WO2003087898A1 - Wavelength filter and wavelength monitoring apparatus - Google Patents

Wavelength filter and wavelength monitoring apparatus Download PDF

Info

Publication number
WO2003087898A1
WO2003087898A1 PCT/JP2002/009173 JP0209173W WO03087898A1 WO 2003087898 A1 WO2003087898 A1 WO 2003087898A1 JP 0209173 W JP0209173 W JP 0209173W WO 03087898 A1 WO03087898 A1 WO 03087898A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical axis
wavelength
birefringent material
angle
light
Prior art date
Application number
PCT/JP2002/009173
Other languages
French (fr)
Japanese (ja)
Inventor
Masao Imaki
Yoshihito Hirano
Yohei Mikami
Makoto Satoh
Akihiro Adachi
Yasunori Nisimura
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO2003087898A1 publication Critical patent/WO2003087898A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0257Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods multiple, e.g. Fabry Perot interferometer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Definitions

  • the present invention relates to a wavelength finolator for selecting a wavelength of a laser beam used in a wavelength division multiplexing transmission (WDM) system and the like, and a wavelength monitor device for measuring an oscillation wavelength of the laser beam using the wavelength filter.
  • WDM wavelength division multiplexing transmission
  • FIG. 1 is a configuration diagram showing a conventional wavelength monitor device disclosed in Japanese Patent Application Laid-Open No. H03-160774.
  • a semiconductor laser 101 can control the wavelength of an emitted optical signal.
  • Light emitted from the semiconductor laser 101 is converted into parallel light by an optical lens 1.05, and the parallel light is further condensed on a photodetector 108, for example, a photodiode.
  • the other light is incident on the Fabry-Perot resonator.
  • the Fabry-Perot resonator 111 is branched in two directions by a reflection film 109 and a beam splitter 106.
  • One of the branched lights passes through a lens 107, has 110, and is formed of two types of optical materials.
  • the light transmitted through the Fabry-Perot resonator 111 is focused on the photodetector 113 via the lens 112.
  • FIG. 2 is a configuration diagram of the Fabry-Perot resonator 111 in FIG.
  • the temperature coefficient ⁇ of a Fabry-Perot resonator made of one type of optical material is expressed by equation (1).
  • is the refractive index of the optical material
  • is the net tension coefficient in the optical axis direction.
  • a generally known Fabry-Perot resonator uses a glass material. In that case, the temperature coefficient (thermo-optical coefficient) of the linear expansion coefficient ⁇ and the refractive index n was fixed. Therefore, the temperature coefficient ⁇ is uniquely determined.
  • the cavity length of the Fabry-Perot resonator 111 does not change in accordance with the temperature, but is emitted from the semiconductor laser 101 and transmitted through the Fabry-Perot resonator 111. Since the wavelength dependence of the light intensity does not change, the wavelength can be accurately monitored irrespective of the temperature of the resonator 111.
  • the Fabry-Perot resonator 111 is composed of two types of optical materials having different signs of the temperature coefficient ⁇ . Equation (2) must be satisfied in order to make the temperature coefficient of the entire Fabry-Perot resonator 1 1 1 zero.
  • n 0 and 101 are the refractive index and physical length of the first optical material, respectively, and r x is the first optical material. This is the temperature coefficient according to equation (1). Also n. 2, 1 02 the refractive index and physical length of the second optical material, respectively it, r 2 is Ru temperature coefficient der of the second optical material.
  • quartz was used as the optical material with a positive temperature coefficient
  • rutile was used as the optical material with a negative temperature coefficient.
  • ⁇ 01 , 101 are the refractive index and physical length of quartz, ⁇ .
  • Two , one. 2 is the refractive index and physical length of Lutheran.
  • a Fabry-Perot resonator in which the resonator length does not change with temperature is configured by using two optical materials having different signs of the temperature coefficient.
  • the present invention has been made in view of the above, and comprises a Fabry-Perot resonator (wavelength filter) whose resonator length does not change in response to a temperature change using a birefringent crystal, whereby the configuration is simplified, It is an object of the present invention to obtain a wavelength filter capable of realizing mass production and a wavelength monitor provided with the wavelength filter.
  • Fabry-Perot resonator wavelength filter
  • the present invention includes a wavelength filter capable of freely setting a temperature characteristic of a wavelength filter, and selecting an arbitrary wavelength characteristic by changing a temperature of the wavelength filter, and the wavelength filter. The purpose is to obtain a wavelength monitor.
  • a wavelength filter according to the present invention resonates light between a solid material that transmits light, a substantially parallel opposing plane formed on the solid material, and the substantially parallel opposing plane.
  • the solid material is a birefringent material, and an optical axis thereof has a predetermined angle with a normal to a plane substantially parallel to the birefringent material. I do.
  • a birefringent material having a predetermined angle with respect to a normal to a plane whose optical axes are substantially parallel to each other is used, and by changing the angle, the temperature characteristic of the wavelength filter is changed.
  • the temperature coefficient of the optical path length between the planes has a predetermined value, wherein the predetermined angle between the normal line of the substantially parallel opposing plane and the optical axis has a predetermined value.
  • the temperature coefficient of the optical path length between the planes is set to have a predetermined value, it is possible to easily and accurately adjust the wavelength characteristics by changing the temperature, Adjustment to the grid is also facilitated.
  • the birefringent materials face each other substantially in parallel so that the absolute value of the sum of the product of the refractive index and the linear expansion coefficient in the optical axis direction and the thermo-optic coefficient is minimized.
  • the angle between the optical axis and the normal to the plane to be set is set.
  • the temperature characteristic can be suppressed to a sufficiently low value, and a wavelength filter having a temperature compensation function can be provided. Therefore, the configuration of the wavelength filter is simplified, the reliability of the wavelength filter is improved, and a troublesome adjustment operation is not required at the time of production, so that mass production can be realized.
  • the birefringent material comprises a product of a product of a linear expansion coefficient in a direction parallel to the optical axis and a refractive index of light propagating parallel to the optical axis, and light propagating parallel to the optical axis.
  • the product of the linear expansion coefficient in the direction perpendicular to the optical axis and the refractive index of light propagating in the direction perpendicular to the optical axis, and the thermo-optics of light propagating in the direction perpendicular to the optical axis The sum of the coefficients is different from each other.
  • the present invention while the angle formed by the optical axis with the normal to the plane is changed by 0 to 90 degrees, there is a predetermined angle at which the temperature characteristic becomes zero, and the angle has a characteristic of zero.
  • a wavelength filter having a temperature compensation function can be provided. Therefore, the configuration of the wavelength filter is simplified, the reliability as the wavelength filter is improved, and troublesome adjustment work is not required at the time of production, so that mass production can be realized.
  • the birefringent material is alpha-BBO crystal,] 3 - wherein beta beta Omicron crystal, L i I 0 3 crystals, that is either C a C 0 3 crystals And
  • c one ⁇ ⁇ ⁇ , - BBO, L i I 0 3, C a CO in the case of using any of 3, a wavelength having a temperature compensation function of the precision A filter can be realized.
  • light incident on the birefringent material uses polarized light aligned with the extraordinary optical axis, and when the birefringent material is an ⁇ -BBO crystal, an angle of the optical axis with respect to the optical axis.
  • the angle of the optic axis to the optical axis is about 65 degrees
  • the angle to the optical axis is The angle is about 23 degrees.
  • the polarization of light incident on the extraordinary optical axis is made uniform, and when any of ⁇ - ⁇ ,] 3-BBO, and Li IO 3 is used as a birefringent material, high accuracy is achieved.
  • a wavelength filter having a temperature compensation function can be realized.
  • the light incident on the birefringent material uses polarized light aligned with the ordinary optical axis, and when the birefringent material is an ⁇ -BBO crystal, the angle of the optical axis with respect to the optical axis is changed.
  • the birefringent material is a 3 / 3- ⁇ crystal
  • the angle of the optic axis to the optical axis is about 57 degrees.
  • the optical axis is the optic axis. angle of about 19 degrees with respect to the birefringent material in the case of C a C0 3 crystal, characterized by an angle of about 66 degrees with respect to the optical axis of the optical axes.
  • a wavelength monitoring device is a wavelength monitoring device that monitors the wavelength of laser light output from a semiconductor laser, comprising: a solid material that transmits laser light; and a substantially parallel opposed flat surface formed on the solid material.
  • a wavelength filter that resonates laser light between the substantially parallel opposing planes, and periodically selects a wavelength determined by an optical path length between the opposing planes; and
  • the solid-state material is a birefringent material, and an optical axis thereof has a predetermined angle with a normal line of the substantially parallel opposing plane.
  • the wavelength filter is formed using a birefringent material having a predetermined angle with respect to a normal to a plane whose optical axes are substantially parallel to each other.
  • the laser light output from the semiconductor laser is polarized in one direction
  • the birefringent material forming the wavelength filter is:
  • the optical axis is in a plane parallel to a plane formed by the directions, and the optical axis is inclined at a predetermined angle with respect to the optical axis of the laser beam.
  • the present invention it is possible to realize a wavelength monitor having a wavelength filter in which the polarization of light incident on the extraordinary optical axis is uniform and which can select an arbitrary wavelength characteristic by changing the temperature. it can.
  • the laser light output from the semiconductor laser is polarized in one direction
  • the birefringent material forming the wavelength filter is:
  • the optical axis lies in a plane perpendicular to the plane formed by the directions, and the optical axis is inclined at a predetermined angle with respect to the optical axis of the laser beam.
  • a wavelength monitor having a wavelength filter capable of selecting an arbitrary wavelength characteristic by changing the temperature by aligning the polarization of light incident on the ordinary optical axis. it can.
  • the birefringent material constituting the wavelength filter is configured such that an angle of the optical axis with respect to the optical axis is set based on a refractive index of a crystal, a linear expansion coefficient in an optical axis direction, and a thermo-optic coefficient. It is characterized by having.
  • the birefringent crystal in which the angle of the optical axis with respect to the optical axis is set based on the refractive index, the coefficient of linear expansion in the optical axis direction, and the thermo-optic coefficient, the birefringent crystal is used.
  • a highly reliable wavelength monitor having a wavelength filter having a temperature compensation function can be realized.
  • the next invention is the above-mentioned invention, wherein the normal and the optical axis of the plane substantially parallel
  • the predetermined angle with the axis is set such that the temperature coefficient of the optical path length between the planes has a predetermined value.
  • the temperature coefficient of the optical path length between the planes is set to have a predetermined value, it is possible to easily and accurately adjust the wavelength characteristics by changing the temperature, Adjustment to the grid is also easy.
  • the birefringent materials face each other substantially in parallel so that the absolute value of the sum of the product of the refractive index and the linear expansion coefficient in the optical axis direction and the thermo-optic coefficient is minimized.
  • the angle between the optical axis and the normal to the plane to be set is set.
  • the temperature characteristic of the wavelength filter can be suppressed to a sufficiently low value, so that the configuration is simplified, the reliability as a wavelength monitor is improved, and a troublesome adjustment operation is not performed during production. And mass production can be realized.
  • the birefringent material comprises a product of a product of a linear expansion coefficient in a direction parallel to the optical axis and a refractive index of light propagating parallel to the optical axis, and light propagating parallel to the optical axis.
  • the product of the tension coefficient in the direction perpendicular to the optical axis and the refractive index of the light propagating in the direction perpendicular to the optical axis are different from each other.
  • the wavelength filter has a temperature compensation function, which simplifies the configuration and improves the reliability as a wavelength monitor. At the same time, there is no need for troublesome adjustment work during production, and mass production can be realized.
  • the birefringent material in the above invention, the birefringent material, and wherein the alpha-BBO crystal, beta one beta beta Omicron crystal, L i I 0 3 crystals are either C a C 0 3 crystals I do.
  • the light incident on the birefringent material uses polarized light aligned with the extraordinary optical axis
  • the angle of the optical axis with respect to the optical axis is about and 64 degrees, in the case of the birefringent material is 3- ⁇ crystals, and an angle of about 65 degrees with respect to the optical axis of the optical axis, if the birefringent material is a L i I 0 3, the angle with respect to the optical axis of the optical axis It is characterized by about 23 degrees.
  • the polarization of light incident on the extraordinary optical axis is made uniform, and when any of a-BBO,] 3-BBO, and Li IO 3 is used as a birefringent material, high-precision A wavelength monitor having a wavelength filter having a temperature compensation function can be realized.
  • the light incident on the birefringent material uses polarized light aligned with the ordinary optical axis, and when the birefringent material is an ⁇ -BBO crystal, the angle of the optical axis with respect to the optical axis is changed.
  • the birefringent material is / 3- BBO crystal, and the angle of about 57 degrees against the optical axis of the optical axis, if the birefringent material is a L i I 0 3 crystal, the light of the optical axis an angle relative to the axis of about 19 degrees, the birefringent material in the case of C a C0 3 crystal, characterized by an angle of about 66 degrees with respect to the optical axis of the optical axes.
  • the birefringent material constituting the wavelength filter is optically controlled so that a sum of a product of a refractive index and a linear expansion coefficient in an optical axis direction and a thermo-optic coefficient are equal to zero.
  • the angle of the axis with respect to the optical axis is set.
  • the optical product when the polarization of the laser beam is aligned with the extraordinary optical axis, the optical product is set so that the sum of the product of the refractive index and the linear expansion coefficient in the direction of the optical axis and the thermo-optic coefficient is equal to zero. Since a uniaxial birefringent crystal whose angle is set with respect to the optical axis is used, high-precision temperature A wavelength monitor having a wavelength filter having a degree compensation function can be realized.
  • the birefringent material constituting the wavelength filter is any one of ⁇ - ⁇ ,] 3—BBO and L i IO 3.
  • the birefringent material is ⁇ —BBO
  • the angle of the optical axis with respect to the optical axis is 63.35 degrees
  • the birefringent material is] 3—In the case of BBO, the angle of the optical axis with respect to the optical axis is 64.75 degrees
  • the birefringent material is L i I 0 3 In this case, the angle of the optical axis with respect to the optical axis is 22.70 degrees.
  • the birefringent material forming the wavelength filter alpha-BBO, one BBO, either as L i L0 3, C a C0 3, the birefringent material is alpha-BBO of
  • the angle of the optical axis with respect to the optical axis is 76.95 degrees
  • the birefringent material is 0— ⁇
  • the angle of the optical axis with respect to the optical axis is 57.05 degrees
  • the birefringent material is L i L0 3 for the angle with respect to the optical axis of the optical axis is 18.65 degrees
  • a wavelength monitor having a wavelength filter having a high-precision temperature compensation function can be realized.
  • the birefringent material constituting the wavelength filter in the above invention satisfies the temperature compensation condition by changing the thickness in the optical axis direction while maintaining the set angle with respect to the optical axis. And the wavelength discrimination region can be adjusted.
  • the temperature compensation condition does not depend on the thickness of the birefringent crystal. It is possible to obtain a wavelength filter having an arbitrary wavelength discrimination region satisfying the adjustment condition.
  • the next invention is characterized in that, in the above invention, there is provided a lens for adjusting a beam size of laser light emitted from the semiconductor laser, and outputting the adjusted laser light to the wavelength filter.
  • the present invention it is possible to adjust the beam size of the laser light and make it incident on the wavelength filter.
  • the wavelength detecting means comprises: a first photodetector for detecting light transmitted through the wavelength filter; and a second light for directly detecting laser light output from the semiconductor laser. It is characterized by comprising a detector and a wavelength detector for detecting the oscillation wavelength of the laser light using the ratio of the detection signals of the first and second photodetectors.
  • the oscillation wavelength of the laser light is detected using the ratio of the detection signals of the first and second photodetectors, the laser light is not affected by a change in the output intensity of the semiconductor laser.
  • the oscillation wavelength can be accurately detected.
  • the semiconductor laser and the wavelength filter are mounted, and the first and second optical detectors are arranged such that the second photodetector is located above the first photodetector.
  • a base scanner for installing a photodetector is further provided, wherein the height of the wavelength filter is adjusted so that the laser light transmitted through the wavelength filter mounted on the base carrier is not received by the second photodetector. It is characterized by
  • the laser light transmitted through the wavelength filter is not received by the second photodetector, and the oscillation wavelength can be accurately detected.
  • the semiconductor laser and the wavelength filter are mounted, and the first and second optical detectors are arranged such that the second photodetector is located above the first photodetector.
  • the second photodetector is arranged closer to the wavelength filter side than the first photodetector so as not to be received by the detector.
  • the laser light transmitted through the wavelength filter is not received by the second photodetector, and the oscillation wavelength can be accurately detected.
  • the following invention is the wavelength monitoring device for monitoring the wavelength of the laser light output from the semiconductor laser in the above invention, wherein the first solid material transmitting the laser light; and the first solid material formed on the first solid material.
  • a laser beam is resonated between a substantially parallel opposing plane and the substantially parallel opposing plane to periodically select a wavelength determined by an optical path length between the opposing planes, and the solid material is a birefringent material.
  • the laser light is resonated between a substantially parallel opposed plane formed on the substrate and the substantially parallel opposed plane, and a wavelength determined by an optical path length between the opposed planes is periodically selected, and the solid material is birefringent.
  • a wavelength detecting means for measuring is
  • the configuration is simplified, the reliability as a wavelength monitor is improved, and troublesome adjustment work does not have to be performed during production, and mass production can be realized.
  • the oscillation wavelength of the laser beam is monitored using two wavelength filters for the narrow band and the broad band, so that the oscillation wavelength can be detected very accurately.
  • the laser light output from the semiconductor laser is polarized in one direction
  • the birefringent material constituting the first and second wavelength filters is An optical axis is in a plane parallel to a plane formed by the optical axis and the polarization direction of the laser light, and the optical axis is inclined at a predetermined angle with respect to the optical axis of the laser light. I do.
  • the laser light output from the semiconductor laser is polarized in one direction
  • the birefringent material forming the wavelength filter is:
  • the optical axis lies in a plane perpendicular to the plane formed by the directions, and the optical axis is inclined at a predetermined angle with respect to the optical axis of the laser beam.
  • the present invention it is possible to realize a wavelength monitor having two wavelength filters having a temperature compensation function by using a birefringent crystal in which the polarization of laser light is aligned with the ordinary optical axis.
  • the wavelength discrimination region of the second wavelength filter for the wide band is larger than the wavelength variable region of the semiconductor laser, and the wavelength discrimination region of the first wavelength filter for the narrow band is the second wavelength filter.
  • the thickness of the birefringent material constituting the first and second wavelength filters in the optical axis direction is set so as to be sufficiently smaller than the wavelength variable region of the first wavelength filter.
  • the two wavelength filters for the narrow band and the wide band are configured by setting the thickness of the birefringent crystal in the optical axis direction, and the two wavelength filters for the narrow band and the wide band are simply provided. Can be realized.
  • the wavelength detecting means directly detects laser light output from the semiconductor laser, and a first photodetector for detecting transmitted light of the first wavelength filter.
  • the oscillation wavelength of the laser light is detected using the ratio of the detection signals of the first and second photodetectors and the ratio of the detection signals of the third and second photodetectors.
  • the oscillation wavelength can be extremely accurately detected without being affected by a change in the output intensity of the semiconductor laser.
  • the semiconductor laser and the wavelength filter are mounted, and the first to third light detectors are arranged such that the second and third photodetectors are located above the first photodetector.
  • the third photodetector is disposed closer to the wavelength filter than the first photodetector. According to the present invention, the laser light transmitted through the wavelength filter is not received by the second and third optical detectors, and the oscillation wavelength can be accurately detected.
  • FIG. 1 is a configuration diagram of a conventional wavelength monitoring device
  • FIG. 2 is a perspective view showing a conventional Fabry-Perot resonator
  • FIG. 3 is a configuration diagram of a wavelength monitoring device in the first embodiment.
  • Fig. 4 is a graph showing the change in the transmittance of a Fabry-Perot resonator (wavelength filter) with respect to the wavelength.
  • Fig. 5 shows a Fabry-Perot resonator (wavelength filter) using a uniaxial birefringent crystal.
  • FIG. 6 is a diagram showing the physical property values of the - ⁇ crystal
  • FIG. 6 is a diagram showing the physical property values of the - ⁇ crystal
  • FIG. 7 is a graph showing the dependence of the dn / d ⁇ + ⁇ of the 3-3- ⁇ crystal on the temperature ⁇ .
  • Fig. 8 is a graph showing the dependence of the linear expansion coefficient ⁇ of the / 3- ⁇ ⁇ ⁇ crystal on the C-axis-to-optical axis angle ⁇ i> c.
  • FIG. 10 is a graph showing the dependence of the extraordinary refractive index n on the angle ⁇ between the C axis and the optical axis.
  • FIG. 10 shows the temperature of the extraordinary refractive index of the] 3-BBO crystal.
  • FIG. 11 is a graph showing temperature characteristics of i3-— crystal with respect to ⁇ c
  • FIG. 12 is a graph showing temperature characteristics of C a ⁇ 3 crystal with respect to ⁇ c
  • the FIG. 13 is a diagram showing a temperature characteristic with respect to phi c of L i I 0 3 crystal
  • Fig. 14 shed - is a view to view the temperature characteristics for phi c of the BBO crystal
  • FIG. 16 is a configuration diagram illustrating a wavelength control device according to the first embodiment
  • FIG. 17 is a configuration diagram illustrating a modification of the wavelength monitor device according to the first embodiment.
  • FIG. 16 is a configuration diagram illustrating a wavelength control device according to the first embodiment
  • FIG. 17 is a configuration diagram illustrating a modification of the wavelength monitor device according to the first embodiment.
  • FIG. 18 is a configuration diagram of a wavelength monitor device according to the second embodiment
  • FIG. 19 is a configuration diagram of a wavelength control device according to the second embodiment
  • FIG. 20 is a Fabry-Perot for a narrow band.
  • FIG. 21 is a graph showing the wavelength transmission characteristics of a resonator (wavelength filter) and a Fabry-Perot resonator (wavelength filter) for a wide band.
  • FIG. 21 is a configuration diagram showing a modification of the wavelength monitor device according to the second embodiment. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a configuration diagram showing a wavelength monitoring device (a certain wavelength is a wavelength stabilized light source) according to Embodiment 1 of the present invention.
  • the semiconductor laser 1 emits laser light (hereinafter referred to as an optical signal) polarized in one direction.
  • Examples of the semiconductor laser 1 include a distributed feedback (DFB) laser having a diffraction grating in an active layer, a tunable laser diode whose wavelength can be changed by injection current or temperature, or an electroabsorption element and a laser diode.
  • a compound type (EA / LD) module in which the components are arranged in series.
  • the injection current or the temperature of the semiconductor laser 1 is controlled by the control signal T1 input from the wavelength control device shown in FIG. 16 to control the wavelength.
  • An optical signal emitted from the semiconductor laser 1 is condensed by the lens 2 and output as parallel light.
  • the beam size of the optical signal is adjusted by the lens 2 and the light signal is incident on a Fabry-Perot resonator 3 as a wavelength filter.
  • the axis connecting the center of the emitting surface of the semiconductor laser 1 and the center of the lens 2 is the optical axis.
  • the traveling direction (optical axis direction) of an optical signal is defined as the Z-axis direction in space coordinates, and the upward direction in space is defined as the Y-axis direction.
  • the direction perpendicular to the Y-axis (the direction perpendicular to the page in Fig. 3 and facing the front) is defined as the X-axis.
  • Semiconduct The optical signal emitted from the body laser 1 has a polarization component that vibrates in the X-axis direction.
  • the Fabry-Perot resonator (wavelength filter) 3 has reflection films 7 and 8 that reflect light on an incident surface on which an optical signal from the semiconductor laser 1 is incident and an exit surface on which the optical signal is emitted, and one kind of material is used.
  • first material e.g., / 3 - BBO crystal, alpha - BBO crystal, L i IO 3 crystal, any such C a CO 3 crystals
  • first material e.g., / 3 - BBO crystal, alpha - BBO crystal, L i IO 3 crystal, any such C a CO 3 crystals
  • the crystal cut surface of the uniaxial birefringent crystal used as the material of the Fabry-Perot resonator 3 is arranged so as to be parallel to the XY plane orthogonal to the optical axis, and the optical axis of the uniaxial birefringent crystal (hereinafter referred to as the C axis) ) Is inclined at a predetermined angle with respect to the XY plane perpendicular to the optical axis of the laser beam.
  • the first photodiode (main photodetector) 4 receives the optical signal transmitted through the Fabry-Perot resonator 3, detects its intensity (photocurrent value), and outputs a light intensity monitor signal S1.
  • the second photodiode (sub-photodetector) 5 is disposed above the first photodiode 4 and directly receives an optical signal emitted from the semiconductor laser 1 without passing through the Fabry-Perot cavity 3 and receiving the light signal. Detects light intensity (photocurrent value) and outputs light intensity monitor signal S2.
  • These semiconductor laser 1, lens 2, Fabry-Perot cavity 3, first photodiode 4, and second photodiode 5 are mounted on base carrier 6.
  • the height of the Fabry-Perot resonator 3 or the height of the second photodiode 5 is set so that the optical signal transmitted through the Fabry-Perot resonator 3 is not received by the second photodiode 5. Has been adjusted.
  • the transmission characteristics with respect to the wavelength of the optical signal transmitted through the Fabry-Perot resonator 3 are kept constant irrespective of the temperature change. That is, the Fabry-Perot resonator 3 has a temperature compensation function. Next, the temperature compensation condition of the Fabry-Perot resonator 3 will be described.
  • an optical signal is vertically incident on the incident surface of the rectangular Fabry-Perot resonator 3.
  • the Fabry-Bore-One resonator 3 Assuming that the emission surfaces have reflection films 7 and 8 and their intensity reflectivity is R, the dependence of the intensity of the optical signal transmitted through the Fabry-Bore-One resonator 3 on the wavelength is expressed by Equation (3) and FIG. Is done.
  • TR (E) is the transmittance.
  • the intensity of the optical signal transmitted through the Fabry-Perot resonator 3 changes periodically with respect to the frequency of the optical signal.
  • the frequency interval corresponding to one cycle is called a free spectrum range (hereinafter, referred to as FSR, free spectral interval) with respect to the wavelength of the optical signal transmitted through the Fabry-Perot resonator 3.
  • FSR free spectrum range
  • the FSR depends on the resonator length in the direction of the optical axis, in the case of FIG. 3, the length L in the Z-axis direction of the uniaxial birefringent crystal 3 and the refractive index n, and is expressed by the following equation (4).
  • . c is the speed of light.
  • the compensation condition for the Fabry-Perot single resonator is that the dependence of the intensity of the optical signal transmitted through the 2nL Fabry-Perot resonator 3 on the wavelength does not change with temperature. Therefore, in order to enable temperature compensation, it is necessary that F SR represented by equation (4) does not depend on temperature. In order for F SR to be constant with respect to temperature T, it is necessary that the resonator length n L has a constant value with respect to temperature T in equation (4). Equation (5) expresses this relationship.
