 600 ° C. for 60 minutes in an oxygen atmosphere, whereby the seal material layer occupies the total area of the cross section including the through holes in the direction perpendicular to the through holes. a ratio S is 0.8% of the area, the proportion of organic components ⁇ is to manufacture a honeycomb filter of 0.10 by weight 0/0.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) in Comparative Example 12. Then, the honeycomb structure is heated at 500 ° C. for 30 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured, in which the ratio S of the organic component was 0.8% and the ratio of the organic component V was 0.20% by weight.
  • honeycomb structure is heated at 500 ° C. for 10 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured with a ratio S of 0.8% and a ratio of organic components V j3 of 0.50% by weight.
  • a porous ceramic member was produced in the same manner as in (1) of Example 13.
  • the ratio S of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is
  • the ratio of the organic component to the above-mentioned honeycomb filter is 0.8.
  • honeycomb filters manufactured in Comparative Examples 12 to 16 were also evaluated in the same evaluation tests as in Evaluation Tests 1 and 2 performed on Examples 1 to 4 and Comparative Example 1 above. The results are shown in Table 8 below and in Figure 12.
  • FIG. 12 is a graph showing the results of evaluation test 1 and evaluation test 2 of the honeycomb filters according to Comparative Examples 12 to 16.
  • the honeycomb filters according to Examples 13 to 24 and Comparative Examples 9 to 16 have a structure in which the sealing material layer is formed between the porous ceramic members and on the outer periphery of the ceramic block.
  • the honeycomb cam filters according to Examples 13 to 24 and Comparative Examples 9 to 11 are all relative to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the honeycomb filter.
  • the ratio S] 3 occupied by the sealing material layer is 2% or more.
  • the amount of the organic component discharged from the sealing material layer As the result of evaluation test 2, when the catalyst is supported on such a honeycomb filter, the amount of HC discharged to the outside increases. The rate can be very small.
  • the sealing material layer corresponds to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the two cam filters. If the ratio S occupied is less than 2%, for example, the proportion of the organic component to zero. 5 is also be one more than the weight 0/0, the less the amount of organic components that will be discharged from the sealing material layer, discharge There is almost no increase in HC in the exhaust gas.
  • the formed product is dried using a microwave drier, a paste having the same composition as that of the formed product is filled in predetermined through holes, and then dried again using a drier;
  • a drier By degreasing at °° C and firing at 1,600 ° C for 2 hours in an argon atmosphere at normal pressure, the size is 34 mm ⁇ 34 mm ⁇ 30 O mm, and the number of through holes is 3 as shown in FIG.
  • a porous ceramic member made of a sintered body of silicon carbide and silicon of 1 Zcm 2 and 0.3 mm in thickness of partition wall was produced.
  • a sealing material paste layer was formed on the outer peripheral portion of the ceramic block. Then, this paste material layer is dried at 120 ° C., and the seal material layer formed on the periphery of the ceramic block and between the porous ceramic members such as the honeycomb filter 20 shown in FIG. A cylindrical honeycomb structure with a thickness of 1.0 mm and a diameter of 145.8 mm was manufactured.
  • honeycomb structure is heated under conditions of 700 ° C. for 90 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter having a ratio S of 7.4% and a ratio of organic components V 13 of 0.05% by weight was manufactured.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) of Example 25. Then, the hay cam structure is heated under conditions of 600 ° C. for 60 minutes in an oxygen atmosphere, so that the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the Ha-Cam filter was manufactured with a ratio S ⁇ of 7.4% and an organic component ratio V of 0.1% by weight.
  • honeycomb structure was manufactured in the same manner as (1) and (2) of Example 25. Then, the honeycomb structure is heated at 500 ° C. for 30 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured with a ratio S of force S 7.4% and a ratio of organic component V] 3 of 0.2% by weight.
  • honeycomb structure was manufactured in the same manner as (1) and (2) of Example 25. Then, the honeycomb structure is heated at 500 ° C. for 10 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter having a ratio S of 3; 7.4% and an organic component ratio V ⁇ of 0.50% by weight was produced.
  • a porous ceramic member was produced in the same manner as in (1) of Example 25.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 3.8%, and the above-mentioned cam structure
  • a seal material layer with respect to a total area of a cross section including the through holes in a direction perpendicular to the through holes. is a ratio S 0 3. 8% area occupied, the proportion V beta of the organic component is 0. to produce a 0 5 by weight 0/0 flies cam filter.
  • a honeycomb structure was manufactured in the same manner as (1) and (2) of Example 2-9. Then, by heating this halcome structure under an oxygen atmosphere at a temperature of 600 ° C. for 60 minutes, the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • the ratio of the area occupied by: S] 3 was 3.8%, and the ratio of the organic component V 0 was 0.10% by weight.
  • a halcom structure was manufactured. Then, by heating the heavy cam structure under an oxygen atmosphere at 500 ° C. for 30 minutes, the seal is relative to the total area of the cross section including the through hole in the direction perpendicular to the through hole.
  • a honeycomb filter was manufactured, in which the ratio of the area occupied by the material layer S] 3 was 3.8% and the ratio of the organic component V
  • a fly cam structure was manufactured in the same manner as in (2) and (2) of Example 2-9. Then, by heating this honeycomb structure under an oxygen atmosphere at 500 ° C. for 10 minutes, the seal material with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes is obtained. The percentage of the area occupied by the layer was 3. 8%, and the percentage of the organic component V J3 force S 0.50 A fly cam filter was produced. (Example 3 3)
  • a porous ceramic member was produced in the same manner as in (2) of Example 25-5.
  • a honeycomb structure was manufactured in the same manner as in Example 25 (2), except that a heat-resistant sealing material paste containing B was used and the thickness of the sealing material layer was changed to 0.5 mm.
  • the ratio of the area occupied by the sealing material layer to the total area of cross sections including the through holes in the direction perpendicular to the through holes in the manufactured honeycomb structure is 2.0%, relative to the above honeycomb structure.
  • the proportion of the organic component was 0.60% by weight.
  • honeycomb filter was manufactured, in which the ratio of the area occupied by the component S / 3 was 1.9%, and the ratio of the organic component V] 3 was 0.50% by weight.
  • a honeycomb structure was manufactured in the same manner as in (1) and (2) of Example 33-3. Then, by heating this honeycomb structure under an oxygen atmosphere at 600 ° C. for 60 minutes, the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured, in which the ratio of the area occupied by S was 1.9% and the ratio of the organic component V] 3 was 0.10% by weight.
  • a honeycomb structure was produced in the same manner as in (1) and (2) of Example 33-3. Then, by heating the honeycomb structure under an oxygen atmosphere at 500 ° C. for 30 minutes, the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured, in which the ratio of the area occupied by S] 3 was 1.9%, and the ratio V / 3 of the organic component was 0.20% by weight.
  • a honeycomb structure was produced in the same manner as in (1) and (2) of Example 33-3. Then, the honeycomb structure is heated at 500 ° C. for 10 minutes in an oxygen atmosphere, whereby the seal material layer occupies the total area of the cross section including the through holes in the direction perpendicular to the through holes. Ratio of area S] A honeycomb filter having ratio of organic component V j3 of 0 ⁇ 50% by weight was manufactured with S force of 1.9%.
  • a porous ceramic member was produced in the same manner as in (1) of Example 25.
  • a sealing material paste layer was formed on the outer periphery of the above-mentioned ceramic pocket. Then, the sealing material paste layer is dried at 120 ° C., and the sealing material layer formed between the porous ceramic members and on the outer periphery of the ceramic block, such as the honeycomb filter 20 shown in FIG. A cylindrical cam filter with a thickness of 1. Omm and a diameter of 145.8mm was manufactured.
  • the ratio S of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 7.4%, and the honeycomb The ratio of the organic component to the filter was 0.60% by weight.
  • a porous ceramic member was produced in the same manner as (1) in Example 29. (2) Similar to Comparative Example 17 (2), except that the same seed paste paste was used as in Example 29 (2) and the thickness of the sealing material layer was set to 0.5 mm. The honeycomb filter was manufactured.
  • the ratio S of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the ha-cam filter manufactured in Comparative Example 18 is 4.0%,
  • the ratio V of the organic component to the honeycomb filter was 0.60% by weight.
  • Example 3 A porous ceramic member was produced in the same manner as in (1) of 3 above.
  • Example 3 (Comparative Example 1) except that the same seal material paste as used in the seal material paste used in 3 (2) was used, and the thickness of the seal material layer was 0.5 mm. A honeycomb filter was manufactured in the same manner as 2).
  • Comparative Example 19 The ratio of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes in the cam filter manufactured in 9 is 2.0%.
  • the ratio V of the organic component to the honeycomb filter was 0.60% by weight.
  • a porous ceramic member was produced in the same manner as in (2) of Example 25-5.
  • the ratio of the area occupied by the sealing material layer to the total area of the cross section including the through hole in the direction perpendicular to the through hole is 0.8 ° /.
  • the ratio of the organic component to the above honeycomb structure is 0.60 weight. /. Met.
  • the seal material layer corresponds to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was manufactured, in which the ratio of the area occupied by S] 3 was 0.8%, and the ratio V ⁇ of the organic component was 0.05% by weight.
  • honeycomb structure was manufactured in the same manner as in (1) and (2) of Comparative Example 20. Then, by heating this heavy cam structure under an oxygen atmosphere at 600 ° C. for 60 minutes, the seal relative to the total area of the cross section including the through hole in the direction perpendicular to the through hole is obtained. The ratio of the area occupied by the wood layer is 0.8%, and the ratio of the organic component V is 0.10 amount. A / 0 honeycomb filter was manufactured.
  • honeycomb structure was manufactured in the same manner as in (1) and (2) of Comparative Example 20, a honeycomb structure was manufactured. Then, the honeycomb structure is heated at 500 ° C. for 30 minutes in an oxygen atmosphere, whereby the area occupied by the seal material layer with respect to the total area of the cross section including the through holes in the direction perpendicular to the through holes.
  • a honeycomb filter was produced with the ratio of the organic component Vj3 force S 0.20% by weight with the ratio S force S 0.8%.
  • a honeycomb structure was manufactured in the same manner as in (1) and (2) of Comparative Example 20, a honeycomb structure was manufactured. Then, by heating this hard cam structure in an oxygen atmosphere at 500 ° C. for 10 minutes, the seal material layer is to the total area of the cross section including the through holes in the direction perpendicular to the through holes. The ratio of area occupied S is 0.8. /. Then, a honeycomb filter having an organic component ratio V ⁇ of 0.50% by weight was produced.
  • a porous ceramic member was produced in the same manner as in (1) of Example 25.
  • the ratio S of the area occupied by the sealing material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes is 0.8%, relative to the honeycomb filter
  • the proportion of organic components was 0.60% by weight.
  • the honeycomb filters according to Examples 25 to 36 and Comparative Examples 1 to 24 have a structure in which the sealing material layer is formed between the porous ceramic members and on the outer periphery of the ceramic block.
  • the honeycomb filters according to Examples 25 to 36 and Comparative Examples 1 to 19 are all cross sections of the fly cam filter including the through holes in the direction perpendicular to the through holes.
  • the proportion S ⁇ of the sealing material layer to the total area is 2% or more.
  • the seal material layer occupies the total area of the cross section including the through holes in the direction perpendicular to the through holes in the No. 2 cam filter.
  • Ratio S If the force is less than 2%, even if the ratio V j3 of the organic component exceeds 0.5% by weight, the amount of the organic component discharged from the sealing material layer decreases. , HC in the exhaust gas discharged hardly increases. That is, in the case of the cam filter having the above S / 3 less than 2%, even if the proportion of the organic component present in the sealing material layer is large, the exhaust as shown in Comparative Examples 17 to 19 is eliminated. There is no problem with the increase in the amount of HC in the exhaust gas emitted.
  • a cam filter was produced in the same manner as in Example 1 except that the thickness of the sealing material layer formed on the outer periphery of the columnar body was changed as shown in Table 10.
  • a honeycomb was manufactured in the same manner as in Example 13 except that the thickness of the sealing material layer between the porous ceramic members and on the outer periphery of the ceramic block was changed as shown in Table 11.
  • a honeycomb filter was manufactured in the same manner as in Example 25 except that the thickness of the sealer layer between the porous ceramic members and on the outer periphery of the ceramic block was changed as shown in Table 11.
  • Example 13 1 1 7.41 35
  • Example 40 0.5 0.5 3.77 33
  • Example 41 0.25 0.25 1.90 30
  • Reference Example 1 0.2 0.2 1.52 25 Comparative Example 27 0.1 0.1 0.17 6 20
  • Example 25 1 1 7.41 34
  • Example 42 0.5 0.5 3.77 33.
  • Example 43 0.25 0.25 1.90 29
  • Reference Example 2 0.2 0.2 1.52 24 Comparative Example 28 0.1 0.1 0.76 18
  • Table 10 in the case of a honeycomb filter in which a sealing material layer is formed on the outer peripheral portion of a porous ceramic columnar body in which a large number of through holes are arranged in parallel in the longitudinal direction across the wall portion.
  • the proportion of the seal material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes decreased the aisostatic strength. If the above S S is 0.5 (0.4 7)% or more, it has the required isostatic strength, but if the above S is less than 0.5 (0.4 7)%, the aisostatic strength is The drop was particularly large and did not have sufficient isostatic strength.
  • a plurality of columnar porous ceramic members in which a large number of through holes are arranged in parallel in the longitudinal direction across the partition walls, are united with a sealing material layer to form a ceramic block.
  • the ratio S ⁇ of the seal material layer to the total area of the cross section including the through holes in the direction perpendicular to the through holes As it became smaller, the isostatic strength decreased. If the above S is 2 (1. 90 0)% or more, it has the required isostatic strength, but if the above S is less than 2 (1. 90 0)%, the decrease in the aisostatic strength is It became large and did not have sufficient isostatic strength.
  • honeycomb filter for exhaust gas purification of the present invention is as described above, even if a relatively large number of sealing material layers are present inside, the amount of organic components in the exhaust gas to be discharged is almost increased. I have not.

