WO2003106833A1 - Adsorbent of latent-heat storage type for canister and process for producing the same - Google Patents

Adsorbent of latent-heat storage type for canister and process for producing the same Download PDF

Info

Publication number
WO2003106833A1
WO2003106833A1 PCT/JP2003/007177 JP0307177W WO03106833A1 WO 2003106833 A1 WO2003106833 A1 WO 2003106833A1 JP 0307177 W JP0307177 W JP 0307177W WO 03106833 A1 WO03106833 A1 WO 03106833A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
heat storage
latent heat
canisters
storage material
Prior art date
Application number
PCT/JP2003/007177
Other languages
French (fr)
Japanese (ja)
Inventor
建司 関
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to CA2489318A priority Critical patent/CA2489318C/en
Priority to US10/516,941 priority patent/US7906078B2/en
Priority to JP2004513624A priority patent/JP4508867B2/en
Priority to CN038139952A priority patent/CN1662738B/en
Priority to EP03736062A priority patent/EP1536128B1/en
Publication of WO2003106833A1 publication Critical patent/WO2003106833A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister

Definitions

  • the present invention relates to a so-called canister for preventing fuel evaporation of a vehicle and an adsorbent thereof.
  • landscape technology a so-called canister for preventing fuel evaporation of a vehicle and an adsorbent thereof.
  • the fuel vapor generated in the fuel tank and the fuel storage chamber such as the float chamber of the carburetor during the stop and running of the vehicle is guided to the carbon carrier, and the activated carbon as the adsorbent is used.
  • the air is taken into the canister, the P and the desorbed fuel are desorbed, and sent to the engine intake pipe through the control valve.
  • the adsorption capacity of activated carbon for evaporative fuel increases as the activated carbon temperature decreases, while the desorption performance increases as the activated carbon temperature increases.
  • the phenomenon in which the evaporated fuel is adsorbed on the activated carbon is an exothermic reaction, and the activated carbon temperature rises as the evaporated fuel is adsorbed, and the adsorbing ability of the activated carbon decreases.
  • the phenomenon in which the evaporative fuel desorbs from the activated carbon is an endothermic reaction, and the desorption performance of the activated carbon deteriorates because the temperature of the activated carbon decreases with the desorption of the evaporative fuel.
  • the present invention can effectively suppress a temperature change due to P and heat of desorption, and has a large heat storage type P for canisters having a large butane-king capacity and a method for producing the same. And a canister using the latent heat storage type adsorbent for canister.
  • the inventor of the present invention has a powder heat storage material in which microcapsules are filled with an adsorbent that adsorbs evaporated fuel and a phase change material that absorbs and releases latent heat according to the temperature. It has been found that the above object is achieved by using an adsorbent as an adsorbent for canisters, and the present invention has been completed.
  • the present invention provides the following latent heat storage type adsorbent for canisters, a method for producing the adsorbent, and a canister for preventing fuel evaporation.
  • a latent heat storage adsorbent for canisters comprising an adsorbent that adsorbs vaporized fuel and a heat storage material in which a phase change material that generates and releases latent heat according to temperature is enclosed in a microphone opening capsule.
  • Item 2 The latent heat storage adsorbent for Canis Yuichi according to Item 1, wherein the adsorbent is activated carbon, activated alumina or a mixture thereof.
  • Item 3 The latent heat storage adsorbent for canisters according to Item 1 or 2, wherein the average particle size of the heat storage material is about 1/10000 to 110 of the average particle size of the adsorbent.
  • Item 4 The latent heat storage adsorbent for canisters according to Item 1, 2 or 3, wherein the average particle size of the adsorbent is about 1 m to 10 mm.
  • Item 5 The latent heat storage adsorbent for canisters according to any one of Items 1 to 4, wherein the average particle diameter of the heat storage material is about 0.1 to 500 m.
  • Item 6 The latent heat storage adsorbent for canisters according to any one of Items 1 to 5, wherein the heat storage material is attached and / or attached to the surface of the P and the bonding material.
  • Item 7 Latent heat storage adsorbent and binder according to any one of Items 1 to 6
  • Latent heat storage type adsorbent for canister Yuichi which is a molded product consisting of a die.
  • Item 8 The latent heat storage type adsorbent for varnish of item 7, wherein the shape of the molded article is at least one shape selected from the group consisting of a pellet, a disk, and a block.
  • Item 9 The method according to any one of Items 1 to 6, wherein the heat storage material is adsorbed and Z or impregnated on the particle surface of the adsorbent.
  • Item 10 The method according to any one of Items 1 to 6, wherein the heat storage material is electrostatically adsorbed and / or attached to the particle surface of the adsorbent.
  • Item 11 The method according to any one of Items 1 to 6, wherein the heat storage material and the adsorbent are uniformly mixed.
  • Item 1 2. The method according to any one of Items 1 to 6, wherein a slurry in which the heat storage material is suspended in the liquid medium and the adsorbent are mixed and dried.
  • Item 13 A slurry in which a heat storage material, in which a phase change substance that absorbs and releases latent heat according to temperature in a microcapsule is encapsulated in microcapsules, is suspended in a liquid medium on the surface of the adsorbent that adsorbs evaporated fuel, A method for producing a latent heat storage type adsorbent for canisters, comprising spraying a mixed liquid containing a binder according to the conditions.
  • Item 1 It is characterized by uniformly mixing the adsorbent that adsorbs the vaporized fuel and the heat storage material compact in which microcapsules contain a phase change substance that absorbs and releases latent heat depending on the temperature.
  • Item 15 An adsorbent that adsorbs vaporized fuel, a phase-change substance that causes the absorption and release of latent heat depending on the temperature, a powdered heat storage material encapsulated in microcapsules, or the heat storage material is suspended in a liquid medium.
  • Item 16 A latent heat storage adsorbent for varnish obtained by the production method according to any one of Items 13 to 15.
  • Item 17 A canister containing the latent heat storage type adsorbent according to any one of Items 1 to 8 and 16-a canister for preventing fuel vaporization filled in a container.
  • the latent heat storage type adsorbent for canisters of the present invention involves an adsorbent that adsorbs vaporized fuel (hereinafter, also simply referred to as “adsorbent”) and a phase change that causes absorption and release of latent heat in accordance with temperature. It is obtained by mixing a substance (hereinafter referred to as “phase change substance”) with a powdered heat storage material encapsulated in microcapsules. That is, the latent heat storage type adsorbent for canisters of the present invention is characterized in that a heat storage material containing a phase change substance is used as a heat control material of the adsorbent for canisters.
  • Examples of the vaporized fuel to which the latent heat storage type adsorbent for varnish of the present invention is applied include, for example, gasoline for automobiles and the like.
  • the adsorbent for adsorbing the vaporized fuel used in the present invention may be any generally used adsorbent for canis, such as activated carbon, activated alumina, silica gel, zeolite, organometallic complex, silica porous material. And the like, or a mixture thereof.
  • activated carbon, activated alumina, or a mixture thereof can be used.
  • Activated carbon is particularly preferred.
  • Activated carbon can be obtained from various raw materials such as coal, coconut husk, wood, and lignin. 7K steam activated products; carbon dioxide activated products; chemicals using phosphoric acid, zinc chloride, metal alloys, etc.
  • Activated carbon activated products such as activated products can be used.
  • the P and binder applied to the present invention is preferably in the form of particles or powder having pores in order to increase the ability to adsorb the evaporated fuel.
  • the average particle size of the adsorbent may be, for example, about lm to 10 mm.
  • the specific surface area is usually about 500 to 2500 m 2 Z g, preferably about 800 to 230 m 2 Z g.
  • the pore diameter may be about 10 to 5 OA, preferably about 10 to 35 A.
  • the heat storage material used in the present invention comprises powder microcapsules enclosing a phase change substance.
  • the phase change substance encapsulated in the heat storage material is not particularly limited as long as it is a compound capable of absorbing and releasing latent heat with the phase change.
  • Examples of the phase change include a phase change between a solid and a liquid.
  • the temperature (eg, melting point, freezing point, etc.) at which the phase change substance can cause a phase change can be appropriately selected according to the use of the canister, but is usually about 0 to 50 ° C.
  • Preferred compounds include, for example, Toradekan, pen evening hexadecane decane, to, heptene evening decane, Okutadekan, nona decane, eicosane, fat ⁇ hydrogen linear, such as docosane, natural wax; petroleum waxes; LiN0 3 '33 ⁇ 40, Na 2 S0 4' 10 0, Hydrates of inorganic compounds such as Na 2 HP0 4 '123 ⁇ 40; fatty acids such as phosphinic acid and lauric acid; higher alcohols having 12 to 15 carbon atoms; ester compounds such as methyl palmitate and methyl stearate Is mentioned.
  • the phase change substance two or more compounds selected from the above may be used in combination to adjust the melting point. When two or more phase change materials are used in combination, a combination in which the phase difference between the phase change materials causes a temperature difference of about 0 to 15 ° C. is preferable.
  • a compound having a melting point higher than the melting point of the phase change material may be added as necessary.
  • the high melting point compound include an aliphatic hydrocarbon compound, an aromatic compound, an ester, a carboxylic acid, an alcohol, and an amide.
  • the high melting point compound may be used alone or in combination of two or more. For example, a mixture such as castor oil may be used.
  • Examples of the aromatic compound include halogen-substituted benzene and naphthalene.
  • the halogen-substituted benzene include dihalogenated benzene such as dibromobenzene and dichlorobenzene.
  • esters examples include fatty acid esters of monoalcohols such as methyl eicosanoic acid; and fatty acid esters of glycerin such as linoleic acid glyceride.
  • carboxylic acids include aliphatic carboxylic acids such as myristic acid, penicillic acid, palmitic acid, malgaric acid, stearic acid, nonadecyl acid, eicosanoic acid, henycosanoic acid, and behenic acid; and aromatic carboxylic acids such as benzoic acid. Acids and the like can be exemplified.
  • alcohols include monoalcohols such as cetyl alcohol, heptadecanol, stearyl alcohol, nonadenicol, and eicosanol.
  • amides include fatty acid amides such as eicosanoic acid amide, nonadecyl acid amide, stearic acid amide, and oleic acid amide.
  • the concentration of the high melting point compound is usually about 0.5 wt% to 30 wt% relative to the phase change substance, and preferably about l wt% to 15 wt%.
  • a polymer compound such as a resin can be exemplified.
  • Formaldehyde is a high molecular compound —Examples include melamine resin, melamine resin, formaldehyde-urea resin, urea resin, urea-formaldehyde-polyacrylic acid copolymer, polystyrene, polyvinyl acetate, polyacrylonitrile, polyethylene, polybutyl methacrylate, and gelatin.
  • the weight ratio of the material of the microcapsules to the phase change substance is not particularly limited, but may be generally about 30:70 to about L0: 90.
  • the total amount of the high melting point compound and the phase change substance can be set so as to be within the above range with respect to the weight of the material of the microcapsule.
  • phase change substance used in the present invention known methods such as a coacervation method, an interfacial polymerization method, an in situ method, and a method using yeast can be used. In any case, the effects of the present invention can be achieved.