  • the temperature compensation condition can be satisfied even when the polarization direction of the laser beam (in this case, the X direction) is aligned with the extraordinary optical axis or the ordinary optical axis of the uniaxial birefringent crystal.
  • the polarization direction of the light is aligned with the extraordinary optical axis of the uniaxial birefringent crystal.
  • the C axis of the uniaxial birefringent crystal which is the material of the Fabry-Perot resonator, is in the XZ plane, the optical axis is parallel to the Z axis, and the C axis is at a constant angle to the optical axis.
  • ⁇ c is inclined.
  • the polarization of the optical signal incident on the Fabry-Perot resonator 3 is p-polarized with respect to the Fabry-Perot resonator 3, and corresponds to the X direction in FIG.
  • the extraordinary ray Since the extraordinary ray has the same vibration plane as the plane created by the C axis and the optical axis direction, in this case, the incident optical signal propagates inside the Fabry-Perot resonator 3 as an extraordinary ray.
  • the refractive index n for an extraordinary ray depends on the angle between the optical axis and the C axis. Since ne and no depend on the temperature T, they can be expressed as n (0c, T), as shown in equation (8). .
  • ne is the refractive index for the polarized light component in the direction parallel to the C axis (the extraordinary light refractive index), and no is the refractive index for the polarized light component in the direction perpendicular to the C axis (the ordinary light refractive index).
  • ⁇ ( ⁇ ) is the refractive index for an optical signal incident on a Fabry-Bore-single resonator made of a uniaxial birefringent crystal.
  • the linear expansion coefficient ⁇ in the optical axis direction of a uniaxial birefringent crystal is expressed as in equation (9).
  • ac is the coefficient of linear expansion in the direction parallel to the C axis
  • aa is the coefficient of linear expansion in the direction perpendicular to the C axis.
  • the temperature characteristic of the wavelength characteristic shown in FIG. 4 can be expressed by the formula (1) for the extraordinary optical axis direction and the ordinary optical axis direction. 0), and is expressed by equation (11).
  • the inventors of the present application have made it possible for the uniaxial birefringent crystal studied as a material of the Fabry-Perot resonator to change the value of the inclination ⁇ c of the C axis with respect to the optical axis.
  • the uniaxial birefringent crystal satisfying the equation (7) and the value of ⁇ c in that case were examined.
  • 13-B BO (B a B 2 0 4) crystals, such as alpha-BBO crystal, L i I 0 3, C a C0 3 was found to satisfy the equation (7). These crystals are used as wavelength conversion elements for laser light.
  • Fig. 6 shows the characteristics of] 3-BBO crystal. That is,]] — BBO has an extraordinary refractive index ne of 1.53 11 1, an ordinary refractive index no of 1.6467, and a thermo-optic coefficient d no / dT of — 16.8 X 10 0 6 / in K, thermo-optical coefficient d ne / d T - 8. 8 X 1 0 one 6 / a, coefficient of linear expansion etc is 3 3. 3 X 1 0- K, the linear expansion coefficient ca is 0. 5 X 1
  • Fig. 7 shows that 3 ⁇ / 3 shown in equation (7) when a uniaxial birefringent crystal composed of BBO is used as the Fabry-Perot resonator 3 and the polarization direction of the laser beam is aligned with the extraordinary optical axis.
  • T + eta alpha a graph showing the relationship between the optical axis and the C axis and the angle phi c.
  • Fig. 8 is a graph showing the dependence of the coefficient of linear expansion ⁇ on the angle ⁇ c in a ⁇ crystal
  • Fig. 9 is a graph showing the dependence of the refractive index ⁇ on the angle ⁇ c in a ⁇ crystal.
  • FIG. 10 is a graph showing the dependence of dn / dT on the angle ⁇ c in a / 3--3 crystal. That is, the relationship between the linear expansion coefficient ⁇ and the angle ⁇ f> c in FIG. 8, the relationship between the refractive index n and the angle ⁇ c in FIG. 9, and the relationship between dn / dT and the angle ( ⁇ > Using the relationship with c, the relationship between 3 ⁇ / 3 ⁇ + ⁇ ⁇ and the angle ⁇ c shown in FIG. 7 is obtained.
  • Fig. 11 shows the relationship between ⁇ c and temperature characteristics in the direction of the extraordinary optical axis and the direction of the ordinary optical axis when / 3-BBO is used as the uniaxial birefringent crystal. 1 This is a graph using 1).
  • the extraordinary optical axis direction is from 18 pmZ ° C to +36 pm / ° C
  • the ordinary optical axis direction is from 15 pmZ ° C by changing c.
  • Temperature characteristics can be freely set up to +36 pmZ ° C.
  • the temperature characteristic becomes zero when ⁇ c is between 0 and 90 degrees because of the relationship of (1 11/3 cho + hi ( : 11) 0 bracket (111 01 cho + « ! 1 11 ⁇ 0 ⁇
  • ⁇ c should be about 63 It may be set to any value between ⁇ 67 degrees. If the temperature characteristic is to be set to ⁇ 1 pm or less using the direction of the extraordinary optical axis, c may be set to any value of about 55 to 59 degrees.
  • the wavelength characteristics can be adjusted using the temperature characteristics.
  • the wavelength characteristics are usually changed by tilting the filter, but the temperature of the filter (uniaxial birefringent crystal) is changed using the above characteristics. By doing so, it is possible to match the wavelength control point.
  • temperature characteristic is 10 pm.
  • any lock point can be used with a maximum filter temperature change of 20 ° C.
  • the ITU grid is a set of closely spaced wavelengths in a specific wavelength region specified by the International Telecommunication Union, for example, a window of 1550 nm. Corresponds to a wavelength interval of about 0.8 nm.
  • the coefficient of linear expansion c is 2.44 X 10-6 / ⁇ .
  • the extraordinary optical axis direction is from +4 pm / ° C to +40 pmZ ° C
  • the ordinary optical axis direction is from 17 pm / ° C to +40 pmZ ° C.
  • Temperature characteristics can be freely set up to this point.
  • ⁇ c may be set to any value of about 65 to 70 degrees.
  • ⁇ c 90 degrees may be set.
  • the wavelength characteristics can be adjusted using the temperature characteristics. I TU grid wave
  • the wavelength characteristic is usually changed by tilting the filter.
  • the temperature coefficient d ⁇ eZdT of the refractive index in the direction of the extraordinary optical axis is — 6.92 X 10 — 5 / K
  • the linear expansion coefficient aa is 2.80 X 10 — 5 Z
  • the linear expansion coefficient ac Is 4.80 X 10-1 5 ZK.
  • the direction of the extraordinary optical axis is from 20 pmZ ° C to +3 pmZ ° C
  • the direction of the ordinary optical axis is ⁇ 28 pmZ ° C to +3 pm, °.
  • Temperature characteristics can be freely set up to C.
  • ⁇ c In both the normal optical axis and the extraordinary optical axis, there is a relationship of dn / dT + a e n> 0 and d nZdT + a n a 0, so that the temperature characteristic becomes zero when 0 c is between 0 and 90 degrees. c exists. For example, if you want the temperature characteristics to be less than 1 pm_ ° C in soil using the direction of the ordinary optical axis, you can set ⁇ c to any value from about 15 to 22 degrees. If the temperature characteristic is to be 1 pm / ° C or less using the direction of the abnormal optical axis, ⁇ c should be set to any value of about 18 to 27 degrees. The wavelength characteristics can be adjusted using the temperature characteristics.
  • the wavelength characteristic is usually changed by tilting the filter, but by changing the temperature of the filter using the above characteristics, the wavelength control point can be adjusted.
  • Fig. 14 shows the relationship between ⁇ c and temperature characteristics in the extraordinary optical axis direction and the ordinary optical axis direction when ⁇ -BBO is used as the uniaxial birefringent crystal, using equations (10) and (11). It is graphed using.
  • the physical constants used were: extraordinary refractive index ne was 1.530, ordinary refractive index no was 1.6502, and temperature coefficient of refractive index in the ordinary optical axis direction was dn oZd T was 9.30 x in 1 0- 5 / K, abnormal temperature coefficient of the optical axis of the refractive index dne / d T one 1 6. 6 X 1 0- 5 / K, the linear expansion coefficient aa 4. 0 X 1 0- 5 / in K, the linear expansion coefficient ac is 3 6. 0 X 1 0 one 5. According to FIG.
  • ⁇ c may be set to any value of about 74 to 80 degrees.
  • ⁇ c may be set to any value of about 63 to 66 degrees.
  • the wavelength characteristics can be adjusted using the temperature characteristics.
  • the wavelength characteristics are usually changed by tilting the filter.However, the temperature is adjusted to the wavelength control point by changing the temperature of the filter using the above characteristics. .
  • the temperature compensation condition equation (7) is satisfied.
  • the FSR 100 GHz (1.0 X 10 X 1 Hz) corresponding to a wavelength fluctuation width of 0.8 nm of laser light.
  • the temperature compensation condition equation (7) does not depend on the length L of the uniaxial birefringent crystal in the ⁇ -axis direction when the uniaxial birefringent crystal is used as the Fabry-Perot resonator 3, so that from equation (4) A Fabry-Perot resonator with any FSR that satisfies the temperature compensation conditions can be made.
  • An optical signal emitted from the semiconductor laser 1 is collected by the lens 2.
  • the upper part of the collected optical signal is directly received by the second photodiode 5.
  • the second photodiode 5 detects and monitors the intensity of the received optical signal.
  • An output control circuit (not shown) controls the optical output of the semiconductor laser 1 to be constant based on the difference between the intensity monitor signal S2 and a preset optical signal intensity.
  • the intensity of the optical signal emitted from the Fabry-Perot resonator 3 has a wavelength discrimination characteristic as shown in equation (3), and the characteristic is kept constant regardless of the crystal temperature change. Has temperature compensation function.
  • 64.75 is set, but the temperature characteristics can be sufficiently suppressed if the angle is around this.
  • the temperature characteristic is 1 pm / ° C for soil, which is sufficiently smaller than the temperature characteristic of a conventional solid ethanol port (up to 10 pm / ° C).
  • the temperature coefficient can be arbitrarily set as long as the extraordinary optical axis direction is between 18 pmZ ° C and +36 pmZ ° C, and the normal optical axis direction is between 15 pmZ ° C and +36 pm. You can choose. This makes it possible to adjust the wavelength characteristics by changing the temperature, which facilitates adjustment to the ITU grid.
  • FSR 25 GHz
  • ⁇ c is set so that the temperature characteristic is 8 pmZ ° C.
  • the temperature of the uniaxial birefringent crystal 3 is changed by 1 ° C. Therefore, when trying to match the ITU grid with 25 GHz spacing to the wavelength control point specified in advance, the temperature of the base carrier 6 on which the semiconductor laser 1 is mounted is changed by up to 25 degrees and the semiconductor laser is changed.
  • the oscillation wavelength by adjusting the injection current to 1, it is possible to adjust to the desired wavelength control point.
  • the first photodiode 4 detects the intensity of an optical signal that has passed through the Fabry-Perot resonator 3, and outputs an optical intensity monitor signal S1.
  • the second photodiode 5 directly detects the optical signal intensity emitted from the semiconductor laser 1 and outputs the optical intensity monitor signal S2, as described above.
  • These light intensity monitor signals S 1 and S 2 are It is sent to the wavelength controller 50 shown in the figure.
  • the wavelength controller 50 detects the wavelength of the optical signal, and controls the semiconductor laser 1 so that the detected wavelength matches a preset wavelength (for example, the reference wavelength; I 0 in FIG. 4).
  • FIG. 16 is a configuration diagram of the wavelength control device 50.
  • the wavelength controller 50 includes a wavelength detector 51 and a laser controller 52.
  • the wavelength detector 51 receives the light intensity monitor signals S1, S2 from the first and second photodiodes and a preset reference wavelength 0.
  • the wavelength detector 51 obtains the oscillation wavelength of the optical signal emitted from the semiconductor laser 1 based on the light intensity monitor signals S1 and S2, and obtains the difference between the oscillation wavelength and the reference wavelength I0.
  • the difference between the reference wavelength ⁇ 0 from the wavelength detector 51 and the oscillation wavelength emitted from the semiconductor laser 1 is input to the laser controller 52.
  • the laser control unit 52 obtains a control signal ⁇ 1 for controlling the temperature, injection current, and the like of the semiconductor laser 1 so that the oscillation wavelength coincides with the reference wavelength 0 according to the difference. 1 is output to the semiconductor laser 1.
  • FIG. 4 A case where the oscillation wavelength is adjusted to the reference wavelength ⁇ 0 in FIG. 4 will be described.
  • the value of the light intensity monitor signal S 1 detected by the first photodiode 4 is such that the wavelength of the optical signal is longer than the wavelength. It can be seen that it becomes smaller when it shifts to, and increases when it shifts to the shorter wavelength side.
  • the change in the light intensity monitor signal S1 accompanying the change in the wavelength is monitored, and the deviation from the reference wavelength; L0 is calculated.
  • the light intensity monitor signal S 2 that directly detects the optical signal emitted from the semiconductor laser 1 and the light intensity monitor signal S 1 that detects the optical signal transmitted through the Fabry-Perot resonator 3 are the semiconductor laser 1 It changes in proportion to the intensity of the emitted optical signal.
  • the wavelength of the optical signal emitted from the semiconductor laser 1 includes ⁇ 0 If it is within the slope, the value of the signal intensity ratio S1 / S2 will represent the wavelength of the optical signal.
  • the stored signal intensity ratio S 1 / S 2 at the reference wavelength ⁇ 0 and the light intensity monitor signals S 1, S 2 from the first and second photodiodes 4 and 5 are output.
  • the difference (deviation) between the oscillation wavelength and the reference wavelength; L0 is calculated by calculating the difference between the signal intensity ratio S1 / S2 obtained based on the above.
  • the calculated deviation signal is input to the laser control unit 52.
  • the laser controller 52 uses the deviation signal input from the wavelength detector 51 to output a control signal ⁇ 1 for changing the value of the temperature or the injection current to the semiconductor laser 1.
  • the wavelength of light is the wavelength of light.
  • the oscillation wavelength of the semiconductor laser 1 becomes longer.
  • the laser control unit 52 receives the deviation signal from the wavelength detection unit 51 and the oscillation wavelength is shifted to a longer wavelength side than the reference wavelength, the injection current into the semiconductor laser 1 is increased. If the oscillation wavelength is shifted to a shorter wavelength side than the reference wavelength, a control signal ⁇ 1 for increasing the injection current to the semiconductor laser 1 is sent to the semiconductor laser 1.
  • the oscillation wavelength of the semiconductor laser 1 becomes longer.
  • the laser controller 52 receives the deviation signal from the wavelength detector 51, the oscillation wavelength becomes the reference wavelength. If the oscillation wavelength is shifted to a longer wavelength side, the temperature of the semiconductor laser 1 is increased. If the oscillation wavelength is shifted to a shorter wavelength side than the reference wavelength, the control signal T is set to lower the temperature of the semiconductor laser 1. Send 1 to semiconductor laser 1.
  • the polarization direction of the laser light is p-polarization.
  • s-polarization laser light that is, laser light having a polarization direction perpendicular to the plane formed by the C axis and the optical axis Is incident on the uniaxial birefringent crystal
  • the temperature compensation condition of Equation (7) can be satisfied. That is, the above equation (7) is satisfied for both the ordinary optical axis and the extraordinary optical axis.
  • the C axis is set in a plane perpendicular to the plane formed by the optical axis and the polarization direction of the laser light.
  • the angle ⁇ c between the optical axis and the C axis is 57.05 degrees.
  • the refractive index n and d n / d t when the ordinary optical axis is used do not depend on the angle ⁇ c and always take a constant value. In this case, only the linear expansion coefficient ⁇ in the equation (7) changes depending on the angle ⁇ c.
  • uniaxial birefringent crystal constituting the Fuaburipero resonator 3 (such as 0- BBO (B a ⁇ 2 0 4)), C -axis of the laser beam Since the C-axis of the parenthesis is located in a plane formed by the optical axis and the polarization direction or in a plane perpendicular to the plane, and the C-axis of the parenthesis is arranged to have a constant inclination with respect to the optical axis,
  • This Fabry-Perot resonator 3 can have a temperature compensation function (a function in which the intensity of the signal light emitted from the Fabry-Perot resonator 3 does not depend on its temperature), and the light intensity monitor signal S 1 depends only on the wavelength of the optical signal.
  • the wavelength of the optical signal emitted from the semiconductor laser 1 can be controlled to a desired reference wavelength based on the detected light intensity monitor signal S1. Further, since only a uniaxial birefringent crystal of one material is used, the configuration of the semiconductor laser device can be simplified.Since the configuration is simplified, the reliability as a wavelength monitor can be improved. .
  • the material of the Fabry-Bore-single resonator 3 is a 3— ⁇ ⁇ ⁇ crystal.
  • a—BBO BaB 2 OJ crystal
  • the physical constants of ⁇ -BBO are as follows: extraordinary refractive index ne is 1.53003, ordinary refractive index no is 1.6502, and thermo-optic coefficient d no / d T is -9.3 X 1 0 one 6 / K, a thermal optical coefficient d ne / dT is 1 6. 6 X 10- 6 / K , in the linear expansion coefficient ratio c is 36. 0 X 10- 6 / K, the linear expansion coefficient aa 4 . is a 0X 10- 6 / K.
  • ⁇ c 64.35 degrees when the polarization of the laser beam was aligned with the extraordinary optical axis
  • ⁇ > c 76.95 degrees when the polarization of the laser beam was aligned with the ordinary optical axis.
  • the temperature characteristic is about 1 pm / ° C in the range of about 74 to 80 degrees, which is sufficiently smaller than the temperature characteristic of a conventional solid ethanol port (up to 10 pm / 'C).
  • the extraordinary optical axis direction is from 11 pm, ° C to +47 pm / ° C, and the ordinary optical axis direction is from ⁇ 3 pmZ ° C to +47 pmZ ° C.
  • Any temperature coefficient can be selected. This makes it possible to adjust the wavelength characteristics by changing the temperature, and it is easy to adjust to the ITU grid.
  • the 1 GHz wavelength characteristic can be shifted by changing the temperature of the uniaxial birefringent crystal 3 by 1 ° C.
  • the angle phi c satisfying the temperature compensation condition dn / dT + ⁇ - ⁇ is 18.65 degrees.
  • ⁇ c 22.70 degrees when the polarization of the laser light is aligned with the extraordinary optical axis
  • ⁇ c 18.65 degrees when the polarization of the laser light is aligned with the ordinary optical axis. If the angle is in the vicinity of this, the temperature characteristics can be sufficiently suppressed.
  • the temperature characteristic is 1 pmZ ° C in the range of about 15 to 22 degrees, which is much smaller than the temperature characteristic of a conventional solid etalon (up to 10 pmZ ° C).
  • the direction of the extraordinary optical axis is from -20 pmZ ° C to +3 pm / ° C
  • the direction of the ordinary optical axis is any temperature from ⁇ 28 pm, ° C to +3 pmZ ° C.
  • Coefficient can be selected. This makes it possible to adjust the wavelength characteristics by changing the temperature, and it is easy to adjust to the ITU grid.
  • the 1 GHz wavelength characteristic can be shifted. Therefore, when trying to match the ITU grid with a spacing of 25 GHz to the wavelength control point specified in advance, the temperature of the base carrier 6 on which the semiconductor laser 1 is mounted is changed by up to 25 degrees and the semiconductor laser 1 By changing the oscillation wavelength by adjusting the injection current into the device, it is possible to match the desired wavelength control point.
  • a C a C O 3 crystal may be used as the uniaxial birefringent crystal.
  • the temperature characteristic is 1 pmZ ° C in the range of about 65 to 70 degrees. This is sufficiently smaller than the temperature characteristics ( ⁇ 10 pm / ° C) of the conventional solid nozzle.
  • the extraordinary optical axis direction is from +4 pmZT: to +40 pm /, and the ordinary optical axis direction is from -7 pmZ ° C to +40 pmZ ° C.
  • the temperature coefficient can be selected arbitrarily.
  • FSR 25 GHz
  • c is set so that the temperature characteristic is 8 pm / ° C.
  • the temperature of the uniaxial birefringent crystal 3 is changed by 1 ° C. Therefore, if an attempt is made to match the wavelength control point specified in advance with the ITU grid of 25 GHz spacing, the temperature of the base carrier 6 on which the semiconductor laser 1 is mounted is changed by a maximum of 25 degrees and the semiconductor laser is changed.
  • the oscillation wavelength by adjusting the injection current to 1, it is possible to match the desired wavelength control point.
  • any other uniaxial birefringent crystal may be used as long as the material satisfies the temperature compensation conditional expression (7) for the Fabry-Perot resonator.
  • the wavelength monitoring device shown in FIG. 3 with the wavelength monitoring device shown in FIG. 16, it is possible to construct a wavelength stable light source.
  • FIG. 17 is a configuration diagram showing a wavelength monitor according to a modification of the first embodiment of the present invention.
  • the second photodiode 5 located above the Fabry-Perot resonator 3 is arranged forward of the first photodiode 4 so as to reduce the distance from the lens 2. . That is, in this case, the location where the second photodiode 5 of the base carrier 6 is installed is protruded toward the semiconductor laser 1, and the location where the first photodiode 4 of the base carrier 6 is installed A step is formed between the base carrier 6 and the position where the second photodiode 5 is provided.
  • the second photodiode 5 is arranged ahead of the first photodiode 4, even if the optical signal is Even if the light is scattered on the bottom surface of the base carrier 6 after being incident on the Perot resonator 3, the scattered light is not received by the second photodiode 5 after passing through the Fabry-Perot resonator 3.
  • each photodiode monitors the wavelength and intensity of the optical signal.
  • three photodiodes are arranged, and two Fabry-Perot resonators (wavelength filters) are vertically arranged in parallel, so that the three photodiodes are arranged.
  • the two photodiodes are used to monitor the wavelength of an optical signal in a wide band and a narrow band, and the optical intensity signal is monitored using a single photodiode.
  • FIG. 18 is a configuration diagram showing a wavelength monitoring apparatus according to Embodiment 2 of the present invention.
  • the temperature and the injection current of the semiconductor laser 1 are controlled by the control signal T1 sent from the wavelength control device 60 shown in FIG. 19 to control the wavelength.
  • the Fabry-Perot resonator (wavelength filter) 21 is the same as the Fabry-Perot resonator (wavelength filter) 3, and is cut out so as to have the temperature compensation function shown in the first embodiment. BBO), and has reflection films 23 and 24 on its entrance and exit surfaces.
  • the thickness of the Fabry-Perot resonator 3 arranged on the lower side in the Z direction is made larger than the thickness of the Fabry-Perot resonator 21 arranged on the upper side.
  • the Fabry-Perot resonator 21 is used for broadband monitoring.
  • the third photodiode 22 detects the intensity of an optical signal transmitted through the Fabry-Perot resonator 21, and is arranged between the first photodiode 4 and the second photodiode 5.
  • the light signal is condensed by the lens 2 and converted into parallel light.
  • the intensity of the optical signal transmitted through the Fabry-Perot resonator (for narrow band) 3 is detected, and in the third photodiode 22, the optical signal transmitted through the Fabry-Perot resonator (for wide band) 21 The intensity is detected.
  • the light intensity monitor signal detected by the first photodiode 4 is S1
  • the light intensity monitor signal detected by the third photodiode 22 is S3
  • the light intensity monitor signal is detected by the second photodiode 5.
  • the light intensity monitor signal is S2.
  • the light intensity monitor signals S1, S2 and S3 are sent to the wavelength control device 60 shown in FIG.
  • the wavelength control device 60 detects the oscillation wavelength using these signals S1, S2, and S3, and controls the control signal T for controlling the wavelength of the optical signal emitted from the semiconductor laser 1 based on the detected wavelength.
  • the control signal T 1 is output to the semiconductor laser 1.
  • FIG. 20 shows the wavelength transmission characteristics of the Fabry-Perot resonator 3 for the narrow band and the Fabry-Perot resonator 21 for the wide band.
  • the FSR of the Fabry-Perot resonator 3 for the narrow band is set to be very small compared to the FSR of the Fabry-Perot resonator 21 for the wide band. I do. Further, half of the FSR of the Fabry-Perot resonator 21 for a wide band, that is, the wavelength discrimination region is larger than the wavelength variable range of the semiconductor laser 1, and the wavelength variable range of the semiconductor laser 1 is 1 in the FSR of the Fabry-Perot resonator 21. Suppose it is within one slope.
  • the Fabry-Perot resonator 3 for narrow band has an FSR of 20 THz
  • the intensity reflectance of the reflective film is 30%
  • the FSR of the Fabry-Perot resonator 21 for broadband is 10 OGHz
  • the intensity reflectance of the reflective film is Assume 30%.
  • the wavelength control device 60 includes a wavelength detection unit 61 and a laser control unit 52.
  • the light intensity monitor signals S 1, S 2, S 3 from the first to third photodiodes 4, 5, and 22 and the reference wavelength; 0 are input to the wavelength detector 61.
  • the wavelength detecting section 61 outputs an optical signal emitted from the semiconductor laser 1 by the light intensity monitor signals S1, S2, and S3.
  • the difference between this oscillation wavelength and the reference wavelength; 0 is found.
  • the difference between the reference wavelength ⁇ 0 from the wavelength detection unit 61 and the oscillation wavelength emitted from the semiconductor laser 1 is input to the laser control unit 52, and the laser control unit 52 determines the oscillation wavelength according to the difference.
  • a control signal ⁇ 1 for controlling the temperature, injection current, and the like of the semiconductor laser 1 is determined so that the control signal ⁇ coincides with the reference wavelength ⁇ 0, and the control signal ⁇ 1 is output to the semiconductor laser 1.
  • the wavelength detection unit 61 detects a shift from the reference wavelength; 0 using the light intensity monitor signal S3 transmitted through the Fabry-Perot resonator 21 for a wide band. That is, as described above, the wavelength detector 61 has a signal intensity ratio S 1 / S 2 at the reference wavelength ⁇ 0, which is obtained in advance using the wavelength transmission characteristics of the Fabry-Perot resonator 21 for a wide band.
  • the oscillation wavelength and the reference wavelength are obtained. Calculate the deviation (deviation) from ⁇ 0.
  • this deviation amount is larger than the slope width of the narrow-band fabric resonator 3, this value is sent to the laser control unit 52 as it is.
  • the deviation from the reference wavelength calculated from the light intensity monitor signals S 3 and S 2; I 0 is smaller than the slope width of the narrow-band Fabry-Perot resonator 3, the narrow-band Fabry-Perot resonance
  • the oscillation wavelength is detected with higher accuracy. That is, a reference wavelength previously calculated using the wavelength transmission characteristics of the Fabry-Perot resonator 3 for a narrow band; a signal intensity ratio S 1 / S 2 at 0; and light from the first and second photodiodes 4 and 5.
  • the difference (deviation) between the oscillation wavelength and the reference wavelength ⁇ 0 is calculated by calculating the difference between the signal intensity ratio S 3 / S 2 obtained based on the intensity monitor signals S 1 and S 2.
  • the deviation amount (deviation signal) thus obtained is sent to the laser control unit 52.
  • Laser control unit 52 operates in the same manner as in the first embodiment. That is, the laser control unit 52 uses the deviation signal input from the wavelength detection unit 61 to output a control signal ⁇ 1 for changing the value of the temperature or the injection current to the semiconductor laser 1. Thus, the wavelength of the semiconductor laser 1 is controlled.
  • the absolute wavelength can be monitored over a wide band.
  • the wavelength transmission characteristic of the Fabry-Perot resonator 21 for a wide band is more dependent on the wavelength change than the wavelength transmission characteristic of the resonator element 3 for a narrow band. Is small. That is, the light intensity monitor signal S3 has a smaller signal intensity change with respect to the wavelength change than the light intensity monitor signal S1.
  • the wavelength of the optical signal emitted from the semiconductor laser 1 can be fixed more accurately by using the optical signal intensity S1 transmitted through the Fabry-Perot resonator 3, which is a wavelength monitor for a narrow band.
  • the resonators of the resonators 3 and 21 are arranged such that the lower Fabry-Perot resonator 3 is used as a wavelength monitor for a wide band and the upper Fabry-Perot resonator 21 is used as a wavelength monitor for a narrow band.
  • the length may be adjusted.
  • the absolute wavelength of the optical signal emitted from the semiconductor laser 1 can be controlled with high accuracy over a wide band.
  • a wavelength stabilized light source can be configured by combining the wavelength monitoring device shown in FIG. 18 with the wavelength control device shown in FIG.
  • FIG. 21 is a configuration diagram showing a wavelength monitor according to a modification of the second embodiment of the present invention.
  • the second and third photodiodes 5, 22 located above the Fabry-Perot resonator 3 are connected to the first photodiode 4 so that the distance from the lens 2 is reduced.
  • the location where the second and third photodiodes 5, 22 of the base carrier 6 are installed is configured to protrude toward the semiconductor laser 1, and the first photodiode 4 of the base carrier 6 is mounted.
  • Location and location of base carrier 6 A step is formed between the third photodiode 5 and the place where the third photodiodes 22 are installed.
  • the second and third photodiodes 5, 22 are arranged in front of the first photodiode 4, so that the optical signal is Fabry. Even if the scattered light is transmitted through the Fabry-Perot resonator 3 and then scattered on the bottom surface of the base carrier 6 after being incident on the mouth resonator 3, it is received by the second and third photodiodes 5 and 22. Disappears. Industrial applicability
  • the present invention is suitable for use as a wavelength filter or a wavelength monitor of a semiconductor laser as a light source used in wavelength division multiplexing (WDM) communication and high-density wavelength division multiplexing (DWDM) communication using an optical fiber. .
  • WDM wavelength division multiplexing
  • DWDM high-density wavelength division multiplexing
  • it is required to select or monitor the wavelength of laser light with high accuracy without being affected by temperature fluctuations, and it is suitable for systems that require simplification of structure and assembly.

