WO2003082005A2 - Slow release nitrogen fertilizer - Google Patents

Slow release nitrogen fertilizer Download PDF

Info

Publication number
WO2003082005A2
WO2003082005A2 PCT/US2003/008454 US0308454W WO03082005A2 WO 2003082005 A2 WO2003082005 A2 WO 2003082005A2 US 0308454 W US0308454 W US 0308454W WO 03082005 A2 WO03082005 A2 WO 03082005A2
Authority
WO
WIPO (PCT)
Prior art keywords
urea
formaldehyde
aqueous
particulate
methylol
Prior art date
Application number
PCT/US2003/008454
Other languages
French (fr)
Other versions
WO2003082005A3 (en
Inventor
Stacey Wertz
Kurt Gabrielson
James Wright
Paul Baxter
James Knight
C. R. Davis
Original Assignee
Georgia-Pacific Resins, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georgia-Pacific Resins, Inc. filed Critical Georgia-Pacific Resins, Inc.
Priority to EP03728259.7A priority Critical patent/EP1487761B1/en
Priority to KR1020047014895A priority patent/KR101002884B1/en
Priority to MXPA04009282A priority patent/MXPA04009282A/en
Priority to BRPI0308607-0B1A priority patent/BR0308607B1/en
Priority to JP2003579560A priority patent/JP4430945B2/en
Priority to AU2003233412A priority patent/AU2003233412B2/en
Priority to ES03728259.7T priority patent/ES2450130T3/en
Priority to CA2479614A priority patent/CA2479614C/en
Publication of WO2003082005A2 publication Critical patent/WO2003082005A2/en
Publication of WO2003082005A3 publication Critical patent/WO2003082005A3/en
Priority to HK06100290.1A priority patent/HK1080446B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/06Coating or dressing seed
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C9/00Fertilisers containing urea or urea compounds
    • C05C9/02Fertilisers containing urea or urea compounds containing urea-formaldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers
    • C05G5/27Dispersions, e.g. suspensions or emulsions
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • C05G5/37Layered or coated, e.g. dust-preventing coatings layered or coated with a polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S47/00Plant husbandry
    • Y10S47/09Physical and chemical treatment of seeds for planting