  • a phase change substance (and a high melting point compound, if necessary) is emulsified in a liquid medium using an emulsifier or the like, and an initial condensate (pre-polymer) corresponding to a desired content is added thereto, and then the mixture is heated.
  • an initial condensate pre-polymer
  • liquid medium water is particularly preferred, but alcohols such as methanol, ethanol, and propanol, and water-miscible solvents such as acetone can be used.
  • alcohols such as methanol, ethanol, and propanol
  • water-miscible solvents such as acetone
  • the above solvents may be used as a mixture.
  • the shape of the microcapsules is usually spherical particles, and the control of the particle size of the particles depends on the type and concentration of the emulsifier at the time of encapsulation, the temperature and time at the time of emulsification, the emulsification method, etc. Since it fluctuates depending on factors, optimal conditions are set by experiments.
  • the average particle size of the microcapsules should be about 1/100 to about L / 10 with respect to the average particle size of the adsorbent in consideration of the contact area with the adhering material. . Specifically, it is sufficient that the distance is about 0.5 to about 500 m, and preferably about 0.5 to 500 m.
  • the heat storage material in which the phase change substance is encapsulated in microcapsules and the adsorbent are mixed until uniform, and stored on the surface of the adsorbent particles. It is a mixture to which a heating material adheres.
  • the latent heat storage type adsorbent for varnish of the present invention can be produced, for example, as follows.
  • the microcapsule dispersion (slurry) containing the phase change substance obtained by the above-described method and the like and the adsorbent are mixed until uniform, and the mixture is dried to obtain a powdery target substance.
  • the powdered microcapsules (heat storage material) obtained by drying the microcapsule dispersion liquid (slurry) and the adsorbent may be mixed until uniform to obtain a powdery target substance.
  • Examples of the mixing method include a method in which a heat storage material (or slurry) and an adsorbent are placed in a predetermined container or bag and shaken, a method using a stirrer such as a mixer or a kneader, or a rotary mixer.
  • a known method such as a method used can be selected.
  • a known method can be used for the drying method.
  • a heat storage material having a smaller particle diameter than the adsorbent is attached to the surface of the adsorbent particles, and the heat storage material and the adsorbent are in contact with each other.
  • High thermal efficiency is preferable. For example, by controlling the average particle diameters of the heat storage material and the adsorbent as described above, even if the heat storage material and the adsorbent are simply mixed uniformly, the heat storage material can be applied to the particle surface of the adsorbent. Since it adheres electrostatically and Z or adheres, the packing density increases and the heat transfer efficiency increases.
  • the latent heat storage type adsorbent for canisters of the present invention can be formed into a powdered latent heat storage type adsorbent in order to suppress scattering of the adsorbent from the canister into the engine.
  • the molding is performed by a known method such as mixing a powdery heat storage material and an adsorbent and compression molding. Further, if necessary, it may be molded by mixing with a solder.
  • a molded article can be obtained by uniformly mixing the heat storage material, the adsorbent, and the binder in the liquid medium, adsorbing and / or adhering the heat storage material to the surface of the adsorbent, and molding.
  • the binder to be used commonly used binders such as cellulose such as methylcellulose and carboxymethylcellulose; phenolic resins; polyvinyl alcohol; and vinyl acetate can be used without limitation.
  • the shape of the molded body include a pellet, a disk, and a block.
  • a microcapsule dispersion liquid containing a phase change material (the above-described heat storage material is suspended in a liquid medium) is placed on the surface of an adsorbent in the form of pellets or crushed powder.
  • the latent heat storage type adsorbent of the present invention in which microcapsules are coated on the surfaces of P and the adhering material, is sprayed and dried by spraying a solution containing a turbid slurry and, if necessary, a binder.
  • a binder to be used known materials such as cellulose such as methylcellulose and carboxymethylcellulose; phenol resin; polyvinyl alcohol; and vinyl acetate can be used.
  • adsorbent in the form of pellets or crushed powder and the microcapsules (heat storage material) formed in a uniform shape such as cylindrical pellets, spherical pellets, sheets or the like are uniformly mixed.
  • the latent heat storage type adsorbent of the invention can be obtained.
  • a known method can be used for molding the microcapsules (heat storage material), and a binder may be used as necessary at the time of molding.
  • the binder to be used the above-mentioned known binders can be employed.
  • a powdered adsorbent, a powdered heat storage material or a micro force cell dispersion liquid containing a phase change material (the above-mentioned slurry in which the heat storage material is suspended in a liquid medium), a binder and water are uniformly mixed. Then, the latent heat storage type adsorbent of the present invention can be obtained.
  • the binder to be used the above-mentioned known ones can be employed, and the known molding method can be employed.
  • the ratio between the heat storage material and the adsorbent can be appropriately determined by those skilled in the art based on the performance of both.
  • the mixing amount of the heat storage material may be about 10 to about 100 parts by weight of L to 100 parts by weight of the adsorbent.
  • the binder may be used in an amount of about 1 to about 0 parts by weight based on 100 parts by weight of the adsorbent.
  • the adsorbent of the present invention can be adsorbed by filling a canister container and introducing vaporized fuel gas from a fuel tank into the container.
  • the temperature of the gas or vessel is preferably below the phase change temperature (usually the melting point) of the phase change material.
  • the whole amount of the melamine-formaldehyde initial condensation aqueous solution was added to the above emulsion, and the mixture was stirred at 70 ° C for 2 hours, and then adjusted to pH 9 and encapsulated. After the completion of the reaction, the capsule was suction-filtered and dried to obtain a capsule having a particle size of about 15 m.
  • This capsule and the crushed activated carbon having a particle size of 0.2 mm to 3 mm are uniformly mixed so that the mixing ratio of the capsule to the activated carbon is 15 wt%, and the mixture is dried to obtain the desired microcapsules.
  • a heat storage adsorbent was obtained, in which was dispersed on the surface of activated carbon.
  • the activated carbon used is a crushed coal-based activated carbon having a specific surface area of 1250 m 2 / g, a pore volume of 0.7 lml / g, and an average pore diameter of 12A, of 0.50 mm to 2.36 mm.
  • the butane working capacity of the adsorbent produced in Example 1 was measured by the following method.
  • the above regenerative adsorbent was filled into a 1-liter metal canister, and 99% of 11-butane was adsorbed by downflow at 11 ⁇ 1111n at 25, and the butane concentration at the outlet reached 5,000 ppm. When stopped. Next, at room temperature, air is flowed at 15 L / min for 20 minutes in an upflow in the evening of the varnish to desorb n-butane. This adsorption / desorption was repeated, and the butane working capacity was determined from the average value of the adsorption amounts and desorption values of the fourth, fifth, and sixth times. As a result, the butane working capacity was 46.7 gZL for a 1 L canister container.
  • a heat storage adsorbent was obtained in the same manner using eicosane in place of n-octane decane, which was used as a compound having a phase change in Example 1.
  • Example 1 a heat storage adsorbent was obtained using caprylic acid instead of n-year-old kutadecane, and butane per king capacity was measured using the same in the same manner as in Example 2. Improved than example 1.
  • Example 1 a heat storage adsorbent was obtained using methyl palmitate instead of n-year-old kutadecane, and the butane peaking capacity was measured by the same method as in Example 2 to obtain a comparative example. Improved from 1.
  • melamine powder To 5 g of the melamine powder, 6.5 g of a 37% aqueous solution of formaldehyde and 10 g of water were added, and the pH was adjusted to 8, followed by heating to about 70 ° C to obtain an aqueous solution of an initial melamine monoformaldehyde condensate.
  • an aqueous sodium salt solution of a styrene anhydride copolymer adjusted to pH 4.5, 70 g of n-octadecane as a compound with a phase change and castor oil as a supercooling inhibitor 1.
  • the solution in which 4 g was dissolved was added to the above aqueous solution with vigorous stirring, and emulsification was performed until the particle size became about 10 m.
  • the whole amount of the melamine-formaldehyde initial condensation aqueous solution was added to the above emulsion, and the mixture was stirred at 70 ° C. for 2 hours, and then adjusted to pH 9 for encapsulation. After completion of the reaction, the capsule was subjected to suction filtration and dried to obtain a capsule having a particle size of about 15 m.
  • Example 4 25 parts by weight of the capsules and 5 parts by weight of a binder (Ripoxyl methylcellulose) are dispersed in a small amount of water, and 100 parts by weight of crushed activated carbon having a particle size of 1 to 3 mm is added to the dispersion.
  • the mixture was uniformly mixed and further dried at 90 to obtain a heat storage type adsorbent in which a microphone opening capsule as an object was attached to the surface of activated carbon.
  • the activated carbon used was 1 mm to 3 mm crushed activated carbon with a specific surface area of 1500 m 2 Zg, a pore volume of 0.96 ml / g, and an average pore diameter of about 13 A.
  • Example 4 Example 4
  • butane king capacity was measured by the following method.
  • the above regenerative adsorbent was charged into a 1 L metal canister, and at 25 ° C, 9.9% n-butane was adsorbed at 1 L / min downflow, and the butane concentration at the outlet was 50%. Stop when 0 0 p pm is reached.
  • air is flowed up at a flow rate of 15 L / min for 20 minutes in the evening of the varnish to desorb n-butane. This adsorption / desorption was repeated, and the butane peaking capacity was determined from the average value of the adsorption amounts and desorption values of the fourth, fifth and sixth times.
  • the butane working capacity was 62.5 g / L for a 1 L canister.
  • the temperature at the time of adsorption was 57 at the center of the container, and the temperature at the time of desorption was 18 ° C at the center of the container.
  • the heel amount (the amount of butane remaining in the pores after desorption) at the sixth time was 30.8 g / L. Comparative Example 2
  • Example 3 When the butane working capacity of only the activated carbon of Example 3 was measured in the same manner as in Example 4, it was 56.3 gZL for a 1 L canister. The temperature during adsorption is 73 at the center of the container, and the temperature at desorption is 14 at the center of the container. C.
  • the heel amount (the amount of butane remaining in the pores after desorption) at the sixth time was 48. 2 gZL.
  • the butane working capacity was improved, the temperature rise rate during adsorption was improved, and the desorption performance was improved (the heel amount was reduced). Reduction), it is possible to reduce the amount of emission of vaporized gas (emission amount).
  • the latent heat storage type adsorbent for canisters of the present invention in a canister, when the vaporized fuel is adsorbed on the adsorbent, the generated heat of adsorption is transferred to the heat storage material containing the phase change substance and stored as latent heat. The rate of temperature rise of the adsorbent decreases, and as a result The adsorption performance of the evaporated fuel is greatly improved. In addition, when the vaporized fuel is desorbed, the heat stored in the heat storage material is transferred to the adsorbent to suppress a decrease in the temperature of the adsorbent, thereby further improving the desorption performance of the vaporized fuel.
  • the latent heat storage type adsorbent for canisters of the present invention has remarkably improved adsorption-desorption performance of vaporized fuel as compared with conventional adsorbents for canisters and canisters mixed with substances having a high specific heat. I do.