Abstract

A light-transmissive solid material, planes formed in the solid material and facing substantially parallel to each other, and a wavelength filter for periodically selecting the wavelength determined by the optical path length between the planes facing each other by performing resonance between the planes facing substantially parallel to each other. The solid material is a doubly refracting material and the optical axis thereof has a predetermined angle with respect to the normal to the planes facing substantially parallel to each other. Thus, the temperature characteristic of the wavelength filter can be freely set, and an arbitrary wavelength characteristic can be selected by changing the temperature of the wavelength filter.

Description

明 細 書  Specification
波長フィルタおよび波長モニタ装置 Wavelength filter and wavelength monitor
技術分野 Technical field
この発明は、 波長分割多重伝送 (WDM)方式などに用いられるレーザ光の波 長を選択する波長フイノレタおよび該波長フィルタを用いてレーザ光の発振波長を 測定する波長モニタ装置に関するものである。  The present invention relates to a wavelength finolator for selecting a wavelength of a laser beam used in a wavelength division multiplexing transmission (WDM) system and the like, and a wavelength monitor device for measuring an oscillation wavelength of the laser beam using the wavelength filter.
背景技術 Background art
第 1図は、 特開平 0 3 - 1 6 0 7 7 4号公報に示された従来の波長モニタ装置 を示す構成図である。 第 1図において、 半導体レーザ 1 0 1は出射する光信号の 波長を制御することができるものである。 半導体レーザ 1 0 1より発射された光 は、 光学レンズ 1 .0 5により平行光に変換され、 平行光はさらに光検出器 1 0 8 例えばフォトダイオードに集光される。 他方の光は、 フアブリペロー共振器 1 1 1に入射する。 フアブリペロー共振器 1 1 1は、 反射膜 1 0 9、 ビ一ムスプリッ タ 1 0 6により 2方向に分岐される。 分岐された一方の光はレンズ 1 0 7を介し、 1 1 0を有し、 2種類の光学材料で形成されている。 フアブリペロー共振器 1 1 1を透過した光は、 レンズ 1 1 2を介し、 光検出器 1 1 3に集光される。  FIG. 1 is a configuration diagram showing a conventional wavelength monitor device disclosed in Japanese Patent Application Laid-Open No. H03-160774. In FIG. 1, a semiconductor laser 101 can control the wavelength of an emitted optical signal. Light emitted from the semiconductor laser 101 is converted into parallel light by an optical lens 1.05, and the parallel light is further condensed on a photodetector 108, for example, a photodiode. The other light is incident on the Fabry-Perot resonator. The Fabry-Perot resonator 111 is branched in two directions by a reflection film 109 and a beam splitter 106. One of the branched lights passes through a lens 107, has 110, and is formed of two types of optical materials. The light transmitted through the Fabry-Perot resonator 111 is focused on the photodetector 113 via the lens 112.
第 2図は第 1図におけるフアブリペロー共振器 1 1 1の構成図である。 1種類 の光学材料で形成されたフアブリペロー共振器の温度係数 γは式 (1 ) であらわ される。 ここで、 ηは光学材料の屈折率、 αは光軸方向の網彭張係数である。  FIG. 2 is a configuration diagram of the Fabry-Perot resonator 111 in FIG. The temperature coefficient γ of a Fabry-Perot resonator made of one type of optical material is expressed by equation (1). Here, η is the refractive index of the optical material, and α is the net tension coefficient in the optical axis direction.
1 ,dn . /1 1, dn. / 1
γ = α + - (―) (l)  γ = α +-(-) (l)
n dt 一般に知られているフアブリペロー共振器はガラス材料が用いられる。 その場 合、 線膨張係数 αおよび屈折率 nの温度係数 (熱光学係数) は固定されているた め、 温度係数 γは一意的に決まってしまう。 n dt A generally known Fabry-Perot resonator uses a glass material. In that case, the temperature coefficient (thermo-optical coefficient) of the linear expansion coefficient α and the refractive index n was fixed. Therefore, the temperature coefficient γ is uniquely determined.
この温度係数 Ίがゼ口になれば、 フアブリべ口一共振器 1 1 1の共振器長は温 度に応じて変化せず、 半導体レーザ 101から出射され、 フアブリペロー共振器 1 1 1を透過した光強度の波長依存性も変化しないので、 共振器 1 1 1の温度に 関係無く正確に波長をモニタすることができる。 この温度係数 γをゼロにするた めに、 フアブリペロー共振器 1 1 1は、 温度係数 γの符号が互いに異なる 2種類 の光学材料で構成される。 フアブリペロー共振器 1 1 1全体の温度係数をゼロに するためには、 式 (2) を満たす必要がある。 If this temperature coefficient に becomes zero, the cavity length of the Fabry-Perot resonator 111 does not change in accordance with the temperature, but is emitted from the semiconductor laser 101 and transmitted through the Fabry-Perot resonator 111. Since the wavelength dependence of the light intensity does not change, the wavelength can be accurately monitored irrespective of the temperature of the resonator 111. In order to make the temperature coefficient γ zero, the Fabry-Perot resonator 111 is composed of two types of optical materials having different signs of the temperature coefficient γ. Equation (2) must be satisfied in order to make the temperature coefficient of the entire Fabry-Perot resonator 1 1 1 zero.
Γιη οι10ι + r2n02l02 = 0 (2) ここで、 n 0 , 101はそれぞれ第 1の光学材料の屈折率および物理長、 r xは 第 1の光学材料の式 (1) による温度係数である。 また、 n。2, 102はそれぞ れ第 2の光学材料の屈折率および物理長、 r 2は第 2の光学材料の温度係数であ る。 フアブリペロー共振器 1 1 1を実際に構成するのに、 温度係数が正の値を持 つ光学材料として、 石英を用い、 温度係数が負の値を持つ光学材料としてルチル を用いた場合、 それぞれの C軸 (光学軸) が光軸と同じ方向を向いているとする と、 ルチルの温度係数の絶対値が石英の 係数の絶対値の 2. 7倍となること から、 I n01101|:| n。21。2| = 2. 7 : 1という関係を満たす。 Γ ι η οι 1 0 ι + r 2 n 02 l 02 = 0 (2) where n 0 and 101 are the refractive index and physical length of the first optical material, respectively, and r x is the first optical material. This is the temperature coefficient according to equation (1). Also n. 2, 1 02 the refractive index and physical length of the second optical material, respectively it, r 2 is Ru temperature coefficient der of the second optical material. In actual construction of the Fabry-Perot resonator 111, quartz was used as the optical material with a positive temperature coefficient, and rutile was used as the optical material with a negative temperature coefficient. When the C-axis (optical axis) and are oriented in the same direction as the optical axis, since the absolute value of the temperature coefficient of the rutile is 2.7 times the absolute value of the coefficient of quartz, I n 01 1 01 | : | n. 2 1. 2 | = 2. 7: 1
ここで、 η01, 101は水晶の屈折率および物理長、 η。2, 1。2はルテルの屈 折率および物理長である。 式 (2) を満たすようにそれぞれの物理長を調整する ことにより、 共振器長 L = n01101 + n 02102の変化しないフアブリペロー共 振器を構成することが可能である。 なお、 I n01101|:| n021。2|の比は 2. 7 : 1から変更することにより温度係数を任意に変更することができる。 Here, η 01 , 101 are the refractive index and physical length of quartz, η. Two , one. 2 is the refractive index and physical length of Lutheran. By adjusting the respective physical lengths to satisfy equation (2), it is possible to configure the Fuaburipero co oscillator unchanged in the resonator length L = n 01 1 01 + n 02 1 02. In addition, I n 01 1 01 |: | n 02 1. The temperature coefficient can be arbitrarily changed by changing the ratio of 2 | from 2.7: 1.
上記従来技術では、 温度係数の符号が異なる 2個の光学材料を用いて、 温度に 対して共振器長が変化しないようなフアブリペロー共振器を構成しているため、 2個の光学材料を張り合わせる必要がある。 2個の光学材料を張り合わせる際に は、 それぞれの材料の屈折率差による接合面での反射および、 接着剤と光学材料 の屈折率差による接合面における反射を考慮に入れる必要があり、 光学材料もし くは接着剤の組み合わせについて検討を行う必要があり、 各種の面倒な調整作業 を行う必要がある。 In the above-mentioned conventional technology, a Fabry-Perot resonator in which the resonator length does not change with temperature is configured by using two optical materials having different signs of the temperature coefficient. There is a need. When bonding two optical materials It is necessary to take into account the reflection at the bonding surface due to the difference in the refractive index of each material and the reflection at the bonding surface due to the difference in the refractive index between the adhesive and the optical material.Consider the optical material or the combination of the adhesive It is necessary to carry out various troublesome adjustment work.
また、 従来、 一種類の光学材料から構成されるフアブリペロー共振器を用いる と、 任意の温度係数を選択することが困難であった。  Conventionally, it has been difficult to select an arbitrary temperature coefficient using a Fabry-Perot resonator composed of one type of optical material.
この発明は、 上記に鑑みてなされたもので、 複屈折結晶を用いて、 温度変化に 応じて共振器長の変化しないフアブリペロー共振器 (波長フィルタ) を構成し、 これにより構成が単純化され、 大量生産を実現することができる波長フィルタお よび該波長フィルタを備えた波長モニタ装置を得ることを目的とする。  The present invention has been made in view of the above, and comprises a Fabry-Perot resonator (wavelength filter) whose resonator length does not change in response to a temperature change using a birefringent crystal, whereby the configuration is simplified, It is an object of the present invention to obtain a wavelength filter capable of realizing mass production and a wavelength monitor provided with the wavelength filter.
また、 この発明は、 波長フィルタの温度特性を自由に設定することができ、 さらに波長フィルタの温度を変化させることで任意の波長特性を選択することが 可能な波長フィルタおよび該波長フィルタを備えた波長モニタ装置を得ることを 目的とする。  In addition, the present invention includes a wavelength filter capable of freely setting a temperature characteristic of a wavelength filter, and selecting an arbitrary wavelength characteristic by changing a temperature of the wavelength filter, and the wavelength filter. The purpose is to obtain a wavelength monitor.
発明の開示 Disclosure of the invention
この発明にかかる波長フィルタは、 光を透過する固体材料と、 前記固体材料に 形成された略平行に対向する平面と、 前記略平行に対向する平面間で光を共振さ せ、 対向平面間の光路長できまる波長を周期的に選択する波長フィルタにおいて、 前記固体材料が複屈折材料であるとともに、 その光学軸が前記略平行に対向する 平面の法線と所定の角度を有することを特徴とする。  A wavelength filter according to the present invention resonates light between a solid material that transmits light, a substantially parallel opposing plane formed on the solid material, and the substantially parallel opposing plane. In a wavelength filter for periodically selecting a wavelength determined by an optical path length, the solid material is a birefringent material, and an optical axis thereof has a predetermined angle with a normal to a plane substantially parallel to the birefringent material. I do.
この発明によれば、 光学軸が略平行に対向する平面の法線と所定の角度を有す る複屈折材料を用いるようにしており、 これにより前記角度を変化させることで 波長フィルタの温度特性を自由に設定することができ、 さらに波長フィルタの温 度を変化させることで任意の波長特性を選択することが可能となる。  According to the present invention, a birefringent material having a predetermined angle with respect to a normal to a plane whose optical axes are substantially parallel to each other is used, and by changing the angle, the temperature characteristic of the wavelength filter is changed. Can be set freely, and by changing the temperature of the wavelength filter, an arbitrary wavelength characteristic can be selected.
つぎの発明は、 上記の発明において、 上記略平行に対向する平面の法線と光学 軸との間の所定の角度は、 上記平面間の光路長の温度係数が所定の値を有するよ うに設定されていることを特徴とする。 In the above invention, the temperature coefficient of the optical path length between the planes has a predetermined value, wherein the predetermined angle between the normal line of the substantially parallel opposing plane and the optical axis has a predetermined value. Is set as follows.
この発明によれば、 平面間の光路長の温度係数が所定の値を有するように設定 されているので、 温度変化によって波長特性を調節することを簡単且つ高精度に 実現することができ、 I T Uグリツドへの調整も容易となる。  According to the present invention, since the temperature coefficient of the optical path length between the planes is set to have a predetermined value, it is possible to easily and accurately adjust the wavelength characteristics by changing the temperature, Adjustment to the grid is also facilitated.
つぎの発明は、 上記の発明において、 上記複屈折材料は、 屈折率と光軸方向の 線膨張係数との積と熱光学係数との和の絶対値が最小になるように上記略平行に 対向する平面の法線と光学軸との角度が設定されていることを特徴とする。  In the following invention, in the above invention, the birefringent materials face each other substantially in parallel so that the absolute value of the sum of the product of the refractive index and the linear expansion coefficient in the optical axis direction and the thermo-optic coefficient is minimized. The angle between the optical axis and the normal to the plane to be set is set.
この発明によれば、 温度特性を十分低い値に抑えることができ、 温度補償機能 を有する波長フィルタを提供することができる。 したがって、 波長フィルタの構 成が単純化され、 波長フィルタとしての信頼性が向上するとともに、 生産時に面 倒な調整作業を行わなくてもよくなり、 大量生專を実現することができる。  According to the present invention, the temperature characteristic can be suppressed to a sufficiently low value, and a wavelength filter having a temperature compensation function can be provided. Therefore, the configuration of the wavelength filter is simplified, the reliability of the wavelength filter is improved, and a troublesome adjustment operation is not required at the time of production, so that mass production can be realized.
つぎの発明は、 上記の発明において、 上記複屈折材料は、 光学軸に平行な方向 の線膨張係数と光学軸に平行に伝播する光の屈折率との積と光学軸に平行に伝播 する光の熱光学係数との和と、 光学軸に垂直な方向の線膨張係数と光学軸に垂直 な方向に伝播する光の屈折率との積と光学軸に垂直な方向に伝播する光の熱光学 係数との和が互いに異符号であることを特徴とする。  In the following invention, in the above invention, the birefringent material comprises a product of a product of a linear expansion coefficient in a direction parallel to the optical axis and a refractive index of light propagating parallel to the optical axis, and light propagating parallel to the optical axis. And the product of the linear expansion coefficient in the direction perpendicular to the optical axis and the refractive index of light propagating in the direction perpendicular to the optical axis, and the thermo-optics of light propagating in the direction perpendicular to the optical axis. The sum of the coefficients is different from each other.
この発明によれば、 光学軸が平面の法線と成す角度を 0〜9 0度変化させる間 で、 温度特性がゼロとなる所定の角度が存在することになり、 前記角度を 特 性がゼロとなる所定の角度に設定することで、 温度補償機能を有する波長フィル タを提供することができる。 したがって、 波長フィルタの構成が単純化され、 波 長フィルタとしての信頼性が向上するとともに、 生産時に面倒な調整作業を行わ なくてもよくなり、 大量生産を実現することができる。  According to the present invention, while the angle formed by the optical axis with the normal to the plane is changed by 0 to 90 degrees, there is a predetermined angle at which the temperature characteristic becomes zero, and the angle has a characteristic of zero. By setting the angle to be a predetermined angle, a wavelength filter having a temperature compensation function can be provided. Therefore, the configuration of the wavelength filter is simplified, the reliability as the wavelength filter is improved, and troublesome adjustment work is not required at the time of production, so that mass production can be realized.
つぎの発明は、 上記の発明において、 上記複屈折材料は、 α— B B O結晶、 ]3 — Β Β Ο結晶、 L i I 0 3結晶、 C a C 0 3結晶のいずれかであることを特徴と する。 The following invention, in the above invention, the birefringent material is alpha-BBO crystal,] 3 - wherein beta beta Omicron crystal, L i I 0 3 crystals, that is either C a C 0 3 crystals And
この発明によれば、 複屈折結晶として、 c 一 Β Β Ο、 — B B O、 L i I 0 3、 C a C O 3のいずれかを用いた場合において、 高精度の温度補償機能を持つ波長 フィルタを実現することができる。 According to the present invention, as the birefringent crystal, c one Β Β Ο, - BBO, L i I 0 3, C a CO in the case of using any of 3, a wavelength having a temperature compensation function of the precision A filter can be realized.
つぎの発明は、 上記の発明において、 上記複屈折材料に入射する光は異常光軸 に揃えた偏光を用い、 複屈折材料が α— BBO結晶の場合は、 光学軸の光軸に対 する角度を約 64度とし、 複屈折材料が ]3—ΒΒΟ結晶の場合は、 光学軸の光軸 に対する角度を約 65度とし、 複屈折材料が L i I O 3の場合は、 光学軸の光軸 に対する角度を約 23度とすることを特徴とする。 In the following invention, in the above invention, light incident on the birefringent material uses polarized light aligned with the extraordinary optical axis, and when the birefringent material is an α-BBO crystal, an angle of the optical axis with respect to the optical axis. When the birefringent material is a 3-3 crystal, the angle of the optic axis to the optical axis is about 65 degrees, and when the birefringent material is L i IO 3 , the angle to the optical axis is The angle is about 23 degrees.
この発明によれば、 異常光軸に入射する光の偏光を揃え、 また複屈折材料とし て、 α— ΒΒΟ、 ]3— BBO、 L i I O 3のいずれかを用いた場合において、 高 精度の温度補償機能を持つ波長フィルタを実現することができる。 According to the present invention, the polarization of light incident on the extraordinary optical axis is made uniform, and when any of α-ΒΒΟ,] 3-BBO, and Li IO 3 is used as a birefringent material, high accuracy is achieved. A wavelength filter having a temperature compensation function can be realized.
つぎの発明は、 上記の発明において、 上記複屈折材料に入射する光は常光軸に 揃えた偏光を用い、 複屈折材料が α— BBO結晶の場合は、 光学軸の光軸に対す る角度を約 77度とし、 複屈折材料が /3— ΒΒΟ結晶の場合は、 光学軸の光軸に 対する角度を約 57度とし、 複屈折材料が L i I O 3結晶の場合は、 光学軸の光 軸に対する角度を約 19度とし、 複屈折材料が C a C03結晶の場合は、 光学軸 の光軸に対する角度を約 66度とすることを特徴とする。 In the following invention, in the above invention, the light incident on the birefringent material uses polarized light aligned with the ordinary optical axis, and when the birefringent material is an α-BBO crystal, the angle of the optical axis with respect to the optical axis is changed. When the birefringent material is a 3 / 3-ΒΒΟ crystal, the angle of the optic axis to the optical axis is about 57 degrees. When the birefringent material is a Li IO 3 crystal, the optical axis is the optic axis. angle of about 19 degrees with respect to the birefringent material in the case of C a C0 3 crystal, characterized by an angle of about 66 degrees with respect to the optical axis of the optical axes.
この発明によれば、 常光軸に入射する光の偏光を揃え、 また複屈折材料として、 a-BBO, j3— BBO、 L i I O 3、 C a C O 3のいずれかを用いた場合におい て、 高精度の温度補償機能を持つ波長フィルタを実現することができる。 According to the present invention, aligning the polarization of light incident on the ordinary axis and the birefringent material, Te odor when using a-BBO, j3- BBO, one of L i IO 3, C a CO 3, A wavelength filter having a highly accurate temperature compensation function can be realized.
つぎの発明にかかる波長モニタ装置は、 半導体レーザから出力されるレーザ光 の波長をモニタする波長モニタ装置において、 レーザ光を透過する固体材料と、 前記固体材料に形成された略平行に対向する平面と、 前記略平行に対向する平面 間でレーザ光を共振させ、 対向平面間の光路長できまる波長を周期的に選択する 波長フィルタと、 前記波長フィルタの透過光に基づきレーザ光の発振波長を測定 する波長検出手段を備え、 前記固体材料が複屈折材料であるとともに、 その光学 軸が前記略平行に対向する平面の法線と所定の角度を有することを特徴とする。 この発明によれば、 光学軸が略平行に対向する平面の法線と所定の角度を有す る複屈折材料を用いて波長フィルタを構成するようにしているので、 前記角度を 変化させることで波長フィルタの温度特性を自由に設定することができ、 さらに 波長フィルタの温度を変化させることで任意の波長特性を選択することが可能と なる。 A wavelength monitoring device according to the next invention is a wavelength monitoring device that monitors the wavelength of laser light output from a semiconductor laser, comprising: a solid material that transmits laser light; and a substantially parallel opposed flat surface formed on the solid material. A wavelength filter that resonates laser light between the substantially parallel opposing planes, and periodically selects a wavelength determined by an optical path length between the opposing planes; and The solid-state material is a birefringent material, and an optical axis thereof has a predetermined angle with a normal line of the substantially parallel opposing plane. According to the present invention, the wavelength filter is formed using a birefringent material having a predetermined angle with respect to a normal to a plane whose optical axes are substantially parallel to each other. By changing the temperature, the temperature characteristics of the wavelength filter can be set freely, and further, by changing the temperature of the wavelength filter, it is possible to select an arbitrary wavelength characteristic.
つぎの発明は、 上記の発明において、 前記半導体レーザから出力されるレーザ 光は、 1方向に偏光されたものであり、 上記波長フィルタを構成する複屈折材料 は、 前記レーザ光の光軸と偏光方向とで作られる平面に対 ' 平行な面内に光学軸 があり、 この光学軸がレーザ光の光軸に対し所定の角度に傾いていることを特徴 とする。  In the following invention, in the above invention, the laser light output from the semiconductor laser is polarized in one direction, and the birefringent material forming the wavelength filter is: The optical axis is in a plane parallel to a plane formed by the directions, and the optical axis is inclined at a predetermined angle with respect to the optical axis of the laser beam.
この発明によれば、 異常光軸に入射される光の偏光を揃えており、 温度を変化 させることで任意の波長特性を選択することが可能な波長フィルタを持つ波長モ ニタを実現することができる。  According to the present invention, it is possible to realize a wavelength monitor having a wavelength filter in which the polarization of light incident on the extraordinary optical axis is uniform and which can select an arbitrary wavelength characteristic by changing the temperature. it can.
つぎの発明は、 上記の発明において、 前記半導体レーザから出力されるレーザ 光は、 1方向に偏光されたものであり、 上記波長フィルタを構成する複屈折材料 は、 前記レーザ光の光軸と偏光方向とで作られる平面に対し垂直な面内に光学軸 があり、 この光学軸がレーザ光の光軸に対し所定の角度に傾いていることを特徴 とする。  In the following invention, in the above invention, the laser light output from the semiconductor laser is polarized in one direction, and the birefringent material forming the wavelength filter is: The optical axis lies in a plane perpendicular to the plane formed by the directions, and the optical axis is inclined at a predetermined angle with respect to the optical axis of the laser beam.
この発明によれば、 常光軸に入射される光の偏光を揃えており、 温度を変化さ せることで任意の波長特性を選択することが可能な波長フィルタを持つ波長モニ タを実現することができる。  According to the present invention, it is possible to realize a wavelength monitor having a wavelength filter capable of selecting an arbitrary wavelength characteristic by changing the temperature by aligning the polarization of light incident on the ordinary optical axis. it can.
つぎの発明は、 上記の発明において、 前記波長フィルタを構成する複屈折材料 は、 結晶の屈折率、 光軸方向の線膨張係数および熱光学係数に基づき、 光学軸の 光軸に対する角度が設定されていることを特徴とする。  In the following invention, in the above invention, the birefringent material constituting the wavelength filter is configured such that an angle of the optical axis with respect to the optical axis is set based on a refractive index of a crystal, a linear expansion coefficient in an optical axis direction, and a thermo-optic coefficient. It is characterized by having.
この発明によれば、 屈折率、 光軸方向の線膨張係数および熱光学係数に基づき、 光学軸の光軸に対する角度が設定された複屈折結晶を用いているので、 複屈折結 晶を用いて、 温度補償機能を持つ波長フィルタを持つ信頼性の高い波長モニタを 実現することができる。  According to the present invention, since the birefringent crystal in which the angle of the optical axis with respect to the optical axis is set based on the refractive index, the coefficient of linear expansion in the optical axis direction, and the thermo-optic coefficient, the birefringent crystal is used. Thus, a highly reliable wavelength monitor having a wavelength filter having a temperature compensation function can be realized.
つぎの発明は、 上記の発明において、 前記略平行に対向する平面の法線と光学 軸との所定の角度は、 上記平面間の光路長の温度係数が所定の値を有するように 設定されていることを特徴とする。 The next invention is the above-mentioned invention, wherein the normal and the optical axis of the plane substantially parallel The predetermined angle with the axis is set such that the temperature coefficient of the optical path length between the planes has a predetermined value.
この発明によれば、 平面間の光路長の温度係数が所定の値を有するように設定 されているので、 温度変化によって波長特性を調節することを簡単且つ高精度に 実現することができ、 I T Uグリッドへの調整も容易となる。  According to the present invention, since the temperature coefficient of the optical path length between the planes is set to have a predetermined value, it is possible to easily and accurately adjust the wavelength characteristics by changing the temperature, Adjustment to the grid is also easy.
つぎの発明は、 上記の発明において、 上記複屈折材料は、 屈折率と光軸方向の 線膨張係数との積と熱光学係数との和の絶対値が最小になるように上記略平行に 対向する平面の法線と光学軸との角度が設定されていることを特徴とする。  In the following invention, in the above invention, the birefringent materials face each other substantially in parallel so that the absolute value of the sum of the product of the refractive index and the linear expansion coefficient in the optical axis direction and the thermo-optic coefficient is minimized. The angle between the optical axis and the normal to the plane to be set is set.
この発明によれば、 波長フィルタの温度特性を十分低い値に抑えることができ るので、 構成が単純化され、 波長モニタとしての信頼性が向上するとともに、 生 産時に面倒な調整作業を行わなくてもよくなり、 大量生産を実現することができ る。  According to the present invention, the temperature characteristic of the wavelength filter can be suppressed to a sufficiently low value, so that the configuration is simplified, the reliability as a wavelength monitor is improved, and a troublesome adjustment operation is not performed during production. And mass production can be realized.
つぎの発明は、 上記の発明において、 上記複屈折材料は、 光学軸に平行な方向 の線膨張係数と光学軸に平行に伝播する光の屈折率との積と光学軸に平行に伝播 する光の熱光学係数との和と、 光学軸に垂直な方向の »張係数と光学軸に垂直 な方向に伝播する光の屈折率との積と光学軸に垂直な方向に伝播する光の熱光学 係数との和が互いに異符号であることを特徴とする。  In the following invention, in the above invention, the birefringent material comprises a product of a product of a linear expansion coefficient in a direction parallel to the optical axis and a refractive index of light propagating parallel to the optical axis, and light propagating parallel to the optical axis. Of the light propagating in the direction perpendicular to the optical axis and the product of the tension coefficient in the direction perpendicular to the optical axis and the refractive index of the light propagating in the direction perpendicular to the optical axis. The sum of the coefficients is different from each other.
この発明によれば、 光学軸が平面の法線と成す角度を 0〜 9 0度変化させる間 で、 温度特性がゼロとなる所定の角度が存在することになり、 前記光学軸が平面 の法線と成す角度を温度特性がゼロとなる所定の角度に設定することで、 波長フ ィルタは温度補償機能を有するようになり、 これにより構成が単純化され、 波長 モニタとしての信頼性が向上するとともに、 生産時に面倒な調整作業を行わなく てもよくなり、 大量生産を実現することができる。  According to the present invention, while the angle formed by the optical axis with the normal to the plane is changed by 0 to 90 degrees, there is a predetermined angle at which the temperature characteristic becomes zero. By setting the angle between the line and the specified angle at which the temperature characteristic becomes zero, the wavelength filter has a temperature compensation function, which simplifies the configuration and improves the reliability as a wavelength monitor. At the same time, there is no need for troublesome adjustment work during production, and mass production can be realized.
つぎの発明は、 上記の発明において、 上記複屈折材料は、 α— B B O結晶、 β 一 Β Β Ο結晶、 L i I 0 3結晶、 C a C 0 3結晶のいずれかであることを特徴と する。 The following invention, in the above invention, the birefringent material, and wherein the alpha-BBO crystal, beta one beta beta Omicron crystal, L i I 0 3 crystals are either C a C 0 3 crystals I do.
この発明によれば、 複屈折結晶として、 ひ一 B B O、 3— B B O、 L i I 0 3, C a C〇3のいずれかを用いた場合において、 高精度の温度補償機能を持つ波長 フィルタを備えた波長モニタ装置を実現することができる。 According to the present invention, as a birefringent crystal, Hiichi BBO, 3—BBO, L i I 0 3 , In the case of using the C a C_〇 3 either, it is possible to realize a wavelength monitor device provided with a wavelength filter having a temperature compensation function of high accuracy.
つぎの発明は、 上記の発明において、 上記複屈折材料に入射する光は異常光軸 に揃えた偏光を用い、 複屈折材料が BBO結晶の場合は、 光学軸の光軸に対 する角度を約 64度とし、 複屈折材料が 3—ΒΒΟ結晶の場合は、 光学軸の光軸 に対する角度を約 65度とし、 複屈折材料が L i I 03の場合は、 光学軸の光軸 に対する角度を約 23度とすることを特徴とする。 In the following invention, in the above invention, the light incident on the birefringent material uses polarized light aligned with the extraordinary optical axis, and when the birefringent material is a BBO crystal, the angle of the optical axis with respect to the optical axis is about and 64 degrees, in the case of the birefringent material is 3-ΒΒΟ crystals, and an angle of about 65 degrees with respect to the optical axis of the optical axis, if the birefringent material is a L i I 0 3, the angle with respect to the optical axis of the optical axis It is characterized by about 23 degrees.
この発明によれば、 異常光軸に入射する光の偏光を揃え、 また複屈折材料とし て、 a— BBO、 ]3— BBO、 L i I O 3のいずれかを用いた場合において、 高 精度の温度補償機能を持つ波長フィルタを備える波長モニタ装置を実現すること ができる。 According to the present invention, the polarization of light incident on the extraordinary optical axis is made uniform, and when any of a-BBO,] 3-BBO, and Li IO 3 is used as a birefringent material, high-precision A wavelength monitor having a wavelength filter having a temperature compensation function can be realized.
つぎの発明は、 上記の発明において、 上記複屈折材料に入射する光は常光軸に 揃えた偏光を用い、 複屈折材料が α— BBO結晶の場合は、 光学軸の光軸に対す る角度を約 77度とし、 複屈折材料が /3— BBO結晶の場合は、 光学軸の光軸に 対する角度を約 57度とし、 複屈折材料が L i I 03結晶の場合は、 光学軸の光 軸に対する角度を約 19度とし、 複屈折材料が C a C03結晶の場合は、 光学軸 の光軸に対する角度を約 66度とすることを特徴とする。 In the following invention, in the above invention, the light incident on the birefringent material uses polarized light aligned with the ordinary optical axis, and when the birefringent material is an α-BBO crystal, the angle of the optical axis with respect to the optical axis is changed. and about 77 degrees, in the case of the birefringent material is / 3- BBO crystal, and the angle of about 57 degrees against the optical axis of the optical axis, if the birefringent material is a L i I 0 3 crystal, the light of the optical axis an angle relative to the axis of about 19 degrees, the birefringent material in the case of C a C0 3 crystal, characterized by an angle of about 66 degrees with respect to the optical axis of the optical axes.
この発明によれば、 常光軸に入射する光の偏光を揃え、 また複屈折材料として、 a -B BO ]3— BBO、 L i I 03、 C a C O 3のいずれかを用いた場合にお レ、て、 高精度の温度補償機能を持つ波長フィルタを備える波長モニタ装置を実現 することができる。 According to the present invention, aligning the polarization of light incident on the ordinary axis and the birefringent material, a -B BO] 3- BBO, when using any of L i I 0 3, C a CO 3 In addition, it is possible to realize a wavelength monitor including a wavelength filter having a high-precision temperature compensation function.
つぎの発明は、 上記の発明において、 上記波長フィルタを構成する複屈折材料 は、 屈折率と光軸方向の線膨張係数との積と、 熱光学係数との和は零に一致する ように光学軸の光軸に対する角度が設定されていることを特徴とする。  In the following invention, in the above invention, the birefringent material constituting the wavelength filter is optically controlled so that a sum of a product of a refractive index and a linear expansion coefficient in an optical axis direction and a thermo-optic coefficient are equal to zero. The angle of the axis with respect to the optical axis is set.
この発明によれば、 異常光軸にレーザ光の偏光を揃える場合、 屈折率と光軸方 向の線膨張係数との積と、 熱光学係数との和が零に一 ¾1 "るように光学軸の光軸 に対する角度が設定されている一軸性複屈折結晶を用いているので、 高精度の温 度補償機能を持つ波長フィルタを持つ波長モニタを実現することができる。 According to the present invention, when the polarization of the laser beam is aligned with the extraordinary optical axis, the optical product is set so that the sum of the product of the refractive index and the linear expansion coefficient in the direction of the optical axis and the thermo-optic coefficient is equal to zero. Since a uniaxial birefringent crystal whose angle is set with respect to the optical axis is used, high-precision temperature A wavelength monitor having a wavelength filter having a degree compensation function can be realized.