Description

排気ガス浄化用ハニカムフィルタ 関連出願の記載
本出願は、 2 0 0 2年 3月 2 2日に出願された日本国特許出願 2 0 0 2 _ 8 1 2 3 7号を基礎出願として優先権主張する出願である。 技術分野
本発明は、 ディーゼルエンジン等の内燃機関から排出される排気ガス中のパテ ィキユレ一ト等を除去するフィルタとして用いられる排気ガス浄化用ハニカムフ ィルタに関する。 背景技術
バス、 トラック等の車両や建設機械等の内燃機関から排出される排気ガス中に 含有されるパティキュレートが環境や人体に害を及ぼすことが最近問題となって いる。
この排気ガスを多孔質セラミックを通過させ、 排気ガス中のパティキュレート を捕集して、 排気ガスを浄化することができるセラミックフィルタが種々提案さ れている。
このようなセラミックフィルタとして、 従来から図 1に示したハニカムフィノレ タ 1 0のように、 多数の貫通孔 1 1が壁部 1 3を隔てて長手方向に並設されたコ ージェライト等からなる柱状体 1 5の外周にシール材層 1 4が形成された構造の ものが提案されており、 このハニカムフィルタ 1 0では、 貫通孔 1 1同士を隔て る壁部 1 3がフィルタとして機能するようになっている (例えば、 実公平 7— 1 8 3号参照) 。
即ち、 柱状体 1 5は、 一の焼結体からなるものであり、 この柱状体 1 5に形成 された貫通孔 1 1は、 図 1 ( b ) に示したように、 排気ガスの入り口側又は出口 側のいずれかが充填材 1 2により目封じされ、 一の貫通孔 1 1に流入した排気ガ スは、 必ず貫通孔 1 1を隔てる壁部 1 3を通過した後、 他の貫通孔 1 1から排出 されるようになっている。
また、 シール材層 1 4は、 柱状体 1 5の外周部を補強したり、 ハニカムフィル タ 1 0の断熱性を向上させたりする目的で設けられているものである。
また、 最近では、 上述したようなコージエライト製のハニカムフィルタに代え て、 耐熱性、 機械的強度、 捕集効率が高い、 化学的に安定している及び圧力損失 が小さい等の利点を有する多孔質炭化珪素焼結体製のハニカムフィルタがよく用 いられている。
上記多孔質炭化珪素焼結体製のハエカムフィルタとして、 図 2に示したハニカ ムフィルタ 2 0のように、 炭化珪素からなる多孔質セラミック部材 3 0がシール 材層 2 3を介して複数個結束されてセラミックブロック 2 5を構成し、 このセラ ミックブロック 2 5の周囲にシール材層 2 4が形成された構造のものが提案され ている (例えば、 特開 2 0 0 1— 1 6 2 1 2 1号公報参照) 。 また、 この多孔質 セラミック部材 3 0は、 図 3に示したように、 長手方向に多数の貫通孔 3 1が並 設され、 貫通孔 3 1同士を隔てる隔壁 3 3がフィルタとして機能するようになつ ている。
即ち、 多孔質セラミック部材 3 0に形成された貫通孔 3 1は、 図 3 ( b ) に示 したように、 排気ガスの入り口側又は出口側の端部のいずれかが充填材 3 2によ り目封じされ、 一の貫通孔 3 1に流入したお気ガスは、 必ず貫通孔 3 1を隔てる 隔壁 3 3を通過した後、 他の貫通孔 3 1から流出されるようになっている。 また、 シール材層 2 4は、 ハニカムフィルタ 2 0を内燃機関の排気通路に設置 した際、 セラミックブロック 2 5の外周部から排気ガスが漏れ出すことを防止す る目的で設けられているものである。
このような構成のハニカムフィルタ 1 0ゃハ-カムフィルタ 2 0が内燃機関の 排気通路に設置され、 内燃機関より排出された排気ガス中のパティキュレートは、 このハニカムフィルタを通過する際に壁部 1 3や隔壁 3 3により捕捉され、 排気 ガスが浄化される。
特に、 図 2に示したハニカムフィルタ 2 0は、 極めて耐熱性に優れ、 再生処理 等も容易であるため、 種々の大型車両ゃディ一ゼルェンジン搭載車両等に使用さ れている。
ところが、 従来、 ハニカムフィルタのシール材層には比較的多くの有機成分が 含まれていたため、 シール材層が占める割合が大きなハニカムフィルタには、 大 量の有機成分が含まれていることとなっていた。
また、 上記シール材層は完全な緻密体ではなく、 その内部に排気ガスが僅かに 流入するものであった。 そのため、 上述したようなシール材層に大量の有機成分 を含むハニカムフィルタを、 大型車両やディーゼルエンジン搭載車両等の排気通 路に設置して使用すると、 上記シール材層の内部に流入してくる排気ガスにより 上記有機成分が外部へ排出され、 排気ガスの有機成分 (H C ) 量が大幅に増加す ることとなっていた。
また、 上記外部へ排出される排気ガス中の有機成分を分解、 除去する目的で、 触媒を担持させたハニカムフィルタも提案されている。 しかしながら、 従来のハ 二カムフィルタでは、 上記触媒によって充分に有機成分を分解、 除去することが できなかった。 発明の要約
本発明は、 これらの問題を解決するためになされたもので、 その内部に比較的 多くのシール材層が存在していても、 排出される排気ガス中の有機成分量が殆ど 增加することのない排気ガス浄化用ハニカムフィルタを提供することを目的とす るものである。
第一の本発明の排気ガス浄化用ハニカムフィルタは、 多数の貫通孔が壁部を隔 てて長手方向に並設された多孔質セラミックからなる柱状体の外周部にシーノレ材 層が形成され、 上記貫通孔を隔てる壁部が粒子捕集用フィルタとして機能するよ うに構成された排気ガス浄化用ハニカムフィルタであって、
上記排気ガス浄化用ハニカムフィルタにおける、 上記貫通孔に垂直な方向の上 記貫通孔を含む断面の総面積に対する、 上記シーゾレ材層が占める面積の割合 S a が 0 . 5 %以上であり、 かつ、 上記排気ガス浄化用ハニカムフィルタに対する、 有機成分の割合 V αが 0 . 5重量%以下であることを特徴とするものである。 また、 第二の本発明の排気ガス浄化用ハニカムフィルタは、 多数の貫通孔が隔 壁を隔てて長手方向に並設された角柱形状の多孔質セラミック部材がシール材層 を介して複数個結束されてセラミックブロックを形成し、 上記セラミックブロッ クの外周部にもシール材層が形成され、 上記貫通孔を隔てる隔壁が粒子捕集用フ ィルタとして機能するように構成された排気ガス浄化用ハニカムフィルタであつ て、
上記排気ガス浄化用ハニカムフィルタにおける、 上記貫通孔に垂直な方向の上 記貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S β が 2 %以上であり、 かつ、 上記排気ガス浄化用ハニカムフィルタに対する、 有機 成分の割合 V ]3が 0 . 5重量 °/0以下であることを特徴とするものである。
以下の説明では、 第一の本発明の排気ガス浄化用ハニカムフィルタのことを、 単に、 第一の本発明のハニカムフィルタともいい、 第二の本発明の排気ガス浄化 用ハ-カムフィルタのことを、 単に、 第二の本発明のハニカムフィルタともいい、 両者を特に区別しない場合は、 単に、 本発明のハニカムフィルタともいう。 図面の簡単な説明
図 1 ( a ) は、 第一の本発明の排気ガス浄化用ハニカムフィルタの一例を模式 的に示した斜視図であり、 図 1 ( b ) は、 その A— A線縦断面図である。
図 2は、 第二の本発明の排気ガス浄化用ハニカムフィルタの一例を模式的に示 した斜視図である。
図 3 ( a ) は、 図 2に示した第二の本発明の八-カムフィルタに用いる多孔質 セラミック部材を模式的に示した斜視図であり、 図 3 ( b ) は、 その B— B線縦 断面図である。
図 4は、 第二の本発明のハニカムフィルタを製造する様子を模式的に示した側 面図である。
図 5は、 実施例 1〜 4及ぴ比較例 1に係るハニカムフィルタの、 評価試験 1及 ぴ評価試験 2の結果を示したグラフである。
図 6は、 実施例 5〜 8及び比較例 2に係るハニカムフィルタの、 評価試験 1及 ぴ評価試験 2の結果を示したグラフである。 図 7は、 実施例 9〜1 2及び比較例 3に係るハニカムフィルタの、 評価試験 1 及び評価試験 2の結果を示したグラフである。
図 8は、 比較例 4〜 8に係るハニカムフィルタの、 評価試験 1及ぴ評価試験 2 の結果を示したグラフである。
図 9は、 実施例 1 3〜1 6及び比較例 9に係るハニカムフィルタの、 評価試験 1及び評価試験 2の結果を示したグラフである。 ' 図 1 0は、 実施例 1 7〜 2 0及び比較例 1 0に係るハニカムフィルタの、 評価 試験 1及ぴ評価試験 2の結果を示したグラフである。
図 1 1は、 実施例 2 1〜 2 4及び比較例 1 1に係るハニカムフィルタの、 評価 試験 1及び評価試験 2の結果を示したグラフである。
図 1 2は、 比較例 1 2〜 1 6に係るハエカムフィルタの、 評価試験 1及び評価 試験 2の結果を示したグラフである。 符号の説明
1 0、 2 0 排気ガス浄化用ハニカムフィルタ
1 1 , 3 1 貫通孔
1 2、 3 2 充填材
1 3 壁部
1 4、 2 3、 2 4 シール材層
2 5 セラミックブロック
3 0 多孔質セラミック部材
3 3 隔壁 発明の詳細な開示
始めに、 第一の本発明のハニカムフィルタについて説明する。
第一の本発明のハニカムフィルタは、 多数の貫通孔が壁部を隔てて長手方向に 並設された多孔質セラミックからなる柱状体の外周部にシール材層が形成され、 上記貫通孔を隔てる壁部が粒子捕集用フィルタとして機能する'ように構成された ^排気ガス浄化用ハニカムフィルタであって、
上記排気ガス浄ィヒ用ハニカムフィルタにおける、 上記貫通孔に垂直な方向の上 記貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S α が 0 . 5 %以上であり、 かつ、 上記排気ガス浄化用ハニカムフィルタに対する、 有機成分の割合 Vひが 0 . 5重量%以下であることを特徴とする。
第一の本発明のハニカムフィルタの形状としては、 例えば、 図 1に示したハニ カムフィルタ 1 0と略同様のものを挙げることができ、 多数の貫通孔が壁部を隔 てて長手方向に並設された柱状体の外周にシール材層が形成されている。 また、 この貫通孔同士を隔てる壁部がフィルタとして機能するようになっている。
即ち、 上記柱状体に形成された貫通孔は、 排気ガスの入り口側又は出口側の端 部のいずれかが充填材により目封じされ、 一の貫通孔に流入した排気ガスは、 必 ず上記貫通孔を隔てる壁部を通過した後、 他の貫通孔から排出されるようになつ ている。
また、 上記シール材層は、 上記柱状体の外周部を補強したり、 第一の本発明の ハニカムフィ タの断熱性を向上させたりする目的で設けられているものである。 ただし、 第一の本発明のハニカムフィルタの形状は、 図 1に示したような円柱 状に限定されることはなく、 例えば、 楕円柱状や角柱状等任意の形状のものを挙 げることができる。
第一の本発明のハニカムフィルタにおいて、 シール材層は、 柱状体の外周にの み形成されており、 上記貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に 対する、 上記シール材層が占める面積の割合 S αが 0 . 5 %以上である。 即ち、 第一の本発明のハエカムフィルタには、 比較的多くのシール材層が存在している。 なお、 上記 Sひとは、 例えば、 図 1に示した円柱状のハニカムフィルタ 1 0の 端面において、 シール材層 1 4と柱状体 1 5とにより形成される円の半径を rと した場合に π r 2で表される面積 S 1と、 上記端面におけるシール材層 1 4の面 積 S 2とから (S 2 / S 1 ) X 1 0 0で定義されるものである。
上記 S aが 0 . 5 %未満であると、 ハニカムフィルタの貫通孔に垂直な方向の 上記貫通孔を含む断面に存在するシール材層は非常に薄く、 上記シール材層には 排気ガスが流入しにくい。 そのため、 例え、 後述するハニカムフィルタに対する 有機成分の割合 V aが 0 . 5重量%を超えるような、 大量の有機成分が含まれて いる場合であっても、 この有機成分は外部へ排出されにくくなり、 ハニカムフィ ルタを使用した際に外部に排出される排気ガス中の有機成分量の増加は微量とな る。 しかしながら、 上記 S αが 0 . 5 %未満であると、 シール材層の面積が小さ い過ぎるために、 ハ-カムフィルタのァイソスタティック強度 (等方的圧力破壌 強度) が不充分となる。
また、 第一の本発明のハエカムフィルタに対する、 有機成分の割合 V αが 0 . 5重量%以下である。
なお、 上記 V CKとは、 第一の本発明のハニカムフィルタ φ総重量を V 1とし、 上記ハエカムフィルタに含まれる有機成分の総重量を V 2とした場合、 (V 2 Ζ V I ) X 1 0 0で定義されるものである。
上記 V aが 0 . 5重量%を超えると、 ハニカムフィルタに含有される有機成分 量が多くなり、 上述した S αが 0 . 5 %を超えるような、 比較的多くのシール材 層が存在する第一の本 S明のハニカムフィルタを使用した場合、 外部に排出され る排気ガス中の有機成分量が大幅に増加することとなる。
また、 第一の本発明のハニカムフィルタに対する、 有機成分の割合 は、 0 . 1重量%以下であることが望ましい。 比較的多くのシール材層が存在する第一の 本発明のハエカムフィルタを使用した場合、 外部に排出される排気ガス中の有機 成分量をより低減させることができる。 また、 排気ガス中の有機成分を分解、 除 去することができる触媒を第一の本発明のハニカムフィルタに担持させる場合に は、 シール材層に存在する有機成分が、 上記触媒を付与する際に、 上記触媒を含 有するスラリーを吸収して、 上記触媒を定着させる熱処理の際に、 シール材層に 急激な膨張等を起こさせ、 シール材層のシール性を低下させることを防止するこ とができたり、 シール材層に存在する有機成分が、 上記触媒を侵して、 上記触媒 の触媒作用を妨げることを防止することができたりするため、 より多くの排気ガ スの浄化が可能となると推定される。
このように、 第一の本発明のハニカムフィルタに対する、 有機成分の割合 V a を 0 . 5重量%以下にする方法としては特に限定されず、 例えば、 後述する第一 の本発明のハニカムフィルタを構成するシール材層の原料や、 配合比等を調整す る方法や、 大量の有機成分を含むハニカム構造体を製造した後、 該ハニカム構造 体を加熱し、 上記有機成分を分解、 除去する方法等を挙げることができる。 上記シール材層を構成する材料としては特に限定されず、 例えば、 無機バイン ダー、 有機バインダー、 無機繊維及び無機粒子からなるもの等を挙げることがで きる。
上記無機バインダーとしては、 例えば、 シリカゾル、 アルミナゾル等を挙げる ことができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 上 記無機バインダ一のなかでは、 シリカゾルが望ましい。
また、 上記無機バインダーの含有量の下限は、 固形分で、 1重量%が望ましく、 5重量 °/0がさらに望ましい。 一方、 上記無機バインダーの含有量の上限は、 固形 分で、 3 0重量%が望ましく、 1 5重量%がより望ましく、 9重量%がさらに望 ましい。 上記無機バインダーの含有量が 1重量%未満では、 接着強度の低下を招 くことがあり、 一方、 3 0重量%を超えると、 熱伝導率の低下を招くことがある。 上記有機バインダーとしては、 例えば、 ポリビエルアルコール、 メチルセル口 ース、 ェチルセルロース、 カルポキシメチルセルロース等を挙げることができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 上記有機パインダ 一のなかでは、 カルボキシメチルセルロースが望ましい。
上記有機バインダーの含有量の下限は、 固形分で、 0 . 1重量0 /。が望ましく、 0 . 2重量%がより望ましく、 0 . 4重量%がさらに望ましい。 一方、 上記有機 バインダーの含有量の上限は、 固形分で、 5 . 0重量%が望ましく、 1 . 0重量 %がより望ましく、 0 . 6重量 °/0がさらに望ましい。 上記有機バインダーの含有 量が 0 . 1重量%未満では、 シール材層のマイグレーションを抑制するのが難し くなることがあり、 一方、 5 . 0重量%を超えると、 シール材層の厚さによって は、 製造するハニカムフィルタに対する有機成分の割合 Vひが 0 . 5重量%を超 えることがあり、 ハニカムフィルタの製造時に、 後工程として加熱処理を施す必 要がある。 上記無機繊維としては、 例えば、 シリカ一アルミナ、 ムライト、 アルミナ、 シ リカ等のセラミックファイバ一等を挙げることができる。 これらは、 単独で用い てもよく、 2種以上を併用してもよい。 上記無機繊維のなかでは、 シリカ一アル ミナファイバーが望ましい。
上記無機繊維の含有量の下限は、 固形分で、 1 0重量%が望ましく、 2 0重量 %がより望ましい。 一方、 上記無機繊維の含有量の上限は、 固形分で、 7 0重量 %が望ましく、 4 0重量%がより望ましく、 3 0重量%がさらに望ましい。 上記 無機繊維の含有量が 1 0重量%未満では、 弾性が低下することがあり、 一方、 7 0重量%を超えると、 熱伝導性の低下を招くとともに、 弾性体としての効果が低 下することがある。
上記無機粒子としては、 例えば、 炭化物、 窒化物等を挙げることができ、 具体 的には、 炭化珪素、 窒化珪素、 窒化硼素等からなる無機粉末又はウイスカ一等を 挙げることができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよ い。 上記無機粒子のなかでは、 熱伝導性に優れる炭化珪素が望ましい。
上記無機粒子の含有量の下限は、 固形分で 3重量。/。が望ましく、 1 0重量%が より望ましく、 2 0重量%がさらに望ましい。 一方、 上記無機粒子の含有量の上 限は、 固形分で 8 0重量 °/0が望ましく、 6 0重量%がより望ましく、 4 0重量% がさらに望ましい。 上記無機粒子の含有量が 3重量%未満では、 熱伝導率の低下 を招くことがあり、 一方、 8 0重量。 /0を超えると、 シーノレ材層が高温にさらされ た場合に、 接着強度の低下を招くことがある。
また、 上記無機繊維のショット含有量の下限は、 1重量%が望ましく、 上限は、 1 0重量%が望ましく、 5重量%がより望ましく、 3重量%がさらに望ましい。 また、 その繊維長の下限は、 1 mmが望ましく、 上限は、 1 0 O mmが望ましく、 5 O mmがより望ましく、 2 0 mmがさらに望ましい。
ショット含有量を 1重量%未満とするのは製造上困難であり、 ショット含有量 が 1 0重量%を超えると、 柱状体の外周を傷つけてしまうことがある。 また、 繊 維長が 1 mm未満では、 弹性を有するハニカムフィルタを形成することが難しく、 1 0 O mmを超えると、 毛玉のような形態をとりやすくなるため、 無機粒子の分 散が悪くなるとともに、 シール材層の厚みを薄くできない。
上記無機粒子の粒径の下限は、 0 . Ο ΐ μ πιが望ましく、 0 . Ι μ πιがより望 ましい。 一方、 上記無機粒子の粒径の上限は、 1 0 0 μ mが望ましく、 1 5 μ m がより望ましく、 1 0 μ πιがさらに望ましい。 無機粒子の粒径が 0 . 0 1 /x m未 満では、 コストが高くなることがあり、 一方、 無機粒子の粒径が 1 0 0 Ai mを超 えると、 接着力及び熱伝導性の低下を招くことがある。
ここで、 第一の本発明のハニカムフィルタに含まれる有機成分は、 具体的には、 上記有機バインダーのことであり、 第一の本発明のハニカムフィルタに対する、 上記有機バインダ一の割合 V αは 0 . 5重量%以下である。
比較的多くのシーノレ材層が存在しているハニカムフィルタに、 このような有機 成分が多く含まれていても、 充分な酸素を含有する雰囲気において加熱された場 合には、 有機成分は、 C 0 2 H 2 0に分解されやすく、 有毒ガスとはなりにく い。 しかし、 排気ガス浄化用ハニカムフィルタは、 酸素の少ないエンジンの排気 ガスが排出される部分に設置されるため、 有機成分は完全に分解されず、 メタン、 ェタン、 エチレン、 プロピレン等の炭化水素や C O、 N O x等の有毒ガスとして 排出されやすく、 大きな問題となる。
しかしながら、 第一の本発明のハュカムフィルタは、 比較的多くのシール材層 が存在していても、 これらに含まれている有機成分が非常に少ないため、 第一の 本発明のハエカムフィルタを実際に使用した際には、 外部に排出される排気ガス 中に含まれる上記炭化水素や C O、 N O x等の有毒ガスは殆ど增加することがな く、 ハニカムフィルタに含まれる有機成分に起因する問題は発生しない。
上記多孔質セラミックからなる柱状体の材料としては特に限定されず、 例えば、 窒化アルミニウム、 窒化ケィ素、 窒化ホウ素、 窒化チタン等の窒化物セラミック、 炭化ケィ素、 炭化ジルコユウム、 炭化チタン、 炭化タンタル、 炭化タングステン 等の炭化物セラミック、 アルミナ、 ジルコニァ、 コ一ジュライ ト、 ムライト等の 酸化物セラミック等を挙げることができるが、 通常、 コージエライト等の酸化物 セラミックが使用される。 安価に製造することができるとともに、 比較的熱膨張 係数が小さく、 使用中に酸化されることがないからである。 なお、 上述したセラ ミックに金属珪素を配合した珪素含有セラミック、 珪素や珪酸塩化合物で結合さ れたセラミックも用いることができる。
また、 第一の本発明のハニカムフィルタの平均気孔径は 5〜 1 0 0 μ ΐηである ことが望ましい。 平均気孔径が 5 t m未満であると、 パティキュレートが容易に 目詰まりを起こすことがある。 一方、 平均気孔径が 1 0 0 μ πιを超えると、 パテ ィキユレ一トが気孔を通り抜けてしまい、 該パティキュレートを捕集することが できず、 フィルタとして機能することができないことがある。