Abstract

An adsorbent of the latent-heat storage type for canisters which can be effectively inhibited from changing in temperature due to the heat of absorption/desorption and has a high butane working capacity; a process for producing the adsorbent; and a canister employing the adsorbent of the latent-heat storage type for canisters. The adsorbent of the latent-heat storage type for canisters comprises: an adsorbent adsorbing a fuel vapor; and a heat-storage material comprising a microencapsulated phase-changing substance which absorbs or releases latent heat depending on temperatures.

Description

明 細 書 キヤニス夕一用潜熱蓄熱型吸着材及びその製造方法 技術分野 ' 本発明は車両の燃料蒸散防止装置いわゆるキヤニスター及びその吸着材に関す るものである。 景技術  TECHNICAL FIELD The present invention relates to a so-called canister for preventing fuel evaporation of a vehicle and an adsorbent thereof. Landscape technology
一般に車両においては、 公害対策の関係から、 車両の停止時及び走行中に燃料 タンクや気化器のフロート室等の燃料貯留室に生じる蒸発燃料をカーボンキヤ二 スターに導いて、 吸着材である活性炭に吸着させ、 車両の走行時には大気をキヤ ニスターに取り入れ、 P及着燃料を脱離させて制御弁介在のもとにエンジンの吸気 管に送り込む。  In general, in vehicles, due to pollution control measures, the fuel vapor generated in the fuel tank and the fuel storage chamber such as the float chamber of the carburetor during the stop and running of the vehicle is guided to the carbon carrier, and the activated carbon as the adsorbent is used. When the vehicle is running, the air is taken into the canister, the P and the desorbed fuel are desorbed, and sent to the engine intake pipe through the control valve.
一般に、 蒸発燃料に対する活性炭の吸着能は活性炭温度が低くなるほど高くな り、 一方脱離性能は活性炭温度が高くなるほど高くなる。 ところが蒸発燃料が活 性炭に吸着される現象は発熱反応であり、 蒸発燃料の吸着に伴って活性炭温度が 上昇するため、 その活性炭の吸着能は低下する。 一方、 蒸発燃料が活性炭から脱 離する現象は吸熱反応であるから、 蒸発燃料の脱離に伴って活性炭温度が低下す るため、 その活性炭の脱離性能は低下する。  In general, the adsorption capacity of activated carbon for evaporative fuel increases as the activated carbon temperature decreases, while the desorption performance increases as the activated carbon temperature increases. However, the phenomenon in which the evaporated fuel is adsorbed on the activated carbon is an exothermic reaction, and the activated carbon temperature rises as the evaporated fuel is adsorbed, and the adsorbing ability of the activated carbon decreases. On the other hand, the phenomenon in which the evaporative fuel desorbs from the activated carbon is an endothermic reaction, and the desorption performance of the activated carbon deteriorates because the temperature of the activated carbon decreases with the desorption of the evaporative fuel.
そこで、 このような問題を解決しうるキヤニス夕一として、 活性炭内にその活 性炭よりも比熱の大きな粒状の材料を混入させたものが提案されている。 このキ ヤニス夕一において、 活性炭による蒸発燃料の吸着に起因して発生する熱を比熱 の大きな材料の温度上昇のために消費させることにより活性炭の温度上昇を抑制 し、 一方、 活性炭からの蒸発燃料の脱離に必要な熱を比熱の大きな材料より供給 することにより活性炭の温度低下を抑制し、 これにより P及^-脱離特性の向上を 図るものである。  Therefore, as a varnish that can solve such a problem, a type in which granular material having a higher specific heat than the activated carbon is mixed into the activated carbon has been proposed. In this varnish, the heat generated due to the adsorption of the evaporative fuel by the activated carbon was consumed to raise the temperature of the material having a large specific heat, thereby suppressing the increase in the temperature of the activated carbon. By supplying the heat necessary for desorption of the activated carbon from the material having a large specific heat, the temperature drop of the activated carbon is suppressed, thereby improving the P and ^ -desorption characteristics.
しかしながら、 このような比熱の大きな材料は金属材料、 セラミック等により 構成されているが、 P及脱着熱に比べてこれらの比熱は小さく、 充分な効果を得よ 07177 However, such a material having a large specific heat is made of a metal material, ceramic, or the like. However, these specific heats are small as compared with P and the heat of desorption, and a sufficient effect can be obtained. 07177
2  Two
うとした場合、 大量の材料を混入する必要がある。 これらの材料自体はほとんど 吸着性能を有していないため、 温度の面では改善されてもト一タルとしての吸着 性能は大幅には改善されることはないという問題点があった。 発明の開示 If so, a large amount of material must be mixed. Since these materials themselves have almost no adsorption performance, there is a problem that even if the temperature is improved, the adsorption performance as a total is not significantly improved. Disclosure of the invention
本発明は前記の問題点に鑑み、 P及脱着熱による温度変化を効果的に抑制するこ とができ、 ブタンヮ一キングキャパシティ一の大きなキヤニスター用潜熱蓄熱型 P及着材、 その製造方法、 及びキヤニス夕一用潜熱蓄熱型吸着材を用いたキヤニス 夕一を提供することを目的とする。  In view of the above problems, the present invention can effectively suppress a temperature change due to P and heat of desorption, and has a large heat storage type P for canisters having a large butane-king capacity and a method for producing the same. And a canister using the latent heat storage type adsorbent for canister.
本発明者は、 鋭意検討を行なった結果、 蒸散燃料を吸着する吸着材と温度に応 じて潜熱の吸収および放出を生じる相変化物質をマイクロカプセルに封入した粉 末の蓄熱材より構成される吸着材とをキヤニスター用の吸着材として用いること により上記の目的を達成することを見出し、 本発明を完成した。  As a result of intensive studies, the inventor of the present invention has a powder heat storage material in which microcapsules are filled with an adsorbent that adsorbs evaporated fuel and a phase change material that absorbs and releases latent heat according to the temperature. It has been found that the above object is achieved by using an adsorbent as an adsorbent for canisters, and the present invention has been completed.
即ち、 本発明は、 以下のキヤニスター用潜熱蓄熱型吸着材、 その製造方法、 及 び燃料蒸散防止用キヤニス夕一を提供するものである。  That is, the present invention provides the following latent heat storage type adsorbent for canisters, a method for producing the adsorbent, and a canister for preventing fuel evaporation.
項 1 . 蒸散燃料を吸着する吸着材と温度に応じて潜熱の吸収及び放出を生じる 相変化物質をマイク口カプセルに封入した蓄熱材とを含むキヤニスター用潜熱蓄 熱型吸着材。 Item 1. A latent heat storage adsorbent for canisters, comprising an adsorbent that adsorbs vaporized fuel and a heat storage material in which a phase change material that generates and releases latent heat according to temperature is enclosed in a microphone opening capsule.
項 2 . 吸着材が活性炭、 活性アルミナ又はそれらの混合物である項 1に記載の キヤニス夕一用潜熱蓄熱型吸着材。 Item 2. The latent heat storage adsorbent for Canis Yuichi according to Item 1, wherein the adsorbent is activated carbon, activated alumina or a mixture thereof.
項 3 . 蓄熱材の平均粒径が吸着材の平均粒径の 1 / 1 0 0 0〜1 1 0程度で ある項 1又は 2に記載のキヤニスター用潜熱蓄熱型吸着材。 Item 3. The latent heat storage adsorbent for canisters according to Item 1 or 2, wherein the average particle size of the heat storage material is about 1/10000 to 110 of the average particle size of the adsorbent.
項 4. 吸着材の平均粒径が 1 m〜 1 0 mm程度である項 1、 2又は 3に記載 のキヤニス夕一用潜熱蓄熱型吸着材。 Item 4. The latent heat storage adsorbent for canisters according to Item 1, 2 or 3, wherein the average particle size of the adsorbent is about 1 m to 10 mm.
項 5 . 蓄熱材の平均粒径が 0 · 1〜 5 0 0 m程度である項 1〜 4のいずれか に記載のキヤニス夕一用潜熱蓄熱型吸着材。 Item 5. The latent heat storage adsorbent for canisters according to any one of Items 1 to 4, wherein the average particle diameter of the heat storage material is about 0.1 to 500 m.
項 6 . P及着材の表面に蓄熱材が付着及び/又は添着されてなる項 1〜 5のいず れかに記載のキヤニス夕一用潜熱蓄熱型吸着材。 Item 6. The latent heat storage adsorbent for canisters according to any one of Items 1 to 5, wherein the heat storage material is attached and / or attached to the surface of the P and the bonding material.
項 7 . 項 1〜 6のいずれかに記載のキヤニス夕一用潜熱蓄熱型吸着材とバイン ダ一とからなる成形体のキヤニス夕一用潜熱蓄熱型吸着材。 Item 7. Latent heat storage adsorbent and binder according to any one of Items 1 to 6 Latent heat storage type adsorbent for canister Yuichi, which is a molded product consisting of a die.
項 8. 成形体の形状が、 ペレット状、 ディスク状及びブロック状からなる群か ら選ばれる少なくとも 1つの形状である項 7に記載のキヤニス夕一用潜熱蓄熱型 吸着材。 Item 8. The latent heat storage type adsorbent for varnish of item 7, wherein the shape of the molded article is at least one shape selected from the group consisting of a pellet, a disk, and a block.
項 9 . 蓄熱材を吸着材の粒子表面に吸着及び Z又は添着させることを特徴とす る項 1〜 6のいずれかに記載の製造方法。 Item 9. The method according to any one of Items 1 to 6, wherein the heat storage material is adsorbed and Z or impregnated on the particle surface of the adsorbent.
項 1 0 . 蓄熱材を吸着材の粒子表面に静電的に吸着及び/又は添着させること を特徴とする項 1〜 6のいずれかに記載の製造方法。 Item 10. The method according to any one of Items 1 to 6, wherein the heat storage material is electrostatically adsorbed and / or attached to the particle surface of the adsorbent.
項 1 1 . 蓄熱材と吸着材とを均一混合することを特徴とする項 1〜 6のいずれ かに記載の製造方法。 Item 11. The method according to any one of Items 1 to 6, wherein the heat storage material and the adsorbent are uniformly mixed.
項 1 2. 蓄熱材を液状媒体に懸濁させたスラリーと吸着材とを混合し、 乾燥す ることを特徴とする項 1〜 6のいずれかに記載の製造方法。 Item 1 2. The method according to any one of Items 1 to 6, wherein a slurry in which the heat storage material is suspended in the liquid medium and the adsorbent are mixed and dried.
項 1 3 . 蒸散燃料を吸着する吸着材の表面に、 温度に応じて潜熱の吸収及び放 出を生じる相変化物質をマイクロカプセルに封入した蓄熱材を液状媒体に懸濁さ せたスラリ一及び必要に応じてバインダーを含む混合液をスプレ一することを特 徵とするキヤニスタ一用潜熱蓄熱型吸着材の製造方法。 Item 13: A slurry in which a heat storage material, in which a phase change substance that absorbs and releases latent heat according to temperature in a microcapsule is encapsulated in microcapsules, is suspended in a liquid medium on the surface of the adsorbent that adsorbs evaporated fuel, A method for producing a latent heat storage type adsorbent for canisters, comprising spraying a mixed liquid containing a binder according to the conditions.
項 1 4. 蒸散燃料を吸着する吸着材、 並びに温度に応じて潜熱の吸収及び放出 を生じる相変化物質をマイクロカプセルに封入した蓄熱材の成形体とを、 均一に 混合することを特徴とするキヤニス夕一用潜熱蓄熱型吸着材の製造方法。 Item 1 4. It is characterized by uniformly mixing the adsorbent that adsorbs the vaporized fuel and the heat storage material compact in which microcapsules contain a phase change substance that absorbs and releases latent heat depending on the temperature. A method of manufacturing a latent heat storage type adsorbent for Canis Yuichi.
項 1 5 . 蒸散燃料を吸着する吸着材、 温度に応じて潜熱の吸収及び放出を生じ る相変化物質をマイクロカプセルに封入した粉末状の蓄熱材又は該蓄熱材を液状 媒体に懸濁させたスラリ一、パインダー及び水を均一に混合し成形することを特 徴とするキヤニスター用潜熱蓄熱型吸着材の製造方法。 Item 15. An adsorbent that adsorbs vaporized fuel, a phase-change substance that causes the absorption and release of latent heat depending on the temperature, a powdered heat storage material encapsulated in microcapsules, or the heat storage material is suspended in a liquid medium. A method for producing a latent heat storage type adsorbent for canisters, characterized by uniformly mixing and forming a slurry, binder and water.
項 1 6. 項 1 3〜1 5のいずれかに記載の製造方法により得られるキヤニス夕 一用潜熱蓄熱型吸着材。 Item 16 6. A latent heat storage adsorbent for varnish obtained by the production method according to any one of Items 13 to 15.
項 1 7 . 項 1〜8及び 1 6のいずれかに記載の潜熱蓄熱型吸着材がキヤニスタ —容器に充填された燃料蒸散防止用キヤニスター。 発明の詳細な説明 以下、 本発明について詳細に説明する。 Item 17. A canister containing the latent heat storage type adsorbent according to any one of Items 1 to 8 and 16-a canister for preventing fuel vaporization filled in a container. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in detail.
キヤニス夕一用潜熱蓄熱型吸着材  Latent heat storage adsorbent for Yuichi Canis
本発明のキヤニス夕一用潜熱蓄熱型吸着材は、 蒸散燃料を吸着する吸着材 (以 下、 単に 「吸着材」 とも呼ぶ) と温度に応じて潜熱の吸収及び放出を生じる相変 化を伴う物質 (以下「相変化物質」 と呼ぶ) をマイクロカプセルに封入した粉末 の蓄熱材とを混合することにより得られる。 すなわち、 本発明のキヤニスタ一用 潜熱蓄熱型吸着材は、 相変化物質を含む蓄熱材を、 キヤニス夕一用の吸着材の熱 制御材として用いたことを特徴とする。  The latent heat storage type adsorbent for canisters of the present invention involves an adsorbent that adsorbs vaporized fuel (hereinafter, also simply referred to as “adsorbent”) and a phase change that causes absorption and release of latent heat in accordance with temperature. It is obtained by mixing a substance (hereinafter referred to as “phase change substance”) with a powdered heat storage material encapsulated in microcapsules. That is, the latent heat storage type adsorbent for canisters of the present invention is characterized in that a heat storage material containing a phase change substance is used as a heat control material of the adsorbent for canisters.
本発明のキヤニス夕一用潜熱蓄熱型吸着材が適用される蒸散燃料としては、 例 えば、 自動車用ガソリン等が挙げられる。  Examples of the vaporized fuel to which the latent heat storage type adsorbent for varnish of the present invention is applied include, for example, gasoline for automobiles and the like.
本発明に使用される蒸散燃料を吸着する吸着材としては、 一般的に使用されて いるキヤニス夕一用の吸着材であればよく、活性炭、活性アルミナ、シリカゲル、 ゼォライト、有機金属錯体、シリカ多孔体等、又はそれらの混合物が例示される。 好適には活性炭、 活性アルミナ、 又はそれらの混合物が使用できる。 とりわけ活 性炭が好ましい。 活性炭は、 石炭系、 ヤシガラ系、 木質系、 リグニン系等の種々 の原料から得られるものを使用でき、 7K蒸気賦活品;炭酸ガス賦活品;リン酸、 塩化亜鉛、 アル力リ金属等による薬品賦活品等の活性炭の賦活品を使用できる。 また本発明に適用される P及着材は、 蒸散燃料の吸着能を上げるため細孔を有す る粒子状又は粉末状のものが好ましい。 吸着材の平均粒径は、 例えば l m〜l O mm程度であればよい。 比表面積は、 通常 5 0 0〜2 5 0 0 m2Z g程度、 好 ましくは 8 0 0〜 2 3 0 0 m2Z g程度であればよい。 細孔径としては 1 0〜5 O A程度、 好ましくは 1 0〜 3 5 A程度であればよい。 The adsorbent for adsorbing the vaporized fuel used in the present invention may be any generally used adsorbent for canis, such as activated carbon, activated alumina, silica gel, zeolite, organometallic complex, silica porous material. And the like, or a mixture thereof. Preferably, activated carbon, activated alumina, or a mixture thereof can be used. Activated carbon is particularly preferred. Activated carbon can be obtained from various raw materials such as coal, coconut husk, wood, and lignin. 7K steam activated products; carbon dioxide activated products; chemicals using phosphoric acid, zinc chloride, metal alloys, etc. Activated carbon activated products such as activated products can be used. The P and binder applied to the present invention is preferably in the form of particles or powder having pores in order to increase the ability to adsorb the evaporated fuel. The average particle size of the adsorbent may be, for example, about lm to 10 mm. The specific surface area is usually about 500 to 2500 m 2 Z g, preferably about 800 to 230 m 2 Z g. The pore diameter may be about 10 to 5 OA, preferably about 10 to 35 A.
本発明に使用される蓄熱材は、 相変化物質を封入した粉末のマイクロカプセル からなる。  The heat storage material used in the present invention comprises powder microcapsules enclosing a phase change substance.
蓄熱材に封入される相変化物質としては、 相変化に伴って潜熱の吸収及び放出 を生じうる化合物であれば特に限定はない。 相変化としては、 例えば、 固体-液 体間の相変化等を例示することができる。相変化物質が相変化を生じうる温度 (例 えば、 融点、 凝固点等) はキヤニスターの用途に応じて適宜選択することができ るが、 通常 0〜5 0 °C程度であればよい。 好ましい化合物としては、 例えば、 テ トラデカン、 ペン夕デカン、 へキサデカン、 ヘプ夕デカン、 ォクタデカン、 ノナ デカン、 エイコサン、 ドコサン等の直鎖の脂脑炭化水素;天然ワックス;石油 ワックス; LiN03' 3¾0、 Na2S04' 10 0、 Na2HP04' 12¾0等の無機化合物の水和物;力 プリン酸、 ラウリン酸等の脂肪酸;炭素数が 1 2〜 1 5の高級アルコール;パル ミチン酸メチル、 ステアリン酸メチル等のエステル化合物等が挙げられる。 相変 化物質は、 融点を調整するために上記から選ばれる 2種類以上の化合物を併用し てもよい。 2種以上の相変化物質を併用する場合、 各相変化物質の相変ィ匕を生じ る温度の差が、 0〜1 5 °C程度となるような組み合わせが好ましい。 The phase change substance encapsulated in the heat storage material is not particularly limited as long as it is a compound capable of absorbing and releasing latent heat with the phase change. Examples of the phase change include a phase change between a solid and a liquid. The temperature (eg, melting point, freezing point, etc.) at which the phase change substance can cause a phase change can be appropriately selected according to the use of the canister, but is usually about 0 to 50 ° C. Preferred compounds include, for example, Toradekan, pen evening hexadecane decane, to, heptene evening decane, Okutadekan, nona decane, eicosane, fat脑炭hydrogen linear, such as docosane, natural wax; petroleum waxes; LiN0 3 '3¾0, Na 2 S0 4' 10 0, Hydrates of inorganic compounds such as Na 2 HP0 4 '12¾0; fatty acids such as phosphinic acid and lauric acid; higher alcohols having 12 to 15 carbon atoms; ester compounds such as methyl palmitate and methyl stearate Is mentioned. As the phase change substance, two or more compounds selected from the above may be used in combination to adjust the melting point. When two or more phase change materials are used in combination, a combination in which the phase difference between the phase change materials causes a temperature difference of about 0 to 15 ° C. is preferable.
また、 相変化物質の過冷却現象を防止する為に、 必要に応じ、 その相変化物質 の融点より高融点の化合物を添加しても良い。 高融点化合物の具体例としては、 脂肪族炭化水素化合物、 芳香族化合物、 エステル類、 カルボン酸類、 アルコール 類、 アマイド類等が挙げられる。 高融点ィ匕合物は、 1種単独で用いても、 2種以 上を組み合わせてもよい。 例えば、 ヒマシ油などの混合物でもよい。  Further, in order to prevent a supercooling phenomenon of the phase change material, a compound having a melting point higher than the melting point of the phase change material may be added as necessary. Specific examples of the high melting point compound include an aliphatic hydrocarbon compound, an aromatic compound, an ester, a carboxylic acid, an alcohol, and an amide. The high melting point compound may be used alone or in combination of two or more. For example, a mixture such as castor oil may be used.
芳香族化合物としては、 ハロゲン置換ベンゼン、 ナフタレン等を例示できる。 ハロゲン置換ベンゼンとしては、 ジブロモベンゼン、 ジクロロベンゼン等のジハ 口ゲン化べンゼンを例示できる。  Examples of the aromatic compound include halogen-substituted benzene and naphthalene. Examples of the halogen-substituted benzene include dihalogenated benzene such as dibromobenzene and dichlorobenzene.
エステル類としては、 メチルエイコサン酸等のモノアルコールの脂肪酸エステ ル;リノ一ル酸グリセリド等のグリセリンの脂肪酸エステルを例示できる。 カルボン酸類としては、 ミリスチン酸、 ペン夕デシル酸、 パルミチン酸、 マル ガリン酸、 ステアリン酸、 ノナデシル酸、 エイコサン酸、 ヘンィコサン酸、 ベへ ン酸等の脂肪族カルボン酸;安息香酸等の芳香族カルボン酸等を例示できる。 アルコール類としては、 セチルアルコール、 ヘプタデカノール、 ステアリルァ ルコール、 ノナデ力ノール、 エイコサノール等のモノアルコールを例示できる。 アマイド類としては、 エイコサン酸アマイド、 ノナデシル酸アマイド、 ステア リン酸ァマイド、 ォレイン酸ァマイド等の脂肪酸ァマイドを例示できる。  Examples of the esters include fatty acid esters of monoalcohols such as methyl eicosanoic acid; and fatty acid esters of glycerin such as linoleic acid glyceride. Examples of the carboxylic acids include aliphatic carboxylic acids such as myristic acid, penicillic acid, palmitic acid, malgaric acid, stearic acid, nonadecyl acid, eicosanoic acid, henycosanoic acid, and behenic acid; and aromatic carboxylic acids such as benzoic acid. Acids and the like can be exemplified. Examples of alcohols include monoalcohols such as cetyl alcohol, heptadecanol, stearyl alcohol, nonadenicol, and eicosanol. Examples of the amides include fatty acid amides such as eicosanoic acid amide, nonadecyl acid amide, stearic acid amide, and oleic acid amide.
高融点化合物の含有濃度は、通常相変化物質に対して 0. 5 w t %〜3 0 w t % 程度であり、 好ましくは l w t %〜l 5 w t % 度であればよい。  The concentration of the high melting point compound is usually about 0.5 wt% to 30 wt% relative to the phase change substance, and preferably about l wt% to 15 wt%.
マイクロカプセルの材料としては、 公知の材料を用いることができ、 例えば、 樹脂等の高分子化合物を例示できる。 高分子化合物としては、 ホルムアルデヒド —メラミン樹脂、 メラミン樹脂、 ホルムアルデヒド一尿素樹脂、 尿素樹脂、 尿素 -ホルムアルデヒドーポリアクリル酸共重合体、ポリスチレン、ポリ酢酸ビニル、 ポリアクリロニトリル、 ポリエチレン、 ポリブチルメタタリレート、 ゼラチン等 を例示できる。 As the material of the microcapsules, known materials can be used, and for example, a polymer compound such as a resin can be exemplified. Formaldehyde is a high molecular compound —Examples include melamine resin, melamine resin, formaldehyde-urea resin, urea resin, urea-formaldehyde-polyacrylic acid copolymer, polystyrene, polyvinyl acetate, polyacrylonitrile, polyethylene, polybutyl methacrylate, and gelatin.
マイクロカプセルの材料と相変化物質の重量比は特に限定はないが、 通常 3 0 : 7 0〜; L 0 : 9 0程度であればよい。 高融点化合物と相変化物質とを併用す る場合には、 高融点化合物と相変化物質の合計量が、 マイクロカプセルの材料の 重量に対して上記範囲内となるように設定することができる。  The weight ratio of the material of the microcapsules to the phase change substance is not particularly limited, but may be generally about 30:70 to about L0: 90. When the high melting point compound and the phase change substance are used in combination, the total amount of the high melting point compound and the phase change substance can be set so as to be within the above range with respect to the weight of the material of the microcapsule.
本発明に使用される相変化物質をマイクロカプセル化する方法は、 コアセルべ ーシヨン法、 界面重合法、 in- s i tu法、 酵母菌を用いた手法等の公知の方法を甩 いることが可能であり、 いずれの方法においても本発明の効果は達成することが できる。  As a method of microencapsulating the phase change substance used in the present invention, known methods such as a coacervation method, an interfacial polymerization method, an in situ method, and a method using yeast can be used. In any case, the effects of the present invention can be achieved.
例えば、 相変化物質 (及び必要に応じて高融点化合物) を液状媒体中で乳化剤 等を用いて乳化し、 これに所望の棚旨に対応する初期縮合物 (プレボリマ一) を 添加した後、 昇温し、 重合反応を進めることにより樹脂壁を有し相変化物質 (及 び必要に応じて高融点化合物) を含有するマイクロカプセル分散液 (スラリー) を調製することができる。  For example, a phase change substance (and a high melting point compound, if necessary) is emulsified in a liquid medium using an emulsifier or the like, and an initial condensate (pre-polymer) corresponding to a desired content is added thereto, and then the mixture is heated. By heating and conducting the polymerization reaction, it is possible to prepare a microcapsule dispersion (slurry) having a resin wall and containing a phase-change substance (and, if necessary, a high-melting-point compound).
液状媒体としては、 水が特に好ましいが、 メタノール、 エタノール、 プロパノ ールなどのアルコール、 アセトン等の水混和性の溶媒が使用できる。 上記溶媒を 混合して用いてもよい。  As the liquid medium, water is particularly preferred, but alcohols such as methanol, ethanol, and propanol, and water-miscible solvents such as acetone can be used. The above solvents may be used as a mixture.
マイクロカプセルの形状は、 通常球形の粒子であり、 該粒子の粒径のコント口 ールは、 カプセル化する際の乳化剤の種類と濃度、 乳ィ匕時の温度および時間、 乳 化方法等の因子により変動するため、 実験により最適な条件が設定される。 マイ クロカプセルの平均粒子径は、 着材との接触面積を考慮して、 通常吸着剤の平 均粒子径に対し 1 / 1 0 0 0〜: L / 1 0程度を有していればよい。 具体的には、 0 . :!〜 5 0 0 zm程度であればよく、 好ましくは、 0 . 5〜5 0 0 m程度で ある。  The shape of the microcapsules is usually spherical particles, and the control of the particle size of the particles depends on the type and concentration of the emulsifier at the time of encapsulation, the temperature and time at the time of emulsification, the emulsification method, etc. Since it fluctuates depending on factors, optimal conditions are set by experiments. The average particle size of the microcapsules should be about 1/100 to about L / 10 with respect to the average particle size of the adsorbent in consideration of the contact area with the adhering material. . Specifically, it is sufficient that the distance is about 0.5 to about 500 m, and preferably about 0.5 to 500 m.
本発明のキヤニス夕一用潜熱蓄熱型吸着材は、 相変化物質をマイクロカプセル に封入した蓄熱材と吸着材とが均一になるまで混合され、 吸着材粒子の表面に蓄 熱材が付着した混合物である。 In the latent heat storage type adsorbent for varnish of the present invention, the heat storage material in which the phase change substance is encapsulated in microcapsules and the adsorbent are mixed until uniform, and stored on the surface of the adsorbent particles. It is a mixture to which a heating material adheres.
キヤニス夕一用潜熱蓄熱型吸着材の製造方法  Manufacturing method of latent heat storage type adsorbent for canis
本発明のキヤニス夕一用潜熱蓄熱型吸着材は、 例えば、 次のようにして製造す ることができる。 上述の方法等により得られる相変化物質を含むマイクロカプセ ル分散液 (スラリー) と吸着材とを均一になるまで混合し、 その混合物を乾燥さ せることにより粉末の目的物を得ることができる。 或いはマイクロカプセル分散 液 (スラリー) を乾燥して得られる粉末状のマイクロカプセル (蓄熱材) と吸着 材とを均一になるまで混合し、 粉末の目的物を得ることもできる。 上記混合方法 としては、 例えば、 蓄熱材 (或いはスラリー) と吸着材とを所定の容器又は袋に 入れて振とうする方法、 ミキサー、 ニーダ一等による撹捽機を用いる方法、 回転 式混合機を用いる方法等の公知の方法を選択できる。 乾燥方法も公知の方法を採 用しうる。  The latent heat storage type adsorbent for varnish of the present invention can be produced, for example, as follows. The microcapsule dispersion (slurry) containing the phase change substance obtained by the above-described method and the like and the adsorbent are mixed until uniform, and the mixture is dried to obtain a powdery target substance. Alternatively, the powdered microcapsules (heat storage material) obtained by drying the microcapsule dispersion liquid (slurry) and the adsorbent may be mixed until uniform to obtain a powdery target substance. Examples of the mixing method include a method in which a heat storage material (or slurry) and an adsorbent are placed in a predetermined container or bag and shaken, a method using a stirrer such as a mixer or a kneader, or a rotary mixer. A known method such as a method used can be selected. A known method can be used for the drying method.
本発明のキヤニス夕一用潜熱蓄熱型吸着材は、 吸着材粒子の表面にこの吸着材 よりも小さな粒子径の蓄熱材が付着しており、 蓄熱材と吸着材とが接触している ので伝熱効率が高く好ましい。 例えば、 蓄熱材と吸着材の平均粒子径を上述のよ うにコント口一ルすることにより、 単に蓄熱材と吸着材を均一に混合しただけで あっても、 蓄熱材が吸着材の粒子表面に静電的に付着及び Z又は添着するので、 充填密度が高くなり伝熱効率が大きくなる。 また、蓄熱材と吸着材の分級(分離) が抑制されるので、吸脱着時の温度変化を長期間にわたり抑制することができる。 更に、 本発明のキヤニス夕一用潜熱蓄熱型吸着材は、 キヤニスターからェンジ ン内への吸着材の飛散を抑えるため、 粉末の潜熱蓄熱型吸着材を成形体にするこ とも可能である。 成形は、 粉末状の蓄熱材と吸着材を混合して圧縮成形する等の 公知の方法により行われる。 また、 必要に応じ、 ノ ンダ一と混合して成形して もよい。 例えば、 成形体は、 上記の液状媒体中、 蓄熱材、 吸着材、 及びバインダ 一を均一に混合して蓄熱材を吸着材表面に吸着及び/又は添着させ、 成形するこ とにより得られる。 用いるバインダーとしては、 メチルセルロース、 カルポキシ ルメチルセルロース等のセルロース;フエノール樹脂;ポリビニルアルコール; 酢酸ビニル等の一般に使用されているものを制限なく使用できる。 成形体の形状 としては、 ペレット状、 ディスク状、 ブロック状等が例示される。 上記以外の他の製造方法としては、 例えば、 ペレット状、 破碎された粉末状等 の吸着材の表面に、 相変ィ匕物質を含むマイクロカプセル分散液 (上記の、 蓄熱材 を液状媒体に懸濁させたスラリ一) 及び必要に応じてバインダーを混ぜた溶液を スプレーし、 乾燥することにより、 P及着材の表面にマイクロカプセルがコーティ ングされた本発明の潜熱蓄熱型吸着材を得ることができる。用いるバインダ一は、 例えば、 メチルセルロース、 カルボキシルメチルセルロース等のセルロース;フ エノ一ル樹脂;ポリビニルアルコール;酢酸ビニル等の公知のものを採用できる。 混合方法、 スプレ一方法、 乾燥方法は、 いずれも公知のものを採用できる。 或いは、 ペレット状、 破碎された粉末状等の吸着材と円柱ペレット状、 球状ぺ ッレト状、シート状等の一定形状に成形されたマイクロカプセル (蓄熱材)とを、 均一に混合することにより本発明の潜熱蓄熱型吸着材を得ることができる。 マイ クロカプセル (蓄熱材) を成形する方法は、 公知の方法を採用でき、 成形の際は 必要に応じてバインダーを使用してもよい。 用いるバインダーは、 上述の公知の ものを採用できる。 In the latent heat storage type adsorbent for canisters of the present invention, a heat storage material having a smaller particle diameter than the adsorbent is attached to the surface of the adsorbent particles, and the heat storage material and the adsorbent are in contact with each other. High thermal efficiency is preferable. For example, by controlling the average particle diameters of the heat storage material and the adsorbent as described above, even if the heat storage material and the adsorbent are simply mixed uniformly, the heat storage material can be applied to the particle surface of the adsorbent. Since it adheres electrostatically and Z or adheres, the packing density increases and the heat transfer efficiency increases. In addition, since the classification (separation) of the heat storage material and the adsorbent is suppressed, the temperature change during adsorption and desorption can be suppressed for a long period of time. Furthermore, the latent heat storage type adsorbent for canisters of the present invention can be formed into a powdered latent heat storage type adsorbent in order to suppress scattering of the adsorbent from the canister into the engine. The molding is performed by a known method such as mixing a powdery heat storage material and an adsorbent and compression molding. Further, if necessary, it may be molded by mixing with a solder. For example, a molded article can be obtained by uniformly mixing the heat storage material, the adsorbent, and the binder in the liquid medium, adsorbing and / or adhering the heat storage material to the surface of the adsorbent, and molding. As the binder to be used, commonly used binders such as cellulose such as methylcellulose and carboxymethylcellulose; phenolic resins; polyvinyl alcohol; and vinyl acetate can be used without limitation. Examples of the shape of the molded body include a pellet, a disk, and a block. As another production method other than the above, for example, a microcapsule dispersion liquid containing a phase change material (the above-described heat storage material is suspended in a liquid medium) is placed on the surface of an adsorbent in the form of pellets or crushed powder. The latent heat storage type adsorbent of the present invention, in which microcapsules are coated on the surfaces of P and the adhering material, is sprayed and dried by spraying a solution containing a turbid slurry and, if necessary, a binder. Can be. As the binder to be used, known materials such as cellulose such as methylcellulose and carboxymethylcellulose; phenol resin; polyvinyl alcohol; and vinyl acetate can be used. Known mixing methods, spraying methods, and drying methods can be employed. Alternatively, the adsorbent in the form of pellets or crushed powder and the microcapsules (heat storage material) formed in a uniform shape such as cylindrical pellets, spherical pellets, sheets or the like are uniformly mixed. The latent heat storage type adsorbent of the invention can be obtained. A known method can be used for molding the microcapsules (heat storage material), and a binder may be used as necessary at the time of molding. As the binder to be used, the above-mentioned known binders can be employed.
或いは、 粉末状の吸着材、 粉末状等の蓄熱材又は相変化物質を含むマイクロ力 プセル分散液(上記の、蓄熱材を液状媒体に懸濁させたスラリー)、バインダー及 ぴ水を均一に混合し成形することにより、 本発明の潜熱蓄熱型吸着材を得ること ができる。用いるバインダ一は、上述の公知のものを採用でき、成形する方法は、 公知の方法を採用できる。  Alternatively, a powdered adsorbent, a powdered heat storage material or a micro force cell dispersion liquid containing a phase change material (the above-mentioned slurry in which the heat storage material is suspended in a liquid medium), a binder and water are uniformly mixed. Then, the latent heat storage type adsorbent of the present invention can be obtained. As the binder to be used, the above-mentioned known ones can be employed, and the known molding method can be employed.
本発明の潜熱蓄熱型吸着材において、 蓄熱材と吸着材の比率は両者の性能に基 づき当業者が適宜決定できる。 蓄熱材の混合量は、 通常吸着材 1 0 0重量部に対 して、 1 0〜: L 0 0重量部程度であればよい。 必要に応じ、 ノインダーを使用す る場合は、 バインダーの使用量は、 通常吸着材 1 0 0重量部に対して、 1〜: L 0 重量部程度であればよい。  In the latent heat storage type adsorbent of the present invention, the ratio between the heat storage material and the adsorbent can be appropriately determined by those skilled in the art based on the performance of both. The mixing amount of the heat storage material may be about 10 to about 100 parts by weight of L to 100 parts by weight of the adsorbent. If necessary, the binder may be used in an amount of about 1 to about 0 parts by weight based on 100 parts by weight of the adsorbent.
本発明の吸着材は、 キヤニスターの容器に充填し、 該容器に燃料タンクからの 蒸散燃料ガスを導入することでガスを吸着させることができる。 ガスないし容器 の温度は、 相変化物質の相変化温度 (通常は融点) 以下であるのが好ましい。 発明を実施するための最良の形態 以下に、 本発明を実施例により詳細に説明する。 尚、 本発明は実施例に限定さ れるものではない。 The adsorbent of the present invention can be adsorbed by filling a canister container and introducing vaporized fuel gas from a fuel tank into the container. The temperature of the gas or vessel is preferably below the phase change temperature (usually the melting point) of the phase change material. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to the embodiments.
実施例 1  Example 1
メラミン粉末 5 gに 37 %ホルムアルデヒド水溶液 6.5 gと水 10 gを加え、 pHを 8に調整した後、 約 70°Cまで加熱しメラミン一ホルムアルデヒド初期縮 合物水溶液を得た。 pHを 4. 5に調整したスチレン無水酸共重合体のナトリウ ム塩水溶液 100 g中に、 相変ィ匕を伴う化合物として n—才クタデカン 70 gを 溶解し液を上記水溶液に激しく撹拌しながら添加し、 粒径が約 10 mになるま で乳化を行った。 上記乳化液に上記メラミン一ホルムアルデヒド初期縮合水溶液 全量を添加し、 70°Cで 2時間撹拌を行った後、 pHを 9に調整しカプセル化を 行った。 反応終了後、 カプセルを吸引ろ過し、 乾燥することにより約 15 mの 粒径を有するカプセルを得た。 このカプセルと 0. 2mm〜3mmの粒径を有す る破碎活性炭を混合比率が活性炭に対してカプセルの量が 15wt %になるよう に均一に混合し,乾燥させることにより目的物であるマイクロカプセルが活性炭 の表面に分散した蓄熱型吸着材を得た。 なお、 いた活性炭は比表面積 1250 m2/g 細孔容積 0. 7 lml/g、 平均細孔径 12Aの 0. 50mm〜2. 36 mmの破砕石炭系活性炭である。 To 5 g of the melamine powder, 6.5 g of a 37% aqueous formaldehyde solution and 10 g of water were added to adjust the pH to 8, and the mixture was heated to about 70 ° C to obtain an aqueous solution of an initial condensate of melamine monoformaldehyde. In 100 g of an aqueous solution of a sodium salt of a styrene anhydride copolymer adjusted to pH 4.5, 70 g of n-butadecane was dissolved as a compound accompanied by phase change and the solution was vigorously stirred in the above aqueous solution. The mixture was added and emulsified until the particle size became about 10 m. The whole amount of the melamine-formaldehyde initial condensation aqueous solution was added to the above emulsion, and the mixture was stirred at 70 ° C for 2 hours, and then adjusted to pH 9 and encapsulated. After the completion of the reaction, the capsule was suction-filtered and dried to obtain a capsule having a particle size of about 15 m. This capsule and the crushed activated carbon having a particle size of 0.2 mm to 3 mm are uniformly mixed so that the mixing ratio of the capsule to the activated carbon is 15 wt%, and the mixture is dried to obtain the desired microcapsules. A heat storage adsorbent was obtained, in which was dispersed on the surface of activated carbon. The activated carbon used is a crushed coal-based activated carbon having a specific surface area of 1250 m 2 / g, a pore volume of 0.7 lml / g, and an average pore diameter of 12A, of 0.50 mm to 2.36 mm.
実施例 2  Example 2
実施例 1により製造された吸着材に対して、 以下の方法でブタンワーキングキ ャパシティ一を測定した。 上記の蓄熱型吸着材を 1Lの金属製キヤニス夕一に充 填し、 25 で99%の11ーブタンを11^ 1111 nでダウンフローにて吸着させ、 出口のブタン濃度が 5000 p pmに達した時停止する。 次に、 室温で空気を 1 5L/mi nで 20分間キヤニス夕一にアップフローで流し、 n—ブタンを脱着 させる。 この吸脱着を繰り返し行ない、 その内の第 4、 5および 6回目の吸着量 および脱着の値の平均値によって、 ブタンワーキングキャパシティーを求めた。 その結果、 ブタンワーキングキャパシティ一は 1 Lのキヤニスター容器に対し て 46. 7gZLであった。  The butane working capacity of the adsorbent produced in Example 1 was measured by the following method. The above regenerative adsorbent was filled into a 1-liter metal canister, and 99% of 11-butane was adsorbed by downflow at 11 ^ 1111n at 25, and the butane concentration at the outlet reached 5,000 ppm. When stopped. Next, at room temperature, air is flowed at 15 L / min for 20 minutes in an upflow in the evening of the varnish to desorb n-butane. This adsorption / desorption was repeated, and the butane working capacity was determined from the average value of the adsorption amounts and desorption values of the fourth, fifth, and sixth times. As a result, the butane working capacity was 46.7 gZL for a 1 L canister container.
比較例 1  Comparative Example 1
実施例 2と同様にして活性炭のみのブタンワーキングキャパシティ一の測定を 行なったところ、 1 Lのキヤニス夕一容器に対して 4 1 . 6 g/Lであった。 以上の結果から明らかなように、 蓄熱材を混入することにより、 ブタンヮーキ ングキャパシティ一が向上する。 Measurement of butane working capacity of activated carbon only was performed in the same manner as in Example 2. As a result, the amount was 41.6 g / L for a 1 L canister container. As is evident from the above results, the mixing of heat storage material improves butane-capacity.
実施例 1において相変化を伴う化合物として用いた n—ォク夕デカンの弋わり に、 エイコサンを用いて同様の方法で蓄熱型吸着材を得た。 それを用いて実施例 A heat storage adsorbent was obtained in the same manner using eicosane in place of n-octane decane, which was used as a compound having a phase change in Example 1. Example using it
2と同じ方法によりブタンヮ一キングキャパシティーを測定したところ、 比較例When the butane peaking capacity was measured by the same method as in 2, the comparative example
1より向上した。 Improved from 1.
また、 実施例 1において n—才クタデカンの代わりに、 力プリル酸を用いて蓄 熱型吸着材を得、 それを用いて実施例 2と同じ方法によりブタンヮ一キングキヤ パシティ一を測定したところ、 比較例 1より向上した。  Also, in Example 1, a heat storage adsorbent was obtained using caprylic acid instead of n-year-old kutadecane, and butane per king capacity was measured using the same in the same manner as in Example 2. Improved than example 1.
また、 実施例 1において n—才クタデカンの代わりに、 パルミチン酸メチルを 用いて蓄熱型吸着材を得、 それを用いて実施例 2と同じ方法によりブタンヮーキ ングキャパシティ一を測定したところ、 比較例 1より向上した。  Also, in Example 1, a heat storage adsorbent was obtained using methyl palmitate instead of n-year-old kutadecane, and the butane peaking capacity was measured by the same method as in Example 2 to obtain a comparative example. Improved from 1.
実施例 3  Example 3
メラミン粉末 5 gに 3 7 %ホルムアルデヒド水溶液 6. 5 gと水 1 0 gを加え、 pHを 8に調整した後、 約 7 0 °Cまで加熱しメラミン一ホルムアルデヒド初期縮 合物水溶液を得た。 p Hを 4. 5に調整したスチレン無水酸共重合体のナトリウ ム塩水溶液 1 0 0 g中に、 相変化を伴う化合物として n—ォクタデカン 7 0 g及 び過冷却防止剤としてヒマシ油 1. 4 gを溶解した液を上記水溶液に激しく撹拌 しながら添加し、 粒径が約 1 0 mになるまで乳化を行った。 上記乳化液に上記 メラミン一ホルムアルデヒド初期縮合水溶液全量を添加し、 7 0°Cで 2時間撹拌 を行った後、 p Hを 9に調整しカプセル化を行った。 反応終了後、 カプセルを吸 引ろ過し、 乾燥することにより約 1 5 mの粒径を有するカプセルを得た。 この カプセル 2 5重量部とバインダ一 (力ルポキシルメチルセルロース) 5重量部を 少量の水に分散させ、 この分散液に 1 mm〜 3 mmの粒径を有する破砕活性炭 1 0 0重量部を添加し均一に混合し、 さらに 9 0でで乾燥させることにより目的物 であるマイク口カプセルが活性炭の表面に添着した蓄熱型吸着材を得た。 なお、 用いた活性炭は比表面積 1 5 0 0 m2Zg、 細孔容積 0. 9 6 m l /g, 平均細 孔径約 1 3 Aの 1 mm〜 3 mmの破碎石炭系活性炭である。 実施例 4 To 5 g of the melamine powder, 6.5 g of a 37% aqueous solution of formaldehyde and 10 g of water were added, and the pH was adjusted to 8, followed by heating to about 70 ° C to obtain an aqueous solution of an initial melamine monoformaldehyde condensate. In 100 g of an aqueous sodium salt solution of a styrene anhydride copolymer adjusted to pH 4.5, 70 g of n-octadecane as a compound with a phase change and castor oil as a supercooling inhibitor 1. The solution in which 4 g was dissolved was added to the above aqueous solution with vigorous stirring, and emulsification was performed until the particle size became about 10 m. The whole amount of the melamine-formaldehyde initial condensation aqueous solution was added to the above emulsion, and the mixture was stirred at 70 ° C. for 2 hours, and then adjusted to pH 9 for encapsulation. After completion of the reaction, the capsule was subjected to suction filtration and dried to obtain a capsule having a particle size of about 15 m. 25 parts by weight of the capsules and 5 parts by weight of a binder (Ripoxyl methylcellulose) are dispersed in a small amount of water, and 100 parts by weight of crushed activated carbon having a particle size of 1 to 3 mm is added to the dispersion. The mixture was uniformly mixed and further dried at 90 to obtain a heat storage type adsorbent in which a microphone opening capsule as an object was attached to the surface of activated carbon. The activated carbon used was 1 mm to 3 mm crushed activated carbon with a specific surface area of 1500 m 2 Zg, a pore volume of 0.96 ml / g, and an average pore diameter of about 13 A. Example 4
実施例 3により製造された吸着材に対して、 以下の方法でブタンヮ一キングキ ャパシティ一を測定した。 上記の蓄熱型吸着材を 1 Lの金属製キヤニスターに充 填し、 2 5 °Cで 9 9 %の n—ブタンを 1 L/m i nでダウンフローにて吸着させ、 出口のブタン濃度が 5 0 0 0 p pmに達した時停止する。 次に、 室温で空気を 1 5 L/m i nで 2 0分間キヤニス夕一にアップフローで流し、 n—ブタンを脱着 させる。 この吸脱着を繰り返し行ない、 その内の第 4、 5および 6回目の吸着量 および脱着の値の平均値によって、 ブタンヮ一キングキャパシティーを求めた。 その結果、 ブタンワーキングキャパシティ一は 1 Lのキヤニスター容器に対し て 6 2. 5 g/Lであった。 また、 吸着時の温度は容器の中心部で最高 5 7 で あり、 脱着時の温度は容器の中心部で最低 1 8 °Cであった。 さらに 6回目のヒー ル量 (脱着後に細孔内に残存しているブタンの量) は 3 0. 8 g/Lであった。 比較例 2  With respect to the adsorbent produced in Example 3, butane king capacity was measured by the following method. The above regenerative adsorbent was charged into a 1 L metal canister, and at 25 ° C, 9.9% n-butane was adsorbed at 1 L / min downflow, and the butane concentration at the outlet was 50%. Stop when 0 0 p pm is reached. Next, at room temperature, air is flowed up at a flow rate of 15 L / min for 20 minutes in the evening of the varnish to desorb n-butane. This adsorption / desorption was repeated, and the butane peaking capacity was determined from the average value of the adsorption amounts and desorption values of the fourth, fifth and sixth times. As a result, the butane working capacity was 62.5 g / L for a 1 L canister. The temperature at the time of adsorption was 57 at the center of the container, and the temperature at the time of desorption was 18 ° C at the center of the container. Further, the heel amount (the amount of butane remaining in the pores after desorption) at the sixth time was 30.8 g / L. Comparative Example 2
実施例 4と同様にして実施例 3の活性炭のみのブタンワーキングキャパシティ 一の測定を行なったところ、 1 Lのキヤニスター容器に対して 5 6. 3 gZLで あった。 また、 吸着時の温度は容器の中心部で最高 7 3でであり、 脱着時の温度 は容器の中心部で最低 1 4。Cであった。  When the butane working capacity of only the activated carbon of Example 3 was measured in the same manner as in Example 4, it was 56.3 gZL for a 1 L canister. The temperature during adsorption is 73 at the center of the container, and the temperature at desorption is 14 at the center of the container. C.
さらに、 6回目のヒール量 (脱着後に細孔内に残存しているブタンの量) は 4 8. 2 gZLであった。 以上の結果から明らかなように、相変化物質を含む蓄熱材を混入することに より、 ブタンワーキングキャパシティ一を向上させ、 吸着時の温度上昇率の改 善及び脱着性能の向上(ヒール量の低減) による蒸散ガスの排出量 (エミッシ ヨン量) の低減を図ることができる。 本発明の効果  Further, the heel amount (the amount of butane remaining in the pores after desorption) at the sixth time was 48. 2 gZL. As is clear from the above results, by mixing the heat storage material containing the phase change material, the butane working capacity was improved, the temperature rise rate during adsorption was improved, and the desorption performance was improved (the heel amount was reduced). Reduction), it is possible to reduce the amount of emission of vaporized gas (emission amount). Effects of the present invention
本発明のキヤニスター用潜熱蓄熱型吸着材をキヤニス夕一に用いることにより、 吸着材に対する蒸散燃料の吸着時に、 生じた吸着熱は相変化物質を含む蓄熱材へ 伝達されて潜熱として蓄熱されるため、 吸着材の温度上昇率が低下し、 その結果 蒸散燃料の吸着性能は大幅に向上する。 また蒸散燃料の脱離時においては該蓄熱 材に蓄熱された熱が吸着材に伝熱され吸着材の温度低下を抑制し、 より一層蒸散 燃料の脱離性能が向上する。 そのため、 本発明のキヤニスター用潜熱蓄熱型吸着 材は、 従来のキヤニス夕一用吸着材及ぴ比熱の高い物質を混入したキヤニスター 用吸着材に比べ、 蒸散燃料の吸着-脱離性能は格段に向上する。 By using the latent heat storage type adsorbent for canisters of the present invention in a canister, when the vaporized fuel is adsorbed on the adsorbent, the generated heat of adsorption is transferred to the heat storage material containing the phase change substance and stored as latent heat. The rate of temperature rise of the adsorbent decreases, and as a result The adsorption performance of the evaporated fuel is greatly improved. In addition, when the vaporized fuel is desorbed, the heat stored in the heat storage material is transferred to the adsorbent to suppress a decrease in the temperature of the adsorbent, thereby further improving the desorption performance of the vaporized fuel. As a result, the latent heat storage type adsorbent for canisters of the present invention has remarkably improved adsorption-desorption performance of vaporized fuel as compared with conventional adsorbents for canisters and canisters mixed with substances having a high specific heat. I do.
また、 キヤニスターの吸着時の発熱による温度上昇が低く抑えられることによ り、 キヤニス夕一容器の材質を耐熱温度のより低い安価な材料を使用することが 可能となり、 小型 ·低コストなキヤニスターを供給できる。  In addition, since the rise in temperature due to the heat generated during adsorption of the canister is suppressed, it is possible to use an inexpensive material having a lower heat-resistant temperature for the canister container. Can supply.

Claims

請求の範囲 The scope of the claims
1 . 蒸散燃料を吸着する吸着材と温度に応じて潜熱の吸収及び放出を生じる相 変化物質をマイクロカプセルに封入した蓄熱材とを含むキヤニス夕一用潜熱蓄熱 型吸着材。 1. A latent heat storage type adsorbent for canisters that includes an adsorbent that adsorbs vaporized fuel and a heat storage material that encapsulates a phase change material that absorbs and releases latent heat according to temperature in microcapsules.
2. 吸着材が活性炭、 活性アルミナ又はそれらの混合物である請求の範囲第 1 に記載のキヤニスター用潜熱蓄熱型吸着材。  2. The latent heat storage type adsorbent for canisters according to claim 1, wherein the adsorbent is activated carbon, activated alumina or a mixture thereof.
3. 蓄熱材の平均粒径が吸着材の平均粒径の 1 / 1 0 0 0〜 1 / 1 0程度であ る請求の範囲第 1又は 2に記載のキヤニス夕一用潜熱蓄熱型吸着材。  3. The latent heat storage type adsorbent for canisters according to claim 1 or 2, wherein the average particle size of the heat storage material is about 1/1000 to 1/10 of the average particle size of the adsorbent. .
4. 着材の平均粒径が 1 π!〜 1 0 mm程度である請求の範囲第 1、 2又は 3に記載のキヤニス夕一用潜熱蓄熱型吸着材。 4. The average particle size of the material is 1π! The latent heat storage adsorbent for canisters according to claim 1, 2 or 3, wherein the adsorbent is about 10 mm or less.
5. 蓄熱材の平均粒径が 0. 1〜 5 0 0 m程度である請求の範囲第 1〜 4の いずれかに記載のキヤニス夕一用潜熱蓄熱型吸着材。  5. The latent heat storage adsorbent for canisters according to any one of claims 1 to 4, wherein the heat storage material has an average particle size of about 0.1 to 500 m.
6. 着材の表面に蓄熱材が付着及び/又は添着されてなる請求の範囲第 1〜 5のいずれかに記載のキヤニスター用潜熱蓄熱型吸着材。  6. The latent heat storage adsorbent for a canister according to any one of claims 1 to 5, wherein a heat storage material is attached and / or attached to the surface of the material.
7. 請求の範囲第 1〜 6のいずれかに記載のキヤニスター用潜熱蓄熱型吸着材 とバインダーとからなる成形体のキヤニス夕一用潜熱蓄熱型吸着材。  7. A latent heat storage type adsorbent for a canister, which is a molded article comprising the binder and the binder according to any one of claims 1 to 6.
8. 成形体の形状が、 ペレット状、 ディスク状及ぴブロック状からなる群から 選ばれる少なくとも 1つの形状である請求の範囲第 7に記載のキヤニス夕一用潜 熱蓄熱型吸着材 c  8. The latent heat storage adsorbent for canisters according to claim 7, wherein the shape of the molded body is at least one shape selected from the group consisting of a pellet, a disk, and a block. C
9. 蓄熱材を吸着材の粒子表面に吸着及び Z又は添着させることを特徴とする 請求の範囲第 1〜 6のいずれかに記載の製造方法。  9. The method according to any one of claims 1 to 6, wherein the heat storage material is adsorbed and Z or attached to the particle surface of the adsorbent.
1 0. 蓄熱材を吸着材の粒子表面に静電的に吸着及び/又は添着させることを 特徴とする請求の範囲第 1〜 6のいずれかに記載の製造方法。  10. The method according to any one of claims 1 to 6, wherein the heat storage material is electrostatically adsorbed and / or attached to the particle surface of the adsorbent.
1 1 . 蓄熱材と吸着材とを均一混合することを特徴とする請求の範囲第 1〜6 のいずれかに記載の製造方法。  11. The method according to any one of claims 1 to 6, wherein the heat storage material and the adsorbent are uniformly mixed.
1 2. 蓄熱材を液状媒体に懸濁させたスラリーと吸着材とを混合し、 乾燥する ことを特徴とする請求の範囲第 1〜 6のいずれかに記載の製造方法。  1 2. The production method according to any one of claims 1 to 6, wherein a slurry in which a heat storage material is suspended in a liquid medium and an adsorbent are mixed and dried.
1 3. 蒸散燃料を吸着する吸着材の表面に、 温度に応じて潜熱の吸収及び放出 を生じる相変化物質をマイク口カプセルに封入した蓄熱材を液状 »に懸濁させ たスラリー及び必要に応じてバインダーを含む混合液をスプレーすることを特徴 とするキヤニス夕一用潜熱蓄熱型吸着材の製造方法。 1 3. Absorption and release of latent heat according to temperature on the surface of the adsorbent that absorbs evaporated fuel Latent heat storage adsorbent for canisters, characterized by spraying a slurry containing a phase change substance that causes phase change in a liquid crystal » Manufacturing method.
1 4. 蒸散燃料を吸着する吸着材、 並びに温度に応じて潜熱の吸収及び放出を 生じる相変化物質をマイクロカプセルに封入した蓄熱材の成形体とを、 均一に混 合することを特徴とするキヤニスター用潜熱蓄熱型吸着材の製造方法。  1 4. Uniform mixing of adsorbent for adsorbing vaporized fuel and heat storage material molded into microcapsules containing a phase change substance that absorbs and releases latent heat depending on temperature A method for producing a latent heat storage type adsorbent for canisters.
1 5. 蒸散燃料を吸着する吸着材、 温度に応じて潜熱の吸収及び放出を生じる 相変化物質をマイク口カプセルに封入した粉末状の蓄熱材又は該蓄熱材を液状媒 体に懸濁させたスラリ一、 バインダー及び水を均一に混合し成形することを特徴 とするキヤニス夕一用潜熱蓄熱型吸着材の製造方法。  1 5. An adsorbent that adsorbs vaporized fuel, a phase change substance that absorbs and releases latent heat depending on temperature A powdered heat storage material in which a microphone opening capsule is enclosed, or the heat storage material is suspended in a liquid medium A method for producing a latent heat storage type adsorbent for use on a canister, characterized by uniformly mixing and forming a slurry, a binder and water.
1 6. 請求の範囲第 1 3〜1 5のいずれかに記載の製造方法により得られるキ ャニスター用潜熱蓄熱型吸着材。  16. A latent heat storage adsorbent for canisters obtained by the production method according to any one of claims 13 to 15.
1 7 . 請求の範囲第 1〜 8及び 1 6のいずれかに記載の潜熱蓄熱型吸着材がキ ャニス夕一容器に充填された燃料蒸散防止用キヤニスター。  17. A canister for preventing fuel evaporation, wherein the latent heat storage adsorbent according to any one of claims 1 to 8 and 16 is filled in a canister container.
PCT/JP2003/007177 2002-06-18 2003-06-06 Adsorbent of latent-heat storage type for canister and process for producing the same WO2003106833A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2489318A CA2489318C (en) 2002-06-18 2003-06-06 Adsorbent of latent-heat storage type for canister and process for producing the same
US10/516,941 US7906078B2 (en) 2002-06-18 2003-06-06 Adsorbent of latent-heat storage type for canister and process for producing the same
JP2004513624A JP4508867B2 (en) 2002-06-18 2003-06-06 Latent heat storage type adsorbent for canister and method for producing the same
CN038139952A CN1662738B (en) 2002-06-18 2003-06-06 Adsorbent of latent-heat storage type for canister and process for producing the same
EP03736062A EP1536128B1 (en) 2002-06-18 2003-06-06 Adsorbent of latent-heat storage type for canister and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-176650 2002-06-18
JP2002176650 2002-06-18
JP2002-238797 2002-08-20
JP2002238797 2002-08-20

Publications (1)

Publication Number Publication Date
WO2003106833A1 true WO2003106833A1 (en) 2003-12-24

Family

ID=29738430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007177 WO2003106833A1 (en) 2002-06-18 2003-06-06 Adsorbent of latent-heat storage type for canister and process for producing the same

Country Status (6)

Country Link
US (1) US7906078B2 (en)
EP (1) EP1536128B1 (en)
JP (2) JP4508867B2 (en)
CN (1) CN1662738B (en)
CA (1) CA2489318C (en)
WO (1) WO2003106833A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233106A (en) * 2004-02-20 2005-09-02 Mahle Tennex Corp Canister
WO2006019013A1 (en) * 2004-08-18 2006-02-23 Kuraray Chemical Co., Ltd Transpiration fuel gas adsorbent and process for producing the same
WO2006022329A1 (en) * 2004-08-26 2006-03-02 Kuraray Chemical Co., Ltd Evaporated fuel gas adsorbent, evaporated fuel gas trapping apparatus, active carbon and process for producing the same
JP2006068693A (en) * 2004-09-06 2006-03-16 Osaka Gas Co Ltd Adsorbent for canister, its manufacturing method, and canister for preventing transpiration of fuel
JP2006207485A (en) * 2005-01-28 2006-08-10 Aisan Ind Co Ltd Canister
JP2006299849A (en) * 2005-04-18 2006-11-02 Aisan Ind Co Ltd Evaporated fuel treating device and its manufacturing method
WO2007135978A1 (en) * 2006-05-23 2007-11-29 Kuraray Chemical Co., Ltd. Carbon with adherent microcapsule, process for producing the same, and canister
JP2008528854A (en) * 2005-01-21 2008-07-31 ダイコ フルイッド テクノロジーズ ソシエタ ペル アチオニ A system for controlling the release of fuel vapor from a container.
WO2009011287A1 (en) * 2007-07-13 2009-01-22 Cataler Corporation Adsorbent material, and canister
US7543574B2 (en) 2006-09-13 2009-06-09 Mahle Filter Systems Japan Corporation Canister
JP2009286811A (en) * 2008-05-27 2009-12-10 Aisan Ind Co Ltd Granulated heat-storage material and method for producing the same
JP2010007671A (en) * 2009-10-09 2010-01-14 Aisan Ind Co Ltd Canister
US7841321B2 (en) 2005-01-28 2010-11-30 Aisan Kogyo Kabushiki Kaisha Canister and method of manufacturing the same

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329200A1 (en) * 2003-06-28 2005-02-03 Mahle Filtersysteme Gmbh Adsorption filter for fuel vapors
US7323041B2 (en) 2004-03-30 2008-01-29 Mahle Filter Systems Japan Corporation Gas storage canister
CN1795964A (en) * 2004-12-22 2006-07-05 雅高思先进科技有限公司 Heat recovery system for reproducible absorptive material
JP4724877B2 (en) * 2005-01-28 2011-07-13 独立行政法人物質・材料研究機構 Carbon porous body, method for producing carbon porous body, adsorbent, and biomolecular device
DE102005030310B3 (en) * 2005-06-23 2006-12-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermal insulating container for food or drink has honeycomb or similar lightweight bearing structure between inner and outer walls
FR2887783B1 (en) * 2005-07-04 2007-11-16 Air Liquide PLANE STRUCTURE FORMED OF MATRIX AND PHASE-CHANGE MATERIALS USED FOR THE TREATMENT OF GASES
FR2891159A1 (en) * 2005-09-26 2007-03-30 Air Liquide Pressure swing adsorption process for separation and-or purification of gases, e.g. hydrogen or oxygen, uses adsorbent beds containing adsorbent particles and agglomerated micro-capsules of phase-change material
JP4708283B2 (en) * 2006-08-03 2011-06-22 トヨタ自動車株式会社 Canister
FR2906160B1 (en) * 2006-09-25 2009-06-05 Air Liquide PSA METHOD WITH COMPOSITE ADSORPTION BED FORMED OF ADSORBENT AND AGGLOMERATS OF MCP
EP2134999A1 (en) * 2007-04-05 2009-12-23 Basf Se Gas pressure container comprising a mixture containing an organometallic skeletal material, and a pcm device
WO2008122542A2 (en) * 2007-04-05 2008-10-16 Basf Se Mixture containing an organometallic skeletal material, and pcm device
JP2008303846A (en) * 2007-06-11 2008-12-18 Mahle Filter Systems Japan Corp Canister
US20090209418A1 (en) * 2008-02-18 2009-08-20 Nagoya Electrical Educational Foundation Adsorbent and method for manufacturing the same
JP5148352B2 (en) * 2008-04-25 2013-02-20 愛三工業株式会社 Canister
JP5002054B2 (en) * 2008-05-27 2012-08-15 大阪ガスケミカル株式会社 Manufacturing method of heat storage material, heat storage material, adsorbent with heat storage function, canister
FR2936168B1 (en) * 2008-09-25 2011-05-20 Air Liquide FABRICATION OF AGGLOMERAT COMPOSED OF PHASE CHANGE MATERIAL AND HAVING CONTROLLED PROPERTIES
GB2474544A (en) * 2009-10-15 2011-04-20 Michael Trevor Berry Latent heat storage panel
JP2011174384A (en) * 2010-02-23 2011-09-08 Toyota Motor Corp Fuel tank device, and evaporated fuel processing apparatus with the same
JP5638298B2 (en) * 2010-07-08 2014-12-10 愛三工業株式会社 Granulated heat storage material and evaporative fuel processing device
JP5744427B2 (en) * 2010-07-13 2015-07-08 愛三工業株式会社 Granulated heat storage material and evaporative fuel processing device
JP5583609B2 (en) * 2011-01-21 2014-09-03 愛三工業株式会社 Canister
JP2013053556A (en) * 2011-09-05 2013-03-21 Aisan Industry Co Ltd Fuel vapor processing apparatus
JP5801184B2 (en) * 2011-12-28 2015-10-28 Jfeスチール株式会社 Gas separation method and apparatus by pressure swing adsorption method
US9365109B2 (en) 2012-06-22 2016-06-14 Bemis Manufacturing Company Cap with adsorption media
CN113550842A (en) * 2012-10-10 2021-10-26 英格维蒂南卡罗来纳有限责任公司 Evaporative fuel vapor emission control system
JP6486376B2 (en) 2013-10-10 2019-03-20 インジェヴィティ・サウス・カロライナ・エルエルシー Evaporative fuel vapor emission control system
FR3029803B1 (en) * 2014-12-11 2019-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude ADSORBENT MIXTURE WITH ENHANCED THERMAL CAPACITY
JP6542559B2 (en) * 2015-03-30 2019-07-10 株式会社クラレ Activated carbon for gas phase adsorption
KR101806867B1 (en) * 2016-03-11 2017-12-08 주식회사 리한 Canister
MX2018011901A (en) * 2016-03-30 2019-03-28 Osaka Gas Co Ltd Gas absorbing material, carbon dioxide separation and recovery system, and carbon dioxide separation and recovery method.
WO2017173176A1 (en) * 2016-04-01 2017-10-05 Entropy Solutions Llc Microencapsulated composite phase change materials
JP6863732B2 (en) * 2016-12-26 2021-04-21 株式会社マーレ フィルターシステムズ Honeycomb adsorbent and its manufacturing method and canister
GB2569353A (en) * 2017-12-14 2019-06-19 Delphi Tech Ip Ltd Evaporative emission control canister system
JP7469223B2 (en) * 2018-04-24 2024-04-16 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Adsorbent, canister, and method for producing adsorbent
DE112020007581B4 (en) * 2019-02-08 2023-09-28 Aisan Kogyo Kabushiki Kaisha Evaporated fuel processing device
US11904297B1 (en) 2023-01-11 2024-02-20 Iliad Ip Company, Llc Process for manufacturing lithium selective adsorption/separation media

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357351U (en) * 1986-09-30 1988-04-16
US4869739A (en) 1987-08-03 1989-09-26 Toyota Jidosha Kabushiki Kaisha Fuel vapor collecting device
US4971605A (en) 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
US5418203A (en) 1992-06-22 1995-05-23 Toyoda Gosei Co., Ltd. Fuel absorbent and a process for making the fuel absorbent
JPH10339218A (en) * 1997-06-04 1998-12-22 Tennex:Kk Treatment device of evaporative fuel
US5861050A (en) 1996-11-08 1999-01-19 Store Heat And Produce Energy, Inc. Thermally-managed fuel vapor recovery canister

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238468A (en) 1985-08-13 1987-02-19 Oki Electric Ind Co Ltd Pellicle fitting device
JPS6357351A (en) 1986-08-26 1988-03-12 Honda Lock Mfg Co Ltd Automobile mirror device
JPH0518843Y2 (en) 1987-08-31 1993-05-19
JPH057488A (en) 1991-06-30 1993-01-19 Shimadzu Corp Rate type automatic analyzer
JPH084605A (en) 1994-06-16 1996-01-09 Honda Motor Co Ltd Evaporated fuel processing device
US5506293A (en) * 1994-09-09 1996-04-09 Northrop Grumman Corporation Isotropic orientation of carbon fibers in resin matrix materials
JPH09221665A (en) 1996-02-14 1997-08-26 Osaka Gas Co Ltd Microcapsule dispersion for thermal storage medium
JPH09183605A (en) * 1995-12-28 1997-07-15 Nippon Soken Inc Degradation resisting activated carbon and its production and canister using the same
JPH1135931A (en) 1997-07-18 1999-02-09 Mitsubishi Cable Ind Ltd Cold storage material utilizing latent heat
US6673328B1 (en) * 2000-03-06 2004-01-06 Ut-Battelle, Llc Pitch-based carbon foam and composites and uses thereof
US6780505B1 (en) * 1997-09-02 2004-08-24 Ut-Battelle, Llc Pitch-based carbon foam heat sink with phase change material
JPH11207149A (en) 1998-01-23 1999-08-03 Akio Komatsu Metal carrying photocatalyst type air purifier
JP2000303917A (en) * 1999-04-26 2000-10-31 Nippon Soken Inc Canister
JP2001322872A (en) 1999-10-21 2001-11-20 Tennex Corp Molded activated carbon and method for manufacturing the same
US6599856B1 (en) 1999-10-21 2003-07-29 Tennex Corporation Formed activated carbon and process for producing the same
JP2001145832A (en) 1999-11-19 2001-05-29 Osaka Gas Co Ltd Adsorbent with heat storage function and its manufacturing method
JP2001240407A (en) 1999-12-24 2001-09-04 Kuraray Chem Corp Activated carbon and its manufacturing method
JP2002045385A (en) 2000-08-03 2002-02-12 Mitsubishi Paper Mills Ltd Moisture retention material and its use
JP2005233106A (en) * 2004-02-20 2005-09-02 Mahle Tennex Corp Canister

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357351U (en) * 1986-09-30 1988-04-16
US4869739A (en) 1987-08-03 1989-09-26 Toyota Jidosha Kabushiki Kaisha Fuel vapor collecting device
US4971605A (en) 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
US5418203A (en) 1992-06-22 1995-05-23 Toyoda Gosei Co., Ltd. Fuel absorbent and a process for making the fuel absorbent
US5861050A (en) 1996-11-08 1999-01-19 Store Heat And Produce Energy, Inc. Thermally-managed fuel vapor recovery canister
JPH10339218A (en) * 1997-06-04 1998-12-22 Tennex:Kk Treatment device of evaporative fuel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1536128A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233106A (en) * 2004-02-20 2005-09-02 Mahle Tennex Corp Canister
WO2006019013A1 (en) * 2004-08-18 2006-02-23 Kuraray Chemical Co., Ltd Transpiration fuel gas adsorbent and process for producing the same
JPWO2006022329A1 (en) * 2004-08-26 2008-05-08 クラレケミカル株式会社 Transpiration fuel gas adsorbent, transpiration fuel gas collector, activated carbon and method for producing the same
WO2006022329A1 (en) * 2004-08-26 2006-03-02 Kuraray Chemical Co., Ltd Evaporated fuel gas adsorbent, evaporated fuel gas trapping apparatus, active carbon and process for producing the same
US7785407B2 (en) 2004-08-26 2010-08-31 Kuraray Chemical Co., Ltd. Evaporated fuel gas adsorbent, evaporated fuel gas trapping apparatus, active carbon and process for producing the same
JP2006068693A (en) * 2004-09-06 2006-03-16 Osaka Gas Co Ltd Adsorbent for canister, its manufacturing method, and canister for preventing transpiration of fuel
JP4526333B2 (en) * 2004-09-06 2010-08-18 大阪瓦斯株式会社 Canister adsorbent, method for producing the same, and canister for preventing fuel evaporation
US7997254B2 (en) 2005-01-21 2011-08-16 Dayco Fluid Technologies, S.P.A. System for controlling the emissions of fuel vapours from a vehicle
JP2008528854A (en) * 2005-01-21 2008-07-31 ダイコ フルイッド テクノロジーズ ソシエタ ペル アチオニ A system for controlling the release of fuel vapor from a container.
US7841321B2 (en) 2005-01-28 2010-11-30 Aisan Kogyo Kabushiki Kaisha Canister and method of manufacturing the same
JP2006207485A (en) * 2005-01-28 2006-08-10 Aisan Ind Co Ltd Canister
JP2006299849A (en) * 2005-04-18 2006-11-02 Aisan Ind Co Ltd Evaporated fuel treating device and its manufacturing method
JP4691386B2 (en) * 2005-04-18 2011-06-01 愛三工業株式会社 Evaporative fuel processing apparatus and manufacturing method thereof
WO2007135978A1 (en) * 2006-05-23 2007-11-29 Kuraray Chemical Co., Ltd. Carbon with adherent microcapsule, process for producing the same, and canister
US7543574B2 (en) 2006-09-13 2009-06-09 Mahle Filter Systems Japan Corporation Canister
JPWO2009011287A1 (en) * 2007-07-13 2010-09-24 株式会社キャタラー Adsorbent and canister
WO2009011287A1 (en) * 2007-07-13 2009-01-22 Cataler Corporation Adsorbent material, and canister
US8361207B2 (en) 2007-07-13 2013-01-29 Cataler Corporation Adsorbent and canister
JP2009286811A (en) * 2008-05-27 2009-12-10 Aisan Ind Co Ltd Granulated heat-storage material and method for producing the same
JP2010007671A (en) * 2009-10-09 2010-01-14 Aisan Ind Co Ltd Canister

Also Published As

Publication number Publication date
JP2010179303A (en) 2010-08-19
CN1662738A (en) 2005-08-31
EP1536128A1 (en) 2005-06-01
EP1536128B1 (en) 2012-02-15
EP1536128A4 (en) 2010-07-07
CA2489318C (en) 2011-03-22
JPWO2003106833A1 (en) 2005-10-13
JP4508867B2 (en) 2010-07-21
CA2489318A1 (en) 2003-12-24
US7906078B2 (en) 2011-03-15
CN1662738B (en) 2011-02-09
US20050247202A1 (en) 2005-11-10

Similar Documents

Publication Publication Date Title
WO2003106833A1 (en) Adsorbent of latent-heat storage type for canister and process for producing the same
Garzón‐Tovar et al. Composite salt in porous metal‐organic frameworks for adsorption heat transformation
CN101802127B (en) Process for producing heat storage material, heat storage material, adsorbent material with heat storage function and canister
EP1906001B1 (en) Canister
US8443786B2 (en) Fuel vapor storage canister, fuel vapor adsorbent for canister, and method of producing fuel vapor adsorbent
US20050188851A1 (en) Gas storage canister
JP5005613B2 (en) Canister
JP2003311118A (en) Adsorbent with heat accumulation function and manufacturing method therefor
JP4526333B2 (en) Canister adsorbent, method for producing the same, and canister for preventing fuel evaporation
JP2001145832A (en) Adsorbent with heat storage function and its manufacturing method
WO2020067007A1 (en) Adsorbent, canister, and method for producing adsorbent
WO2006019013A1 (en) Transpiration fuel gas adsorbent and process for producing the same
WO2021210386A1 (en) Latent heat storage material-integrated active carbon and production method thereof
JP4707683B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
KR100745261B1 (en) Adsorbent of Latent-Heat Storage Type for Canister and Process for Producing the Same
JP4956232B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP4471700B2 (en) Canister
JP4861136B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP5250060B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP2005290990A (en) Fuel transpiration gas adsorbent
JP2003314796A (en) Adsorption storage device for digestion gas and adsorption storage method
JP2003222298A (en) Natural gas adsorbing and storing device and method
JP2011062693A (en) Method for producing adsorbing material having heat accumulation function, adsorbing material having heat accumulation function and canister
WO2007135978A1 (en) Carbon with adherent microcapsule, process for producing the same, and canister
JP2004277190A (en) High-packability active carbon and its manufacture method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004513624

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2489318

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10516941

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038139952

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047020506

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003736062

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047020506

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003736062

Country of ref document: EP