つぎの発明は、 上記の発明において、 上記波長フィルタを構成する複屈折材料 は、 α-ΒΒΟ, ]3— BBO、 L i I O 3のいずれかとし、 複屈折材料が α— B BOの場合は、 光学軸の光軸に対する角度を 63. 35度とし、 複屈折材料が ]3 —BBOの場合は、 光学軸の光軸に対する角度を 64. 75度とし、 複屈折材料 が L i I 03の場合は、 光学軸の光軸に対する角度を 22. 70度とすることを 特徴とする。 In the following invention, in the above invention, the birefringent material constituting the wavelength filter is any one of α-ΒΒΟ,] 3—BBO and L i IO 3. If the birefringent material is α—BBO, The angle of the optical axis with respect to the optical axis is 63.35 degrees, and the birefringent material is] 3—In the case of BBO, the angle of the optical axis with respect to the optical axis is 64.75 degrees, and the birefringent material is L i I 0 3 In this case, the angle of the optical axis with respect to the optical axis is 22.70 degrees.
この発明によれば、 異常光軸に入射レ一ザ光の偏光を揃え、 また、 複屈折結晶 として、 a— BBO、 ]3— ΒΒΟ、 L i I 03のいずれかを用いた場合において、 高精度の温度補償機能を持つ波長フィルタを持つ波長モニタを実現することがで さる。 According to the present invention, aligning the polarization of the incident, single laser light to extraordinary optical axis, and as a birefringent crystal, a- BBO,] 3- ΒΒΟ, in the case of using any of L i I 0 3, It is possible to realize a wavelength monitor with a wavelength filter that has a high-precision temperature compensation function.
つぎの発明は、 上記の発明において、 上記波長フィルタを構成する複屈折材料 は、 α— BBO、 一 BBO、 L i L03、 C a C03のいずれかとし、 複屈折 材料が α— BBOの場合は、 光学軸の光軸に対する角度を 76. 95度とし、 複 屈折材料が 0— ΒΒΟの場合は、 光学軸の光軸に対する角度を 57. 05度とし、 複屈折材料が L i L03の場合は、 光学軸の光軸に対する角度を 18. 65度と し、 複屈折材料が C a C03の場合は、 光学軸の光軸に対する角度を 67. 05 度とすることを特徵とする。 The following invention, in the above invention, the birefringent material forming the wavelength filter, alpha-BBO, one BBO, either as L i L0 3, C a C0 3, the birefringent material is alpha-BBO of In this case, the angle of the optical axis with respect to the optical axis is 76.95 degrees, and when the birefringent material is 0— 、, the angle of the optical axis with respect to the optical axis is 57.05 degrees, and the birefringent material is L i L0 3 for the angle with respect to the optical axis of the optical axis is 18.65 degrees, the birefringent material in the case of C a C0 3, and Toku徵that the angle 67.05 degrees with respect to the optical axis of the optical axis .
この発明によれば、 常光軸に入射レーザ光の偏光を揃え、 また、 複屈折結晶と して、 α— BBO、 3 -BBO, L i I 03、 C a C O 3のいずれかを用いた場 合にぉレ、て、 高精度の温度補償機能を持つ波長フィルタを持つ波長モニタを実現 することができる。 According to the present invention, aligning the polarization of the incident laser light into ordinary light axis, also as a birefringent crystal, using α- BBO, 3 -BBO, one of L i I 0 3, C a CO 3 In this case, a wavelength monitor having a wavelength filter having a high-precision temperature compensation function can be realized.
つぎの発明は、 上記の発明において、 上記波長フィルタを構成する複屈折材料 は、 光学軸に対する設定角度を維持しつつ、 その光軸方向の厚みを変化させるこ とで、 温度補償条件を満足させてかつ波長弁別領域を調節可能であることを特徴 とする。  In the following invention, the birefringent material constituting the wavelength filter in the above invention satisfies the temperature compensation condition by changing the thickness in the optical axis direction while maintaining the set angle with respect to the optical axis. And the wavelength discrimination region can be adjusted.
この発明によれば、 温度補償条件が複屈折結晶の厚みに依存しないので、 温度 調整条件を満たす任意の波長弁別領域を有する波長フィルタを得ることが可能で ある。 According to the present invention, the temperature compensation condition does not depend on the thickness of the birefringent crystal. It is possible to obtain a wavelength filter having an arbitrary wavelength discrimination region satisfying the adjustment condition.
つぎの発明は、 上記の発明において、 前記半導体レーザから出射されるレーザ 光のビームサイズを調節し、 調節されたレーザ光を上記波長フィルタに出力する レンズを備えることを特徴とする。  The next invention is characterized in that, in the above invention, there is provided a lens for adjusting a beam size of laser light emitted from the semiconductor laser, and outputting the adjusted laser light to the wavelength filter.
この発明によれば、 レーザ光のビームサイズを調節して波長フィルタに入射す ることが可能となる。  According to the present invention, it is possible to adjust the beam size of the laser light and make it incident on the wavelength filter.
つぎの発明は、 上記の発明において、 前記波長検出手段は、 前記波長フィルタ の透過光を検出する第 1の光検出器と、 前記半導体レーザから出力されるレーザ 光を直接検出する第 2の光検出器と、 上記第 1および第 2の光検出器の検出信号 の比を用いて前記レーザ光の発振波長を検出する波長検出部とを備えることを特 徴とする。  In the following invention, in the above invention, the wavelength detecting means comprises: a first photodetector for detecting light transmitted through the wavelength filter; and a second light for directly detecting laser light output from the semiconductor laser. It is characterized by comprising a detector and a wavelength detector for detecting the oscillation wavelength of the laser light using the ratio of the detection signals of the first and second photodetectors.
この発明によれば、 第 1および第 2の光検出器の検出信号の比を用いてレーザ 光の発振波長を検出するようにしているので、 半導体レーザの出力強度変化に影 響されることなく発振波長を正確に検出することができる。  According to the present invention, since the oscillation wavelength of the laser light is detected using the ratio of the detection signals of the first and second photodetectors, the laser light is not affected by a change in the output intensity of the semiconductor laser. The oscillation wavelength can be accurately detected.
つぎの発明は、 上記の発明において、 前記半導体レーザおよび波長フィルタを 載置するとともに、 前記第 2の光検出器が第 1の光検出器より上方に位置するよ うに前記第 1および第 2の光検出器を設置するべ一スキヤリァを更に備え、 前記 ベースキヤリァ上に載置された波長フィルタを透過したレーザ光が前記第 2の光 検出器で受光されないように波長フィルタの高さを調節していることを特徴とす る。  In the following invention, in the above invention, the semiconductor laser and the wavelength filter are mounted, and the first and second optical detectors are arranged such that the second photodetector is located above the first photodetector. A base scanner for installing a photodetector is further provided, wherein the height of the wavelength filter is adjusted so that the laser light transmitted through the wavelength filter mounted on the base carrier is not received by the second photodetector. It is characterized by
この発明によれば、 波長フィルタを透過したレーザ光が第 2の光検出器で受光 されることがなくなり、 発振波長を正確に検出することができる。  According to the present invention, the laser light transmitted through the wavelength filter is not received by the second photodetector, and the oscillation wavelength can be accurately detected.
つぎの発明は、 上記の発明において、 前記半導体レーザおよび波長フィルタを 載置するとともに、 前記第 2の光検出器が第 1の光検出器より上方に位置するよ うに前記第 1および第 2の光検出器を設置するベースキヤリァを更に備え、 前記 ベースキヤリァ上に載置された波長フィルタを透過したレーザ光が前記第 2の光 検出器で受光されることがないように前記第 2の光検出器を第 1の光検出器より も波長フィルタ側に接近させて配置していることを特徴とする。 In the following invention, in the above invention, the semiconductor laser and the wavelength filter are mounted, and the first and second optical detectors are arranged such that the second photodetector is located above the first photodetector. A base carrier on which a photodetector is installed, wherein the laser light transmitted through the wavelength filter mounted on the base carrier is the second light; The second photodetector is arranged closer to the wavelength filter side than the first photodetector so as not to be received by the detector.
この発明によれば、 波長フィルタを透過したレーザ光が第 2の光検出器で受光 されることがなくなり、 発振波長を正確に検出することができる。  According to the present invention, the laser light transmitted through the wavelength filter is not received by the second photodetector, and the oscillation wavelength can be accurately detected.
つぎの発明は、 上記の発明において、 半導体レーザから出力されるレーザ光の 波長をモニタする波長モニタ装置において、 レーザ光を透過する第 1の固体材料 と、 前記第 1の固体材料に形成された略平行に対向する平面と、 前記略平行に対 向する平面間でレーザ光を共振させ、 対向平面間の光路長できまる波長を周期的 に選択し、 前記固体材料が複屈折材料であるとともに、 その光学軸が前記略平行 に対向する平面の法線と所定の角度を有する狭帯域用の第 1の波長フィルタと、 レーザ光を透過する第 2の固体材料と、 前記第 1の固体材料に形成された略平行 に対向する平面と、 前記略平行に対向する平面間でレーザ光を共振させ、 対向平 面間の光路長できまる波長を周期的に選択し、 前記固体材料が複屈折材料である とともに、 その光学軸が前記略平行に対向する平面の法線と所定の角度を有する 広帯域用の第 2の波長フィルタと、 前記第 1および第 2の波長フィルタの透過光 に基づきレーザ光の発振波長を測定する波長検出手段とを備えたことを特徴とす る。  The following invention is the wavelength monitoring device for monitoring the wavelength of the laser light output from the semiconductor laser in the above invention, wherein the first solid material transmitting the laser light; and the first solid material formed on the first solid material. A laser beam is resonated between a substantially parallel opposing plane and the substantially parallel opposing plane to periodically select a wavelength determined by an optical path length between the opposing planes, and the solid material is a birefringent material. A first wavelength filter for a narrow band having a predetermined angle with a normal to a plane whose optical axis is substantially parallel to the first surface; a second solid material that transmits laser light; and a first solid material. The laser light is resonated between a substantially parallel opposed plane formed on the substrate and the substantially parallel opposed plane, and a wavelength determined by an optical path length between the opposed planes is periodically selected, and the solid material is birefringent. Material and A second wavelength filter for a wide band, the optical axis of which has a predetermined angle with the normal of the plane substantially parallel to each other, and an oscillation wavelength of the laser light based on light transmitted through the first and second wavelength filters. And a wavelength detecting means for measuring.
この発明によれば、 構成が単純化され、 波長モニタとしての信頼性が向上する とともに、 生産時に面倒な調整作業を行わなくてもよくなり、 大量生産を実現す ることができる。 さらに、 この発明では、 狭帯域用おょぴ広帯域用の 2つの波長 フィルタを用いてレーザ光の発振波長のモニタリングを行っているので、 極めて 正確に発振波長を検出することが可能となる。  According to the present invention, the configuration is simplified, the reliability as a wavelength monitor is improved, and troublesome adjustment work does not have to be performed during production, and mass production can be realized. Furthermore, according to the present invention, the oscillation wavelength of the laser beam is monitored using two wavelength filters for the narrow band and the broad band, so that the oscillation wavelength can be detected very accurately.
つぎの発明は、 上記の発明において、 前記半導体レーザから出力されるレーザ 光は、 1方向に偏光されたものであり、 上記第 1およぴ第 2の波長フィルタを構 成する複屈折材料は、 前記レーザ光の光軸と偏光方向とで作られる平面に対し平 行な面内に光学軸があり、 この光学軸がレーザ光の光軸に対し所定の角度に傾い ていることを特徴とする。 この発明によれば、 異常光軸にレーザ光の偏光を揃えており、 複屈折結晶を用 レ、て、 温度補償機能を持つ 2つの波長フィルタを持つ波長モニタを実現すること ができる。 In the following invention, in the above invention, the laser light output from the semiconductor laser is polarized in one direction, and the birefringent material constituting the first and second wavelength filters is An optical axis is in a plane parallel to a plane formed by the optical axis and the polarization direction of the laser light, and the optical axis is inclined at a predetermined angle with respect to the optical axis of the laser light. I do. According to the present invention, it is possible to realize a wavelength monitor having two wavelength filters having a temperature compensation function by using a birefringent crystal by aligning the polarization of the laser light with the extraordinary optical axis.
つぎの発明は、 上記の発明において、 前記半導体レーザから出力されるレーザ 光は、 1方向に偏光されたものであり、 上記波長フィルタを構成する複屈折材料 は、 前記レーザ光の光軸と偏光方向とで作られる平面に対し垂直な面内に光学軸 があり、 この光学軸がレーザ光の光軸に対し所定の角度に傾いていることを特徴 とする。  In the following invention, in the above invention, the laser light output from the semiconductor laser is polarized in one direction, and the birefringent material forming the wavelength filter is: The optical axis lies in a plane perpendicular to the plane formed by the directions, and the optical axis is inclined at a predetermined angle with respect to the optical axis of the laser beam.
この発明によれば、 常光軸にレーザ光の偏光を揃えており、 複屈折結晶を用い て、 温度補償機能を持つ 2つの波長フィルタを持つ波長モニタを実現することが できる。  According to the present invention, it is possible to realize a wavelength monitor having two wavelength filters having a temperature compensation function by using a birefringent crystal in which the polarization of laser light is aligned with the ordinary optical axis.
つぎの発明は、 上記の発明において、 上記広帯域用の第 2の波長フィルタの波 長弁別領域が半導体レーザの波長可変領域より大きく、 狭帯域用の第 1の波長フ ィルタの波長弁別領域が第 1の波長フィルタの波長可変領域に比べて十分小さく なるように、 第 1および第 2の波長フィルタを構成する複屈折材料の光軸方向の 厚みを設定することを特徴とする。  In the above invention, the wavelength discrimination region of the second wavelength filter for the wide band is larger than the wavelength variable region of the semiconductor laser, and the wavelength discrimination region of the first wavelength filter for the narrow band is the second wavelength filter. The thickness of the birefringent material constituting the first and second wavelength filters in the optical axis direction is set so as to be sufficiently smaller than the wavelength variable region of the first wavelength filter.
この発明によれば、 複屈折結晶の光軸方向の厚み設定により狭帯域用および広 帯域用の 2つの波長フィルタを構成するようにしており、 簡便に狭帯域用および 広帯域用の 2つの波長フィルタを実現することが可能となる。  According to the present invention, the two wavelength filters for the narrow band and the wide band are configured by setting the thickness of the birefringent crystal in the optical axis direction, and the two wavelength filters for the narrow band and the wide band are simply provided. Can be realized.
つぎの発明は、 上記の発明において、 前記波長検出手段は、 前記第 1の波長フ ィルタの透過光を検出する第 1の光検出器と、 前記半導体レーザから出力される レーザ光を直接検出する第 2の光検出器と、 前記第 2の波長フィルタの透過光を 検出する第 3の光検出器と、 上記第 1および第 2の光検出器の検出信号の比およ び前記第 3および第 2の光検出器の検出信号の比を用いて前記レーザ光の発振波 長を検出する波長検出部とを備えることを特徴とする。  In the following invention, in the above invention, the wavelength detecting means directly detects laser light output from the semiconductor laser, and a first photodetector for detecting transmitted light of the first wavelength filter. A second photodetector; a third photodetector for detecting light transmitted through the second wavelength filter; a ratio of detection signals of the first and second photodetectors; A wavelength detector that detects the oscillation wavelength of the laser light using the ratio of the detection signal of the second photodetector.
この発明によれば、 第 1および第 2の光検出器の検出信号の比と、 第 3および 第 2の光検出器の検出信号の比とを用いてレーザ光の発振波長を検出するように しているので、 半導体レーザの出力強度変化に影響されることなく発振波長を極 めて正確に検出することができる。 According to the present invention, the oscillation wavelength of the laser light is detected using the ratio of the detection signals of the first and second photodetectors and the ratio of the detection signals of the third and second photodetectors. As a result, the oscillation wavelength can be extremely accurately detected without being affected by a change in the output intensity of the semiconductor laser.
つぎの発明は、 上記の発明において、 前記半導体レーザおよび波長フィルタを 載置するとともに、 前記第 2および第 3の光検出器が第 1の光検出器より上方に 位置するように前記第 1〜第 3の光検出器を設置するベースキヤリァを更に備え、 前記ベースキヤリァ上に載置された波長フィルタを透過したレーザ光が第 2およ び第 3の光検出器で受光されないように前記第 2および第 3の光検出器を第 1の 光検出器よりも波長フィルタ側に接近させて配置していることを特徴とする。 この発明によれば、 波長フィルタを透過したレーザ光が第 2および第 3の光検 出器で受光されることがなくなり、 発振波長を正確に検出することができる。  In the following invention, in the above invention, the semiconductor laser and the wavelength filter are mounted, and the first to third light detectors are arranged such that the second and third photodetectors are located above the first photodetector. A base carrier on which a third photodetector is provided, wherein the second and third photodetectors do not receive the laser light transmitted through the wavelength filter mounted on the base carrier. The third photodetector is disposed closer to the wavelength filter than the first photodetector. According to the present invention, the laser light transmitted through the wavelength filter is not received by the second and third optical detectors, and the oscillation wavelength can be accurately detected.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は従来の波長モニタ装置の構成図であり、 第 2図は従来のファブリぺ ロー共振器を示す ^[視図であり、 第 3図は実施の形態 1における波長モニタ装置 の構成図であり、 第 4図はフアブリペロー共振器 (波長フィルタ) の波長に対す る透過率の変化を示すグラフであり、 第 5図は一軸性複屈折結晶を用いたファブ リペロー共振器 (波長フィルタ) を表す構成図であり、 第 6図は -ΒΒΟ結晶 の物性値を示す図であり、 第 7図は ]3- ΒΒΟ結晶の d n/d Τ+αηの温度 Τに 対する依存性を示すグラフであり、 第 8図は /3 - Β Β Ο結晶の線膨張係数 αの C 軸-光軸間角度 <i>cに对する依存性を示すグラフであり、 第 9図は /3-BBO結晶 の異常光屈折率 nの C軸-光軸間角度 φ に対する依存性を示すグラフであり、 第 10図は ]3- BB O結晶の異常光屈折率の温度に対する変ィ匕 dn/dTの C軸 - 光軸間角度 Φ。に対する依存性を示すグラフであり、 第 1 1図は i3— ΒΒΟ結晶 の φ cに対する温度特性を示すグラフであり、 第 1 2図は C a〇〇3結晶の^ c に対する温度特性を示す図であり、 第 13図は L i I 03結晶の φ cに対する温 度特性を示す図であり、 第 14図はひ— BBO結晶の φ cに対する温度特性を示 す図であり、 第 1 5図は L i I 03結晶の d n/dT+αηの温度 Tに対する依存 性を示すグラフであり、 第 1 6図は実施の形態 1における波長制御装置を表す構 成図であり、 第 1 7図は実施の形態 1の波長モニタ装置の変更態様を示す構成図 であり、 第 1 8図は実施の形態 2における波長モニタ装置の構成図であり、 第 1 9図は実施の形態 2における波長制御装置の構成図であり、 第 2 0図は、 狭帯域 用のフアブリペロー共振器 (波長フィルタ) および広帯域用のフアブリペロー共 振器 (波長フィルタ) のそれぞれの波長透過特性を示すグラフであり、 第 2 1図 は実施の形態 2の波長モニタ装置の変更態様を表す構成図である。 発明を実施するための最良の形態 FIG. 1 is a configuration diagram of a conventional wavelength monitoring device, FIG. 2 is a perspective view showing a conventional Fabry-Perot resonator, and FIG. 3 is a configuration diagram of a wavelength monitoring device in the first embodiment. Fig. 4 is a graph showing the change in the transmittance of a Fabry-Perot resonator (wavelength filter) with respect to the wavelength. Fig. 5 shows a Fabry-Perot resonator (wavelength filter) using a uniaxial birefringent crystal. FIG. 6 is a diagram showing the physical property values of the -ΒΒΟ crystal, and FIG. 7 is a graph showing the dependence of the dn / d α + αη of the 3-3-ΒΒΟ crystal on the temperature Τ. Fig. 8 is a graph showing the dependence of the linear expansion coefficient α of the / 3-Β Β Ο crystal on the C-axis-to-optical axis angle <i> c. FIG. 10 is a graph showing the dependence of the extraordinary refractive index n on the angle φ between the C axis and the optical axis. FIG. 10 shows the temperature of the extraordinary refractive index of the] 3-BBO crystal. C-axis of Heni匕 dn / dT against - between the optical axis angle [Phi. FIG. 11 is a graph showing temperature characteristics of i3-— crystal with respect to φ c, and FIG. 12 is a graph showing temperature characteristics of C a〇〇 3 crystal with respect to ^ c , and the FIG. 13 is a diagram showing a temperature characteristic with respect to phi c of L i I 0 3 crystal, Fig. 14 shed - is a view to view the temperature characteristics for phi c of the BBO crystal, the first 5 Figure dependence on L i I 0 3 temperature T of dn / dT + αη crystals FIG. 16 is a configuration diagram illustrating a wavelength control device according to the first embodiment, and FIG. 17 is a configuration diagram illustrating a modification of the wavelength monitor device according to the first embodiment. FIG. 18 is a configuration diagram of a wavelength monitor device according to the second embodiment, FIG. 19 is a configuration diagram of a wavelength control device according to the second embodiment, and FIG. 20 is a Fabry-Perot for a narrow band. FIG. 21 is a graph showing the wavelength transmission characteristics of a resonator (wavelength filter) and a Fabry-Perot resonator (wavelength filter) for a wide band. FIG. 21 is a configuration diagram showing a modification of the wavelength monitor device according to the second embodiment. It is. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照して、 この発明にかかる波長モニタ装置の好適な実施の 形態を詳細に説明する。  Hereinafter, preferred embodiments of a wavelength monitor device according to the present invention will be described in detail with reference to the accompanying drawings.
実施の形態 1 . Embodiment 1
第 3図はこの発明の実施の形態 1による波長モニタ装置 (あるレ、は波長安定化 光源) を示す構成図である。 半導体レ一ザ 1は一方向に偏光したレーザ光 (以下 光信号と称する) を出射する。 半導体レーザ 1としては、 例えば、 活性層中に回 折格子を有する分布帰還型 (DFB)レーザ、 注入電流または温度によって波長を変 えることができる波長可変レーザダイォード、 または電界吸収素子とレーザダイ オードとを直列に配置した複合型 (EA/LD)モジュールなどを採用する。 また、 半 導体レーザ 1は、 第 1 6図に示されている波長制御装置から入力される制御信号 T 1によって注入電流または温度等が変化し、 波長が制御される。  FIG. 3 is a configuration diagram showing a wavelength monitoring device (a certain wavelength is a wavelength stabilized light source) according to Embodiment 1 of the present invention. The semiconductor laser 1 emits laser light (hereinafter referred to as an optical signal) polarized in one direction. Examples of the semiconductor laser 1 include a distributed feedback (DFB) laser having a diffraction grating in an active layer, a tunable laser diode whose wavelength can be changed by injection current or temperature, or an electroabsorption element and a laser diode. And a compound type (EA / LD) module in which the components are arranged in series. In addition, the injection current or the temperature of the semiconductor laser 1 is controlled by the control signal T1 input from the wavelength control device shown in FIG. 16 to control the wavelength.
半導体レーザ 1から出射される光信号は、 レンズ 2によって集光され、 平行光 として出力される。 このレンズ 2によって、 光信号のビームサイズを調整して、 波長フィルタとしてのフアブリペロー共振器 3に入射する。 半導体レーザ 1の出 射面中心とレンズ 2の中心とを結ぶ軸が光軸となる。 本実施の形態 1および後述 する実施の形態 2では、 光信号の進行方向(光軸方向)を空間座標において Z軸の 方向と定め、 空間における上方向を Y軸の方向と定め、 Z軸および Y軸に直交す る方向(第 3図において紙面に垂直で、 手前に向かう方向)を X軸と定める。 半導 体レーザ 1から出射される光信号は X軸方向に振動する偏光成分を有するものと する。 An optical signal emitted from the semiconductor laser 1 is condensed by the lens 2 and output as parallel light. The beam size of the optical signal is adjusted by the lens 2 and the light signal is incident on a Fabry-Perot resonator 3 as a wavelength filter. The axis connecting the center of the emitting surface of the semiconductor laser 1 and the center of the lens 2 is the optical axis. In Embodiment 1 and Embodiment 2 to be described later, the traveling direction (optical axis direction) of an optical signal is defined as the Z-axis direction in space coordinates, and the upward direction in space is defined as the Y-axis direction. The direction perpendicular to the Y-axis (the direction perpendicular to the page in Fig. 3 and facing the front) is defined as the X-axis. Semiconduct The optical signal emitted from the body laser 1 has a polarization component that vibrates in the X-axis direction.
フアブリペロー共振器 (波長フィルタ) 3は、 半導体レーザ 1からの光信号が 入射する入射面と出射する出射面とに光を反射する反射膜 7および 8を有し、 そ の材料としては、 一種類 (一材料) の一軸性複屈折結晶のみ (例えば、 /3 - B B O 結晶、 α - B B O結晶、 L i I O 3結晶、 C a C O 3結晶などのいずれか)で形成さ れている。 フアブリペロー共振器 3の材料として用いられる一軸性複屈折結晶の 結晶切り出し面は光軸に直交する X Y面に平行になるように配置され、 一軸性複 屈折結晶の光学軸 (以下、 C軸と称する) は、 レーザ光の光軸に垂直な X Y面に 対して所定角度傾斜されている。 The Fabry-Perot resonator (wavelength filter) 3 has reflection films 7 and 8 that reflect light on an incident surface on which an optical signal from the semiconductor laser 1 is incident and an exit surface on which the optical signal is emitted, and one kind of material is used. only uniaxial birefringent crystal (first material) (e.g., / 3 - BBO crystal, alpha - BBO crystal, L i IO 3 crystal, any such C a CO 3 crystals) are formed by. The crystal cut surface of the uniaxial birefringent crystal used as the material of the Fabry-Perot resonator 3 is arranged so as to be parallel to the XY plane orthogonal to the optical axis, and the optical axis of the uniaxial birefringent crystal (hereinafter referred to as the C axis) ) Is inclined at a predetermined angle with respect to the XY plane perpendicular to the optical axis of the laser beam.
第 1のフォトダイオード (主光検出器) 4は、 フアブリペロー共振器 3を透過 した光信号を受光しその強度 (光電流値)を検出し、 光強度モニタ信号 S 1を出力 する。  The first photodiode (main photodetector) 4 receives the optical signal transmitted through the Fabry-Perot resonator 3, detects its intensity (photocurrent value), and outputs a light intensity monitor signal S1.
第 2のフォトダイオード (副光検出器) 5は、 第 1のフォトダイオード 4の上 方に配置され、 フアブリペロー共振器 3を透過せず半導体レーザ 1から出射され る光信号を直接に受光しその強度 (光電流値)を検出し、 光強度モニタ信号 S 2を 出力する。  The second photodiode (sub-photodetector) 5 is disposed above the first photodiode 4 and directly receives an optical signal emitted from the semiconductor laser 1 without passing through the Fabry-Perot cavity 3 and receiving the light signal. Detects light intensity (photocurrent value) and outputs light intensity monitor signal S2.
これら半導体レーザ 1、 レンズ 2、 フアブリペロー共振器 3、 第 1のフォトダ ィオード 4および第 2のフォトダイオード 5は、 ベースキャリア 6上に設置され ている。 なお、 フアブリペロー共振器 3を透過した光信号が第 2のフォトダイォ ード 5で受光されることがないように、 フアブリペロー共振器 3の高さ、 あるい は第 2のフォトダイォード 5の設置高さが調整されている。  These semiconductor laser 1, lens 2, Fabry-Perot cavity 3, first photodiode 4, and second photodiode 5 are mounted on base carrier 6. The height of the Fabry-Perot resonator 3 or the height of the second photodiode 5 is set so that the optical signal transmitted through the Fabry-Perot resonator 3 is not received by the second photodiode 5. Has been adjusted.
ここで、 フアブリペロー共振器 3を透過した光信号の波長に対する透過特性は、 温度変化に関係なく一定に保たれる。 つまり、 フアブリペロー共振器 3は温度補 償機能を有する。 次に、 フアブリペロー共振器 3の温度補償条件を説明する。 第 3図に示す波長モニタ装置においては、 長方形状のファブリペロー共振器 3 の入射面に光信号が垂直に入射している。 フアブリべ口一共振器 3は入射および 出射面に反射膜 7および 8を有し、 その強度反射率を Rとすると、 フアブリべ口 一共振器 3を透過した光信号強度の波長に対する依存性は式 (3 ) および第 4図 で表される。 T R (え) は透過率である。 Here, the transmission characteristics with respect to the wavelength of the optical signal transmitted through the Fabry-Perot resonator 3 are kept constant irrespective of the temperature change. That is, the Fabry-Perot resonator 3 has a temperature compensation function. Next, the temperature compensation condition of the Fabry-Perot resonator 3 will be described. In the wavelength monitoring device shown in FIG. 3, an optical signal is vertically incident on the incident surface of the rectangular Fabry-Perot resonator 3. The Fabry-Bore-One resonator 3 Assuming that the emission surfaces have reflection films 7 and 8 and their intensity reflectivity is R, the dependence of the intensity of the optical signal transmitted through the Fabry-Bore-One resonator 3 on the wavelength is expressed by Equation (3) and FIG. Is done. TR (E) is the transmittance.
Figure imgf000018_0001
この場合、 フアブリペロー共振器 3を透過した光信号の強度は光信号の周波数 に対して周期的な変化を示す。 この 1周期分に対応する周波数間隔を、 フアブリ ペロー共振器 3を透過した光信号の波長に対するフリースぺクトルレンジ (以下 F S Rと称する、 自由スペクトル間隔) という。 F S Rは、 光軸方向の共振器長、 第 3図の場合においては一軸性複屈折結晶 3の Z軸方向の長さ Lおよび屈折率 n に依存し、 次の式 (4 ) で表される。 cは光速である。
Figure imgf000018_0001
In this case, the intensity of the optical signal transmitted through the Fabry-Perot resonator 3 changes periodically with respect to the frequency of the optical signal. The frequency interval corresponding to one cycle is called a free spectrum range (hereinafter, referred to as FSR, free spectral interval) with respect to the wavelength of the optical signal transmitted through the Fabry-Perot resonator 3. The FSR depends on the resonator length in the direction of the optical axis, in the case of FIG. 3, the length L in the Z-axis direction of the uniaxial birefringent crystal 3 and the refractive index n, and is expressed by the following equation (4). . c is the speed of light.
FSR = (4) FSR = (4)
2nL フアブリペロー共振器 3を透過した光信号強度の波長に対する依存性が温度に よつて変化しないということが、 フアブリべ口一共振器に対する 補償条件で ある。 したがって、 温度補償を可能にするためには、 式 (4 ) で表される F S R が温度に依存しないことが必要である。 F S Rが温度 Tに対して一定であるため には、 式 (4 ) において共振器長 n Lが温度 Tに対して一定の値を持つというこ とが必要である。 この関係を表したものが式 (5 ) である。  The compensation condition for the Fabry-Perot single resonator is that the dependence of the intensity of the optical signal transmitted through the 2nL Fabry-Perot resonator 3 on the wavelength does not change with temperature. Therefore, in order to enable temperature compensation, it is necessary that F SR represented by equation (4) does not depend on temperature. In order for F SR to be constant with respect to temperature T, it is necessary that the resonator length n L has a constant value with respect to temperature T in equation (4). Equation (5) expresses this relationship.
d , τ、 dn τ oL . ... d, τ , dn τ oL ...
— (nL) =—— L + n— = 0 · · · (5)  — (NL) = —— L + n— = 0 · · · (5)
5T ar θτ フアブリべ口一共振器 3の光軸方向 (第 3図における Ζ方向)の線膨張係数を α とすると、 フアブリペロー共振器 3の物理長 Lは式 (6) で表される。 5T ar θτ The linear expansion coefficient in the optical axis direction (Ζ direction in Fig. 3) of Fabry Then, the physical length L of the Fabry-Perot resonator 3 is expressed by equation (6).
L = L0(l + aT) . . -(6) ここで、 L。は 0°Cにおけるフアブリペロー共振器の Z軸方向の物理長である。 式 (5) を式 (6) に代入すると、 フアブリペロー共振器 3の温度補償条件は式 (7) となる。 L = L 0 (l + aT)..-(6) where L. Is the physical length of the Fabry-Perot cavity at 0 ° C in the Z-axis direction. By substituting equation (5) into equation (6), the temperature compensation condition of Fabry-Perot resonator 3 becomes equation (7).
— + na = 0 (7) — + Na = 0 (7)
cT フアブリペロー共振器 3の材料として、 一つの C軸を有する一軸性複屈折結晶 を用いた場合における入射した光信号の光軸と C軸との位置関係と、 フアブリべ ロー共振器 3の線膨張係数および屈折率について説明する。  When a uniaxial birefringent crystal having one C-axis is used as the material of the cT Fabry-Perot resonator 3, the positional relationship between the optical axis of the incident optical signal and the C-axis, and the linear expansion of the Fabry-Perot resonator 3 The coefficient and the refractive index will be described.
なお、 レーザ光の偏光方向 (この場合 X方向) を一軸性複屈折結晶の異常光軸 あるいは常光軸に揃えた場合でも、 温度補償条件を満足させることができるが、 以下の説明では、 レーザ光の偏光方向を一軸性複屈折結晶の異常光軸に揃えた場 合について説明する。  Note that the temperature compensation condition can be satisfied even when the polarization direction of the laser beam (in this case, the X direction) is aligned with the extraordinary optical axis or the ordinary optical axis of the uniaxial birefringent crystal. The case where the polarization direction of the light is aligned with the extraordinary optical axis of the uniaxial birefringent crystal will be described.
第 5図において、 フアブリペロー共振器の材料である一軸性複屈折結晶の C軸 は XZ平面内にあり、 光軸は Z軸に対して平行であり、 C軸は光軸に対して一定 の角度 Φ c傾いている。 またフアブリペロー共振器 3に入射する光信号の偏光は フアブリペロー共振器 3に対して p偏光であり、 第 3図においては X方向に対応 している。 異常光線は、 C軸と光軸方向によって作られる面と同じ振動面をもつ ので、 この場合、 入射した光信号はフアブリペロー共振器 3内を異常光線として 伝播することがわる。 異常光線に対する屈折率 nは、 光軸と C軸とのなす角 に依存し、 neおよび noは温度 Tに依存することから、 n(0c, T)で表し、 式 (8) のようになる。
Figure imgf000020_0001
ここで、 ne は C軸と平行な方向の偏光成分に対する屈折率 (異常光屈折率) であり、 no は C軸と垂直な方向の偏光成分に対する屈折率 (常光屈折率) であ る。 また η ( φ Τ)は、 一軸性複屈折結晶を材料とするフアブリべ口一共振器 に入射する光信号に対する屈折率である。