なお、 上記多孔質セラミック部材の気孔径は、 例えば、 水銀圧入法、 走査型電 子顕微鏡 (S E M) による測定等、 従来公知の方法により測定することができる。 また、 第一の本発明のハエカムフィルタの気孔率は特に限定されないが、 4 0 〜8 0 %であることが望ましい。 気孔率が 4 0 %未満であるとすぐに目詰まりを 起こすことがある。 一方、 気孔率が 8 0 %を超えると、 柱状体の強度が低下して 容易に破壌されることがある。
なお、 上記気孔率は、 水銀圧入法、 アルキメデス法及び走査型電子顕微鏡 ( S Ε Μ) による測定等、 従来公知の方法により測定することができる。
このような柱状体を製造する際に使用するセラミックの粒径としては特に限定 されないが、 後の焼成工程で収縮が少ないものが望ましく、 例えば、 0 . 3〜5 0 μ m程度の平均粒径を有する粉末 1 0 0重量部と、 0 . 1〜 1 . 0 μ m程度の 平均粒径を有する粉末 5〜 6 5重量部とを組み合わせたものが望ましい。 上記粒 径のセラミック粉末を上記配合で混合することで、 多孔質セラミックからなる柱 状体を製造することができるからである。
また、 第一の本発明のハニカムフィルタの柱状体には、 排気ガス浄化用触媒が 担持されていることが望ましい。 上記柱状体に排気ガス浄化用触媒が担持されて いると、 第一の本発明のハニカムフィルタは、 排気ガス中のパティキュレートを 捕集するフィルタとして機能するとともに、 排気ガス中の H C、 C O、 N O x等 の有害成分や、 第一の本発明のハニカムフィルタに僅かに含まれている有機成分 から生じる H C等を確実に浄化する触媒コンバータとして機能することができる からである。 上記排気ガス浄化用触媒としては特に限定されず、 例えば、 白金、 パラジウム、 ロジウム等の貴金属を挙げることができる。 これらの貴金属は単独で用いてもよ く、 複数を併用してもよい。
伹し、 上記貴金属からなる排気ガス诤化用触媒は、 所謂、 酸化触媒であるが、 上記排気ガス浄化用触媒としては、 上記貴金属に限定されることはなく、 排気ガ ス中の C〇、 H C及び N O X等の有害成分を浄化することができる触媒であれば、 希土類、 アルカリ金属、 アルカリ土類金属等の任意のものを挙げることができる。 このように、 第一の本発明のハニカムフィルタに排気ガス浄化用触媒が担持さ れていると、 エンジン等の内燃機関から排出された排気ガスに含有されている C 0、 HC及び NO X等の有害成分と、 上記排気ガス浄化用触媒とが接触すること で、 主に下記反応式 (1) 〜 (3) に示したような反応が促進される。
CO+ (1/2) 02→C〇2 · ■ · (1)
CmHn+ (m+ (n/4) ) 02→mC 02+ (n/ 2) H20 · , · (2) CO + NO→ (1/2) N2+ C02 - · · (3)
上記反応式 (1) 、 (2) より、 排気ガスに含有されている COと HCとは、 〇02と^120とに酸化され、 また、 上記反応式 (3) より、 排気ガスに含有さ れている NO Xは、 COにより N 2及び CO 2に還元されるのである。
即ち、 第一の本発明のハ-カムフィルタに上記排気ガス浄化用触媒が担持され ていると、 排気ガスに含有される CO、 HC及び NO X等の有害成分が、 C〇2、 H20及び N2等に浄化され、 外部へ排出されることとなる。
以上、 説明した通り、 第一の本発明のハエカムフィルタは、 貫通孔に垂直な方 向の上記貫通孔を含む断面の総面積に対する、 シール材層が占める面積の割合 S ひが 0. 5%以上と、 比較的多くのシール材層が存在しているが、 その内部に存 在する有機成分の割合 が 0. 5重量。 /0以下と非常に少ないため、 第一の本発 明のハニカムフィルタをエンジン等の内燃機関の排気通路に設置して使用した場 合であっても、 排出される排気ガス中の有機成分が増加することは殆どない。 また、 第一の本発明のハニカムフィルタの柱状体に排気ガス浄化用触媒を担持 させ、 排気ガス中のパティキュレートを捕集するフィルタとして機能するととも に、 触媒コンバータとしても機能させると、 第一の本発明のハニカムフィルタに 僅かに含まれている有機成分が外部に排出された場合であっても、 この有機成分 は、 確実に上記排気ガス浄化用触媒により分解、 浄化される。
次に、 第二の本発明のハニカムフィルタについて説明する。
第二の本発明のハ-カムフィルタは、 多数の貫通孔が隔壁を隔てて長手方向に 並設された角柱形状の多孔質セラミック部材がシール材層を介して複数個結束さ れてセラミックブロックを形成し、 上記セラミックプロックの外周部にもシール 材層が形成され、 上記貫通孔を隔てる隔壁が粒子捕集用フィルタとして機能する ように構成された排気ガス浄化用ハ-カムフィルタであって、
上記排気ガス浄化用ハニカムフィルタにおける、 上記貫通孔に垂直な方向の上 記貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S β が 2 %以上であり、 かつ、 上記排気ガス浄化用ハニカムフィルタに対する、 有機 成分の割合 V が 0 . 5重量%以下であることを特徴とする。
第二の本発明のハニカムフィルタの形状としては、 例えば、 図 2に示したハニ カムフィルタ 2 0と略同様のものを挙げることができ、 多孔質セラミック部材が シーノレ材層を介して複数個結束されてセラミックブロックを構成し、 このセラミ ックブロックの周囲にもシール材層が形成されている。 また、 この多孔質セラミ ック部材は、 長手方向に多数の貫通孔が並設され、 貫通孔同士を隔てる隔壁がフ ィルタとして機能するようになっている。
即ち、 上記多孔質セラミック部材に形成された貫通孔は、 排気ガスの入り口側 又は出口側の端部のいずれかが充填材により目封じされ、 一の貫通孔に流入した 排気ガスは、 必ず上記貫通孔を隔てる隔壁を通過した後、 他の貫通孔から流出さ れるようになっている。
また、 上記セラミックブロックの外周に形成されたシール材層は、 第二の本発 明のハニカムフィルタを内燃機関の排気通路に設置した際、 上記セラミックプロ ックの外周部から排気ガスが漏れ出すことを防止する目的で設けられているもの である。
ただし、 第二の本宪明のハニカムフィルタの形状は、 図 2に示したような円柱 状に限定されることはなく、 例えば、 楕円柱状や角柱状等任意の形状のものを挙 げることができる。
第二の本発明のハニカムフィルタにおいて、 シール材層は、 多孔質セラミック 部材間、 及び、 セラミックブロックの外周に形成されており、 上記貫通孔に垂直 な方向の上記貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積 の割合 S が 2 %以上である。 即ち、 第二の本発明のハニカムフィルタには、 比 較的多くのシール材層が存在している。
なお、 上記 S /3とは、 例えば、 図 2に示した円柱状のハニカムフィルタ 2 0の 端面において、 シール材層 2 4とセラミックブロック 2 5とにより形成される円 の半径を r ' とした場合に 7r r ' 2で表される面積 1と、 上記端面における シール材層 2 3及びシール材層 2 4の面積 S ' 2と力、ら (S ' 2 / S ' 1 ) X I 0 0で定義されるものである。
上記 S ]3が 2 %未満であると、 ハ-カムフィルタの貫通孔に垂直な方向の上記 貫通孔を含む断面に存在するシール材層は非常に薄く、 上記シール材層には排気 ガスが流入しにくい。 そのため、 例え、 後述するハ-カムフィルタに対する有機 成分の割合 V が 0 . 5重量%を超えるような、 大量の有機成分が含まれている 場合であっても、 この有機成分は外部へ排出されにくくなり、 ハニカムフィルタ を使用した際に外部に排出される排気ガス中の有機成分量の増加は微量となる。 しかしながら、 上記 S /3が 2 %未満であると、 シール材層の面積が小さ!/、過ぎる ために、 ハニカムフィルタのァイソスタティック強度 (等方的圧力破壌強度) が 不充分となる。
また、 第二の本 明のハ-カムフィルタに対する、 有機成分の割合 が◦. 5重量%以下である。
なお、 上記 とは、 第二の本発明のハ-カムフィルタの総重量を V' 1とし、 上記ハニカムフィルタに含まれる有機成分の総重量を V' 2とした場合、 (V' 2 / ' 1 ) X 1 0 0で定義されるものである。
上記 V i3が 0 . 5重量%を超えると、 ハニカムフィルタに含有される有機成分 量が多くなり、 上述した S 0が 2 %を超えるような、 比較的多くのシール材層が 存在する第二の本発明のハニカムフィルタを使用した場合、 外部に排出される排 気ガス中の有機成分量が大幅に増加することとなる。
また、 第二の本発明のハニカムフィルタに対する、 有機成分の割合 V ]3は、 0 . 1重量%以下であることが望ましい。 比較的多くのシール材層が存在する第二の 本発明のハニカムフィルタを使用した場合、 外部に排出される排気ガス中の有機 成分量をより低減させることができる。 また、 排気ガス中の有機成分を分解、 除 去することができる触媒を第一の本発明のハニカムフィルタに担持させる場合に は、 シール材層に存在する有機成分が、 上記触媒を付与する際に、 上記触媒を含 有するスラリーを吸収して、 上記触媒を定着させる熱処理の際に、 シール材層に 急激な膨張等を起こさせ、 シール材層のシール性を低下させることを防止するこ とができたり、 シール材層に存在する有機成分が、 上記触媒を侵して、 上記触媒 の触媒作用を妨げることを防止することができたりするため、 より多くの排気ガ スの浄化が可能となると推定される。
このように、 第二の本発明のハニカムフィルタに対する、 有機成分の割合 V /3 を 0 . 5重量%以下にする方法としては特に限定されず、 例えば、 後述する第二 の本発明のハエカムフィルタを構成するシール材層の原料や、 配合比等を調整す る方法や、 大量の有機成分を含むハ-カム構造体を製造した後、 該ハュカム構造 体を加熱し、 上記有機成分を分解、 除去する方法等を挙げることができる。 上記シール材層を構成する材料としては特に限定されず、 例えば、 上述した第 一の本発明のハエカムフィルタにおいて説明したシール材層の材料と同様の無機 バインダー、 有機バインダー、 無機繊維及び無機粒子からなるもの等を挙げるこ とができる。
ここで、 第二の本発明のハ-カムフィルタに含まれる有機成分は、 具体的には、 上記有機バインダーのことであり、 第二の本発明のハニカムフィルタに対する、 上記有機バインダーの割合 V は 0 . 5重量。 /。以下である。
比較的多くのシール材層が存在しているハ-カムフィルタに、 このような有機 成分が多く含まれていても、 充分な酸素を含有する雰囲気において加熱された場 合には、 有機成分は、 C〇2や H 2 0に分解されやすく、 有毒ガスとはなりにく い。 し力 し、 排気ガス浄化用ハニカムフィルタは、 酸素の少ないエンジンの排気 ガスが排出される部分に設置されるため、 有機成分は完全に分解されず、 メタン、 ェタン、 エチレン、 プロピレン等の炭化水素や C O、 N O x等の有毒ガスとして 排出されやすく、 大きな問題となる。
しかしながら、 第二の本発明のハュカムフィルタは、 比較的多くのシール材層 が存在していても、 これらに含まれている有機成分が非常に少ないため、 第二の 本発明のハ-カムフィルタを実際に使用した際には、 外部に排出される排気ガス 中に含まれる上記炭化水素や C O、 N O x等の有毒ガスは殆ど増加することがな く、 ハユカムフィルタに含まれる有機成分に起因する問題は発生しない。
上記多孔質セラミック部材の材料としては特に限定されず、 例えば、 上述した 第一の本宪明のハニカムフィルタにおいて説明した柱状体の材料と同様の窒化物 セラミック、 炭化物セラミック及び酸化物セラミック等を挙げることができるが、 これらのなかでは、 耐熱性が大きく、 機械的特性に優れ、 かつ、 熱伝導率も大き い炭化ケィ素が望ましい。 なお、 上述したセラミックに金属珪素を配合した珪素 含有セラミック、 珪素や珪酸塩ィヒ合物で結合されたセラミックも用いることがで さる。 .
また、 上記多孔質セラミック部材の平均気孔径及び気孔率は特に限定されず、 上述した第一の本発明のハニカムフィルタの平均気孔径及び気孔率と同様である ことが望ましく、 このような多孔質セラミック部材を製造する際に使用するセラ ミックの粒径も特に限定されず、 上述した第一の本発明のハエカムフィルタと同 様であることが望ましい。
また、 第二の本発明のハ-カムフィルタの多孔質セラミック部材には、 上述し た第一の本発明のハニカムフィルタと同様の排気ガス浄化用触媒が担持されてい ることが望ましい。
以上、 説明した通り、 第二の本発明のハエカムフィルタは、 貫通孔に垂直な方 向の上記貫通孔を含む断面の総面積に対する、 シール材層が占める面積の割合 S ]3力 2 %以上と、 比較的多くのシール材層が存在しているが、 その内部に存在す る有機成分の割合 V が 0 . 5重量%以下と非常に少ないため、 第二の本宪明の ハニカムフィルタをエンジン等の内燃機関の排気通路に設置して使用した場合で あっても、 排出される排気ガス中の有機成分が増加することは殆どない。
また、 第二の本発明のハニカムフィルタに排気ガス浄化用触媒を担持させ、 排 気ガス中のパティキュレートを捕集するフィルタとして機能させるとともに、 触 媒コンバータとしても機能させると、 第二の本発明のハニカムフィルタに僅かに 含まれている有機成分が外部に排出された場合であっても、 この有機成分は、 確 実に上記排気ガス浄化用触媒により分解、 浄化される。
次に、 上述した本発明のハニカムフィルタの製造方法の一例について図 1〜図 4を参照しながら説明する。
まず、 第一の本発明のハニカムフィルタの製造方法について説明する。
第一の本発明のハエカムフィルタを製造するには、 まず、 上述したようなセラ ミック粉末に、 バインダー及び分散媒液を加えて原料ペーストを調製する。 上記バインダーとしては特に限定されず、 例えば、 メチルセルロース、 カルボ キシメチノレセノレロース、 ヒ ドロキシェチノレセノレロース、 ポリエチレングリコーノレ、 フエノール樹脂、 エポキシ樹脂等を挙げることができる。
上記バインダーの配合量は、 通常、 セラミック粉末 1 0 0重量部に対して、 1 〜 1 0重量部程度が望ましい。
上記分散媒液としては特に限定されず、 例えば、 ベンゼン等の有機溶媒;メタ ノール等のアルコール、 水等を挙げることができる。
上記分散媒液は、 混合組成物の粘度が一定範囲内となるように、 適量配合され る。
これらセラミック粉末、 バインダー及び分散媒液は、 アトライター等で混合さ れた後、 ニーダ一等で充分に混練され、 押出成形法等により、 図 1に示した柱状 体 1 5と略同形状の柱状のセラミック成形体を作製する。
また、 上記原料ペース トには、 必要に応じて成形助剤を添加してもよい。 上記成形助剤としては特に限定されず、 例えば、 エチレングリコール、 デキス トリン、 脂肪酸石鹼、 ポリアルコール等を挙げることができる。
上記セラミック成形体を、 マイクロ波乾燥機等を用いて乾燥させた後、 所定の 貫通孔に封ロ材を充填する封口処理を施し、 再度、 マイクロ波乾燥機等で乾燥処 理を施す。
上記封ロ材としては特に限定されず、 例えば、 上記原料ペーストと同様のもの を挙げることができる。
次に、 上記封口処理を経たセラミック成形体に所定の条件で脱脂、 焼成を行う ことにより、 多孔質セラミックからなる柱状体 1 5を製造する。
次に、 このようにして製造した柱状体 1 5の外周にシール材層 1 4の層を形成 するシール材層形成工程を行う。
このシール材層形成工程においては、 まず、 柱状体 1 5をその長手方向で軸支 して回転させる。
柱状体 1 5の回転速度は特に限定されないが、 2〜 1 O m i n一1であること が望ましい。
続いて、 回転している柱状体 1 5の外周にシール材ペーストを付着させ、 シー ル材ペースト層を形成する。
上記シーノレ材ペース トとしては、 特に限定されず、 例えば、 上述したような無 機バインダー、 有機バインダー、 無機繊維及び無機粒子を含むものを使用するこ とができる。
また、 上記シール材ペース ト中には、 少量の水分や溶剤等を含んでいてもよい 力 このような水分や溶剤等は、 通常、 シール材ペーストを塗布した後の加熱等 により殆ど飛散する。
このシール材ペースト中には、 シール材ペーストを柔軟にし、 流動性を付与し て塗布しやすくするため、 上記した無機繊維、 無機バインダー、 有機バインダー 及び無機粒子のほかに、 およそ総重量の 3 5〜6 5重量%程度の水分や他のァセ トン、 アルコール等の溶剤等が含まれていてもよく、 このシール材ペース トの粘 度は、 1 5〜 2 5 P a ■ s ( 1万〜 2万 c p s ( c P ) ) が望ましい。
また、 上記第一の本発明のハニカムフィルタにおいて説明した通り、 第一の本 発明のハニカムフィルタは、 上記貫通孔に垂直な方向の上記貫通孔を含む断面の 総面積に対する、 上記シール材層が占める面積の割合 S αが 0 . 5 %以上である。 そのため、 このシール材層形成工程において、 ハニカムフィルタを製造した後 の上記 Sひが 0 . 5 %以上となるように、 上記シール材ペース ト層の厚さを調整 しておく必要がある。
また、 上記第一の本発明のハニカムフィルタにおいて説明した通り、 第一の本 発明のハニカムフィルタに含まれる有機成分は、 具体的には、 上記シール材ぺー ストに含まれる有機バインダーのことである。 そのため、 製造後のハニカムフィ ルタに含まれる有機成分の割合 Vひが 0 . 5重量%以下となるように、 予め上記 シール材ペーストを構成する材料や、 配合比等を調整しておくことが望ましい。 なお、 予め、 上記シール材ペーストの材料や配合比等の調整を行わず、 シール 材層形成工程を行った後、 例えば、 5 0 0〜7 0 0 °C、 1 0〜 9 0分程度の条件 で加熱処理を施すことで、 シール材層に存在する有機成分を分解、 除去し、 含ま れる有機成分の割合 V aが 0 . 5重量0 /0以下のハニカムフィルタとしてもよい。 そして、 このようにして形成したシール材ペースト層を 1 2 0 °C程度の温度で 乾燥させることにより、 水分を蒸発させてシール材層 1 4とし、 図 1に示したよ うに、 柱状体 1 5の外周にシール材層 1 4が形成された第一の本発明のハニカム フイノレタ 1 0の製造を終了する。
次に、 第二の本発明のハニカムフィルタの製造方法について説明する。
第二の本発明のハニカムフィルタを製造するには、 まず、 セラミックブロック
2 5となるセラミック積層体を作製する。
上記セラミック積層体は、 多数の貫通孔 3 1が隔壁 3 3を隔てて長手方向に並 設された角柱形状の多孔質セラミック部材 3 0が、 シール材層 2 3を介して複数 個結束された柱状構造である。
多孔質セラミック部材 3 0を製造するには、 まず、 上述したようなセラミック 粉末にバインダー及び分散媒液を加えて混合組成物を調製する。
上記混合組成物を調製する方法としては特に限定されず、 例えば、 上記第一の 本発明のハニカムフィルタの製造方法で説明した原料ペーストと同様の方法を挙 げることができる。
次に、 上記混合組成物を、 アトライター等で混合し、 ニーダ一等で充分に混練 した後、 押出成形法等により、 図 3に示した多孔質セラミック部材 3 0と略同形 状の柱状の生成形体を作製する。
上記生成形体を、 マイクロ波乾燥機等を用いて乾燥させた後、 所定の貫通孔に 封ロ材を充填する封口処理を施し、 再度、 マイクロ波乾燥機等で乾燥処理を施す。 上記封ロ材としては特に限定されず、 例えば、 上記混合組成物と同様のものを 挙げることができる。
次に、 上記封口処理を経た生成形体を、 酸素含有雰囲気下、 4 0 0〜6 5 0 °C 程度に加熱することで脱脂し、 バインダー等を揮散させるとともに、 分解、 消失 させ、 略セラミック粉末のみを残留させる。
そして、 上記脱脂処理を施した後、 窒素、 アルゴン等の不活性ガス雰囲気下、 1 4 0 0〜 2 2 0 0 °C程度に加熱することで焼成し、 セラミック粉末を焼結させ て多孔質セラミック部材 3 0を製造する。
次に、 図 4に示したように、 上記セラミック積層体を作製するには、 まず、 多 孔質セラミック部材 3 0が斜めに傾斜した状態で積み上げることができるように 、 断面 V字形状に構成された台 4 0の上に、 多孔質セラミック部材 3 0を傾斜し た状態で载置した後、 上側を向いた 2つの側面 3 0 a、 3 0 bに、 シール材層 2 3となるシール材ペーストを均一な厚さで塗布してペースト層 4 1を形成し、 こ のペースト層の上に、 順次'他の多孔質セラミック部材 3 0を積層する工程を繰り 返し、 所定の大きさの柱状のセラミック積層体を作製する。 この際、 セラミック 積層体の 4隅にあたる多孔質セラミック部材 3 0には、 四角柱形状の多孔質セラ ミック部材を 2つに切断して作製した三角柱状の多孔質セラミック部材 3 0 cと 、 三角柱状の多孔質セラミック部材 3 0 cと同じ形状の樹脂部材 4 2とを易剥離 性の両面テープ等で貼り合わせてなるものを使用し、 多孔質セラミック部材 3 0 の積層が完了した後に、 セラミック積層体の 4隅を構成する樹脂部材 4 2を全て 取り除くことによって、 セラミック積層体を断面多角柱状にしてもよい。 これに より、 セラミック積層体の外周部を切削加工してセラミックブロックを作製した 後に廃棄されることとなる多孔質セラミック部材からなる廃棄物の量を減らすこ とができる。 上記図 4に示した方法以外であっても、 断面多角柱状のセラミック積層体を作 製する方法としては、 作製するハニカムフィルタの形状に合わせて、 例えば、 4 隅の多孔質セラミック部材を省略する方法、 三角柱状の多孔質セラミック部材を 組み合わせる方法等を用いることができる。 また、 もちろん四角柱状のセラミツ ク積層体を作製してもよい。
そして、 このセラミック積層体を 5 0〜: L 0 0 °C、 1時間程度の条件で加熱し て上記ペースト層を乾燥、 固化させてシール材層 2 3とし、 その後、 例えば、 ダ ィャモンド力ッタ一等を用いて、 その外周部を図 2に示したような形状に切削す ることで、 セラミックプロック 2 5を作製する。
なお、 シール材層 2 3となるシール材ぺーストを構成する材料としては特に限 定されず、 例えば、 上記第一の本発明のハ-カムフィルタの製造方法で説明した シール材ペーストと同様の材料を挙げることができる。
次に、 このようにして作製したセラミックブ口ック 2 5の周囲にシーノレ材層 2 4の層を形成するシール材形成工程を行うことで、 セラミックブロック 2 5の外 周にシール材層 2 4が形成された第二の本発明のハ-カムフィルタ 2 0の製造を 終了する。
なお、 このシール材層形成工程としては特に限定されず、 例えば、 上記第一の 本宪明のハニカムフィルタの製造方法において説明したシール材層形成工程と同 様の工程を挙げることができる。
また、 上記第二の本発明のハニカムフィルタにおいて説明した通り、 第二の本 発明のハ-カムフィルタは、 上記貫通孔に垂直な方向の上記貫通孔を含む断面の 総面積に対する、 上記シール材層が占める面積の割合 S /3が 2 %以上である。 そのため、 上記第二の本発明のハニカムフィルタの製造方法において、 セラミ ック積層体を作製する際、 及び、 シール材層形成工程を行う際に、 ハニカムフィ ルタを製造した後の上記 S が 2 %以上となるように、 上記シール材ペースト層 の厚さを調整しておく必要がある。 .
また、 上記第二の本発明のハニカムフィルタにおいて説明した通り、 第二の本 発明のハニカムフィルタに含まれる有機成分は、 具体的には、 上記シール材ぺー ストに含まれる有機バインダーのことである。 そのため、 製造後のハニカムフィ ルタに含まれる有機成分の割合 V |3が 0 . 5重量%以下となるように、 予め上記 シール材ペーストを構成する材料や、 配合比等を調製しておくことが望ましい。 なお、 予め、 上記シール材ペーストの材料や配合比等の調製を行わず、 シール 材層形成工程を行った後、 例えば、 5 0 0〜 7 0 0 ° ( 、 1 0〜 9 0分程度の条件 で加熱処理を施すことで、 シール材層に存在する有機成分を分解、 除去し、 含ま れる有機成分の割合 V j3が 0 . 5重量0 /0以下のハニカムフィルタとしてもよい。 また、 このようにして製造した本宪明のハエカム ィルタには、 排気ガス浄化 用触媒を担持させてもよい。 このように排気ガス浄化用触媒を担持させた本発明 のハニカムフィルタは、 排気ガス中のパティキュレートを捕集するフィルタとし て機能するとともに、 排気ガス中の H C、 C O、 N O x等の有害成分や本 明の ハニカムフィルタに僅かに含まれている有機成分から生じるガスを浄化する触媒 コンバータとして機能する。 発明を実施するための最良の形態
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。
(実施例 1 )
( 1 ) 平均粒径 1 0 μ mのタルク 4 0重量部、 平均粒径 9 μ mの力オリン 1 0 重量部、 平均粒径 9 . 5 μ mのアルミナ 1 7重量部、 平均粒径 5 μ mの水酸化ァ ルミェゥム 1 6重量部、 平均粒径 1 0 μ mのシリカ 1 5重量部、 成形助剤 (ェチ レンダリコール) 6重量部、 水 1 6重量部加えて混練して原料ペーストを調製し た。
次に、 上記原料ペーストを押出成形機に充填し、 押出速度 1 0 c m/分にて図 1に示したハニカムフィルタ 1 0と略同形状のセラミック成形体を作製し、 上記 セラミック成形体を、 マイクロ波乾燥機を用いて乾燥させ、 上記原料ペーストと 同様の組成のペーストを所定の貫通孔に充填した後、 再ぴ乾燥機を用いて乾燥さ せた後、 4 0 0 °Cで脱脂し、 常圧のアルゴン雰囲気下 1 4 0 0 °C、 3時間で焼成 を行うことにより、 図 1に示したような、 コージエライトからなる円柱形状の柱 状体を製造した。
(2) 繊維長 0. 2 mmのアルミナファイバー 3 0重量%、 平均粒径 0. 6 μ mの炭化珪素粒子 2 1重量%、 シリカゾル 1 5重量%、 カルポキシメチルセル口 ース 5. 6重量0/。、 及ぴ、 水 2 8. 4重量%を含む耐熱性のシール材ペース トを 用いて上記柱状体の外周にシ一ル材ぺ一ス ト層を形成した。
そして、 このシール材ペースト層を 1 2 0°Cで乾燥してシール材層とすること で、 図 1に示したような、 シール材層の厚さが 0. 5 mm、 端面の直径が 1 4 3. 8 mmで円柱形状のハ-カム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 1. 4%であり、 上 記ハニカム構造体に対する、 有機成分の割合は 0. 6 0重量%であった。
そして、 上記ハニカム構造体を酸素雰囲気下 7 0 0°C、 9 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 Sひが 1. 4%で、 有機成分の割合 Vひが 0. 0 5重 量%のハニカムフィルタを製造した。
(実施例 2 )
まず、 実施例 1の (1 ) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 6 0 0°C、 6 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S αが 1. 4 %で、 有機成分の割合 Vひが 0. 1 0重 量%のハニカムフィルタを製造した。
(実施例 3 )
まず、 実施例 1の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 0 0°C、 3 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S αが 1. 4 %で、 有機成分の割合 Vひが 0. 2 0重 量%のハニカムフィルタを製造した。 (実施例 4)
まず、 実施例 1の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 500°C、 10分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ノレ材層が占める面積の割合 S が 1. 4 %で、 有機成分の割合 Vひが 0. 50重 量%のハニカムフィルタを製造した。
(比較例 1 )
(1) 実施例 1の (1) と同様にして柱状体を製造した。
( 2 ) 実施例 1の ( 2 ) で用いたシール材ペーストと同様のシール材ペースト を用いて上記柱状体の外周にシール材ペースト層を形成した。
そして、 このシール材ペース ト層を 120°Cで乾燥して、 図 1に示したような、 シール材層の厚さが 0. 5 mm、 端面の直径が 143. 8mmで円柱形状のハエ カムフィルタを製造した。
比較例 1で製造したハニカムフィルタにおける、 貫通孔に垂直な方向の上記貫 通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S αは 1. 4%であり、 上記ハニカムフィルタに対する、 有機成分の割合 Vaは 0. 60重 量%であった。
(評価試験 1 )
実施例 1〜 4及び比較例 1で製造したハ-カムフィルタをエンジンの排気通路 に設置し、 エンジンを無負荷状態で、 最高回転数 (3700 r pm、 ONm) で 運転した。
このとき、 ハ-カムフィルタに導入される前の排気ガスに含まれる HCの量を Aとし、 ハニカムフィルタを通過して外部に排出された排気ガスに含まれる HC の量を Bとした場合、 排気ガスが各ハニカムフィルタを通過することで増加した HCの増加率を下記の式 (1) により計算した。
HCの増加率 (%) = 100 X (B-A) / K - . · ( 1 )
(評価試験 2 ) 実施例 1〜 4及び比較例 1で製造したハニカムフィルタに、 触媒を担持させる ための下地となるアルミナ層を 10 g/Lの割合で付与し、 排気ガス浄化用触媒 として白金を 2 g/Lの割合で担持させ、 その後、 エンジンの排気通路に設置し、 エンジンを無負荷状態で、 最高回転数 (3700 r pm、 ONm) にして運転し た。
このとき、 ハニカムフィルタに導入される前の排気ガスに含まれる HCの量を Aとし、 ハニカムフィルタを通過して外部に排出された排気ガスに含まれる HC の量を Β' とした場合、 排気ガスが各ハニカムフィルタを通過することで増加し た HCの増加率を下記の式 (2) により計算した。
HCの増加率 (%) = 1 00 X (Β' — A) /A - ■ · (2)
それぞれの結果を下記表 1、 及び、 図 5に示す。
なお、 図 5は、 実施例 1〜 4及び比較例 1に係るハニカムフィルタの、 評価試 験 1及び評価試験 2の結果を示すグラフである。
表 1
Figure imgf000027_0001
評価試験 1の結果より、 実施例 1〜 4に係るハニカムフィルタにおける H Cの 増加率は 8〜1 5 %と非常に小さかったが、 比較例 1に係るハニカムフィルタに おける H Cの増加率は 40 %と、 実施例 1〜 4に係るハ-カムフィルタにおける HCの増加率よりも非常に大きくなっていた。
また、 評価試験 2の結果より、 実施例 1〜4に係る触媒を担持したハニカムフ ィルタにおける HCの増加率は 1〜10%と非常に小さかったが、 比較例 1に係 る触媒を担持したハニカムフィルタにおける HCの増加率は 35%と、 実施例 1 〜4に係るハニカムフィルタにおける HCの増加率よりも非常に大きくなってい た。
(実施例 5 )
(1) 実施例 1の (1) と同様にして柱状体を製造した。
(2) 繊維長 0. 2 mmのアルミナファイバー 2 7重量0 /0、 平均粒径 0. ら μ mの炭化珪素粒子 1 9重量%、 シリカゾル 14重量%、 カルボキシメチルセル口 ース 1 3. 2重量%、 及ぴ、 水26. 8重量%を含む耐熱性のシール材ペース ト を用いて上記柱状体の外周に、 厚さ 0. 2mmのシール材層を形成したほかは、 実施例 1の (2) と同様にしてハニカム構造体を製造した。
製造したハ-カム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 0. 6%であり、 上 記ハエカム構造体に対する、 有機成分の割合は 0. 6 0重量%であった。
そして、 上記ハニカム構造体を酸素含有雰囲気下 700°C、 90分の条件で加 熱することで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シール材層が占める面積の割合 S αが 0. 6%で、 有機成分の割合 V αが 0. 0 5重量%のハニカムフィルタを製造した。
(実施例 6 ) .
まず、 実施例 5の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 6 00°C、 60分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S αが 0. 6 %で、 有機成分の割合 V αが 0. 1 0重 量%のハ-カムフィルタを製造した。
(実施例 7 )
まず、 実施例 5の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 00°C、 3 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S αが 0. 6 °/。で、 有機成分の割合 V aが 0. 20重 量%のハエカムフィルタを製造した。 (実施例 8 )
まず、 実施例 5の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハエカム構造体を酸素雰囲気下 500°C、 10分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 0. 6 %で、 有機成分の割合 V αが 0. 50重 量。/0のハニカムフィルタを製造した。
(比較例 2)
(1) 実施例 5の (1) と同様にして柱状体を製造した。
(2) 実施例 5の (2) で用いたシール材ペーストと同様のシール材ペースト を用いて上記柱状体の外周にシール材ぺ一スト層を形成した。
そして、 このシール材ペースト層を 120°Cで乾燥して、 図 1に示したような、 シール材層の厚さが 0. 2 mm、 端面の直径が 143. 8mmで円柱形状のハニ カムフィルタを製造した。
比較例 2で製造したハ-カムフィルタにおける、 貫通孔に垂直な方向の上記貫 通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S aは 0. 6%であり、 上記ハ-カムフィルタに対する、 有機成分の割合 Vo;は 0. 60重 量%であった。 実施例 5〜 8及ぴ比較例 2に係るハニカムフィルタについても、 上記実施例 1 〜 4及び比較例 1について行った評価試験 1及び 2と同様の評価試験を行つた。 それぞれの結果を下記表 2、 及び、 図 6に示す。
なお、 図 6は、 実施例 5〜 8及び比較例 2に係るハニカムフィルタの、 評価試 験 1及ぴ評価試験 2の結果を示すグラフである。 表 2
Figure imgf000030_0001
評価試験 1の結果より、 実施例 5〜8に係るハニカムフィルタにおける HCの 増加率は 6〜 1 3%と非常に小さかったが、 比較例 2に係るハ-カムフィルタに おける HCの増加率は 30%と、 実施例 5〜8に係るハニカムフィルタにおける HCの増加率よりも非常に大きくなっていた。
また、 評価試験 2の結果より、 実施例 5〜8に係る触媒を担持したハニカムフ ィルタにおける H Cの増加率は 1〜 8 %と非常に小さかったが、 比較例 2に係る 触媒を担持したハニカムフィルタにおける HCの増加率は 25%と、 実施例 5〜 8に係るハニカムフィルタの HCの増加率よりも非常に大きくなっていた。
(実施例 9 )
(1) 実施例 1の (1) と同様にして柱状体を製造した。
(2) 繊維長 0. 2 mmのアルミナファイバー 26重量0/。、 平均粒径 0. ら μ mの炭化珪素粒子 19重量%、 シリカゾル 14重量%、 カルボキシメチルセル口 ース 15. 8重量%、 及び、 水 25. 2重量%を含む耐熱性のシール材ペース ト を用いて上記柱状体の外周に、 厚さ 0. 1 7 mmのシール材層を形成したほかは、 実施例 1の (2) と同様にしてハ-カム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 0. 5%であり、 上 記ハ-カム構造体に対する、 有機成分の割合は 0. 60重量%であった。
そして、 上記ハニカム構造体を酸素含有雰囲気下 700°C、 90分の条件で加 熱することで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シール材層が占める面積の割合 Sひが 0 . 5 %で、 有機成分の割合 V αが 0 . 0 5重量%のハニカムフィルタを製造した。
(実施例 1 0 )
まず、 実施例 9の (1 ) 及び (2 ) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 6 0 0 °C、 6 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S αが 0 . 5 %で、 有機成分の割合 V αが 0 . 1 0重 量%のハニカムフィルタを製造した。
(実施例 1 1 )
まず、 実施例 9の (1 ) 及び (2 ) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 0 0 °C、 3 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 0 . 5 %で、 有機成分の割合 V αが 0 . 2 0重 量%のハ-カムフィルタを製造した。
(実施例 1 2 )
まず、 実施例 9の (1 ) 及び (2 ) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 0 0 °C、 1 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S αが 0 . 5 °/0で、 有機成分の割合 Vひが 0 . 5 0重 量%のハエカムフィルタを製造した。
(比較例 3 )
( 1 ) 実施例 9の (1 ) と同様にして柱状体を製造した。
( 2 ) 実施例 9の ( 2 ) で用いたシール材ペーストと同様のシール材ペースト を用いて上記柱状体の外周にシール材ペースト層を形成した。
そして、 このシール材ペースト層を 1 2 0 °Cで乾燥して、 図 1に示したような、 シール材層の厚さが 0 . 1 7 mm、 端面の直径が 1 4 3 . 8 mmで円柱形状のハ 二カムフィルタを製造した。 比較例 3で製造したハニカムフィルタにおける、 貫通孔に垂直な方向の上記貫 通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 Sひは 0. 5%であり、 上記ハ-カムフィルタに対する、 有機成分の割合 Vaは 0. 60重 量%であった。 実施例 9 ~ 1 2及び比較例 3に係るハニカムフィルタについても、 上記実施例 1〜 4及び比較例 1について行った評価試験 1及び 2と同様の評価試験を行った。 それぞれの結果を下記表 3、 及び、 図 7に示す。
なお、 図 7は、 実施例 9〜1 2及び比較例 3に係るハ-カムフィルタの、 評価 試験 1及び評価試験 2の結果を示すグラフである。
表 3
Figure imgf000032_0001
評価試験 1の結果より、 実施例 9 ~ 1 2に係るハニカムフィルタにおける H C の増加率は 4〜10%と非常に小さかったが、 比較例 3に係るハニカムフィルタ における HCの増加率は 25%と、 実施例 9〜1 2に係るハニカムフィルタにお ける HCの増加率よりも非常に大きくなっていた。
また、 評価試験 2の結果より、 実施例 9〜12に係る触媒を担持したハ-カム フィルタにおける HCの増加率は 0. 5〜8%と非常に小さかったが、 比較例 3 に係る触媒を担持したハニカムフィルタにおける HCの増加率は 20%と、 実施 例 9〜 12に係るハニカムフィルタの HCの増加率よりも非常に大きくなってい た。 (比較例 4)
(1) 実施例 1の (1) と同様にして柱状体を製造した。
(2) 繊維長 0. 2 mmのアルミナファイバー 23重量%、 平均粒径 0. 6 μ mの炭化珪素粒子 16重量%、 シリ力ゾル 12重量。/。、 カルボキシメチルセル口 ース 26. 3重量。/。、 及び、 水 22. 7重量%を含む耐熱性のシール材ペースト を用いて上記柱状体の外周に、 厚さ 0. 1mmのシール材層を形成したほかは、 実施例 1の (2) と同様にしてハニカム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 0. 3%であり、 上 記ハニカム構造体に対する、 有機成分の割合は 0. 60重量。/。であった。
そして、 上記ハ-カム構造体を酸素含有雰囲気下 700°C、 90分の条件で加 熱することで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シール材層が占める面積の割合 S αが 0. 3 %で、 有機成分の割合 Vひが 0. 0 5重量0 /0のハ-カムフィルタを製造した。
(比較例 5 )
まず、 比較例 4の (1) 及び (2) と同様にしてハ-カム構造体を製造した。 そして、 このハ-カム構造体を酸素雰囲気下 600°C、 60分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対.する、 シー ル材層が占める面積の割合 S αが 0. 3 %で、 有機成分の割合 V αが 0. 10重 量0/。のハニカムフィルタを製造した。
(比較例 6 )
まず、 比較例 4の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 500°C、 30分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 Sひが 0. 3 %で、 有機成分の割合 V αが 0. 20重 量%のハニカムフィルタを製造した。
(比較例 7 )
まず、 実施例 5の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 0 0 °C、 1 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S αが 0 . 3 %で、 有機成分の割合 V α力 S 0 . 5 0重 量0 /0のハニカムフィルタを製造した。
(比較例 8 )
( 1 ) 比較例 4の (1 ) と同様にして柱状体を製造した。
( 2 ) 比較例 4の (2 ) で用いたシール材ペーストと同様のシール材ペースト を用いて上記柱状体の外周にシール材ペースト層を形成した。
そして、 このシール材ペース ト層を 1 2 0 °Cで乾燥して、 図 1に示したような、 シール材層の厚さが 0 . 1 mm、 端面の直径が 1 4 3 . 8 mmで円柱形状のハニ カムフィルタを製造した。
比較例 8で製造したハニカムフィルタにおける、 貫通孔に垂直な方向の上記貫 通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S αは 0 . 3 %であり、 上記ハニカムフィルタに対する、 有機成分の割合 Vひは 0 . 6 0重 量。 /。であった。 比較例 4〜 8で製造したハニカムフィルタについても、 上記実施例 1〜 4及び 比較例 1について行った評価試験 1及び 2と同様の評価試験を行った。
それぞれの結果を下記表 4、 及び、 図 8に示す。
なお、 図 8は、 比較例 4〜8に係るハニカムフィルタの、 評価試験 1及び評価 試験 2の結果を示すグラフである。
表 4
HC増加率(%)
S o? (%) M a (重量0 /o)
評価試験 1 評価試験 2
比較例 4 0. 3 0. 05 0. 8 0
比較例 5 0. 3 0. 1 0 1 0
比較例 6 0. 3 0. 20 3 1
比較例 7 0. 3 0. 50 5 3