Definitions

  • the present invention relates to a new source of slow release nitrogen for enhancing the delivery of nitrogen needed for plant development and growth.
  • the invention specifically relates to a new particulate source of slow release nitrogen, and to use of the particulate nitrogen source for enhancing plant development and growth, by delivering nutrient nitrogen over an extended period of time to growing plants.
  • the present invention also is directed to the use of the particulate source of slow release nitrogen in formulating a granular fertilizer.
  • Fertilizer is often applied as a formulated (N-P-K) solid, granular or powder, or sometimes as a liquid to an area to be fertilized.
  • N-P-K formulated
  • Urea-formaldehyde (UF) condensation products are widely used as slow release nitrogen fertilizers in crops, ornamental plants and grasses.
  • Urea- formaldehyde fertilizer materials also can be supplied either as liquids or as solids and are the reaction products of urea and formaldehyde. Such materials generally contain at least 28% nitrogen, largely in an insoluble but slowly available form.
  • Extended release UF fertilizers can be prepared by reacting urea and formaldehyde at an elevated temperature in an alkaline solution to produce methylol ureas. The methylol ureas then are acidified to polymerize the methylol ureas to methylene ureas, which increase in chain length as the reaction is allowed to continue.
  • the methylene urea polymers that the condensation products normally contain have limited water solubility and thus release nitrogen throughout an extended period.
  • the mixture of methylene urea polymers generally have a range of molecular weights and are understood to be degraded slowly by microbial action into water soluble nitrogen.
  • UF fertilizers are usually evaluated by the amount and the release characteristics of their water insoluble nitrogen.
  • U.S. 4,089,899 describes a solid, controlled release nitrogen fertilizer of the ureaform type, which consists essentially of only two nitrogen fractions: water soluble nitrogen and cold water insoluble nitrogen.
  • U.S. 3,677,736 describes a urea-formaldehyde fertilizer suspension.
  • Granular nitrogen-containing fertilizers have been produced commercially by a variety of techniques using water soluble nitrogen products, such as urea, potassium nitrate, and ammonium phosphate. The practical advantages of handling, blending, and storing such fertilizer granules are known and well documented. The preparation of granular fertilizers using slow release UF fertilizers also has been described in the prior art.
  • the present invention proposes to provide a new source of a particulate slow- release nitrogen (UF) as a plant fertilizer and to use such particles for forming granular fertilizer compositions.
  • UF particulate slow- release nitrogen
  • Figure 1 is a graph showing the lysimeter results (nitrogen release rate) over a six (6) month time period for the UF polymer powder (particulate) of the present invention as compared with several commercially available sources of nitrogen fertilizers.
  • Figure 2 is a photomicrograph of tall fescue seeds having an adherent coating containing slow release nitrogen particles in accordance with the present invention.
  • the present invention is directed to a particulate source of slow release nitrogen (urea-formaldehyde (UF or ureaform) polymer particles) that is useful for enhancing the delivery of nitrogen needed for plant development and growth.
  • the invention specifically relates to slow release nitrogen (UF) particles and to the use of the particles for enhancing plant development and growth.
  • the slow release nitrogen particles of the present invention can be used in a variety of applications, for example they can be adhered to the surface of a seed, or on the surface of an aggregate material, such as sand, using an adhesive binder; they can used in preparing a granular fertilizer; they can be used as a root dip or in a soil drench; or they can be used as a soil additive.
  • the slow release nitrogen particles of the invention may have use in animal nutrition and could be used to coat urea, or another animal feed material.
  • the slow release nitrogen UF polymer particles of the present invention are prepared by reacting, in an aqueous environment, urea and formaldehyde at a urea: formaldehyde mole ratio of about 1:1.
  • Ammonia may be an optional reactant, as will be understood by those skilled in the art, in an amount of up to about 25% by weight of the formed UF polymer, usually in an amount below about 10 % by weight, but in the preferred embodiment of the present invention ammonia is not used at all.
  • urea and formaldehyde are reacted in admixture at a mole ratio of approximately 1:1, for example at a UF mol ratio broadly in the range of 0.7: 1 ⁇ U:F ⁇ 1.25: 1 and more preferably in the range of 0.83 : 1 ⁇ U:F ⁇ 1.1 : 1.
  • the phase "at a mole ratio of approximately 1:1" is intended to embrace these mole ratio ranges. Particularly good results have been obtained at a U:F mole ratio between 0.95:1 and 1.05:1.
  • reaction between urea and formaldehyde is conducted in a manner to produce methylol ureas.
  • Methods of doing this are well known to those skilled in the art and any of such known methods can be used.
  • reaction between the urea and formaldehyde can be promoted by maintaining the aqueous mixture initially at a moderate alkaline pH, with a pH in the range of about 7 to 9 being suitable and with a pH more usually between about 7.5 and 8.5, to promote the formation of methylol ureas.
  • any required pH adjustment may be accomplished using either an acid or a base.
  • the initial formation of methyol ureas generally can be conducted at a reaction temperature broadly in the range of 70° F to 175° F (about 20° C to about 80° C), with a reaction temperature in the range of 90° F to 160° F (about 30° C to about 70° C) more usually employed.
  • the pH may be adjusted using commonly available acids and bases such as sodium hydroxide (caustic) and sulfuric acid and any material that can alter the pH is suitable for this purpose.
  • the reaction pH also may be maintained (buffered) or adjusted by adding such alkaline compounds as triethanolamine, sodium or potassium bicarbonate, sodium or potassium carbonate, or other alkali metal hydroxides, such as potassium hydroxide and lithium hydroxide.
  • the methylolation may also be done at a moderate acidic pH, such as in the pH range of 5.0 to 6.0, as will be recognized by those skilled in the art and the present invention is not limited by the way the initial methylolation is conducted.
  • a moderate acidic pH such as in the pH range of 5.0 to 6.0
  • the nascent UF polymer then is condensed to the point where the polymer becomes insoluble in the aqueous environment.
  • This result is preferably accomplished by rapidly acidifying the methylol ureas, to a pH below about 6, preferably below about 5 and usually to a pH below about 4, but above about 1.
  • a pH in the range of 2.5 to 4.0 has proven to be suitable. Any organic or inorganic acid that will lower the pH can be used. Particularly suitable is a strong acid, such as a mineral acid and an organic acid such as the stronger carboxylic acids.
  • suitable acids include formic acid, acetic acid, nitric acid, phosphoric acid, sulfuric acid and hydrochloric acid.
  • the present invention is not limited by the way the further polymerization of the methylol ureas and ultimate insolubilization is conducted and obtained.
  • the aqueous mixture of the methylol ureas is preferably mixed in the presence of a dispersing agent during the step of rapid polymerization which leads to insolubilization, such as the rapid acidification step, although it should be possible to get a similar result by maintaining a sufficiently high level of agitation (high shear) during the reaction in the absence of any dispersing agent.
  • a dispersing agent during the step of rapid polymerization which leads to insolubilization, such as the rapid acidification step, although it should be possible to get a similar result by maintaining a sufficiently high level of agitation (high shear) during the reaction in the absence of any dispersing agent.
  • the resulting dispersion of UF polymer particles formed from the polymerization that occurs, for example, following acidification, can then be used directly (possibly following some thickening, or concentration enrichment), i.e., as a dispersion, to coat seed or sand, to treat roots, as a soil drench or soil additive, or to form a granular fertilizer, or alternately (and preferably) the dispersion of UF polymer particles can be recovered or isolated from the dispersion to produce a UF polymer powder, which then is used in any of the various applications noted above.
  • the UF particulates formed in this manner have approximately 36% by weight nitrogen.
  • the nitrogen is chemically bound in the UF polymer particulates and thus is agronomically unavailable until microorganisms, principally bacteria, enzymatically (e.g., using urease and nitrogenase) degrade the polymer into a form useable by a growing plant. It is this property that leads to labeling the UF polymer particle "slow release” or "extended release.”
  • a small amount of the nitrogen typically on the order of 5% by weight of the particulate, may be of the fast or quick release variety (e.g., principally unreacted urea) and thus may be immediately available to a seed or plant.
  • the reaction conditions including the mole ratio of reactants
  • the extent of the reaction also can be adjusted such that a higher amount of free urea is present in/with the UF polymer particles, up to about 10% by weight, as a way to deliver more immediately available nitrogen for a quicker initial development or greening effect. Such adjustments are well within the skill of the art in view of the present disclosure.
  • Formaldehyde is available in many forms. Paraform (solid, polymerized formaldehyde) and formalin solutions (aqueous solutions of formaldehyde, sometimes with methanol, in 37 percent, 44 percent, or 50 percent formaldehyde concentrations) are commonly used sources of formaldehyde. Formaldehyde also may be available as a gas. Each of these sources of formaldehyde is suitable for use in the preparing the UF polymer of this invention. Generally, for ease of use, formalin solutions are preferred as the formaldehyde source.
  • formaldehyde may be replaced with another aldehyde, such as acetaldehyde and/or propylaldehyde that can react with urea.
  • Glyoxal may also be used in place of formaldehyde, as may other aldehydes not specifically enumerated.
  • Urea also is available in many forms. Solid urea, such as prill, and urea solutions, typically aqueous solutions, are commercially available. Further, urea often is chemically combined with formaldehyde in the form of a urea- formaldehyde concentrate, such as UFC 85, or as a commercially-available solution containing about 25 weight percent urea, about 60 weight percent formaldehyde, and about 15 weight percent water, available under the trademark STA-FORM 60.® Each of these sources of urea can be used in preparing the UF polymer of this invention.
  • the urea-formaldehyde condensation reaction that results in the UF polymer particles of this invention is preferably conducted in an aqueous environment. As noted above, the reaction is conducted until the growing urea- formaldehyde polymer becomes insoluble in the aqueous reaction medium.
  • a dispersing agent is preferably included in the water to facilitate the production of small polymer particles by the reaction.
  • One suitable dispersant is the line of DAXAD dispersants commercially available from Hampshire Chemicals, a subsidiary of the Dow Chemical Company.
  • One of the classes of these dispersants is a condensed naphthalene sulfonate. Both the high and low molecular weight species of this product line have been shown to be suitable, such as DAXDAD 19.
  • dispersants or surfactants also can be used, including those that might be classified as anionic, such as polyacrylates (also available under the DAXAD label - such as DAXAD 30 from Hampshire Chemicals).
  • Nonionic and cationic dispersant compounds also can be used. Suitable alternative materials can be identified using routine experimentation. The nature of the specific dispersant/surfactant is not critical. Another example would be a lignosulfonate salt or lignin. It is also possible to dispense with the use of any dispersant, provided that the reaction medium is sufficiently agitated (high shear) during the UF condensation reaction to promote the formation of small polymer particles.
  • the amount of dispersant to include in the aqueous solution of methylol urea at the time of the insolubilization reaction can be readily determined by those skilled in the art. The amount depends to some extent on the particular dispersant chosen to use and the concentration of methylol urea in the aqueous reaction medium. Generally, the urea and formaldehyde reactants and the water vehicle are provided in amounts to yield a methylol urea concentration that ultimately provides a dispersion of UF polymer particles at about a 20% by weight solid concentration up to about 60% by weight solids. More usually, the materials are provided so that the UF polymer dispersion is between about 30% and 55% by weight solids.
  • the dispersion of UF polymer particles is prepared at about a 40% by weight solids concentration.
  • the dispersing agent is generally supplied at a concentration of between about 0.1% and 5% by weight, and usually in at least about 0.5% by weight up to about 2% by weight.
  • the particle size of the UF polymer particulate material may vary fairly widely. In general, a particular size is dictated by the specific application for which the particle is too be used. In some applications, such as when used as a soil additive, the particle size is less critical than when it may be used for example in a seed coating where is likely would be desirable to have a particle size smaller than the seed itself and usually substantially smaller than the seed. Producing small UF particles helps one better obtain a necessary and desired degree of adhesion of the UF particles in such applications. By using the preferred method of making the UF polymer in the presence of a dispersant, it is easy to produce most of the UF particles sufficiently small so as to pass through a 100 mesh (U.S.
  • UF polymer particles will be smaller than about 150 microns and a large number of them may be smaller than about 75 microns. While there is virtually no lower limit to the UF polymer particle size for practicing the invention; as a practical matter, most particles will be larger than one micron. Most of the particles, prepared using the procedures and materials noted above, have a particle size in the range of 10 to 80 microns, with a number average particle size between about 25 and 35 microns. A number average particle size of about 30 microns is quite common.
  • the aqueous dispersion of UF polymer particles can be used directly for the wide variety of available applications, such as coating seeds or coating sand, or the solid UF particles can be isolated from the dispersion before use. In some cases, it may be easier and more cost effective to use the dispersion directly. However, if there is a desire to isolate the particles, and that may be preferred in some applications, then according to the broadest aspects of the invention, any way for isolating the UF polymer particles from the aqueous UF polymer dispersion can be used. For example, the UF polymer particles in the dispersion may be isolated by filtration and oven drying, or by thin film evaporation. When using these latter techniques, it may then be necessary to reduce the particle size of the recovered solids, for example by grinding, to obtain a desired particle size or size distribution for a specific application.
  • spray dryer and “spray drying” refer to the technically sophisticated process of atomizing (in the form of finely divided droplets) the UF dispersion or slurry into a gas stream (often a heated air stream) under controlled temperature conditions and under specific gas/liquid contacting conditions to effect evaporation of water from the atomized droplets and production of a dry particulate solid product.
  • Spray drying as used herein is typically carried out with pressure nozzles (nozzle atomization) or centrifugal atomizers operating at high speeds (e.g., a spinning disc).
  • nozzle atomization nozzle atomization
  • centrifugal atomizers operating at high speeds
  • a spray dryer is designed so that the droplets do not contact the spray dryer wall under proper operating procedures. This effect is achieved by a precise balance of atomizer velocity, air flow, spray dryer dimensions of height and diameter, and inlet and outlet means to produce a cyclonic flow of gas, e.g., air in the chamber.
  • a pulse atomizer also can be used to produce the small droplets needed to facilitate evaporation of the water.
  • a flow promoter such as an aluminosilicate material
  • a flow promoter such as an aluminosilicate material
  • UF polymer solid particles In addition to the slow release nitrogen, UF polymer solid particles, a variety of other additives, including other agriculturally acceptable particulate materials, may also be combined with the UF polymer particles in the variety of potential applications. Some materials may exhibit a high degree of water solubility, and thus may be mixed with the UF polymer dispersion before its use. In fact, in some cases one may be able to mix such materials, especially the water soluble materials, with the UF polymer dispersion prior to spray- drying.
  • materials that can be used in combination with the UF polymer particles are materials commonly used in fertilizer applications that are not toxic to seeds, or harmful to the soil environment in which seeds are planted, or in which a plant is growing.
  • Such materials may include calcium carbonate (agricultural lime) in its various forms for adding weight and/or raising the pH of acid soils; metal containing compounds and minerals such as gypsum, metal silicates and chelates of various micronutrient metals such as iron, zinc and manganese; talc; elemental sulfur; activated carbon, which may act as a "safener” to protect against potentially harmful chemicals in the soil; pesticides, herbicides and fungicides to combat or prevent undesired insects, weeds and disease, super absorbent polymers, wicking agents, wetting agents, plant stimulants to accelerate growth, an inorganic (N-P-K) type fertilizer, sources of phosphorus, sources of potassium, and organic fertilizers, such as urea as a way to deliver more immediately available nitrogen for
  • the UF polymer particles can be used to coat seeds or other solid aggregates using an adhesive.
  • the nature of the adhesive binder is not narrowly critical. Any non-toxic, biocompatible adhesive material should be suitable.
  • adhesive classes which can potentially be used as the adhesive binder in the various applications include, but are not limited to, animal hide glues, celluloses including ethyl celluloses, methyl celluloses, hydroxymethyl celluloses, hydroxypropyl celluloses, hydroxymethyl propyl celluloses, carboxy methyl celluloses, polyvinyl alcohols and polyvinyl alcohol copolymers, dextrins, malto-dextrins, alginates, sugars, molasses, polyvinyl pyrrolidones, polyvinyl acetates and polyvinyl acetate copolymers, polysaccharides, fats, oils, proteins, gum arabics, shellacs, vinylidene chlorides, vinylidene chloride copolymers, lignosulfonates, starches, acrylate polymers and copolymers, such as polyvinyl acrylates, zeins, gelatins, chitosan,
  • the UF polymer particles are used to prepare a composite fertilizer as granular particles.
  • Granular particles can be prepared by commingling the UF polymer particles with one or more fertilizer enhancing solids.
  • the fertilizer enhancing solids preferably contain a source of phosphorus and a source of potassium.
  • the source of potassium may be potash (potassium chloride) or its sulfates, which are available commercially, such as the sulfate of potash (“SOP”) or the sulfate of potash- magnesia ("SPM").
  • the source of phosphorus may be monoammonium phosphate ("MAP"), diammonium phosphate ("DAP”), or triple super phosphate (“TSP”), all of which are generally available from commercial sources.
  • MAP monoammonium phosphate
  • DAP diammonium phosphate
  • TSP triple super phosphate
  • the amounts of nitrogen, phosphorus, and potassium included in the final fertilizer granules is not critical and typically will range from 0% to about 60% for each component. Most preferably, between about 1-100% slow-release nitrogen, 0-60% of a potassium source, and 0-60% of a phosphorus source are included in the final fertilizer granules.
  • the fertilizer enhancing solids also preferably include other fertilizer components and/or nutrients (including materials previously identified) such as iron, manganese, calcium, micronutrients, and the like.
  • additional components such as iron, manganese, calcium, micronutrients, and the like.
  • the forms and sources of these additional components are known to persons skilled in the art, and the appropriate amounts may be selected to include in the fertilizer granules without undue experimentation.
  • U.S. 5,797,976 which provides an extensive list of fertilizer enhancing solids for enhancing the growth and development of plants, is herein incorporated by reference in its entirety for its disclosure.
  • the UF polymer particles are combined with one or more of the fertilizer enhancing solids and a binder and then mixed to granulate the ingredients into more or less homogeneous granules.
  • plain water can be used as the binder simply by moistening the dry components to accomplish granulation.
  • the water may be provided at ambient temperature, or it may be heated to provide additional energy for the granulation process. In some cases it may be preferred to provide the water as steam.
  • the dry fertilizer ingredients including the UF polymer particles, are combined and are mixed until a well-mixed blend of the ingredients is obtained.
  • Fertilizer enhancing solids of an appropriate size for granulation may be purchased from commercial sources, or they may be obtained by crushing or milling larger sized particles and screening for size.
  • the dry ingredients can be blended by tumbling in a rotary mixer, although other methods of mixing may be used. For example, mixing in a paddle mixer or in a ribbon or other type of batch mixer may be preferred in certain cases.
  • a binder is added to the mixture of particles, for example as noted above, the particles can simply be moistened, and then are further mixed to begin the granulation process.
  • a granulator that subjects the particles to a rolling action during the granulation.
  • rolling-type granulators include dish-type granulators, drum-type granulators, or stirring-type (agitation-type) granulators in which stirring vanes or paddles rotate in a vessel.
  • the blended particles can be moistened by spraying them with steam to heat the particles simultaneously during the moistening.
  • the blended particles may be moistened with plain water, which may be sprayed onto the blend of particles.
  • a solution of an adhesive such as a methylol urea solution, or a solution of one of the earlier identified agriculturally acceptable adhesives, is used as the binder (moisturizer). Any of these binders may be used alone, or in combination with others. Regardless of whether steam, water, or another binder is used, the moistening with the binder and the mixing preferably takes place in a tumbler or other mixer granulator so that the particles are evenly moistened.
  • the amount of binder/moisture added to the granules should be controlled; too little or too much binder being detrimental to final granule integrity.
  • the temperature during granulation in not narrowly critical.
  • the dry ingredients are mixed with binder until homogeneous particles of fertilizer granules, i.e., granules that contain most, if not all, of the fertilizer components, are obtained.
  • the fertilizer granules contain, in addition to the UF polymer particles of the present invention, a source of phosphorus, and a source of potassium.
  • a source of phosphorus i.e., a source of phosphorus
  • potassium a source of potassium
  • the desired particle size of the granules is generally dictated by the particular application of the resulting fertilizer. Granule particle sizes in the range of 20 mils to 250 mils (about 0.5 to about 6.0 mm) are typical. To obtain granules having a smaller particle size, one would typically initiate the granulation process using powder ingredients having a finer particle size. Particle size is controlled by properly adjusting the amount of binder and the rate of binder addition, the operating conditions of the granulator and the granulation time.
  • the granules may be fed into a dryer to facilitate final production and recovery of the granulated fertilizer.
  • a dryer For example, one might employ a rotating drum dryer with a drying zone temperature between 100° and 250° F (about 40° to about 120° C), usually between about 185° F and 200° F (between 85° C and about 95° C).
  • the material is cooled to ambient temperature, and then is passed to a screening apparatus to separate granules meeting desired size specifications. Oversize granules and fines can be recycled to the granulation step, with oversize granules first being milled or crushed. Appropriately sized granules are recovered as the granulated fertilizer product.
  • the amount of UF polymer particles of the invention used in any particular application may vary fairly widely, but will usually depend on the particular application and its need for nitrogen fertilization, as well as the optional presence of other particulates and solids besides the essential UF polymer particles of the present invention.
  • the UF polymer particles of present invention, and the related fertilizer granules are useful for fertilizing a wide variety of seeds and plants, including seeds used to grow crops for human consumption, for silage, or for other agricultural uses. Indeed, virtually any seed or plant can be treated in accordance with the present invention using UF polymer particles of the present invention, such as cereals, vegetables, ornamentals, conifers, coffee, turf grasses, forages and fruits, including citrus.
  • Plants that can be treated include grains such as barley, oats and corn, sunflower, sugar beets, rape, safflower, flax, canary grass, tomatoes, cotton seed, peanuts, soybean, wheat, rice, alfalfa, sorghum, bean, sugar cane, broccoli, cabbage and carrot.
  • a urea-formaldehyde (UF) dispersion suitable for producing UF polymer particles of the present invention, is prepared as follows. Water (32.3 parts by weight) and a 50% aqueous solution of formaldehyde (31.8 parts by weight) are added to a reaction vessel equipped with vacuum reflux, a heater and a mixer. While adjusting the temperature of the agitated aqueous mixture to 100° F, its pH is also adjusted to about 7.0 (6.8 to 7.2) using either 50% caustic (NaOH), or 35% sulfuric acid, as needed. Once the aqueous mixture has been heated to 100° F (about 38° C), 31.8 parts by weight of prilled urea also is added and mixing is continued.
  • the temperature of the agitated aqueous mixture then is increased to 120° F (about 50° C) and held for a time (usually about 15 minutes) sufficient to dissolve the urea. While maintaining the temperature of the agitated mixture at 120° F (about 50° C), the pH is adjusted to within the range of 8.0 to 8.4, again using either 50% caustic (NaOH), or 35% sulfuric acid as needed. Using, as appropriate, a combination of the reaction exotherm and external heating, the reaction mixture is heated to a temperature of 158° F and the temperature is controlled using vacuum reflux. The pH of the mixture is adjusted, as needed, to about 7.8 to 8.2, using either 50%) caustic (NaOH), or 35% sulfuric acid.
  • the agitated mixture is held at a temperature of about 158° F (70° C) for about 30 minutes and the pH continues to be adjusted, as needed, to about 7.8 to 8.2, using either 50% caustic (NaOH), or 35% sulfuric acid so that the reactants form methylol ureas.
  • the aqueous mixture is cooled to about 105° F (about 40° C) and a dispersant (one part by weight of DAXAD 19) is added while the batch is cooled.
  • a dispersant one part by weight of DAXAD 19
  • the pH of the aqueous mixture is adjusted, as quickly as possible, to a pH of about 3.3 to 3.5, using 35% sulfuric acid, at which point the batch may exotherm to a temperature of above 175° F (about 80° C) before the exotherm subsides. This procedure causes rapid condensation of the methylol ureas to a solid network polymer.
  • the temperature of the aqueous mixture is cooled to 105° F (about 40° C) as quickly as possible while it is held for 20 minutes.
  • the pH of the aqueous mixture is adjusted to 6.5 to 7.5, using either 50% caustic (NaOH), or 35% sulfuric acid, as needed, and then is discharged to storage.
  • the UF polymer dispersion at about 38 weight percent solids should be agitated during its storage.
  • the dispersion made in accordance with Example 1 can then be spray dried to produce UF polymer particles.
  • a Niro P6 spray dryer can be fed with 15 pounds per hour of the dispersion of Example 1.
  • the spray dryer receives an inlet gas stream at a flow rate of about 415 standard cubic feet per minute and a temperature of 330- 340° F (165-170° C).
  • the outlet temperature of the spray dryer was measured as 75-95° F (25-35° C).
  • the recovered UF polymer particle product (at about 1 wt. % moisture) had particle sizes distributed from 10 to 80 microns, with a number average size of 30 microns.
  • the sprayed dried UF powder product of Example 3 was tested in an incubation lysimeter, a procedure developed by Dr. Jerry Sartain of the University of Florida.
  • An individual lysimeter is simply a 12 inch long piece of 3" diameter PVC piping.
  • the pipe has a permanent cap on the bottom and a removable cap on the top.
  • the bottom cap has an opening where water can drain and vacuum can be applied to remove excess water.
  • a sand-soil mixture is prepared by mixing ninety-five (95) parts sand and five (5) parts topsoil.
  • An amount of the sand-topsoil mixture sufficient to fill the column then is mixed thoroughly with an amount of each of the fertilizers to be tested sufficient to provide 450 mg of nitrogen in the column. After filling the lysimeter column, enough water is added to moisten the column contents. The column then is ready for the start of the testing. Once a month, 500 milliliters of 0.01 M citric acid is added to the column, allowed to flow downwardly through the column, and is collected from the bottom drain. Any excess water (citric acid) is removed from the column using a vacuum and combined with the amount collected from the drain. The collected liquid is analyzed for nitrogen (nitrate and ammonia) content. The amount of nitrogen (nitrate and ammonia) eluted from the column each month is determined.

Abstract

A slow release, particulate urea-formaldehyde polymer useful as a fertilizer for enhancing the extended delivery of nitrogen needed for plant development and growth and a granular fertilizer made with the particulate urea formaldehyde polymer.

Description

SLOW RELEASE NITROGEN FERTILIZER
This application claims the benefit of provisional application 60/367,278 filed March 26,2002 and Provisional application 60/379,402 filed May 13, 2002.
FIELD OF THE INVENTION
[01] The present invention relates to a new source of slow release nitrogen for enhancing the delivery of nitrogen needed for plant development and growth. The invention specifically relates to a new particulate source of slow release nitrogen, and to use of the particulate nitrogen source for enhancing plant development and growth, by delivering nutrient nitrogen over an extended period of time to growing plants. The present invention also is directed to the use of the particulate source of slow release nitrogen in formulating a granular fertilizer.
BACKGROUND OF THE INVENTION
[02] Fertilizer is often applied as a formulated (N-P-K) solid, granular or powder, or sometimes as a liquid to an area to be fertilized. There are basically two types of fertilizers, water soluble fertilizers and "slow release" fertilizers. While water soluble fertilizers are generally less expensive than slow release fertilizers, they have the disadvantage of leaching nutrients very quickly into and through the soil. Some solid, water soluble fertilizers can be made slow release by various coatings. Alternatively, a reduction in nitrogen availability also can be obtained by using enzyme inhibitors. Slow release fertilizers are designed to release nutrients to plants or soil over an extended period of time, which is more efficient than multiple applications of water soluble fertilizers. Therefore, slow release fertilizers (also referred to as controlled release or extended release) minimize the frequency with which plants must be fertilized, as well as reduce or minimize leaching. [03] Urea-formaldehyde (UF) condensation products are widely used as slow release nitrogen fertilizers in crops, ornamental plants and grasses. Urea- formaldehyde fertilizer materials also can be supplied either as liquids or as solids and are the reaction products of urea and formaldehyde. Such materials generally contain at least 28% nitrogen, largely in an insoluble but slowly available form.
[04] Extended release UF fertilizers (ureaform) can be prepared by reacting urea and formaldehyde at an elevated temperature in an alkaline solution to produce methylol ureas. The methylol ureas then are acidified to polymerize the methylol ureas to methylene ureas, which increase in chain length as the reaction is allowed to continue.
[05] The methylene urea polymers that the condensation products normally contain have limited water solubility and thus release nitrogen throughout an extended period. The mixture of methylene urea polymers generally have a range of molecular weights and are understood to be degraded slowly by microbial action into water soluble nitrogen. UF fertilizers are usually evaluated by the amount and the release characteristics of their water insoluble nitrogen.
[06] U.S. 4,089,899 describes a solid, controlled release nitrogen fertilizer of the ureaform type, which consists essentially of only two nitrogen fractions: water soluble nitrogen and cold water insoluble nitrogen.
[07] U.S. 3,677,736 describes a urea-formaldehyde fertilizer suspension.
[08] Other disclosures of urea-formaldehyde fertilizer compositions, both liquid and solid forms include U.S. 4,378,238, U.S. 4,554,005, U.S. 5,039,328, U.S. 5,266,097,U.S. 6,432,156, and U.S. 6,464,746.
[09] Granular nitrogen-containing fertilizers have been produced commercially by a variety of techniques using water soluble nitrogen products, such as urea, potassium nitrate, and ammonium phosphate. The practical advantages of handling, blending, and storing such fertilizer granules are known and well documented. The preparation of granular fertilizers using slow release UF fertilizers also has been described in the prior art.
[10] The present invention proposes to provide a new source of a particulate slow- release nitrogen (UF) as a plant fertilizer and to use such particles for forming granular fertilizer compositions.
BRIEF DESCRIPTION OF THE DRAWINGS
[11] Figure 1 is a graph showing the lysimeter results (nitrogen release rate) over a six (6) month time period for the UF polymer powder (particulate) of the present invention as compared with several commercially available sources of nitrogen fertilizers.
[12] Figure 2 is a photomicrograph of tall fescue seeds having an adherent coating containing slow release nitrogen particles in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[13] As noted above, the present invention is directed to a particulate source of slow release nitrogen (urea-formaldehyde (UF or ureaform) polymer particles) that is useful for enhancing the delivery of nitrogen needed for plant development and growth. The invention specifically relates to slow release nitrogen (UF) particles and to the use of the particles for enhancing plant development and growth. The slow release nitrogen particles of the present invention can be used in a variety of applications, for example they can be adhered to the surface of a seed, or on the surface of an aggregate material, such as sand, using an adhesive binder; they can used in preparing a granular fertilizer; they can be used as a root dip or in a soil drench; or they can be used as a soil additive. In yet another embodiment, the slow release nitrogen particles of the invention may have use in animal nutrition and could be used to coat urea, or another animal feed material.
[14] Because of the slow release character of the nitrogen particle of the present invention, upwards of twenty times the amount of nitrogen fertilizer can be supplied in many fertilizer applications than would be possible using common quick release nitrogen fertilizers available in the prior art, such as urea or methylol ureas, without damaging seeds or growing plants (phytotoxic effect).
[15] The slow release nitrogen UF polymer particles of the present invention are prepared by reacting, in an aqueous environment, urea and formaldehyde at a urea: formaldehyde mole ratio of about 1:1. Ammonia may be an optional reactant, as will be understood by those skilled in the art, in an amount of up to about 25% by weight of the formed UF polymer, usually in an amount below about 10 % by weight, but in the preferred embodiment of the present invention ammonia is not used at all.
[16] To prepare the UF polymer particles of the present invention, urea and formaldehyde are reacted in admixture at a mole ratio of approximately 1:1, for example at a UF mol ratio broadly in the range of 0.7: 1 < U:F <1.25: 1 and more preferably in the range of 0.83 : 1 < U:F <1.1 : 1. The phase "at a mole ratio of approximately 1:1" is intended to embrace these mole ratio ranges. Particularly good results have been obtained at a U:F mole ratio between 0.95:1 and 1.05:1.
[17] In the initial step of preparing the UF polymer particles, reaction between urea and formaldehyde is conducted in a manner to produce methylol ureas. Methods of doing this are well known to those skilled in the art and any of such known methods can be used. For example, reaction between the urea and formaldehyde can be promoted by maintaining the aqueous mixture initially at a moderate alkaline pH, with a pH in the range of about 7 to 9 being suitable and with a pH more usually between about 7.5 and 8.5, to promote the formation of methylol ureas. Given urea's inherent level of alkalinity, any required pH adjustment may be accomplished using either an acid or a base. The initial formation of methyol ureas generally can be conducted at a reaction temperature broadly in the range of 70° F to 175° F (about 20° C to about 80° C), with a reaction temperature in the range of 90° F to 160° F (about 30° C to about 70° C) more usually employed. The pH may be adjusted using commonly available acids and bases such as sodium hydroxide (caustic) and sulfuric acid and any material that can alter the pH is suitable for this purpose. The reaction pH also may be maintained (buffered) or adjusted by adding such alkaline compounds as triethanolamine, sodium or potassium bicarbonate, sodium or potassium carbonate, or other alkali metal hydroxides, such as potassium hydroxide and lithium hydroxide. Alternatively (though not generally preferred), the methylolation may also be done at a moderate acidic pH, such as in the pH range of 5.0 to 6.0, as will be recognized by those skilled in the art and the present invention is not limited by the way the initial methylolation is conducted.
[18] Following the initial formation of methylol ureas, the nascent UF polymer then is condensed to the point where the polymer becomes insoluble in the aqueous environment. This result is preferably accomplished by rapidly acidifying the methylol ureas, to a pH below about 6, preferably below about 5 and usually to a pH below about 4, but above about 1. A pH in the range of 2.5 to 4.0 has proven to be suitable. Any organic or inorganic acid that will lower the pH can be used. Particularly suitable is a strong acid, such as a mineral acid and an organic acid such as the stronger carboxylic acids. Thus, suitable acids include formic acid, acetic acid, nitric acid, phosphoric acid, sulfuric acid and hydrochloric acid. However, in its broadest aspects the present invention is not limited by the way the further polymerization of the methylol ureas and ultimate insolubilization is conducted and obtained.
[19] In order to produce a useful range of UF polymer particle sizes, the aqueous mixture of the methylol ureas is preferably mixed in the presence of a dispersing agent during the step of rapid polymerization which leads to insolubilization, such as the rapid acidification step, although it should be possible to get a similar result by maintaining a sufficiently high level of agitation (high shear) during the reaction in the absence of any dispersing agent. The resulting dispersion of UF polymer particles formed from the polymerization that occurs, for example, following acidification, can then be used directly (possibly following some thickening, or concentration enrichment), i.e., as a dispersion, to coat seed or sand, to treat roots, as a soil drench or soil additive, or to form a granular fertilizer, or alternately (and preferably) the dispersion of UF polymer particles can be recovered or isolated from the dispersion to produce a UF polymer powder, which then is used in any of the various applications noted above. The UF particulates formed in this manner have approximately 36% by weight nitrogen.
[20] Particularly in the preferred embodiment, most of the nitrogen is chemically bound in the UF polymer particulates and thus is agronomically unavailable until microorganisms, principally bacteria, enzymatically (e.g., using urease and nitrogenase) degrade the polymer into a form useable by a growing plant. It is this property that leads to labeling the UF polymer particle "slow release" or "extended release." A small amount of the nitrogen, typically on the order of 5% by weight of the particulate, may be of the fast or quick release variety (e.g., principally unreacted urea) and thus may be immediately available to a seed or plant. Because the UF polymer has only about 5% quick release nitrogen, however, the chance of over fertilization using the particulate source of nitrogen of the present invention is minimal. However, if desired, the reaction conditions (including the mole ratio of reactants) and/or the extent of the reaction also can be adjusted such that a higher amount of free urea is present in/with the UF polymer particles, up to about 10% by weight, as a way to deliver more immediately available nitrogen for a quicker initial development or greening effect. Such adjustments are well within the skill of the art in view of the present disclosure.
[21] Skilled practitioners recognize that the formaldehyde and urea reactants used to make the UF polymer of this invention are commercially available in many forms. Any form of these materials, which can react with the other reactant and which does not introduce extraneous moieties deleterious to the desired reaction and reaction product, can be used in the preparation of the slow release nitrogen, urea-formaldehyde polymer particles of the invention.
[22] Formaldehyde is available in many forms. Paraform (solid, polymerized formaldehyde) and formalin solutions (aqueous solutions of formaldehyde, sometimes with methanol, in 37 percent, 44 percent, or 50 percent formaldehyde concentrations) are commonly used sources of formaldehyde. Formaldehyde also may be available as a gas. Each of these sources of formaldehyde is suitable for use in the preparing the UF polymer of this invention. Generally, for ease of use, formalin solutions are preferred as the formaldehyde source. In addition, some of the formaldehyde may be replaced with another aldehyde, such as acetaldehyde and/or propylaldehyde that can react with urea. Glyoxal may also be used in place of formaldehyde, as may other aldehydes not specifically enumerated.
[23] Urea also is available in many forms. Solid urea, such as prill, and urea solutions, typically aqueous solutions, are commercially available. Further, urea often is chemically combined with formaldehyde in the form of a urea- formaldehyde concentrate, such as UFC 85, or as a commercially-available solution containing about 25 weight percent urea, about 60 weight percent formaldehyde, and about 15 weight percent water, available under the trademark STA-FORM 60.® Each of these sources of urea can be used in preparing the UF polymer of this invention.
[24] The urea-formaldehyde condensation reaction that results in the UF polymer particles of this invention is preferably conducted in an aqueous environment. As noted above, the reaction is conducted until the growing urea- formaldehyde polymer becomes insoluble in the aqueous reaction medium. A dispersing agent is preferably included in the water to facilitate the production of small polymer particles by the reaction. One suitable dispersant is the line of DAXAD dispersants commercially available from Hampshire Chemicals, a subsidiary of the Dow Chemical Company. One of the classes of these dispersants is a condensed naphthalene sulfonate. Both the high and low molecular weight species of this product line have been shown to be suitable, such as DAXDAD 19. A variety of other dispersants, or surfactants also can be used, including those that might be classified as anionic, such as polyacrylates (also available under the DAXAD label - such as DAXAD 30 from Hampshire Chemicals). Nonionic and cationic dispersant compounds also can be used. Suitable alternative materials can be identified using routine experimentation. The nature of the specific dispersant/surfactant is not critical. Another example would be a lignosulfonate salt or lignin. It is also possible to dispense with the use of any dispersant, provided that the reaction medium is sufficiently agitated (high shear) during the UF condensation reaction to promote the formation of small polymer particles.
[25] The amount of dispersant to include in the aqueous solution of methylol urea at the time of the insolubilization reaction can be readily determined by those skilled in the art. The amount depends to some extent on the particular dispersant chosen to use and the concentration of methylol urea in the aqueous reaction medium. Generally, the urea and formaldehyde reactants and the water vehicle are provided in amounts to yield a methylol urea concentration that ultimately provides a dispersion of UF polymer particles at about a 20% by weight solid concentration up to about 60% by weight solids. More usually, the materials are provided so that the UF polymer dispersion is between about 30% and 55% by weight solids. Preferably, the dispersion of UF polymer particles is prepared at about a 40% by weight solids concentration. Under these conditions, the dispersing agent is generally supplied at a concentration of between about 0.1% and 5% by weight, and usually in at least about 0.5% by weight up to about 2% by weight.
[26] The particle size of the UF polymer particulate material may vary fairly widely. In general, a particular size is dictated by the specific application for which the particle is too be used. In some applications, such as when used as a soil additive, the particle size is less critical than when it may be used for example in a seed coating where is likely would be desirable to have a particle size smaller than the seed itself and usually substantially smaller than the seed. Producing small UF particles helps one better obtain a necessary and desired degree of adhesion of the UF particles in such applications. By using the preferred method of making the UF polymer in the presence of a dispersant, it is easy to produce most of the UF particles sufficiently small so as to pass through a 100 mesh (U.S. or Tyler) screen, and generally at least a major portion also pass through a 200 mesh screen. Thus, most of the UF polymer particles will be smaller than about 150 microns and a large number of them may be smaller than about 75 microns. While there is virtually no lower limit to the UF polymer particle size for practicing the invention; as a practical matter, most particles will be larger than one micron. Most of the particles, prepared using the procedures and materials noted above, have a particle size in the range of 10 to 80 microns, with a number average particle size between about 25 and 35 microns. A number average particle size of about 30 microns is quite common.
[27] In the broad practice of this invention, the aqueous dispersion of UF polymer particles can be used directly for the wide variety of available applications, such as coating seeds or coating sand, or the solid UF particles can be isolated from the dispersion before use. In some cases, it may be easier and more cost effective to use the dispersion directly. However, if there is a desire to isolate the particles, and that may be preferred in some applications, then according to the broadest aspects of the invention, any way for isolating the UF polymer particles from the aqueous UF polymer dispersion can be used. For example, the UF polymer particles in the dispersion may be isolated by filtration and oven drying, or by thin film evaporation. When using these latter techniques, it may then be necessary to reduce the particle size of the recovered solids, for example by grinding, to obtain a desired particle size or size distribution for a specific application.
[28] Another, often preferred, way of isolating or recovering the UF polymer particles from the UF dispersion formed by the polymerization of urea and formaldehyde as described above, is by spray-drying. As used herein, the terms "spray dryer" and "spray drying" refer to the technically sophisticated process of atomizing (in the form of finely divided droplets) the UF dispersion or slurry into a gas stream (often a heated air stream) under controlled temperature conditions and under specific gas/liquid contacting conditions to effect evaporation of water from the atomized droplets and production of a dry particulate solid product. Spray drying as used herein is typically carried out with pressure nozzles (nozzle atomization) or centrifugal atomizers operating at high speeds (e.g., a spinning disc). Despite the high velocity generation of droplets, a spray dryer is designed so that the droplets do not contact the spray dryer wall under proper operating procedures. This effect is achieved by a precise balance of atomizer velocity, air flow, spray dryer dimensions of height and diameter, and inlet and outlet means to produce a cyclonic flow of gas, e.g., air in the chamber. A pulse atomizer also can be used to produce the small droplets needed to facilitate evaporation of the water. In some cases, it may be desirable to include a flow promoter, such as an aluminosilicate material, in the aqueous dispersion that is processed in a spray dryer simply to facilitate subsequent handling and transport of the spray dried UF powder (e.g., to avoid clumping).
[29] In addition to the slow release nitrogen, UF polymer solid particles, a variety of other additives, including other agriculturally acceptable particulate materials, may also be combined with the UF polymer particles in the variety of potential applications. Some materials may exhibit a high degree of water solubility, and thus may be mixed with the UF polymer dispersion before its use. In fact, in some cases one may be able to mix such materials, especially the water soluble materials, with the UF polymer dispersion prior to spray- drying.
[30] Included in materials that can be used in combination with the UF polymer particles are materials commonly used in fertilizer applications that are not toxic to seeds, or harmful to the soil environment in which seeds are planted, or in which a plant is growing. Such materials may include calcium carbonate (agricultural lime) in its various forms for adding weight and/or raising the pH of acid soils; metal containing compounds and minerals such as gypsum, metal silicates and chelates of various micronutrient metals such as iron, zinc and manganese; talc; elemental sulfur; activated carbon, which may act as a "safener" to protect against potentially harmful chemicals in the soil; pesticides, herbicides and fungicides to combat or prevent undesired insects, weeds and disease, super absorbent polymers, wicking agents, wetting agents, plant stimulants to accelerate growth, an inorganic (N-P-K) type fertilizer, sources of phosphorus, sources of potassium, and organic fertilizers, such as urea as a way to deliver more immediately available nitrogen for a quicker initial greening effect, surfactants, initiators, stabilizers, cross linkers, antioxidants, UV stabilizers, reducing agents, colorants and plasticizers. Mixtures of these different materials may of course also be employed. In a preferred embodiment, described in more detail hereafter, one or more of these materials is combined with the UF polymer particles of the invention to produce granular fertilizer solids.
[31] Thus, in the broad practice of this invention, either the aqueous dispersion of slow release nitrogen particles itself, or more preferably the isolated, powdered UF polymer, slow release nitrogen, recovered from the aqueous dispersion, preferably by spray-drying, then is used in the desired application.
[32] In one application, the UF polymer particles can be used to coat seeds or other solid aggregates using an adhesive. In the broad practice of this embodiment, the nature of the adhesive binder is not narrowly critical. Any non-toxic, biocompatible adhesive material should be suitable.
[33] Based on these characteristics, adhesive classes which can potentially be used as the adhesive binder in the various applications include, but are not limited to, animal hide glues, celluloses including ethyl celluloses, methyl celluloses, hydroxymethyl celluloses, hydroxypropyl celluloses, hydroxymethyl propyl celluloses, carboxy methyl celluloses, polyvinyl alcohols and polyvinyl alcohol copolymers, dextrins, malto-dextrins, alginates, sugars, molasses, polyvinyl pyrrolidones, polyvinyl acetates and polyvinyl acetate copolymers, polysaccharides, fats, oils, proteins, gum arabics, shellacs, vinylidene chlorides, vinylidene chloride copolymers, lignosulfonates, starches, acrylate polymers and copolymers, such as polyvinyl acrylates, zeins, gelatins, chitosan, polyethylene oxide polymers, acrylamide polymers and copolymers, polyhydroxyethyl acrylates, methylacrylamide polymers, polychloroprenes, poly (methyl vinyl ether)-maleic anhydride copolymers, vinylpyrrolidone/styrene copolymers, vinyl acetate/butyl acrylate copolymers, styrene/acrylic ester copolymers, vinyl acetate/ethylene copolymers and polyurethane polymers. Crosslinkable silicone materials as described in U.S. 4,753,035 also can be used. Still other materials, including natural inorganic materials such as silica gel and clay may also be suitable in some applications as will be readily apparent to those skilled in the art.
[34] In a preferred embodiment of the invention, the UF polymer particles are used to prepare a composite fertilizer as granular particles. Granular particles can be prepared by commingling the UF polymer particles with one or more fertilizer enhancing solids. The fertilizer enhancing solids preferably contain a source of phosphorus and a source of potassium. The source of potassium may be potash (potassium chloride) or its sulfates, which are available commercially, such as the sulfate of potash ("SOP") or the sulfate of potash- magnesia ("SPM"). The source of phosphorus may be monoammonium phosphate ("MAP"), diammonium phosphate ("DAP"), or triple super phosphate ("TSP"), all of which are generally available from commercial sources. The amounts of nitrogen, phosphorus, and potassium included in the final fertilizer granules is not critical and typically will range from 0% to about 60% for each component. Most preferably, between about 1-100% slow-release nitrogen, 0-60% of a potassium source, and 0-60% of a phosphorus source are included in the final fertilizer granules.
[35] In addition to phosphorus, and potassium, the fertilizer enhancing solids also preferably include other fertilizer components and/or nutrients (including materials previously identified) such as iron, manganese, calcium, micronutrients, and the like. The forms and sources of these additional components are known to persons skilled in the art, and the appropriate amounts may be selected to include in the fertilizer granules without undue experimentation. In this regard, the disclosure of U.S. 5,797,976, which provides an extensive list of fertilizer enhancing solids for enhancing the growth and development of plants, is herein incorporated by reference in its entirety for its disclosure.
[36] To prepare the fertilizer granules, the UF polymer particles are combined with one or more of the fertilizer enhancing solids and a binder and then mixed to granulate the ingredients into more or less homogeneous granules. In many applications, as is well understood by those skilled in the art of granulation, plain water can be used as the binder simply by moistening the dry components to accomplish granulation. The water may be provided at ambient temperature, or it may be heated to provide additional energy for the granulation process. In some cases it may be preferred to provide the water as steam.
[37] According to one process, the dry fertilizer ingredients, including the UF polymer particles, are combined and are mixed until a well-mixed blend of the ingredients is obtained. Fertilizer enhancing solids of an appropriate size for granulation, as is well-known to those skilled in the art of granulation, may be purchased from commercial sources, or they may be obtained by crushing or milling larger sized particles and screening for size. The dry ingredients can be blended by tumbling in a rotary mixer, although other methods of mixing may be used. For example, mixing in a paddle mixer or in a ribbon or other type of batch mixer may be preferred in certain cases.
[38] After blending the ingredients to obtain a fairly uniform mixture, a binder is added to the mixture of particles, for example as noted above, the particles can simply be moistened, and then are further mixed to begin the granulation process. To obtain the granular fertilizer, one normally would employ a granulator that subjects the particles to a rolling action during the granulation. Such rolling-type granulators include dish-type granulators, drum-type granulators, or stirring-type (agitation-type) granulators in which stirring vanes or paddles rotate in a vessel. As recognized by those skilled in granulating solids, the blended particles can be moistened by spraying them with steam to heat the particles simultaneously during the moistening. Alternatively, the blended particles may be moistened with plain water, which may be sprayed onto the blend of particles. In yet another embodiment, a solution of an adhesive, such as a methylol urea solution, or a solution of one of the earlier identified agriculturally acceptable adhesives, is used as the binder (moisturizer). Any of these binders may be used alone, or in combination with others. Regardless of whether steam, water, or another binder is used, the moistening with the binder and the mixing preferably takes place in a tumbler or other mixer granulator so that the particles are evenly moistened.
[39] As understood by skilled workers, the amount of binder/moisture added to the granules should be controlled; too little or too much binder being detrimental to final granule integrity. The temperature during granulation in not narrowly critical. The dry ingredients are mixed with binder until homogeneous particles of fertilizer granules, i.e., granules that contain most, if not all, of the fertilizer components, are obtained. In most cases, the fertilizer granules contain, in addition to the UF polymer particles of the present invention, a source of phosphorus, and a source of potassium. Those skilled in the art recognize that not all of the granules will contain the same ratio of all components, but it is preferred that the majority of the granules include each ingredient.
[40] The desired particle size of the granules is generally dictated by the particular application of the resulting fertilizer. Granule particle sizes in the range of 20 mils to 250 mils (about 0.5 to about 6.0 mm) are typical. To obtain granules having a smaller particle size, one would typically initiate the granulation process using powder ingredients having a finer particle size. Particle size is controlled by properly adjusting the amount of binder and the rate of binder addition, the operating conditions of the granulator and the granulation time.
[41] After granulation, the granules may be fed into a dryer to facilitate final production and recovery of the granulated fertilizer. For example, one might employ a rotating drum dryer with a drying zone temperature between 100° and 250° F (about 40° to about 120° C), usually between about 185° F and 200° F (between 85° C and about 95° C). After drying, the material is cooled to ambient temperature, and then is passed to a screening apparatus to separate granules meeting desired size specifications. Oversize granules and fines can be recycled to the granulation step, with oversize granules first being milled or crushed. Appropriately sized granules are recovered as the granulated fertilizer product.
[42] According to this process a granular, slow-acting nitrogen fertilizer can be obtained, which is excellent in the physical properties for use as a fertilizer, having an acceptable hardness with minimal breakage.
[43] The amount of UF polymer particles of the invention used in any particular application may vary fairly widely, but will usually depend on the particular application and its need for nitrogen fertilization, as well as the optional presence of other particulates and solids besides the essential UF polymer particles of the present invention.
[44] The UF polymer particles of present invention, and the related fertilizer granules are useful for fertilizing a wide variety of seeds and plants, including seeds used to grow crops for human consumption, for silage, or for other agricultural uses. Indeed, virtually any seed or plant can be treated in accordance with the present invention using UF polymer particles of the present invention, such as cereals, vegetables, ornamentals, conifers, coffee, turf grasses, forages and fruits, including citrus. Plants that can be treated include grains such as barley, oats and corn, sunflower, sugar beets, rape, safflower, flax, canary grass, tomatoes, cotton seed, peanuts, soybean, wheat, rice, alfalfa, sorghum, bean, sugar cane, broccoli, cabbage and carrot. [45] It will be understood that while the invention has been described in conjunction with specific embodiments thereof, the foregoing description and examples are intended to illustrate, but not limit the scope of the invention. Other aspects, advantages and modifications will be apparent to those skilled in the art to which the invention pertains, and these aspects and modifications are within the scope of the invention, which is limited only by the appended claims.
EXAMPLE 1
[46] A urea-formaldehyde (UF) dispersion, suitable for producing UF polymer particles of the present invention, is prepared as follows. Water (32.3 parts by weight) and a 50% aqueous solution of formaldehyde (31.8 parts by weight) are added to a reaction vessel equipped with vacuum reflux, a heater and a mixer. While adjusting the temperature of the agitated aqueous mixture to 100° F, its pH is also adjusted to about 7.0 (6.8 to 7.2) using either 50% caustic (NaOH), or 35% sulfuric acid, as needed. Once the aqueous mixture has been heated to 100° F (about 38° C), 31.8 parts by weight of prilled urea also is added and mixing is continued. The temperature of the agitated aqueous mixture then is increased to 120° F (about 50° C) and held for a time (usually about 15 minutes) sufficient to dissolve the urea. While maintaining the temperature of the agitated mixture at 120° F (about 50° C), the pH is adjusted to within the range of 8.0 to 8.4, again using either 50% caustic (NaOH), or 35% sulfuric acid as needed. Using, as appropriate, a combination of the reaction exotherm and external heating, the reaction mixture is heated to a temperature of 158° F and the temperature is controlled using vacuum reflux. The pH of the mixture is adjusted, as needed, to about 7.8 to 8.2, using either 50%) caustic (NaOH), or 35% sulfuric acid. The agitated mixture is held at a temperature of about 158° F (70° C) for about 30 minutes and the pH continues to be adjusted, as needed, to about 7.8 to 8.2, using either 50% caustic (NaOH), or 35% sulfuric acid so that the reactants form methylol ureas. While continuing agitation, the aqueous mixture is cooled to about 105° F (about 40° C) and a dispersant (one part by weight of DAXAD 19) is added while the batch is cooled. Upon reaching 105° F (about 40° C), the batch is placed under full vacuum. While maintaining full vacuum and applying cooling to the agitated batch, the pH of the aqueous mixture is adjusted, as quickly as possible, to a pH of about 3.3 to 3.5, using 35% sulfuric acid, at which point the batch may exotherm to a temperature of above 175° F (about 80° C) before the exotherm subsides. This procedure causes rapid condensation of the methylol ureas to a solid network polymer. After completing the pH adjustment, the temperature of the aqueous mixture is cooled to 105° F (about 40° C) as quickly as possible while it is held for 20 minutes. Following the 20 minute holding period, the pH of the aqueous mixture is adjusted to 6.5 to 7.5, using either 50% caustic (NaOH), or 35% sulfuric acid, as needed, and then is discharged to storage. The UF polymer dispersion at about 38 weight percent solids should be agitated during its storage.
EXAMPLE 2
[47] The dispersion made in accordance with Example 1 can then be spray dried to produce UF polymer particles. A Niro P6 spray dryer can be fed with 15 pounds per hour of the dispersion of Example 1. The spray dryer receives an inlet gas stream at a flow rate of about 415 standard cubic feet per minute and a temperature of 330- 340° F (165-170° C). The outlet temperature of the spray dryer was measured as 75-95° F (25-35° C). The recovered UF polymer particle product (at about 1 wt. % moisture) had particle sizes distributed from 10 to 80 microns, with a number average size of 30 microns.
EXAMPLE 3
[48] Using a Niro industrial-sized spray dryer (ON 030-5051), a UF polymer dispersion made in accordance with Example 1 having about a 38 wt. % solids content, at a temperature of 28° C and at a feed rate of 100 lbs/minute was spray-dried with the atomizer wheel operating at 13,000 RPMs. Air, at a flow rate of 49,400 standard cubic feet per minute and at a temperature of 186° C was delivered to the spray dryer. The outlet air temperature was measured as 88° C. Spray-dried UF polymer particles were recovered from the spray dryer.
EXAMPLE 4
[49] In order to assess the release performance of the UF powder of the present invention, the sprayed dried UF powder product of Example 3 was tested in an incubation lysimeter, a procedure developed by Dr. Jerry Sartain of the University of Florida. An individual lysimeter is simply a 12 inch long piece of 3" diameter PVC piping. The pipe has a permanent cap on the bottom and a removable cap on the top. The bottom cap has an opening where water can drain and vacuum can be applied to remove excess water. A sand-soil mixture is prepared by mixing ninety-five (95) parts sand and five (5) parts topsoil. An amount of the sand-topsoil mixture sufficient to fill the column then is mixed thoroughly with an amount of each of the fertilizers to be tested sufficient to provide 450 mg of nitrogen in the column. After filling the lysimeter column, enough water is added to moisten the column contents. The column then is ready for the start of the testing. Once a month, 500 milliliters of 0.01 M citric acid is added to the column, allowed to flow downwardly through the column, and is collected from the bottom drain. Any excess water (citric acid) is removed from the column using a vacuum and combined with the amount collected from the drain. The collected liquid is analyzed for nitrogen (nitrate and ammonia) content. The amount of nitrogen (nitrate and ammonia) eluted from the column each month is determined. In addition to the UF powder of Example 6, sulfur coated urea (SCU), a polymer coated urea (Poly-On), a low molecular weight methylene urea (Nitroform) and an even lower molecular weight methylene urea (Nutralene) also were tested. Each material was tested in triplicate and the results of the testing are illustrated in the Figure 1. The graph of Figure 1 plots the total nitrate released each month (average of three replicates) over a six month period of time. As shown, the UF powder had the lowest level released in the first month and then sustained the highest levels of release in the fourth, fifth and sixth months. Furthermore, as shown by the release curve in Figure 1, the release rate of nitrogen (as nitrate) from the UF polymer particles of the present invention is substantially uniform (constant) over a period of six months.
[50] The present invention has been described with reference to specific embodiments. However, this application is intended to cover those changes and substitutions that may be made by those skilled in the art without departing from the spirit and the scope of the invention. Unless otherwise specifically indicated, all percentages are by weight. Throughout the specification and in the claims the term "about" is intended to encompass + or - 5%.

Claims

We Claim
1. A particulate urea-formaldehyde polymer made by acidifying a aqueous methylol urea solution, wherein the aqueous methylol urea solution either contains a dispersing agent or is subjected to a high shear condition during the acidifying, to form an aqueous dispersion of insoluble urea- formaldehyde polymer particles and drying the dispersion to recover the urea- formaldehyde polymer particles.
2. The particulate urea-formaldehyde polymer of claim 1 wherein the aqueous methylol urea solution is made by reacting urea and formaldehyde at a urea formaldehyde mole ratio of approximately 1: 1.
3. The particulate urea-formaldehyde polymer of claim 1 wherein the aqueous methylol urea solution is made by reacting urea and formaldehyde at a urea: formaldehyde mole ratio of approximately 1:1 and wherein the methylol urea solution contains a dispersing agent during the acidifying.
4. The particulate urea-formaldehyde polymer of claim 2 wherein the aqueous methylol urea solution is made by reacting urea and formaldehyde at a urea: formaldehyde mole ratio of 0.83: 1 to 1.1:1.
5. The particulate urea-formaldehyde polymer of claim 3 wherein the aqueous methylol urea solution is made by reacting urea and formaldehyde at a urea: formaldehyde mole ratio of 0.83:1 to 1.1:1.
6. The particulate urea-formaldehyde polymer of claim 1 wherein the aqueous methylol urea solution is made by reacting urea and formaldehyde at a urea: formaldehyde mole ratio of 0.95: 1 to 1.05:1 and wherein the methylol urea solution contains a dispersing agent during the acidifying.
7. The particulate urea-formaldehyde polymer of claim 1 wherein the aqueous methylol urea solution is made by reacting urea and formaldehyde at a urea: formaldehyde mole ratio of 0.95:1 to 1.05:1.
8. The particulate urea-formaldehyde polymer of claim 1, 2, 3, 4, 5, 6, or 7 wherein the aqueous dispersion of urea-formaldehyde polymer particles is dried by spray drying.
9. A granular fertilizer made by granulating the particulate urea- formaldehyde polymer of claim 8 with a fertilizer-enhancing solid and a binder.
10. The granular fertilizer of claim 9 wherein said fertilizer-enhancing solid is selected from the group consisting of calcium carbonate; gypsum; metal silicates; metal chelates of a metal selected from iron, zinc and manganese; talc; elemental sulfur; activated carbon; pesticides; herbicides; fungicides; super absorbent polymers; wicking agents; wetting agents; plant stimulants; urea; a potassium source and a phosphorus source.
11. A method of producing a particulate urea-formaldehyde polymer comprising forming an aqueous solution of methylol urea by reacting urea and formaldehyde at a urea:formaldehyde mole ratio of 0.95:1 to 1.05:1; acidifying the aqueous methylol urea solution, wherein the aqueous methylol urea solution either contains a dispersing agent or is subjected to a high shear condition during the acidifying, to form an aqueous dispersion of insoluble urea-formaldehyde polymer particles and drying the dispersion to recover the urea-formaldehyde polymer particles.
12. The method of claim 11 wherein the wherein the methylol urea solution contains a dispersing agent during the acidifying and the aqueous dispersion of urea-formaldehyde polymer particles is dried by spray drying.
PCT/US2003/008454 2002-03-26 2003-03-26 Slow release nitrogen fertilizer WO2003082005A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP03728259.7A EP1487761B1 (en) 2002-03-26 2003-03-26 Method for producing a particulate urea-formaldehyde polymer as slow release nitrogen fertilizer
KR1020047014895A KR101002884B1 (en) 2002-03-26 2003-03-26 Slow Release Nitrogen Fertilizer
MXPA04009282A MXPA04009282A (en) 2002-03-26 2003-03-26 Slow release nitrogen fertilizer.
BRPI0308607-0B1A BR0308607B1 (en) 2002-03-26 2003-03-26 method of producing a particulate urea formaldehyde polymer
JP2003579560A JP4430945B2 (en) 2002-03-26 2003-03-26 Controlled release nitrogen fertilizer
AU2003233412A AU2003233412B2 (en) 2002-03-26 2003-03-26 Slow release nitrogen fertilizer
ES03728259.7T ES2450130T3 (en) 2002-03-26 2003-03-26 Process for the production of a particulate urea-formaldehyde polymer as a slow-release nitrogen fertilizer
CA2479614A CA2479614C (en) 2002-03-26 2003-03-26 Slow release nitrogen fertilizer
HK06100290.1A HK1080446B (en) 2002-03-26 2006-01-06 Slow release nitrogen fertilizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36727802P 2002-03-26 2002-03-26
US60/367,278 2002-03-26
US37940202P 2002-05-13 2002-05-13
US60/379,402 2002-05-13

Publications (2)

Publication Number Publication Date
WO2003082005A2 true WO2003082005A2 (en) 2003-10-09
WO2003082005A3 WO2003082005A3 (en) 2003-12-24

Family

ID=28678183

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2003/008453 WO2003082775A1 (en) 2002-03-26 2003-03-26 Slow release nitrogen root treatment
PCT/US2003/007800 WO2003082003A2 (en) 2002-03-26 2003-03-26 Slow release nitrogen coating
PCT/US2003/008454 WO2003082005A2 (en) 2002-03-26 2003-03-26 Slow release nitrogen fertilizer
PCT/US2003/008452 WO2003082004A2 (en) 2002-03-26 2003-03-26 Slow release nitrogen seed coat

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/US2003/008453 WO2003082775A1 (en) 2002-03-26 2003-03-26 Slow release nitrogen root treatment
PCT/US2003/007800 WO2003082003A2 (en) 2002-03-26 2003-03-26 Slow release nitrogen coating

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2003/008452 WO2003082004A2 (en) 2002-03-26 2003-03-26 Slow release nitrogen seed coat

Country Status (12)

Country Link
US (4) US6900162B2 (en)
EP (3) EP1487254B1 (en)
JP (2) JP4430945B2 (en)
KR (2) KR101002884B1 (en)
CN (1) CN1309685C (en)
AU (4) AU2003233412B2 (en)
BR (2) BR0308607B1 (en)
CA (2) CA2480173C (en)
ES (1) ES2450130T3 (en)
HK (1) HK1080446B (en)
MX (2) MXPA04009230A (en)
WO (4) WO2003082775A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753984B2 (en) 2005-04-07 2010-07-13 Yaqing Liu Slow and controlled-release polymeric fertilizer with multiple nutrients, preparing process for the same and the use method of the same
US8419819B2 (en) * 2006-06-23 2013-04-16 Koch Agronomic Services, Llc Solid urea fertilizer
US8562711B2 (en) 2006-01-12 2013-10-22 Koch Agronomic Services, Llc Additive containing N-(n-butyl)thiophsphoric triamide for urea-based fertilizer
EP2747557A4 (en) * 2011-08-25 2015-05-13 Dow Agrosciences Llc Pesticidal compositions with enhanced active ingredient retention in pest control zones
US9034072B2 (en) 2012-08-15 2015-05-19 Koch Agronomic Services, Llc Compositions of substantially spherical particles and methods of making thereof
US9682894B2 (en) 2012-08-15 2017-06-20 Koch Agronomic Services, Llc Compositions of urea formaldehyde particles and methods of making thereof

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039059A (en) * 1996-09-30 2000-03-21 Verteq, Inc. Wafer cleaning system
US20070280981A1 (en) * 2006-06-02 2007-12-06 The Andersons, Inc. Adherent biologically active ingredient carrier granule
KR101002884B1 (en) * 2002-03-26 2010-12-21 조지아-퍼시픽 케미칼즈 엘엘씨 Slow Release Nitrogen Fertilizer
JP3860073B2 (en) * 2002-05-27 2006-12-20 サッポロビール株式会社 Appropriateness determination method of raw barley as raw material for malt production by dyeing method
JP2005325024A (en) * 2002-08-02 2005-11-24 Maruo Calcium Co Ltd Flower-picking agent
CA2529222A1 (en) * 2003-06-27 2005-01-06 Melspring International B.V. Process for the production of a fertilizer and fertilizer
FR2874008B1 (en) * 2004-08-06 2007-02-23 Snf Sas Soc Par Actions Simpli FERTILIZER PELLETS AND METHOD OF MANUFACTURE
CA2587971C (en) * 2004-11-30 2013-04-09 Victor Chow Process and composition for coating propagation material
US7534280B2 (en) * 2005-04-25 2009-05-19 The Davey Tree Expert Company Fertilizers containing polyamino acid
US20060236734A1 (en) * 2005-04-25 2006-10-26 The Davey Tree Expert Company Fertilizers containing polyamino acid
US7686215B2 (en) * 2005-05-21 2010-03-30 Apple Inc. Techniques and systems for supporting podcasting
DE102005028016A1 (en) 2005-06-16 2006-12-21 Uhde Gmbh Coated controlled release fertilizer and process for its production
MX2008002264A (en) * 2005-08-18 2008-11-19 Regal Chemical Company Slow-release fertilizer and method of making and using same.
WO2007030557A2 (en) * 2005-09-08 2007-03-15 Cornell Research Foundation, Inc. Formulations of viable microorganisms and their methods of production and use
US9102893B2 (en) * 2005-09-08 2015-08-11 Advanced Biological Marketing Equipment lubricating microbial compositions
ITMI20051892A1 (en) * 2005-10-07 2007-04-08 Sadepan Chimica S R L METHOD FOR THE PREPARATION OF GRANULAR ORGANIC-MINERAL FERTILIZERS WITH NITROGEN, SLOW CESSION, HIGH FREQUENCY AND MINIMUM ENVIRONMENTAL IMPACT
JPWO2007083445A1 (en) * 2006-01-17 2009-06-11 蔵 山田 Plant growth promotion and quality improvement method, and growth promoter and quality improvement agent used in the method
US20070207927A1 (en) * 2006-03-01 2007-09-06 Rosa Fred C Polymer based seed coating
US8642507B1 (en) 2006-08-14 2014-02-04 The United States Of America As Represented By The Secretary Of Agriculture Fertilizer formulation for reduction of nutrient and pesticide leaching
WO2008040636A2 (en) * 2006-09-29 2008-04-10 Basf Se Process for the continuous granulation of fertilizers
US7862642B2 (en) * 2006-12-14 2011-01-04 Georgia-Pacific Chemicals Llc Extended-release urea-based granular fertilizer
US20080196463A1 (en) * 2007-02-21 2008-08-21 Hudson Alice P Precursor coatings for sulfur coated controlled release fertilizers
US7753618B2 (en) 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
EA200901629A1 (en) 2007-06-28 2010-06-30 Калера Корпорейшн METHODS AND DESCRIPTION SYSTEMS INCLUDING THE DECOMPOSITION OF CARBONATE COMPOUNDS
US8202343B2 (en) 2007-11-13 2012-06-19 Board Of Trustees Of Michigan State University Sand based fungicides
US9549499B2 (en) 2007-11-13 2017-01-24 Board Of Trustees Of Michigan State University Solid carrier sprayer apparatus and methods of using same
US20170137703A1 (en) 2007-12-11 2017-05-18 Superior Silica Sands, LLC Hydraulic fracture composition and method
US7726070B2 (en) * 2007-12-11 2010-06-01 Thrash Tommy K Hydration maintenance apparatus and method
US9057014B2 (en) 2007-12-11 2015-06-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US9856415B1 (en) 2007-12-11 2018-01-02 Superior Silica Sands, LLC Hydraulic fracture composition and method
US10920494B2 (en) 2007-12-11 2021-02-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US20100239467A1 (en) 2008-06-17 2010-09-23 Brent Constantz Methods and systems for utilizing waste sources of metal oxides
US7749476B2 (en) 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
BRPI0821515A2 (en) 2007-12-28 2019-09-24 Calera Corp co2 capture methods
US7754169B2 (en) 2007-12-28 2010-07-13 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
JP4950953B2 (en) * 2008-07-02 2012-06-13 財団法人日本植物調節剤研究協会 Crop cultivation method with reduced inhibition of germination growth inhibition by chemical substances
WO2010006233A2 (en) * 2008-07-11 2010-01-14 Floratine Biosciences, Inc. Foliarly applicable silicon nutrition compositions & methods
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US7771505B2 (en) * 2008-07-16 2010-08-10 Agrium Inc. Controlled release fertilizer composition
CN104722466A (en) * 2008-07-16 2015-06-24 卡勒拉公司 Low-energy 4-cell Electrochemical System With Carbon Dioxide Gas
WO2010009273A1 (en) 2008-07-16 2010-01-21 Calera Corporation Co2 utilization in electrochemical systems
EP2338136A1 (en) 2008-09-11 2011-06-29 Calera Corporation Co2 commodity trading system and method
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
TW201026597A (en) 2008-09-30 2010-07-16 Calera Corp CO2-sequestering formed building materials
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
CN101925391A (en) * 2008-10-31 2010-12-22 卡勒拉公司 Non-cementitious compositions comprising CO2 sequestering additives
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
KR101221061B1 (en) 2008-11-14 2013-01-11 한국농수산대학 산학협력단 Silicate, iron powder and calcium gypsum coated seed
EA201100807A1 (en) * 2008-12-19 2012-02-28 Пастеуриа Байосаенс, Инк. MATERIALS AND METHODS OF STRUGGLE AGAINST NEMATODIS WITH THE HELP OF PASTEURIA DISPUTE IN SEED COVERINGS
US8652490B2 (en) 2009-01-26 2014-02-18 Pasteuria Bioscience, Inc. Pasteuria strain
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
WO2010101953A1 (en) 2009-03-02 2010-09-10 Calera Corporation Gas stream multi-pollutants control systems and methods
EP2247366A4 (en) 2009-03-10 2011-04-20 Calera Corp Systems and methods for processing co2
AU2010230024B2 (en) * 2009-03-23 2015-09-10 Brigham Young University Seed coating compositions and methods for applying soil surfactants to water-repellent soil
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
CN101993268B (en) * 2009-08-25 2012-11-28 史丹利化肥股份有限公司 Selenium urea formaldehyde roller pelleting compound fertilizer and production method thereof
US8466087B2 (en) 2009-09-03 2013-06-18 Fbsciences Holdings, Inc. Seed treatment compositions and methods
BR112012007613A2 (en) * 2009-09-28 2017-06-20 Fbsciences Holdings Inc fertilizer compositions and methods
EP2482638A4 (en) * 2009-09-28 2013-08-07 Fbsciences Holdings Inc Methods of reducing plant stress
WO2011071909A1 (en) * 2009-12-07 2011-06-16 Momentum Tchnologies, Inc. Nutrient yielding bio-renewable controlled release fertilizer coatings
RU2457666C2 (en) * 2010-01-11 2012-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный аграрный университет" Method of cultivation of fodder crops and controlled-release nitrogen fertiliser to its implementation
CN102711482A (en) * 2010-01-26 2012-10-03 独立行政法人农业·食品产业技术综合研究机构 Agent for improving plant growth, seeds, and method for improving plant growth
CN102985393B (en) 2010-06-07 2014-12-10 斯里兰卡纳米科技协会(私人)有限公司 A cellulose based sustained release macronutrient composition for fertilizer application
CA2805115A1 (en) 2010-07-15 2012-01-19 Fbsciences Holdings, Inc. Microorganism compositions and methods
BR112013011263A2 (en) 2010-11-09 2016-08-16 Pasteuria Bioscience Inc "nematicidal composition, and method for controlling nematodes"
CN102557838A (en) * 2010-12-30 2012-07-11 中国科学院沈阳应用生态研究所 Multi-functional slow-release urea fertilizer and preparation method
JP5678755B2 (en) * 2011-03-23 2015-03-04 Jfeスチール株式会社 Iron powder for seed coating, iron powder coated seed
CN102153392B (en) * 2011-04-08 2014-04-23 山东聊城鲁西化工第五化肥有限公司 Production method of novel slow release urea-formaldehyde compound fertilizer
GB201106748D0 (en) * 2011-04-20 2011-06-01 Exosect Ltd Coating compositions for pathogen control in cotton
US20130243839A1 (en) * 2011-08-08 2013-09-19 Landec Corporation Controlled, Sustained Release Particles for Treating Seeds and Plants and Methods for Making the Particles
EP2741608A4 (en) * 2011-08-09 2015-04-22 Univ Putra Malaysia An improved plant treatment agent
US8682584B2 (en) * 2011-08-19 2014-03-25 Brookside Laboratories, Inc. Nitrogen potential index
WO2013040392A2 (en) * 2011-09-14 2013-03-21 Wisearth Ip, Inc Pelletized organic fertilizer
AU2012352161B2 (en) 2011-12-13 2016-05-19 Monsanto Technology Llc Plant growth-promoting microbes and uses therefor
BR112014017162A8 (en) 2012-01-12 2017-07-04 Fbsciences Holdings Inc plant biology modulation
WO2013133819A1 (en) 2012-03-07 2013-09-12 Empire Technology Development Llc Lignin-based multipurpose fertilizers
US9115307B2 (en) 2012-03-31 2015-08-25 The Andersons, Inc. Soil adherent pellet and active agent delivery with same
CN102653503B (en) * 2012-05-18 2013-07-10 成都市新都化工股份有限公司 Double-envelope composite fertilizer production method
US9353019B2 (en) 2013-01-18 2016-05-31 Oms Investments, Inc. Coated seeds
CN103102220A (en) * 2013-02-04 2013-05-15 桂林菲科特生物科技有限公司 High-energy peptide urea
CA2808647C (en) * 2013-03-08 2014-08-26 Biochambers Incorporated A controlled environment enclosure with built-in sterilization/pasteurization functionality
US9169164B2 (en) * 2013-04-05 2015-10-27 Ecolab Usa Inc. Polymers useful in agricultural applications
CA3209979A1 (en) 2013-09-04 2015-03-12 Indigo Ag, Inc. Agricultural endophyte-plant compositions, and methods of use
WO2015076382A1 (en) * 2013-11-21 2015-05-28 横浜ゴム株式会社 Pneumatic tire
CN106458779B (en) 2014-01-31 2020-12-11 沙地基本工业公司 Fertilizer coating comprising one or more cores and method for making same
JP6735235B2 (en) 2014-05-05 2020-08-05 サビック グローバル テクノロジーズ ベスローテン フエンノートシャップ Coated granular fertilizer, its manufacturing method and use
CN103980070B (en) * 2014-05-10 2016-04-06 青岛乡润生物科技有限公司 A kind of Synergistic type peanut Slow release special fertilizer
CN104045486B (en) * 2014-05-28 2016-03-02 马鞍山市心洲葡萄专业合作社 One grow wheat specific complex coated fertilizer and preparation method thereof
CN106659116A (en) * 2014-07-25 2017-05-10 住友化学株式会社 Coated rice seed and method for producing same
KR102409814B1 (en) * 2014-07-25 2022-06-15 스미또모 가가꾸 가부시끼가이샤 Coated rice seed and method for producing same
US10501383B2 (en) 2014-10-31 2019-12-10 Koch Agronomic Services, Llc Nitrification inhibitor compositions and methods of making thereof
CN104557286A (en) * 2014-12-24 2015-04-29 中国科学院沈阳应用生态研究所 Efficient compound organic acid-based stable ecological fertilizer
US20160185682A1 (en) * 2014-12-31 2016-06-30 Dow Agrosciences Llc Nitrification inhibitor compositions and methods for preparing the same
AU2016219488A1 (en) 2015-02-09 2017-09-14 Bioconsortia, Inc. Agriculturally beneficial microbes, microbial compositions, and consortia
EP3095770A1 (en) * 2015-05-21 2016-11-23 Casale SA Process for the production of combined fertilizers
US20180171228A1 (en) * 2015-06-26 2018-06-21 Dow Global Technologies Llc Application of aqueous sulfonated aromatic polymer for enhanced water retention
US10689306B2 (en) 2015-07-20 2020-06-23 Sabic Global Technologies B.V. Fertilizer composition and methods of making and using same
CA2993131A1 (en) 2015-07-20 2017-01-26 Sabic Global Technologies B.V. An extruded fertilizer core particle comprising a urease inhibitor and/or a nitrification inhibitor and a binder therefor
MX2018000780A (en) 2015-07-25 2018-03-23 Bioconsortia Inc Agriculturally beneficial microbes, microbial compositions, and consortia.
EP3377461A4 (en) 2015-11-16 2019-07-10 SABIC Global Technologies B.V. Coated granular fertilizers, methods of manufacture thereof, and uses thereof
BR112018009872B1 (en) 2015-11-16 2022-11-16 Sabic Global Technologies B.V. MANUFACTURING PROCESS OF A COATED FERTILIZER
CN105594501A (en) * 2015-11-19 2016-05-25 宁夏中青农业科技有限公司 Urea resin foam particle matrix and processing method thereof
CN105359902B (en) * 2015-12-16 2017-12-19 孟祥荣 A kind of seedbed method for culturing seedlings of early rice
WO2017137902A1 (en) 2016-02-08 2017-08-17 Sabic Global Technologies B.V. Method of making a fertilizer seed core
EP3472122B1 (en) * 2016-06-18 2022-03-09 Milliken & Company Compositions suitable for use in making fertilizers, methods for making such compositions, and method for making fertilizers using the same
CN106146151B (en) * 2016-06-30 2018-02-06 吉林贝盈生物科技有限公司 Granulated fertilizer additive and preparation method thereof, granulated fertilizer additive powder and granulated fertilizer
US20180177192A1 (en) * 2016-12-27 2018-06-28 Talc Usa, Llc Seed Treatment Composition
BR112019014982A2 (en) * 2017-01-20 2020-04-28 Koch Agronomic Services Llc Fertilizer compositions containing acid-resistant urease inhibitor adduct
WO2018193358A1 (en) 2017-04-19 2018-10-25 Sabic Global Technologies B.V. Enhanced efficiency fertilizer with urease inhibitor and nitrification inhibitor in separate particles
US11306037B2 (en) 2017-04-19 2022-04-19 Sabic Global Technologies B.V. Enhanced efficiency fertilizer with urease inhibitor and nitrification separated within the same particle
WO2018193345A1 (en) 2017-04-20 2018-10-25 Sabic Global Technologies B.V. Enhanced efficiency fertilizer with embedded powder composition
CN111148827A (en) 2017-05-09 2020-05-12 塔克森生物科学公司 Microorganism, composition and use for promoting plant growth
CN107176890A (en) * 2017-05-15 2017-09-19 覃广强 A kind of rich manganese slow-release compound fertilizer
US11447431B1 (en) 2017-06-14 2022-09-20 Central Garden & Pet Company Composite coating for seed
US11324160B1 (en) 2017-06-14 2022-05-10 Central Garden & Pet Company Composite coating for seed
AU2018313067B2 (en) 2017-08-09 2024-02-08 SABIC Agri-Nutrients Company Extruded fertilizer granules with urease and/or nitrification inhibitors
CN107337543B (en) * 2017-08-21 2020-11-24 济南大学 Saline-alkali soil slow-release fertilizer and preparation method thereof
CN107382510B (en) * 2017-08-21 2020-11-24 济南大学 Controllable slow-release fertilizer and preparation method thereof
BR112020006320A2 (en) 2017-09-27 2020-09-24 Pioneer Hi-Bred International, Inc. agricultural composition, methods for producing an agricultural composition, method for increasing the absorption of a crop protection agent in a crop plant, method for increasing the yield of a crop in a field, method of providing a plurality of agricultural microspheres of prolonged release to a crop field comprising a plurality of crop seeds and method of increasing yield of a crop plant
CN107879766A (en) * 2017-11-08 2018-04-06 贵州省化工研究院 A kind of ureaformaldehyde method of modifying and modified urea formaldehyde and its application
CN107721622A (en) * 2017-11-16 2018-02-23 来安县薜必英家庭农场 It is a kind of to save artificial paddy-specific slow release fertilizer
CN108456121A (en) * 2018-02-09 2018-08-28 郑州高富肥料有限公司 A kind of nucleocapsid slow-release or control-release fertilizer and preparation method thereof
CN108314561A (en) * 2018-05-09 2018-07-24 河北卓秋实业有限公司 A kind of macromolecule long-acting slow-release selenium-rich fertilizer and preparation method thereof
DE102018210030A1 (en) 2018-06-20 2019-12-24 Thyssenkrupp Ag Use and recycling of supercritical CO2 as a solvent for PLA and other biodegradable polymers in the coating process for fertilizers
US20210400985A1 (en) 2018-10-10 2021-12-30 Pioneer Hi-Bred International, Inc. Plant growth-promoting microbes, compositions, and uses
WO2020106828A2 (en) * 2018-11-20 2020-05-28 Arr-Maz Products, L.P. Fertilizer coating applied in the reduction of caking and moisture adsorption
WO2020205764A1 (en) 2019-04-02 2020-10-08 Corn Products Development, Inc. Aflatoxin biocontrol composition
JP2022535047A (en) * 2019-06-05 2022-08-04 オーエムエス インベストメンツ,インコーポレイテッド Controlled release fertilizer composition
US20210229883A1 (en) * 2020-01-29 2021-07-29 Jarod D. Wenrick Biodegradable additive
MA62707A1 (en) 2021-03-22 2023-12-29 Bioconsortia Inc IMPROVED DIAZOTROPHIC MICROORGANISMS FOR USE IN AGRICULTURE
US11530169B1 (en) 2021-10-07 2022-12-20 Bio-Soil Enhancers, Inc. Fertilizer microbe combination
CN114747446B (en) * 2022-04-01 2023-06-27 中国科学院地理科学与资源研究所 Corn and soybean mixed planting method
CN117285393A (en) * 2022-08-09 2023-12-26 南京林业大学 Slow-release urea-based compound sprayable film-forming fertilizer and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810710A (en) 1955-06-10 1957-10-22 Borden Co Urea formaldehyde condensation product
US3649598A (en) 1969-08-22 1972-03-14 Sumitomo Chemical Co Method for producing condensation products of urea and formaldehyde using sodium borate as an alkalizer
US3712879A (en) 1969-04-05 1973-01-23 G Blume Urea formaldehyde condensation products
US3759687A (en) 1971-04-30 1973-09-18 A Nobell Method for manufacture of ureaformaldehyde fertilizer
FR2270221A1 (en) 1974-05-08 1975-12-05 Saarbergwerke Ag
US4753035A (en) 1987-02-04 1988-06-28 Dow Corning Corporation Crosslinked silicone coatings for botanical seeds
RU1819877C (en) 1991-01-09 1993-06-07 Институт общей и неорганической химии АН БССР Composition for treating mineral fertilizers
US5501720A (en) 1994-06-13 1996-03-26 Georgia-Pacific Corporation Spray-dried urea-formaldehyde and lignosulfonate compositions

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648609A (en) 1949-01-21 1953-08-11 Wisconsin Alumni Res Found Method of applying coatings to edible tablets or the like
BE567352A (en) * 1957-05-06
US2986840A (en) * 1957-12-16 1961-06-06 Hugh R Rogers Seed and method of preparing same with urea-aldehyde resin
US2999336A (en) 1958-08-09 1961-09-12 Cie Nord Africaine De L Hyperp Preparation of coated seeds
US2999335A (en) * 1959-06-30 1961-09-12 Gadget Of The Month Club Inc Manually operable carousel-simulating toy
US3227543A (en) * 1961-04-27 1966-01-04 Hercules Powder Co Ltd Manufacture and use of urea-formaldehyde compositions in fertilizer
US3981845A (en) 1963-08-23 1976-09-21 Ciba-Geigy Ag High surface area polycondensation polymer particulates based on urea and formaldehyde
US3316676A (en) 1965-03-03 1967-05-02 Grace W R & Co Seed packages of water insoluble polyethylene oxide
US3438764A (en) 1965-08-30 1969-04-15 Du Pont Stable fertilizer ammoniating solution and method of making said solution
FR1456008A (en) * 1965-09-02 1966-05-20 Azote Office Nat Ind Wet process for manufacturing pure phosphoric acid
US3598565A (en) 1968-07-30 1971-08-10 Thomas M Graves Seed coating composition
US3705794A (en) * 1969-08-15 1972-12-12 Scott & Sons Co O M Foamed fertilizers and combination products
US3621612A (en) 1970-04-24 1971-11-23 Northrup King & Co Process of regulating plant growth
US3707807A (en) 1970-12-02 1973-01-02 Chevron Res Seed coating composition
US3735017A (en) * 1971-04-12 1973-05-22 Amp Inc Lead frames and method of making same
US3713800A (en) * 1971-05-24 1973-01-30 J Karnemaat Process for producing garbage based fertilizer
US3677736A (en) 1971-06-08 1972-07-18 Allied Chem Liquid fertilizer suspension containing ureaform
US3911183A (en) 1972-11-10 1975-10-07 Thomas M Hinkes Seed coating process and product
US3808740A (en) 1973-01-08 1974-05-07 Northrup King & Co Coated seeds and methods
GB1380865A (en) * 1973-03-23 1975-01-15 Coated Seed Pasture establishment
JPS5747642B2 (en) 1973-08-08 1982-10-12
US3905152A (en) 1974-07-02 1975-09-16 Minnesota Mining & Mfg Coated seeds
US4066490A (en) 1974-11-05 1978-01-03 Shin Nihon Ryokugaku Kabushiki Kaisha Method for producing a lawn nursery strip
CA1041484A (en) 1974-12-20 1978-10-31 Silvio Vargiu Process for the preparation of urea-formaldehyde condensates to be used as fertilizers
IL47144A (en) 1975-04-22 1978-06-15 Chem & Phosphates Ltd Fertilizer compound the ureaform type and a method for the production thereof
US4058067A (en) 1975-05-27 1977-11-15 Fmc Corporation Treatment of seedlings
US4025329A (en) 1975-12-04 1977-05-24 O. M. Scott & Sons Company Particulate urea-formaldehyde fertilizer composition and process
US4190981A (en) 1977-08-26 1980-03-04 Muldner Lawrence Carl Mat for growing lawns or other vegetation
US4174957A (en) 1978-03-06 1979-11-20 Hydrosoil Corporation Synthetic growing medium and method of preparing it
US4192095A (en) 1978-07-31 1980-03-11 Haslam Lester H Seed treating suspension and method of seed treatment
US4357780A (en) 1978-12-20 1982-11-09 Ball Harry J Fibrous web for planting seeds, method of using same, apparatus for producing same
US4219966A (en) 1979-03-21 1980-09-02 Mccalister William J Method of rapid grass growth
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4249343A (en) 1979-07-25 1981-02-10 Eastman Kodak Company Seed coatings
US4251952A (en) 1979-08-06 1981-02-24 Sandoz Ltd. Plant seed coating
US4296512A (en) * 1979-11-09 1981-10-27 Union Carbide Corporation Method for making fasteners
US4280830A (en) * 1980-01-23 1981-07-28 O. M. Scott And Sons Company Urea-formaldehyde granular fertilizer
US4333265A (en) * 1980-03-13 1982-06-08 Arnold Richard L Air drop planting system and improved planting device for same
US4298512A (en) 1980-04-24 1981-11-03 W. A. Cleary Chemical Corporation Urea formaldehyde dispersions modified with higher aldehydes
US4411663A (en) * 1981-07-21 1983-10-25 Adnovum Ag Reactable reagents with substrates
US4378238A (en) 1981-07-30 1983-03-29 The O.M. Scott & Sons Company Controlled release particulate fertilizer composition
US4411683A (en) 1981-07-30 1983-10-25 The O. M. Scott & Sons Company Process of preparing solid controlled release fertilizer composition
US4832728A (en) 1981-09-25 1989-05-23 Melamine Chemicals, Inc. Fertilizer compositions, processes of making them, and pocesses of using them
DE3150631A1 (en) * 1981-12-21 1983-07-21 Saat- Und Erntetechnik Gmbh, 3440 Eschwege Use of treated seeds for sowing
US4409015A (en) 1982-02-11 1983-10-11 Borden, Inc. Flowable liquid fertilizer containing suspended water insoluble nitrogen
US4429075A (en) 1982-05-17 1984-01-31 Chem-Nuclear Systems, Inc. Cross-linked urea-formaldehyde polymer matrix compositions containing cyclic intermediate structures
US4526608A (en) * 1982-07-14 1985-07-02 Zoecon Corporation Certain 2-pyridyloxyphenyl-oximino-ether-carboxylates, herbicidal compositions containing same and their herbicidal method of use
US4410685A (en) 1982-09-10 1983-10-18 Borden, Inc. Hydrolytically stable urea-formaldehyde resins and process for manufacturing them
US4501851A (en) 1982-09-10 1985-02-26 Borden, Inc. Urea-formaldehyde precursor
US4474925A (en) 1982-12-10 1984-10-02 W. A. Cleary Chemical Corporation Urea formaldehyde dispersions modified with polyfunctional aldehydes
LU84601A1 (en) 1983-01-24 1984-10-24 Sba Chimie Societe Anonyme PROCESS AND COMPOSITIONS FOR CONDITIONING FLOORS
US4526606A (en) 1983-05-05 1985-07-02 Georgia-Pacific Resins, Inc. Urea-formaldehyde liquid fertilizer suspension
US4493725A (en) 1983-05-17 1985-01-15 Korea Advanced Institute Of Science And Technology Fertilizer product with sustained action and process therefor
US4596593A (en) 1983-05-25 1986-06-24 Nitto Chemical Industry Co., Ltd. Urea-formaldehyde condensate-based slow release nitrogen fertilizer and process for producing same
US4780988A (en) * 1983-05-25 1988-11-01 Korber Ag Method of producing rod-shaped incipient plant carrying devices
US4530713A (en) * 1983-07-25 1985-07-23 Borden, Inc. Urea-formaldehyde fertilizer suspensions
US4735015A (en) 1983-11-25 1988-04-05 Basf Corporation Seed protective coating
FR2556172B1 (en) 1983-12-12 1986-09-05 Interox COATED SEEDS AND PROCESS FOR OBTAINING THEM
FR2556173B1 (en) 1983-12-12 1986-09-05 Solvay COATED SEEDS AND PROCESS FOR OBTAINING THEM
JPS60162201A (en) * 1984-02-01 1985-08-24 Mita Ind Co Ltd Reflection plate
US4578105A (en) 1985-01-07 1986-03-25 Hawkeye Chemical Company Stable ureaform dispersion fertilizers
JPS61204190A (en) * 1985-03-06 1986-09-10 Kanto Ishi Pharma Co Ltd Glycoside and its production
US4752317A (en) 1985-07-08 1988-06-21 Reed Lignin, Inc. Controlled release formation for urea
US4756738A (en) 1985-07-08 1988-07-12 Reed Lignin, Inc. Controlled release formulation for fertilizers
US4789391A (en) 1985-07-08 1988-12-06 Reed Lignin Inc. Controlled release formulation for fertilizers
IT209335Z2 (en) * 1986-06-30 1988-09-20 Nordica Spa HEATING DEVICE, PARTICULARLY FOR SKI SHOES.
US4906276A (en) 1986-11-03 1990-03-06 American Colloid Company Plant transplant and plant preservation medium
US4960858A (en) * 1988-07-29 1990-10-02 The United States Of America As Represented By The Secretary Of The Air Force Rigid rod aromatic benzimidazole/thiazole heterocyclic polymer
US5022182A (en) 1988-08-22 1991-06-11 Promac Industries, Ltd. Agricultural processes and products
US5043007A (en) 1988-08-25 1991-08-27 Davis Bobby G Process for the production of fertilizer and the fertilizer produced thereby
US6309440B1 (en) 1998-08-25 2001-10-30 Thomas T. Yamashita Method and composition for promoting and controlling growth of plants
US5797976A (en) * 1988-09-09 1998-08-25 Yamashita; Thomas T. Method and composition for promoting and controlling growth of plants
US5344471A (en) 1988-11-15 1994-09-06 Sri International Plant root coatings
US5110898A (en) 1988-11-28 1992-05-05 Georgia-Pacific Corporation Method for manufacturing amino-aldehyde compositions
US4960856A (en) 1988-11-28 1990-10-02 Georgia-Pacific Corporation Urea-formaldehyde compositions and method of manufacture
US5300127A (en) 1989-01-06 1994-04-05 Agricultural Genetics Company Limited Seed coatings
GB8900313D0 (en) 1989-01-06 1989-03-08 Agricultural Genetics Co Seed coatings
JP2903593B2 (en) 1989-02-14 1999-06-07 三菱化学株式会社 Method for producing granular slow-release nitrogen fertilizer
CA2010408A1 (en) 1989-03-06 1990-09-06 Saburo Murayama Pelletized seed
JPH0322905A (en) * 1989-03-06 1991-01-31 Nitto Chem Ind Co Ltd Pelletized seed
AU5569990A (en) 1989-05-05 1990-11-29 Allelix Crop Technologies Enhancement of conifer seedling growth
US4997469A (en) 1990-01-10 1991-03-05 Harmony Products, Inc. High integrity, low odor, natural based nitrogenous granules for agriculture
US5106646A (en) * 1991-01-08 1992-04-21 Kraft General Foods, Inc. Stabilized low calorie syrup with reduced sweetener solids content
US5262381A (en) 1991-09-06 1993-11-16 Osaka Gas Co. Ltd. Method to enhance inoculation of root systems
US5266097A (en) 1992-12-31 1993-11-30 The Vigoro Corporation Aminoureaformaldehyde fertilizer method and composition
DE4308505A1 (en) 1993-01-19 1994-09-08 Polyplant Gmbh Process for the preparation of a culture substrate which is flexible, workable, biodegradable and environmentally friendly and which is capable of storing (retaining) water and fertilisers and of being composted
US5376175A (en) 1993-08-17 1994-12-27 Long, Jr.; Richard L. Method and means for uniformly coating particulate material
US5443637A (en) 1993-09-17 1995-08-22 Coating Machinery Systems, Inc. Means for continuously coating particulate material
US5674971A (en) 1995-06-06 1997-10-07 Georgia-Pacific Resins, Inc. Urea-formaldehyde resin composition and method of preparation thereof
CN1040096C (en) * 1995-08-17 1998-10-07 郑州乐喜施磷复肥技术研究推广中心 Releasion controlled fertilizer
US6058649A (en) 1995-09-11 2000-05-09 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture Seed coating for enhancing the level of selenium in crops
US5618330A (en) 1995-12-20 1997-04-08 Artozon Sylvester; Rosa I. Plant treatment compositions and process
US5849320A (en) 1996-06-13 1998-12-15 Novartis Corporation Insecticidal seed coating
US5725630A (en) * 1996-07-31 1998-03-10 Helena Chemical Co. Dry granular fertilizer blend and a method of fertilizing plants
US6088957A (en) 1996-10-09 2000-07-18 Mjm Technologies, L.L.P. Seed-containing fertilizer package
US6009663A (en) 1996-10-09 2000-01-04 Mjm Technologies, L.L.P. Carrier for seeds and consumable particulates
CN1237876A (en) 1996-10-31 1999-12-08 先锋高级育种国际股份有限公司 Seed coatings
US6022827A (en) 1997-01-28 2000-02-08 E. I. Du Pont De Nemours And Company Sod or other vegetation having a root support matrix with beneficial plant adjuvants thereon
US6209259B1 (en) 1997-07-11 2001-04-03 Encap, Llc Seeding treatments
US5860245A (en) 1997-08-19 1999-01-19 Welch; Robin Lee Vegetable growing mat
US5935909A (en) 1997-09-16 1999-08-10 Donlar Corporation Treatment of tree seedlings to enhance survival rate
CN1138728C (en) * 1998-06-02 2004-02-18 朱永绥 Method for producing urea-formaldehyde compound fertilizer
US6464746B2 (en) 1998-07-24 2002-10-15 Lebanon Chemical Corporation Homogeneous granules of slow-release fertilizer and method of making the same
US6048378A (en) 1998-08-13 2000-04-11 Lesco, Inc. Highly available particulate controlled release nitrogen fertilizer
GB9902665D0 (en) * 1999-02-05 1999-03-31 Mandops Uk Ltd Foliar fertiliser
US6432256B1 (en) * 1999-02-25 2002-08-13 Applied Materials, Inc. Implanatation process for improving ceramic resistance to corrosion
EP1036492A1 (en) * 1999-03-13 2000-09-20 Aventis Research & Technologies GmbH & Co. KG Seed treatment composition
US6254655B1 (en) * 1999-03-18 2001-07-03 Oms Investments, Inc. Processes for preparing granular composite fertilizer compositions and products produced thereby
DE19923525A1 (en) * 1999-05-21 2000-11-23 Saar En Gmbh Urea-formaldehyde fertilizer preparation, including addition of hexamethylene tetramine and/or tetramethylene diamine to precondensate before final condensation to release ammonia for neutralization in situ
US6306194B1 (en) 1999-09-14 2001-10-23 Georgia-Pacific Resins, Inc. Controlled release urea-formaldehyde liquid fertilizer resins with high nitrogen levels
US6230438B1 (en) 1999-09-20 2001-05-15 Grow Tec Inc. Water insoluble, freeze sensitive seed coatings
US6432156B1 (en) 1999-11-17 2002-08-13 The Homestead Corp. Method of coating materials and materials formed thereby
US6858634B2 (en) 2000-09-15 2005-02-22 Monsanto Technology Llc Controlled release formulations and methods for their production and use
DE10102555B4 (en) * 2001-01-19 2014-04-10 Suet Saat- Und Erntetechnik Gmbh Seed with an envelope containing nitrogen fertilizer
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
ITMI20011831A1 (en) * 2001-08-30 2003-03-02 Sadepan Chimica S R L PROCEDURE FOR THE PRODUCTION OF AZIOATED AND COMPLEX FERTILIZERS, EVEN WITH MICROELEMENTS, IN HIGH SPHERICAL GRANULAR FORM WITH HIGH HOMOGENEOUS
KR101002884B1 (en) 2002-03-26 2010-12-21 조지아-퍼시픽 케미칼즈 엘엘씨 Slow Release Nitrogen Fertilizer
JP2004129614A (en) 2002-10-11 2004-04-30 Takii Shubyo Kk Method for improving germination of seed, germination improved seed and coated seed
JP4490664B2 (en) 2003-09-25 2010-06-30 住友化学株式会社 Seed germination improvement method, germination improvement seed, coating seed and germination improvement agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810710A (en) 1955-06-10 1957-10-22 Borden Co Urea formaldehyde condensation product
US3712879A (en) 1969-04-05 1973-01-23 G Blume Urea formaldehyde condensation products
US3649598A (en) 1969-08-22 1972-03-14 Sumitomo Chemical Co Method for producing condensation products of urea and formaldehyde using sodium borate as an alkalizer
US3759687A (en) 1971-04-30 1973-09-18 A Nobell Method for manufacture of ureaformaldehyde fertilizer
FR2270221A1 (en) 1974-05-08 1975-12-05 Saarbergwerke Ag
US4753035A (en) 1987-02-04 1988-06-28 Dow Corning Corporation Crosslinked silicone coatings for botanical seeds
RU1819877C (en) 1991-01-09 1993-06-07 Институт общей и неорганической химии АН БССР Composition for treating mineral fertilizers
US5501720A (en) 1994-06-13 1996-03-26 Georgia-Pacific Corporation Spray-dried urea-formaldehyde and lignosulfonate compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1487761A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753984B2 (en) 2005-04-07 2010-07-13 Yaqing Liu Slow and controlled-release polymeric fertilizer with multiple nutrients, preparing process for the same and the use method of the same
US8562711B2 (en) 2006-01-12 2013-10-22 Koch Agronomic Services, Llc Additive containing N-(n-butyl)thiophsphoric triamide for urea-based fertilizer
US9512045B2 (en) 2006-01-12 2016-12-06 Koch Agronomic Services, Llc Additive containing N-(N-butyl)thiophosphoric triamide for urea-based fertilizer
US8419819B2 (en) * 2006-06-23 2013-04-16 Koch Agronomic Services, Llc Solid urea fertilizer
US9517973B2 (en) 2006-06-23 2016-12-13 Koch Agronomic Services, Llc Solid urea fertilizer
EP2747557A4 (en) * 2011-08-25 2015-05-13 Dow Agrosciences Llc Pesticidal compositions with enhanced active ingredient retention in pest control zones
US9034072B2 (en) 2012-08-15 2015-05-19 Koch Agronomic Services, Llc Compositions of substantially spherical particles and methods of making thereof
US9682894B2 (en) 2012-08-15 2017-06-20 Koch Agronomic Services, Llc Compositions of urea formaldehyde particles and methods of making thereof

Also Published As

Publication number Publication date
AU2003224717B2 (en) 2009-07-16
AU2003224717A1 (en) 2003-10-13
CA2480173C (en) 2012-12-04
JP4430945B2 (en) 2010-03-10
CN1646451A (en) 2005-07-27
WO2003082003A2 (en) 2003-10-09
EP1487761A2 (en) 2004-12-22
JP2005521761A (en) 2005-07-21
KR20040102048A (en) 2004-12-03
AU2003224718A1 (en) 2003-10-13
EP2839734A2 (en) 2015-02-25
CA2479614C (en) 2011-11-15
WO2003082004A3 (en) 2004-01-22
KR20040105786A (en) 2004-12-16
JP4456875B2 (en) 2010-04-28
HK1080446B (en) 2007-10-05
WO2003082004A2 (en) 2003-10-09
AU2003233412B2 (en) 2008-12-11
HK1080446A1 (en) 2006-04-28
US6936681B1 (en) 2005-08-30
AU2003218151A1 (en) 2003-10-13
US7213367B2 (en) 2007-05-08
KR101084819B1 (en) 2011-11-21
KR101002884B1 (en) 2010-12-21
BR0308609A (en) 2007-01-09
BR0308607A (en) 2005-02-09
US20030220200A1 (en) 2003-11-27
US20030228981A1 (en) 2003-12-11
EP1487254B1 (en) 2014-11-19
WO2003082775A1 (en) 2003-10-09
MXPA04009230A (en) 2004-11-26
CN1309685C (en) 2007-04-11
BR0308609B1 (en) 2015-02-18
ES2450130T3 (en) 2014-03-24
JP2005520564A (en) 2005-07-14
WO2003082005A3 (en) 2003-12-24
EP1487761B1 (en) 2013-12-04
MXPA04009282A (en) 2005-01-25
AU2003233412A1 (en) 2003-10-13
BR0308607B1 (en) 2013-07-16
EP1487254A2 (en) 2004-12-22
WO2003082003A3 (en) 2003-12-11
EP2839734A3 (en) 2015-04-22
US20040023809A1 (en) 2004-02-05
CA2479614A1 (en) 2003-10-08
AU2003218151A8 (en) 2003-10-13
EP1487254A4 (en) 2010-05-05
CA2480173A1 (en) 2003-10-09
US6936573B2 (en) 2005-08-30
US6900162B2 (en) 2005-05-31
EP1487761A4 (en) 2010-05-05

Similar Documents

Publication Publication Date Title
CA2479614C (en) Slow release nitrogen fertilizer
US9446991B2 (en) Compositions of substantially spherical particles and methods of making thereof
WO2016070184A1 (en) Nitrification inhibitor compositions and methods of making thereof
ZA200407493B (en) Slow release nitrogen fertilizer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003728259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2479614

Country of ref document: CA

Ref document number: 1373/KOLNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004/07493

Country of ref document: ZA

Ref document number: 200407493

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2003233412

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003579560

Country of ref document: JP

Ref document number: 1020047014895

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/009282

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20038090953

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047014895

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003728259

Country of ref document: EP