In Fig. 5, the C axis of the uniaxial birefringent crystal, which is the material of the Fabry-Perot resonator, is in the XZ plane, the optical axis is parallel to the Z axis, and the C axis is at a constant angle to the optical axis. Φ c is inclined. The polarization of the optical signal incident on the Fabry-Perot resonator 3 is p-polarized with respect to the Fabry-Perot resonator 3, and corresponds to the X direction in FIG. Since the extraordinary ray has the same vibration plane as the plane created by the C axis and the optical axis direction, in this case, the incident optical signal propagates inside the Fabry-Perot resonator 3 as an extraordinary ray. The refractive index n for an extraordinary ray depends on the angle between the optical axis and the C axis. Since ne and no depend on the temperature T, they can be expressed as n (0c, T), as shown in equation (8). .
Figure imgf000020_0001
Here, ne is the refractive index for the polarized light component in the direction parallel to the C axis (the extraordinary light refractive index), and no is the refractive index for the polarized light component in the direction perpendicular to the C axis (the ordinary light refractive index). Η (φΤ) is the refractive index for an optical signal incident on a Fabry-Bore-single resonator made of a uniaxial birefringent crystal.
一軸性複屈折結晶の光軸方向における線膨張係数 αは式 (9) のように表され る。 ac は C軸に平行な方向の線膨張係数、 aa は C軸に垂直な方向の線膨張係 数である。  The linear expansion coefficient α in the optical axis direction of a uniaxial birefringent crystal is expressed as in equation (9). ac is the coefficient of linear expansion in the direction parallel to the C axis, and aa is the coefficient of linear expansion in the direction perpendicular to the C axis.
a = cos φ. + sin φ— (9) 前記 d n/d Tおよび aを用いると、 第 4図に示した波長特性の温度特性は、 異常光軸方向および常光軸方向のそれぞれについて式 (1 0) 、 式 (1 1 ) で表 される。 a = cos φ. + sin φ— (9) Using the dn / d T and a, the temperature characteristic of the wavelength characteristic shown in FIG. 4 can be expressed by the formula (1) for the extraordinary optical axis direction and the ordinary optical axis direction. 0), and is expressed by equation (11).
(異常光軸方向)
Figure imgf000020_0002
(Abnormal optical axis direction)
Figure imgf000020_0002
(常光軸方向) (Ordinary light axis direction)
άλ άηη/άΤ+α(φα)·η0 άλ άη η / άΤ + α ( φ α) · η 0
λ λ
Figure imgf000020_0003
(1 1 )
Figure imgf000020_0003
(1 1)
本出願における発明者たちは、 フアブリペロー共振器の材料として検討を行つ た一軸性複屈折結晶について、 C軸の光軸に対する傾き φ cの値を変化させるこ とにより、 式 (7) を満たす一軸性複屈折結晶およびその場合の φ cの値を調べ た。 その結果、 13-B BO(B a B204)結晶、 α— BBO結晶、 L i I 03、 C a C03などが式 (7) を満たすことを見出した。 これらの結晶は、 レーザ光の 波長変換素子として用いられている。 The inventors of the present application have made it possible for the uniaxial birefringent crystal studied as a material of the Fabry-Perot resonator to change the value of the inclination φ c of the C axis with respect to the optical axis. According to the above, the uniaxial birefringent crystal satisfying the equation (7) and the value of φ c in that case were examined. As a result, 13-B BO (B a B 2 0 4) crystals, such as alpha-BBO crystal, L i I 0 3, C a C0 3 was found to satisfy the equation (7). These crystals are used as wavelength conversion elements for laser light.
第 6図に ]3— BBO結晶の諸特性を示す。 すなわち、 ]3— BBOの異常光屈折 率 ne は 1. 5 3 1 1で、 常光屈折率 no は 1. 6467で、 熱光学係数 d no/ dTは— 1 6. 8 X 1 0— 6/Kで、 熱光学係数 d ne/d Tは— 8. 8 X 1 0一6/ で、 線膨張係数 etc は 3 3. 3 X 1 0— Kで、 線膨張係数 c a は 0. 5 X 1Fig. 6 shows the characteristics of] 3-BBO crystal. That is,]] — BBO has an extraordinary refractive index ne of 1.53 11 1, an ordinary refractive index no of 1.6467, and a thermo-optic coefficient d no / dT of — 16.8 X 10 0 6 / in K, thermo-optical coefficient d ne / d T - 8. 8 X 1 0 one 6 / a, coefficient of linear expansion etc is 3 3. 3 X 1 0- K, the linear expansion coefficient ca is 0. 5 X 1
0一6/ Kである。 0-1 6 / K.
また、 第 7図に、 — BBOからなる一軸性複屈折結晶をフアブリペロー共振 器 3として用い、 かつレーザ光の偏光方向を異常光軸に揃えた場合における式 ( 7) に示した 3 η/3 Τ+η αと、 光軸と C軸となす角 φ cとの関係を示すグラフ を示す。 第 8図は — ΒΒΟ結晶での線膨張係数 αの角度 φ cに対する依存性を 示すグラフであり、 第 9図は 一 ΒΒΟの結晶での屈折率 ηの角度 φ cに対する 依存性を示すグラフであり、 第 1 0図は /3—ΒΒΟの結晶での d n/dTの角度 ^ cに対する依存性を示すグラフである。 すなわち、 第 8図の線膨張係数 αと角 度 <f> cとの関係と、 第 9図の屈折率 nと角度 ψ cとの関係と、 第 10図の d n/ dTと角度 (ί> cとの関係とを用いて、 第 7図に示す 3 η/3 Τ + η αと角度 φ cと の関係が得られる。 In addition, Fig. 7 shows that 3 η / 3 shown in equation (7) when a uniaxial birefringent crystal composed of BBO is used as the Fabry-Perot resonator 3 and the polarization direction of the laser beam is aligned with the extraordinary optical axis. and T + eta alpha, a graph showing the relationship between the optical axis and the C axis and the angle phi c. Fig. 8 is a graph showing the dependence of the coefficient of linear expansion α on the angle φ c in a ΒΒΟ crystal, and Fig. 9 is a graph showing the dependence of the refractive index η on the angle φ c in a ΒΒΟ crystal. Yes, FIG. 10 is a graph showing the dependence of dn / dT on the angle ^ c in a / 3--3 crystal. That is, the relationship between the linear expansion coefficient α and the angle <f> c in FIG. 8, the relationship between the refractive index n and the angle ψ c in FIG. 9, and the relationship between dn / dT and the angle (ί> Using the relationship with c, the relationship between 3 η / 3 Τ + η α and the angle φ c shown in FIG. 7 is obtained.
また、 第 1 1図は、 1軸性複屈折結晶として /3—BBOを用いた場合に、 異常 光軸方向と常光軸方向における Φ cと温度特性の関係を式 (1 0) および式 (1 1) を用いてグラフ化したものである。 第 1 1図によれば、 C軸角度 <i) cを変化 させることによって異常光軸方向は一 8 pmZ°Cから + 36 pm/°Cまで、 常光 軸方向は一 1 5 pmZ°Cから + 36 pmZ°Cまで自由に温度特性を設定すること ができる。 また、 (1 11/3丁+ひ (: 11〉0かっ(111 01丁+ « !1 11< 0の関係が あるために φ cが 0〜90度の間で温度特性がゼロとなる ψ cが存在する。 例え ば、 常光軸方向を用い温度特性を土 1 pmZ°C以下としたい場合は φ cを約 63 〜6 7度のいずれかの値に設定すればよい。 異常光軸方向を用い温度特性を ± 1 pm 以下としたい場合は cを約 5 5〜5 9度のいずれかの値に設定すれば よい。 また、 この温度特性を用いて波長特性を調整することができる。 I TUグ リッド波長を所望の波長制御ボイントに合わせたい場合、 通常はフィルタを傾け ることによって波長特性を変更するが、 上記の特徴を用いてフィルタ (1軸性複 屈折結晶) の温度を変化させることによって上記波長制御ポイントに合わせるこ とができる。 例えば、 F S R= 2 5 GH z (= 0. 2 nm) 、 温度特性が 1 0 p m 。 Cに設定した 3— BBOを用いた場合、 最大 20°Cのフィルタ温度変化量で 任意のロックポイントを使用することができる。 なお、 I TUグリッドは、 国際 電気通信連合 (International Telecommunication Union) で指定された特定の 波長領域、 例えば 1 5 50 nmのウィンドウでの近接した間隔の波長セットであ り、 例えば 1 0 0 GHZ間隔の場合は、 約 0. 8 nmの波長間隔に相当する。 第 1 2図は、 1軸性複屈折結晶として C a C03を用いた場合、 異常光軸方向 と常光軸方向における <ί> cと温度特性の関係を式 (1 0) および式 (1 1) を用 いてグラフ化したものである。 用いた物性定数は、 異常光屈折率 n eは 1. 4 7 7 1で、 常光屈折率 n oは 1. 6 3 3 7で、 常光軸方向の屈折率の温度係数 d n o/d Tは 2. 1 0 X 1 0— 6ZKで、 異常光軸方向の屈折率の温度係数 d n e ZdTH l. 1 9 X 1 0— 5/Kで、 線膨張係数 a aは— 5. 7 0 X 1 0~6/K で、 線膨張係数ひ cは 2. 44 X 1 0- 6/Κである。 第 1 2図によれば、 φ c を変化させることによって異常光軸方向は +4 pm/°Cから + 40 pmZ°Cまで、 常光軸方向は一 7 pm/°Cから + 40 pmZ°Cまで自由に温度特性を設定するこ とができる。 また常光軸方向については、 d nZd T+ a c n > 0かつ d n/d T + a a n < 0の関係があるために が 0〜9 0度の間で温度特性がゼ口とな る φ cが存在する。 例えば、 常光軸方向を用い温度特性を土 1 pm/°C以下とし たい場合は φ cを約 6 5〜 70度のいずれかの値に設定すればよい。 異常光軸方 向において最小の温度特性を得たい場合には ψ c = 90度に設定すればよい。 ま た、 この温度特性を用いて波長特性を調整することができる。 I TUグリッド波 長を所望の波長制御ポイントに合わせたい場合、 通常はフィルタを傾けることに よって波長特性を変更するが、 上記の特徴を用いてフィルタの温度を変化させる ことによって上記波長制御ポイントに合わせる。 例えば、 FSR=25GHz (=0. 2 nm) 、 温度特性が 10 pmZ°Cに設定した C a C03を用いた場合、 最大 20 °Cのフィルタ温度変化量で任意のロックポイントを使用することができ る。 Fig. 11 shows the relationship between Φ c and temperature characteristics in the direction of the extraordinary optical axis and the direction of the ordinary optical axis when / 3-BBO is used as the uniaxial birefringent crystal. 1 This is a graph using 1). According to Fig. 11, by changing the C-axis angle <i) c, the extraordinary optical axis direction is from 18 pmZ ° C to +36 pm / ° C, and the ordinary optical axis direction is from 15 pmZ ° C by changing c. Temperature characteristics can be freely set up to +36 pmZ ° C. In addition, the temperature characteristic becomes zero when φ c is between 0 and 90 degrees because of the relationship of (1 11/3 cho + hi ( : 11) 0 bracket (111 01 cho + « ! 1 11 <0 ψ For example, if the temperature characteristic is to be 1 pmZ ° C or less using the direction of the ordinary optical axis, φ c should be about 63 It may be set to any value between ~ 67 degrees. If the temperature characteristic is to be set to ± 1 pm or less using the direction of the extraordinary optical axis, c may be set to any value of about 55 to 59 degrees. The wavelength characteristics can be adjusted using the temperature characteristics. When it is desired to match the ITU grid wavelength to a desired wavelength control point, the wavelength characteristics are usually changed by tilting the filter, but the temperature of the filter (uniaxial birefringent crystal) is changed using the above characteristics. By doing so, it is possible to match the wavelength control point. For example, FSR = 25 GHz (= 0.2 nm), temperature characteristic is 10 pm. When using 3—BBO set to C, any lock point can be used with a maximum filter temperature change of 20 ° C. It should be noted that the ITU grid is a set of closely spaced wavelengths in a specific wavelength region specified by the International Telecommunication Union, for example, a window of 1550 nm. Corresponds to a wavelength interval of about 0.8 nm. The first 2 figures when using the C a C0 3 as uniaxial birefringent crystal, (0 1) wherein the relationship <ί> c and the temperature characteristics of the extraordinary optical axis direction and the ordinary axis direction and the formula (1 Graphed using 1). The property constants used were: extraordinary refractive index ne was 1.4.771, ordinary refractive index no was 1.63.37, and temperature coefficient of refractive index dno / d T in the ordinary optical axis direction was 2.1. 0 X 1 0- in 6 ZK, abnormal temperature coefficient of the optical axis of the refractive index dne ZdTH l 1 9 X 1 0- 5 / K, the linear expansion coefficient aa -. 5. 7 0 X 1 0 ~ 6 / At K, the coefficient of linear expansion c is 2.44 X 10-6 / Κ. According to Fig. 12, by changing φ c, the extraordinary optical axis direction is from +4 pm / ° C to +40 pmZ ° C, and the ordinary optical axis direction is from 17 pm / ° C to +40 pmZ ° C. Temperature characteristics can be freely set up to this point. With respect to the ordinary axis direction, d nZd T + acn> 0 and dn / d T + a a n < because there is the relationship 0 0-9 0 degrees phi c temperature characteristics ing and zero opening between the Exists. For example, if it is desired to set the temperature characteristic to 1 pm / ° C or less using the direction of the ordinary optical axis, φ c may be set to any value of about 65 to 70 degrees. To obtain the minimum temperature characteristics in the direction of the extraordinary optical axis, ψ c = 90 degrees may be set. The wavelength characteristics can be adjusted using the temperature characteristics. I TU grid wave When it is desired to adjust the length to a desired wavelength control point, the wavelength characteristic is usually changed by tilting the filter. However, the wavelength is adjusted to the wavelength control point by changing the temperature of the filter using the above characteristics. For example, FSR = 25GHz (= 0. 2 nm), when the temperature characteristics using the C a C0 3 was set to 10 pmZ ° C, the use of any locking point filter temperature variation of up to 20 ° C Can be done.
第 1 3図は、 1軸性複屈折結晶として L i I 03を用いた場合、 異常光軸方向 と常光軸方向における <ί> cと温度特性の関係を式 (10) および式 (1 1) を用 いてグラフ化したものである。 用いた物性定数は、 異常光屈折率 n eは 1. 71 03で、 常光屈折率 n oは 1. 8474で、 常光軸方向の屈折率の温度係数 d n oZdTは— 8. 49 X 1 0— 5ZKで、 異常光軸方向の屈折率の温度係数 d η eZdTは— 6. 9 2 X 1 0— 5/Kで、 線膨張係数 a aは 2. 80 X 1 0— 5Z で、 線膨張係数 a cは 4. 80 X 10一5 ZKである。 第 1 3図によれば、 φ cを変化させることによって異常光軸方向は一 20 pmZ°Cから +3 pmZ°Cま で、 常光軸方向は— 28 p mZ°Cから + 3 p m,°Cまで自由に温度特性を設定す ることができる。 また常光軸方向、 異常光軸ともに d n/dT+aen>0かつ d nZdT +ひ anく 0の関係があるために 0 cが 0〜90度の間で温度特性が ゼロとなる Φ cが存在する。 例えば、 常光軸方向を用い温度特性を土 1 pm_ °C 以下としたい場合は φ cを約 15〜22度のいずれかの値に設定すればよレ、。 異 常光軸方向を用い温度特性を土 1 pm/°C以下としたい場合は φ cを約 18〜2 7度のいずれかの値に設定すればよい。 また、 この温度特性を用いて波長特性を 調整することができる。 I TUグリツド波長を所望の波長制御ポイントに合わせ たい場合、 通常はフィルタを傾けることによって波長特性を変更するが、 上記の 特徴を用いてフィルタの温度を変化させることによつて上記波長制御ボイントに 合わせる。 例えば、 FSR=25GHz (=0. 2 nm) 、 温度特性が 10 p m Z°Cに設定した L i I 03を用いた場合、 最大 20°Cのフィルタ温度変化量で任 意の口ックポイントを使用することができる。 第 1 4図は、 1軸性複屈折結晶として α— B BOを用いた場合、 異常光軸方向 と常光軸方向における Φ cと温度特性の関係を式 (1 0) および式 (1 1) を用 いてグラフ化したものである。 用いた物性定数は、 異常光屈折率 n eは 1. 5 3 00で、 常光屈折率 n oは 1. 6 50 2で、 常光軸方向の屈折率の温度係数 d n oZd Tは一 9. 3 0 X 1 0— 5/Kで、 異常光軸方向の屈折率の温度係数 d n e/d Tは一 1 6. 6 X 1 0— 5/Kで、 線膨張係数 a aは 4. 0 X 1 0— 5/K で、 線膨張係数 a cは 3 6. 0 X 1 0一5 である。 第 1 4図によれば、 φ c を変化させることによって異常光軸方向は一 1 1 pmZ°Cから +4 7 pmZCま で、 常光軸方向は— 3 p mZ°Cから + 4 7 p m/°Cまで自由に温度特性を設定す ることができる。 また常光軸方向、 異常光軸ともに d nZd T+ a。n > 0かつ d n/d T+ a a n < 0の関係があるために φ cが 0〜90度の間で温度特性が ゼロとなる cが存在する。 例えば、 常光軸方向を用い温度特性を ± 1 pmZ°C 以下としたい場合は φ cを約 74〜8 0度のいずれかの値に設定すればよい。 異 常光軸方向を用い温度特性を土 1 pm_ °C以下としたい場合は ψ cを約 6 3〜6 6度のいずれかの値に設定すればよい。 また、 この温度特性を用いて波長特性を 調整することができる。 I T Uグリツド波長を所望の波長制御ボイントに合わせ たい場合、 通常はフィルタを傾けることによって波長特性を変更するが、 上記の 特徴を用いてフィルタの温度を変化させることによつて上記波長制御ボイントに 合わせる。 例えば、 F SR= 2 5 GH z (=0. 2 n m) 、 温度特性が 1 0 p m Z°Cに設定した c — B BOを用いた場合、 最大 20°Cのフィルタ温度変化量で任 意のロックポイントを使用することができる。 The first 3 figures, in the case of using L i I 0 3 as a uniaxial birefringent crystal, the formula (10) the relation <ί> c and the temperature characteristics of the extraordinary optical axis direction and the ordinary axis direction and the formula (1 Graphed using 1). Physical constants used were extraordinary refractive index ne is 1.71 03, in the ordinary refractive index no is 1.8474, the temperature coefficient dn OZdT refractive index of ordinary light axial - 8. 49 X 1 0- 5 ZK The temperature coefficient d η eZdT of the refractive index in the direction of the extraordinary optical axis is — 6.92 X 10 — 5 / K, the linear expansion coefficient aa is 2.80 X 10 — 5 Z, and the linear expansion coefficient ac Is 4.80 X 10-1 5 ZK. According to Fig. 13, by changing φ c, the direction of the extraordinary optical axis is from 20 pmZ ° C to +3 pmZ ° C, and the direction of the ordinary optical axis is −28 pmZ ° C to +3 pm, °. Temperature characteristics can be freely set up to C. Also, in both the normal optical axis and the extraordinary optical axis, there is a relationship of dn / dT + a e n> 0 and d nZdT + a n a 0, so that the temperature characteristic becomes zero when 0 c is between 0 and 90 degrees. c exists. For example, if you want the temperature characteristics to be less than 1 pm_ ° C in soil using the direction of the ordinary optical axis, you can set φ c to any value from about 15 to 22 degrees. If the temperature characteristic is to be 1 pm / ° C or less using the direction of the abnormal optical axis, φ c should be set to any value of about 18 to 27 degrees. The wavelength characteristics can be adjusted using the temperature characteristics. When it is desired to adjust the ITU grid wavelength to a desired wavelength control point, the wavelength characteristic is usually changed by tilting the filter, but by changing the temperature of the filter using the above characteristics, the wavelength control point can be adjusted. Match. For example, FSR = 25GHz (= 0. 2 nm), when the temperature characteristics using L i I 0 3 set to 10 pm Z ° C, the mouth Kkupointo arbitrary filter temperature change of up to 20 ° C Can be used. Fig. 14 shows the relationship between Φ c and temperature characteristics in the extraordinary optical axis direction and the ordinary optical axis direction when α-BBO is used as the uniaxial birefringent crystal, using equations (10) and (11). It is graphed using. The physical constants used were: extraordinary refractive index ne was 1.530, ordinary refractive index no was 1.6502, and temperature coefficient of refractive index in the ordinary optical axis direction was dn oZd T was 9.30 x in 1 0- 5 / K, abnormal temperature coefficient of the optical axis of the refractive index dne / d T one 1 6. 6 X 1 0- 5 / K, the linear expansion coefficient aa 4. 0 X 1 0- 5 / in K, the linear expansion coefficient ac is 3 6. 0 X 1 0 one 5. According to FIG. 14, by changing φ c, the direction of the extraordinary optical axis is from 11 pmZ ° C to +47 pmZC, and the direction of the ordinary optical axis is −3 pmZ ° C to +47 pm / Temperature characteristics can be freely set up to ° C. D nZd T + a for both the normal optical axis and the extraordinary optical axis. Since there is a relation of n> 0 and dn / d T + a a n <0, there exists c whose temperature characteristic becomes zero when φ c is between 0 and 90 degrees. For example, if it is desired to set the temperature characteristic to ± 1 pmZ ° C or less using the direction of the ordinary optical axis, φc may be set to any value of about 74 to 80 degrees. When it is desired to set the temperature characteristic to 1 pm_ ° C or less using the direction of the abnormal optical axis, ψc may be set to any value of about 63 to 66 degrees. The wavelength characteristics can be adjusted using the temperature characteristics. When it is desired to adjust the ITU grid wavelength to a desired wavelength control point, the wavelength characteristics are usually changed by tilting the filter.However, the temperature is adjusted to the wavelength control point by changing the temperature of the filter using the above characteristics. . For example, when FSR = 25 GHz (= 0.2 nm) and the temperature characteristic is set to 10 pm Z ° C, use a c-BBO with a filter temperature change of up to 20 ° C. Lock points can be used.
なお、 上記の ]3— B BO、 C a C〇3、 L i l〇3、 α— B BO結晶以外にも、 d n//d T+ a c n > C^^^ d nノ d T + a a n < 0の関係、 もしくは d n/d T+ a c nく 0かつ d n/d T+ a a n〉 0の関係を満たす任意の結晶を用いて もよレ、。 この場合、 φ cが 0〜9 0度の範囲で必ずゼロを示す温度特性が得られ、 この付近の φ cを選ぶことにより 特性がゼロもしくは非常に少ない波長フィ ルタを得られる。 また、 上記の011 /(1丁+ £^ 11>0かっ(111 £1丁+ £^ 11<0の関係、 も しくは(Ι
Figure imgf000025_0001
く 0かつ d n / d T + a a n〉 0の関係を満たさない 関係であっても ψ cを調節することによって d n/dT+α nが最小、 つまり式 (10) 、 式 (1 1) の温度特性が最小になる条件が得られる。
In addition to the above] 3—BBO, C a C〇 3 , Lil〇 3 , and α—B BO crystals, dn / / d T + a c n> C ^^^ dn no d T + a a Any crystal that satisfies the relationship of n <0 or the relationship of dn / d T + a c n 0 and dn / d T + a a n> 0 may be used. In this case, a temperature characteristic in which φc always indicates zero is obtained in the range of 0 to 90 degrees. By selecting φc in the vicinity of this temperature filter, a wavelength filter having zero or very little characteristic can be obtained. In addition, the above-mentioned 011 / (1 chore + £ ^ 11> 0 parentheses (111 £ 1 chore + £ ^ 11 <0, or (Ι
Figure imgf000025_0001
Ku 0 and dn / d T + a a n > 0 dn / dT + α n is minimized by adjusting the even [psi c a relationship that does not satisfy the relation, i.e. formula (10), formula (1 1) Is obtained under the condition that the temperature characteristic is minimized.
第 7図で示したように、 一軸性複屈折結晶 — BBOを用いた場合、 光軸と C 軸とのなす角 φ cを 64. 75度にすると、 d η/3 Τ + η α = 0となり、 温度補 償条件式 (7) が満足される。 例えば、 実施の形態 1に用いられている狭帯域用 の波長モニタ装置において、 FSRを、 レーザ光の波長変動幅 0. 8nmに対応 する 100GHz (1. 0 X 10 X 1H z) と設定したいときには、 式 (4) お よび式 (8) を用いて、 一軸性複屈折結晶 ]3- BBOの Z軸方向の厚み L=970 mを得る。 この厚み L= 970/imは十分実用的なサイズである。 As shown in Fig. 7, when the uniaxial birefringent crystal — BBO is used, if the angle φ c between the optical axis and the C axis is 64.75 degrees, d η / 3 Τ + η α = 0 Thus, the temperature compensation condition equation (7) is satisfied. For example, in the wavelength monitor for a narrow band used in the first embodiment, it is desired to set the FSR to 100 GHz (1.0 X 10 X 1 Hz) corresponding to a wavelength fluctuation width of 0.8 nm of laser light. Sometimes, using Equations (4) and (8), a thickness L = 970 m of the uniaxial birefringent crystal] 3-BBO in the Z-axis direction is obtained. This thickness L = 970 / im is a sufficiently practical size.
すなわち、 第 7図に示す 3 n/3 T + nひと角度 ψ cとの関係から、 式 (7) を 満足する角度 0 cを求め、 この求めた角度 cを用いて式 (8) に基づき屈折率 ηを求め、 さらに求められた角度 ψ cおよび屈折率 ηを用いて式 (4) に基づき、 一軸性複屈折結晶 3の Ζ軸方向の長さ Lを調整して、 所望の FSRを得るように する。  That is, from the relationship with 3n / 3T + n one angle ψc shown in Fig. 7, an angle 0c that satisfies Equation (7) is obtained, and the obtained angle c is used to calculate The refractive index η is obtained, and the length L of the uniaxial birefringent crystal 3 in the Ζ-axis direction is adjusted based on the equation (4) using the obtained angle ψc and the refractive index η to obtain a desired FSR. Get it.
なお、 温度補償条件式 (7) は、 一軸性複屈折結晶をフアブリペロー共振器 3 として用いた場合、 一軸性複屈折結晶の Ζ軸方向の長さ Lには依存しないので、 式 (4) より温度補償条件を満たす任意の FSRを持つフアブリペロー共振器を 作ることができる。  Note that the temperature compensation condition equation (7) does not depend on the length L of the uniaxial birefringent crystal in the 方向 -axis direction when the uniaxial birefringent crystal is used as the Fabry-Perot resonator 3, so that from equation (4) A Fabry-Perot resonator with any FSR that satisfies the temperature compensation conditions can be made.
次に第 3図の波長モニタ装置の動作について説明する。 半導体レーザ 1から出 射された光信号はレンズ 2において集光される。 この集光された光信号の上方部 分は直接に第 2のフォトダイオード 5で受光される。 第 2のフォトダイオード 5 は受光した光信号の強度を検出しモニタする。 この強度モニタ信号 S 2と予め設 定された光信号強度との差に基づき出力制御回路(図示省略)は、 半導体レーザ 1 の光出力を一定に制御する。  Next, the operation of the wavelength monitor of FIG. 3 will be described. An optical signal emitted from the semiconductor laser 1 is collected by the lens 2. The upper part of the collected optical signal is directly received by the second photodiode 5. The second photodiode 5 detects and monitors the intensity of the received optical signal. An output control circuit (not shown) controls the optical output of the semiconductor laser 1 to be constant based on the difference between the intensity monitor signal S2 and a preset optical signal intensity.
また、 レンズ 2において集光された光信号の下方部分は、 ρ偏光成分すなわち X軸方向へ振動している光信号であり、 光信号は /3— BBOからなるフアブリぺ ロー共振器 3を、 C軸と角度 ψ c = 64. 7 5度をもって透過する。 /3-BBO等 の一軸性複屈折結晶を材料とするフアブリべ口一共振器 3を透過する光信号の偏 光方向は、 一軸性複屈折結晶の異常光軸と平行であるため、 フアブリペロー共振 器 3を透過する際、 光信号の偏光は変わらず p偏光のまま保たれる。 フアブリべ ロー共振器 3より出射した光信号の強度は式 (3) のような波長弁別特性を持ち、 その特性は結晶の温度変化に関係なく一定に保たれるので、 このフアブリペロー 共振器 3は温度補償機能を持つ。 The lower part of the optical signal collected by the lens 2 has a ρ polarization component, that is, This is an optical signal oscillating in the X-axis direction, and the optical signal passes through a Fabry-Low resonator 3 composed of / 3-BBO at an angle ψc = 64.75 degrees with respect to the C-axis. Since the polarization direction of the optical signal transmitted through the Fabry-Bore-single resonator 3 made of a uniaxial birefringent crystal such as / 3-BBO is parallel to the extraordinary optical axis of the uniaxial birefringent crystal, Fabry-Perot resonance When passing through the optical device 3, the polarization of the optical signal remains unchanged and remains p-polarized. The intensity of the optical signal emitted from the Fabry-Perot resonator 3 has a wavelength discrimination characteristic as shown in equation (3), and the characteristic is kept constant regardless of the crystal temperature change. Has temperature compensation function.
なお、 この場合、 φ ο = 64. 75に設定したが、 この付近の角度であれば温 度特性は十分低く抑えることができる。 例えば、 約 55 ~ 5 9度の範囲では温度 特性は土 1 p m/°Cとなり、 従来のソリッドエタ口ンの温度特性 (〜 1 0 p m /°C) に比べて十分小さい。 さらに、 他の角度 ψ cにおいても異常光軸方向は一 8 pmZ°Cから + 36 pmZ°Cまで、 常光軸方向は一 1 5 pmZ°Cから + 36 p m までであれば任意に温度係数を選択できる。 これにより温度変化によって 波長特性を調節することが可能となり、 I TUグリッドへの調整が容易となる。 例えば、 一軸性複屈折結晶 3を F SR=25GHzとなるように厚みを約 3. 6 mmに、 且つ温度特性が 8 pmZ°Cとなるように φ cを設定する。 この場合、 一 軸性複屈折結晶 3の温度を 1 °C変化させることによって 1 GH z波長特性をずら すことが可能となる。 従ってあらかじめ規定しておいた波長制御ポイントに 25 GH zスペーシングの I TUグリツドに合わせようとした場合、 半導体レーザ 1 を実装しているベースキヤリア 6の温度を最大 2 5度変化させるとともに半導体 レーザ 1への注入電流調整により発振波長を変えることによって、 所望の波長制 御ボイントにも合わせることが可能となる。  In this case, φο = 64.75 is set, but the temperature characteristics can be sufficiently suppressed if the angle is around this. For example, in the range of about 55 to 59 degrees, the temperature characteristic is 1 pm / ° C for soil, which is sufficiently smaller than the temperature characteristic of a conventional solid ethanol port (up to 10 pm / ° C). Furthermore, at other angles ψ c, the temperature coefficient can be arbitrarily set as long as the extraordinary optical axis direction is between 18 pmZ ° C and +36 pmZ ° C, and the normal optical axis direction is between 15 pmZ ° C and +36 pm. You can choose. This makes it possible to adjust the wavelength characteristics by changing the temperature, which facilitates adjustment to the ITU grid. For example, the thickness of uniaxial birefringent crystal 3 is set to about 3.6 mm so that FSR = 25 GHz, and φc is set so that the temperature characteristic is 8 pmZ ° C. In this case, it is possible to shift the 1 GHz wavelength characteristic by changing the temperature of the uniaxial birefringent crystal 3 by 1 ° C. Therefore, when trying to match the ITU grid with 25 GHz spacing to the wavelength control point specified in advance, the temperature of the base carrier 6 on which the semiconductor laser 1 is mounted is changed by up to 25 degrees and the semiconductor laser is changed. By changing the oscillation wavelength by adjusting the injection current to 1, it is possible to adjust to the desired wavelength control point.
第 1のフォトダイオード 4はフアブリペロー共振器 3を通過した光信号の強度 を検出し、 光強度モニタ信号 S 1を出力する。 一方、 第 2のフォトダイオード 5 は、 前述したように、 半導体レーザ 1から出射される光信号強度を直接検出し、 光強度モニタ信号 S 2を出力する。 これら光強度モニタ信号 S 1、 S 2は第 1 6 図に示される波長制御装置 5 0へ送られる。 波長制御装置 5 0は、 光信号の波長 を検出し、 この検出波長があらかじめ設定された波長(たとえば第 4図における 基準波長; I 0 )に一致するように、 半導体レーザ 1を制御する。 The first photodiode 4 detects the intensity of an optical signal that has passed through the Fabry-Perot resonator 3, and outputs an optical intensity monitor signal S1. On the other hand, the second photodiode 5 directly detects the optical signal intensity emitted from the semiconductor laser 1 and outputs the optical intensity monitor signal S2, as described above. These light intensity monitor signals S 1 and S 2 are It is sent to the wavelength controller 50 shown in the figure. The wavelength controller 50 detects the wavelength of the optical signal, and controls the semiconductor laser 1 so that the detected wavelength matches a preset wavelength (for example, the reference wavelength; I 0 in FIG. 4).
波長制御装置 5 0について説明する。 第 1 6図は波長制御装置 5 0の構成図で ある。 波長制御装置 5 0は、 波長検出部 5 1とレーザ制御部 5 2から構成される。 波長検出部 5 1には、 第 1および第 2のフォトダイオードからの光強度モニタ信 号 S l、 S 2と、 予め設定された基準波長え 0が入力される。 波長検出部 5 1は、 光強度モニタ信号 S 1、 S 2によって半導体レーザ 1より出射されている光信号 の発振波長を求め、 この発振波長と基準波長 I 0との差を求める。 レーザ制御部 5 2には、 波長検出部 5 1から基準波長 λ 0と半導体レーザ 1から出射された発 振波長との差が入力される。 レーザ制御部 5 2は、 その差に応じて発振波長が基 準波長え 0に一致するように半導体レーザ 1の温度や注入電流等を制御するため の制御信号 Τ 1を求め、 この制御信号 Τ 1を半導体レーザ 1に出力する。  The wavelength controller 50 will be described. FIG. 16 is a configuration diagram of the wavelength control device 50. The wavelength controller 50 includes a wavelength detector 51 and a laser controller 52. The wavelength detector 51 receives the light intensity monitor signals S1, S2 from the first and second photodiodes and a preset reference wavelength 0. The wavelength detector 51 obtains the oscillation wavelength of the optical signal emitted from the semiconductor laser 1 based on the light intensity monitor signals S1 and S2, and obtains the difference between the oscillation wavelength and the reference wavelength I0. The difference between the reference wavelength λ 0 from the wavelength detector 51 and the oscillation wavelength emitted from the semiconductor laser 1 is input to the laser controller 52. The laser control unit 52 obtains a control signal Τ1 for controlling the temperature, injection current, and the like of the semiconductor laser 1 so that the oscillation wavelength coincides with the reference wavelength 0 according to the difference. 1 is output to the semiconductor laser 1.
次に波長検出部 5 1の動作について詳細説明する。 フアブリペロー共振器 3の 波長に対する透過率の関係が第 4図のように表されている。 第 4図における基準 波長 λ 0に発振波長を合わせる場合について説明する。 第 4図によれば、 基準波 長; L 0の近傍の波長領域で見ると、 第 1のフォトダイオード 4により検出される 光強度モニタ信号 S 1の値は、 光信号の波長が長波長側にずれると小さくなり、 短波長側にずれると大きくなるということが分かる。 この波長の変化に伴う光強 度モニタ信号 S 1の変化をモニタし、 基準波長; L 0からのずれを算出する。  Next, the operation of the wavelength detector 51 will be described in detail. The relationship between the wavelength and the transmittance of the Fabry-Perot resonator 3 is shown in FIG. A case where the oscillation wavelength is adjusted to the reference wavelength λ 0 in FIG. 4 will be described. According to FIG. 4, when viewed in a wavelength region near the reference wavelength L 0, the value of the light intensity monitor signal S 1 detected by the first photodiode 4 is such that the wavelength of the optical signal is longer than the wavelength. It can be seen that it becomes smaller when it shifts to, and increases when it shifts to the shorter wavelength side. The change in the light intensity monitor signal S1 accompanying the change in the wavelength is monitored, and the deviation from the reference wavelength; L0 is calculated.