比較例 8 0. 3 0. 60 8 5 評価試験 1の結果より、 比較例 4〜 8に係るハニカムフィルタにおける H Cの 増加率は 0 . 8〜8 %と非常に小さく、 また、 評価試験 2の結果より、 比較例 4 〜8に係る触媒を担持したハニカムフィルタにおける H Cの増加率も 0〜 5 %と、 非常に小さくなっていた。 このように、 実施例 1〜1 2、 及び、 比較例 1〜8に係るハニカムフィルタは、 柱状体の外周にのみシール材層が形成された構造であり、 実施例 1〜 1 2、 及び、 比較例 1〜 3に係るハエカムフィルタは、 いずれもハニカムフィルタにおける、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 上記シール材層 が占める割合 S o;が 0 . 5 %以上である。
評価試験 1の結果より、 有機成分の割合 Vひが 0 . 5 0重量。 /0以下である実施 例 1〜1 2に係るハニカムフィルタでは、 シール材層から排出される有機成分の 量が少なくなり、 排出される排気ガス中の H Cは殆ど増加することがなく、 また、 評価試験 2の結果より、 このようなハニカムフィルタに触媒を担持させると、 外 部に排出される H Cの増加率を非常に小さくすることができる。
—方、 有機成分の割合 Vひが 0 . 5 0重量 °/0を超える比較例 1〜3に係るハニ カムフィルタでは、 シール材層から排出される有機成分の量が多くなり、 排出さ れる排気ガス中の H Cの増加率が非常に大きくなつており、 また、 評価試験 2の 結果より、 このようなハニカムフィルタに触媒を担持させると、 外部に排出され る H Cの増加率は若干低くなるものの、 実施例 1〜1 2に係るハニカムフィルタ に比べて非常に大きなものとなっていた。
また、 比較例 4 ~ 8に係るハニカムフィルタの評価試験 1の結果より、 ハニカ ムフィルタにおける、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対 する、 シール材層が占める割合 Sひが 0 . 5 %未満であると、 例え、 有機成分の 割合 Vひが 0 . 5 0重量%を超えるものであっても、 上記シーノレ材層から排出さ れる有機成分の量が少なくなり、 排出される排気ガス中の H Cは殆ど増加しない。 即ち、 上記 Sひが 0 . 5 %未満であるハニカムフィルタでは、 例え、 シール材 層に存在する有機成分の割合が多くなつても、 比較例 1〜3に示したような、 排 出される排気ガス中の H C量が増加するという問題が生じない。
また、 評価試験 2の結果より、 このようなハニカムフィルタに触媒を担持させ ると、 外部に排出される H Cの増加率を非常に小さくすることができる。 (実施例 1 3 )
( 1 ) 平均粒径 5 μ mの α型炭化珪素粉末 6 0重量%と、 平均粒径 0 . 5 t m の β型炭化珪素粉末 4 0重量%とを湿式混合し、 得られた混合物 1 0 0重量部に 対して、 有機バインダー (メチルセルロース) を 5重量部、 水を 1 0重量部加え て混練して混練物を得た。 次に、 上記混練物に可塑剤と潤滑剤とを少量加えてさ らに混練した後、 押出成形を行い、 生成形体を作製した。
次に、 上記生成形体を、 マイクロ波乾燥機を用いて乾燥させ、 上記生成形体と 同様の組成のペーストを所定の貫通孔に充填した後、 再び乾燥機を用いて乾燥さ せた後、 4 0 0 °Cで脱脂し、 常圧のアルゴン雰囲気下 2 2 0 0 °C、 3時間で焼成 を行うことにより、 図 3に示したような、 その大きさが 3 4 mm X 3 4 mm X 3 0 O mmで、 貫通孔の数が 3 1個/ c m 2、 隔壁の厚さが 0 . 3 mmの炭化珪素 焼結体からなる多孔質セラミック部材を製造した。
( 2 ) 繊維長 0 . 2 mmのアルミナファイバー 3 1重量0 /0、 平均粒径 0 . 6 μ mの炭化珪素粒子 2 2重量%、 シリカゾル 1 6重量%、 力ルポキシメチルセル口 ース 1重量%、 及び、 水 3 0重量%を含む耐熱性のシール材ペーストを用いて上 記多孔質セラミック部材を、 図 4を用いて説明した方法により多数結束させ、 続 いて、 ダイヤモンドカッターを用いて切断することにより、 図 2に示したような 円柱形状のセラミックプロックを作製した。
次に、 上記シール材ペーストを用いて、 上記セラミックプロックの外周部にシ ール材ペース ト層を形成した。 そして、 このシール材ペースト層を 1 2 0 °Cで乾 燥して、 図 2に示したハエカムフィルタ 2 0のような、 多孔質セラミック部材の 間、 及ぴ、 セラミックプロックの外周に形成されたシール材層の厚さが 1 . 0 m m、 直径が 1 4 5 . 8 mmで円柱形状のハニカム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 7. 4%であり、 上 記ハニカム構造体に対する、 有機成分の割合は 0. 60重量%であった。
そして、 上記ハニカム構造体を酸素雰囲気下 700°C、 90分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S βが 7. 4%で、 有機成分の割合 V βが 0. 05重 量%のハエカムフィルタを製造した。
(実施例 14)
まず、 実施例 1 3の (1) 及ぴ (2) と'同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 600°C、 60分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 7. 4 %で、 有機成分の割合 V ]3が 0. 10重 量%のハニカムフィルタを製造した。
(実施例 1 5 )
まず、 実施例 1 3の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハ-カム構造体を酸素雰囲気下 500°C、 30分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 7. 4° /。で、 有機成分の割合 V]3が 0. 20重 量%のハニカムフィルタを製造した。
(実施例 1 6 )
まず、 実施例 1 3の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 500°C、 10分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S /3が 7. 4。/。で、 有機成分の割合 V 0が 0. 50重 量%のハニカムフィルタを製造した。
(比較例 9 )
(1) 実施例 1 3の (1) と同様にして多孔質セラミック部材を製造した。
( 2 ) 実施例 1 3の (2) で用いたシール材ペーストと同様のシール材ペース トを用いて上記多孔質セラミック部材を、 図 4を用いて説明した方法により多数 結束させ、 続いて、 ダイヤモンドカッターを用いて切断することにより、 図 2に 示したような円柱形状のセラミックブ口ックを作製した。
次に、 上記シール材ペーストを用いて、 上記セラミックブロックの外周にシー ル材ペースト層を形成した。 そして、 このシール材ペースト層を 1 2 0 °Cで乾燥 して、 図 2に示したハニカムフィルタ 2 0のような、 多孔質セラミック部材の間、 及ぴ、 セラミックブロックの外周に形成されたシール材層の厚さが 1 . O mm、 直径が 1 4 5 . 8 mmで円柱形状のハニカムフィルタを製造した。
比較例 9で製造したハニカムフィルタにおける、 貫通孔に垂直な方向の上記貫 通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S は 7 .
4 %であり、 上記ハニカムフィルタに対する、 有機成分の割合 は 0 . 6 0重 量%であった。 実施例 1 3〜1 6及び比較例 9に係るハニカムフィルタについても、 上記実施 例 1〜 4及び比較例 1について行った評価試験 1及び 2と同様の評価試験を行つ た。
それぞれの結果を下記表 5、 及び、 図 9に示す。
なお、 図 9は、 実施例 1 3〜1 6及び比較例 9に係るハニカムフィルタの、 評 価試験 1及び評価試験 2の結果を示すグラフである。
表 5
Figure imgf000038_0001
評価試験 1の結果より、 実施例 1 3 ~ 1 6に係るハニカムフィルタにおける H Cの増加率は 8〜1 5 %と非常に小さかったが、 比較例 9に係るハニカムフィル タにおける HCの増加率は 40%と、 実施例 1 3〜16に係るハニカムフィルタ における HCの増加率よりも非常に大きくなっていた。
また、 評価試験 2の結果より、 実施例 1 3〜16に係る触媒を担持したハニカ ムフィルタにおける HCの増加率は 1〜10%と非常に小さかったが、 比較例 9 に係る触媒を担持したハニカムフィルタにおける HCの増加率は 35%と、 実施 例 1 3〜16に係るハニカムフィルタにおける HCの増加率よりも非常に大きく なっていた。
(実施例 1 7)
(1) 実施例 1 3の (1) と同様にして多孔質セラミック部材を製造した。
(2) 繊維長 0. 2 mmのアルミナファイバー 3 1重量0 /0、 平均粒径 0. ら n mの炭化珪素粒子 22重量%、 シリカゾル 16重量 °/0、 力ルポキシメチルセル口 ース 2重量0/。、 及ぴ、 水 29重量%を含む而す熱性のシール材ペーストを用い、 シ ール材層の厚さを 0. 5mmとしたほかは、 実施例 13の (2) と同様にしてハ 二カム構造体を製造した。
製造したハ-カム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 3. 8%であり、 上 記ハニカム構造体に対する、 有機成分の割合は 0. 60重量%であった。
そして、 上記ハニカム構造体を酸素雰囲気下 700°C、 90分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ノレ材層が占める面積の割合 S ]3が 3. 8%で、 有機成分の割合 V 0が 0. 05重 量%のハニカムフィルタを製造した。
'(実施例 1 8)
まず、 実施例 1 7の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 600°C、 60分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S /3カ 3. 8 %で、 有機成分の割合 V ]3が 0. 10重 量。 /0のハ-カムフィルタを製造した。 (実施例 1 9 )
まず、 実施例 1 7の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 0 0°C、 3 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 3. 8 %で、 有機成分の割合 V が 0. 2 0重 量%のハニカムフィルタを製造した。
(実施例 2 0 )
まず、 実施例 1 3の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハ-カム構造体を酸素雰囲気下 5 0 0°C、 1 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S βが 3. 8 %で、 有機成分の割合 V が 0. 5 0重 量%のハユカムフィルタを製造した。
(比較例 1 0)
( 1 ) 実施例 1 7の (1 ) と同様にして多孔質セラミック部材を製造した。 (2) 実施例 1 7の (2) で用いたシール材ペーストと同様のシール材ペース トを用い、 シーノレ材層の厚さを 0. 5 mmとしたほかは、 比較例 9の (2) と同 様にしてハニカムフィルタを製造した。
比較例 1 0で製造したハニカムフィルタにおける、 貫通孔に垂直な方向の上記 貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S ]3は 4. 0%であり、 上記ハエカムフィルタに対する、 有機成分の割合 V /3は 0. 6 0重量%であった。 実施例 1 7〜2 0及び比較例1◦に係るハ-カムフィルタについても、 上記実 施例 1〜 4及び比較例 1について行った評価試験 1及び 2と同様の評価試験を行 つた。
それぞれの結果を下記表 6、 及び、 図 1 0に示す。
なお、 図 1 0は、 実施例 1 7〜 2 0及ぴ比較例 1 0に係るハニカムフィルタの、 評価試験 1及び評価試験 2の結果を示すグラフである。 表 6
Figure imgf000041_0001
評価試験 1の結果より、 実施例 17〜20に係るハエカムフィルタにおける H Cの増加率は 6〜 13%と非常に小さかったが、 比較例 10に係るハニカムフィ ルタにおける HCの増加率は 30%と、 実施例 1 7〜 20に係るハニカムフィル タにおける HCの増加率よりも非常に大きくなっていた。
また、 評価試験 2の結果より、 実施例 1 7〜20に係る触媒を担持したハニカ ムフィルタにおける HCの増加率は 1〜8%と非常に小さかったが、 比較例 10 に係る触媒を担持したハニカムフィルタにおける HCの増加率は 25%と、 実施 例 17〜20に係るハニカムフィルタの HCの増加率よりも非常に大きくなつて いた。
(実施例 2 1 )
(1) 実施例 1 3の (1) と同様にして多孔質セラミック部材を製造した。
(2) 繊維長 0. 2mmのアルミナファイバー 30重量%、 平均粒径 0. 6 mの炭化珪素粒子 21重量%、 シリカゾル 16重量%、 力ルポキシメチルセル口 ース 4重量%、 及ぴ、 水 29重量%を含む耐熱性のシール材ペース トを用い、 シ ール材層の厚さを 0. 25 mmとしたほかは、 実施例 13の (2) と同様にして ハニカム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 2. 0%であり、 上 記八-カム構造体に対する、 有機成分の割合は 0. 60重量0 /。であった。 そして、 上記ハニカム構造体を酸素雰囲気下 700°C、 9 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 1. 9 %で、 有機成分の割合 V ]3が 0. 0 5重 量。 /0のハニカムフィルタを製造した。
(実施例 2 2)
まず、 実施例 2 1の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 600°C、 60分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 1. 9 %で、 有機成分の割合 V ]3が 0. 1 0重 量%のハ-カムフィルタを製造した。
(実施例 2 3 )
まず、 実施例 2 1の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 00°C、 3 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 1. 9 %で、 有機成分の割合 V が 0. 20重 量%のハニカムフィルタを製造した。
(実施例 24)
まず、 実施例 2 1の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハ-カム構造体を酸素雰囲気下 5 00°C、 1 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S 0が 1. 9 %で、 有機成分の割合 V βが 0. 5 0重 量%のハュカムフィルタを製造した。
(比較例 1 1 )
( 1) 実施例 2 1の (1) と同様にして多孔質セラミック部材を製造した。 (2) 実施例 2 1の (2) で用いたシール材ペーストと同様のシール材ペース トを用い、 シーノレ材層の厚さを 0. 2 5mmとしたほかは、 比較例 9の (2) と 同様にしてハニカムフィルタを製造した。
比較例 1 1で製造したハニカムフィルタにおける、 貫通孔に垂直な方向の上記 貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S /3は 2. 0%であり、 上記ハニカムフィルタに対する、 有機成分の割合 V0は 0. 6 0重量。/。であった。 実施例 21〜24及び比較例1 1に係るハニカムフィルタについても、 上記実 施例 1〜 4及び比較例 1について行った評価試験 1及び 2と同様の評価試験を行 つた。
それぞれの結果を下記表 7、 及び、 図 1 1に示す。
なお、 図 1 1は、 実施例 21〜24及び比較例 1 1に係るハュカムフィルタの、 評価試験 1及び評価試験 2の結果を示すグラフである。
表 7
Figure imgf000043_0001
評価試験 1の結果より、 実施例 21〜24に係るハニカムフィルタにおける H Cの増加率は 4〜10%と非常に小さかったが、 比較例 1 1に係るハエカムフィ ルタにおける HCの増加率は 25%と、 実施例 21〜24に係るハニカムフィル タにおける HCの増加率よりも非常に大きくなっていた。
また、 評価試験 2の結果より、 実施例 21~24に係る触媒を担持したハユカ ムフィルタにおける HCの増加率は 0. 5 ~8%と非常に小さかったが、 比較例 1 1に係る触媒を担持したハニカムフィルタにおける HCの増加率は 20%と、 実施例 21〜24に係るハニカムフィルタの HCの増加率よりも非常に大きくな つていた。 (比較例 1 2 )
(1) 実施例 1 3の (1) と同様にして多孔質セラミック部材を製造した。
(2) 繊維長 0. 2mmのアルミナファイバー 28重量%、 平均粒径 0. 6 mの炭化珪素粒子 20重量%、 シリ力ゾル 15重量%、 カルボキシメチルセル口 ース 10重量0 /0、 及び、 水 27重量%を含む耐熱性のシール材ペーストを用い、 シール材層の厚さを 0. 1mmとしたほかは、 実施例 1 3の (2) と同様にして ハニカム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 0. 8%であり、 上 記ハニカム構造体に対する、 有機成分の割合は 0. 60重量%であった。
そして、 上記ハニカム構造体を酸素雰囲気下 700°C、 90分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 0. 8 %で、 有機成分の割合 V βが 0. 05重 量%のハュカムフィルタを製造した。
(比較例 1 3 )
まず、 比較例 1 2の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 600°C、 60分の条件で加熱す 'ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 0. 8%で、 有機成分の割合¥ が0. 10重 量0 /0のハニカムフィルタを製造した。
(比較例 1 4 )
まず、 比較例 1 2の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 500°C、 30分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S |3が 0. 8 %で、 有機成分の割合 V が 0. 20重 量%のハニカムフィルタを製造した。
(比較例 1 5 )
まず、 比較例 1 2の (1) 及ぴ (2) と同様にしてハニカム構造体を製造した c 303495
43
そして、 このハニカム構造体を酸素雰囲気下 500°C、 10分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 0. 8 %で、 有機成分の割合 V j3が 0. 50重 量%のハニカムフィルタを製造した。
(比較例 16 )
(1) 実施例 13の (1) と同様にして多孔質セラミック部材を製造した。
(2) 比較例 12の (2) で用いたシール材ペーストと同様のシール材ペース トを用い、 シーノレ材層の厚さを 0. 1mmとしたほかは、 比較例 9の (2) と同 様にしてハ-カムフィルタを製造した。
比較例 16で製造したハニカムフィルタにおける、 貫通孔に垂直な方向の上記 貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S ]3は
0. 8%であり、 上記ハ-カムフィルタに対する、 有機成分の割合 は 0. 6
0重量。/。であった。 比較例 12〜16で製造したハニカムフィルタについても、 上記実施例 1~4 及び比較例 1について行った評価試験 1及ぴ 2と同様の評価試験を行った。 それぞれの結果を下記表 8、 及ぴ、 図 12に示す。
なお、 図 12は、 比較例 12〜16に係るハニカムフィルタの、 評価試験 1及 び評価試験 2の結果を示すグラフである。
表 8
Figure imgf000045_0001
評価試験 1の結果より、 比較例 12〜 16に係るハニカムフィルタにおける H Cの増加率は 0 . 8〜 8 %と非常に小さく、 また、 評価試験 2の結果より、 比較 例 1 2〜1 6に係る触媒を担持したハニカムフィルタにおける H Cの増加率も 0 〜5 %と、 非常に小さくなつていた。 このように、 実施例 1 3〜2 4、 及び、 比較例 9〜 1 6に係るハニカムフィル タは、 多孔質セラミック部材の間、 及び、 セラミックブロックの外周にシール材 層が形成された構造であり、 実施例 1 3〜2 4、 及び、 比較例 9〜1 1に係るハ 二カムフィルタは、 いずれもハニカムフィルタにおける、 貫通孔に垂直な方向の 上記貫通孔を含む断面の総面積に対する、 上記シール材層が占める割合 S ]3が 2 %以上である。
評価試験 1の結果より、 有機成分の割合 V |3が 0 . 5 0重量%以下である実施 例 1 3〜2 4に係るハ-カムフィルタでは、 シール材層から排出される有機成分 の量が少なくなり、 排出される排気ガス中の H Cは殆ど増加することがなく、 ま た、 評価試験 2の結果より、 このようなハニカムフィルタに触媒を担持させると、 外部に排出される H Cの増加率を非常に小さくすることができる。
一方、 有機成分の割合 V ]3力 S 0 . 5 0重量%を超える比較例 9〜 1 1に係るハ 二カムフィルタでは、 シール材層から排出される有機成分の量が多くなり、 排出 される排気ガス中の H Cの増加率が非常に大きくなつており、 また、 評価試験 2 の結果より、 このようなハニカムフィルタに触媒を担持させると、 外部に排出さ れる H Cの増加率は若干低くなるものの、 実施例 1 3〜2 4に係るハニカムフィ ルタに比べて非常に大きなものとなっていた。
また、 比較例 1 2〜1 6に係るハニカムフィルタの評価試験 1の結果より、 ノ、 二カムフィルタにおける、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積 に対する、 シール材層が占める割合 S が 2 %未満であると、 例え、 有機成分の 割合 が 0 . 5重量0 /0を超えるものであっても、 上記シール材層から排出され る有機成分の量が少なくなり、 排出される排気ガス中の H Cは殆ど増加しない。 即ち、 上記 S ]3が 2 %未満であるハエカムフィルタでは、 例え、 シール材層に 存在する有機成分の割合が多くなつても、 比較例 9〜1 2に示したような、 排出 される排気ガス中の HC量が増加するという問題が生じない。
また、 評価試験 2の結果より、 このようなハニカムフィルタに触媒を担持させ ると、 外部に排出される HCの増加率を非常に小さくすることができる。 (実施例 25 )
( 1 ) 平均粒径 20 mの a型炭化珪素粉末 60重量%と、 平均粒径 l. O /i παの珪素粉末 40重量%とを湿式混合し、 得られた混合物 100重量部に対して 、 有機バインダー (メチルセルロース) を 5重量部、 水を 10重量部加えて混練 して混練物を得た。 次に、 上記混練物に可塑剤と潤滑剤とを少量加えてさらに混 練した後、 押し出し成形を行い、 生成形体を作製した。
次に、 上記生成形体を、 マイクロ波乾燥機を用いて乾燥させ、 上記生成形体と 同様の組成のペーストを所定の貫通孔に充填した後、 再び乾燥機を用いて乾燥さ せた後、 400°Cで脱脂し、 常圧のアルゴン雰囲気下 1600°C、 2時間で焼成 を行うことにより、 図 3に示したような、 その大きさが 34mmX 34mmX 3 0 Ommで、 貫通孔の数が 3 1個 Zcm2、 隔壁の厚さが 0. 3mmの炭化珪素 一珪素焼結体からなる多孔質セラミック部材を製造した。
(2) 繊維長 0. 2mmのアルミナファイバー 31重量%、 平均粒径 0. ら μ mの炭化珪素粒子 22重量%、 シリカゾル 16重量。/。、 カルポキシメチルセル口 ース 1重量%、 及び、 水 30重量%を含む耐熱性のシール材ペーストを用いて上 記多孔質セラミック部材を、 図 4を用いて説明した方法により多数結束させ、 続 いて、 ダイヤモンドカッターを用いて切断することにより、 図 2に示したような 円柱形状のセラミックブロックを作製した。
次に、 上記シール材ペーストを用いて、 上記セラミックブロックの外周部にシ ール材ペースト層を形成した。 そして、 このシーノレ材ペースト層を 120°Cで乾 燥して、 図 2に示したハニカムフィルタ 20のような、 多孔質セラミック部材の 間、 及び、 セラミックブロックの外周に形成されたシール材層の厚さが 1. 0 m m、 直径が 145. 8 mmで円柱形状のハニカム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 7. 4%であり、 上 記ハニカム構造体に対する、 有機成分の割合は 0. 60重量%であった。
そして、 上記ハニカム構造体を酸素雰囲気下 700°C、 90分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 7. 4%で、 有機成分の割合 V 13が 0. 05重 量%のハニカムフィルタを製造した。
(実施例 26 )
まず、 実施例 25の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハユカム構造体を酸素雰囲気下 600°C、 60分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S βが 7. 4 %で、 有機成分の割合 V が 0. 10重 量%のハ-カムフィルタを製造した。
(実施例 27 )
まず、 実施例 25の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 500°C、 30分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S 力 S 7. 4%で、 有機成分の割合 V ]3が 0. 20重 量%のハニカムフィルタを製造した。
(実施例 28 )
まず、 実施例 25の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 500°C、 10分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ;3が 7. 4 %で、 有機成分の割合 V βが 0. 50重 量%のハニカムフィルタを製造した。
(実施例 29 )
(1) 実施例 25の (1) と同様にして多孔質セラミック部材を製造した。
(2) 繊維長 0. 2 mmのアルミナファイバー 3 1重量%、 平均粒径 0. 6 mの炭化珪素粒子 22重量0 /0、 シリカゾル 16重量%、 カルボキシメチルセル口 ース 2重量%、 及び、 水 2 9重量%を含む耐熱性のシール材ペース トを用い、 シ ール材層の厚さを 0 . 5 mmとしたほかは、 実施例 2 5の (2 ) と同様にしてハ 二カム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 3 . 8 %であり、 上 記ハ-カム構造体に対する、 有機成分の割合は 0 . 6 0重量。/。であった。
そして、 上記ハニカム構造体を酸素雰囲気下 7 0 0 °C、 9 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S 0が 3 . 8 %で、 有機成分の割合 V βが 0 . 0 5重 量0 /0のハエカムフィルタを製造した。
(実施例 3 0 )
まず、 実施例 2 9の (1 ) 及び (2 ) と同様にしてハニカム構造体を製造した。 そして、 このハュカム構造体を酸素雰囲気下 6 0 0 °C、 6 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 3 . 8 %で、 有機成分の割合 V 0が 0 . 1 0重 量%のハ-カムフィルタを製造した。
(実施例 3 1 )
まず、 実施例 2 9の (1 ) 及び (2 ) と同様にしてハュカム構造体を製造した。 そして、 このハ-カム構造体を酸素雰囲気下 5 0 0 °C、 3 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 3 . 8 %で、 有機成分の割合 V |3力 S 0 . 2 0重 量%のハニカムフィルタを製造した。
(実施例 3 2 )
まず、 実施例 2 9の (1 ) 及び (2 ) と同様にしてハエカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 0 0 °C、 1 0分の条件で加熱す ることで、 賞通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 3 . 8 %で、 有機成分の割合 V J3力 S 0 . 5 0重 量%のハエカムフィルタを製造した。 (実施例 3 3 )
( 1 ) 実施例 2 5の (1 ) と同様にして多孔質セラミック部材を製造した。
(2) 繊維長 0. 2mmのアルミナファイバー 3 0重量0 /0、 平均粒径 0. 6 j mの炭化珪素粒子 2 1重量0 /0、 シリ力ゾル 1 6重量%、 カルボキシメチルセル口 ース 4重量%、 及び、 水 2 9重量0/。を含む耐熱性のシール材ペーストを用い、 シ ール材層の厚さを 0. 2 5 mmとしたほかは、 実施例 2 5の (2) と同様にして ハニカム構造体を製造した。
製造したハニカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 2. 0%であり、 上 記ハニカム構造体に対する、 有機成分の割合は 0. 6 0重量%であった。
そして、 上記ハニカム構造体を酸素雰囲気下 7 0 0°C、 9 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S /3が 1. 9 %で、 有機成分の割合 V ]3が 0. 0 5重 量%のハニカムフィルタを製造した。
(実施例 3 4 )
まず、 実施例 3 3の (1 ) 及ぴ (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 6 0 0°C、 6 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 1. 9 %で、 有機成分の割合 V ]3が 0. 1 0重 量%のハニカムフィルタを製造した。
(実施例 3 5 )
まず、 実施例 3 3の (1 ) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 5 0 0°C、 3 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 1. 9 %で、 有機成分の割合 V /3が 0. 2 0重 量%のハニカムフィルタを製造した。
(実施例 3 6 )
まず、 実施例 3 3の (1 ) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 500°C、 1 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3力 S 1. 9 %で、 有機成分の割合 V j3が 0 · 50重 量%のハニカムフィルタを製造した。
(比較例 1 7)
(1) 実施例 25の (1) と同様にして多孔質セラミック部材を製造した。 ( 2 ) 実施例 25の ( 2 ) で用いたシール材ペーストと同様のシール材ペース トを用いて上記多孔質セラミック部材を、 図 4を用いて説明した方法により多数 結束させ、 続いて、 ダイャモンドカッターを用いて切断することにより、 図2に 示したような円柱形状のセラミックブロックを作製した。
次に、 上記シール材ペーストを用いて、 上記セラミックブ口ックの外周にシー ル材ペースト層を形成した。 そして、 このシール材ペースト層を 120°Cで乾燥 して、 図 2に示したハ-カムフィルタ 20のような、 多孔質セラミック部材の間、 及び、 セラミックプロックの外周に形成されたシール材層の厚さが 1. Omm、 直径が 145. 8mmで円柱形状のハ-カムフィルタを製造した。
比較例 17で製造したハ-カムフィルタにおける、 貫通孔に垂直な方向の上記 貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S は 7. 4%であり、 上記ハニカムフィルタに対する、 有機成分の割合 は 0. 6 0重量%であった。
(比較例 1 8 )
(1) 実施例 29の (1) と同様にして多孔質セラミック部材を製造した。 ( 2 ) 実施例 29の ( 2 ) で用いたシール材ペーストと同様のシーノレ材ペース トを用い、 シール材層の厚さを 0. 5mmとしたほかは、 比較例 17の (2) と 同様にしてハニカムフィルタを製造した。
比較例 18で製造したハ-カムフィルタにおける、 貫通孔に垂直な方向の上記 貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S ]3は 4. 0%であり、 上記ハニカムフィルタに対する、 有機成分の割合 V は 0. 6 0重量%であった。 (比較例 1 9 )
( 1 ) 実施例 3 3の (1 ) と同様にして多孔質セラミック部材を製造した。
(2) 実施例 3 3の (2) で用いたシール材ペース トと同様のシール材ペース トを用い、 シール材層の厚さを 0. 2 5mmとしたほかは、 比較例 1 7の (2) と同様にしてハ-カムフィルタを製造した。
比較例 1 9で製造したハ-カムフィルタにおける、 貫通孔に垂直な方向の上記 貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S /3は 2. 0%であり、 上記ハニカムフィルタに対する、 有機成分の割合 V は 0. 6 0重量%であった。
(比較例 2 0 )
( 1 ) 実施例 2 5の (1 ) と同様にして多孔質セラミック部材を製造した。
(2) 繊維長 0. 2 mmのアルミナファイバー 2 8重量0 /0、 平均粒径 0. も β mの炭化珪素粒子 2 0重量%、 シリカゾル 1 5重量%、 カルボキシメチルセル口 ース 1 0重量%、 及び、 水 2 7重量%を含む耐熱性のシール材ペーストを用い、 シール材層の厚さを 0. 1 mmとしたほかは、 実施例 2 5の (2) と同様にして ハ-カム構造体を製造した。
製造したハエカム構造体における、 貫通孔に垂直な方向の上記貫通孔を含む断 面の総面積に対する、 上記シール材層が占める面積の割合は 0. 8 °/。であり、 上 記ハニカム構造体に対する、 有機成分の割合は 0. 6 0重量。/。であった。
そして、 上記ハニカム構造体を酸素雰囲気下 70 0°C、 9 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S ]3が 0. 8 %で、 有機成分の割合 V βが 0 · 0 5重 量%のハニカムフィルタを製造した。
(比較例 2 1 )
まず、 比較例 2 0の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハ-カム構造体を酸素雰囲気下 6 0 0°C、 6 0分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 0. 8 %で、 有機成分の割合 V が 0. 1 0重 量。 /0のハニカムフィルタを製造した。
(比較例 22 )
まず、 比較例 20の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハニカム構造体を酸素雰囲気下 500°C、 30分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S 力 S 0. 8 %で、 有機成分の割合 V j3力 S 0. 20重 量%のハニカムフィルタを製造した。
(比較例 23 )
まず、 比較例 20の (1) 及び (2) と同様にしてハニカム構造体を製造した。 そして、 このハ-カム構造体を酸素雰囲気下 500°C、 10分の条件で加熱す ることで、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める面積の割合 S が 0. 8。/。で、 有機成分の割合 V βが 0. 50重 量%のハニカムフィルタを製造した。
(比較例 24)
(1) 実施例 25の (1) と同様にして多孔質セラミック部材を製造した。
(2) 比較例 20の (2) で用いたシーノレ材ペーストと同様のシール材ペース トを用い、 シール材層の厚さを 0. 1mmとしたほかは、 比較例 17の (2) と 同様にしてハニカムフィルタを製造した。
比較例 24で製造したハニカムフィルタにおける、 貫通孔に垂直な方向の上記 貫通孔を含む断面の総面積に対する、 上記シール材層が占める面積の割合 S は 0. 8%であり、 上記ハニカムフィルタに対する、 有機成分の割合 は 0. 6 0重量%であった。 実施例 25〜36、 及ぴ、 比較例 1 7~ 24で製造したハニカムフィルタにつ いて、 上記実施例 1〜 4及び比較例 1について行った評価試験 1及び 2と同様の 評価試験を行った。
それぞれの結果を下記表 9に示す。 表 9
Figure imgf000054_0001
このように、 実施例 2 5〜3 6、 及び、 比較例 1 7〜 2 4に係るハニカムフィ ルタは、 多孔質セラミック部材の間、 及び、 セラミックブロックの外周にシール 材層が形成された構造であり、 実施例 2 5〜 3 6、 及ぴ、 比較例 1 7〜 1 9に係 るハニカムフィルタは、 いずれもハエカムフィルタにおける、 貫通孔に垂直な方 向の上記貫通孔を含む断面の総面積に対する、 上記シール材層が占める割合 S β が 2 %以上である。
評価試験 1の結果より、 有機成分の割合 V ]3が 0 . 5 0重量%以下である実施 例 2 5〜3 6に係るハニカムフィルタでは、 シール材層から排出される有機成分 JP03/03495
53
の量が少なくなり、 排出される排気ガス中の H Cは殆ど増加することがなく、 ま た、 評価試験 2の結果より、 このようなハニカムフィルタに触媒を担持させると、 外部に排出される H Cの増加率を非常に小さくすることができる。
一方、 有機成分の割合 V ]3力 S 0 . 5 0重量%を超える比較例 1 7〜 1 9に係る ハニカムフィルタでは、 シール材層から排出される有機成分の量が多くなり、 排 出される排気ガス中の H Cの増加率が非常に大きくなつており、 また、 評価試験 2の結果より、 このようなハニカムフィルタに触媒を担持させると、 外部に排出 される H Cの増加率は若干低くなるものの、 実施例 2 5〜3 6に係るハユカムフ ィルタに比べて非常に大きなものとなっていた。
また、 比較例 2 0〜2 4に係るハニカムフィルタの評価試験 1の結果より、 ノヽ 二カムフィルタにおける、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積 に対する、 シール材層が占める割合 S ]3力 S 2 %未満であると、 例え、 有機成分の 割合 V j3が 0 . 5重量%を超えるものであっても、 上記シール材層から排出され る有機成分の量が少なくなり、 排出される排気ガス中の H Cは殆ど増加しない。 即ち、 上記 S /3が 2 %未満であるハ-カムフィルタでは、 例え、 シール材層に 存在する有機成分の割合が多くなつても、 比較例 1 7〜1 9に示したような、 排 出される排気ガス中の H C量が増加するという問題が生じなレ、。
また、 評価試験 2の結果より、 このようなハニカムフィルタに触媒を担持させ ると、 外部に排出される H Cの増加率を非常に小さくすることができる。
(実施例 3 7〜 3 9、 及び、 比較例 2 5〜 2 6 )
柱状体の外周に形成したシール材層の厚さを表 1 0に示したように変更をした ほかは、 実施例 1と同様にしてハ-カムフィルタを製造した。
(実施例 4 0〜 4 1、 参考例 1、 及ぴ、 比較例 2 7 )
多孔質セラミック部材の間、 及び、 セラミックブロックの外周のシール材層の 厚さを表 1 1に示したように変更したほかは、 実施例 1 3と同様にしてハニカム を製造した。
(実施例 4 2〜 4 3、 参考例 2、 及ぴ、 比較例 2 8 ) JP03/03495
54
多孔質セラミック部材の間、 及び、 セラミックブロックの外周のシール材層の 厚さを表 1 1に示したように変更したほかは、 実施例 25と同様にしてハニカム フィルタを製造した。
(評価試験 3 )
実施例 1、 13、 25、 37〜43、 参考例;!〜 2、 及び、 比較例 25〜 28 で製造したハニカムフィルタに対して冷間静水圧プレスを行つたときの破壌強度 (ァイソスタティック強度) を測定した。 その結果を表 10及び 1 1に示す。 表 1 0
Figure imgf000056_0001
シール材層厚さ(mm)
ァイソスタティック 多孔質セラミック セラミックブロック ββ (%)
強度(kgZcm2) 部材の間 の外周
実施例 13 1 1 7.41 35 実施例 40 0.5 0.5 3.77 33 実施例 41 0.25 0.25 1.90 30 参考例 1 0.2 0.2 1.52 25 比較例 27 0.1 0. 1 0.76 20 実施例 25 1 1 7.41 34 実施例 42 0.5 0.5 3.77 33 実施例 43 0.25 0.25 1.90 29 参考例 2 0.2 0.2 1.52 24 比較例 28 0.1 0.1 0.76 18 表 1 0に示したように、 多数の貫通孔が壁部を隔てて長手方向に並設された多 孔質セラミックからなる柱状体の外周部にシール材層が形成されたハニカムフィ ルタでは、 貫通孔に垂直な方向の上記貫通孔を含む断面の総面積に対する、 シー ル材層が占める割合 Sひが小さくなるにつれて、 ァイソスタティック強度が低下 していた。 上記 Sひが 0 . 5 ( 0 . 4 7 ) %以上であれば、 必要なアイソスタテ イツク強度を有していたが、 上記 が 0 . 5 ( 0 . 4 7 ) %未満では、 ァイソ スタティック強度の低下が特に大きくなり、 充分なアイソスタティック強度を有 していなかった。
また、 表 1 1に示したように、 多数の貫通孔が隔壁を隔てて長手方向に並設さ れた柱状形状の多孔質セラミック部材がシール材層を介して複数個結束されてセ ラミックブロックを形成し、 前記セラミックプロックの外周部にもシール材層が 形成されたハニカムフィルタでは、 貫通孔に垂直な方向の上記貫通孔を含む断面 の総面積に対する、 シール材層が占める割合 S βが小さくなるにつれ、 アイソス タティック強度が低下していた。 上記 S が 2 ( 1 . 9 0 ) %以上であれば、 必 要なアイソスタティック強度を有していたが、 上記 が 2 ( 1 . 9 0 ) %未満 では、 ァイソスタティック強度の低下が特に大きくなり、 充分なアイソスタティ ック強度を有していなかった。 産業上の利用可能性
本発明の排気ガス浄化用ハニカムフィルタは、 上述の通りであるので、 その内 部に比較的多くのシール材層が存在していても、 排出される排気ガス中の有機成 分量が殆ど増加することがない。

Claims

請求の範囲
1 . 多数の貫通孔が壁部を隔てて長手方向に並設された多孔質セラミックからな る柱状体の外周部にシール材層が形成され、 前記貫通孔を隔てる壁部が粒子捕集 用フィルタとして機能するように構成された排気ガス浄化用ハエカムフィルタで あって、
前記排気ガス浄化用ハニカムフィルタにおける、 前記貫通孔に垂直な方向の前 記貫通孔を含む断面の総面積に対する、 前記シール材層が占める面積の割合 S α が 0 . 5 %以上であり、 かつ、 前記排気ガス浄化用ハニカムフィルタに対する、 有機成分の割合 V αが 0 . 5重量。 /0以下であることを特徴とする排気ガス浄化用 ノヽ-
2 . 柱状体の内部に排気ガス浄化用触媒が担持されている請求の範囲第 1項記載 の排気ガス浄化用ハニカムフィルタ。
3 . 多数の貫通孔が隔壁を隔てて長手方向に並設された柱状形状の多孔質セラミ ック部材がシール材層を介して複数個結束されてセラミックブロックを形成し、 前記セラミックブロックの外周部にもシール材層が形成され、 前記貫通孔を隔て る隔壁が粒子捕集用フィルタとして機能するように構成された排気ガス浄化用ハ 二カムフィノレタであって、
前記排気ガス浄化用ハニカムフィルタにおける、 前記貫通孔に垂直な方向の前 記貫通孔を含む断面の総面積に対する、 前記シール材層が占める面積の割合 S β が 2 %以上であり、 かつ、 前記排気ガス浄化用ハ-カムフィルタに対する、 有機 成分の割合 V ]3力 0 . 5重量。 /0以下であることを特徴とする排気ガス浄化用ハニ
4 . 多孔質セラミック部材の内部に排気ガス浄化用触媒が担持されている請求の 範囲第 3項記載の排気ガス浄化用ハニ:
PCT/JP2003/003495 2002-03-22 2003-03-24 Filtre en nid d'abeille pour clarification de gaz d'echappement WO2003081001A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003578709A JP4229843B2 (ja) 2002-03-22 2003-03-24 排気ガス浄化用ハニカムフィルタ
US10/508,415 US20050169819A1 (en) 2002-03-22 2003-03-24 Honeycomb filter for purifying exhaust gas
EP03712833A EP1489277B2 (en) 2002-03-22 2003-03-24 Method for manufacturing a honeycomb filter for purifying exhaust gases
DE60317174T DE60317174T3 (de) 2002-03-22 2003-03-24 Herstellungsverfahren eines wabenfilters zur reinigung von abgas
US12/033,417 US7713325B2 (en) 2002-03-22 2008-02-19 Method for manufacturing honeycomb filter for purifying exhaust gases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002081237 2002-03-22
JP2002-81237 2002-03-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10508415 A-371-Of-International 2003-03-24
US12/033,417 Continuation US7713325B2 (en) 2002-03-22 2008-02-19 Method for manufacturing honeycomb filter for purifying exhaust gases

Publications (1)

Publication Number Publication Date
WO2003081001A1 true WO2003081001A1 (fr) 2003-10-02

Family

ID=28449114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003495 WO2003081001A1 (fr) 2002-03-22 2003-03-24 Filtre en nid d'abeille pour clarification de gaz d'echappement

Country Status (7)

Country Link
US (2) US20050169819A1 (ja)
EP (1) EP1489277B2 (ja)
JP (1) JP4229843B2 (ja)
CN (1) CN100410505C (ja)
AT (1) ATE376880T1 (ja)
DE (1) DE60317174T3 (ja)
WO (1) WO2003081001A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092986A1 (ja) * 2005-03-02 2006-09-08 Ibiden Co., Ltd. 無機繊維集合体、無機繊維集合体の製造方法、ハニカム構造体及びハニカム構造体の製造方法
JP2006299966A (ja) * 2005-04-21 2006-11-02 Ibiden Co Ltd 触媒コンバータ
WO2007000847A1 (ja) * 2005-06-29 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
EP1803494A2 (en) 2004-12-27 2007-07-04 Ibiden Co., Ltd. Honeycomb structural body and sealing material layer
JP2007244951A (ja) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd パティキュレートフィルター型排ガス浄化触媒の製造方法及びパティキュレートフィルター型排ガス浄化触媒
US7393376B2 (en) 2002-03-15 2008-07-01 Ibiden Co., Ltd. Ceramic filter for exhaust gas emission control
US7510588B2 (en) 2002-03-29 2009-03-31 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
US7651754B2 (en) 2005-02-01 2010-01-26 Ibiden Co., Ltd. Honeycomb structure
US8192517B2 (en) * 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775009A1 (en) * 1999-09-29 2007-04-18 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
WO2003067041A1 (fr) 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nid d'abeille pour la decontamination des gaz d'echappement, matiere adhesive et de revetement, et procede d'obtention dudit filtre
EP1489277B2 (en) * 2002-03-22 2012-08-22 Ibiden Co., Ltd. Method for manufacturing a honeycomb filter for purifying exhaust gases
EP2020486A3 (en) 2002-04-10 2009-04-15 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
WO2003093658A1 (fr) * 2002-04-11 2003-11-13 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarifier des gaz d'echappement
EP1495791B1 (en) * 2002-09-13 2013-03-06 Ibiden Co., Ltd. Filter
ES2302299T3 (es) * 2003-06-05 2008-07-01 Ibiden Co., Ltd. Cuerpo con estructura de panal.
EP1686107A4 (en) * 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
EP1676621A4 (en) * 2003-10-20 2006-07-05 Ibiden Co Ltd hONEYCOMB STRUCTURE
JP4439236B2 (ja) * 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
WO2005045210A1 (ja) * 2003-11-05 2005-05-19 Ibiden Co., Ltd. ハニカム構造体の製造方法、及び、シール材
EP1649917A4 (en) 2003-11-07 2006-07-05 Ibiden Co Ltd BODY WITH HONEYCOMB STRUCTURE
EP1686108B1 (en) * 2003-11-12 2011-09-14 NGK Insulators, Ltd. Honeycomb structure
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1726795A4 (en) * 2004-02-23 2008-03-05 Ibiden Co Ltd WAVE STRUCTURE BODY AND EMISSION CONTROL
WO2005099865A1 (ja) * 2004-04-05 2005-10-27 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法及び排気ガス浄化装置
CN100368345C (zh) * 2004-05-06 2008-02-13 揖斐电株式会社 蜂窝结构体及其制造方法
WO2005110578A1 (ja) * 2004-05-18 2005-11-24 Ibiden Co., Ltd. ハニカム構造体及び排気ガス浄化装置
ATE405804T1 (de) * 2004-07-01 2008-09-15 Ibiden Co Ltd Verfahren zur herstellung von porösen keramischen körpern
ATE408110T1 (de) 2004-08-04 2008-09-15 Ibiden Co Ltd Brennofen und verfahren zur herstellung eines porösen keramikglieds damit
KR100842595B1 (ko) * 2004-08-04 2008-07-01 이비덴 가부시키가이샤 연속 소성로 및 이것을 이용한 다공질 세라믹 부재의 제조방법
EP1666826A4 (en) * 2004-08-06 2008-04-09 Ibiden Co Ltd SINTERING OVEN AND METHOD FOR PRODUCING A SINTERED BODY FROM POROUS CERAMICS USING THIS OVEN
JPWO2006016430A1 (ja) 2004-08-10 2008-05-01 イビデン株式会社 焼成炉及び該焼成炉を用いたセラミック部材の製造方法
EP1677063A4 (en) * 2004-08-25 2007-05-30 Ibiden Co Ltd KILN and Method for Making a Porous Ceramic Cooked Product Using KILN
EP1795261A4 (en) * 2004-09-30 2009-07-08 Ibiden Co Ltd ALVEOLAR STRUCTURE
DE602005019182D1 (de) 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
DE602005015610D1 (de) * 2004-10-12 2009-09-03 Ibiden Co Ltd Keramische wabenstruktur
WO2006057344A1 (ja) * 2004-11-26 2006-06-01 Ibiden Co., Ltd. ハニカム構造体
JP4870657B2 (ja) * 2005-02-04 2012-02-08 イビデン株式会社 セラミックハニカム構造体およびその製造方法
WO2006082940A1 (ja) * 2005-02-04 2006-08-10 Ibiden Co., Ltd. セラミックハニカム構造体
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4812316B2 (ja) * 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
KR100810476B1 (ko) * 2005-03-28 2008-03-07 이비덴 가부시키가이샤 허니컴 구조체
CN100453511C (zh) 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
CN101146742B (zh) * 2005-03-30 2013-05-01 揖斐电株式会社 含碳化硅颗粒、制造碳化硅质烧结体的方法、碳化硅质烧结体以及过滤器
KR100822246B1 (ko) 2005-04-07 2008-04-16 이비덴 가부시키가이샤 허니컴 구조체
WO2006117899A1 (ja) * 2005-04-28 2006-11-09 Ibiden Co., Ltd. ハニカム構造体
EP1752390B1 (en) * 2005-06-06 2011-09-28 Ibiden Co., Ltd. Use of packaging material and method of transporting honeycomb structure
WO2006137150A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137161A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
CN1954137B (zh) * 2005-07-21 2011-12-21 揖斐电株式会社 蜂窝结构体以及废气净化装置
EP1832565A4 (en) * 2005-08-03 2007-10-17 Ibiden Co Ltd TEMPLATE FOR COOKING SILICON CARBIDE AND PROCESS FOR PRODUCING POROUS SILICON CARBIDE BODY
WO2007023653A1 (ja) * 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
JP5209315B2 (ja) * 2005-09-28 2013-06-12 イビデン株式会社 ハニカムフィルタ
JPWO2007039991A1 (ja) * 2005-10-05 2009-04-16 イビデン株式会社 押出成形用金型及び多孔質セラミック部材の製造方法
WO2007043245A1 (ja) * 2005-10-12 2007-04-19 Ibiden Co., Ltd. ハニカムユニット及びハニカム構造体
WO2007058006A1 (ja) * 2005-11-18 2007-05-24 Ibiden Co., Ltd. ハニカム構造体
KR100882401B1 (ko) * 2005-11-18 2009-02-05 이비덴 가부시키가이샤 벌집형 구조체
WO2007074508A1 (ja) * 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007074528A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
CN101309883B (zh) * 2006-01-27 2012-12-26 揖斐电株式会社 蜂窝结构体及其制造方法
WO2007086143A1 (ja) * 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2007094075A1 (ja) * 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007097056A1 (ja) * 2006-02-23 2007-08-30 Ibiden Co., Ltd. ハニカム構造体および排ガス浄化装置
WO2007097004A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
WO2007097000A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007096986A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
ATE404835T1 (de) * 2006-02-28 2008-08-15 Ibiden Co Ltd Trageelement für trocknung, trocknungsverfahren eines presslings mit wabenstruktur, und verfahren zur herstellung eines wabenkörpers.
WO2007102217A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007102216A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) * 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
JP4863904B2 (ja) * 2006-03-31 2012-01-25 イビデン株式会社 ハニカム構造体およびその製造方法
WO2007116529A1 (ja) * 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) * 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) * 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122715A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007122716A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) * 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) * 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) * 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) * 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
ATE425852T1 (de) * 2006-07-07 2009-04-15 Ibiden Co Ltd Apparat und verfahren zur bearbeitung der endflache eines wabenkírpers und verfahren zur herstellung eines wabenkírpers
WO2008032391A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
PL1900709T3 (pl) * 2006-09-14 2010-11-30 Ibiden Co Ltd Sposób wytwarzania korpusu o strukturze plastra miodu i kompozycja materiałowa do wypalanego korpusu o strukturze plastra miodu
WO2008032390A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
WO2008047404A1 (fr) * 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
WO2008090625A1 (ja) * 2007-01-26 2008-07-31 Ibiden Co., Ltd. 外周層形成装置及びハニカム構造体の製造方法
CN101583408B (zh) * 2007-01-30 2012-07-18 京瓷株式会社 蜂窝结构体及净化装置
WO2008099450A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008099454A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008105082A1 (ja) * 2007-02-28 2008-09-04 Ibiden Co., Ltd. ハニカム構造体
WO2008120291A1 (ja) * 2007-02-28 2008-10-09 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008105081A1 (ja) * 2007-02-28 2008-09-04 Ibiden Co., Ltd. ハニカムフィルタ
EP1982966B1 (en) * 2007-03-29 2011-11-09 Ibiden Co., Ltd. Honeycomb structure and method of producing honeycomb structure
JP5164575B2 (ja) * 2007-03-29 2013-03-21 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法、排ガス浄化装置及び排ガス浄化装置の製造方法
WO2008126331A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126320A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
CN101421016B (zh) * 2007-03-30 2012-04-25 揖斐电株式会社 蜂窝结构体和蜂窝结构体的制造方法
WO2008126321A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. 排ガス浄化システム
WO2008126332A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126333A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
WO2008126330A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
WO2008126334A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008136078A1 (ja) * 2007-04-20 2008-11-13 Ibiden Co., Ltd. ハニカムフィルタ
WO2008139581A1 (ja) * 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008139608A1 (ja) * 2007-05-14 2008-11-20 Ibiden Co., Ltd. ハニカム構造体及び該ハニカム構造体の製造方法
WO2008149435A1 (ja) * 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
JP5180835B2 (ja) * 2007-10-31 2013-04-10 イビデン株式会社 ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
JP2011504159A (ja) * 2007-11-05 2011-02-03 コーニング インコーポレイテッド セラミックモノリスのための低膨張セメント組成物
WO2009066388A1 (ja) * 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2009101683A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2009101682A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JPWO2009107230A1 (ja) * 2008-02-29 2011-06-30 イビデン株式会社 ハニカム構造体用シール材、ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009118814A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカムフィルタ
WO2009118813A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2009118862A1 (ja) * 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体の製造方法
ES2730079T3 (es) 2008-12-15 2019-11-08 Unifrax I Llc Revestimiento de cerámica pelicular de estructura en panal
CN102979906A (zh) * 2012-08-29 2013-03-20 哈尔滨汽轮机厂有限责任公司 用于燃气轮机的蜂窝密封装置的加工方法
JP6431823B2 (ja) * 2015-07-13 2018-11-28 株式会社Soken 排ガス浄化フィルタ
US11149613B2 (en) 2016-07-13 2021-10-19 Corning Incorporated Exhaust gas treatment article and methods of manufacturing same
JP6244421B1 (ja) * 2016-07-27 2017-12-06 株式会社キャタラー 排ガス浄化用触媒の製造方法及び製造装置
KR101814459B1 (ko) * 2016-08-16 2018-01-04 희성촉매 주식회사 알킬 방향족 화합물 제조용 고형 촉매 캐리어로서 필터 구조체
WO2018037637A1 (ja) * 2016-08-26 2018-03-01 エヌ・イーケムキャット株式会社 ハニカム構造体、ハニカム構造型触媒および製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220448A (ja) * 1999-01-29 2000-08-08 Ibiden Co Ltd 触媒コンバータの製造方法
WO2001071170A1 (fr) * 2000-03-22 2001-09-27 Ibiden Co., Ltd. Convertisseur catalytique et systeme de filtrage des particules diesel
JP2001289028A (ja) * 2000-04-07 2001-10-19 Ibiden Co Ltd 排ガス浄化用触媒コンバーター及びディーゼルパティキュレートフィルターシステム,並びにこれらの製造方法
JP2002070545A (ja) * 2000-08-25 2002-03-08 Ibiden Co Ltd セラミックハニカム構造物の収容構造

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259438A (ja) * 2000-03-22 2001-09-25 Ibiden Co Ltd 触媒コンバーター
JPS5839799B2 (ja) 1978-05-02 1983-09-01 日産自動車株式会社 大型ハニカム構造体の製造方法
JPS56102940A (en) * 1980-01-18 1981-08-17 Toyota Motor Corp Catalyst for cleaning exhaust gas
US4329162A (en) * 1980-07-03 1982-05-11 Corning Glass Works Diesel particulate trap
JPS60141667A (ja) * 1983-12-28 1985-07-26 日本碍子株式会社 セラミックハニカム構造体を接合若しくはコーティングまたは封着するためのセラミック材料組成物
JPH07183Y2 (ja) 1987-03-16 1995-01-11 日本碍子株式会社 セラミックハニカム構造体
JPH0644999B2 (ja) * 1988-04-30 1994-06-15 株式会社豊田中央研究所 排気ガス浄化用触媒
JP2505261B2 (ja) * 1988-09-29 1996-06-05 日本碍子株式会社 セラミック熱交換体およびその製造法
JP2604876B2 (ja) * 1990-03-27 1997-04-30 日本碍子株式会社 セラミックハニカム構造体の製造方法
JP4098835B2 (ja) * 1993-12-07 2008-06-11 トヨタ自動車株式会社 排気ガス浄化用触媒
DE69408957T2 (de) * 1993-12-28 1998-09-17 Riken Kk Vorrichtung und Verfahren zur Reinigung von Abgas
DE69630681T2 (de) * 1996-01-12 2004-04-22 Ibiden Co. Ltd., Ogaki Keramische struktur
US5930994A (en) * 1996-07-02 1999-08-03 Ibiden Co., Ltd. Reverse cleaning regeneration type exhaust emission control device and method of regenerating the same
JP3394449B2 (ja) * 1998-06-18 2003-04-07 日本碍子株式会社 薄壁ハニカム構造体およびその補強方法
JP2000167329A (ja) * 1998-09-30 2000-06-20 Ibiden Co Ltd 排気ガス浄化装置の再生システム
JP2002530175A (ja) * 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP4642955B2 (ja) * 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
EP1775009A1 (en) * 1999-09-29 2007-04-18 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP3803009B2 (ja) * 1999-09-29 2006-08-02 イビデン株式会社 セラミックフィルタ集合体
JP3889194B2 (ja) * 2000-01-13 2007-03-07 日本碍子株式会社 ハニカム構造体
JP4049501B2 (ja) 2000-01-24 2008-02-20 日本碍子株式会社 セラミックス構造体
JP2001261428A (ja) * 2000-03-14 2001-09-26 Ngk Insulators Ltd セラミックハニカム構造体
JP2001329830A (ja) * 2000-03-15 2001-11-30 Ibiden Co Ltd 排気ガス浄化フィルタの再生装置及びフィルタ再生方法、排気ガス浄化フィルタの再生プログラム及びそのプログラムを格納する記録媒体
JP4511065B2 (ja) 2000-06-05 2010-07-28 日本碍子株式会社 ハニカム構造体とハニカムフィルター、及びそれらの製造方法
JP3676654B2 (ja) 2000-07-13 2005-07-27 株式会社荏原製作所 Cod含有水の浄化処理方法および装置
CN1266372C (zh) * 2001-03-22 2006-07-26 揖斐电株式会社 废气净化装置
EP1403231B1 (en) * 2001-05-31 2012-11-21 Ibiden Co., Ltd. Method of producing a porous ceramic sintered body
CN101126335B (zh) * 2002-02-05 2011-10-26 揖斐电株式会社 废气净化用蜂巢式过滤器
WO2003067041A1 (fr) 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nid d'abeille pour la decontamination des gaz d'echappement, matiere adhesive et de revetement, et procede d'obtention dudit filtre
ES2300563T3 (es) * 2002-03-04 2008-06-16 Ibiden Co., Ltd. Filtro de tipo para purificacion de gas de escape y aparato de purificacion de gas de escape.
DE60316607T2 (de) * 2002-03-15 2008-07-17 Ibiden Co., Ltd., Ogaki Keramikfilter zur Abgasreinigung
EP1489277B2 (en) * 2002-03-22 2012-08-22 Ibiden Co., Ltd. Method for manufacturing a honeycomb filter for purifying exhaust gases
JPWO2003084640A1 (ja) * 2002-04-09 2005-08-11 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
EP2020486A3 (en) * 2002-04-10 2009-04-15 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
WO2003093658A1 (fr) * 2002-04-11 2003-11-13 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarifier des gaz d'echappement
EP1495791B1 (en) * 2002-09-13 2013-03-06 Ibiden Co., Ltd. Filter
US7534482B2 (en) * 2002-10-07 2009-05-19 Ibiden Co., Ltd. Honeycomb structural body
DE602004029140D1 (de) * 2003-02-28 2010-10-28 Ibiden Co Ltd Keramische wabenstruktur
US20060073970A1 (en) 2003-05-06 2006-04-06 Ibiden Co., Ltd. Honeycomb structure body
EP1686107A4 (en) * 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
WO2005045210A1 (ja) * 2003-11-05 2005-05-19 Ibiden Co., Ltd. ハニカム構造体の製造方法、及び、シール材
KR100779815B1 (ko) * 2003-11-12 2007-11-28 이비덴 가부시키가이샤 세라믹 구조체
EP1703095A4 (en) * 2003-12-25 2007-02-28 Ibiden Co Ltd EXHAUST GAS CLEANING DEVICE AND METHOD FOR RECOVERING AN EXHAUST GAS CLEANING DEVICE
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1726795A4 (en) * 2004-02-23 2008-03-05 Ibiden Co Ltd WAVE STRUCTURE BODY AND EMISSION CONTROL
WO2005099865A1 (ja) * 2004-04-05 2005-10-27 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法及び排気ガス浄化装置
CN100368345C (zh) * 2004-05-06 2008-02-13 揖斐电株式会社 蜂窝结构体及其制造方法
WO2005110578A1 (ja) * 2004-05-18 2005-11-24 Ibiden Co., Ltd. ハニカム構造体及び排気ガス浄化装置
ATE405804T1 (de) * 2004-07-01 2008-09-15 Ibiden Co Ltd Verfahren zur herstellung von porösen keramischen körpern
KR100842595B1 (ko) * 2004-08-04 2008-07-01 이비덴 가부시키가이샤 연속 소성로 및 이것을 이용한 다공질 세라믹 부재의 제조방법
EP1818639A4 (en) 2004-08-04 2007-08-29 Ibiden Co Ltd FURNACE AND METHOD FOR PRODUCING A BURNTED POROUS CERAMIC ARTICLE USING THE FUEL
ATE408110T1 (de) * 2004-08-04 2008-09-15 Ibiden Co Ltd Brennofen und verfahren zur herstellung eines porösen keramikglieds damit
EP1666826A4 (en) 2004-08-06 2008-04-09 Ibiden Co Ltd SINTERING OVEN AND METHOD FOR PRODUCING A SINTERED BODY FROM POROUS CERAMICS USING THIS OVEN
JPWO2006016430A1 (ja) 2004-08-10 2008-05-01 イビデン株式会社 焼成炉及び該焼成炉を用いたセラミック部材の製造方法
EP1677063A4 (en) 2004-08-25 2007-05-30 Ibiden Co Ltd KILN and Method for Making a Porous Ceramic Cooked Product Using KILN
DE602005019182D1 (de) * 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
EP1795261A4 (en) * 2004-09-30 2009-07-08 Ibiden Co Ltd ALVEOLAR STRUCTURE
DE602005015610D1 (de) * 2004-10-12 2009-09-03 Ibiden Co Ltd Keramische wabenstruktur
WO2006057344A1 (ja) * 2004-11-26 2006-06-01 Ibiden Co., Ltd. ハニカム構造体
WO2006070504A1 (ja) * 2004-12-28 2006-07-06 Ibiden Co., Ltd. フィルタ及びフィルタ集合体
KR100692942B1 (ko) * 2005-02-01 2007-03-12 이비덴 가부시키가이샤 허니컴 구조체
JP4870657B2 (ja) * 2005-02-04 2012-02-08 イビデン株式会社 セラミックハニカム構造体およびその製造方法
WO2006082940A1 (ja) * 2005-02-04 2006-08-10 Ibiden Co., Ltd. セラミックハニカム構造体
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4812316B2 (ja) * 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
KR100810476B1 (ko) * 2005-03-28 2008-03-07 이비덴 가부시키가이샤 허니컴 구조체
CN100453511C (zh) * 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
CN101146742B (zh) * 2005-03-30 2013-05-01 揖斐电株式会社 含碳化硅颗粒、制造碳化硅质烧结体的方法、碳化硅质烧结体以及过滤器
KR100822246B1 (ko) * 2005-04-07 2008-04-16 이비덴 가부시키가이샤 허니컴 구조체
JP2006289237A (ja) * 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
WO2006126278A1 (ja) 2005-05-27 2006-11-30 Ibiden Co., Ltd. ハニカム構造体
EP1752390B1 (en) 2005-06-06 2011-09-28 Ibiden Co., Ltd. Use of packaging material and method of transporting honeycomb structure
CN1954137B (zh) * 2005-07-21 2011-12-21 揖斐电株式会社 蜂窝结构体以及废气净化装置
EP1832565A4 (en) 2005-08-03 2007-10-17 Ibiden Co Ltd TEMPLATE FOR COOKING SILICON CARBIDE AND PROCESS FOR PRODUCING POROUS SILICON CARBIDE BODY
WO2007023653A1 (ja) * 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
JP5209315B2 (ja) * 2005-09-28 2013-06-12 イビデン株式会社 ハニカムフィルタ
JPWO2007039991A1 (ja) 2005-10-05 2009-04-16 イビデン株式会社 押出成形用金型及び多孔質セラミック部材の製造方法
WO2007043245A1 (ja) * 2005-10-12 2007-04-19 Ibiden Co., Ltd. ハニカムユニット及びハニカム構造体
WO2007058006A1 (ja) * 2005-11-18 2007-05-24 Ibiden Co., Ltd. ハニカム構造体
KR100882401B1 (ko) * 2005-11-18 2009-02-05 이비덴 가부시키가이샤 벌집형 구조체
WO2007074508A1 (ja) 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
US20070187651A1 (en) 2005-12-26 2007-08-16 Kazuya Naruse Method for mixing powder, agitation apparatus, and method for manufacturing honeycomb structured body
WO2007074528A1 (ja) 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
CN101312895A (zh) 2005-12-27 2008-11-26 揖斐电株式会社 搬运装置和蜂窝结构体的制造方法
CN101309883B (zh) * 2006-01-27 2012-12-26 揖斐电株式会社 蜂窝结构体及其制造方法
WO2007086143A1 (ja) 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2007094075A1 (ja) 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007097056A1 (ja) * 2006-02-23 2007-08-30 Ibiden Co., Ltd. ハニカム構造体および排ガス浄化装置
WO2007097000A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007097004A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
WO2007096986A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
EP1825979B1 (en) 2006-02-28 2012-03-28 Ibiden Co., Ltd. Manufacturing method of honeycomb structured body
ATE404835T1 (de) 2006-02-28 2008-08-15 Ibiden Co Ltd Trageelement für trocknung, trocknungsverfahren eines presslings mit wabenstruktur, und verfahren zur herstellung eines wabenkörpers.
WO2007102216A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007102217A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
JP4863904B2 (ja) * 2006-03-31 2012-01-25 イビデン株式会社 ハニカム構造体およびその製造方法
WO2007116529A1 (ja) 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122715A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007122716A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129390A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 脱脂用治具組立装置、脱脂用治具分解装置、脱脂用治具循環装置、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
ATE425852T1 (de) 2006-07-07 2009-04-15 Ibiden Co Ltd Apparat und verfahren zur bearbeitung der endflache eines wabenkírpers und verfahren zur herstellung eines wabenkírpers
WO2008032391A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
PL1900709T3 (pl) 2006-09-14 2010-11-30 Ibiden Co Ltd Sposób wytwarzania korpusu o strukturze plastra miodu i kompozycja materiałowa do wypalanego korpusu o strukturze plastra miodu
WO2008032390A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
WO2008047404A1 (fr) 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
WO2008090625A1 (ja) 2007-01-26 2008-07-31 Ibiden Co., Ltd. 外周層形成装置及びハニカム構造体の製造方法
WO2008114335A1 (ja) 2007-02-21 2008-09-25 Ibiden Co., Ltd. 加熱炉及びハニカム構造体の製造方法
WO2008129691A1 (ja) 2007-03-30 2008-10-30 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126320A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008126319A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 多孔質炭化ケイ素焼結体の製造方法
WO2008139581A1 (ja) 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008149435A1 (ja) 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
JP5180835B2 (ja) 2007-10-31 2013-04-10 イビデン株式会社 ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
WO2009066388A1 (ja) 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220448A (ja) * 1999-01-29 2000-08-08 Ibiden Co Ltd 触媒コンバータの製造方法
WO2001071170A1 (fr) * 2000-03-22 2001-09-27 Ibiden Co., Ltd. Convertisseur catalytique et systeme de filtrage des particules diesel
JP2001289028A (ja) * 2000-04-07 2001-10-19 Ibiden Co Ltd 排ガス浄化用触媒コンバーター及びディーゼルパティキュレートフィルターシステム,並びにこれらの製造方法
JP2002070545A (ja) * 2000-08-25 2002-03-08 Ibiden Co Ltd セラミックハニカム構造物の収容構造

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393376B2 (en) 2002-03-15 2008-07-01 Ibiden Co., Ltd. Ceramic filter for exhaust gas emission control
US7510588B2 (en) 2002-03-29 2009-03-31 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
US8192517B2 (en) * 2004-12-27 2012-06-05 Ibiden Co., Ltd. Ceramic honeycomb structural body
US7846526B2 (en) 2004-12-27 2010-12-07 Ibiden Co., Ltd Honeycomb structural body and sealing material layer
EP1803494A2 (en) 2004-12-27 2007-07-04 Ibiden Co., Ltd. Honeycomb structural body and sealing material layer
US7651754B2 (en) 2005-02-01 2010-01-26 Ibiden Co., Ltd. Honeycomb structure
JP5237630B2 (ja) * 2005-02-01 2013-07-17 イビデン株式会社 ハニカム構造体
WO2006092986A1 (ja) * 2005-03-02 2006-09-08 Ibiden Co., Ltd. 無機繊維集合体、無機繊維集合体の製造方法、ハニカム構造体及びハニカム構造体の製造方法
US8029591B2 (en) 2005-03-02 2011-10-04 Ibiden Co., Ltd. Inorganic fiber aggregate, method for manufacturing inorganic fiber aggregate, honeycomb structure, method for manufacturing honeycomb structure, and exhaust gas purifier
JP4948393B2 (ja) * 2005-03-02 2012-06-06 イビデン株式会社 無機繊維集合体、無機繊維集合体の製造方法、ハニカム構造体及びハニカム構造体の製造方法
JP2006299966A (ja) * 2005-04-21 2006-11-02 Ibiden Co Ltd 触媒コンバータ
KR100891892B1 (ko) 2005-06-29 2009-04-03 이비덴 가부시키가이샤 허니콤 구조체
US7794815B2 (en) 2005-06-29 2010-09-14 Ibiden Co., Ltd. Honeycomb structure
WO2007000847A1 (ja) * 2005-06-29 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
JP5042827B2 (ja) * 2005-06-29 2012-10-03 イビデン株式会社 ハニカム構造体
JP2007244951A (ja) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd パティキュレートフィルター型排ガス浄化触媒の製造方法及びパティキュレートフィルター型排ガス浄化触媒

Also Published As

Publication number Publication date
ATE376880T1 (de) 2007-11-15
CN100410505C (zh) 2008-08-13
EP1489277B1 (en) 2007-10-31
CN1656307A (zh) 2005-08-17
JP4229843B2 (ja) 2009-02-25
EP1489277A4 (en) 2006-05-03
DE60317174D1 (de) 2007-12-13
EP1489277B2 (en) 2012-08-22
JPWO2003081001A1 (ja) 2005-07-28
US7713325B2 (en) 2010-05-11
US20050169819A1 (en) 2005-08-04
US20080213485A1 (en) 2008-09-04
DE60317174T2 (de) 2008-08-07
EP1489277A1 (en) 2004-12-22
DE60317174T3 (de) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2003081001A1 (fr) Filtre en nid d'abeille pour clarification de gaz d'echappement
JP4812316B2 (ja) ハニカム構造体
JP5001009B2 (ja) セラミックハニカム構造体
JP5042176B2 (ja) 排気ガス浄化用ハニカムフィルタ
EP1717218B1 (en) Honeycomb structure
US20050180898A1 (en) Honeycomb filter for clarification of exhaust gas
WO2004106702A1 (ja) ハニカム構造体
WO2005108328A1 (ja) ハニカム構造体及びその製造方法
WO2009101683A1 (ja) ハニカム構造体の製造方法
WO2009101682A1 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
WO2006106785A1 (ja) ハニカム構造体
EP1974813B1 (en) Honeycomb structured body
WO2006035822A1 (ja) ハニカム構造体
JPWO2003067042A1 (ja) 排気ガス浄化用ハニカムフィルタ
WO2007043245A1 (ja) ハニカムユニット及びハニカム構造体
WO2006103786A1 (ja) ハニカム構造体およびシール材
WO2006001503A1 (ja) フィルタ、その製造方法及び排気浄化装置
WO2006137155A1 (ja) ハニカム構造体
WO2006082940A1 (ja) セラミックハニカム構造体
WO2007058007A1 (ja) ハニカム構造体
WO2006070539A1 (ja) ハニカム構造体及びシール材層
WO2006137164A1 (ja) ハニカム構造体
JPWO2008120386A1 (ja) ハニカム構造体
JPWO2005044422A1 (ja) ハニカム構造体
WO2012050123A1 (ja) チタン酸アルミニウム質ハニカム構造体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003578709

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003712833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038116707

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003712833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10508415

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003712833

Country of ref document: EP