次に、 基準波長 λ 0からのずれを算出する方法について説明する。 半導体レー ザ 1より出射された光信号を直接に検出している光強度モニタ信号 S 2およびフ ァプリペロー共振器 3を透過した光信号を検出している光強度モニタ信号 S 1は、 半導体レーザ 1より出射される光信号の強度に比例して変化する。 基準波長え 0 からのずれを検出するために、 信号強度比 S 1 / S 2を算出する。 光強度モニタ 信号 S l、 S 2は、 半導体レーザ 1より出射される光強度信号の大きさに依存す るので、 これらの信号強度比 S 1 / S 2は、 フアブリペロー共振器 3の透過率の みに依存した値となる。 Next, a method of calculating the deviation from the reference wavelength λ 0 will be described. The light intensity monitor signal S 2 that directly detects the optical signal emitted from the semiconductor laser 1 and the light intensity monitor signal S 1 that detects the optical signal transmitted through the Fabry-Perot resonator 3 are the semiconductor laser 1 It changes in proportion to the intensity of the emitted optical signal. To detect the deviation from the reference wavelength 0, calculate the signal intensity ratio S1 / S2. Since the light intensity monitor signals S l and S 2 depend on the magnitude of the light intensity signal emitted from the semiconductor laser 1, these signal intensity ratios S 1 / S 2 are the ratios of the transmittance of the Fabry-Perot resonator 3. It depends on the value.
フアブリべ口一共振器 3の透過率は基準波長え 0を含むス口ープ内においては、 波長に対して一意に定まるので、 半導体レーザ 1より出射された光信号の波長が λ 0を含むスロープ内にあれば、 信号強度比 S 1 / S 2の値が光信号の波長を表 すことになる。 特に、 F S Rの 1 / 2が半導体レーザ 1の波長可変領域よりも + 分大きく、 波長可変領域が; L 0を含む 1つのスロープ内に含まれていれば、 ファ プリペロー共振器 3を絶対波長モニタとして利用することができる。 基準波長え 0での信号強度比 S 1 / S 2を予め求め、 この基準波長え 0での信号強度比 S 1 / S 2を波長検出部 5 1に記憶しておく。 波長検出部 5 1では、 記憶している基準 波長 λ 0での信号強度比 S 1 / S 2と、 第 1、 第 2のフォトダイオード 4、 5か らの光強度モニタ信号 S 1、 S 2に基づき求めた信号強度比 S 1 / S 2との差を 求めることにより、 発振波長と基準波長; L 0とのずれ (偏差) を算出する。 この 算出された偏差信号は、 レーザ制御部 5 2に入力される。  Since the transmittance of the Fabry-Cavity resonator 3 is uniquely determined with respect to the wavelength in the aperture including the reference wavelength 0, the wavelength of the optical signal emitted from the semiconductor laser 1 includes λ 0 If it is within the slope, the value of the signal intensity ratio S1 / S2 will represent the wavelength of the optical signal. In particular, if the FSR is one-half larger than the tunable region of the semiconductor laser 1 by + minute and the tunable region is included in one slope including L 0, the absolute wavelength monitor Can be used as The signal intensity ratio S 1 / S 2 at the reference wavelength 0 is obtained in advance, and the signal intensity ratio S 1 / S 2 at the reference wavelength 0 is stored in the wavelength detector 51. In the wavelength detector 51, the stored signal intensity ratio S 1 / S 2 at the reference wavelength λ 0 and the light intensity monitor signals S 1, S 2 from the first and second photodiodes 4 and 5 are output. The difference (deviation) between the oscillation wavelength and the reference wavelength; L0 is calculated by calculating the difference between the signal intensity ratio S1 / S2 obtained based on the above. The calculated deviation signal is input to the laser control unit 52.
次にレーザ制御部 5 2の動作について説明する。 レーザ制御部 5 2では、 波長 検出部 5 1から入力される偏差信号を用いて、 温度もしくは注入電流等の値を変 化させる制御信号 Τ 1を半導体レーザ 1に出力することにより、 半導体レーザ 1 の波長を制御する。  Next, the operation of the laser control unit 52 will be described. The laser controller 52 uses the deviation signal input from the wavelength detector 51 to output a control signal Τ 1 for changing the value of the temperature or the injection current to the semiconductor laser 1. The wavelength of light.
半導体レーザ 1の注入電流を変化させることにより波長を制御する場合、 一般 的に注入電流を増加し半導体レーザ 1の出力を高くすると、 半導体レーザ 1の発 振波長は長くなる。 この場合、 レーザ制御部 5 2では、 波長検出部 5 1からの偏 差信号を受けたとき、 発振波長が基準波長よりも長波長側にずれていれば、 半導 体レーザ 1への注入電流を減少させ、 発振波長が基準波長よりも短波長側にずれ ていれば、 半導体レーザ 1への注入電流を増加させるような制御信号 Τ 1を半導 体レーザ 1に送る。  When the wavelength is controlled by changing the injection current of the semiconductor laser 1, generally, when the injection current is increased and the output of the semiconductor laser 1 is increased, the oscillation wavelength of the semiconductor laser 1 becomes longer. In this case, when the laser control unit 52 receives the deviation signal from the wavelength detection unit 51 and the oscillation wavelength is shifted to a longer wavelength side than the reference wavelength, the injection current into the semiconductor laser 1 is increased. If the oscillation wavelength is shifted to a shorter wavelength side than the reference wavelength, a control signal Τ 1 for increasing the injection current to the semiconductor laser 1 is sent to the semiconductor laser 1.
半導体レーザ 1の温度を変化させることにより波長を制御する場合、 一般的に 温度を高くすると、 半導体レーザ 1の発振波長は長くなる。 この場合、 レーザ制 御部 5 2では、 波長検出部 5 1から偏差信号を受けたとき、 発振波長が基準波長 よりも長波長側にずれていれば、 半導体レーザ 1の温度を高くし、 発振波長が基 準波長よりも短波長側にずれていれば、 半導体レーザ 1の温度を低くするような 制御信号 T 1を半導体レーザ 1に送る。 When controlling the wavelength by changing the temperature of the semiconductor laser 1, generally, when the temperature is increased, the oscillation wavelength of the semiconductor laser 1 becomes longer. In this case, when the laser controller 52 receives the deviation signal from the wavelength detector 51, the oscillation wavelength becomes the reference wavelength. If the oscillation wavelength is shifted to a longer wavelength side, the temperature of the semiconductor laser 1 is increased. If the oscillation wavelength is shifted to a shorter wavelength side than the reference wavelength, the control signal T is set to lower the temperature of the semiconductor laser 1. Send 1 to semiconductor laser 1.
なお、 上記の説明では、 レーザ光の偏光方向を p偏光としたが、 s偏光のレー ザ光、 つまり C軸と光軸によって作られた平面に対して垂直な方向に偏光方向を もつレーザ光を一軸性複屈折結晶に入射するようにしても、 式 (7 ) の温度補償 条件を満足させることができる。 すなわち、 上記式 (7 ) は常光軸および異常光 軸の両方について満足する。 このように、 常光軸にレーザ光の偏光方向を揃えた 場合、 別言すれば、 レーザ光の光軸と偏光方向とで作られる平面に対して垂直な 面内に C軸があるようにした場合は、 光軸と C軸とのなす角度 ψ cは 5 7 . 0 5 度となる。 なお、 常光軸を用いた場合の屈折率 nおよび d n / d tは角度 φ cに 依存せず、 常に一定値をとる。 そして、 この場合は、 式 (7 ) 中の線膨張係数 α のみが角度 Φ cによって変化する。  In the above description, the polarization direction of the laser light is p-polarization. However, s-polarization laser light, that is, laser light having a polarization direction perpendicular to the plane formed by the C axis and the optical axis Is incident on the uniaxial birefringent crystal, the temperature compensation condition of Equation (7) can be satisfied. That is, the above equation (7) is satisfied for both the ordinary optical axis and the extraordinary optical axis. In this way, when the polarization direction of the laser light is aligned with the ordinary optical axis, in other words, the C axis is set in a plane perpendicular to the plane formed by the optical axis and the polarization direction of the laser light. In this case, the angle ψc between the optical axis and the C axis is 57.05 degrees. Note that the refractive index n and d n / d t when the ordinary optical axis is used do not depend on the angle φ c and always take a constant value. In this case, only the linear expansion coefficient α in the equation (7) changes depending on the angle Φ c.
以上で明らかなように、 この実施の形態 1によれば、 フアブリペロー共振器 3 を構成する一軸性複屈折結晶 (例えば 0— B B O ( B a Β 20 4 ) ) を、 C軸が レーザ光の光軸と偏光方向とで作られる平面内にあるいは該平面に垂直な面内に にあり、 かっこの C軸が光軸に対して一定の傾きを持つように配置するように構 成したので、 このフアブリペロー共振器 3は温度補償機能 (フアブリペロー共振 器 3から出射した信号光の強度がその温度に依存しない機能) を有することがで き、 光信号の波長にのみ依存する光強度モニタ信号 S 1を検出しモニタすること ができる。 また、 検出した光強度モニタ信号 S 1に基づき半導体レーザ 1から出 射される光信号の波長を所望の基準波長え 0に制御することができる。 さらに、 一材料の一軸性複屈折結晶のみを用いたので、 半導体レーザ装置の構成は簡略化 でき、 構成が簡略化されているので、 波長モニタとしての信頼性を向上させるこ とが可能となる。 As can be seen from the above description, according to the first embodiment, uniaxial birefringent crystal constituting the Fuaburipero resonator 3 (such as 0- BBO (B a Β 2 0 4)), C -axis of the laser beam Since the C-axis of the parenthesis is located in a plane formed by the optical axis and the polarization direction or in a plane perpendicular to the plane, and the C-axis of the parenthesis is arranged to have a constant inclination with respect to the optical axis, This Fabry-Perot resonator 3 can have a temperature compensation function (a function in which the intensity of the signal light emitted from the Fabry-Perot resonator 3 does not depend on its temperature), and the light intensity monitor signal S 1 depends only on the wavelength of the optical signal. Can be detected and monitored. Also, the wavelength of the optical signal emitted from the semiconductor laser 1 can be controlled to a desired reference wavelength based on the detected light intensity monitor signal S1. Further, since only a uniaxial birefringent crystal of one material is used, the configuration of the semiconductor laser device can be simplified.Since the configuration is simplified, the reliability as a wavelength monitor can be improved. .
上記実施の形態 1では、 フアブリべ口一共振器 3の材料として ]3— Β Β Ο結晶 を用いたが、 その材料として a— B B O ( B a B 2 O J結晶を用いた場合におい ても温度補償条件式 (7) を満たすことができる。 In the first embodiment described above, the material of the Fabry-Bore-single resonator 3 is a 3—Β Β Ο crystal. However, when a—BBO (BaB 2 OJ crystal is used as the material), Thus, the temperature compensation condition (7) can be satisfied.
すなわち、 α— BBO結晶の場合、 異常光軸にレーザ光の偏光を揃えたときに は、 <f) C = 64. 35度となり、 常光軸にレーザ光の 光を揃えたときには、 φ c = 76. 95度となる。  That is, in the case of α-BBO crystal, when the polarization of the laser beam is aligned with the extraordinary optical axis, <f) C = 64.35 degrees, and when the laser beam is aligned with the ordinary optical axis, φ c = 76. 95 degrees.
なお、 このとき、 α— BBOの物性定数は、 異常光屈折率 ne が 1. 5300 3で、 常光屈折率 no が 1. 6502で、 熱光学係数 d no/d Tが— 9. 3 X 1 0一6/ Kで、 熱光学係数 d ne/dTが 1 6. 6 X 10— 6/Kで、 線膨張係数ひ c は 36. 0 X 10— 6/Kで、 線膨張係数 aaは 4. 0X 10— 6/Kである。 At this time, the physical constants of α-BBO are as follows: extraordinary refractive index ne is 1.53003, ordinary refractive index no is 1.6502, and thermo-optic coefficient d no / d T is -9.3 X 1 0 one 6 / K, a thermal optical coefficient d ne / dT is 1 6. 6 X 10- 6 / K , in the linear expansion coefficient ratio c is 36. 0 X 10- 6 / K, the linear expansion coefficient aa 4 . is a 0X 10- 6 / K.
なお、 この場合、 異常光軸にレーザ光の偏光を揃えた場合に Ψ c = 64. 35 度、 常光軸にレーザ光の偏光を揃えた場合に <ί> c =76. 95度に設定したが、 この付近の角度であれば温度特性は十分低く抑えることができる。 例えば、 常光 軸方向であれば約 74〜 80度の範囲では温度特性は士 1 p m/°Cとなり、 従来 のソリッドエタ口ンの温度特性 (〜 10 p m/'C) に比べて十分小さい。 さらに、 他の ψ cにおいても異常光軸方向は一 1 1 pm,°Cから +47 pm/°Cまで、 常 光軸方向は— 3 pmZ°Cから + 47 p mZ°Cまでであれば任意に温度係数を選択 できる。 これにより温度変化によって波長特性を調節することが可能となり、 I TUグリッドへの調整が容易となる。 例えば、 一軸性複屈折結晶 3を F S R = 2 5 GHzとなるように厚みを約 3. 6 mmに、 且つ温度特性が 8 p m/°Cとなる ように Ψ cを設定する。 この場合、 一軸性複屈折結晶 3の温度を 1 °C変化させる ことによって 1 GHz波長特性をずらすことが可能となる。 従ってあらかじめ規 定しておいた波長制御ポイントに 25 GHzスペーシングの I TUグリツドに合 わせようとした場合、 半導体レーザ 1を実装しているベースキャリア 6の温度を 最大 25度変化させるとともに半導体レーザ 1への注入電流調整により発振波長 を変えることによって、 所望の波長制御ボイントにも合わせることが可能となる。 また、 第 3図におけるフアブリペロー共振器 3の材料に L i I 03の結晶を用 いた場合においても温度補償条件式 (7) を満たすことができる。 第 15図は、 異常光軸にレーザ光の偏光を揃えたときの、 L i I O,結晶の式 (7) を示す d n/dT + αη の角度 <ί> cに対する依存性を示すグラフである。 この第 15図によ れば、 L i I 03結晶を用い、 異常光軸にレーザ光の偏光を揃えた場合には、 温 度補償条件 d n/dT+an=0を満たす角度 ψ cを 22. 70度と決定すること ができる。 なお、 L i I 03結晶を用い、 常光軸にレーザ光の偏光を揃えた場合 には、 温度補償条件 d n/dT+αη-Οを満たす角度 φ cは 18. 65度である。 なお、 この場合、 異常光軸にレーザ光の偏光を揃えた場合に ψ c = 22. 70 度、 常光軸にレーザ光の偏光を揃えた場合に Φ c = 18. 65度に設定したが、 この付近の角度であれば温度特性は十分低く抑えることができる。 例えば、 常光 軸方向であれば約 15〜 22度の範囲では温度特性は土 1 p mZ°Cとなり、 従来 のソリツドエタロンの温度特性 (〜 10 pmZ°C) に比べて十分小さい。 さらに、 他の φ cにおいても異常光軸方向は一 20 pmZ°Cから + 3 pm/°Cまで、 常光 軸方向は一 28 pm,°Cから + 3 pmZ°Cまでであれば任意に温度係数を選択で きる。 これにより温度変化によって波長特性を調節することが可能となり、 I T Uグリツドへの調整が容易となる。 例えば、 一軸性複屈折結晶 3を FSR=25 GH zとなるように厚みを約 3. 6 mmに、 且つ温度特性が 8 ρπιΖ^となるよ うに <i> cを設定する。 この場合、 一軸性複屈折結晶 3の温度を 1°C変化させるこ とによって 1 GHz波長特性をずらすことが可能となる。 従ってあらかじめ規定 しておいた波長制御ポイントに 25 GHzスペーシングの I TUグリツドに合わ せようとした場合、 半導体レーザ 1を実装しているベースキャリア 6の温度を最 大 25度変化させるとともに半導体レーザ 1への注入電流調整により発振波長を 変えることによって、 所望の波長制御ポイントにも合わせることが可能となる。 さらに、 一軸性複屈折結晶として、 C a C03結晶を用いることもできる。 C a C03結晶の場合は、 常光軸方向のみ温度補償条件を満足し、 そのときの d n /dT + を満たす角度 φ cは 67. 5度となる。 In this case, Ψ c = 64.35 degrees when the polarization of the laser beam was aligned with the extraordinary optical axis, and <ί> c = 76.95 degrees when the polarization of the laser beam was aligned with the ordinary optical axis. However, if the angle is in the vicinity of this, the temperature characteristics can be sufficiently suppressed. For example, in the normal light axis direction, the temperature characteristic is about 1 pm / ° C in the range of about 74 to 80 degrees, which is sufficiently smaller than the temperature characteristic of a conventional solid ethanol port (up to 10 pm / 'C). In addition, for other ψc, if the extraordinary optical axis direction is from 11 pm, ° C to +47 pm / ° C, and the ordinary optical axis direction is from −3 pmZ ° C to +47 pmZ ° C. Any temperature coefficient can be selected. This makes it possible to adjust the wavelength characteristics by changing the temperature, and it is easy to adjust to the ITU grid. For example, the thickness of uniaxial birefringent crystal 3 is set to about 3.6 mm so that FSR = 25 GHz, and Ψc is set so that the temperature characteristic is 8 pm / ° C. In this case, the 1 GHz wavelength characteristic can be shifted by changing the temperature of the uniaxial birefringent crystal 3 by 1 ° C. Therefore, when trying to match the ITU grid with a spacing of 25 GHz to the wavelength control point specified in advance, the temperature of the base carrier 6 on which the semiconductor laser 1 is mounted is changed by up to 25 degrees and the semiconductor laser 1 By changing the oscillation wavelength by adjusting the injection current into the device, it is possible to match the desired wavelength control point. Further, it is possible to satisfy the temperature compensation condition (7) even when had use crystals of L i I 0 3 on the material of Fuaburipero resonator 3 in Figure 3. Figure 15 shows the equation (7) for L i IO and the crystal when the polarization of the laser beam is aligned with the extraordinary optical axis. 9 is a graph showing the dependence of n / dT + αη on angle <ί> c. According to FIG. 15, when the L i I 0 3 crystal is used and the polarization of the laser beam is aligned with the extraordinary optical axis, the angle ψc satisfying the temperature compensation condition dn / dT + an = 0 is set to 22. 70 degrees can be determined. Incidentally, using L i I 0 3 crystal, when aligned in polarization of the laser beam to the ordinary axis is the angle phi c satisfying the temperature compensation condition dn / dT + αη-Ο is 18.65 degrees. In this case, ψ c = 22.70 degrees when the polarization of the laser light is aligned with the extraordinary optical axis, and Φ c = 18.65 degrees when the polarization of the laser light is aligned with the ordinary optical axis. If the angle is in the vicinity of this, the temperature characteristics can be sufficiently suppressed. For example, in the normal optical axis direction, the temperature characteristic is 1 pmZ ° C in the range of about 15 to 22 degrees, which is much smaller than the temperature characteristic of a conventional solid etalon (up to 10 pmZ ° C). In addition, at other φc, the direction of the extraordinary optical axis is from -20 pmZ ° C to +3 pm / ° C, and the direction of the ordinary optical axis is any temperature from −28 pm, ° C to +3 pmZ ° C. Coefficient can be selected. This makes it possible to adjust the wavelength characteristics by changing the temperature, and it is easy to adjust to the ITU grid. For example, the thickness of the uniaxial birefringent crystal 3 is set to about 3.6 mm so that FSR = 25 GHz, and <i> c is set so that the temperature characteristic is 8 ρπιΖ ^. In this case, by changing the temperature of the uniaxial birefringent crystal 3 by 1 ° C., the 1 GHz wavelength characteristic can be shifted. Therefore, when trying to match the ITU grid with a spacing of 25 GHz to the wavelength control point specified in advance, the temperature of the base carrier 6 on which the semiconductor laser 1 is mounted is changed by up to 25 degrees and the semiconductor laser 1 By changing the oscillation wavelength by adjusting the injection current into the device, it is possible to match the desired wavelength control point. Further, a C a C O 3 crystal may be used as the uniaxial birefringent crystal. For C a C0 3 crystal satisfies the ordinary axial only temperature compensation condition, becomes 67.5 degrees angle phi c satisfying dn / dT + at that time.
なお、 この場合、 常光軸にレーザ光の偏光を揃えた場合に c = 67. 5度に 設定したが、 この付近の角度であれば温度特性は十分低く抑えることができる。 例えば、 常光軸方向であれば約 65〜70度の範囲では温度特性は土 1 pmZ°C となり、 従来のソリッドエタ口ンの温度特性 (〜 1 0 p m/°C) に比べて十分小 さい。 さらに、 他の <ί> cにおいても異常光軸方向は + 4 p mZT:から + 4 0 p m /でまで、 常光軸方向は— 7 p mZ°Cから + 4 0 p mZ°Cまでであれば任意に温 度係数を選択できる。 これにより温度変化によって波長特性を調節することが可 能となり、 I T Uグリツドへの調整が容易となる。 例えば、 一軸性複屈折結晶 3 を F S R = 2 5 G H zとなるように厚みを約 3 . 6 mmに、 且つ温度特性が 8 p m/°Cとなるように cを設定する。 この場合、 一軸性複屈折結晶 3の温度を 1 °C変化させることによって 1 G H z波長特性をずらすことが可能となる。 従って あらかじめ規定しておいた波長制御ポイントに 2 5 G H zスペーシングの I T U グリッドに合わせようとした場合、 半導体レーザ 1を実装しているベースキヤリ ァ 6の温度を最大 2 5度変化させるとともに半導体レーザ 1への注入電流調整に より発振波長を変えることによって、 所望の波長制御ポイントにも合わせること が可能となる。 In this case, when the polarization of the laser light is aligned with the ordinary optical axis, c is set to 67.5 degrees. However, if the angle is around this, the temperature characteristics can be sufficiently suppressed. For example, in the ordinary optical axis direction, the temperature characteristic is 1 pmZ ° C in the range of about 65 to 70 degrees. This is sufficiently smaller than the temperature characteristics (~ 10 pm / ° C) of the conventional solid nozzle. Furthermore, for other <ί> c, the extraordinary optical axis direction is from +4 pmZT: to +40 pm /, and the ordinary optical axis direction is from -7 pmZ ° C to +40 pmZ ° C. The temperature coefficient can be selected arbitrarily. This makes it possible to adjust the wavelength characteristics by changing the temperature, and it is easy to adjust to the ITU grid. For example, the thickness of the uniaxial birefringent crystal 3 is set to about 3.6 mm so that FSR = 25 GHz, and c is set so that the temperature characteristic is 8 pm / ° C. In this case, it is possible to shift the 1 GHz wavelength characteristic by changing the temperature of the uniaxial birefringent crystal 3 by 1 ° C. Therefore, if an attempt is made to match the wavelength control point specified in advance with the ITU grid of 25 GHz spacing, the temperature of the base carrier 6 on which the semiconductor laser 1 is mounted is changed by a maximum of 25 degrees and the semiconductor laser is changed. By changing the oscillation wavelength by adjusting the injection current to 1, it is possible to match the desired wavelength control point.
この他にも、 フアブリペロー共振器の温度補償条件式 (7 ) を満たす材料であ れば、 他の任意の一軸性複屈折結晶を用いても良い。 また、 第 3図に示された波 長モニタ装置と第 1 6図に示された波長制御装置を組み合わせることにより、 波 長安定ィヒ光源を構成することが可能である。  In addition, any other uniaxial birefringent crystal may be used as long as the material satisfies the temperature compensation conditional expression (7) for the Fabry-Perot resonator. Also, by combining the wavelength monitoring device shown in FIG. 3 with the wavelength monitoring device shown in FIG. 16, it is possible to construct a wavelength stable light source.
第 1 7図は、 この発明の実施の形態 1の変更態様による波長モニタ装置を示す 構成図である。 第 1 7図に示す波長モニタ装置においては、 フアブリペロー共振 器 3の上方に位置する第 2のフォトダイオード 5を、 レンズ 2との間隔を狭める ように第 1のフォトダイオード 4よりも前方に配置する。 すなわち、 この場合は、 ベースキャリア 6の第 2のフォトダイオード 5を設置する箇所を、 半導体レーザ 1のほうにせり出すように構成しており、 ベースキヤリア 6の第 1のフォトダイ ォード 4を設置する箇所とベースキャリア 6の第 2のフォトダイオード 5を設置 する箇所との間には、 段差部を形成している。  FIG. 17 is a configuration diagram showing a wavelength monitor according to a modification of the first embodiment of the present invention. In the wavelength monitoring device shown in FIG. 17, the second photodiode 5 located above the Fabry-Perot resonator 3 is arranged forward of the first photodiode 4 so as to reduce the distance from the lens 2. . That is, in this case, the location where the second photodiode 5 of the base carrier 6 is installed is protruded toward the semiconductor laser 1, and the location where the first photodiode 4 of the base carrier 6 is installed A step is formed between the base carrier 6 and the position where the second photodiode 5 is provided.
このようにこの第 1 7図の構成によれば、 第 2のフォトダイオード 5を、 第 1 のフォトダイオード 4よりも前方に配置しているので、 たとえ光信号がフアブリ ペロー共振器 3に入射された後、 ベースキャリア 6の底面で散乱しても、 散乱光 がフアブリペロー共振器 3を透過した後、 第 2のフォトダイオード 5で受光され ることがなくなる。 As described above, according to the configuration of FIG. 17, since the second photodiode 5 is arranged ahead of the first photodiode 4, even if the optical signal is Even if the light is scattered on the bottom surface of the base carrier 6 after being incident on the Perot resonator 3, the scattered light is not received by the second photodiode 5 after passing through the Fabry-Perot resonator 3.
実施の形態 2 . Embodiment 2
実施の形態 1においては、 光信号を受光するフォトダイオードが 2個設置され、 それぞれのフォトダイオードにおいて、 光信号の波長および強度のモニタをおこ なっていた。 これに対し、 実施の形態 2においては、 フォトダイオードを 3個配 置し、 2個のフアブリペロー共振器 (波長フィルタ) を上下に並列に配置するこ とにより、 3個配置されたフォトダイオードのうちの 2個のフォトダイオードを 用いて、 広帯域および狭帯域における光信号の波長をモニタし、 1個のフォトダ ィォードを用いて光強度信号のモニタを行うようにしている。  In the first embodiment, two photodiodes for receiving an optical signal are provided, and each photodiode monitors the wavelength and intensity of the optical signal. On the other hand, in the second embodiment, three photodiodes are arranged, and two Fabry-Perot resonators (wavelength filters) are vertically arranged in parallel, so that the three photodiodes are arranged. The two photodiodes are used to monitor the wavelength of an optical signal in a wide band and a narrow band, and the optical intensity signal is monitored using a single photodiode.
第 1 8図はこの発明の実施の形態 2による波長モニタ装置を示す構成図である。 なお、 この実施の形態 2の構成要素のうち、 実施の形態 1の波長モニタ装置の構 成要素と共通するものについては同一符号を付し、 その部分の説明を省略する。 半導体レーザ 1は第 1 9図に示されている波長制御装置 6 0から送られる制御 信号 T 1により、 温度および注入電流等が調節され、 波長が制御される。 フアブ リペロー共振器 (波長フィルタ) 2 1はフアブリペロー共振器 (波長フィルタ) 3と同じく、 実施の形態 1において示された温度補償機能を持つように切り出さ れたー軸性複屈折結晶(例えば 0 -B B O)を材料とし、 その入射面および出射面 に反射膜 2 3および 2 4を有する。  FIG. 18 is a configuration diagram showing a wavelength monitoring apparatus according to Embodiment 2 of the present invention. Note that, of the components of the second embodiment, the same components as those of the wavelength monitoring device of the first embodiment are denoted by the same reference numerals, and the description of those portions is omitted. The temperature and the injection current of the semiconductor laser 1 are controlled by the control signal T1 sent from the wavelength control device 60 shown in FIG. 19 to control the wavelength. The Fabry-Perot resonator (wavelength filter) 21 is the same as the Fabry-Perot resonator (wavelength filter) 3, and is cut out so as to have the temperature compensation function shown in the first embodiment. BBO), and has reflection films 23 and 24 on its entrance and exit surfaces.
この場合、 下側に配置されるフアブリペロー共振器 3の Z方向の厚みを、 上側 に配置されるフアブリペロー共振器 2 1の厚みよりも大きくし、 これによりファ プリペロー共振器 3を狭帯域高精度モニタ用とし、 フアブリペロー共振器 2 1を 広帯域モニタ用としている。 第 3のフォトダイオード 2 2はフアブリペロー共振 器 2 1を透過した光信号強度を検出するものであり、 第 1のフォトダイオード 4 と第 2のフォトダイオード 5の中間に配置される。  In this case, the thickness of the Fabry-Perot resonator 3 arranged on the lower side in the Z direction is made larger than the thickness of the Fabry-Perot resonator 21 arranged on the upper side. The Fabry-Perot resonator 21 is used for broadband monitoring. The third photodiode 22 detects the intensity of an optical signal transmitted through the Fabry-Perot resonator 21, and is arranged between the first photodiode 4 and the second photodiode 5.
次に第 1 8図の波長モニタ装置の動作の説明を行う。 半導体レーザ 1を出射し た光信号はレンズ 2で集光され平行光に変換される。 第 1のフォトダイオード 4 においては、 フアブリペロー共振器 (狭帯域用) 3を透過した光信号強度が検出 され、 第 3のフォトダイオード 22においてはフアブリペロー共振器 (広帯域用 ) 2 1を透過した光信号強度が検出される。 第 1のフォトダイオード 4で検出さ れた光強度モニタ信号を S 1とし、 第 3のフィ トダイオード 22で検出された光 強度モニタ信号を S 3とし、 第 2のフォトダイオード 5で検出された光強度モニ タ信号を S 2とする。 光強度モニタ信号 S l、 S 2および S 3は、 第 1 9図に示 される波長制御装置 60に送られる。 波長制御装置 60は、 これらの信号 S l、 S 2および S 3を用いて発振波長を検出し、 この検出波長に基づき半導体レーザ 1より出射される光信号の波長を制御するための制御信号 T 1を形成し、 この制 御信号 T 1を半導体レーザ 1に出力する。 Next, the operation of the wavelength monitor shown in FIG. 18 will be described. Semiconductor laser 1 The light signal is condensed by the lens 2 and converted into parallel light. In the first photodiode 4, the intensity of the optical signal transmitted through the Fabry-Perot resonator (for narrow band) 3 is detected, and in the third photodiode 22, the optical signal transmitted through the Fabry-Perot resonator (for wide band) 21 The intensity is detected. The light intensity monitor signal detected by the first photodiode 4 is S1, the light intensity monitor signal detected by the third photodiode 22 is S3, and the light intensity monitor signal is detected by the second photodiode 5. The light intensity monitor signal is S2. The light intensity monitor signals S1, S2 and S3 are sent to the wavelength control device 60 shown in FIG. The wavelength control device 60 detects the oscillation wavelength using these signals S1, S2, and S3, and controls the control signal T for controlling the wavelength of the optical signal emitted from the semiconductor laser 1 based on the detected wavelength. The control signal T 1 is output to the semiconductor laser 1.
第 20図は、 狭帯域用のフアブリペロー共振器 3および広帯域用のフアブリぺ ロー共振器 21のそれぞれの波長透過特性を示すものである。  FIG. 20 shows the wavelength transmission characteristics of the Fabry-Perot resonator 3 for the narrow band and the Fabry-Perot resonator 21 for the wide band.
第 20図に示すように、 狭帯域用のフアブリペロー共振器 3の FSRは、 広帯 域用のフアブリペロー共振器 21の FSRに比べて非常に小さくなるように、 そ れらの共振器長を設定する。 また、 広帯域用のフアブリペロー共振器 2 1の FS Rの半分すなわち波長弁別領域は、 半導体レーザ 1の波長可変範囲よりも大きく、 半導体レーザ 1の波長可変範囲がフアブリペロー共振器 21の F SR内の 1つの スロープ内に収まっているとする。 例えば、 狭帯域用のフアブリペロー共振器 3 の F S Rが 20 T H z、 反射膜の強度反射率は 30 %であり、 広帯域用のフアブ リペロー共振器 21の FSRが 10 OGHz、 反射膜の強度反射率は 30%であ るとする。  As shown in Fig. 20, the FSR of the Fabry-Perot resonator 3 for the narrow band is set to be very small compared to the FSR of the Fabry-Perot resonator 21 for the wide band. I do. Further, half of the FSR of the Fabry-Perot resonator 21 for a wide band, that is, the wavelength discrimination region is larger than the wavelength variable range of the semiconductor laser 1, and the wavelength variable range of the semiconductor laser 1 is 1 in the FSR of the Fabry-Perot resonator 21. Suppose it is within one slope. For example, the Fabry-Perot resonator 3 for narrow band has an FSR of 20 THz, the intensity reflectance of the reflective film is 30%, the FSR of the Fabry-Perot resonator 21 for broadband is 10 OGHz, and the intensity reflectance of the reflective film is Assume 30%.
次に、 第 19図に示す波長制御装置 60の構成について説明する。 波長制御装 置 60は、 波長検出部 61およびレーザ制御部 52により構成される。 波長検出 部 6 1には、 第 1〜第 3のフォトダイオード 4, 5, 22からの光強度モニタ信 号 S l、 S 2、 S 3と、 基準波長; 0が入力される。 波長検出部 61は、 光強度 モニタ信号 S l、 S 2、 S 3によって半導体レーザ 1より出射されている光信号 の発振波長を求め、 この発振波長と基準波長; 0との差を求める。 レーザ制御部 5 2には、 波長検出部 6 1から基準波長 λ 0と半導体レーザ 1から出射された発 振波長との差が入力され、 レーザ制御部 5 2は、 その差に応じて発振波長が基準 波長 λ 0に一致するように半導体レーザ 1の温度や注入電流等を制御するための 制御信号 Τ 1を求め、 この制御信号 Τ 1を半導体レーザ 1に出力する。 Next, the configuration of the wavelength control device 60 shown in FIG. 19 will be described. The wavelength control device 60 includes a wavelength detection unit 61 and a laser control unit 52. The light intensity monitor signals S 1, S 2, S 3 from the first to third photodiodes 4, 5, and 22 and the reference wavelength; 0 are input to the wavelength detector 61. The wavelength detecting section 61 outputs an optical signal emitted from the semiconductor laser 1 by the light intensity monitor signals S1, S2, and S3. The difference between this oscillation wavelength and the reference wavelength; 0 is found. The difference between the reference wavelength λ 0 from the wavelength detection unit 61 and the oscillation wavelength emitted from the semiconductor laser 1 is input to the laser control unit 52, and the laser control unit 52 determines the oscillation wavelength according to the difference. A control signal Τ1 for controlling the temperature, injection current, and the like of the semiconductor laser 1 is determined so that the control signal に coincides with the reference wavelength λ 0, and the control signal Τ1 is output to the semiconductor laser 1.
波長検出部 6 1の動作について詳細に説明する。 はじめに、 波長検出部 6 1は、 広帯域用のフアブリペロー共振器 2 1を透過した光強度モニタ信号 S 3を用いて 基準波長; 0とのずれを検出する。 すなわち、 前述したように、 波長検出部 6 1 は、 広帯域用のフアブリペロー共振器 2 1の波長透過特性を用いて予め求めてお いた基準波長 λ 0での信号強度比 S 1 / S 2と、 第 2および第 3のフォ トダイォ ード 5、 2 2からの光強度モニタ信号 S 2、 S 3に基づき求めた信号強度比 S 3 / S 2との差を求めることにより、 発振波長と基準波長 λ 0とのずれ (偏差) を 算出する。  The operation of the wavelength detector 61 will be described in detail. First, the wavelength detection unit 61 detects a shift from the reference wavelength; 0 using the light intensity monitor signal S3 transmitted through the Fabry-Perot resonator 21 for a wide band. That is, as described above, the wavelength detector 61 has a signal intensity ratio S 1 / S 2 at the reference wavelength λ 0, which is obtained in advance using the wavelength transmission characteristics of the Fabry-Perot resonator 21 for a wide band. By obtaining the difference between the signal intensity ratio S 3 / S 2 obtained based on the light intensity monitor signals S 2 and S 3 from the second and third photodiodes 5 and 22, the oscillation wavelength and the reference wavelength are obtained. Calculate the deviation (deviation) from λ 0.
このずれ量が狭帯域用のフアブリぺロ一共振器 3のスロープ幅よりも大きけれ ば、 この値がそのままレーザ制御部 5 2へ送られる。 しかし、 光強度モニタ信号 S 3、 S 2を用いて算出した基準波長; I 0からのずれ量が、 狭帯域用のフアブリ ペロー共振器 3のスロープ幅よりも小さければ、 狭帯域用のフアブリペロー共振 器 3のスロープ特性を用いて、 基準波長え 0からのずれ量を再度計算することに より、 より高精度に発振波長を検出する。 すなわち、 狭帯域用のフアブリペロー 共振器 3の波長透過特性を用いて予め算出した基準波長; 0での信号強度比 S 1 / S 2と、 第 1および第 2のフォトダイオード 4、 5からの光強度モニタ信号 S 1、 S 2に基づき求めた信号強度比 S 3 / S 2との差を求めることにより、 発振 波長と基準波長 λ 0とのずれ (偏差) を算出する。 このようにして求められたず れ量 (偏差信号) がレーザ制御部 5 2へ送られる。  If this deviation amount is larger than the slope width of the narrow-band fabric resonator 3, this value is sent to the laser control unit 52 as it is. However, if the deviation from the reference wavelength calculated from the light intensity monitor signals S 3 and S 2; I 0 is smaller than the slope width of the narrow-band Fabry-Perot resonator 3, the narrow-band Fabry-Perot resonance By using the slope characteristics of the detector 3 again to calculate the amount of deviation from the reference wavelength 0, the oscillation wavelength is detected with higher accuracy. That is, a reference wavelength previously calculated using the wavelength transmission characteristics of the Fabry-Perot resonator 3 for a narrow band; a signal intensity ratio S 1 / S 2 at 0; and light from the first and second photodiodes 4 and 5. The difference (deviation) between the oscillation wavelength and the reference wavelength λ 0 is calculated by calculating the difference between the signal intensity ratio S 3 / S 2 obtained based on the intensity monitor signals S 1 and S 2. The deviation amount (deviation signal) thus obtained is sent to the laser control unit 52.
レーザ制御部 5 2は、 先の実施の形態 1と同様に動作する。 すなわち、 レーザ 制御部 5 2では、 波長検出部 6 1から入力される偏差信号を用いて、 温度もしく は注入電流等の値を変化させる制御信号 Τ 1を半導体レーザ 1に出力することに より、 半導体レーザ 1の波長を制御する。 Laser control unit 52 operates in the same manner as in the first embodiment. That is, the laser control unit 52 uses the deviation signal input from the wavelength detection unit 61 to output a control signal Τ1 for changing the value of the temperature or the injection current to the semiconductor laser 1. Thus, the wavelength of the semiconductor laser 1 is controlled.
広帯域用のフアブリペロー共振器 2 1の F S R內にある 1つのスロープは半導 体レーザ 1の波長可変領域よりも大きいため、 広帯域にわたり絶対波長をモニタ することができる。 し力 し、 広帯域用のフアブリペロー共振器 2 1の波長透過特 性は、 第 2 0図にも示すように、 狭帯域用のフアプリペロー共振器 3の波長透過 特性よりも、 波長変化に対する信号強度変化が小さい。 すなわち、 光強度モニタ 信号 S 3は、 光強度モニタ信号 S 1に比べ、 波長変化に対する信号強度変化が小 さい。  Since one slope in the FSR 內 of the Fabry-Perot resonator 21 for a wide band is larger than the wavelength tunable region of the semiconductor laser 1, the absolute wavelength can be monitored over a wide band. However, as shown in FIG. 20, the wavelength transmission characteristic of the Fabry-Perot resonator 21 for a wide band is more dependent on the wavelength change than the wavelength transmission characteristic of the resonator element 3 for a narrow band. Is small. That is, the light intensity monitor signal S3 has a smaller signal intensity change with respect to the wavelength change than the light intensity monitor signal S1.
そのため、 S 3 / S 2の値が設定された値からずれた場合、 S 1 / S 2力同じ値 だけずれた場合に比べて波長が大きくずれてしまうことになる。 そこで、 狭帯域 用の波長モニタであるフアブリペロー共振器 3を透過した光信号強度 S 1を用い ることにより、 半導体レーザ 1より出射された光信号の波長をより精度良く固定 することができる。  Therefore, when the value of S 3 / S 2 is deviated from the set value, the wavelength is largely deviated as compared with the case where the value of S 1 / S 2 is deviated by the same value. Therefore, the wavelength of the optical signal emitted from the semiconductor laser 1 can be fixed more accurately by using the optical signal intensity S1 transmitted through the Fabry-Perot resonator 3, which is a wavelength monitor for a narrow band.
なお、 下側に配置するフアブリペロー共振器 3を広帯域用の波長モニタとして 用い、 上側に配置するフアブリペロー共振器 2 1を狭帯域用の波長モニタとして 用いるように各共振器 3 , 2 1の共振器長を調整するようにしてもよい。  The resonators of the resonators 3 and 21 are arranged such that the lower Fabry-Perot resonator 3 is used as a wavelength monitor for a wide band and the upper Fabry-Perot resonator 21 is used as a wavelength monitor for a narrow band. The length may be adjusted.
このようにこの実施の形態 2によれば、 半導体レーザ 1から出射される光信号 の絶対波長を広帯域にわたり高精度に制御することができる。 なお、 第 1 8図に 示された波長モユタ装置と第 1 9図に示された波長制御装置を組み合わせること により、 波長安定化光源を構成することが可能である。  As described above, according to the second embodiment, the absolute wavelength of the optical signal emitted from the semiconductor laser 1 can be controlled with high accuracy over a wide band. Note that a wavelength stabilized light source can be configured by combining the wavelength monitoring device shown in FIG. 18 with the wavelength control device shown in FIG.
第 2 1図は、 この発明の実施の形態 2の変更態様による波長モニタ装置を示す 構成図である。 第 2 1図に示す波長モニタ装置においては、 フアブリペロー共振 器 3の上方に位置する第 2および第 3のフォトダイオード 5、 2 2を、 レンズ 2 との間隔を狭めるように第 1のフォトダイオード 4よりも前方に配置する。 この 場合は、 ベースキャリア 6の第 2および第 3のフォトダイオード 5、 2 2を設置 する箇所を、 半導体レーザ 1のほうにせり出すように構成しており、 ベースキヤ リア 6の第 1のフォトダイオード 4を設置する箇所とベースキャリア 6の第 2お よび第 3のフォトダイオード 5、 2 2を設置する箇所との間には、 段差部を形成 している。 FIG. 21 is a configuration diagram showing a wavelength monitor according to a modification of the second embodiment of the present invention. In the wavelength monitor shown in FIG. 21, the second and third photodiodes 5, 22 located above the Fabry-Perot resonator 3 are connected to the first photodiode 4 so that the distance from the lens 2 is reduced. To the front. In this case, the location where the second and third photodiodes 5, 22 of the base carrier 6 are installed is configured to protrude toward the semiconductor laser 1, and the first photodiode 4 of the base carrier 6 is mounted. Location and location of base carrier 6 A step is formed between the third photodiode 5 and the place where the third photodiodes 22 are installed.
このようにこの第 2 1図の構成によれば、 第 2および第 3のフォトダイォード 5、 2 2を、 第 1のフォトダイオード 4よりも前方に配置しているので、 光信号 がフアブリべ口一共振器 3に入射された後、 ベースキャリア 6の底面で散乱して も、 散乱光がフアブリペロー共振器 3を透過した後、 第 2および第 3のフォトダ ィオード 5、 2 2で受光されることがなくなる。 産業上の利用可能性  As described above, according to the configuration shown in FIG. 21, the second and third photodiodes 5, 22 are arranged in front of the first photodiode 4, so that the optical signal is Fabry. Even if the scattered light is transmitted through the Fabry-Perot resonator 3 and then scattered on the bottom surface of the base carrier 6 after being incident on the mouth resonator 3, it is received by the second and third photodiodes 5 and 22. Disappears. Industrial applicability
この発明は、 光ファイバ一を利用した波長分割多重 (WDM) 通信、 高密度波 長分割多重 (DWDM) 通信に用いられる光源としての半導体レーザの波長フィ ルタあるいは波長モニタ装置として用いて好適である。 また、 温度変動の影響を 受けることなくレーザ光の波長を高精度に選択あるいはモニタすることが要求さ れ、 また構造、 組み立ての簡単化が要求されるシステムに適している。  INDUSTRIAL APPLICABILITY The present invention is suitable for use as a wavelength filter or a wavelength monitor of a semiconductor laser as a light source used in wavelength division multiplexing (WDM) communication and high-density wavelength division multiplexing (DWDM) communication using an optical fiber. . In addition, it is required to select or monitor the wavelength of laser light with high accuracy without being affected by temperature fluctuations, and it is suitable for systems that require simplification of structure and assembly.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光を透過する固体材料と、 1. Light transmitting solid material,
前記固体材料に形成された略平行に対向する平面と、  A substantially parallel opposing plane formed on the solid material,
前記略平行に対向する平面間で光を共振させ、 対向平面間の光路長できまる波 長を周期的に選択する波長フィルタにおいて、  A wavelength filter that resonates light between substantially parallel opposing planes and periodically selects a wavelength determined by an optical path length between the opposing planes,
前記固体材料が複屈折材料であるとともに、 その光学軸が前記略平行に対向す る平面の法線と所定の角度を有することを特徴とする波長フィルタ。  A wavelength filter, wherein the solid material is a birefringent material, and an optical axis of the birefringent material has a predetermined angle with respect to a normal line of the substantially parallel opposed plane.
2 . 上記略平行に対向する平面の法線と光学軸との間の所定の角度は、 上記平 面間の光路長の温度係数が所定の値を有するように設定されていることを特徴と する請求の範囲第 1項に記載の波長: 2. The predetermined angle between the normal of the substantially parallel opposing plane and the optical axis is set so that the temperature coefficient of the optical path length between the planes has a predetermined value. The wavelength according to claim 1 that:
3 . 上記複屈折材料は、 屈折率と光軸方向の線膨張係数との積と熱光学係数と の和の絶対^!が最小になるように上記略平行に対向する平面の法線と光学軸との 角度が設定されていることを特徴とする請求の範囲第 2項に記載の波長フィルタ。 3. The birefringent material has a normal and an optical axis which are substantially parallel to each other so that the absolute ^! Of the sum of the product of the refractive index and the linear expansion coefficient in the optical axis direction and the thermo-optic coefficient is minimized. 3. The wavelength filter according to claim 2, wherein an angle with an axis is set.
4 . 上記複屈折材料は、 光学軸に平行な方向の線膨張係数と光学軸に平行に伝 播する光の屈折率との積と光学軸に平行に伝播する光の熱光学係数との和と、 光 学軸に垂直な方向の線膨張係数と光学軸に垂直な方向に伝播する光の屈折率との 積と光学軸に垂直な方向に伝播する光の熱光学係数との和が互いに異符号である ことを特徴とする請求の範囲第 2項に記載の波長: 4. The birefringent material is the sum of the product of the linear expansion coefficient in the direction parallel to the optical axis and the refractive index of light propagating parallel to the optical axis, and the thermo-optic coefficient of light propagating parallel to the optical axis. And the sum of the product of the linear expansion coefficient in the direction perpendicular to the optical axis and the refractive index of light propagating in the direction perpendicular to the optical axis and the thermo-optic coefficient of light propagating in the direction perpendicular to the optical axis are mutually The wavelength according to claim 2, wherein the wavelengths are different from each other.
5 . 上記複屈折材料は、 α— B B O結晶、 — Β Β Ο結晶、 L i I 0 3結晶、 C a C〇3結晶のいずれかであることを特徴とする請求の範囲第 4項に記載の波 長フィルタ。 . 5 the birefringent material, alpha-BBO crystal, - beta beta Omicron crystal, L i I 0 3 crystals, according to C a C_〇 3 claim 4, characterized in that either crystalline Wavelength filter.
6 . 上記複屈折材料に入射する光は異常光軸に揃えた偏光を用い、 6. The light incident on the birefringent material uses polarized light aligned with the extraordinary optical axis,
複屈折材料が α— B B Ο結晶の場合は、 光学軸の光軸に対する角度を約 6 4度 とし、  If the birefringent material is α-B B Ο crystal, the angle of the optical axis to the optical axis should be about 64 degrees,
複屈折材料が 0— Β Β Ο結晶の場合は、 光学軸の光軸に対する角度を約 6 5度 とし、  If the birefringent material is a 0-Β Β Ο crystal, the angle of the optical axis to the optical axis should be about 65 degrees,
複屈折材料が L i I 0 3の場合は、 光学軸の光軸に対する角度を約 2 3度とす ることを特徴とする請求の範囲第 5項に記載の波長フィルタ。 If the birefringent material is a L i I 0 3, the wavelength filter according to claim 5, wherein approximately 2 3 degrees and to Rukoto an angle with respect to the optical axis of the optical axes.
7 . 上記複屈折材料に入射する光は常光軸に揃えた偏光を用い、 7. The light incident on the birefringent material uses polarized light aligned with the ordinary optical axis.
複屈折材料が α— B B Ο結晶の場合は、 光学軸の光軸に対する角度を約 7 7度 とし、  If the birefringent material is α-B B Ο crystal, the angle of the optical axis to the optical axis should be about 77 degrees,
複屈折材料が ]3— Β Β Ο結晶の場合は、 光学軸の光軸に対する角度を約 5 7度 とし、  If the birefringent material is a 33 Β Ο Ο crystal, the angle of the optical axis to the optical axis should be about 57 degrees,
複屈折材料が L i I 0 3結晶の場合は、 光学軸の光軸に対する角度を約 1 9度 とし、 If the birefringent material is a L i I 0 3 crystal, the angle with respect to the optical axis of the optical axis is about 1 9 degrees,
複屈折材料が C a C〇3結晶の場合は、 光学軸の光軸に対する角度を約 6 6度 とすることを特徴とする請求の範囲第 5項に記載の波長フィルタ。 If the birefringent material is a C a C_〇 3 crystal, the wavelength filter according to claim 5, characterized in that an angle of about 6 6 degrees with respect to the optical axis of the optical axes.
8 . 半導体レーザから出力されるレーザ光の波長をモニタする波長モニタ装置 において、 8. In a wavelength monitoring device for monitoring the wavelength of laser light output from a semiconductor laser,
レーザ光を透過する固体材料と、  A solid material that transmits laser light;
前記固体材料に形成された略平行に対向する平面と、  A substantially parallel opposing plane formed on the solid material,
前記略平行に対向する平面間でレーザ光を共振させ、 対向平面間の光路長でき まる波長を周期的に選択する波長フィルタと、  A wavelength filter that resonates the laser light between the substantially parallel opposed planes and periodically selects a wavelength determined by an optical path length between the opposed planes;
前記波長フィルタの透過光に基づきレーザ光の発振波長を測定する波長検出手 段を備え、  A wavelength detecting means for measuring an oscillation wavelength of the laser light based on the transmitted light of the wavelength filter,
前記固体材料が複屈折材料であるとともに、 その光学軸が前記略平行に対向す る平面の法線と所定の角度を有することを特徴とする波長モニタ装置。 The solid material is a birefringent material, and the optical axes of the solid materials oppose substantially in parallel. A wavelength monitor having a predetermined angle with respect to a normal to a plane.
9 . 前記半導体レーザから出力されるレーザ光は、 1方向に偏光されたもので あり、 9. The laser light output from the semiconductor laser is polarized in one direction,
上記波長フィルタを構成する複屈折材料は、 前記レーザ光の光軸と偏光方向と で作られる平面に対し平行な面内に光学軸があり、 この光学軸がレーザ光の光軸 に対し所定の角度に傾レ、ていることを特徴とする請求の範囲第 8項に記載の波長 モニタ装置。  The birefringent material forming the wavelength filter has an optical axis in a plane parallel to a plane formed by the optical axis and the polarization direction of the laser light, and the optical axis is a predetermined optical axis with respect to the optical axis of the laser light. 9. The wavelength monitoring device according to claim 8, wherein the wavelength monitoring device is inclined at an angle.
1 0 . 前記半導体レーザから出力されるレーザ光は、 1方向に偏光されたもの であり、 ' 上記波長フィルタを構成する複屈折材料は、 前記レーザ光の光軸と偏光方向と で作られる平面に対し垂直な面内に光学軸があり、 この光学軸がレーザ光の光軸 に対し所定の角度に傾いていることを特徴とする請求の範囲第 8項に記載の波長 モニタ装置。 10. The laser light output from the semiconductor laser is polarized in one direction, and the birefringent material forming the wavelength filter is a plane formed by the optical axis and the polarization direction of the laser light. 9. The wavelength monitor according to claim 8, wherein an optical axis is in a plane perpendicular to the optical axis, and the optical axis is inclined at a predetermined angle with respect to an optical axis of the laser beam.
1 1 . 前記波長フィルタを構成する複屈折材料は、 結晶の屈折率、 光軸方向の 線膨張係数および熱光学係数に基づき、 光学軸の光軸に対する角度が設定されて いることを特徴とする請求の範囲第 8項に記載の波長モニタ装置。 11. The birefringent material constituting the wavelength filter is characterized in that the angle of the optical axis with respect to the optical axis is set based on the refractive index of the crystal, the coefficient of linear expansion in the optical axis direction, and the thermo-optic coefficient. 9. The wavelength monitor according to claim 8.
1 2 . 前記略平行に対向する平面の法線と光学軸との所定の角度は、 上記平面 間の光路長の温度係数が所定の値を有するように設定されていることを特徴とす る請求の範囲第 8項に記載の波長モニタ装置。 12. The predetermined angle between the normal to the substantially parallel opposing plane and the optical axis is set so that the temperature coefficient of the optical path length between the planes has a predetermined value. 9. The wavelength monitor according to claim 8.
1 3 . 上記複屈折材料は、 屈折率と光軸方向の線膨張係数との積と熱光学係数 との和の絶対^:が最小になるように上記略平行に対向する平面の法線と光学軸と の角度が設定されていることを特徴とする請求の範囲第 1 2項に記載の波長モニ タ装置。 1 3. The birefringent material should have a normal to a plane substantially parallel to the plane so as to minimize the absolute ^: of the sum of the product of the refractive index and the coefficient of linear expansion in the optical axis direction and the thermo-optic coefficient. The wavelength monitor according to claim 12, wherein an angle with respect to an optical axis is set. Data device.
1 4. 上記複屈折材料は、 光学軸に平行な方向の線膨張係数と光学軸に平行に 伝播する光の屈折率との積と光学軸に平行に伝播する光の熱光学係数との和と、 光学軸に垂直な方向の線膨張係数と光学軸に垂直な方向に伝播する光の屈折率と の積と光学軸に垂直な方向に伝播する光の熱光学係数との和が互いに異符号であ ることを特徴とする請求の範囲第 1 2項に記載の波長モニタ装置。 1 4. The birefringent material is the sum of the product of the linear expansion coefficient in the direction parallel to the optical axis and the refractive index of light propagating parallel to the optical axis, and the thermo-optic coefficient of light propagating parallel to the optical axis. And the sum of the product of the linear expansion coefficient in the direction perpendicular to the optical axis and the refractive index of light propagating in the direction perpendicular to the optical axis and the thermo-optic coefficient of light propagating in the direction perpendicular to the optical axis are different from each other. 13. The wavelength monitor according to claim 12, wherein the wavelength monitor is a code.
1 5. 上記複屈折材料は、 α— B B Ο結晶、 /3— Β Β Ο結晶、 L i I 03結晶、 C a CO3結晶のいずれかであることを特徴とする請求の範囲第 1 4項に記載の 波長モニタ装置。 1 5. the birefringent material, alpha-BB Omicron crystal, / 3- Β Β Ο crystals, L i I 0 3 crystal, C a CO 3 ranging first claim, characterized in that either crystalline The wavelength monitor according to item 4.
1 6. 上記複屈折材料に入射する光は異常光軸に揃えた偏光を用い、 1 6. Light incident on the birefringent material uses polarized light aligned with the extraordinary optical axis.
複屈折材料が ct— B BO結晶の場合は、 光学軸の光軸に対する角度を約 6 4度 とし、  If the birefringent material is a ct-B BO crystal, the angle of the optical axis to the optical axis should be about 64 degrees,
複屈折材料が /3— BBO結晶の場合は、 光学軸の光軸に対する角度を約 6 5度 とし、  If the birefringent material is / 3—BBO crystal, the angle of the optical axis to the optical axis should be about 65 degrees,
複屈折材料が L i I O3の場合は、 光学軸の光軸に対する角度を約 2 3度とす ることを特徴とする請求の範囲第 1 5項に記載の波長モニタ装置。 16. The wavelength monitor according to claim 15, wherein when the birefringent material is Li IO 3 , the angle of the optical axis with respect to the optical axis is about 23 degrees.
1 7. 上記複屈折材料に入射する光は常光軸に揃えた偏光を用い、 1 7. Light incident on the birefringent material uses polarized light aligned with the ordinary optical axis.
複屈折材料がひ一 B B O結晶の場合は、 光学軸の光軸に対する角度を約 7 7度 とし、  When the birefringent material is a single BBO crystal, the angle of the optical axis to the optical axis is about 77 degrees,
複屈折材料が J3— B BO結晶の場合は、 光学軸の光軸に対する角度を約 5 7度 とし、  If the birefringent material is a J3-BBO crystal, the angle of the optical axis to the optical axis should be about 57 degrees,
複屈折材料が L i I 03結晶の場合は、 光学軸の光軸に対する角度を約 1 9度 とし、 複屈折材料が C a C〇3結晶の場合は、 光学軸の光軸に対する角度を約 66度 とすることを特徴とする請求の範囲第 15項に記載の波長モニタ装置。 If the birefringent material is a L i I 0 3 crystal, the angle with respect to the optical axis of the optical axis is about 1 9 degrees, If the birefringent material is a C a C_〇 3 crystal, wavelength monitor device according to claim Section 15 claims, characterized in that an angle of about 66 degrees with respect to the optical axis of the optical axes.
18. 上記波長フィルタを構成する複屈折材料は、 屈折率と光軸方向の線膨張 係数との積と、 熱光学係数との和は零に一致するように光学軸の光軸に対する角 度が設定されていることを特徴とする請求の範囲第 9項に記載の波長モニタ装置。 18. The birefringent material constituting the wavelength filter has an angle of the optical axis with respect to the optical axis such that the sum of the product of the refractive index and the linear expansion coefficient in the optical axis direction and the thermo-optic coefficient are zero. 10. The wavelength monitor according to claim 9, wherein the wavelength monitor is set.
19. 上記波長フィルタを構成する複屈折材料は、 屈折率と光軸方向の線膨張 係数との積と、 熱光学係数との和は零に一致するように光学軸の光軸に対する角 度が設定されていることを特徴とする請求の範囲第 10項に記載の波長モニタ装 19. The angle of the optical axis with respect to the optical axis is set so that the sum of the product of the refractive index and the coefficient of linear expansion in the optical axis direction and the thermo-optical coefficient is zero. The wavelength monitor device according to claim 10, wherein the wavelength monitor device is set.
20. 上記波長フィルタを構成する複屈折材料は、 α— BBO、 ]3— BBO、 L i I 03のいずれかとし、 20. birefringent material forming the wavelength filter, alpha - and BBO,] 3- BBO, either as L i I 0 3,
複屈折材料が α— B BOの場合は、 光学軸の光軸に対する角度を 63. 35度 とし、  If the birefringent material is α-BBO, the angle of the optical axis to the optical axis is 63.35 degrees,
複屈折材料が i3— BBOの場合は、 光学軸の光軸に対する角度を 64. 75度 とし、  If the birefringent material is i3—BBO, the angle of the optical axis to the optical axis is 64.75 degrees,
複屈折材料が L i I 03の場合は、 光学軸の光軸に対する角度を 22. 70度 とすることを特徴とする請求の範囲第 18項に記載の波長モニタ装置。 If the birefringent material is a L i I 0 3, wavelength monitor device according to claim 18, wherein claims, characterized in that the angle 22.70 degrees with respect to the optical axis of the optical axes.
21. 上記波長フィルタを構成する複屈折材料は、 α— ΒΒΟ、 β-ΒΒΟ, L i L03、 C a CO3のいずれかとし、 21. birefringent material forming the wavelength filter, alpha-and ΒΒΟ, β-ΒΒΟ, either as L i L0 3, C a CO 3,
複屈折材料が α— B Β Οの場合は、 光学軸の光軸に対する角度を 76. 95度 とし、  If the birefringent material is α—B Β 角度, the angle of the optical axis to the optical axis is 76.95 degrees,
複屈折材料が J3— B B Oの場合は、 光学軸の光軸に対する角度を 57. 05度 とし、 複屈折材料が L i L 03の場合は、 光学軸の光軸に対する角度を 1 8 . 6 5度 とし、 If the birefringent material is J3—BBO, the angle of the optical axis to the optical axis is 57.05 degrees, If the birefringent material is a L i L 0 3, the angle with respect to the optical axis of the optical axis is 1 8.6 5 degrees,
複屈折材料が C a C O 3の場合は、 光学軸の光軸に対する角度を 6 7 . 0 5度 とすることを特徴とする請求の範囲第 1 9項に記載の波長モニタ装置。 10. The wavelength monitor according to claim 19, wherein when the birefringent material is CaCO 3 , the angle of the optical axis with respect to the optical axis is set to 67.05 degrees.
2 2 . 上記波長フィルタを構成する複屈折材料は、 光学軸に対する設定角度を 維持しつつ、 その光軸方向の厚みを変化させることで、 温度補償条件を満足させ てかつ波長弁別領域を調節可能であることを特徴とする請求の範囲第 8項に記載 の波長モニタ装置。 2 2. The birefringent material that constitutes the above wavelength filter can maintain the set angle to the optical axis and change the thickness in the optical axis direction to satisfy the temperature compensation condition and adjust the wavelength discrimination area. 9. The wavelength monitor according to claim 8, wherein:
2 3 . 前記半導体レーザから出射されるレーザ光のビームサイズを調節し、 調 節されたレーザ光を上記波長フィルタに出力するレンズを備えることを特徴とす る請求の範囲第 8項に記載の波長モニタ装置。 23. The method according to claim 8, further comprising a lens that adjusts a beam size of laser light emitted from the semiconductor laser and outputs the adjusted laser light to the wavelength filter. Wavelength monitor.
2 4 . 前記波長検出手段は、 24. The wavelength detecting means,
前記波長フィルタの透過光を検出する第 1の光検出器と、  A first photodetector that detects light transmitted through the wavelength filter;
前記半導体レーザから出力されるレーザ光を直接検出する第 2の光検出器と、 上記第 1および第 2の光検出器の検出信号の比を用いて前記レーザ光の発振波 長を検出する波長検出部と、  A second photodetector for directly detecting laser light output from the semiconductor laser, and a wavelength for detecting an oscillation wavelength of the laser light using a ratio of detection signals of the first and second photodetectors. A detection unit;
を備えることを特徴とする請求の範囲第 8項に記載の波長モニタ装置。  9. The wavelength monitoring device according to claim 8, comprising:
2 5 . 前記半導体レーザおよび波長フィルタを載置するとともに、 前記第 2の 光検出器が第 1の光検出器より上方に位置するように前記第 1および第 2の光検 出器を設置するベースキヤリァを更に備え、 25. The semiconductor laser and the wavelength filter are mounted, and the first and second photodetectors are installed so that the second photodetector is located above the first photodetector. Further equipped with a base carrier,
前記ベースキヤリァ上に載置された波長フィルタを透過したレーザ光が前記第 2の光検出器で受光されないように波長フィルタの高さを調節していることを特 徴とする請求の範囲第 2 4項に記載の波長モニタ装置。 25. The apparatus according to claim 24, wherein the height of the wavelength filter is adjusted so that the laser light transmitted through the wavelength filter mounted on the base carrier is not received by the second photodetector. The wavelength monitor according to the item.
2 6 . 前記半導体レーザおよび波長フィルタを載置するとともに、 前記第 2の 光検出器が第 1の光検出器より上方に位置するように前記第 1および第 2の光検 出器を設置するベースキヤリアを更に備え、 26. The semiconductor laser and the wavelength filter are mounted, and the first and second photodetectors are installed so that the second photodetector is located above the first photodetector. Further equipped with a base carrier,
前記ベースキヤリァ上に載置された波長フィルタを透過したレーザ光が前記第 2の光検出器で受光されることがないように前記第 2の光検出器を第 1の光検出 器よりも波長フィルタ側に接近させて配置していることを特徴とする請求の範囲 第 2 4項に記載の波長モニタ装置。  The second photodetector is more wavelength-filtered than the first photodetector so that the laser light transmitted through the wavelength filter mounted on the base carrier is not received by the second photodetector. 25. The wavelength monitor according to claim 24, wherein the wavelength monitor is arranged close to the side.
2 7 . 半導体レーザから出力されるレーザ光の波長をモニタする波長モニタ装 置において、 27. In a wavelength monitor that monitors the wavelength of laser light output from a semiconductor laser,
レーザ光を透過する第 1の固体材料と、 前記第 1の固体材料に形成された略平 行に対向する平面と、 前記略平行に対向する平面間でレーザ光を共振させ、 対向 平面間の光路長できまる波長を周期的に選択し、 前記固体材料が複屈折材料であ るとともに、 その光学軸が前記略平行に対向する平面の法線と所定の角度を有す る狭帯域用の第 1の波長フィルタと、  Resonating the laser light between a first solid material that transmits the laser light, a plane formed on the first solid material that faces substantially parallel, and a plane that faces substantially parallel to each other; A wavelength determined by an optical path length is periodically selected, and the solid-state material is a birefringent material, and the optical axis of the solid-state material has a predetermined angle with the normal of the substantially parallel opposed flat surface. A first wavelength filter;
レーザ光を透過する第 2の固体材料と、 前記第 1の固体材料に形成された略平 行に対向する平面と、 前記略平行に対向する平面間でレーザ光を共振させ、 対向 平面間の光路長できまる波長を周期的に選択し、 前記固体材料が複屈折材料であ るとともに、 その光学軸が前記略平行に対向する平面の法線と所定の角度を有す る広帯域用の第 2の波長フィルタと、  Causing the laser light to resonate between a second solid material that transmits the laser light, a plane formed on the first solid material that faces substantially parallel, and a plane that faces substantially parallel to each other; The wavelength for which the optical path length is determined is periodically selected, and the solid material is a birefringent material, and the optical axis thereof has a predetermined angle with the normal of the plane substantially parallel to each other. 2 wavelength filters,
前記第 1および第 2の波長フィルタの透過光に基づきレーザ光の発振波長を測 定する波長検出手段と、  Wavelength detecting means for measuring the oscillation wavelength of the laser light based on the transmitted light of the first and second wavelength filters;
を備えたことを特徴とする波長モニタ装置。 A wavelength monitor device comprising:
2 8 . 前記半導体レーザから出力されるレーザ光は、 1方向に偏光されたもの であり、 上記第 1および第 2の波長フィルタを構成する複屈折材料は、 前記レーザ光の 光軸と偏光方向とで作られる平面に対し平行な面内に光学軸があり、 この光学軸 がレーザ光の光軸に対し所定の角度に傾いていることを特徴とする請求の範囲第 2 7項に記載の波長モニタ装置。 28. The laser light output from the semiconductor laser is polarized in one direction, The birefringent material forming the first and second wavelength filters has an optical axis in a plane parallel to a plane formed by the optical axis and the polarization direction of the laser light, and this optical axis is 28. The wavelength monitor according to claim 27, wherein the wavelength monitor is inclined at a predetermined angle with respect to the optical axis.
2 9 . 前記半導体レーザから出力されるレーザ光は、 1方向に偏光されたもの であり、 29. The laser light output from the semiconductor laser is polarized in one direction,
上記波長フィルタを構成する複屈折材料は、 前記レーザ光の光軸と偏光方向と で作られる平面に対し垂直な面内に光学軸があり、 この光学軸がレーザ光の光軸 に対し所定の角度に傾いていることを特徴とする請求の範囲第 2 7項に記載の波 長モニタ装置。  The birefringent material forming the wavelength filter has an optical axis in a plane perpendicular to a plane formed by the optical axis and the polarization direction of the laser light, and the optical axis is a predetermined angle with respect to the optical axis of the laser light. 28. The wavelength monitoring device according to claim 27, wherein the device is inclined at an angle.
3 0 . 上記広帯域用の第 2の波長フィルタの波長弁別領域が半導体レーザの波 長可変領域より大きく、 狭帯域用の第 1の波長フィルタの波長弁別領域が第 1の 波長フィルタの波長可変領域に比べて十分小さくなるように、 第 1および第 2の 波長フィルタを構成する複屈折材料の光軸方向の厚みを設定することを特徴とす る請求の範囲第 2 7項記載の波長モニタ装置。 30. The wavelength discriminating region of the second wavelength filter for the wide band is larger than the wavelength variable region of the semiconductor laser, and the wavelength discriminating region of the first wavelength filter for the narrow band is the wavelength variable region of the first wavelength filter. 28. The wavelength monitor according to claim 27, wherein the thickness in the optical axis direction of the birefringent material constituting the first and second wavelength filters is set so as to be sufficiently smaller than the wavelength monitor. .
3 1 . 前記波長検出手段は、 3 1. The wavelength detecting means,
前記第 1の波長フィルタの透過光を検出する第 1の光検出器と、  A first photodetector that detects transmitted light of the first wavelength filter,
前記半導体レーザから出力されるレーザ光を直接検出する第 2の光検出器と、 前記第 2の波長フィルタの透過光を検出する第 3の光検出器と、  A second photodetector that directly detects a laser beam output from the semiconductor laser; and a third photodetector that detects transmitted light of the second wavelength filter.
上記第 1および第 2の光検出器の検出信号の比および前記第 3および第 2の光 検出器の検出信号の比を用いて前記レーザ光の発振波長を検出する波長検出部と、 を備えることを特徴とする請求の範囲第 2 7項に記載の波長モニタ装置。  A wavelength detector that detects the oscillation wavelength of the laser light using the ratio of the detection signals of the first and second photodetectors and the ratio of the detection signals of the third and second photodetectors. 28. The wavelength monitor according to claim 27, wherein:
3 2 . 前記半導体レーザおよび波長フィルタを載置するとともに、 前記第 2お よび第 3の光検出器が第 1の光検出器より上方に位置するように前記第 1〜第 3 の光検出器を設置するベースキヤリァを更に備え、 32. While mounting the semiconductor laser and the wavelength filter, And a base carrier for installing the first to third photodetectors such that the third photodetector is located above the first photodetector,
前記ベースキヤリァ上に載置された波長フィルタを透過したレーザ光が第 2お よび第 3の光検出器で受光されないように前記第 2および第 3の光検出器を第 1 の光検出器よりも波長フィルタ側に接近させて配置していることを特徴とする請 求の範囲第 2 7項に記載の波長モニタ装置。  The second and third photodetectors are set to a higher position than the first photodetector so that the laser light transmitted through the wavelength filter mounted on the base carrier is not received by the second and third photodetectors. 28. The wavelength monitor according to claim 27, wherein the wavelength monitor is arranged close to the wavelength filter.
PCT/JP2002/009173 2002-04-15 2002-09-09 Wavelength filter and wavelength monitoring apparatus WO2003087898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/003715 WO2003088436A1 (en) 2002-04-15 2002-04-15 Wavelength monitor device
JPPCT/JP02/03715 2002-04-15

Publications (1)

Publication Number Publication Date
WO2003087898A1 true WO2003087898A1 (en) 2003-10-23

Family

ID=29227585

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2002/003715 WO2003088436A1 (en) 2002-04-15 2002-04-15 Wavelength monitor device
PCT/JP2002/009173 WO2003087898A1 (en) 2002-04-15 2002-09-09 Wavelength filter and wavelength monitoring apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003715 WO2003088436A1 (en) 2002-04-15 2002-04-15 Wavelength monitor device

Country Status (1)

Country Link
WO (2) WO2003088436A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095936A (en) * 2005-09-28 2007-04-12 Mitsubishi Electric Corp Carbon dioxide laser beam processing machine and machining method thereof
US7283302B2 (en) 2003-03-19 2007-10-16 Mitsubishi Denki Kabushiki Kaisha Wavelength filter and wavelength monitor device
JP7036666B2 (en) 2018-05-23 2022-03-15 三菱重工業株式会社 Laser equipment and processing equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160774A (en) * 1989-11-20 1991-07-10 Toshiba Corp Semiconductor laser module
EP0867989A1 (en) * 1997-03-24 1998-09-30 Ando Electric Co., Ltd. Wavelength tunable semiconductor laser light source
EP0939470A2 (en) * 1998-02-27 1999-09-01 Nec Corporation Wavelength controlling circuit for laser signal
JPH11242115A (en) * 1998-02-26 1999-09-07 Fujitsu Ltd Optical element without temperature dependency
US5982488A (en) * 1996-03-22 1999-11-09 Fujitsu Limited Compensator which experiences thermal expansion to compensate for changes in optical distance through a transparent material
EP1109276A2 (en) * 1999-12-16 2001-06-20 Lucent Technologies Inc. Method and apparatus for stabilizing laser wavelength
JP2001244557A (en) * 2000-02-29 2001-09-07 Mitsubishi Electric Corp Wavelength monitoring device, adjusting method of it and wavelength stabilizing light source
EP1133034A2 (en) * 2000-03-10 2001-09-12 Nec Corporation Wavelength stabilized laser module
EP1136848A2 (en) * 2000-03-15 2001-09-26 Agere Systems Guardian Corporation Using crystalline materials to control the thermo-optic behaviour of an optical path
EP1158630A1 (en) * 2000-04-25 2001-11-28 Alcatel Wavelength stabilization monitor and method for adjusting the working wavelength of said monitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248191A (en) * 1987-04-03 1988-10-14 Mitsubishi Electric Corp Semiconductor laser array device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160774A (en) * 1989-11-20 1991-07-10 Toshiba Corp Semiconductor laser module
US5982488A (en) * 1996-03-22 1999-11-09 Fujitsu Limited Compensator which experiences thermal expansion to compensate for changes in optical distance through a transparent material
EP0867989A1 (en) * 1997-03-24 1998-09-30 Ando Electric Co., Ltd. Wavelength tunable semiconductor laser light source
JPH11242115A (en) * 1998-02-26 1999-09-07 Fujitsu Ltd Optical element without temperature dependency
EP0939470A2 (en) * 1998-02-27 1999-09-01 Nec Corporation Wavelength controlling circuit for laser signal
EP1109276A2 (en) * 1999-12-16 2001-06-20 Lucent Technologies Inc. Method and apparatus for stabilizing laser wavelength
JP2001244557A (en) * 2000-02-29 2001-09-07 Mitsubishi Electric Corp Wavelength monitoring device, adjusting method of it and wavelength stabilizing light source
EP1133034A2 (en) * 2000-03-10 2001-09-12 Nec Corporation Wavelength stabilized laser module
EP1136848A2 (en) * 2000-03-15 2001-09-26 Agere Systems Guardian Corporation Using crystalline materials to control the thermo-optic behaviour of an optical path
EP1158630A1 (en) * 2000-04-25 2001-11-28 Alcatel Wavelength stabilization monitor and method for adjusting the working wavelength of said monitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283302B2 (en) 2003-03-19 2007-10-16 Mitsubishi Denki Kabushiki Kaisha Wavelength filter and wavelength monitor device
JP2007095936A (en) * 2005-09-28 2007-04-12 Mitsubishi Electric Corp Carbon dioxide laser beam processing machine and machining method thereof
JP7036666B2 (en) 2018-05-23 2022-03-15 三菱重工業株式会社 Laser equipment and processing equipment

Also Published As

Publication number Publication date
WO2003088436A1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
EP1156563B1 (en) Laser wavelength stabilisation system for optical commmunication
US6122301A (en) Laser light source apparatus
US6804278B2 (en) Evaluation and adjustment of laser losses according to voltage across gain medium
US6144025A (en) Laser light source apparatus
US6094446A (en) Wavelength stabilizing apparatus of laser light source
CN102377107B (en) High-stability light source system and method of manufacturing
EP1601071B1 (en) Wavelength tunable laser device
US6411639B1 (en) Semiconductor laser module with an external resonator including a band-pass filter and reflective element
JP2003508927A (en) Fixed-wavelength external-cavity laser with integrated modulator
JP2000056185A (en) Laser diode module
EP1304777A2 (en) Optical filter, laser module, and wavelength locker module
JP2003124566A (en) Semiconductor laser control module and optical system
US5956356A (en) Monitoring wavelength of laser devices
US7103075B2 (en) Solid laser apparatus
JP4124942B2 (en) Wavelength monitoring device, adjustment method thereof, and wavelength stabilized light source
JP3347644B2 (en) Laser light source device
US7283302B2 (en) Wavelength filter and wavelength monitor device
WO2003087898A1 (en) Wavelength filter and wavelength monitoring apparatus
JP4222469B2 (en) Wavelength monitor and semiconductor laser module
US7301974B2 (en) Wavelength monitoring apparatus
JP2950815B1 (en) Laser light source device
KR100343310B1 (en) Wavelength-stabilized Laser Diode
US20030053064A1 (en) Wavelength detector and optical transmitter
JP2950813B1 (en) Tunable laser light source device
JP4142315B2 (en) Semiconductor laser module and wavelength locker module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP