WO2004019128A2 - Projection optical system and method for photolithography and exposure apparatus and method using same - Google Patents

Projection optical system and method for photolithography and exposure apparatus and method using same Download PDF

Info

Publication number
WO2004019128A2
WO2004019128A2 PCT/JP2003/010665 JP0310665W WO2004019128A2 WO 2004019128 A2 WO2004019128 A2 WO 2004019128A2 JP 0310665 W JP0310665 W JP 0310665W WO 2004019128 A2 WO2004019128 A2 WO 2004019128A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
plane
projection optical
projection
Prior art date
Application number
PCT/JP2003/010665
Other languages
French (fr)
Other versions
WO2004019128A3 (en
Inventor
Yasuhiro Omura
Hironori Ikezawa
David M. Williamson
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0311470A external-priority patent/GB0311470D0/en
Priority to EP03792812A priority Critical patent/EP1532489A2/en
Priority to AU2003256081A priority patent/AU2003256081A1/en
Priority to US10/525,372 priority patent/US7362508B2/en
Priority to JP2004530609A priority patent/JP2005536775A/en
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2004019128A2 publication Critical patent/WO2004019128A2/en
Publication of WO2004019128A3 publication Critical patent/WO2004019128A3/en
Priority to US11/907,679 priority patent/US7551362B2/en
Priority to US11/907,797 priority patent/US7701640B2/en
Priority to US11/907,801 priority patent/US7688517B2/en
Priority to US11/907,908 priority patent/US7580197B2/en
Priority to US11/907,907 priority patent/US7609455B2/en
Priority to US11/976,028 priority patent/US7619827B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/33Immersion oils, or microscope systems or objectives for use with immersion fluids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Definitions

  • the present invention relates to projection optical systems such as systems for photolithography.
  • the present invention also relates to an exposure apparatus and exposing methods.
  • the invention is applicable to a high-resolution projection optical system suitable for an exposure apparatus used when manufacturing semiconductor elements or liquid crystal display elements through a photolithographic process.
  • anastigmat means an optical element or group of optical elements adapted to reduce astigmatism and/or aberrations including spherical aberration. See, e. g. Naumann/Schr ⁇ der, Bauieri der Optik, Carl Hauser Verlag M ⁇ nchen Wien, 6 th ed., 1992, pp. 382-383 for a discussion of the term anastigmat.
  • the term "Mangin mirror arrangement” means an optical device comprising a concave mirror and at least one negative powered lens proximal to the concave mirror wherein the concave mirror need not be in contact with the negative powered lens.
  • a projection exposure apparatus for exposing a pattern image of a mask (or a reticle) onto a wafer (or a glass plate or the like) coated with photoresist via a projection optical system.
  • the demand for achievable resolution of a projection optical system of the projection exposure apparatus is steadily increasing.
  • the resolution of a projection optical system is expressed by k- ⁇ /NA (where k is a process coefficient) .
  • k is a process coefficient
  • NA numerical aperture
  • WO 99/49504 discloses a projection exposure method that irradiates exposure beams on a mask and transfers the pattern of said mask onto a substrate via a projection optical system, wherein when said substrate is moved along a predetermined direction, a predetermined liquid is passed along the direction of the motion of said substrate so as to fill the space between the end of the optical element on said substrate side of said projection optical system and the surface of said substrate, and discloses a projection exposure apparatus that irradiates exposure beams on a mask and transfers the pattern of said mask onto a substrate via a projection optical system, comprising a substrate stage that moves while holding said substrate, a liquid supply device that supplies a predetermined liquid along a predetermined direction via pipes for supply so as to fill the space between the end of the optical element of said substrate side of said projection optical system and the surface of said substrate, and a liquid recovery device that recovers said liquid from the surface of said substrate via said supply pipes and pipes for discharge arranged so as to sandwich the irradiation area of said exposure beams in said predetermined direction
  • the direction of the flow of the liquid may be changed according to the direction of the motion of the substrate.
  • the projection exposure apparatus may be provided with a second pair of supply pipes and discharge pipes arranged at the location where said pair of supply pipes and discharge pipes would be if they were essentially rotated by 180°.
  • the projection exposure apparatus may also comprise a liquid recovery device that recovers liquid supplied to between said projection optical system and said substrate.
  • US patent no. 4,509,852 teaches using a photolithographic projection apparatus a mask having a pattern is imaged on a photosensitive layer coating a semiconductor substrate by a projection lens. To improve the resolving capability and to obviate adverse effects, e. g. standing waves and inhomogeneous exposure, the space between the substrate and the adjacent boundary face of a projection lens is filled during exposure with a transparent liquid having the same refractive index as the photosensitive layer.
  • paraxial geometrical optics theory dictates that an increase of NA at the wafer has to be accompanied by a corresponding increase in NA all the way through the projection lens system. This results in an increase in lens diameters, and optical surface steepness, defined by the ratio D/R, where D is the clear aperture diameter and R is the radius of curvature.
  • D the clear aperture diameter
  • R the radius of curvature
  • An object of the invention is to provide a projection optical system which permits achievement of a large and effective image-side numerical aperture by providing a medium having a high refractive index in an optical path to the image field and inhibiting satisfactorily the reflection loss on the optical surface.
  • Another object of the invention is to provide an exposure apparatus and an exposing method which have a large and effective image-side numerical aperture and enable to transfer and expose a fine pattern at a high accuracy via a projection optical system having a high resolution.
  • a projection optical system for projecting an image of a first plane onto a second plane comprising: a boundary lens; and at least one layer of immersion medium between the boundary lens and the second plane; said boundary lens having a first plane side optical surface shaped such that for light projected onto the second plane through the boundary lens the marginal ray convergence angle prior to incidence is larger than the marginal ray convergence angle within said boundary lens.
  • a projection optical system for projecting an image of a first plane to a second plane comprising: an optical system; a boundary lens; and at least one layer of immersion medium between said boundary lens and said second plane; wherein light from the first plane is transmitted through the optical system, and output with a predetermined marginal ray convergence angle; and said boundary lens is positioned to receive said light output from the optical system, and adapted such that for light projected onto the second plane through the boundary lens the marginal ray convergence angle prior to incidence is larger than the marginal ray convergence angle within said boundary lens.
  • the optical system (which means the optical system of the optical projection system, where the former is included in an optical projection system) may further comprise at least one positive powered lens element proximal to said boundary lens, and having an aspheric optical surface.
  • the optical system may further comprise a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, and a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface.
  • the optical system may be one in which the first positive powered lens element has an axial thickness greater than 26.1mm and less than 28.9mm, and a first plane side surface with an axial radius of curvature greater than 103mm and less than 114mm, the second positive powered lens element has an axial thickness greater than 26.5mm and less than 29.3mm, and a first plane side surface with an axial radius of curvature greater than 83.2mm and less than 91.9mm, and the boundary lens has an axial thickness greater than 41.6mm and less than 46.0mm, and a first plane side surface with an axial radius of curvature greater than 56.9mm and less than 62.9mm.
  • the optical system may comprise a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, and a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface, wherein the first positive powered lens element has an axial thickness greater than 27.22mm and less than 27.77mm, and a first plane side surface with an axial radius of curvature greater than 107.6mm and less than 109.8mm, the second positive powered lens element has an axial thickness greater than 27.63mm and less than 28.19mm, and a first plane side surface with an axial radius of curvature greater than 86.67mm and less than 88.42mm, "and the boundary lens has an axial thickness greater than 43.37mm and less than 44.25mm, and a first plane side surface with an axial radius of curvature greater than 59.27mm and less than 60.46mm.
  • any of the optical systems defined above may include a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element, a first negative powered lens element, a second negative powered lens element, and a fourth positive powered lens element.
  • the third positive powered lens element has an axial thickness greater than 43.9mm and less than 48.5mm, and a first plane side surface with an axial radius of curvature greater than 128mm and less than 141mm
  • the first negative powered lens element has an axial thickness greater than 13.1mm and less than 11.9mm
  • the second negative powered lens element has an axial thickness greater than 11.9mm and less than 13.1mm
  • the fourth positive powered lens element has an axial thickness greater than 30.6mm and less than 33.9mm, and a second plane side surface with an axial radius of curvature greater than 189mm and less than 209mm.
  • the optical system may be one in which the third positive powered lens element has an axial thickness greater than 45.71mm and less than 46.63mm, and a first plane side surface with an axial radius of curvature greater than 133.3mm and less than 136.0mm, the first negative powered lens element has an axial thickness greater than 12.38mm and less than 12.63mm, and a first plane side surface with an axial radius of curvature greater than 1608mm and less than 1641mm, the second negative powered lens element has an axial thickness greater than 12.38mm and less than 12.63mm, and a first plane side surface with an axial radius of curvature greater than 191.9mm and less than 195.8mm, and the fourth positive powered lens element has an axial thickness greater than 31.91mm and less than 32.56mm, and a second plane side surface with an axial radius of curvature greater than 197.4mm and less than 201.3mm.
  • the optical system in any form as described above may comprise a catadioptric anastigmat comprising a concave mirror and at least one negative powered Schupmann lens.
  • the catadioptric anastigmat can comprise two negative powered Schupmann lenses.
  • Any of the above optical systems may be adapted for use with ultraviolet light.
  • the optical system may comprise a set of optical elements substantially having the parameters as set out in Tables 1 and 2.
  • the optical system may comprise a set of optical elements having parameters substantially based on those in Tables 1 and 2, but adjusted to be re-optimised for a particular operating optical wavelength
  • a method of projecting an image of a first plane onto a second plane including the steps of passing light having a first marginal ray convergence angle to a boundary lens, passing light having a second marginal ray convergence angle though the boundary lens, and passing light from said boundary lens through a layer of immersion liquid to the second plane, wherein the first marginal ray convergence angle is greater than the second marginal ray convergence angle.
  • the method may include the step of passing light through at least one positive powered lens element proximal to said boundary lens, and having an aspheric optical surface.
  • the method may include the steps of passing light through a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, and passing light through a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface.
  • This method may include the steps of passing light through a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, passing light through a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface, passing light through the first positive powered lens element having an axial thickness greater than 26.1mm and less than 28.9mm, and a first plane side surface with an axial radius of curvature greater than 103mm and less than 114mm, passing light through the second positive powered lens element having an axial thickness greater than 26.5mm and less than 29.3mm, and a first plane side surface with an axial radius of curvature greater than 83.2mm and less than 91.9mm, and passing light through the boundary lens having an axial thickness greater than 41.6mm and less than 46.0mm, and a first plane side surface with an axial radius of curvature greater than 56.9mm and less than 62.9mm.
  • the method may include the steps of passing light through a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, passing light through a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface, passing light through the first positive powered lens element having an axial thickness greater than 27.22mm and less than 27.77mm, and a first plane side surface with an axial radius of curvature greater than 107.6mm and less than 109.8mm, passing light through the second positive powered lens element having an axial thickness greater than 27.63mm and less than 28.19mm, and a first plane side surface with an axial radius of curvature greater than 86.67mm and less than 88.42mm, and passing light through the boundary lens having an axial thickness greater than 43.37mm and less than 44.25mm, and a first plane side surface with an axial radius of curvature greater than 59.27mm and less than 60.46mm.
  • the methods as defined above may include the step of passing light through a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element, a first negative powered lens element, a second negative powered lens element, and a fourth positive powered lens element.
  • Such methods may include the step of passing light through a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element having an axial thickness greater than 43.9mm and less than 48.5mm, and an object side surface with an axial radius of curvature greater than 128mm and less than 141mm, a first negative powered lens element having an axial thickness greater than 13.1mm and less than 11.9mm, and a first plane side surface with an axial radius of curvature greater than 1540mm and less than 1710mm, a second negative powered lens element having an axial thickness greater than 13.1mm and less than 11.9mm, and a first plane side surface with an axial radius of curvature greater than 184mm and less than 204mm, and a fourth positive powered lens element has having axial thickness greater than 30.6mm and less than 33.9mm, and a second plane side surface with an axial radius of curvature greater than 189mm and less than 209mm.
  • a third positive powered lens element having an axial
  • the method may have the step of passing light through a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element having an axial thickness greater than 45.71mm and less than 46.63mm, and a first plane side surface with an axial radius of curvature greater than 133.3mm and less than 136.0mm, a first negative powered lens element having an axial thickness greater than 12.38mm and less than 12.63mm, and a first plane side surface with an axial radius of curvature greater than 1608mm and less than 1641mm, a second negative powered lens element has an axial thickness greater than 12.38mm and less than 12.63mm, and a first plane side surface with an axial radius of curvature greater than 191.9mm and less than 195.8mm, and a fourth positive powered lens element has an axial thickness greater than 31.91mm and less than 32.56mm, and a second plane side surface with an axial radius of curvature greater than 197.4mm and less than 201.3mm.
  • Any of the methods as defined above according to the third aspect of the invention may include the step of passing light through a catadioptric anastigmat comprising a concave mirror and at least one negative powered Schupmann lens, and this method may have the step of passing light through a catadioptric anastigmat comprising a concave mirror and two negative powered Schupmann lenses.
  • the light as used in the methods as defined above may be a beam of ultraviolet light.
  • the method may include the step of passing light through a set of optical elements having substantially the optical properties as set out in Tables 1 and 2.
  • the method may have the step of passing light through a set of optical elements substantially having optical properties based on those set out in Tables 1 and 2 but re-optimized for a particular operating wavelength.
  • the method may include the step of passing light through a set of optical elements substantially having optical properties based on those set out in Tables 1 and 2 but re-optimized for a particular operating wavelength and a particular immersion layer thickness.
  • a projection optical system for projecting an image of a first plane onto a second plane comprising: an optical path having a plurality of lenses including a boundary lens which is arranged at a position closest to the second plane, wherein the first plane side surface of the boundary lens has a positive refractive power, and for an atmosphere in said optical path having a refractive index of 1, the optical path between the boundary lens and the second plane is filled with a medium having a refractive index larger than 1.1.
  • the projection optical system satisfies the condition as expressed by:
  • Cb represents the curvature of a face of the boundary lens on the first plane side
  • D represents the distance between an optical axis and the outermost point of an effective image forming area
  • NA represents the numerical aperture on the second plane side.
  • the projection optical system is a reflecting/refracting optical system comprising at least one concave reflector and a refractive optical member.
  • the projection optical system should preferably have an effective image forming area eccentric relative to the optical axis, and at least one intermediate image should preferably be formed in the optical path of the projection optical system.
  • the projection optical system comprises: a first image forming optical system for forming a first intermediate image on the first plane; a second image forming optical system, having at least one concave reflector, for forming a second intermediate image on the basis of the first intermediate image; and a third image forming optical system for forming a final image on the second plane on the basis of the flux from the second intermediate image; wherein a first deflecting mirror is arranged in the optical path between the first image forming optical system and the second image forming optical system; a second deflecting mirror is arranged in an optical path between the second image forming optical system and the third image forming optical system; and the optical ' axis of the first image forming optical system is aligned with the optical axis of the third image forming optical system.
  • the numerical aperture on the first plane side should preferably be 0.22 or larger.
  • the light quantity loss occurring upon passing through the medium should preferably be 50% or lower.
  • a fifth aspect of the present invention provides an exposure apparatus comprising an illuminating system for illuminating a mask set on the first plane, and a projection optical system for forming an image of a pattern formed on the mask on a photosensitive substrate set on the second plane.
  • a sixth aspect of the present invention provides an exposing method comprising the steps of illuminating a mask set on the first plane, and projecting and exposing a pattern image formed on the mask on a photosensitive substrate set on the second plane via the projection optical system.
  • a seventh aspect of the present invention provides an exposure apparatus for transferring a pattern formed on a mask onto a photosensitive substrate comprising an illuminating optical system for illuminating a prescribed illumination area on the mask, and a projection optical system for projecting a reduced image of the pattern into an exposure area on the photosensitive substrate; wherein the projection optical system is a reflection/refraction optical system comprising a boundary lens arranged at a position the closest to the photosensitive substrate side; the exposure area is eccentric from the optical axis of the reflection/refraction-type projection optical system; and when the atmosphere in an optical path of the projection optical system is assumed to have a refractive index of 1, an optical path between the boundary lens and the second face is filled with a medium having a refractive index larger than 1.1.
  • the image-side numerical aperture NA is increased by providing a medium having a refractive index larger than 1.1 in an optical path between the boundary lens arranged at a position the closest to the image side (second plane side) .
  • the paper "Resolution Enhancement of 157-nm Lithography by Liquid Immersion” published by M. Switkes and M. Rothchild in JM3 1(3), pp 225-228, October 2002 identifies Florinat (perfluoropolyethers : commercial name by Three-M Company, the United States) and deionized water as media having a prescribed transmissivity for a beam having a wavelength ⁇ of 200 nm or less.
  • the projection optical system of the present invention may reduce the reflection loss on the optical surface, and finally ensure a large and effective image-side numerical aperture by imparting positive refraction power to the face of the boundary lens on the object side (first plane side) .
  • Cb represents a curvature of the face of the boundary lens facing the object
  • D the distance _between the optical axis and the outermost point of the effective image forming area (in the case of an exposure apparatus, the distance between the optical axis and the outermost point of the effective exposure area)
  • NA the numerical aperture on the image side (the second plane side) .
  • effective image forming area and effective exposure area mean an image forming area and an exposure area, of which the aberrations have been sufficiently corrected.
  • a value exceeding the upper limit of the conditional formula (1) is not desirable because correction of aberration cannot sufficiently be accomplished over the entire effective image forming area (effective exposure area) .
  • a value lower than the lower limit of the conditional formula (1) is not desirable because a sufficient reduction of reflection loss on the optical surface cannot be achieved, leading to a smaller effective numerical aperture, and finally to a poorer resolution.
  • a fluorine-based inert liquid such as Florinat or a liquid such as deionized water is used as a medium having a high refractive index provided between the boundary lens between the boundary lens and the image field so as to make it possible to ensure a required transmissivity (to inhibit a light quantity loss) .
  • the liquid may suffer from contamination by the photoresist coated onto a substrate such as a wafer.
  • the contaminated liquid may stain the image-side optical surface of the boundary lens, causing a decrease in transmissivity of the boundary lens and the liquid.
  • an optical member usually an optical member having substantially no refracting power
  • a parallel flat sheet in an optical path between the boundary lens and the image field.
  • optical member having substantially no refractive power It is furthermore desirable to adopt a configuration so as to permit adjustment of the orientation of the optical member having substantially no refractive power.
  • asymmetrical aberration caused by lens eccentricity can be corrected by tilting the optical member relative to the optical axis.
  • the optical member having substantially no refractive power should preferably satisfy the following conditional formula (2) :
  • D the distance between the optical axis and the outermost point of the effective image forming area (in the case of an exposure apparatus, the distance between the optical axis and the outermost point of the effective exposure area) .
  • a value higher than the upper limit of the conditional formula (2) is not desirable because it leads to large changes in the other aberrations upon correcting the asymmetrical aberration by tilting the optical member.
  • the projection optical system should preferably comprise a reflection/refraction optical system having at least one concave reflector and a refractive optical member (lens component) .
  • This configuration permits achievement of a projection optical system having a large effective image forming area (effective exposure area) and a large image-side numerical aperture NA.
  • a refractive-type projection optical system comprising a refractive optical member alone, it is necessary to bring the Petzval sum as close to 0 as possible by alternately arranging a positive lens group and a negative lens group on the object side (near the object surface) of a smaller numerical aperture, in order to correct the field curvature.
  • the concave reflector makes a contribution to the Petzval sum similar to that of a negative lens while having a positive refractive power. Correction of the Petzval sum can be easily made through a combination of the concave reflector and the positive lens.
  • a projection optical system having a large image-side numerical aperture and a wide effective image forming area (effective exposure area) by a combination of a configuration of the reflection/refraction optical system and a configuration of a liquid-immersion optical system in which a liquid (medium) having a high refractive index is provided in the optical path from the image plane.
  • a problem is how to separate a beam directed toward the concave reflector from a return beam reflected from the concave reflector.
  • a projection optical system having a large image-side numerical aperture increase in the effective diameter of the optical element (adoption of larger optical elements) is inevitable. Therefore, in a reflection/refraction optical system using a prism-type beam splitter having a transmission reflection surface, the difficulty is encountered that it is difficult to manufacture a larger-sized prism- type beam splitter.
  • the projection optical system should preferably have a configuration in which the system has an effective image forming area eccentric from the optical axis, and at least one intermediate image is formed in the optical path. In this configuration, it is possible to easily separate the beam directed toward the concave reflector from the return beam reflected from the concave reflector by arranging a flat reflector for separating the optical paths near the forming position of the intermediate image .
  • the projection optical system comprises a first image forming optical system which forms a first intermediate image of the object surface (the first plane) ; a second image forming optical system which has at lease one concave reflector and forms a second intermediate image on the basis of the flux from the first intermediate image; and a third image forming optical system which forms a final image on an image field (the second plane) on the basis of the flux from the second intermediate image; a first deflection
  • mirror is arranged in an optical path between the first image forming optical system and the second image forming optical system; a second deflection mirror is arranged in an optical path between the second image forming optical system and the third image forming optical system; and the optical axis of the first image forming optical system agrees with the optical axis of the third image forming optical system.
  • this configuration even in an optical system having a large image-side numerical aperture, it is possible to easily separate the beam directed toward the concave reflector from the beam reflected by the concave reflector to return. It is also possible to relatively easily accomplish assembly or adjustment of optical systems since the first image forming optical system and the third image forming optical system are coaxial.
  • the object-side numerical aperture should preferably be 0.22 or larger for obtaining a high resolution at an appropriate reduction magnification.
  • the light quantity loss caused upon passing through a medium present between the boundary lens and the image field should preferably be 50% or lower.
  • FIG. 1 shows an illustration of a catadioptric "dry" projection system for comparison purposes
  • Fig. 2 shows an illustration of a catadioptric liquid immersion projection lens system according to a 5 first embodiment of the present invention
  • Fig. 3 shows an illustration of the last optical elements in the optical path of Fig. 2;
  • Fig. 4 shows an illustration of the boundary lens, the immersion liquid layer and the image plane; 10.
  • Fig. 5 shows an illustration of the marginal ray path passing into the last lens element according to the first embodiment of the present invention;
  • Fig. 6 shows an illustration of the marginal ray path passing through the last lens element into the 15 immersion liquid layer according to the first embodiment of the present invention
  • Fig. 7 schematically illustrates the configuration of exposure apparatus incorporating the present invention
  • Fig. 8 illustrates the positional relationship between a rectangular effective exposure area formed on a wafer and a reference optical axis in second and third embodiments of the invention
  • Fig. 9 illustrates the positional relationship 25 between a rectangular effective exposure area formed on a wafer and a reference optical axis in a fourth embodiment ;
  • Fig. 10 schematically illustrates the configuration of a boundary lens and a wafer in the second to fourth embodiments
  • Fig. 11 illustrates the lens configuration of the projection optical system of the second embodiment of the invention
  • Fig. 12 illustrates lateral aberration in the second embodiment
  • Fig. 13 illustrates the lens configuration of the projection optical system of the third embodiment of the invention
  • Fig. 14 illustrates the lateral aberration in the third embodiment of the invention
  • Fig. 15 illustrates the lens configuration of the projection optical system of the fourth embodiment of the invention.
  • Fig. 16 illustrates the lateral aberration in the ⁇ fourth embodiment
  • Fig. 17 is a flowchart of the technique used when obtaining a semiconductor device as a microdevice
  • Fig. 18 is a flowchart of the technique used when obtaining a liquid crystal display device as a microdevice;
  • Fig. 19 illustrates the lens configuration of a fifth embodiment of the invention.
  • Fig. 20 illustrates graphs showing various aberrations of the fifth embodiment.
  • Fig. 1 is an illustration of a catadioptric "dry" projection system for comparison purposes, which was disclosed in EP1191378A1.
  • This "dry" projection system includes a first set of field lens elements Lll to L13, a meniscus anastigmat L14 to L17 which aids in correcting aberrations, and a positive powered set of lens elements L18 to L20, which together comprise a first field lens group Gl, a beam splitting means FM(1, 2), a Mangin mirror arrangement G2 including two Schupmann lenses L21, L22 and a concave mirror CM which provides an aberration correcting function.
  • the system also includes a positive powered set of lens elements L31 to L33, a negative lens element L34, a positive powered set of lens elements L35 and L39, a negative powered anastigmat L40 which corrects aberrations, and a positive powered lens element L41 which together comprise a second field lens group G3.
  • Light is passed from a reticle R through the first field lens group Gl, then through the beam splitter FM(1, 2) to Mangin mirror arrangement G2, and finally through the beam splitter FM(1, 2) and the second field lens group G3.
  • an image may be conveyed from the reticle R to a wafer W with negative magnification so as to controllably expose a photoresist on the wafer.
  • Figs. 2 and 3 and Tables 1 and 2 show a detailed embodiment of the invention.
  • Light from the object plane OP passes through a plane window E201, a first positive powered group of field lens elements E202 and E203, an anastigmat E204 to E208, adapted to reduce spherical aberration, a second positive powered group of field lens elements E209 to E211, a beam splitter E212 and E218, a catadioptric anastigmat including two Schupmann lenses E213 and E214 and a concave mirror E215, the beam splitter E212 and E218 for a second time, a third positive powered group of field lens elements E219 to E221, a double-Gauss anastigmat E222 to E225 arranged to reduce spherical aberration, a fourth positive powered group of field lens .
  • the fourth positive powered group of field lens elements includes a first positive powered lens element E231, and a second positive powered lens element E232.
  • the double-Gauss anastigmat includes a third positive lens element E222, a first negative powered lens element E223, a second negative powered lens element E224, * and a fourth positive powered lens element E225.
  • Tables 1 and 2 preferred values of the radius of curvature and the axial distances between optical surfaces of optical elements E210 to E233 are given.
  • workable systems may be designed in which all the parameters given in Tables 1 and 2 may be allowed to vary from the specific values given by plus or minus 1 percent, and even up to plus or minus 5 percent with appropriate adaptation. For example when operating at 157nm this would give for surface S263 a radius of curvature greater than 56.9mm and less than 62.9mm, or more preferably greater than 59.27mm and less than 60.46mm, or most preferably 59.8643mm.
  • the values for the radius of curvatures of the curved surfaces of the optical elements E202 to E233 and for the thicknesses and separations of the optical elements E202 to E211, E213 to E215, and E219 to E233 will of course change if the operating wavelength is changed.
  • the thicknesses of lens elements E222 to E225 and E231 to E233, and the radius of curvatures of optical surfaces S240, S242, S244, S247, S259, S261 and S263 may have values as follows: the first positive powered lens element E231 has an axial thickness greater than 26.1mm and less than 28.9mm, and an object side surface S259 with an axial radius of curvature greater than 103mm and less than 114mm; the second positive powered lens element E232 has an axial thickness greater than 26.5mm and less than 29.3mm, and an object side surface S261 with an axial radius of curvature greater than 83.2mm and less than
  • the boundary lens E233 has an axial thickness greater than 41.6mm and less than 46.0mm, and an object side surface S263 with an axial radius of curvature greater than 56.9mm and less than 62.9mm;
  • the third positive powered lens element E222 has an axial thickness greater than 43.9mm and less than
  • the first negative powered lens element E223 has an axial thickness greater than 11.9mm and less than
  • the second negative powered lens element E224 has an axial thickness greater than 11.9mm and less than
  • the fourth positive powered lens element E225 has an axial thickness greater than 30.6mm and less than
  • the ranges of values for the parameters of the optical projection system are within a narrower range of plus or minus 1% of the tabulated finite values.
  • the thicknesses of lens elements E222 to E225 and E231 to E233, and the radius of curvatures of optical surfaces S240, S242, S244, S247, S259, S261 and S263 may preferably have values as follows when operating at a wavelength of 157nm: the first positive powered lens element E231 has an axial thickness greater than 27.22mm and less than 27.77mm, and an object side surface S259 with an axial radius of curvature greater than 107.6mm and less than 109.8mm; the second positive powered lens element E232 has an axial thickness greater than 27.63mm and less than 28.19mm, and an object side surface S261 with an axial radius of curvature greater than 86.67mm and less than 88.42mm; the boundary lens E233 has an axial thickness greater than 43.37mm and less
  • the first negative powered lens element E223 has an axial thickness greater than 12.38mm and less than 12.63mm, and an object side surface S242 with an axial radius of curvature greater than 1608mm and less than
  • the second negative powered lens element E224 has an axial thickness greater than 12.38mm and less than 12.63mm, and an object side surface S244 with an axial radius of curvature greater than 191.9mm and less than
  • the fourth positive powered lens element E225 has an axial thickness greater than 31.91mm and less than 32.56mm, and an image side surface S247 with an axial radius of curvature greater than 197.4mm and less than
  • the values of the radius of curvature of the surfaces of the optical elements E201 to E233, and the thicknesses of the optical elements E201 to E233 have values according to Tables 1 and 2.
  • An important feature is the presence of a liquid (other than glass) between the image side surfaces S264 of the boundary lens 233 and the image plane IP, both of which may be plane (infinite radius of curvature) as illustrated in Fig. 4.
  • liquids other than water such as perfluoropolyether, may be used in some embodiments and that the use of the term "liquid” is meant to include any fluid medium other than glass, having a refractive index substantially greater than 1.
  • Suitable liquids include water, (which may be de-ionized and/or degassed) and perfluoropolyethers .
  • This embodiment of the invention provides improved resolution compared with the dry microlithographic projection system of Figure 1, in which the wafer is immersed in a gas.
  • the wafer is immersed in liquid, which reduces the speed and wavelength of light incident on the photoresist by a factor of about 1.4, without changing the wavelength of the light source. It thereby allows numerical apertures (NA) significantly greater than 1.0, by avoiding the total internal reflection of light that would have occurred at the last lens surface if the wafer had been immersed in a gas of refractive index close to 1.0.
  • NA numerical apertures
  • the "wet" catadioptric NA 1.2 design has a track length (reticle-wafer distance) comparable to a “dry” catadioptric NA 0.85 design, and the same instantaneous wafer field size of 26 x 5 mm and a relatively small increase in lens diameters, which minimizes the changes required in the lithography scanner tool body design, while allowing the same scanned fields to be covered over the wafer.
  • a catadioptric design is preferred (although it is not essential) because it does not require large separation of negative and positive powered lens elements for field curvature correction. Instead, the field is flattened by means of a concave positive powered mirror (element E215 in Fig. 2 and Tables 1 and 2) . Negative powered lens elements close to this mirror (so-called Schupmann lenses, elements E213 and E214 in Fig. 2 and Tables 1 and 2) provide further field curvature correction and sufficient achromatization for the NA to be increased above 1.0 without the need for a second type of refracting material or a reduction in spectral bandwidth.
  • V-type catadioptric optical design form which uses V-shaped fold mirrors between two intermediate images.
  • This form has the advantage of relatively small lens diameters and a mechanical package similar to a dioptric lens.
  • this last optical surface should preferably be a plane surface (surface S264 in Figs. 2 and 4 and Tables 1 and 2) . This facilitates the liquid dynamics during wafer scanning, minimizes the possibility of bubble formation within the liquid, and minimizes sensitivity to magnification changes with liquid refractive index and dispersion (lateral color) , since for a telecentric system in wafer space the principal rays enter the liquid at zero angle of incidence.
  • the refractive index difference between the last lens element and liquid introduces spherical aberration, which is minimized by using the least possible thickness of liquid and finding a liquid whose refractive index matches as closely as possible that of the lens element.
  • the thickness of the liquid is chosen for other reasons, such as optical transmission, as well as liquid dynamics and mechanical considerations during wafer scanning and stepping. This design is not constrained by the choice of liquid thickness or refractive index.
  • a liquid thickness of 1 mm is assumed, but the optical design may easily be re- optimized for a different thickness or liquid refractive index. Again this is facilitated by having a plane last lens surface next to the liquid, when the spherical aberration is constant across a large field size, and can be easily corrected at a pupil plane in the system by means of at least one aspheric surface.
  • neither the aplanatic nor concentric conditions are used in the last element, i.e., boundary lens, next to the wafer (surface S263 on element E233, Figs. 2 and 4).
  • the marginal ray convergence angle is slightly smaller inside element 233 than it was prior to entering it (as seen in Figs. 5 and 6) .
  • This feature has three advantages : a.
  • the D/R (clear diameter/radius of curvature) of this surface can be constrained to be ⁇ 1.5, which is within normal optical polishing techniques for large, high quality, optical elements. b.
  • the resulting spherical aberration and coma may easily be corrected in other elements in the system, including several aspherical surfaces, which is advantageous in the correction of high-order aberrations that change rapidly across the wide field used in microlithography, such as oblique spherical aberration, coma, astigmatism and distortion.
  • This strategy is particularly effective in a long, complex system with two intermediate images, such as the V-type catadioptric design. c. There is no focused ghost image on the wafer surface, as would occur with an exactly concentric surface .
  • Classical microscope objectives also employ at least one element before the last one that has a combination of aplanatic and concentric surfaces.
  • the preferred embodiment of the invention employs, instead, at least two positive meniscus elements before the last one (elements E231 and E232 in Figs. 2 and 3 and Tables 1 and 2) whose surfaces are neither exactly concentric nor aplanatic, so as to avoid both extreme curvatures and extreme angles of incidence near or beyond the critical angle. At least one of these surfaces may be aspheric, so as to perform similar aberration correction functions to those which in lower NA "dry" designs may be achieved with air spaces between adjacent elements (e.g. the air space between elements E230 and E231 in Fig. 2) .
  • the relatively high optical power in the last three positive elements minimizes the size increase of lens elements required in the rest of the system as the "dry" NA of 0.85 in designs such as Fig.
  • a common feature of known catadioptric "dry” lithography projection systems is a negative powered element between the pupil and wafer.
  • This feature which is used to correct aberrations has the disadvantage that in a "wet" catadioptric optical projection system the main positive powered lenses would have to be larger than otherwise.
  • the new arrangement in the present application has the advantage that it does not require such a negative powered lens and this further minimizes the lens diameter of the main positive powered lenses, and also the length of the optical path.
  • the aberration correction of a negative lens element in "dry” designs e.g. element L38 in Fig. 1
  • Figs. 5 and 6 illustrate one embodiment, where it can be seen that the geometric focus F of the marginal rays L, prior to entering the boundary lens E233, is located between the two optical surfaces S263 and S564 of the boundary lens, and is also between the centre of curvature CC of the boundary lens and the optical surface S263 of the boundary lens.
  • the refractive index of the boundary lens E233 may typically not be equal to, and practically would be higher than, the refractive index of the layer of immersion liquid IL, the angle S of the marginal ray may increase on passing from the boundary lens E233 to the immersion liquid layer before impinging on the image plane IP.
  • object plane image plane
  • plane plane plane mirror
  • object plane image plane
  • plane mathematical surfaces plane surfaces, or plane mathematical surfaces, but may also be curved physical or mathematical surfaces.
  • illustrations in Figures 1 to 6 are not to scale, and that the beam splitter E212, E218 may be a single element having two optical paths there through.
  • CURV is the inverse value of the apex radius of curvature, and the values CURV (or Curv) , A, B, C, D, E, F, G, ⁇ , and J are tabulated in Table 2.
  • the sign of the radius indicates the direction of curvature
  • CC indicates a concave surface
  • CX indicates a convex surface.
  • the largest diameter of any of the lens elements E202 to E211, E213 to 217, E219 to E228 and E229 to E233 is only 242.8mm for the positive lens element 227.
  • Fig. 7 schematically illustrates the configuration of an exposure apparatus incorporating the present invention.
  • a Z-axis is set in parallel with a reference optical axis AX of a projection optical system PL;
  • a Y-axis is set in parallel with the paper plane of Fig. 1, within a plane perpendicular to the reference axis AX;
  • an X-axis is set perpendicularly to the paper plane of Fig. 1.
  • the 7 has an ArF excimer laser source (oscillation center wavelength: 193.306 nm; used in the second and fourth embodiments) or an F 2 laser source (oscillation center wavelength: 157.631 nm; used in the third embodiment) as a light source 100 for supplying illuminating light of ultraviolet range.
  • the light emitted from the light source 100 superposingly illuminates a reticle R having a prescribed pattern formed thereon via an illuminating optical system IL.
  • An optical path between the light source 100 and the illuminating optical system IL is sealed with a casing (not shown) , and the space from the light source 100 to an optical member the closest to the reticle in the illuminating optical system IL is substituted by an inert gas such as helium or nitrogen which is a gas having a low absorption rate of the exposure light, or kept in substantially a vacuum state.
  • an inert gas such as helium or nitrogen which is a gas having a low absorption rate of the exposure light
  • the reticle R is held in parallel with an XY plane on the reticle stage via a reticle holder RH .
  • a pattern to be transferred has been formed on the reticle R.
  • a rectangular (slit-shaped) pattern area having a longer side in the X-direction in the entire pattern area and a shorter side in the Y-direction in the entire pattern area is illuminated.
  • the reticle stage RS is two-dimensionally movable along the reticle surface (i.e., the X-Y plate) under the effect of a driving system not shown.
  • the positional coordinates are measured by a interferometer RIF using a reticle moving mirror RM, and positionally controlled.
  • the wafer W is held in parallel with the XY plane on the wafer stage WS via a wafer holder table WT .
  • a pattern image is formed in the rectangular exposure area having a longer side in the X-direction and a shorter side in the Y-direction on the wafer W.
  • the wafer stage WS is two-dimensionally movable along the wafer surface (i.e., the XY plane) under the effect of a driving system not shown.
  • Fig. 8 illustrates the positional relationship between the rectangular effective exposure area formed on the wafer and the reference optical axis in second and third embodiments of the invention.
  • the rectangular effective exposure area ER having a desired size is set at a position eccentric by A from the reference axis in the -Y direction.
  • the effective exposure area ER has an X-direction length LX and a Y-direction length LY.
  • a rectangular effective exposure area ER having a desired size is set at a position apart by a off-axis amount A from the reference optical axis AX in the -Y direction, and the radius B of the circular image circle IF is regulated so as to comprehensively envelope the effective exposure area ER with the reference optical axis AX as the center.
  • a rectangular illuminating area i.e., effective illumination area
  • a size and shape corresponding to the effective exposure area ER is formed at a position apart from the reference optical axis AX in the -Y direction by a distance corresponding to the off-axis amount A.
  • FIG. 9 illustrates the positional relationship between the rectangular effective exposure area formed on a wafer and the reference optical axis in a fourth embodiment of the present invention.
  • a rectangular effective exposure area ER extending in a long and thin shape in the X-direction is set with the reference optical axis as the center.
  • the effective exposure area ER has an X-direction length LX and a Y- direction length LY.
  • the exposure apparatus of this embodiment has a configuration in which, from among the optical members forming the projection optical system PL, the interior of the projection optical system PL is kept in an airtight state between the optical member arranged at a position the closest to the reticle (in the fourth embodiment, the lens Lll) and the boundary lens Lb arranged at a position the closest to the wafer W.
  • the gas in the projection optical system PL is substituted by an inert gas such as helium gas or nitrogen or kept substantially in a vacuum state.
  • the reticle R, the reticle stage RS and the like are arranged in a narrow optical path between the illuminating optical system IL and the projection optical system PL.
  • the inert gas such as nitrogen or helium gas is filled in the interior of a casing (not shown) hermetically enclosing the reticle R, the reticle stage RS and the like, or the interior is maintained substantially in a vacuum state .
  • Fig. 10 schematically illustrates the configuration between the boundary lens and the wafer in the embodiments.
  • the boundary lens Lb arranged at a position the closest to the wafer of the projection optical system PL has a convex surface toward the reticle (the first face) .
  • the face Sb of the boundary lens Lb on the reticle side has a positive refractive power.
  • a parallel flat sheet Lp is detachably inserted in the optical path between the boundary lens Lb and the wafer W.
  • the optical path between the boundary lens Lb and the optical path between the parallel flat sheet Lp and the wafer W are filled with a medium Lm having a refractive index larger than 1.1.
  • the second and the fourth embodiments use deionized water
  • the third embodiment uses a fluorine-based inert liquid such as Florinat.
  • a fluorine-based inert liquid such as Florinat.
  • the technique disclosed in the International Publication No. WO99/49504 comprises the steps of filling an optical path between a boundary lens Lb and a wafer W with a liquid (medium Lm) of which the temperature is adjusted to a prescribed level from a liquid feeder via a supply pipe and a discharge nozzle, and collecting the liquid from the wafer W by means of the liquid feeder via a collecting pipe and an inlet nozzle.
  • the amount of supplied liquid and the amount of collected liquid are adjusted in response to the moving speed of the wafer W relative to the projection optical system PL.
  • the technique disclosed in Japanese Unexamined Patent Application Publication No. 10-303114 comprises the steps of using a wafer holder table WT formed into a container so as to contain a liquid (medium Lm) , and positioning and holding a wafer
  • the illumination area on the reticle R regulated by the projection optical system PL and the exposure area on the wafer W are rectangular in shape having shorter sides running in the Y-direction.
  • a reticle pattern is scanned and exposed on an area having a width equal to the longer side of the exposure area and a length corresponding to the amount of scanning (amount of movement) of the wafer W on the wafer W by synchronously moving (scanning) the reticle stage RS and the wafer stage WS, i.e., the reticle R and the wafer W in the shorter-side direction of the rectangular exposure area and illumination area, while performing positional control of the reticle R and the wafer W by means of a driving system and an interferometer (RIF, WIF) .
  • RIF interferometer
  • the aspherical surface is expressed by the following equation (4) (which is equivalent to equation (3) using different notation) on the assumption of a height y in a direction perpendicular to the optical axis, a distance z (amount of sagging) in the optical axis direction between a contact plane at the apex of the asphere and a position on the asphere at the height y, an apex radius of curvature r, a conical coefficient K, and an n- dimensional asphere coefficient Cn.
  • the lens surfaces formed into aspheric shape are marked with * to the right of the surface numbers .
  • the projection optical system PL comprises a first image forming optical system Gl of the refraction type for forming a first intermediate image of the pattern of a reticle arranged on the object surface (plane 1) , a second image forming optical system G2 for forming a second intermediate image (the first intermediate image which is a secondary image of the reticle pattern) including a concave reflector CM, and a third image forming optical system of the refraction type for forming a final image (a reduced image of the reticle pattern) of the reticle pattern on the wafer W arranged on the image field (plane 2) on the basis of the light from the second intermediate image.
  • a first image forming optical system Gl of the refraction type for forming a first intermediate image of the pattern of a reticle arranged on the object surface (plane 1)
  • a second image forming optical system G2 for forming a second intermediate image (the first intermediate image which is a secondary image of the reticle pattern) including a concave
  • a first optical path bending mirror Ml for deflecting the light from the first image forming optical system Gl toward the second image forming optical system G2 is arranged near the forming position of the first intermediate image in the optical path between the first image forming optical system Gl and the second image forming optical system G2.
  • a second optical path bending mirror M2 for deflecting the light from the second image forming optical system G2 toward the third image forming optical system G3 is arranged near the forming position of the second intermediate image in the optical path between the second image forming optical system G2 and the third image forming optical system G3.
  • the first image forming optical system Gl has a linearly extending optical axis AX1.
  • the third image forming optical system G3 has a linearly extending optical axis AX3.
  • the optical axis AX1 and the optical axis AX3 are set so as to aligned with a reference optical axis AX which is a common single optical axis.
  • the reference optical axis AX is positioned in the gravity direction (i.e., vertical direction).
  • the reticle R and the wafer W are arranged in parallel with each other along a plane perpendicular to the gravity direction, i.e., along a horizontal plane.
  • all the lenses forming the first image forming the first image forming optical system Gl and all the lenses forming the third image forming optical system G3 are arranged along the horizontal plane on the reference optical axis AX.
  • the second image forming optical system G2 also has an optical axis AX2 extending linearly, and this optical axis AX2 is set so as to be perpendicular to the reference optical axis AX.
  • the first optical path bending mirror Ml and the second optical path bending mirror M2 have flat reflecting faces, and are integrally formed as a single optical member (a single optical path bending mirror) having two reflecting faces.
  • the line of intersection of these two reflecting faces are set so as to cross AXl of the first image forming optical system Gl, AX2 of the second image forming optical system G2 , and AX3 of the third image forming optical system G3 at one point.
  • an ArF excimer laser source is used as a light source 100.
  • Quartz (Si0 2 ) is used for all the refracting optical members (lens components) forming the projection optical system PL and the parallel flat sheet Lp.
  • the ArF excimer laser beam which is the exposure light has an oscillation center wavelength of 193.306 nm, and quartz has a refractive index of 1.5603261 for this center wavelength.
  • Deionized water having a refractive index of 1.47 for the exposure light is used as the medium Lm present between the boundary lens Lb and the wafer W.
  • the first image forming optical system Gl comprises, sequentially from the reticles side, a positive meniscus lens Lll with a convex face thereof directed toward the reticle; a biconvex lens L12 with an aspherical convex surface or face thereof directed toward the wafer; a positive meniscus lens L13 with a convex surface thereof directed toward the reticles; a positive meniscus lens L14 with a concave surface thereof directed toward the reticle; a negative meniscus lens L15 with a concave surface thereof directed toward the reticle; a positive meniscus lens L16 with a concave surface thereof directed toward the reticle; a positive meniscus lens L17 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lens L18 with a concave face thereof directed toward the reticle; a biconvex lens L19; and a positive meniscus lens L110 with an aspherical concave surface
  • the second image forming optical system G2 comprises, sequentially from the reticle side (i.e., from the incident side) along the forward running path of the light, a negative meniscus lens L21 with an aspherical concave surface thereof directed toward the reticle; a negative meniscus lens L22 with a concave surface thereof directed toward the reticle; and a concave reflector CM.
  • the third image forming optical system G3 comprises, sequentially from the reticle side in the running direction of the light, a positive meniscus lens L31 with a concave surface thereof directed toward the reticle; a biconvex lens L32; a positive meniscus lens L33 with an aspherical concave surface thereof directed toward the wafer; a biconvex lens L34; a positive meniscus lens L35 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lens L36 with an aspherical concave surface thereof directed toward the wafer; an aperture stop AS; a biconvex lens L37; a negative meniscus lens L38 with a concave surface thereof directed toward the reticle; a positive meniscus lens L310 with a convex surface thereof directed toward the reticle; a positive meniscus lens L311 with an aspherical concave surface thereof directed toward the wafer; a positive meniscus lens L312 with a convex face thereof directed toward the
  • a parallel flat sheet Lp is arranged in the optical path between the flat-convex lens L313 serving as a boundary lens Lb and the wafer W.
  • the optical path between the boundary lens Lb and the parallel flat sheet Lp, and the optical path between the parallel flat sheet Lp and the wafer W are filled with a medium Lm comprising deionized water.
  • Tables 3 and 4 show various parameters of the projection optical system PL of the second embodiment of Fig. 11.
  • represents a center wavelength of the exposure light
  • a projection magnification (an image forming magnification for all the systems)
  • NA a numerical aperture on the image side (wafer side)
  • B a radius of an image circle IF on the wafer W
  • A an off-axis amount of the effective exposure area ER
  • LX a size (longer side size) in the X-direction of the effective exposure area ER
  • LY a size (shorter side size) in the Y-direction of the effective exposure area ER.
  • the surface number represents the sequence from the reticle side in the light running direction from the reticle surface which is the object surface (plane 1) toward the wafer surface which is the image field (plane 2) ; r, curvature radii of the surfaces (in the case of an aspherical face, the apex curvature radii: in mm); d, the interval on the axis of the surfaces, i.e., the surface interval (mm); ED, the effective diameter (mm) of each surface; n, the refractive index relative to the center wavelength.
  • the surface interval d changes the sign every time reflection occurs.
  • the sign of the surface interval is negative in the optical path from the reflecting surface of the first optical bending mirror Ml to the concave reflector CM and in the optical path extending from the reflecting surface of the second optical path bending mirror M2 to the image field. In the other optical paths, the sign is positive.
  • the radius of curvature of the convex surface directed toward the reticle has a positive sign
  • the radius of curvature of the concave surface has a negative sign.
  • the radius of curvature toward the reticle has a positive sign
  • the radius of curvature of the convex surface has a negative sign.
  • the radius of curvature of the concave radius toward the reticle i.e., on the incident side
  • the radius of curvature of the convex surface has a negative sign.
  • Fig. 12 illustrates lateral aberration.
  • Y represents the image height.
  • the notation used in Fig. 12 applies also in the subsequent Figs. 14 and 16.
  • NA image-side numerical aperture
  • Fig. 13 illustrates the lens configuration of the projection optical system of the third embodiment of the present invention.
  • the projection optical system PL of the third embodiment is a reflection/refraction- type optical system having basically the same configuration as in the second embodiment.
  • an F 2 laser source is used as the light source 100.
  • Calcium fluoride (CaF 2 ) is employed for all the refractive optical members (lens components) forming the projection optical system PL and the parallel flat sheet Lp.
  • F 2 laser beam serving as the exposure light has an oscillation center wavelength of 157.631 nm, and for this center wavelength, the calcium fluoride has a refractive index of 1.5592267.
  • a fluorine-based inert liquid having a refractive index of 1.36 to the exposure light is used as the medium Lm between the boundary lens Lb and the wafer W.
  • the first image forming optical system Gl comprises, sequentially from the reticle side, a positive meniscus lens Lll with a convex surface thereof directed toward the reticle; a biconvex lens L12 with an aspherical convex surface thereof directed toward the wafer; a positive meniscus lens L13 with a convex surface thereof directed toward the reticle; a positive meniscus lens L14 with a concave surface thereof directed toward the reticle; a negative meniscus lens 115 with a concave surface thereof directed toward the reticle; a negative meniscus lens L16 with a concave surface thereof directed toward the reticle; a positive meniscus lens L17 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lend L18 with a concave surface thereof directed toward the reticle; a biconvex lens L19; and a biconvex lens L110 with an aspherical surface thereof directed toward the wafer
  • the second image forming optical system G2 comprises, sequentially from the reticle side (i.e., from the incident side) along the running path of light, a negative meniscus lens L21 with an aspherical concave surface thereof directed toward the reticle; a negative meniscus lens L22 with a concave surface thereof directed toward the reticle; and a concave reflector CM.
  • the third image forming optical system G3 comprises, sequentially from the reticle side along the running path of light, a positive meniscus lens L31 with a concave surface thereof directed toward the reticle; a biconvex lens L32; a positive meniscus lens L33 with an aspherical concave surface thereof directed toward the wafer; a biconvex lens L34; a positive meniscus lens L35 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lens L36 with an aspherical concave surface thereof directed toward the wafer; an aperture stop AS; a biconvex lens L37; a negative meniscus lens L38 with a concave surface thereof directed toward the reticle; a positive meniscus lens L310 with a convex surface thereof directed toward the reticle; a positive meniscus lens L311 with an aspherical concave surface thereof directed toward the wafer; a positive meniscus lens L312 with a convex surface thereof directed toward the reti
  • a parallel flat sheet Lp is arranged in an optical path between the flat convex lens L313 serving as the boundary lens Lb and the wafer W.
  • An optical path between the boundary lens Lb and the parallel flat sheet Lp and an optical path between the parallel flat sheet Lp and the wafer W are filled with a medium Lm comprising a fluorine-based inert liquid.
  • the distance between the parallel flat sheet Lp and the wafer W i.e., the working distance, is set to a value considerably smaller than in the first embodiment.
  • Fig. 14 illustrates the lateral aberration in the third embodiment.
  • NA image-side numerical aperture
  • Fig. 15 illustrates the lens configuration of the projection optical system of a fourth embodiment of the present invention.
  • the projection optical system PL is a refraction-type optical system, unlike the first, second and third embodiments.
  • an ArF excimer laser source is used as the light source 100, and deionized water having a refractive index of 1.47 relative to the exposure light is used as the medium Lm provided between the boundary lens Lb and the wafer W.
  • quartz (Si0 2 ) or calcium fluoride (CaF 2 ) is used for the refractive optical member (a lens component) and the parallel flat sheet Lp forming the projection optical system PL.
  • lenses L13, L17, L18, L114, L115, L122 and L123 are formed from calcium fluoride, and the other lenses and the parallel flat sheet Lp are formed from quartz.
  • the ArF excimer laser beam serving as the exposure light has an oscillation center wavelength of 193.306 nm. Quartz has a refractive index of 1.5603261 for this center wavelength, and calcium fluoride has a refractive index of 1.5014548.
  • the projection optical system PL of the fourth embodiment comprises, sequentially from the reticle side, a biconcave lens Lll with an aspherical concave surface thereof directed toward the wafer; a negative meniscus lens L12 with a concave surface thereof directed toward the reticle; a' positive meniscus lens L13 with a concave surface thereof directed toward the reticle; a positive meniscus lens L14 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lens L16 with a convex surface thereof directed toward the reticle; a positive meniscus lens L17 with a convex surface thereof directed toward the reticle; a positive meniscus lens L18 with a convex surface thereof directed toward the reticle; a negative meniscus lens L19 with a convex surface thereof directed toward the reticle; a biconcave lens L110 with an aspherical concave surface thereof directed toward the reticle; a biconcave lens Llll with an aspher
  • a parallel flat sheet Lp is arranged in an optical path between the negative meniscus lens L123 serving as a boundary lens Lb and the wafer W.
  • An optical path between the boundary lens Lb and the parallel flat sheet Lp and an optical path between the parallel flat sheet Lp and the wafer W are filled with a medium Lm comprising deionized water.
  • Tables 7 and 8 show parameters of the projection optical system PL of the fourth embodiment.
  • represents the center wavelength of the exposure light
  • a projection magnification (image forming magnification 'for the entire system)
  • NA the numerical aperture on the image side (wafer side)
  • B the radius of an image circle on the wafer W
  • LX the size (the size of the longer side) of the effective exposure area ER in the X-direction
  • LY the size (the size of the shorter side) of the effective exposure area ER in the Y-direction.
  • the surface number represents the sequence of a surface from the reticle side in the light running direction from the reticle surface which is the object surface (surface 1) to the wafer surface which is the image field (surface 2); r represents the radius of curvature of each surface (apex radius of curvature in the case of an aspherical surface: in mm); d, the interval on the axis of each surface, i.e., the surface interval (mn) ; ED, the effective diameter (mm) of each surface; and n, the refractive index for a center wavelength. It is assumed that the radius of curvature of a convex surface directed toward the reticle is positive, and a concave surface has a negative radius of curvature.
  • Fig. 16 illustrates a lateral aberration in the fourth embodiment.
  • NA 0.9
  • the aberration is satisfactorily corrected over the entire effective exposure area.
  • the second embodiment it is possible to ensure a high image-side numerical aperture of 1.0 for the ArF excimer laser beam having a wavelength of 193.306 nm and maintain a rectangular effective exposure area (stationary exposure area) having a size of 26 mm x 4.4 mm as an area in which various aberrations are sufficiently corrected within an image circle having a radius of 15 mm on the wafer W.
  • a circuit pattern can be scanned and exposed at a high resolution within a 26 mm x 33 mm rectangular exposure area.
  • a circuit pattern can be scanned and exposed at a high resolution within a 26 mm x 33 mm rectangular exposure area.
  • a circuit pattern can be scanned and exposed at a high resolution within a 22 mm x 33 mm rectangular exposure area.
  • the lens components are made of quartz, the risk of deterioration of the image forming function caused by the compaction of quartz can be avoided by forming small-diameter lenses from calcium fluoride, on which the energy of exposure light concentrates (such as the boundary lens Lb arranged near the wafer W or the lens L312) .
  • the conditional expression can be limited as follows : 0.75 ⁇ MA/MG3 ⁇ 1.1 (5) preferably 0.8 ⁇ MA/MG3 ⁇ 1.05
  • MA denotes a magnification of the whole optical system
  • MG3 denotes a magnification of the third imaging lens system G3.
  • the focusing lens group is composed of five lens elements or less.
  • the focusing lens group does not include a negative lens element.
  • the following summarises the overall magnification MA and the magnification MG3, of the third stage G3 in various embodiments.
  • Tables 9 and 10 show various values associated with the fifth embodiment.
  • Refractive index of silica glass 1.5603261
  • Refractive index of purified water 1.4368163 Dispersion of silica glass (dn/d ⁇ ) : -1.591E-6/pm
  • the first image forming optical system Gl comprises, sequentially from the reticle side, a positive lens Lll with a convex surface thereof directed toward the reticle; a positive meniscus lens L12 with a convex surface thereof directed toward the reticle; a biconvex lens L13 with wafer side aspheric surface; a positive meniscus lens L14 with a convex surface thereof directed toward the reticle; a positive meniscus lens L15 with a concave surface thereof directed toward the reticle; a negative meniscus lens L16 with a concave surface thereof directed toward the reticle; a positive meniscus lens L17 with concave surface thereof directed toward the reticle; a positive meniscus lens L18 with aspheric concave surface thereof directed toward the reticle; a positive lens L19; and
  • the second image forming optical system G2 comprises, sequentially from the reticle side (i.e., from the incident side) along the forward running path of the light, a negative meniscus lens L21 with an aspherical concave surface thereof directed toward the reticle; a negative meniscus lens L22 with a concave surface thereof directed toward the reticle; and a concave reflector CM.
  • the third image forming optical system G3 comprises, sequentially from the reticle side in the running direction of the light, a positive meniscus lens L31 with a concave surface thereof directed toward the reticle; a biconvex lens L32; a positive lens L33; a positive meniscus lens L34 with an aspherical concave surface thereof directed toward the wafer; a biconcave negative lens L35 with an aspherical concave surface thereof directed toward the wafer; a negative meniscus lens L36 with an aspherical concave surface thereof directed toward the wafer; a biconvex lens L37; a positive lens L38 with an aspherical surface thereof directed toward the reticle; apositive meniscus lens L39 with a convex surface thereof directed toward the reticle; a positive lens L310 with an aspherical surface thereof directed toward the wafer; an aperture stop AS; a bicovex lens L311; a positive lens L312; a positive meniscus lens L313 with a con
  • the exposure apparatus in the above-mentioned embodiments makes it possible to manufacture microdevices (such as semiconductor devices, image pickup devices, liquid crystal display devices and thin-film magnetic heads) by illuminating a reticle (mask) by an illuminating apparatus (illuminating step) , and exposing a pattern for transfer formed on the mask onto a photosensitive substrate by means of a projection optical system.
  • microdevices such as semiconductor devices, image pickup devices, liquid crystal display devices and thin-film magnetic heads
  • step 302 photoresist is coated onto these metal films on the wafers of the batch.
  • step 303 the pattern images on the masks are sequentially exposed and transferred in the individual shot areas on the wafers of the batch by using the exposure apparatus of this embodiment.
  • step 304 circuit patterns corresponding to the patterns on the masks are formed in the individual shot areas on the wafers by conducting etching with the resist patterns as masks on the wafers of the batch.
  • a device such as a semiconductor device is manufactured by forming the circuit pattern of an upper layer.
  • a semiconductor device manufacturing method a semiconductor device having a very fine circuit pattern can be obtained at a high throughput.
  • steps 301 to 305 a metal is vapor-deposited on the wafer; a resist is coated onto the metal film; and exposure, development and etching steps are performed.
  • resist may be coated onto the silicon oxide film, followed by exposure, development and etching steps.
  • a liquid crystal display device as a microdevice by forming a prescribed pattern (a circuit pattern, an electrode pattern or the like) on a plate (glass substrate) .
  • a typical technique applied at this stage will be described with reference to the flowchart shown in Fig. 12.
  • a photolithographic step is executed through transfer and exposure of the pattern of the mask onto the photosensitive substrate (a glass substrate having a resist coated thereon, or the like) by using the exposure apparatus of this embodiment.
  • many prescribed patterns including electrodes and the like are formed on the photosensitive substrate.
  • the prescribed patterns are formed on the exposed substrate through steps such as developing, etching and resist stripping steps, and the process advances to the next color filter forming step 402.
  • the color filter forming step 402 many sets of these kinds of dots including R (red) , G (green) and B (blue) are arranged in a matrix shape, or a plurality of sets of stripe filters of R, G and B are arranged in the horizontal scanning lines, to form a color filter.
  • a cell assembling step 403 is executed.
  • a liquid crystal panel liquid crystal cell is assembled by using the substrate having prescribed patterns resulting from the pattern forming step 401, and the color filter obtained in the color filter forming step 402.
  • a liquid crystal is injected into the space between, for example, the substrate having the prescribed patterns resulting from the pattern forming step 401 and the color filter obtained in the color filter forming step 402, to manufacture a liquid crystal panel (liquid crystal cell) .
  • a module assembling step 404 component parts such as an electric circuit causing the assembled liquid crystal panel (liquid crystal cell) and backlights are attached, thus completing a liquid crystal display device.
  • the present invention is applied to the exposure apparatus based on the step-and-scan process in which a mask pattern is scanned and exposed to exposure areas of the substrate while moving the mask and substrate relative to the projection optical system.
  • the present invention is not however limited to this, but is applicable also to an exposure apparatus of the step-and-repeat process in which the mask pattern is transferred in a lump onto the substrate in a stationary state of the mask and the substrate, and the mask patterns are sequentially exposed onto the exposure areas by successively moving the substrate stepwise.
  • an ArF excimer laser source or an F 2 laser source is used.
  • the present invention is not however limited to this, but other appropriate light source may be employed.
  • the present invention is applied in the aforementioned embodiments to a projection optical system mounted on an exposure apparatus. While the present invention is applied to a projection optical system mounted on an exposure apparatus, the present invention is not limited to this, but is applicable also to other popularly used projection optical systems.
  • occurrence of reflection loss on an optical face can be satisfactorily inhibited, and a large effective image-side numerical aperture can be maintained by providing a medium having a high refractive index in the optical path to the image field, and imparting a positive refractive power onto the face of the boundary lens on the object side.
  • a fine pattern can be transferred and exposed at a high accuracy via the projection optical system having a large and effective image-side numerical aperture and a high resolution.
  • a satisfactory microdevice through high-accuracy projection and exposure via a high-resolution projection optical system by using an exposure apparatus mounting the projection optical system of the present invention.

Abstract

Optical Projection System and Method for Photolithography. A lithographic immersion projection system and method for projecting an image at high resolution over a wide field of view. The projection system and method include a final lens which decreases the marginal ray angle of the optical path before light passes into the immersion liquid to impinge on the image plane.

Description

DESCRIPTION
Projection Optical System and Method for Photolithography and Exposure Apparatus and Method using same TECHNICAL FIELD
The present invention relates to projection optical systems such as systems for photolithography.
The present invention also relates to an exposure apparatus and exposing methods. The invention is applicable to a high-resolution projection optical system suitable for an exposure apparatus used when manufacturing semiconductor elements or liquid crystal display elements through a photolithographic process. BACKGROUND ART In the following the term "anastigmat" means an optical element or group of optical elements adapted to reduce astigmatism and/or aberrations including spherical aberration. See, e. g. Naumann/Schrόder, Bauelemente der Optik, Carl Hauser Verlag Mϋnchen Wien, 6th ed., 1992, pp. 382-383 for a discussion of the term anastigmat. The term "Mangin mirror arrangement" means an optical device comprising a concave mirror and at least one negative powered lens proximal to the concave mirror wherein the concave mirror need not be in contact with the negative powered lens. In the lithographic process for manufacturing semiconductor elements or the like, it is the usual practice to use a projection exposure apparatus for exposing a pattern image of a mask (or a reticle) onto a wafer (or a glass plate or the like) coated with photoresist via a projection optical system. Along with improvement of the degree of integration of semiconductor elements, the demand for achievable resolution of a projection optical system of the projection exposure apparatus is steadily increasing.
As a result, in order to satisfy the resolution requirement of the projection optical system, it is necessary to reduce the wavelength λ of the illuminating light (exposing light) and/or increase the numerical aperture NA of the projection optical system.
More specifically, the resolution of a projection optical system is expressed by k-λ/NA (where k is a process coefficient) . When assuming the refractive index of a medium (usually a gas such as air) between the projection optical system and the image field to be n, and the maximum incident angle to be θ, then, the numerical aperture NA on the image side can be expressed as n-sin θ.
Historically, resolution in microlithography has been improved either by increasing the numerical aperture (NA) , or by reducing the wavelength of illumination light, or a combination of the two.
When it is tried to increase the numerical aperture by adopting a larger medium incident angle θ, the incident angle on the image plane and the outgoing angle from the projection optical system become larger, leading to an increase in reflection loss on the optical plane. It is impossible to ensure a large and effective numerical aperture on the image side. A technique is known for increasing the numerical aperture NA by filling an optical path between the projection optical system and the image field with a medium such as a liquid having a high refractive index. WO 99/49504 discloses a projection exposure method that irradiates exposure beams on a mask and transfers the pattern of said mask onto a substrate via a projection optical system, wherein when said substrate is moved along a predetermined direction, a predetermined liquid is passed along the direction of the motion of said substrate so as to fill the space between the end of the optical element on said substrate side of said projection optical system and the surface of said substrate, and discloses a projection exposure apparatus that irradiates exposure beams on a mask and transfers the pattern of said mask onto a substrate via a projection optical system, comprising a substrate stage that moves while holding said substrate, a liquid supply device that supplies a predetermined liquid along a predetermined direction via pipes for supply so as to fill the space between the end of the optical element of said substrate side of said projection optical system and the surface of said substrate, and a liquid recovery device that recovers said liquid from the surface of said substrate via said supply pipes and pipes for discharge arranged so as to sandwich the irradiation area of said exposure beams in said predetermined direction, and wherein when said substrate stage is driven to move said substrate along said predetermined direction, supply and recovery of said liquid is performed. The direction of the flow of the liquid may be changed according to the direction of the motion of the substrate. The projection exposure apparatus may be provided with a second pair of supply pipes and discharge pipes arranged at the location where said pair of supply pipes and discharge pipes would be if they were essentially rotated by 180°. The projection exposure apparatus may also comprise a liquid recovery device that recovers liquid supplied to between said projection optical system and said substrate. US patent no. 4,509,852 teaches using a photolithographic projection apparatus a mask having a pattern is imaged on a photosensitive layer coating a semiconductor substrate by a projection lens. To improve the resolving capability and to obviate adverse effects, e. g. standing waves and inhomogeneous exposure, the space between the substrate and the adjacent boundary face of a projection lens is filled during exposure with a transparent liquid having the same refractive index as the photosensitive layer.
However, a concrete proposal has not as yet been made regarding a configuration which ensures a large and effective image-side numerical aperture.
The theoretical resolution improvement of liquid- immersion is well known in microscopy, where oil- immersion dioptric objectives have for many years been designed with NAs greater than 1.0, but covering only a very small field of 0.5 mm or less. See, for example: λModern Optical Engineering", by Warren Smith, Third Edition, page 450, published by SPIE Press and McGraw Hill. Liquid immersion applied to microlithography has also been proposed for many years, but has been slow to be adopted in production, no doubt because of practical difficulties. However, the theoretical advantages become stronger as "dry" projection lens NAs approach the theoretical limit of 1.0. These advantages have been described in, for example: The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography" by Burn J. Lin published in JM3 1(1) 7-12 April 2002.
More recent investigations into the practical issues of liquid immersion for lithography have also become more optimistic, for example: "Resolution enhancement of 157 nm lithography by liquid immersion" by M. Switkes and M. Rothschild, published in JM3 1(3) 225-228 October 2002. However, neither of these papers addresses the issues of optical design.
Early papers proposing liquid immersion lithography include: "Optical projection lithography using lenses with numerical apertures greater than unity" by H. Kawata, J.M. Carter, A. Yen and H.I. Smith, published in Microelectronic, Eng. 9, 31 (1989) ; "Fabrication of 0.2μm fine patterns using optical projection lithography with an oil immersion lens" by H. Kawata, I. Matsumura, H. Yoshida and K. Murata, published in Japan, Journal of Applied Physics, Part 131, 4174-1992; "1/8 μm optical lithography" by G. Owen, R.F.W. Pease, D.A. Markle, A. Grenville, R.L. Hsieh, R. von Bunau and N.I. Maluf, in the Journal of Vacuum Science Technology, B10-6, 3032~1992; and "Immersion lithography at 157 nm" by M. Switkes and M. Rothschild, in the Journal of Vacuum Science Technology, B19-6, 2353-2001. The recent Switkes paper is the most significant, in that it proposes the use of water as the immersion liquid for ArF (or KrF) laser light, perfluoropolyethers for F2 laser light, and starts to address the practical issues involved with a scanning wafer stage.
Another recent paper has started to address optical design issues for the relatively wide field of views used in lithography, partially disclosing liquid immersion dioptric microlithographic projection lens designs with NAs of greater than 1.0: "Development of dioptric projection lenses for DUV lithography" [4832- 18] by Ulrich Wilhelm, Rostalski Hans-Juergen, Hudy a Russell M, published in SPIE Vol. 4832 IODC June 2002. US 2001/0040722 Al describes a catadioptric design which uses a V-fold mirror and two intermediate images . However, this is a small-field system (< 1 mm) , specifically intended for optical inspection, and there is no indication that the design could be applied to the much larger field sizes and extremely small residual aberrations and distortion required for microlithography .
"High numerical aperture lithographic imagery at the Brewster angle" by Timothy A. Brunner et al, in JM3 1(3) 188-196, October 2002, describes the fundamental disadvantages in terms of image quality, as the NA approaches 1.0 in a "dry" projection lens. These relate to vector imaging degradation that is made worse by Fresnel reflection losses at the resist interface, which more strongly reflects and loses the polarization orientation that would have given the better image quality inside the photoresist. This occurs most strongly at Brewster's angle, which corresponds to a NA of about 0.85.
We have investigated liquid immersion dioptric designs, and have found that for a NA of 1.0 and 26 mm field size the largest lens diameters need to be of the order of 330 mm, which is on the limit of available high quality fused silica, and beyond the limit for calcium fluoride. There is also a reduction in spectral bandwidth, in the same way that there is for "dry" dioptric lenses as the NA increases. A reduction in field size and an increase in reduction ratio above 4x would help these issues, but would make the "wet" lithography tools incompatible with current "dry" systems.
Known "dry" catadioptric designs have relatively small lens diameters and chromatic aberrations. However, they cannot be converted to liquid immersion only by adding a liquid to the space between the last element and the wafer. This would introduce a large amount of spherical aberration, which has to be compensated elsewhere in the design. Also, in simply adding a liquid, the NA does not increase, since the definition of NA already includes the refractive index. Immersing the wafer in liquid is a necessary, but not sufficient, condition for being able to increase the NA up to the theoretical maximum equal to the liquid refractive index (~ 1.4), rather than 1.0 in a "dry" system. For a constant magnification, paraxial geometrical optics theory (in particular, the Lagrange invariant) dictates that an increase of NA at the wafer has to be accompanied by a corresponding increase in NA all the way through the projection lens system. This results in an increase in lens diameters, and optical surface steepness, defined by the ratio D/R, where D is the clear aperture diameter and R is the radius of curvature. At the same time, chromatic and high-order aberrations increase rapidly with NA.
It is therefore not obvious to one skilled in the art of optical design that the NA of a "dry" projection lens can be increased in the ratio of the refractive index of the immersion liquid, without both an impractical increase in the lens size and complexity, as well as an unacceptable increase in residual aberrations . Textbooks on optical design (e.g. Warren Smith,
Modern Optical Engineering Third Edition, page 449-450, published by SPIE Press and McGraw Hill) describe the historical microscope immersion objective with a hyper- hemispherical convex surface (clear diameter/radius of curvature beyond hemispherical, where D/R = 2) on the last element, opposite the plane surface in contact with the immersion liquid. Classically, this surface is designed to be either aplanatic, or close to the aplanatic condition. At the aplanatic condition there is zero spherical aberration, coma and astigmatism, and the marginal ray convergence angle is greater inside the lens element than before it by the ratio of the glass refractive index. Being close to this aplanatic condition minimizes spherical aberration and coma, and is a simple way of increasing NA, which is useful for a small field microscope objective, or systems such as the prior art US Patent Application US 2001/0040722.
For microlithography, which requires small aberrations over a much larger field size, such an aplanatic surface would give rise to higher-order aberration variations across the field, including oblique spherical aberration and coma. It is common practice to use, instead, a convex surface on this last element that is not at the aplanatic condition, but rather at or near the so-called concentric, or monocentric condition. In the concentric situation the marginal ray convergence angle inside the last element is identical to that incident upon it. Again there is zero spherical aberration and coma, but more importantly for a wide-field system there is zero sagittal oblique spherical aberration. See, for example, J. Dyson, JOSA, volume 49(7), p. 713 (July 1959) , or, "Monocentric telescopes for microlithography" by C.G. Wynne, Optical Engineering, Vol. 26 No. 4, 1987.
J. G. Baker, The Catadioptric Refractor, The Astronomical Journal, Vol. 59, pp. 74-84 (1955) discusses pros and cons of a telescope which is based on a concept suggested by Schup ann (L. Schupmann, Die Medial-Fernrohre, Eine neue Konstruktion fur groβe astronomische Instrumente, Teubner, Leipzig, 1899) . SUMMARY OF THE INVENTION
An object of the invention is to provide a projection optical system which permits achievement of a large and effective image-side numerical aperture by providing a medium having a high refractive index in an optical path to the image field and inhibiting satisfactorily the reflection loss on the optical surface. Another object of the invention is to provide an exposure apparatus and an exposing method which have a large and effective image-side numerical aperture and enable to transfer and expose a fine pattern at a high accuracy via a projection optical system having a high resolution.
According to a first aspect of the invention there is provided a projection optical system for projecting an image of a first plane onto a second plane comprising: a boundary lens; and at least one layer of immersion medium between the boundary lens and the second plane; said boundary lens having a first plane side optical surface shaped such that for light projected onto the second plane through the boundary lens the marginal ray convergence angle prior to incidence is larger than the marginal ray convergence angle within said boundary lens.
According to a second aspect of the invention there is provided a projection optical system for projecting an image of a first plane to a second plane comprising: an optical system; a boundary lens; and at least one layer of immersion medium between said boundary lens and said second plane; wherein light from the first plane is transmitted through the optical system, and output with a predetermined marginal ray convergence angle; and said boundary lens is positioned to receive said light output from the optical system, and adapted such that for light projected onto the second plane through the boundary lens the marginal ray convergence angle prior to incidence is larger than the marginal ray convergence angle within said boundary lens.
The optical system (which means the optical system of the optical projection system, where the former is included in an optical projection system) may further comprise at least one positive powered lens element proximal to said boundary lens, and having an aspheric optical surface.
Alternatively, the optical system may further comprise a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, and a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface.
The optical system may be one in which the first positive powered lens element has an axial thickness greater than 26.1mm and less than 28.9mm, and a first plane side surface with an axial radius of curvature greater than 103mm and less than 114mm, the second positive powered lens element has an axial thickness greater than 26.5mm and less than 29.3mm, and a first plane side surface with an axial radius of curvature greater than 83.2mm and less than 91.9mm, and the boundary lens has an axial thickness greater than 41.6mm and less than 46.0mm, and a first plane side surface with an axial radius of curvature greater than 56.9mm and less than 62.9mm.
Instead, the optical system may comprise a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, and a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface, wherein the first positive powered lens element has an axial thickness greater than 27.22mm and less than 27.77mm, and a first plane side surface with an axial radius of curvature greater than 107.6mm and less than 109.8mm, the second positive powered lens element has an axial thickness greater than 27.63mm and less than 28.19mm, and a first plane side surface with an axial radius of curvature greater than 86.67mm and less than 88.42mm, "and the boundary lens has an axial thickness greater than 43.37mm and less than 44.25mm, and a first plane side surface with an axial radius of curvature greater than 59.27mm and less than 60.46mm.
Any of the optical systems defined above may include a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element, a first negative powered lens element, a second negative powered lens element, and a fourth positive powered lens element. In this optical system the third positive powered lens element has an axial thickness greater than 43.9mm and less than 48.5mm, and a first plane side surface with an axial radius of curvature greater than 128mm and less than 141mm, the first negative powered lens element has an axial thickness greater than 13.1mm and less than 11.9mm, and a first plane side surface with an axial radius of curvature greater than 1540mm and less than 1710mm, the second negative powered lens element has an axial thickness greater than 11.9mm and less than 13.1mm, and a first plane side surface with an axial radius of curvature greater than 184mm and less than 204mm, and the fourth positive powered lens element has an axial thickness greater than 30.6mm and less than 33.9mm, and a second plane side surface with an axial radius of curvature greater than 189mm and less than 209mm.
As an alternative to the optical system described in the preceding paragraph, the optical system may be one in which the third positive powered lens element has an axial thickness greater than 45.71mm and less than 46.63mm, and a first plane side surface with an axial radius of curvature greater than 133.3mm and less than 136.0mm, the first negative powered lens element has an axial thickness greater than 12.38mm and less than 12.63mm, and a first plane side surface with an axial radius of curvature greater than 1608mm and less than 1641mm, the second negative powered lens element has an axial thickness greater than 12.38mm and less than 12.63mm, and a first plane side surface with an axial radius of curvature greater than 191.9mm and less than 195.8mm, and the fourth positive powered lens element has an axial thickness greater than 31.91mm and less than 32.56mm, and a second plane side surface with an axial radius of curvature greater than 197.4mm and less than 201.3mm.
The optical system in any form as described above may comprise a catadioptric anastigmat comprising a concave mirror and at least one negative powered Schupmann lens. In this optical system the catadioptric anastigmat can comprise two negative powered Schupmann lenses.
Any of the above optical systems may be adapted for use with ultraviolet light.
The optical system may comprise a set of optical elements substantially having the parameters as set out in Tables 1 and 2.
The optical system may comprise a set of optical elements having parameters substantially based on those in Tables 1 and 2, but adjusted to be re-optimised for a particular operating optical wavelength According to a third aspect of the invention there is provided a method of projecting an image of a first plane onto a second plane including the steps of passing light having a first marginal ray convergence angle to a boundary lens, passing light having a second marginal ray convergence angle though the boundary lens, and passing light from said boundary lens through a layer of immersion liquid to the second plane, wherein the first marginal ray convergence angle is greater than the second marginal ray convergence angle. The method may include the step of passing light through at least one positive powered lens element proximal to said boundary lens, and having an aspheric optical surface. Alternatively, the method may include the steps of passing light through a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, and passing light through a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface. This method may include the steps of passing light through a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, passing light through a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface, passing light through the first positive powered lens element having an axial thickness greater than 26.1mm and less than 28.9mm, and a first plane side surface with an axial radius of curvature greater than 103mm and less than 114mm, passing light through the second positive powered lens element having an axial thickness greater than 26.5mm and less than 29.3mm, and a first plane side surface with an axial radius of curvature greater than 83.2mm and less than 91.9mm, and passing light through the boundary lens having an axial thickness greater than 41.6mm and less than 46.0mm, and a first plane side surface with an axial radius of curvature greater than 56.9mm and less than 62.9mm. Alternatively the method may include the steps of passing light through a first positive powered lens element proximal to said boundary lens, and having at least one aspheric optical surface, passing light through a second positive powered lens element between the first positive powered lens element and said boundary lens, and having at least one aspheric optical surface, passing light through the first positive powered lens element having an axial thickness greater than 27.22mm and less than 27.77mm, and a first plane side surface with an axial radius of curvature greater than 107.6mm and less than 109.8mm, passing light through the second positive powered lens element having an axial thickness greater than 27.63mm and less than 28.19mm, and a first plane side surface with an axial radius of curvature greater than 86.67mm and less than 88.42mm, and passing light through the boundary lens having an axial thickness greater than 43.37mm and less than 44.25mm, and a first plane side surface with an axial radius of curvature greater than 59.27mm and less than 60.46mm.
The methods as defined above may include the step of passing light through a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element, a first negative powered lens element, a second negative powered lens element, and a fourth positive powered lens element. Such methods may include the step of passing light through a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element having an axial thickness greater than 43.9mm and less than 48.5mm, and an object side surface with an axial radius of curvature greater than 128mm and less than 141mm, a first negative powered lens element having an axial thickness greater than 13.1mm and less than 11.9mm, and a first plane side surface with an axial radius of curvature greater than 1540mm and less than 1710mm, a second negative powered lens element having an axial thickness greater than 13.1mm and less than 11.9mm, and a first plane side surface with an axial radius of curvature greater than 184mm and less than 204mm, and a fourth positive powered lens element has having axial thickness greater than 30.6mm and less than 33.9mm, and a second plane side surface with an axial radius of curvature greater than 189mm and less than 209mm. Instead the method may have the step of passing light through a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element having an axial thickness greater than 45.71mm and less than 46.63mm, and a first plane side surface with an axial radius of curvature greater than 133.3mm and less than 136.0mm, a first negative powered lens element having an axial thickness greater than 12.38mm and less than 12.63mm, and a first plane side surface with an axial radius of curvature greater than 1608mm and less than 1641mm, a second negative powered lens element has an axial thickness greater than 12.38mm and less than 12.63mm, and a first plane side surface with an axial radius of curvature greater than 191.9mm and less than 195.8mm, and a fourth positive powered lens element has an axial thickness greater than 31.91mm and less than 32.56mm, and a second plane side surface with an axial radius of curvature greater than 197.4mm and less than 201.3mm.
Any of the methods as defined above according to the third aspect of the invention may include the step of passing light through a catadioptric anastigmat comprising a concave mirror and at least one negative powered Schupmann lens, and this method may have the step of passing light through a catadioptric anastigmat comprising a concave mirror and two negative powered Schupmann lenses.
The light as used in the methods as defined above may be a beam of ultraviolet light.
The method may include the step of passing light through a set of optical elements having substantially the optical properties as set out in Tables 1 and 2.
The method may have the step of passing light through a set of optical elements substantially having optical properties based on those set out in Tables 1 and 2 but re-optimized for a particular operating wavelength.
The method may include the step of passing light through a set of optical elements substantially having optical properties based on those set out in Tables 1 and 2 but re-optimized for a particular operating wavelength and a particular immersion layer thickness. According to a fourth aspect of the present invention there is provided a projection optical system for projecting an image of a first plane onto a second plane, comprising: an optical path having a plurality of lenses including a boundary lens which is arranged at a position closest to the second plane, wherein the first plane side surface of the boundary lens has a positive refractive power, and for an atmosphere in said optical path having a refractive index of 1, the optical path between the boundary lens and the second plane is filled with a medium having a refractive index larger than 1.1.
According to a preferred embodiment of the fourth aspect, the projection optical system satisfies the condition as expressed by:
0.012 < Cb-D/NA < 0.475 where, Cb represents the curvature of a face of the boundary lens on the first plane side; D represents the distance between an optical axis and the outermost point of an effective image forming area, and NA represents the numerical aperture on the second plane side. It is desirable that, in the projection optical system, at least one optical member having substantially no refractive power is detachably arranged in the optical path between the boundary lens and the second plane; and the optical path between the boundary lens and the optical member, and the optical path between the optical member and the second plane are filled with said medium. In this case, the optical member having substantially no refractive power has an adjustable posture. The condition |P-D| < 1.0 x 10"4 should preferably be satisfied, where, P represents the refractive power of the optical member having substantially no refractive power; and D represents the distance between the optical axis and the outermost point of the effective image forming area.
It is desirable that the projection optical system is a reflecting/refracting optical system comprising at least one concave reflector and a refractive optical member. In this case, the projection optical system should preferably have an effective image forming area eccentric relative to the optical axis, and at least one intermediate image should preferably be formed in the optical path of the projection optical system. It is desirable that the projection optical system comprises: a first image forming optical system for forming a first intermediate image on the first plane; a second image forming optical system, having at least one concave reflector, for forming a second intermediate image on the basis of the first intermediate image; and a third image forming optical system for forming a final image on the second plane on the basis of the flux from the second intermediate image; wherein a first deflecting mirror is arranged in the optical path between the first image forming optical system and the second image forming optical system; a second deflecting mirror is arranged in an optical path between the second image forming optical system and the third image forming optical system; and the optical ' axis of the first image forming optical system is aligned with the optical axis of the third image forming optical system.
The numerical aperture on the first plane side should preferably be 0.22 or larger. The light quantity loss occurring upon passing through the medium should preferably be 50% or lower.
A fifth aspect of the present invention provides an exposure apparatus comprising an illuminating system for illuminating a mask set on the first plane, and a projection optical system for forming an image of a pattern formed on the mask on a photosensitive substrate set on the second plane.
A sixth aspect of the present invention provides an exposing method comprising the steps of illuminating a mask set on the first plane, and projecting and exposing a pattern image formed on the mask on a photosensitive substrate set on the second plane via the projection optical system.
A seventh aspect of the present invention provides an exposure apparatus for transferring a pattern formed on a mask onto a photosensitive substrate comprising an illuminating optical system for illuminating a prescribed illumination area on the mask, and a projection optical system for projecting a reduced image of the pattern into an exposure area on the photosensitive substrate; wherein the projection optical system is a reflection/refraction optical system comprising a boundary lens arranged at a position the closest to the photosensitive substrate side; the exposure area is eccentric from the optical axis of the reflection/refraction-type projection optical system; and when the atmosphere in an optical path of the projection optical system is assumed to have a refractive index of 1, an optical path between the boundary lens and the second face is filled with a medium having a refractive index larger than 1.1.
In some aspects of the projection optical system of the present invention, the image-side numerical aperture NA is increased by providing a medium having a refractive index larger than 1.1 in an optical path between the boundary lens arranged at a position the closest to the image side (second plane side) . The paper "Resolution Enhancement of 157-nm Lithography by Liquid Immersion" published by M. Switkes and M. Rothchild in JM3 1(3), pp 225-228, October 2002 identifies Florinat (perfluoropolyethers : commercial name by Three-M Company, the United States) and deionized water as media having a prescribed transmissivity for a beam having a wavelength λ of 200 nm or less.
The projection optical system of the present invention may reduce the reflection loss on the optical surface, and finally ensure a large and effective image-side numerical aperture by imparting positive refraction power to the face of the boundary lens on the object side (first plane side) . In the present invention, as described below, it is possible to achieve a projection optical system which enables to keep a large and effective image-side numerical aperture by inhibiting the reflection loss on the optical surface to a satisfactory level by providing a medium having a high refractive index in the optical path to the image field.
The following conditional formula (1) should preferably be satisfied. In this formula, Cb represents a curvature of the face of the boundary lens facing the object; D, the distance _between the optical axis and the outermost point of the effective image forming area (in the case of an exposure apparatus, the distance between the optical axis and the outermost point of the effective exposure area) ; NA, the numerical aperture on the image side (the second plane side) . The terms "effective image forming area" and "effective exposure area" mean an image forming area and an exposure area, of which the aberrations have been sufficiently corrected.
0.012 < Cb-D/NA < 0.475 (1) A value exceeding the upper limit of the conditional formula (1) is not desirable because correction of aberration cannot sufficiently be accomplished over the entire effective image forming area (effective exposure area) . A value lower than the lower limit of the conditional formula (1) is not desirable because a sufficient reduction of reflection loss on the optical surface cannot be achieved, leading to a smaller effective numerical aperture, and finally to a poorer resolution. In order to further reduce the reflection loss and an absorption loss and obtain a high resolution over the entire effective image forming area (effective exposure area) , it is desirable to set an upper limit of the conditional formula (1) of 0.400, and a lower limit of 0.015. As described above, a fluorine-based inert liquid such as Florinat or a liquid such as deionized water is used as a medium having a high refractive index provided between the boundary lens between the boundary lens and the image field so as to make it possible to ensure a required transmissivity (to inhibit a light quantity loss) . In the case of an exposure apparatus, the liquid may suffer from contamination by the photoresist coated onto a substrate such as a wafer. The contaminated liquid may stain the image-side optical surface of the boundary lens, causing a decrease in transmissivity of the boundary lens and the liquid.
Therefore, it is desirable to detachably arrange an optical member (usually an optical member having substantially no refracting power) such as a parallel flat sheet in an optical path between the boundary lens and the image field. In the manufacturing process of a projection optical system, it is possible to adjust the Petzval sum and correct curvature of the image plane by selectively replacing the optical member provided between the boundary lens and the image field.
It is furthermore desirable to adopt a configuration so as to permit adjustment of the orientation of the optical member having substantially no refractive power. In this case, asymmetrical aberration caused by lens eccentricity can be corrected by tilting the optical member relative to the optical axis. The optical member having substantially no refractive power should preferably satisfy the following conditional formula (2) :
I P- D I < 1.0 x 10"4 (2) In the conditional formula (2), P represents the refractive power of an optical member having substantially no refractive power (= 1/focal length) ; and D, the distance between the optical axis and the outermost point of the effective image forming area (in the case of an exposure apparatus, the distance between the optical axis and the outermost point of the effective exposure area) . A value higher than the upper limit of the conditional formula (2) is not desirable because it leads to large changes in the other aberrations upon correcting the asymmetrical aberration by tilting the optical member.
The projection optical system should preferably comprise a reflection/refraction optical system having at least one concave reflector and a refractive optical member (lens component) . This configuration permits achievement of a projection optical system having a large effective image forming area (effective exposure area) and a large image-side numerical aperture NA. In general, in the case of a refractive-type projection optical system comprising a refractive optical member alone, it is necessary to bring the Petzval sum as close to 0 as possible by alternately arranging a positive lens group and a negative lens group on the object side (near the object surface) of a smaller numerical aperture, in order to correct the field curvature.
However, in an optical system having a large image-side numerical aperture, the numerical aperture is large also on the object side. It is therefore difficult to satisfactorily correct spherical aberration or coma over the entire effective image forming area (effective exposure area) while correcting the Petzval sum to 0. In this case, by altering the reduction magnification from 1:4 to a reduction at higher magnification such as 1:5 or 1:6, correction of the Petzval sum can be achieved because the object-side numerical aperture becomes smaller. However, when trying to ensure a wider effective exposure area in an exposure apparatus, this practice encounters the difficulty of requiring an excessively large mask. In a reflection/refraction-type projection optical system having at least one concave reflector and a refractive optical system, in contrast, the concave reflector makes a contribution to the Petzval sum similar to that of a negative lens while having a positive refractive power. Correction of the Petzval sum can be easily made through a combination of the concave reflector and the positive lens. As a result, it is possible to achieve a projection optical system having a large image-side numerical aperture and a wide effective image forming area (effective exposure area) by a combination of a configuration of the reflection/refraction optical system and a configuration of a liquid-immersion optical system in which a liquid (medium) having a high refractive index is provided in the optical path from the image plane. In the reflection/refraction optical system, a problem is how to separate a beam directed toward the concave reflector from a return beam reflected from the concave reflector. In a projection optical system having a large image-side numerical aperture, increase in the effective diameter of the optical element (adoption of larger optical elements) is inevitable. Therefore, in a reflection/refraction optical system using a prism-type beam splitter having a transmission reflection surface, the difficulty is encountered that it is difficult to manufacture a larger-sized prism- type beam splitter. The projection optical system should preferably have a configuration in which the system has an effective image forming area eccentric from the optical axis, and at least one intermediate image is formed in the optical path. In this configuration, it is possible to easily separate the beam directed toward the concave reflector from the return beam reflected from the concave reflector by arranging a flat reflector for separating the optical paths near the forming position of the intermediate image .
Furthermore, the configuration should preferably be such that the projection optical system comprises a first image forming optical system which forms a first intermediate image of the object surface (the first plane) ; a second image forming optical system which has at lease one concave reflector and forms a second intermediate image on the basis of the flux from the first intermediate image; and a third image forming optical system which forms a final image on an image field (the second plane) on the basis of the flux from the second intermediate image; a first deflection
« mirror is arranged in an optical path between the first image forming optical system and the second image forming optical system; a second deflection mirror is arranged in an optical path between the second image forming optical system and the third image forming optical system; and the optical axis of the first image forming optical system agrees with the optical axis of the third image forming optical system. In this configuration, even in an optical system having a large image-side numerical aperture, it is possible to easily separate the beam directed toward the concave reflector from the beam reflected by the concave reflector to return. It is also possible to relatively easily accomplish assembly or adjustment of optical systems since the first image forming optical system and the third image forming optical system are coaxial.
As described above, a projection optical system conducting size reduction at a high magnification such as 1:5 or 1:6 is unfavorable in that application to an exposure apparatus results in a mask larger in size. Therefore, the object-side numerical aperture should preferably be 0.22 or larger for obtaining a high resolution at an appropriate reduction magnification. In addition, the light quantity loss caused upon passing through a medium present between the boundary lens and the image field should preferably be 50% or lower. When this configuration requirement is not satisfied, light absorbed by the medium generates heat, and image formation tends to deteriorate under the effect of the fluctuation of the refractive index in the medium.
For a better understanding of the invention, and to show how the same may be carried into effect, reference will now be made, by way of example, to the accompanying drawings in which:
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows an illustration of a catadioptric "dry" projection system for comparison purposes;
Fig. 2 shows an illustration of a catadioptric liquid immersion projection lens system according to a 5 first embodiment of the present invention;
Fig. 3 shows an illustration of the last optical elements in the optical path of Fig. 2;
Fig. 4 shows an illustration of the boundary lens, the immersion liquid layer and the image plane; 10. Fig. 5 shows an illustration of the marginal ray path passing into the last lens element according to the first embodiment of the present invention;
Fig. 6 shows an illustration of the marginal ray path passing through the last lens element into the 15 immersion liquid layer according to the first embodiment of the present invention;
Fig. 7 schematically illustrates the configuration of exposure apparatus incorporating the present invention; 20 Fig. 8 illustrates the positional relationship between a rectangular effective exposure area formed on a wafer and a reference optical axis in second and third embodiments of the invention;
Fig. 9 illustrates the positional relationship 25 between a rectangular effective exposure area formed on a wafer and a reference optical axis in a fourth embodiment ;
Fig. 10 schematically illustrates the configuration of a boundary lens and a wafer in the second to fourth embodiments;
Fig. 11 illustrates the lens configuration of the projection optical system of the second embodiment of the invention;
Fig. 12 illustrates lateral aberration in the second embodiment;
Fig. 13 illustrates the lens configuration of the projection optical system of the third embodiment of the invention;
Fig. 14 illustrates the lateral aberration in the third embodiment of the invention;
Fig. 15 illustrates the lens configuration of the projection optical system of the fourth embodiment of the invention;
Fig. 16 illustrates the lateral aberration in the ^ fourth embodiment;
Fig. 17 is a flowchart of the technique used when obtaining a semiconductor device as a microdevice;
Fig. 18 is a flowchart of the technique used when obtaining a liquid crystal display device as a microdevice; Fig. 19 illustrates the lens configuration of a fifth embodiment of the invention; and
Fig. 20 illustrates graphs showing various aberrations of the fifth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
Fig. 1 is an illustration of a catadioptric "dry" projection system for comparison purposes, which was disclosed in EP1191378A1. This "dry" projection system includes a first set of field lens elements Lll to L13, a meniscus anastigmat L14 to L17 which aids in correcting aberrations, and a positive powered set of lens elements L18 to L20, which together comprise a first field lens group Gl, a beam splitting means FM(1, 2), a Mangin mirror arrangement G2 including two Schupmann lenses L21, L22 and a concave mirror CM which provides an aberration correcting function. The system also includes a positive powered set of lens elements L31 to L33, a negative lens element L34, a positive powered set of lens elements L35 and L39, a negative powered anastigmat L40 which corrects aberrations, and a positive powered lens element L41 which together comprise a second field lens group G3. Light is passed from a reticle R through the first field lens group Gl, then through the beam splitter FM(1, 2) to Mangin mirror arrangement G2, and finally through the beam splitter FM(1, 2) and the second field lens group G3. By this arrangement an image may be conveyed from the reticle R to a wafer W with negative magnification so as to controllably expose a photoresist on the wafer.
Figs. 2 and 3 and Tables 1 and 2 show a detailed embodiment of the invention. Light from the object plane OP passes through a plane window E201, a first positive powered group of field lens elements E202 and E203, an anastigmat E204 to E208, adapted to reduce spherical aberration, a second positive powered group of field lens elements E209 to E211, a beam splitter E212 and E218, a catadioptric anastigmat including two Schupmann lenses E213 and E214 and a concave mirror E215, the beam splitter E212 and E218 for a second time, a third positive powered group of field lens elements E219 to E221, a double-Gauss anastigmat E222 to E225 arranged to reduce spherical aberration, a fourth positive powered group of field lens . elements E226 to E232, a boundary lens E233, a layer of immersion liquid IL, and to an image plane IP. The fourth positive powered group of field lens elements includes a first positive powered lens element E231, and a second positive powered lens element E232. The double-Gauss anastigmat includes a third positive lens element E222, a first negative powered lens element E223, a second negative powered lens element E224,*and a fourth positive powered lens element E225. In Tables 1 and 2 preferred values of the radius of curvature and the axial distances between optical surfaces of optical elements E210 to E233 are given. As those skilled in the art will appreciate, workable systems may be designed in which all the parameters given in Tables 1 and 2 may be allowed to vary from the specific values given by plus or minus 1 percent, and even up to plus or minus 5 percent with appropriate adaptation. For example when operating at 157nm this would give for surface S263 a radius of curvature greater than 56.9mm and less than 62.9mm, or more preferably greater than 59.27mm and less than 60.46mm, or most preferably 59.8643mm. The values for the radius of curvatures of the curved surfaces of the optical elements E202 to E233 and for the thicknesses and separations of the optical elements E202 to E211, E213 to E215, and E219 to E233 will of course change if the operating wavelength is changed.
Accordingly, the thicknesses of lens elements E222 to E225 and E231 to E233, and the radius of curvatures of optical surfaces S240, S242, S244, S247, S259, S261 and S263 may have values as follows: the first positive powered lens element E231 has an axial thickness greater than 26.1mm and less than 28.9mm, and an object side surface S259 with an axial radius of curvature greater than 103mm and less than 114mm; the second positive powered lens element E232 has an axial thickness greater than 26.5mm and less than 29.3mm, and an object side surface S261 with an axial radius of curvature greater than 83.2mm and less than
91.9mm; the boundary lens E233 has an axial thickness greater than 41.6mm and less than 46.0mm, and an object side surface S263 with an axial radius of curvature greater than 56.9mm and less than 62.9mm; the third positive powered lens element E222 has an axial thickness greater than 43.9mm and less than
48.5mm, and an object side surface S240 with an axial radius of curvature greater than 128mm and less than
141mm; the first negative powered lens element E223 has an axial thickness greater than 11.9mm and less than
13.1mm, and an object side surface S242 with an axial radius of curvature greater than 1540mm and less than
1710mm; the second negative powered lens element E224 has an axial thickness greater than 11.9mm and less than
13.1mm, and an object side surface S244 with an axial radius of curvature greater than 184mm and less than
204mm; and the fourth positive powered lens element E225 has an axial thickness greater than 30.6mm and less than
33.9mm, and an image side surface S247 with an axial radius of curvature greater than 189mm and less than 209mm.
More preferably, the ranges of values for the parameters of the optical projection system are within a narrower range of plus or minus 1% of the tabulated finite values. Accordingly, the thicknesses of lens elements E222 to E225 and E231 to E233, and the radius of curvatures of optical surfaces S240, S242, S244, S247, S259, S261 and S263 may preferably have values as follows when operating at a wavelength of 157nm: the first positive powered lens element E231 has an axial thickness greater than 27.22mm and less than 27.77mm, and an object side surface S259 with an axial radius of curvature greater than 107.6mm and less than 109.8mm; the second positive powered lens element E232 has an axial thickness greater than 27.63mm and less than 28.19mm, and an object side surface S261 with an axial radius of curvature greater than 86.67mm and less than 88.42mm; the boundary lens E233 has an axial thickness greater than 43.37mm and less than 44.25mm, and an object side surface S263 with an axial radius of curvature greater than 59.27mm and less than 60.46mm; the third positive powered lens element E222 has an axial thickness greater than 45.71mm and less than 46.63mm, and an object side surface S240 with an axial radius of curvature greater than 133.3mm and less than
136.0mm; the first negative powered lens element E223 has an axial thickness greater than 12.38mm and less than 12.63mm, and an object side surface S242 with an axial radius of curvature greater than 1608mm and less than
1641mm; the second negative powered lens element E224 has an axial thickness greater than 12.38mm and less than 12.63mm, and an object side surface S244 with an axial radius of curvature greater than 191.9mm and less than
195.8mm; and the fourth positive powered lens element E225 has an axial thickness greater than 31.91mm and less than 32.56mm, and an image side surface S247 with an axial radius of curvature greater than 197.4mm and less than
201.3mm.
Even more preferably, the values of the radius of curvature of the surfaces of the optical elements E201 to E233, and the thicknesses of the optical elements E201 to E233, have values according to Tables 1 and 2. An important feature is the presence of a liquid (other than glass) between the image side surfaces S264 of the boundary lens 233 and the image plane IP, both of which may be plane (infinite radius of curvature) as illustrated in Fig. 4. It should be noted that liquids other than water, such as perfluoropolyether, may be used in some embodiments and that the use of the term "liquid" is meant to include any fluid medium other than glass, having a refractive index substantially greater than 1. Suitable liquids include water, (which may be de-ionized and/or degassed) and perfluoropolyethers .
This embodiment of the invention provides improved resolution compared with the dry microlithographic projection system of Figure 1, in which the wafer is immersed in a gas. The wafer is immersed in liquid, which reduces the speed and wavelength of light incident on the photoresist by a factor of about 1.4, without changing the wavelength of the light source. It thereby allows numerical apertures (NA) significantly greater than 1.0, by avoiding the total internal reflection of light that would have occurred at the last lens surface if the wafer had been immersed in a gas of refractive index close to 1.0. The illustrated embodiment provides a specific
"wet" catadioptric optical design at NA 1.2, a factor of about 1.4 times higher than "dry" designs at NA 0.85 such as Fig. 1. This disclosed catadioptric design also avoids some of the practical limitations of prior art dioptric "dry" immersion optical designs. In this system, the theoretical advantages of liquid immersion are realized by means of a catadioptric large-field deep ultraviolet microlithographic projection optical design, whose NA is increased beyond the theoretical limit in air of 1.0, without the lens diameters or surface curvatures increasing beyond practical fabrication limits, and also without a reduction in field size or spectral bandwidth of light source that would occur with prior art dioptric designs. The "wet" catadioptric NA 1.2 design has a track length (reticle-wafer distance) comparable to a "dry" catadioptric NA 0.85 design, and the same instantaneous wafer field size of 26 x 5 mm and a relatively small increase in lens diameters, which minimizes the changes required in the lithography scanner tool body design, while allowing the same scanned fields to be covered over the wafer.
A catadioptric design is preferred (although it is not essential) because it does not require large separation of negative and positive powered lens elements for field curvature correction. Instead, the field is flattened by means of a concave positive powered mirror (element E215 in Fig. 2 and Tables 1 and 2) . Negative powered lens elements close to this mirror (so-called Schupmann lenses, elements E213 and E214 in Fig. 2 and Tables 1 and 2) provide further field curvature correction and sufficient achromatization for the NA to be increased above 1.0 without the need for a second type of refracting material or a reduction in spectral bandwidth. This allows the design to be optimized for existing 0.4 pm bandwidth line-narrowed ArF excimer lasers, using only fused silica lens elements, no calcium fluoride elements, and deionized water of about 1 mm thickness as the immersion medium (IL in Fig. 2 and Tables 1 and 2) . It would be straightforward to re-optimize the disclosed design for use with a line-narrowed KrF laser. The design concept may also be applied to an F2 excimer laser, using only calcium fluoride lens elements with for example a 0.1 mm thickness of perfluoropolyether immersion liquid layer.
Many types of prior art "dry" catadioptric designs have been designed and published. However, this invention is most closely related to, but not limited to, what may be described as the "V-type" catadioptric optical design form, which uses V-shaped fold mirrors between two intermediate images. This form has the advantage of relatively small lens diameters and a mechanical package similar to a dioptric lens. It should however be noted that alternatives exist to the V-shaped fold mirror, such as a splitter cube which has an equivalent effect.
In order to operate effectively with liquid immersion between the last lens element surface and the wafer, this last optical surface should preferably be a plane surface (surface S264 in Figs. 2 and 4 and Tables 1 and 2) . This facilitates the liquid dynamics during wafer scanning, minimizes the possibility of bubble formation within the liquid, and minimizes sensitivity to magnification changes with liquid refractive index and dispersion (lateral color) , since for a telecentric system in wafer space the principal rays enter the liquid at zero angle of incidence.
In a classical liquid immersion microscope objective, the refractive index difference between the last lens element and liquid introduces spherical aberration, which is minimized by using the least possible thickness of liquid and finding a liquid whose refractive index matches as closely as possible that of the lens element. In the deep-UV microlithography situation, the thickness of the liquid is chosen for other reasons, such as optical transmission, as well as liquid dynamics and mechanical considerations during wafer scanning and stepping. This design is not constrained by the choice of liquid thickness or refractive index. Currently, a liquid thickness of 1 mm is assumed, but the optical design may easily be re- optimized for a different thickness or liquid refractive index. Again this is facilitated by having a plane last lens surface next to the liquid, when the spherical aberration is constant across a large field size, and can be easily corrected at a pupil plane in the system by means of at least one aspheric surface.
In this invention, neither the aplanatic nor concentric conditions are used in the last element, i.e., boundary lens, next to the wafer (surface S263 on element E233, Figs. 2 and 4). In this case, the marginal ray convergence angle is slightly smaller inside element 233 than it was prior to entering it (as seen in Figs. 5 and 6) . This feature has three advantages : a. The D/R (clear diameter/radius of curvature) of this surface can be constrained to be <1.5, which is within normal optical polishing techniques for large, high quality, optical elements. b. The resulting spherical aberration and coma may easily be corrected in other elements in the system, including several aspherical surfaces, which is advantageous in the correction of high-order aberrations that change rapidly across the wide field used in microlithography, such as oblique spherical aberration, coma, astigmatism and distortion. This strategy is particularly effective in a long, complex system with two intermediate images, such as the V-type catadioptric design. c. There is no focused ghost image on the wafer surface, as would occur with an exactly concentric surface . Classical microscope objectives also employ at least one element before the last one that has a combination of aplanatic and concentric surfaces. The preferred embodiment of the invention employs, instead, at least two positive meniscus elements before the last one (elements E231 and E232 in Figs. 2 and 3 and Tables 1 and 2) whose surfaces are neither exactly concentric nor aplanatic, so as to avoid both extreme curvatures and extreme angles of incidence near or beyond the critical angle. At least one of these surfaces may be aspheric, so as to perform similar aberration correction functions to those which in lower NA "dry" designs may be achieved with air spaces between adjacent elements (e.g. the air space between elements E230 and E231 in Fig. 2) . The relatively high optical power in the last three positive elements minimizes the size increase of lens elements required in the rest of the system as the "dry" NA of 0.85 in designs such as Fig. 1 is increased to a "wet" NA of 1.2. This is very advantageous because the lenses would otherwise be larger than can be readily made with existing technology, and would thus be exceptionally expensive. The relatively high power of the last three elements also allows a pupil (aperture stop) position closer to the wafer than is typical in "dry" designs, e.g. Fig. 1.
A common feature of known catadioptric "dry" lithography projection systems is a negative powered element between the pupil and wafer. This feature, which is used to correct aberrations has the disadvantage that in a "wet" catadioptric optical projection system the main positive powered lenses would have to be larger than otherwise. The new arrangement in the present application has the advantage that it does not require such a negative powered lens and this further minimizes the lens diameter of the main positive powered lenses, and also the length of the optical path. The aberration correction of a negative lens element in "dry" designs (e.g. element L38 in Fig. 1) is performed, instead, by an aspheric surface close to the pupil. The negative powered lens group, elements E222 to E225 in Fig. 2, is a double-Gauss anastigmat arranged to reduce spherical aberration. It contributes to field curvature and lateral color correction' in the overall design, while minimizing higher-order coma and oblique spherical aberration that would otherwise be larger at NA 1.2 than they were in "dry" designs at NA 0.85 (Fig. 1) . This feature provides the advantage of allowing a wider field of view than would otherwise be possible at NA 1.2.
As illustrated in Figs. 5 and 6, it can be seen that the angle L of the marginal ray of the light cone projected to the boundary lens E233 decreases on passing into the boundary lens E233. Figs. 5 and Fig. 6 illustrate one embodiment, where it can be seen that the geometric focus F of the marginal rays L, prior to entering the boundary lens E233, is located between the two optical surfaces S263 and S564 of the boundary lens, and is also between the centre of curvature CC of the boundary lens and the optical surface S263 of the boundary lens.
As also can be seen from Fig. 6, as the refractive index of the boundary lens E233 may typically not be equal to, and practically would be higher than, the refractive index of the layer of immersion liquid IL, the angle S of the marginal ray may increase on passing from the boundary lens E233 to the immersion liquid layer before impinging on the image plane IP.
It should be noted that the terms "object plane", "image plane", "pupil plane", and "plane mirror" are not limited to being plane surfaces, or plane mathematical surfaces, but may also be curved physical or mathematical surfaces. It should also be noted that the illustrations in Figures 1 to 6 are not to scale, and that the beam splitter E212, E218 may be a single element having two optical paths there through.
The aspheric surfaces A(l) to A12) in Table 1 are defined by equation (3):
Z = {CURV)Y2 + (^)74 + (i?)r6 + (C)78 + (£))7l0 l + (l - (l + K){CURV)2 γ2y2
+ {E)Y12 + {F)YU + {G)Y16 + (H)F18 + {J)Y2
(3)
CURV is the inverse value of the apex radius of curvature, and the values CURV (or Curv) , A, B, C, D, E, F, G, Η, and J are tabulated in Table 2.
In Table 1, the sign of the radius indicates the direction of curvature, CC indicates a concave surface and CX indicates a convex surface. In the embodiment of table 1 the largest diameter of any of the lens elements E202 to E211, E213 to 217, E219 to E228 and E229 to E233 is only 242.8mm for the positive lens element 227.
Table 1
Figure imgf000053_0001
Figure imgf000054_0001
Table 2
Figure imgf000054_0002
Fig. 7 schematically illustrates the configuration of an exposure apparatus incorporating the present invention. In Fig. 7, a Z-axis is set in parallel with a reference optical axis AX of a projection optical system PL; a Y-axis is set in parallel with the paper plane of Fig. 1, within a plane perpendicular to the reference axis AX; and an X-axis is set perpendicularly to the paper plane of Fig. 1. The exposure apparatus shown in Fig. 7 has an ArF excimer laser source (oscillation center wavelength: 193.306 nm; used in the second and fourth embodiments) or an F2 laser source (oscillation center wavelength: 157.631 nm; used in the third embodiment) as a light source 100 for supplying illuminating light of ultraviolet range. The light emitted from the light source 100 superposingly illuminates a reticle R having a prescribed pattern formed thereon via an illuminating optical system IL. An optical path between the light source 100 and the illuminating optical system IL is sealed with a casing (not shown) , and the space from the light source 100 to an optical member the closest to the reticle in the illuminating optical system IL is substituted by an inert gas such as helium or nitrogen which is a gas having a low absorption rate of the exposure light, or kept in substantially a vacuum state.
The reticle R is held in parallel with an XY plane on the reticle stage via a reticle holder RH . A pattern to be transferred has been formed on the reticle R. A rectangular (slit-shaped) pattern area having a longer side in the X-direction in the entire pattern area and a shorter side in the Y-direction in the entire pattern area is illuminated. The reticle stage RS is two-dimensionally movable along the reticle surface (i.e., the X-Y plate) under the effect of a driving system not shown. The positional coordinates are measured by a interferometer RIF using a reticle moving mirror RM, and positionally controlled. Light from the pattern formed on the reticle R forms a reticle pattern image on a wafer W serving as a photosensitive substrate via a projection optical system PL. The wafer W is held in parallel with the XY plane on the wafer stage WS via a wafer holder table WT . To correspond to the rectangular illuminating area on the reticle R, a pattern image is formed in the rectangular exposure area having a longer side in the X-direction and a shorter side in the Y-direction on the wafer W. The wafer stage WS is two-dimensionally movable along the wafer surface (i.e., the XY plane) under the effect of a driving system not shown. The positional coordinates thereof are measured by an interferometer WIF using a wafer moving mirror WM and positionally controlled. Fig. 8 illustrates the positional relationship between the rectangular effective exposure area formed on the wafer and the reference optical axis in second and third embodiments of the invention. In the second and third embodiments of the invention, as shown in Fig. 8, in a circular area (image circle) IF having a radius B around the reference optical axis AX as the center, the rectangular effective exposure area ER having a desired size is set at a position eccentric by A from the reference axis in the -Y direction. The effective exposure area ER has an X-direction length LX and a Y-direction length LY.
In other words, in the second and third embodiments, a rectangular effective exposure area ER having a desired size is set at a position apart by a off-axis amount A from the reference optical axis AX in the -Y direction, and the radius B of the circular image circle IF is regulated so as to comprehensively envelope the effective exposure area ER with the reference optical axis AX as the center. In response to this, on the reticle R, a rectangular illuminating area (i.e., effective illumination area) having a size and shape corresponding to the effective exposure area ER is formed at a position apart from the reference optical axis AX in the -Y direction by a distance corresponding to the off-axis amount A. Fig. 9 illustrates the positional relationship between the rectangular effective exposure area formed on a wafer and the reference optical axis in a fourth embodiment of the present invention. In the fourth embodiment of the invention, as shown in Fig. 9, in a circular area (image circle) IF having a radius B around the reference optical axis AX as the center, a rectangular effective exposure area ER extending in a long and thin shape in the X-direction is set with the reference optical axis as the center. The effective exposure area ER has an X-direction length LX and a Y- direction length LY. Although not shown, therefore, in response to this, a rectangular illuminating area having a size and shape corresponding to the effective exposure area ER around the reference optical axis AX as the center, is formed on the reticle R. The exposure apparatus of this embodiment has a configuration in which, from among the optical members forming the projection optical system PL, the interior of the projection optical system PL is kept in an airtight state between the optical member arranged at a position the closest to the reticle (in the fourth embodiment, the lens Lll) and the boundary lens Lb arranged at a position the closest to the wafer W. The gas in the projection optical system PL is substituted by an inert gas such as helium gas or nitrogen or kept substantially in a vacuum state. The reticle R, the reticle stage RS and the like are arranged in a narrow optical path between the illuminating optical system IL and the projection optical system PL. The inert gas such as nitrogen or helium gas is filled in the interior of a casing (not shown) hermetically enclosing the reticle R, the reticle stage RS and the like, or the interior is maintained substantially in a vacuum state .
Fig. 10 schematically illustrates the configuration between the boundary lens and the wafer in the embodiments. In the individual embodiments, the boundary lens Lb arranged at a position the closest to the wafer of the projection optical system PL has a convex surface toward the reticle (the first face) . In other words, the face Sb of the boundary lens Lb on the reticle side has a positive refractive power. A parallel flat sheet Lp is detachably inserted in the optical path between the boundary lens Lb and the wafer W. The optical path between the boundary lens Lb and the optical path between the parallel flat sheet Lp and the wafer W are filled with a medium Lm having a refractive index larger than 1.1. As the medium Lm, the second and the fourth embodiments use deionized water, and the third embodiment uses a fluorine-based inert liquid such as Florinat. In order to continue filling the optical path between the boundary lens Lb of the projection optical system PL and the wafer W with the liquid medium Lm during a period from beginning to end of scanning exposure in an exposure apparatus based on the step- and-scan process which accomplishes scanning and exposure while moving the wafer W relative to the projection optical system PL, for example, a technique disclosed in the above-mentioned International Publication No. WO99/49504 or a technique disclosed in Japanese Unexamined Patent Application Publication No. 10-303114 is applicable.
The technique disclosed in the International Publication No. WO99/49504 comprises the steps of filling an optical path between a boundary lens Lb and a wafer W with a liquid (medium Lm) of which the temperature is adjusted to a prescribed level from a liquid feeder via a supply pipe and a discharge nozzle, and collecting the liquid from the wafer W by means of the liquid feeder via a collecting pipe and an inlet nozzle. The amount of supplied liquid and the amount of collected liquid are adjusted in response to the moving speed of the wafer W relative to the projection optical system PL.
On the other hand, the technique disclosed in Japanese Unexamined Patent Application Publication No. 10-303114 comprises the steps of using a wafer holder table WT formed into a container so as to contain a liquid (medium Lm) , and positioning and holding a wafer
W by vacuum suction at the center of the inner bottom
(in the liquid) . A configuration is adopted so that the body tube tip of the projection optical system is immersed in the liquid and the optical face of the boundary lens Lb on the wafer side reaches the liquid level .
An atmosphere in which the exposure light is substantially unabsorbed is provided over the entire optical path from the light source 100 to the wafer W. As described above, the illumination area on the reticle R regulated by the projection optical system PL and the exposure area on the wafer W (i.e., the effective exposure area ER) are rectangular in shape having shorter sides running in the Y-direction. Therefore, a reticle pattern is scanned and exposed on an area having a width equal to the longer side of the exposure area and a length corresponding to the amount of scanning (amount of movement) of the wafer W on the wafer W by synchronously moving (scanning) the reticle stage RS and the wafer stage WS, i.e., the reticle R and the wafer W in the shorter-side direction of the rectangular exposure area and illumination area, while performing positional control of the reticle R and the wafer W by means of a driving system and an interferometer (RIF, WIF) .
In the embodiments, the aspherical surface is expressed by the following equation (4) (which is equivalent to equation (3) using different notation) on the assumption of a height y in a direction perpendicular to the optical axis, a distance z (amount of sagging) in the optical axis direction between a contact plane at the apex of the asphere and a position on the asphere at the height y, an apex radius of curvature r, a conical coefficient K, and an n- dimensional asphere coefficient Cn. In the embodiments, the lens surfaces formed into aspheric shape are marked with * to the right of the surface numbers . z = (y2/r)/[l + {1 - (1 + K) y2/r2 } 1/2] + C4 - y4 + C6 - y6 + C8 - y8 + C10 - y10
+ C12 - y12 + C14 - y14 + C16 - y16 + C18 - y18 + C20 - y20 ( 4 )
Fig. 11 illustrates the lens configuration of the projection optical system of the second embodiment of the present invention. In the second embodiment, the projection optical system PL comprises a first image forming optical system Gl of the refraction type for forming a first intermediate image of the pattern of a reticle arranged on the object surface (plane 1) , a second image forming optical system G2 for forming a second intermediate image (the first intermediate image which is a secondary image of the reticle pattern) including a concave reflector CM, and a third image forming optical system of the refraction type for forming a final image (a reduced image of the reticle pattern) of the reticle pattern on the wafer W arranged on the image field (plane 2) on the basis of the light from the second intermediate image.
A first optical path bending mirror Ml for deflecting the light from the first image forming optical system Gl toward the second image forming optical system G2 is arranged near the forming position of the first intermediate image in the optical path between the first image forming optical system Gl and the second image forming optical system G2. A second optical path bending mirror M2 for deflecting the light from the second image forming optical system G2 toward the third image forming optical system G3 is arranged near the forming position of the second intermediate image in the optical path between the second image forming optical system G2 and the third image forming optical system G3.
The first image forming optical system Gl has a linearly extending optical axis AX1. The third image forming optical system G3 has a linearly extending optical axis AX3. The optical axis AX1 and the optical axis AX3 are set so as to aligned with a reference optical axis AX which is a common single optical axis. The reference optical axis AX is positioned in the gravity direction (i.e., vertical direction). As a result, the reticle R and the wafer W are arranged in parallel with each other along a plane perpendicular to the gravity direction, i.e., along a horizontal plane. In addition, all the lenses forming the first image forming the first image forming optical system Gl and all the lenses forming the third image forming optical system G3 are arranged along the horizontal plane on the reference optical axis AX.
On the other hand, the second image forming optical system G2 also has an optical axis AX2 extending linearly, and this optical axis AX2 is set so as to be perpendicular to the reference optical axis AX. The first optical path bending mirror Ml and the second optical path bending mirror M2 have flat reflecting faces, and are integrally formed as a single optical member (a single optical path bending mirror) having two reflecting faces. The line of intersection of these two reflecting faces (strictly, the line of intersection of the virtual extension surfaces thereof) are set so as to cross AXl of the first image forming optical system Gl, AX2 of the second image forming optical system G2 , and AX3 of the third image forming optical system G3 at one point.
In the second embodiment, an ArF excimer laser source is used as a light source 100. Quartz (Si02) is used for all the refracting optical members (lens components) forming the projection optical system PL and the parallel flat sheet Lp. The ArF excimer laser beam which is the exposure light has an oscillation center wavelength of 193.306 nm, and quartz has a refractive index of 1.5603261 for this center wavelength. Deionized water having a refractive index of 1.47 for the exposure light is used as the medium Lm present between the boundary lens Lb and the wafer W.
In the projection optical system PL in the second embodiment, the first image forming optical system Gl comprises, sequentially from the reticles side, a positive meniscus lens Lll with a convex face thereof directed toward the reticle; a biconvex lens L12 with an aspherical convex surface or face thereof directed toward the wafer; a positive meniscus lens L13 with a convex surface thereof directed toward the reticles; a positive meniscus lens L14 with a concave surface thereof directed toward the reticle; a negative meniscus lens L15 with a concave surface thereof directed toward the reticle; a positive meniscus lens L16 with a concave surface thereof directed toward the reticle; a positive meniscus lens L17 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lens L18 with a concave face thereof directed toward the reticle; a biconvex lens L19; and a positive meniscus lens L110 with an aspherical concave surface thereof directed toward the wafer . The second image forming optical system G2 comprises, sequentially from the reticle side (i.e., from the incident side) along the forward running path of the light, a negative meniscus lens L21 with an aspherical concave surface thereof directed toward the reticle; a negative meniscus lens L22 with a concave surface thereof directed toward the reticle; and a concave reflector CM.
The third image forming optical system G3 comprises, sequentially from the reticle side in the running direction of the light, a positive meniscus lens L31 with a concave surface thereof directed toward the reticle; a biconvex lens L32; a positive meniscus lens L33 with an aspherical concave surface thereof directed toward the wafer; a biconvex lens L34; a positive meniscus lens L35 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lens L36 with an aspherical concave surface thereof directed toward the wafer; an aperture stop AS; a biconvex lens L37; a negative meniscus lens L38 with a concave surface thereof directed toward the reticle; a positive meniscus lens L310 with a convex surface thereof directed toward the reticle; a positive meniscus lens L311 with an aspherical concave surface thereof directed toward the wafer; a positive meniscus lens L312 with a convex face thereof directed toward the reticle; and a flat-convex lens L313 (a boundary lens Lb) with a flat surface thereof directed toward the wafer.
A parallel flat sheet Lp is arranged in the optical path between the flat-convex lens L313 serving as a boundary lens Lb and the wafer W. The optical path between the boundary lens Lb and the parallel flat sheet Lp, and the optical path between the parallel flat sheet Lp and the wafer W are filled with a medium Lm comprising deionized water.
The following Tables 3 and 4 show various parameters of the projection optical system PL of the second embodiment of Fig. 11. In Table 3, λ represents a center wavelength of the exposure light; β, a projection magnification (an image forming magnification for all the systems); NA, a numerical aperture on the image side (wafer side) ; B, a radius of an image circle IF on the wafer W; A, an off-axis amount of the effective exposure area ER; LX, a size (longer side size) in the X-direction of the effective exposure area ER; and LY, a size (shorter side size) in the Y-direction of the effective exposure area ER.
The surface number represents the sequence from the reticle side in the light running direction from the reticle surface which is the object surface (plane 1) toward the wafer surface which is the image field (plane 2) ; r, curvature radii of the surfaces (in the case of an aspherical face, the apex curvature radii: in mm); d, the interval on the axis of the surfaces, i.e., the surface interval (mm); ED, the effective diameter (mm) of each surface; n, the refractive index relative to the center wavelength.
The surface interval d changes the sign every time reflection occurs. The sign of the surface interval is negative in the optical path from the reflecting surface of the first optical bending mirror Ml to the concave reflector CM and in the optical path extending from the reflecting surface of the second optical path bending mirror M2 to the image field. In the other optical paths, the sign is positive. For the first image forming optical system Gl, the radius of curvature of the convex surface directed toward the reticle has a positive sign, and the radius of curvature of the concave surface has a negative sign. On the other hand, for the third image forming optical system G3, the radius of curvature toward the reticle has a positive sign, and the radius of curvature of the convex surface has a negative sign. For the second image forming optical system G2, the radius of curvature of the concave radius toward the reticle (i.e., on the incident side) has a positive sign, and the radius of curvature of the convex surface has a negative sign. The notation in Tables 3 and 4 is used also in the next Tables 5 and 6.
The following parameter values apply to Tables 3 and 4: λ = 193.306 nm β = -1/4 NA = 1.0 D = B = 15 mm A = 3 mm LX = 26 mm LY = 4.4 mm Cb = 0.01095 mm"1 P = 0 mm"1 Cb-D/NA = 0.164 |P-D| = 0 Table 3
Figure imgf000069_0001
Figure imgf000070_0001
Table 4
Figure imgf000071_0001
Fig. 12 illustrates lateral aberration. In the aberration diagram, Y represents the image height. The notation used in Fig. 12 applies also in the subsequent Figs. 14 and 16. As is clear from the aberration diagram shown in Fig. 12, while, in the second embodiment, a very large image-side numerical aperture (NA = 1.0) is ensured by using an ArF excimer laser beam, the aberration is satisfactorily corrected over the entire effective exposure area.
Fig. 13 illustrates the lens configuration of the projection optical system of the third embodiment of the present invention. The projection optical system PL of the third embodiment is a reflection/refraction- type optical system having basically the same configuration as in the second embodiment. In the third embodiment, however, unlike the second embodiment, an F2 laser source is used as the light source 100. Calcium fluoride (CaF2) is employed for all the refractive optical members (lens components) forming the projection optical system PL and the parallel flat sheet Lp. F2 laser beam serving as the exposure light has an oscillation center wavelength of 157.631 nm, and for this center wavelength, the calcium fluoride has a refractive index of 1.5592267. A fluorine-based inert liquid having a refractive index of 1.36 to the exposure light is used as the medium Lm between the boundary lens Lb and the wafer W.
In the projection optical system PL of the third embodiment, the first image forming optical system Gl comprises, sequentially from the reticle side, a positive meniscus lens Lll with a convex surface thereof directed toward the reticle; a biconvex lens L12 with an aspherical convex surface thereof directed toward the wafer; a positive meniscus lens L13 with a convex surface thereof directed toward the reticle; a positive meniscus lens L14 with a concave surface thereof directed toward the reticle; a negative meniscus lens 115 with a concave surface thereof directed toward the reticle; a negative meniscus lens L16 with a concave surface thereof directed toward the reticle; a positive meniscus lens L17 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lend L18 with a concave surface thereof directed toward the reticle; a biconvex lens L19; and a biconvex lens L110 with an aspherical surface thereof directed toward the wafer.
The second image forming optical system G2 comprises, sequentially from the reticle side (i.e., from the incident side) along the running path of light, a negative meniscus lens L21 with an aspherical concave surface thereof directed toward the reticle; a negative meniscus lens L22 with a concave surface thereof directed toward the reticle; and a concave reflector CM.
The third image forming optical system G3 comprises, sequentially from the reticle side along the running path of light, a positive meniscus lens L31 with a concave surface thereof directed toward the reticle; a biconvex lens L32; a positive meniscus lens L33 with an aspherical concave surface thereof directed toward the wafer; a biconvex lens L34; a positive meniscus lens L35 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lens L36 with an aspherical concave surface thereof directed toward the wafer; an aperture stop AS; a biconvex lens L37; a negative meniscus lens L38 with a concave surface thereof directed toward the reticle; a positive meniscus lens L310 with a convex surface thereof directed toward the reticle; a positive meniscus lens L311 with an aspherical concave surface thereof directed toward the wafer; a positive meniscus lens L312 with a convex surface thereof directed toward the reticle; and a flat convex lens L313 (boundary lens Lb) with a flat surface thereof directed toward the wafer.
A parallel flat sheet Lp is arranged in an optical path between the flat convex lens L313 serving as the boundary lens Lb and the wafer W. An optical path between the boundary lens Lb and the parallel flat sheet Lp and an optical path between the parallel flat sheet Lp and the wafer W are filled with a medium Lm comprising a fluorine-based inert liquid. In the third embodiment, in which a relatively large light quantity loss occurs upon passing through the medium Lm comprising the fluorine-based inert liquid, the distance between the parallel flat sheet Lp and the wafer W, i.e., the working distance, is set to a value considerably smaller than in the first embodiment. The following Tables 5 and 6 show various parameters of the projection optical system PL of the third embodiment. The following parameter values apply in Tables 5 and 6: λ = 157.631 nm β = -1/4 NA = 1.0
D = B = 15 mm
A = 3 mm
LX = 26 mm
LY = 4.4 mm
Cb = 0.01087 mm"1
P = 0 mm"1
Cb-D/NA = 0.163
I P-D| = 0
Table 5
Figure imgf000075_0001
Figure imgf000076_0001
Table 6
Figure imgf000077_0001
Fig. 14 illustrates the lateral aberration in the third embodiment. As is evident from the aberration diagram shown in Fig. 14, in the third embodiment, while a very large image-side numerical aperture (NA = 1.0) is kept, the aberration is satisfactorily corrected over the entire effective exposure area.
Fig. 15 illustrates the lens configuration of the projection optical system of a fourth embodiment of the present invention. The projection optical system PL is a refraction-type optical system, unlike the first, second and third embodiments. However, in the fourth embodiment, as in the second embodiment, an ArF excimer laser source is used as the light source 100, and deionized water having a refractive index of 1.47 relative to the exposure light is used as the medium Lm provided between the boundary lens Lb and the wafer W. In the fourth embodiment, quartz (Si02) or calcium fluoride (CaF2) is used for the refractive optical member (a lens component) and the parallel flat sheet Lp forming the projection optical system PL. More specifically, lenses L13, L17, L18, L114, L115, L122 and L123 (Lb) are formed from calcium fluoride, and the other lenses and the parallel flat sheet Lp are formed from quartz. The ArF excimer laser beam serving as the exposure light has an oscillation center wavelength of 193.306 nm. Quartz has a refractive index of 1.5603261 for this center wavelength, and calcium fluoride has a refractive index of 1.5014548.
The projection optical system PL of the fourth embodiment comprises, sequentially from the reticle side, a biconcave lens Lll with an aspherical concave surface thereof directed toward the wafer; a negative meniscus lens L12 with a concave surface thereof directed toward the reticle; a' positive meniscus lens L13 with a concave surface thereof directed toward the reticle; a positive meniscus lens L14 with an aspherical concave surface thereof directed toward the reticle; a positive meniscus lens L16 with a convex surface thereof directed toward the reticle; a positive meniscus lens L17 with a convex surface thereof directed toward the reticle; a positive meniscus lens L18 with a convex surface thereof directed toward the reticle; a negative meniscus lens L19 with a convex surface thereof directed toward the reticle; a biconcave lens L110 with an aspherical concave surface thereof directed toward the reticle; a biconcave lens Llll with an aspherical concave surface thereof directed toward the wafer; a biconcave lens L112 with an aspherical concave surface thereof directed toward the wafer; a positive meniscus lens L113 with an aspherical concave surface thereof directed toward the wafer; a biconvex lens L114; a biconvex lens L115; a negative meniscus lens L116 with a convex surface thereof directed toward the reticle; an aperture stop AS; a biconcave lens L117; a positive meniscus lens L118 with a concave surface thereof directed toward the reticle; a biconvex lens L119; a positive meniscus lens L120 with a convex surface thereof directed toward the reticle; a positive meniscus lens L121 with an aspherical concave surface thereof directed toward the wafer; a positive meniscus lens L122 with a convex surface thereof directed toward the reticle; and a negative meniscus lens L123 (boundary lens Lb) with a convex surface thereof directed toward the reticle.
A parallel flat sheet Lp is arranged in an optical path between the negative meniscus lens L123 serving as a boundary lens Lb and the wafer W. An optical path between the boundary lens Lb and the parallel flat sheet Lp and an optical path between the parallel flat sheet Lp and the wafer W are filled with a medium Lm comprising deionized water.
The following Tables 7 and 8 show parameters of the projection optical system PL of the fourth embodiment. In Table 7 and 8, λ represents the center wavelength of the exposure light; β, a projection magnification (image forming magnification 'for the entire system) ; NA, the numerical aperture on the image side (wafer side) ; B, the radius of an image circle on the wafer W; LX, the size (the size of the longer side) of the effective exposure area ER in the X-direction; and LY, the size (the size of the shorter side) of the effective exposure area ER in the Y-direction. The surface number represents the sequence of a surface from the reticle side in the light running direction from the reticle surface which is the object surface (surface 1) to the wafer surface which is the image field (surface 2); r represents the radius of curvature of each surface (apex radius of curvature in the case of an aspherical surface: in mm); d, the interval on the axis of each surface, i.e., the surface interval (mn) ; ED, the effective diameter (mm) of each surface; and n, the refractive index for a center wavelength. It is assumed that the radius of curvature of a convex surface directed toward the reticle is positive, and a concave surface has a negative radius of curvature. The following parameter values apply in Tables 7 and 8: λ = 193.306 nm β = -1/4 NA = 0.9 D = B = 12 mm LX = 22 mm LY = 9 mm Cb = 0.002 mm"1 P = 0 mm"1 Cb-D/NA = 0.0267 I P- D I = 0 Table 7
Figure imgf000081_0001
Figure imgf000082_0001
Table 8
Figure imgf000083_0001
Fig. 16 illustrates a lateral aberration in the fourth embodiment. As is clear from the aberration diagram shown in Fig. 16, in the fourth embodiment, while a relatively large image-side numerical aperture (NA = 0.9) is maintained by using an ArF excimer laser beam in the refraction-type projection optical system, the aberration is satisfactorily corrected over the entire effective exposure area.
Thus, in the second embodiment, it is possible to ensure a high image-side numerical aperture of 1.0 for the ArF excimer laser beam having a wavelength of 193.306 nm and maintain a rectangular effective exposure area (stationary exposure area) having a size of 26 mm x 4.4 mm as an area in which various aberrations are sufficiently corrected within an image circle having a radius of 15 mm on the wafer W. For example, a circuit pattern can be scanned and exposed at a high resolution within a 26 mm x 33 mm rectangular exposure area.
In the third embodiment, it is possible to ensure a high image-side numerical aperture of 1.0 for the F2 laser beam having a wavelength of 157.631 nm and maintain a rectangular effective exposure area
(stationary exposure area) having a size of 26 mm x 4.4 mm as an area in which various aberrations are sufficiently corrected within an image circle having a radius of 15 mm on the wafer W. For example, a circuit pattern can be scanned and exposed at a high resolution within a 26 mm x 33 mm rectangular exposure area.
In the fourth embodiment, it is possible to ensure a high image-side numerical aperture of 0.9 for the ArF excimer laser beam having a wavelength of 193.306 nm and maintain a rectangular effective exposure area
(stationary exposure area) having a size of 22 mm x 9 mm as an area in which various aberrations are sufficiently corrected within an image circle having a radius of 12 mm on the wafer W. For example, a circuit pattern can be scanned and exposed at a high resolution within a 22 mm x 33 mm rectangular exposure area.
While, in the second embodiment, all the lens components are made of quartz, the risk of deterioration of the image forming function caused by the compaction of quartz can be avoided by forming small-diameter lenses from calcium fluoride, on which the energy of exposure light concentrates (such as the boundary lens Lb arranged near the wafer W or the lens L312) .
If it is preferable to limit the condition relating to the magnification of the third imaging lens group, the conditional expression can be limited as follows : 0.75 < MA/MG3 < 1.1 (5) preferably 0.8 < MA/MG3<1.05 where MA denotes a magnification of the whole optical system, and MG3 denotes a magnification of the third imaging lens system G3. When a numerical aperture NA for light entering to the plane mirror having the role of separating optical paths becomes large, it becomes difficult to separate optical paths, so that it becomes necessary that the distance between the optical axis and the exposure area is made to be large. In order to secure sufficient exposure area, it is inevitable that the optical system becomes large. Even if a large numerical aperture NA is expected on the image side, by satisfying a conditional expression regarding the magnification of the third imaging lens group, the increase in numerical aperture on entering the plane mirror is gentle, so that optical path separation can be made easier. Accordingly, a large numerical aperture NA on the image side is secured and good optical performance can be obtained without causing the optical system to become large. In order to make the numerical aperture NA large and to prevent the diameter of lenses locating in the vicinity of the aperture stop getting larger, it is necessary to shorten the distance between the aperture stop and the image plane (second plane) as well as to increase the composite positive refractive power of the focusing lens group arranged between the aperture stop and the image plane. At the same time, in order to prevent lens deformation caused by holding a lens element, it is necessary to secure sufficient edge thickness of a lens, so that it is preferable that the focusing lens group is composed of five lens elements or less. Moreover, in order to increase positive refractive power effectively, it is preferable that the focusing lens group does not include a negative lens element.
For reference purposes, the following summarises the overall magnification MA and the magnification MG3, of the third stage G3 in various embodiments.
Magnification MA MG3 MA/MG3 1st Embodiment 1/4
1/3.55 0.888
2nd Embodiment (ArF) 1/4
1/3.53 0.883 3rd Embodiment (F2) 1/4
1/3.78 0.945
5th Embodiment 1/4
1/3.42 0.855
Tables 9 and 10 show various values associated with the fifth embodiment.
The following parameters apply in the fifth embodiment shown in Fig. 19:
NA (image side) : 1.25
Magnification MA: 1/4 Exposure area: A=3.5 mm, B=15.1 mm
→rectangular area 26 mmχ4 mm
Central Wavelength: 193.306 nm
Refractive index of silica glass: 1.5603261
Refractive index of purified water: 1.4368163 Dispersion of silica glass (dn/dλ) : -1.591E-6/pm
Dispersion of purified water (dn/dλ): -2.096E-6/pm
In the meantime one example of the immersion liquid for the photolithography machine using F2 laser is perfluoropolyether (PFPE) . In the projection optical system PL in the fifth embodiment of Fig. 19, the first image forming optical system Gl comprises, sequentially from the reticle side, a positive lens Lll with a convex surface thereof directed toward the reticle; a positive meniscus lens L12 with a convex surface thereof directed toward the reticle; a biconvex lens L13 with wafer side aspheric surface; a positive meniscus lens L14 with a convex surface thereof directed toward the reticle; a positive meniscus lens L15 with a concave surface thereof directed toward the reticle; a negative meniscus lens L16 with a concave surface thereof directed toward the reticle; a positive meniscus lens L17 with concave surface thereof directed toward the reticle; a positive meniscus lens L18 with aspheric concave surface thereof directed toward the reticle; a positive lens L19; and a positive meniscus lens LllO with aspheric surface thereof directed toward the wafer.
The second image forming optical system G2 comprises, sequentially from the reticle side (i.e., from the incident side) along the forward running path of the light, a negative meniscus lens L21 with an aspherical concave surface thereof directed toward the reticle; a negative meniscus lens L22 with a concave surface thereof directed toward the reticle; and a concave reflector CM. The third image forming optical system G3 comprises, sequentially from the reticle side in the running direction of the light, a positive meniscus lens L31 with a concave surface thereof directed toward the reticle; a biconvex lens L32; a positive lens L33; a positive meniscus lens L34 with an aspherical concave surface thereof directed toward the wafer; a biconcave negative lens L35 with an aspherical concave surface thereof directed toward the wafer; a negative meniscus lens L36 with an aspherical concave surface thereof directed toward the wafer; a biconvex lens L37; a positive lens L38 with an aspherical surface thereof directed toward the reticle; apositive meniscus lens L39 with a convex surface thereof directed toward the reticle; a positive lens L310 with an aspherical surface thereof directed toward the wafer; an aperture stop AS; a bicovex lens L311; a positive lens L312; a positive meniscus lens L313 with a concave aspheric surface thereof directed toward the wafer; a positive meniscus lens L314 with a concave aspheric surface thereof directed toward the wafer; and a flat-convex lens L315 (a boundary lens Lb) with a flat face thereof directed toward the wafer.
As is apparent from Fig. 20, the fifth embodiment achieves excellent correction for chromatic aberration within wavelength scope of ±0.4 pm. Table 9
Figure imgf000090_0001
Figure imgf000091_0001
Table 10
Figure imgf000091_0002
The exposure apparatus in the above-mentioned embodiments makes it possible to manufacture microdevices (such as semiconductor devices, image pickup devices, liquid crystal display devices and thin-film magnetic heads) by illuminating a reticle (mask) by an illuminating apparatus (illuminating step) , and exposing a pattern for transfer formed on the mask onto a photosensitive substrate by means of a projection optical system. A typical technique for obtaining a semiconductor device as a microdevice by forming a prescribed circuit pattern on a photosensitive substrate such as a wafer by using the exposure apparatus of this embodiment will be described with reference to a flowchart shown in Fig. 17. In step 301 shown in Fig. 17, metal films are vapor-deposited onto wafers of one batch. In the next step 302, photoresist is coated onto these metal films on the wafers of the batch. ' Subsequently in step 303, the pattern images on the masks are sequentially exposed and transferred in the individual shot areas on the wafers of the batch by using the exposure apparatus of this embodiment. Thereafter, after development of the photoresist on the wafers of the batch in step 304, circuit patterns corresponding to the patterns on the masks are formed in the individual shot areas on the wafers by conducting etching with the resist patterns as masks on the wafers of the batch.
Then, a device such as a semiconductor device is manufactured by forming the circuit pattern of an upper layer. According to the above-mentioned semiconductor device manufacturing method, a semiconductor device having a very fine circuit pattern can be obtained at a high throughput. In steps 301 to 305, a metal is vapor-deposited on the wafer; a resist is coated onto the metal film; and exposure, development and etching steps are performed. Prior to performing these steps, after forming a silicon oxide film on the wafer, resist may be coated onto the silicon oxide film, followed by exposure, development and etching steps. According to the exposure apparatus of this embodiment, it is possible to obtain a liquid crystal display device as a microdevice by forming a prescribed pattern (a circuit pattern, an electrode pattern or the like) on a plate (glass substrate) . A typical technique applied at this stage will be described with reference to the flowchart shown in Fig. 12. In Fig. 18, in the pattern forming step 401, a photolithographic step is executed through transfer and exposure of the pattern of the mask onto the photosensitive substrate (a glass substrate having a resist coated thereon, or the like) by using the exposure apparatus of this embodiment. As a result of this photolithographic process, many prescribed patterns including electrodes and the like are formed on the photosensitive substrate. The prescribed patterns are formed on the exposed substrate through steps such as developing, etching and resist stripping steps, and the process advances to the next color filter forming step 402.
Then, in the color filter forming step 402, many sets of these kinds of dots including R (red) , G (green) and B (blue) are arranged in a matrix shape, or a plurality of sets of stripe filters of R, G and B are arranged in the horizontal scanning lines, to form a color filter. After the color filter forming step 402, a cell assembling step 403 is executed. In the cell assembling step 403, a liquid crystal panel (liquid crystal cell) is assembled by using the substrate having prescribed patterns resulting from the pattern forming step 401, and the color filter obtained in the color filter forming step 402. In the cell assembling step 403, a liquid crystal is injected into the space between, for example, the substrate having the prescribed patterns resulting from the pattern forming step 401 and the color filter obtained in the color filter forming step 402, to manufacture a liquid crystal panel (liquid crystal cell) . Subsequently, in a module assembling step 404, component parts such as an electric circuit causing the assembled liquid crystal panel (liquid crystal cell) and backlights are attached, thus completing a liquid crystal display device. According to the above- mentioned manufacturing method of liquid crystal display devices, it is possible to obtain a liquid crystal display device having very fine circuit patterns at a high throughput. In the aforementioned embodiments, the present invention is applied to the exposure apparatus based on the step-and-scan process in which a mask pattern is scanned and exposed to exposure areas of the substrate while moving the mask and substrate relative to the projection optical system. The present invention is not however limited to this, but is applicable also to an exposure apparatus of the step-and-repeat process in which the mask pattern is transferred in a lump onto the substrate in a stationary state of the mask and the substrate, and the mask patterns are sequentially exposed onto the exposure areas by successively moving the substrate stepwise.
In the aforementioned embodiments, an ArF excimer laser source or an F2 laser source is used. The present invention is not however limited to this, but other appropriate light source may be employed. The present invention is applied in the aforementioned embodiments to a projection optical system mounted on an exposure apparatus. While the present invention is applied to a projection optical system mounted on an exposure apparatus, the present invention is not limited to this, but is applicable also to other popularly used projection optical systems.
According to the projection optical of the present invention, as described above, occurrence of reflection loss on an optical face can be satisfactorily inhibited, and a large effective image-side numerical aperture can be maintained by providing a medium having a high refractive index in the optical path to the image field, and imparting a positive refractive power onto the face of the boundary lens on the object side.
Therefore, in the exposure apparatus and the exposing method using the projection optical system of the present invention, a fine pattern can be transferred and exposed at a high accuracy via the projection optical system having a large and effective image-side numerical aperture and a high resolution. A satisfactory microdevice through high-accuracy projection and exposure via a high-resolution projection optical system by using an exposure apparatus mounting the projection optical system of the present invention.

Claims

1. A projection optical system for projecting an image of a first plane (OP) onto a second plane (IP) comprising: a boundary lens (E233); and at least one layer of immersion liquid (IL) between the boundary lens (E233) and the second plane (IP); said boundary lens (E233) having a first plane side optical surface (S263) shaped such that for light projected onto the second plane (IP) through the boundary lens (E233) the marginal ray convergence angle
(L) prior to incidence is larger than the marginal ray convergence angle (S) within said boundary lens (E233) .
2. The projection optical system of Claim 1 further comprising: at least one positive powered lens element (E231, E232) proximal to said boundary lens (E233), and having an aspheric optical surface (S259, S260, S261, S262) .
3. The projection optical system of Claim 1 wherein there are provided: a first positive powered lens element (E231) proximal to said boundary lens (E233), and having at least one aspheric optical surface (S259, S260); and a second positive powered lens element (E232) between the first positive powered lens element (E231) and said boundary lens (E233) , and having at least one aspheric optical surface (S261, S262).
4. The projection optical system of any one of Claims 1 to 3 further comprising a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element (E222), a first negative powered lens element (E223) , a second negative powered lens element (E224), and a fourth positive powered lens element (E225).
5. The projection optical system of any one of Claims 1 to 4 further comprising a catadioptric anastigmat comprising a concave mirror (E215) and at least one negative powered Schupmann lens (E213, E214).
6. The projection optical system of Claim 5 wherein the catadioptric anastigmat comprises two negative powered Schupmann lenses (E213, E214) .
7. The projection optical system of any one of Claims 1 to 6 adapted for use with ultraviolet light.
8. A projection optical system for projecting an image of a first plane (OP) to a second plane (IP) comprising : an optical system; a boundary lens (E233); and at least one layer of immersion liquid (IL) between said boundary lens (E233) and said second plane (IP); wherein light from the first plane (OP) is transmitted through the optical system, and output with a predetermined marginal ray convergence angle (L) ; and said boundary lens (E233) is positioned to receive said light output from the optical system, and adapted such that for light projected onto the second plane (IP) through the boundary lens (E233) the marginal ray convergence angle (L) prior to incidence is larger than the marginal ray convergence angle (S) within said boundary lens (E233).
9. The projection optical system according to Claim 8 wherein the optical system comprises: at least one positive powered lens element (E231, E232) proximal to said boundary lens (E233) , and having an aspheric optical surface (S259, S260, S261, S262) .
10. The projection optical system of Claim 8 wherein the optical system comprises: a first positive powered lens element (E231) proximal to said boundary lens (E233), and having at least one aspheric optical surface (S259, S260); and a second positive powered lens element (E232) between the first positive powered lens element (E231) and said boundary lens (E233) , and having at least one aspheric optical surface (S261, S262) .
11. The projection optical system of any one of Claims 8 to 10 wherein the optical system comprises: a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element (E222) , a first negative powered lens element (E223), a second negative powered lens element (E224), and a fourth positive powered lens element (E225) .
12. The projection optical system of any one of Claims 8 to 11 wherein the optical system further comprises a catadioptric anastigmat comprising a concave mirror (E215) and at least one negative powered Schupmann lens (E213, E214).
13. The projection optical system of Claim 12 wherein the catadioptric anastigmat comprises two negative powered Schupmann lenses (E213, E214).
14. The projection optical system of any one of Claims 8 to 13 adapted for use with ultraviolet light.
15. A method of projecting an image of a first plane onto a second plane (IP) including the steps of: passing light having a first marginal ray convergence angle (L) to a boundary lens (E233) ; passing light having a second marginal ray convergence angle (S) though the boundary lens (E233) ; and passing light from said boundary lens (E233) through a layer of immersion liquid (IL) to the second plane (IP) ; wherein the first marginal ray convergence angle (L) is greater than the second marginal ray convergence angle (S) .
16. The projection method of Claim 15 including the step of passing light through at least one positive powered lens element (E231, E232) proximal to said boundary lens (E233) , and having an aspheric optical surface (S259, S260, S261, S262) .
17. The projection method of Claim 15 including the steps of: passing light through a first positive powered lens element (E231) proximal to said boundary lens (E233), and having at least one aspheric optical surface (S259, S260) ; and passing light through a second positive powered lens element (E232) between the first positive powered lens element (E231) and said boundary lens (E233) , and having at least one aspheric optical surface (S261, S262) .
18. The projection method of any one of Claims 15 to 17 further including the step of passing light through a double-Gauss anastigmat arranged to reduce spherical aberration including a third positive powered lens element (E222), a first negative powered lens element (E223) , a second negative powered lens element (E224), and a fourth positive powered lens element (E225) .
19. The projection method of any one of Claims 15 to 18 including the step of passing light through a catadioptric anastigmat comprising a concave mirror (E215) and at least one negative powered Schupmann lens (E213, E214) .
20. The projection method of Claim 19 including the step of passing light through two negative powered Schupmann lenses (E213, E214).
21. The projection method of any one of Claims 15 to 20 wherein said light is a beam of ultraviolet light.
22. An exposure apparatus comprising an illuminating system for illuminating a mask set on the first plane (OP), and a projection optical system according to any one of Claims 1 to 21 for forming an image of a pattern formed on said mask on a photosensitive substrate set on the second plane (IP) .
23. An exposing method comprising the steps of illuminating a mask set on the first plane (OP) , and projecting and exposing a pattern image formed on said mask on a photosensitive substrate set on the second plane (IP) via the projection optical system according to any one of Claims 1 to 21.
24. A projection optical system for projecting an image of a first plane (OP) onto a second plane (IP) , comprising: an optical path having a plurality of lenses including a boundary lens which is arranged at a position closest to the second plane, wherein the first plane (OP) side surface of the boundary lens has a positive refractive power, and for an atmosphere in said optical path having a refractive index of 1, the optical path between said boundary lens and said second plane (IP) is filled with a medium having a refractive index larger than 1.1.
25. The projection optical system according to Claim 24, which satisfies the condition as expressed by:
0.012 < Cb-D/NA < 0.475 where, Cb represents the curvature of said boundary lens on the first plane (OP) side; D represents the distance between an optical axis and the outermost point of an effective image forming area, and NA represents the numerical aperture on the second plane
(IP) side of the boundary lens.
26. The projection optical system according to Claim 24 or 25, wherein at least one optical member (Lp) having substantially no refractive power is arranged in the optical path between said boundary lens and said second plane (IP) ; and the optical path between said boundary lens and said optical member, and the optical path between said optical member and said second plane (IP) are filled with said medium.
27. The projection optical system according to Claim 26, wherein said at least one optical member having substantially no refractive power is detachably arranged in the optical path between said boundary lens and said second plane (IP) .
28. The projection optical system according to Claim 26 or 27, wherein the optical member having substantially no refractive power has an adjustable orientation.
29. The projection optical system according to any one of Claims 26 to 28, wherein said projection optical system satisfies the condition as expressed by:
I P - D I < 1.0 x 10"4 where, P represents the refractive power of said optical member having substantially no refractive power, and D represents the distance between the optical axis and the outermost point of the effective image forming area.
30. The projection optical system according to any one of Claims 24 to 29, wherein said projection optical system is a catadioptric optical system comprising at least one concave reflector.
31. The projection optical system according to Claim 30, having an effective image forming area eccentric relative to the optical axis, wherein at least one intermediate image is formed in said optical path of said projection optical system.
32. The projection optical system according to Claim
31, comprising one image forming optical system (G2), having said at least one concave reflector, for forming said intermediate image; and another image forming optical system (G3) for forming a final image on said second plane (IP) on the basis of the flux from said the intermediate image; and a deflecting mirror arranged in the optical path between said one image forming optical system and said another image forming optical system.
33. The projection optical system according to Claims
32, wherein the following conditional expression is satisfied:
0.75 < MA/MG3 < 1.1 where, MA denotes a magnification of the whole optical system, and MG3 denotes a magnification of the another imaging optical system (G3) .
34. The projection optical system according to Claim 31, comprising a first image forming optical system (Gl) for forming a first intermediate image of said first plane (OP) ; a second image forming optical system (G2) , having said at least one concave reflector, for forming a second intermediate image on the basis of said first intermediate image; and a third image forming optical system (G3) for forming a final image on said second plane (IP) on the basis of the flux from said second intermediate image; wherein: a first deflecting mirror is arranged in the optical path between said first image forming optical system and said second image forming optical system; and a second deflecting mirror is arranged in an optical path between said second image forming optical system and said third image forming optical system.
35. The projection optical system according to Claim 34, wherein the optical axis of said first image forming optical system is aligned with the optical axis of said third image forming optical system.
36. The projection optical system according to Claim 34 or 35, wherein the following conditional expression is satisfied;
0.75 < MA/MG3 < 1.1 where, MA denotes a magnification of the whole optical system, and MG3 denotes a magnification of the third imaging forming optical system (G3) .
37. The projection optical system according to Claims 32 or, wherein said another image forming optical system (G3) includes an aperture stop, and wherein the number of lens elements arranged on the second plane (IP) side of the aperture stop is five or less.
38. The projection optical system according to Claims 37, wherein all lens elements arranged between the second plane (IP) and the aperture stop in the third image forming optical system have positive refractive power.
39. The projection optical system according to Claims 37, wherein no lens element having negative refractive power is included in the lens elements .arranged in the second plane (IP) side of the aperture stop.
40. The projection optical system according to any one of Claims 24 to 39, wherein the numerical aperture on the first plane (OP) side is 0.22 or larger.
41. The projection optical system according to any one of Claims 24 to 40, wherein the light quantity loss occurring upon passing through said medium is 50% or lower .
42. An exposure apparatus comprising an illuminating system for illuminating a mask set on a first plane (OP), and a projection optical system according to any one of Claims 24 to 41 for forming an image of a pattern formed on said mask on a photosensitive substrate set on said second plane (IP) .
43. An exposing method comprising the steps of illuminating a mask set on a first plane (OP) , and projecting and exposing a pattern image formed on said mask on a photosensitive substrate set on a second plane (IP) via the projection optical system according to any one of Claims 24 to 41.
PCT/JP2003/010665 2002-08-23 2003-08-22 Projection optical system and method for photolithography and exposure apparatus and method using same WO2004019128A2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP03792812A EP1532489A2 (en) 2002-08-23 2003-08-22 Projection optical system and method for photolithography and exposure apparatus and method using same
AU2003256081A AU2003256081A1 (en) 2002-08-23 2003-08-22 Projection optical system and method for photolithography and exposure apparatus and method using same
US10/525,372 US7362508B2 (en) 2002-08-23 2003-08-22 Projection optical system and method for photolithography and exposure apparatus and method using same
JP2004530609A JP2005536775A (en) 2002-08-23 2003-08-22 Projection optical system, photolithography method and exposure apparatus, and method using exposure apparatus
US11/907,679 US7551362B2 (en) 2002-08-23 2007-10-16 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/907,797 US7701640B2 (en) 2002-08-23 2007-10-17 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/907,801 US7688517B2 (en) 2002-08-23 2007-10-17 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/907,907 US7609455B2 (en) 2002-08-23 2007-10-18 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/907,908 US7580197B2 (en) 2002-08-23 2007-10-18 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/976,028 US7619827B2 (en) 2002-08-23 2007-10-19 Projection optical system and method for photolithography and exposure apparatus and method using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-242925 2002-08-23
JP2002242925 2002-08-23
GB0311470A GB0311470D0 (en) 2003-05-19 2003-05-19 Optical projection system for photolithography
GB0311470.9 2003-05-19

Related Child Applications (7)

Application Number Title Priority Date Filing Date
US10525372 A-371-Of-International 2003-08-22
US11/907,679 Continuation US7551362B2 (en) 2002-08-23 2007-10-16 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/907,801 Continuation US7688517B2 (en) 2002-08-23 2007-10-17 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/907,797 Continuation US7701640B2 (en) 2002-08-23 2007-10-17 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/907,907 Continuation US7609455B2 (en) 2002-08-23 2007-10-18 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/907,908 Continuation US7580197B2 (en) 2002-08-23 2007-10-18 Projection optical system and method for photolithography and exposure apparatus and method using same
US11/976,028 Continuation US7619827B2 (en) 2002-08-23 2007-10-19 Projection optical system and method for photolithography and exposure apparatus and method using same

Publications (2)

Publication Number Publication Date
WO2004019128A2 true WO2004019128A2 (en) 2004-03-04
WO2004019128A3 WO2004019128A3 (en) 2004-10-28

Family

ID=31948049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010665 WO2004019128A2 (en) 2002-08-23 2003-08-22 Projection optical system and method for photolithography and exposure apparatus and method using same

Country Status (8)

Country Link
US (7) US7362508B2 (en)
EP (1) EP1532489A2 (en)
JP (3) JP2005536775A (en)
KR (1) KR20050035890A (en)
CN (1) CN100462844C (en)
AU (1) AU2003256081A1 (en)
TW (2) TWI242691B (en)
WO (1) WO2004019128A2 (en)

Cited By (372)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031823A1 (en) * 2003-09-29 2005-04-07 Nikon Corporation Liquid immersion type lens system and projection aligner, device production method
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
WO2005124833A1 (en) * 2004-06-21 2005-12-29 Nikon Corporation Exposure device, exposure device member cleaning method, exposure device maintenance method, maintenance device, and device manufacturing method
WO2006005547A1 (en) * 2004-07-14 2006-01-19 Carl Zeiss Smt Ag Catadioptric projection objective
JP2006024915A (en) * 2004-06-10 2006-01-26 Nikon Corp Exposure system, exposing method, and device manufacturing method
WO2006013734A1 (en) * 2004-08-03 2006-02-09 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7009682B2 (en) 2002-11-18 2006-03-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7012673B2 (en) 2003-06-27 2006-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
WO2006043457A1 (en) 2004-10-18 2006-04-27 Nikon Corporation Projection optical system, exposure system, and exposure method
US7038760B2 (en) 2003-06-30 2006-05-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006051909A1 (en) * 2004-11-11 2006-05-18 Nikon Corporation Exposure method, device manufacturing method, and substrate
WO2006051689A1 (en) 2004-11-10 2006-05-18 Nikon Corporation Projection optical system, exposure equipment and exposure method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006059636A1 (en) * 2004-12-02 2006-06-08 Nikon Corporation Exposure device and device manufacturing method
JP2006165502A (en) * 2004-06-21 2006-06-22 Nikon Corp Exposure apparatus, method of cleaning member thereof, maintenance method of exposure apparatus, maintenance device, and device manufacturing method
JP2006163369A (en) * 2004-11-10 2006-06-22 Nikon Corp Projection optical system, exposure apparatus and exposure method
US7075616B2 (en) 2002-11-12 2006-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7081943B2 (en) 2002-11-12 2006-07-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110087B2 (en) 2003-06-30 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7113259B2 (en) 2003-10-31 2006-09-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119874B2 (en) 2003-06-27 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
FR2885235A1 (en) * 2005-04-29 2006-11-03 Sagem Defense Securite OPTICAL SYSTEM FOR A PHOTOLITHOGRAPHY DEVICE
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006121009A1 (en) 2005-05-12 2006-11-16 Nikon Corporation Projection optical system, exposure apparatus and exposure method
WO2006125617A2 (en) 2005-05-27 2006-11-30 Carl Zeiss Smt Ag Method for improving the imaging properties of a projection objective, and such a projection objective
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006137410A1 (en) 2005-06-21 2006-12-28 Nikon Corporation Exposure apparatus, exposure method, maintenance method and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007005571A (en) * 2005-06-24 2007-01-11 Nikon Corp Exposure device and device manufacturing method
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7184122B2 (en) 2003-07-24 2007-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2007023813A1 (en) 2005-08-23 2007-03-01 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
US7193681B2 (en) 2003-09-29 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193232B2 (en) 2002-11-12 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with substrate measurement not through liquid
US7199858B2 (en) 2002-11-12 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2007040254A1 (en) 2005-10-05 2007-04-12 Nikon Corporation Exposure apparatus and exposure method
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7218453B2 (en) 2005-02-04 2007-05-15 Carl Zeiss Smt Ag Projection system, in particular for a microlithographic projection exposure apparatus
WO2007055373A1 (en) 2005-11-14 2007-05-18 Nikon Corporation Liquid recovery member, exposure apparatus, exposure method, and device production method
WO2007055237A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2007066692A1 (en) 2005-12-06 2007-06-14 Nikon Corporation Exposure method, exposure apparatus, and method for manufacturing device
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1814146A1 (en) * 2004-11-19 2007-08-01 Nikon Corporation Maintenance method, exposure method, exposure apparatus, and device producing method
WO2007094470A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2007094407A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007097466A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007100081A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure method and apparatus, and device manufacturing method
WO2007108415A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007108414A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
EP1843385A1 (en) * 2005-01-28 2007-10-10 Nikon Corporation Projection optical system, exposure system, and exposure method
WO2007114024A1 (en) 2006-04-03 2007-10-11 Nikon Corporation Projection optical system, aligner, and method for fabricating device
WO2007119501A1 (en) 2006-03-23 2007-10-25 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
JP2007531060A (en) * 2004-03-29 2007-11-01 ケーエルエー−テンカー テクノロジィース コーポレイション Catadioptric imaging system for broadband microscopy using immersion liquid
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2007138834A1 (en) 2006-05-31 2007-12-06 Nikon Corporation Exposure apparatus and exposure method
US7309870B2 (en) 2003-05-06 2007-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7312847B2 (en) 2002-03-08 2007-12-25 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
JP2008502127A (en) * 2004-06-04 2008-01-24 カール・ツァイス・エスエムティー・アーゲー Projection system with compensation for intensity variation and compensation element therefor
US7339650B2 (en) 2003-04-09 2008-03-04 Nikon Corporation Immersion lithography fluid control system that applies force to confine the immersion liquid
WO2008026709A1 (en) 2006-09-01 2008-03-06 Nikon Corporation Discharge lamp, light source apparatus, exposure apparatus and exposure apparatus manufacturing method
US7352435B2 (en) 2003-10-15 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7359030B2 (en) 2002-11-29 2008-04-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379158B2 (en) 2002-12-10 2008-05-27 Nikon Corporation Exposure apparatus and method for producing device
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7385764B2 (en) 2003-12-15 2008-06-10 Carl Zeiss Smt Ag Objectives as a microlithography projection objective with at least one liquid lens
JP2008523426A (en) * 2004-12-09 2008-07-03 カール・ツアイス・エスエムテイ・アーゲー Transmission optical element and objective lens for microlithography projection exposure apparatus
DE102007062894A1 (en) 2007-01-23 2008-07-24 Carl Zeiss Smt Ag Lithographic projection lens has optical array of optical elements between object plane and image plane, and optical array has two correction elements for correcting aberration
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102008000790A1 (en) 2007-03-20 2008-09-25 Carl Zeiss Smt Ag A method for improving imaging properties of an optical system and such an optical system
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US7433050B2 (en) 2005-10-05 2008-10-07 Nikon Corporation Exposure apparatus and exposure method
US7433015B2 (en) 2003-10-15 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7436486B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and device manufacturing method
WO2008122410A2 (en) * 2007-04-05 2008-10-16 Carl Zeiss Smt Ag Optical correction element and method for the correction of temperature-induced imaging aberrations in optical systems, projection objective and projection exposure apparatus for semiconductor lithography
US7443482B2 (en) 2003-04-11 2008-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
WO2008129932A1 (en) 2007-04-12 2008-10-30 Nikon Corporation Discharge lamp, cable for connection, light source device, and exposure device
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US7456929B2 (en) 2004-10-15 2008-11-25 Nikon Corporation Exposure apparatus and device manufacturing method
DE102008001800A1 (en) 2007-05-25 2008-11-27 Carl Zeiss Smt Ag Projection lens for microlithography, microlithography projection exposure apparatus with such a projection lens, microlithographic manufacturing method for components as well as produced by this method component
EP1998223A2 (en) 2007-01-23 2008-12-03 Carl Zeiss SMT AG Projection lens for lithography
US7466392B2 (en) 2002-12-10 2008-12-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JPWO2007000984A1 (en) * 2005-06-28 2009-01-22 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
DE102008040613A1 (en) 2007-07-23 2009-01-29 Carl Zeiss Smt Ag Optical system of a microlithographic projection exposure apparatus
WO2009013903A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7532306B2 (en) 2003-05-30 2009-05-12 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus
WO2009060745A1 (en) 2007-11-06 2009-05-14 Nikon Corporation Control device, exposure method, and exposure device
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
DE102007054731A1 (en) 2007-11-14 2009-05-20 Carl Zeiss Smt Ag Optical element for reflection of UV radiation, manufacturing method therefor and projection exposure apparatus therewith
DE102007055567A1 (en) 2007-11-20 2009-05-28 Carl Zeiss Smt Ag Optical system
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7557900B2 (en) 2004-02-10 2009-07-07 Nikon Corporation Exposure apparatus, device manufacturing method, maintenance method, and exposure method
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
DE102008054683A1 (en) 2008-03-13 2009-09-17 Carl Zeiss Smt Ag Optical system for microlithographic projection exposure system, has partial sections to which distinct-polarization states are assigned, which remain obtained by sections so that light enters in sections with two input-polarization states
DE102008042356A1 (en) 2008-09-25 2010-04-08 Carl Zeiss Smt Ag Projection exposure system with optimized adjustment option
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
EP2177934A1 (en) 2008-10-17 2010-04-21 Carl Zeiss SMT AG High transmission, high aperture catadioptric projection objective and projection exposure apparatus
US7705968B2 (en) 2005-03-18 2010-04-27 Nikon Corporation Plate member, substrate holding device, exposure apparatus and method, and device manufacturing method
US7710653B2 (en) 2005-01-28 2010-05-04 Nikon Corporation Projection optical system, exposure system, and exposure method
US7719658B2 (en) 2004-02-13 2010-05-18 Carl Zeiss Smt Ag Imaging system for a microlithographical projection light system
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7738188B2 (en) 2006-03-28 2010-06-15 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus including the same
EP2199859A2 (en) 2004-01-05 2010-06-23 Nikon Corporation Exposure apparatus, exposure method, and device producing method
WO2010076894A1 (en) 2008-12-29 2010-07-08 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7755839B2 (en) 2003-12-19 2010-07-13 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
WO2010087504A1 (en) 2009-01-30 2010-08-05 Nikon Corporation Exposure apparatus and exposing method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
US7782538B2 (en) 2003-12-15 2010-08-24 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
EP2187251A3 (en) * 2005-03-31 2010-08-25 KLA-Tencor Technologies Corporation Small ultra-high NA catadioptric objective using a Mangin mirror
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US7804574B2 (en) 2003-05-30 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US7812926B2 (en) 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US7812925B2 (en) 2003-06-19 2010-10-12 Nikon Corporation Exposure apparatus, and device manufacturing method
US7817244B2 (en) 2002-12-10 2010-10-19 Nikon Corporation Exposure apparatus and method for producing device
US7817245B2 (en) 2003-09-29 2010-10-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7843550B2 (en) 2003-07-25 2010-11-30 Nikon Corporation Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method
US7848016B2 (en) 2006-05-05 2010-12-07 Carl Zeiss Smt Ag High-NA projection objective
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
EP2264532A2 (en) 2003-07-09 2010-12-22 Nikon Corporation Exposure apparatus and device manufacturing method
US7869121B2 (en) 2003-02-21 2011-01-11 Kla-Tencor Technologies Corporation Small ultra-high NA catadioptric objective using aspheric surfaces
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
US7884921B2 (en) 2006-04-12 2011-02-08 Nikon Corporation Illumination optical apparatus, projection exposure apparatus, projection optical system, and device manufacturing method
EP2284614A2 (en) 2003-10-09 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device producing method
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7898645B2 (en) 2003-10-08 2011-03-01 Zao Nikon Co., Ltd. Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7914972B2 (en) 2004-07-21 2011-03-29 Nikon Corporation Exposure method and device manufacturing method
US7916272B2 (en) 2003-03-25 2011-03-29 Nikon Corporation Exposure apparatus and device fabrication method
DE102009048553A1 (en) 2009-09-29 2011-03-31 Carl Zeiss Smt Gmbh Catadioptric projection objective with deflecting mirrors and projection exposure method
US7920338B2 (en) 2006-03-28 2011-04-05 Carl Zeiss Smt Gmbh Reduction projection objective and projection exposure apparatus including the same
US7924402B2 (en) 2003-09-19 2011-04-12 Nikon Corporation Exposure apparatus and device manufacturing method
US7924403B2 (en) 2005-01-14 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device and device manufacturing method
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US7929115B2 (en) 2007-06-01 2011-04-19 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus for microlithography
US7929110B2 (en) 2003-04-10 2011-04-19 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
EP2312395A1 (en) 2003-09-29 2011-04-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US7932996B2 (en) 2003-10-28 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US7936441B2 (en) 2005-05-12 2011-05-03 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2011051069A1 (en) 2009-10-28 2011-05-05 Carl Zeiss Smt Gmbh Catadioptric projection objective comprising a reflective optical component and a measuring device
US7948604B2 (en) 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
WO2011081062A1 (en) 2009-12-28 2011-07-07 株式会社ニコン Liquid immersion member, method for manufacturing liquid immersion member, exposure apparatus, and device manufacturing method
US7982857B2 (en) 2003-12-15 2011-07-19 Nikon Corporation Stage apparatus, exposure apparatus, and exposure method with recovery device having lyophilic portion
US7990517B2 (en) 2004-02-03 2011-08-02 Nikon Corporation Immersion exposure apparatus and device manufacturing method with residual liquid detector
US7995186B2 (en) 2003-10-08 2011-08-09 Zao Nikon Co., Ltd. Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004651B2 (en) 2007-01-23 2011-08-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8013975B2 (en) 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8013982B2 (en) 2006-08-31 2011-09-06 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US8018657B2 (en) 2003-04-17 2011-09-13 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
WO2011111878A1 (en) 2010-03-12 2011-09-15 Nikon Corporation Liquid immersion member and exposure apparatus
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8027023B2 (en) 2006-05-19 2011-09-27 Carl Zeiss Smt Gmbh Optical imaging device and method for reducing dynamic fluctuations in pressure difference
US8034539B2 (en) 2002-12-10 2011-10-11 Nikon Corporation Exposure apparatus and method for producing device
US8035797B2 (en) 2003-09-26 2011-10-11 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
US8035795B2 (en) 2003-04-11 2011-10-11 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the protection lens during wafer exchange in an immersion lithography machine
US8035799B2 (en) 2004-12-09 2011-10-11 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8040490B2 (en) 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8040491B2 (en) 2003-06-13 2011-10-18 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8045136B2 (en) 2004-02-02 2011-10-25 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8054472B2 (en) 2006-02-21 2011-11-08 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US8054448B2 (en) 2004-05-04 2011-11-08 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8054465B2 (en) 2004-11-18 2011-11-08 Nikon Corporation Position measurement method
US8054447B2 (en) 2003-12-03 2011-11-08 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US8064041B2 (en) * 2004-06-10 2011-11-22 Carl Zeiss Smt Gmbh Projection objective for a microlithographic projection exposure apparatus
US8064037B2 (en) 2003-08-21 2011-11-22 Nikon Corporation Immersion exposure apparatus and device manufacturing method with no liquid recovery during exposure
US8064039B2 (en) 2005-04-25 2011-11-22 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
DE102010021539A1 (en) 2010-05-19 2011-11-24 Carl Zeiss Smt Gmbh Projection lens with apertures
US8070145B2 (en) 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US8072576B2 (en) 2003-05-23 2011-12-06 Nikon Corporation Exposure apparatus and method for producing device
EP2392971A1 (en) 2006-11-16 2011-12-07 Nikon Corporation Surface treatment method and surface treatment apparatus, exposure method and exposure apparatus, and device manufacturing method
US8085381B2 (en) 2003-04-11 2011-12-27 Nikon Corporation Cleanup method for optics in immersion lithography using sonic device
US8089610B2 (en) 2003-04-10 2012-01-03 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8089615B2 (en) 2005-12-08 2012-01-03 Nikon Corporation Substrate holding apparatus, exposure apparatus, exposing method, and device fabricating method
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
WO2012008604A1 (en) 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012008606A1 (en) 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012008605A1 (en) 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012008620A2 (en) 2010-07-16 2012-01-19 Nikon Corporation Liquid recovery apparatus, exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
WO2012011612A2 (en) 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, immersion exposure apparatus, device fabricating method, program, and storage medium
WO2012011613A2 (en) 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, cleaning apparatus, device fabricating method, program, and storage medium
WO2012011605A1 (en) 2010-07-23 2012-01-26 Nikon Corporation Liquid immersion member and cleaning method
US8107162B2 (en) 2004-05-17 2012-01-31 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US8111375B2 (en) 2003-04-07 2012-02-07 Nikon Corporation Exposure apparatus and method for manufacturing device
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
US8111373B2 (en) 2004-03-25 2012-02-07 Nikon Corporation Exposure apparatus and device fabrication method
US8120751B2 (en) 2003-07-09 2012-02-21 Nikon Corporation Coupling apparatus, exposure apparatus, and device fabricating method
US8120763B2 (en) 2002-12-20 2012-02-21 Carl Zeiss Smt Gmbh Device and method for the optical measurement of an optical system by using an immersion fluid
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8126669B2 (en) 2008-06-09 2012-02-28 Carl Zeiss Smt Gmbh Optimization and matching of optical systems by use of orientation Zernike polynomials
US8134688B2 (en) 2006-09-01 2012-03-13 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
WO2012041341A1 (en) 2010-09-30 2012-04-05 Carl Zeiss Smt Gmbh Projection exposure system and projection exposure method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8174676B2 (en) 2005-07-01 2012-05-08 Carl Zeiss Smt Gmbh Method for correcting a lithography projection objective, and such a projection objective
US8179517B2 (en) 2005-06-30 2012-05-15 Nikon Corporation Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
US8189168B2 (en) 2007-05-28 2012-05-29 Nikon Corporation Exposure apparatus, device production method, cleaning apparatus, cleaning method, and exposure method
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
JP2012108540A (en) * 2004-07-14 2012-06-07 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8208124B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2472332A1 (en) 2004-11-01 2012-07-04 Nikon Corporation Exposure apparatus and device fabricating method
WO2012091163A1 (en) 2010-12-27 2012-07-05 Nikon Corporation Liquid immersion member, immersion exposure apparatus, exposing method, device fabricating method, program, and storage medium
WO2012091162A1 (en) 2010-12-27 2012-07-05 Nikon Corporation Liquid immersion member and cleaning method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US8233135B2 (en) 2004-12-15 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8233139B2 (en) 2008-03-27 2012-07-31 Nikon Corporation Immersion system, exposure apparatus, exposing method, and device fabricating method
US8233133B2 (en) 2003-05-28 2012-07-31 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8236467B2 (en) 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US8237915B2 (en) 2002-12-10 2012-08-07 Carl Zeiss Smt Gmbh Method for improving an optical imaging property of a projection objective of a microlithographic projection exposure apparatus
KR101171131B1 (en) 2004-07-14 2012-08-07 칼 짜이스 에스엠티 게엠베하 Catadioptric projection objective
US8243253B2 (en) 2003-04-10 2012-08-14 Nikon Corporation Lyophobic run-off path to collect liquid for an immersion lithography apparatus
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US8253921B2 (en) 2003-09-03 2012-08-28 Nikon Corporation Exposure apparatus and device fabricating method
JP2012186508A (en) * 2005-06-02 2012-09-27 Carl Zeiss Smt Gmbh Microlithography projection objective
US8289500B2 (en) 2006-09-29 2012-10-16 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8300211B2 (en) 2009-09-30 2012-10-30 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
US8305553B2 (en) 2004-08-18 2012-11-06 Nikon Corporation Exposure apparatus and device manufacturing method
US8310752B2 (en) 2006-11-30 2012-11-13 Carl Zeiss Smt Gmbh Method of manufacturing a projection objective and projection objective
US8325326B2 (en) 2004-06-07 2012-12-04 Nikon Corporation Stage unit, exposure apparatus, and exposure method
US8323855B2 (en) 2007-03-01 2012-12-04 Nikon Corporation Pellicle frame apparatus, mask, exposing method, exposure apparatus, and device fabricating method
US8330935B2 (en) 2004-01-20 2012-12-11 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US8345267B2 (en) 2008-04-04 2013-01-01 Carl Zeiss Smt Gmbh Apparatus for microlithographic projection exposure and apparatus for inspecting a surface of a substrate
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US8384874B2 (en) 2004-07-12 2013-02-26 Nikon Corporation Immersion exposure apparatus and device manufacturing method to detect if liquid on base member
WO2013027866A1 (en) 2011-08-25 2013-02-28 Nikon Corporation Exposure apparatus and method of confining a liquid
US8390784B2 (en) 2006-08-14 2013-03-05 Carl Zeiss Smt Gmbh Catadioptric projection objective with pupil mirror, projection exposure apparatus and projection exposure method
US8390779B2 (en) 2006-02-16 2013-03-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US8436981B2 (en) 2008-01-10 2013-05-07 Nikon Corporation Exposing method, exposure apparatus, and device fabricating method
DE102011086665A1 (en) 2011-11-18 2013-05-23 Carl Zeiss Smt Gmbh Projection objective of a microlithographic projection exposure apparatus
US8451424B2 (en) 2003-07-28 2013-05-28 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US8451425B2 (en) 2007-12-28 2013-05-28 Nikon Corporation Exposure apparatus, exposure method, cleaning apparatus, and device manufacturing method
WO2013077467A1 (en) 2011-11-25 2013-05-30 Nikon Corporation Liquid immersion member and immersion exposure apparatus
EP2605068A2 (en) 2004-06-10 2013-06-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8472001B2 (en) 2003-05-23 2013-06-25 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
WO2013100205A2 (en) 2011-12-28 2013-07-04 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
US8508718B2 (en) 2003-07-08 2013-08-13 Nikon Corporation Wafer table having sensor for immersion lithography
US8520187B2 (en) 2003-09-03 2013-08-27 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8520184B2 (en) 2004-06-09 2013-08-27 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device
US8542346B2 (en) 2006-12-01 2013-09-24 Carl Zeiss Smt Gmbh Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8547527B2 (en) 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
US8553202B2 (en) 2007-10-01 2013-10-08 Carl Zeiss Smt Gmbh Projection objective for microlithography
WO2013153939A1 (en) 2012-04-10 2013-10-17 Nikon Corporation Liquid immersion member and exposure apparatus
WO2013153965A1 (en) 2012-04-10 2013-10-17 Nikon Corporation Liquid immersion member and exposure apparatus
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US8605253B2 (en) 2006-07-03 2013-12-10 Carl Zeiss Smt Gmbh Lithographic projection objective
US8609301B2 (en) 2006-09-08 2013-12-17 Nikon Corporation Mask, exposure apparatus and device manufacturing method
US8619231B2 (en) 2009-05-21 2013-12-31 Nikon Corporation Cleaning method, exposure method, and device manufacturing method
DE102012212758A1 (en) 2012-07-20 2014-01-23 Carl Zeiss Smt Gmbh System correction from long time scales
WO2014014123A1 (en) 2012-07-20 2014-01-23 Nikon Corporation Liquid immersion member and exposure apparatus
US8638422B2 (en) 2005-03-18 2014-01-28 Nikon Corporation Exposure method, exposure apparatus, method for producing device, and method for evaluating exposure apparatus
US8654308B2 (en) 2004-07-12 2014-02-18 Nikon Corporation Method for determining exposure condition, exposure method, exposure apparatus, and method for manufacturing device
US8654306B2 (en) 2008-04-14 2014-02-18 Nikon Corporation Exposure apparatus, cleaning method, and device fabricating method
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8675171B2 (en) 2006-08-31 2014-03-18 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
WO2014057925A1 (en) 2012-10-12 2014-04-17 株式会社ニコン Exposure device provided with damper
WO2014057926A1 (en) 2012-10-12 2014-04-17 株式会社ニコン Exposure device, exposure method, device production method, program, and recording medium
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
US8721803B2 (en) 2006-12-05 2014-05-13 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
WO2014104159A1 (en) 2012-12-27 2014-07-03 株式会社ニコン Liquid-immersion member and exposure device
WO2014104107A1 (en) 2012-12-27 2014-07-03 株式会社ニコン Exposure device, exposure method, device production method, program, and recording medium
WO2014104139A1 (en) 2012-12-27 2014-07-03 株式会社ニコン Liquid-immersion member and exposure device
US8773638B2 (en) 2007-10-09 2014-07-08 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus with correction optical system that heats projection objective element
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2014115755A1 (en) 2013-01-22 2014-07-31 株式会社ニコン Functional coating, liquid immersion member, method for manufacturing liquid immersion member, light exposure apparatus, and device manufacturing method
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
WO2014139719A1 (en) 2013-03-13 2014-09-18 Carl Zeiss Smt Gmbh Projection lens with wavefront manipulator
US8860925B2 (en) 2006-09-01 2014-10-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US8908145B2 (en) 2006-02-21 2014-12-09 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US8928856B2 (en) 2003-10-31 2015-01-06 Nikon Corporation Exposure apparatus and device fabrication method
US8953143B2 (en) 2009-04-24 2015-02-10 Nikon Corporation Liquid immersion member
DE102013219986A1 (en) 2013-10-02 2015-04-02 Carl Zeiss Smt Gmbh Projection exposure method and projection exposure apparatus for microlithography
WO2015052781A1 (en) 2013-10-08 2015-04-16 株式会社ニコン Immersion member, exposure device and exposure method, and device production method
US9025126B2 (en) 2007-07-31 2015-05-05 Nikon Corporation Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
US9041902B2 (en) 2009-03-10 2015-05-26 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
DE102014204171A1 (en) 2014-03-06 2015-09-24 Carl Zeiss Smt Gmbh Optical element and optical arrangement with it
US9165738B2 (en) 2007-04-12 2015-10-20 Nikon Corporation Discharge lamp, connecting cable, light source apparatus, and exposure apparatus
US9176393B2 (en) 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9223225B2 (en) 2010-01-08 2015-12-29 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, and device manufacturing method
US9224632B2 (en) 2004-12-15 2015-12-29 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US9229333B2 (en) 2007-12-28 2016-01-05 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
WO2016001090A2 (en) 2014-07-01 2016-01-07 Carl Zeiss Smt Gmbh Optical manipulator, projection lens and projection exposure apparatus
DE102014212711A1 (en) 2014-07-01 2016-01-07 Carl Zeiss Smt Gmbh Plate-shaped optical element, optical manipulator, projection lens and projection exposure system
US9235133B2 (en) 2004-08-17 2016-01-12 Nikon Corporation Lighting optical device, regulation method for lighting optical device, exposure system, and exposure method
US9239524B2 (en) 2005-03-30 2016-01-19 Nikon Corporation Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
DE102015211699A1 (en) 2014-08-13 2016-02-18 Carl Zeiss Smt Gmbh Imaging optical system and optical design method
US9298102B2 (en) 2013-03-13 2016-03-29 Carl Zeiss Smt Gmbh Projection lens with wavefront manipulator
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US9329496B2 (en) 2011-07-21 2016-05-03 Nikon Corporation Exposure apparatus, exposure method, method of manufacturing device, program, and storage medium
US9352073B2 (en) 2013-01-22 2016-05-31 Niko Corporation Functional film
US9411246B2 (en) 2011-06-30 2016-08-09 Nikon Corporation Full-field maskless lithography projection optics
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3079164A1 (en) 2005-01-31 2016-10-12 Nikon Corporation Exposure apparatus and method for producing device
US9481846B2 (en) 2013-02-28 2016-11-01 Nikon Corporation Sliding film, member on which sliding film is formed, and manufacturing method therefor
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9639006B2 (en) 2003-07-28 2017-05-02 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US9651872B2 (en) 2013-03-13 2017-05-16 Carl Zeiss Smt Gmbh Projection lens with wavefront manipulator
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746788B2 (en) 2004-08-19 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US9798246B2 (en) 2003-05-13 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9810996B2 (en) 2006-05-09 2017-11-07 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9846372B2 (en) 2010-04-22 2017-12-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102016224403A1 (en) 2016-12-07 2017-12-28 Carl Zeiss Smt Gmbh Catadioptric projection objective and projection exposure method
US9857699B2 (en) 2004-06-16 2018-01-02 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9964858B2 (en) 2003-06-11 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102016224400A1 (en) 2016-12-07 2018-06-07 Carl Zeiss Smt Gmbh Catadioptric projection objective and method for its production
US10025204B2 (en) 2003-08-29 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US10248034B2 (en) 2003-10-28 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10261428B2 (en) 2002-11-12 2019-04-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10338478B2 (en) 2004-07-07 2019-07-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995930B2 (en) * 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
KR101516140B1 (en) 2003-05-06 2015-05-04 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
TWI282487B (en) * 2003-05-23 2007-06-11 Canon Kk Projection optical system, exposure apparatus, and device manufacturing method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7460206B2 (en) * 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
US20050185269A1 (en) * 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
JP2005191381A (en) * 2003-12-26 2005-07-14 Canon Inc Exposure method and system thereof
EP1714192A1 (en) * 2004-02-13 2006-10-25 Carl Zeiss SMT AG Projection objective for a microlithographic projection exposure apparatus
JP4510494B2 (en) * 2004-03-29 2010-07-21 キヤノン株式会社 Exposure equipment
WO2005098504A1 (en) 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
US20060244938A1 (en) * 2004-05-04 2006-11-02 Karl-Heinz Schuster Microlitographic projection exposure apparatus and immersion liquid therefore
KR101368523B1 (en) 2004-06-04 2014-02-27 칼 짜이스 에스엠테 게엠베하 System for measuring the image quality of an optical imaging system
JP2006032834A (en) * 2004-07-21 2006-02-02 Matsushita Electric Ind Co Ltd Exposure device, exposure method, and fabrication process of semiconductor device
CN101002127B (en) * 2004-08-03 2012-07-04 株式会社尼康 Projection optical system, exposing method and device
JP2006100429A (en) * 2004-09-28 2006-04-13 Nikon Corp Projection optical system, exposure device, and exposure method
DE102005045862A1 (en) * 2004-10-19 2006-04-20 Carl Zeiss Smt Ag Optical system for ultraviolet light has liquid lens arranged in space between first and second limiting optical elements and containing liquid transparent for wavelength less than or equal to 200 nm
JP2006222222A (en) * 2005-02-09 2006-08-24 Canon Inc Projection optical system and exposure apparatus having the same
US20060238735A1 (en) * 2005-04-22 2006-10-26 Vladimir Kamenov Optical system of a projection exposure apparatus
DE102006021161A1 (en) * 2005-05-25 2006-11-30 Carl Zeiss Smt Ag Projection lens e.g. refractive projection lens, for microlithography, has lens part in image side with free space that is filled with different liquids relative to refractive index during different modes of operation of projection lens
WO2006131242A1 (en) * 2005-06-10 2006-12-14 Carl Zeiss Smt Ag Multiple-use projection system
EP1970944A4 (en) 2005-12-06 2010-04-28 Nikon Corp Exposure apparatus, exposure method, projection optical system and device manufacturing method
US7932994B2 (en) 2005-12-28 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR20080094032A (en) * 2006-02-07 2008-10-22 가부시키가이샤 니콘 Catadioptric imaging system, exposure device, and device manufacturing method
WO2007094431A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
KR20090007282A (en) * 2006-04-14 2009-01-16 가부시키가이샤 니콘 Exposure method, exposure apparatus and device manufacturing method
US9511214B2 (en) 2006-05-02 2016-12-06 Vascular Access Technologies, Inc. Methods of transvascular retrograde access placement and devices for facilitating therein
DE102006022958A1 (en) * 2006-05-11 2007-11-22 Carl Zeiss Smt Ag Projection exposure apparatus, projection exposure method and use of a projection lens
KR20090033170A (en) 2006-06-30 2009-04-01 가부시키가이샤 니콘 Maintenance method, exposure method and apparatus and device manufacturing method
US20080100909A1 (en) * 2006-10-30 2008-05-01 Nikon Corporation Optical element, liquid immersion exposure apparatus, liquid immersion exposure method, and method for producing microdevice
JP5588176B2 (en) * 2006-12-28 2014-09-10 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective having an inclined deflection mirror, projection exposure apparatus, projection exposure method, and mirror
US7929114B2 (en) * 2007-01-17 2011-04-19 Carl Zeiss Smt Gmbh Projection optics for microlithography
WO2008104192A1 (en) * 2007-02-28 2008-09-04 Carl Zeiss Smt Ag Catadioptric projection objective with pupil correction
US20090051895A1 (en) * 2007-08-24 2009-02-26 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, device manufacturing method, and processing system
US8279399B2 (en) 2007-10-22 2012-10-02 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9013681B2 (en) * 2007-11-06 2015-04-21 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
CN101675500B (en) * 2007-11-07 2011-05-18 株式会社尼康 Exposure apparatus, exposure method and device manufacturing method
US9256140B2 (en) * 2007-11-07 2016-02-09 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method with measurement device to measure movable body in Z direction
US8665455B2 (en) * 2007-11-08 2014-03-04 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US8422015B2 (en) 2007-11-09 2013-04-16 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US8711327B2 (en) * 2007-12-14 2014-04-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
KR20100102580A (en) * 2007-12-17 2010-09-24 가부시키가이샤 니콘 Exposure apparatus, exposure method and device manufacturing method
US8745165B2 (en) 2008-03-11 2014-06-03 Disney Enterprises, Inc. System and method for managing distribution of rich media content
US7609381B2 (en) * 2008-03-20 2009-10-27 The Aerospace Corporation Compact, high-throughput spectrometer apparatus for hyperspectral remote sensing
US8345350B2 (en) * 2008-06-20 2013-01-01 Carl Zeiss Smt Gmbh Chromatically corrected objective with specifically structured and arranged dioptric optical elements and projection exposure apparatus including the same
TW201003053A (en) * 2008-07-10 2010-01-16 Nikon Corp Deformation measuring apparatus, exposure apparatus, jig for deformation measuring apparatus, position measuring method and device manufacturing method
US8705170B2 (en) * 2008-08-29 2014-04-22 Nikon Corporation High NA catadioptric imaging optics for imaging A reticle to a pair of imaging locations
NL2003363A (en) 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
US8435723B2 (en) * 2008-09-11 2013-05-07 Nikon Corporation Pattern forming method and device production method
DE102008048213A1 (en) * 2008-09-20 2010-03-25 Carl Zeiss Microimaging Gmbh Arrangement for extending beam paths in optical path of optical device, has chamber partially filled with liquid medium and is enclosed by housing, where chamber has entrance window and outlet window for light
US20100208194A1 (en) 2009-02-13 2010-08-19 Amitava Gupta Variable focus liquid filled lens apparatus
US8087778B2 (en) 2009-02-13 2012-01-03 Adlens Beacon, Inc. Variable focus liquid filled lens mechanism
DE102009037077B3 (en) 2009-08-13 2011-02-17 Carl Zeiss Smt Ag Catadioptric projection lens
US8817381B2 (en) 2009-10-13 2014-08-26 Adlens Beacon, Inc. Full field membrane design for non-round liquid lens assemblies
US8414121B2 (en) * 2009-10-13 2013-04-09 Adlens Beacon, Inc. Non-round fluid filled lens optic
US8136942B2 (en) 2009-10-14 2012-03-20 Adlens Beacon, Inc. Aspheric fluid filled lens optic
US8353593B2 (en) 2009-10-15 2013-01-15 Adlens Beacon, Inc. Hinge mechanism for a fluid filled lens assembly
US8596781B2 (en) * 2009-10-15 2013-12-03 Adlens Beacon, Inc. Fluid filled lens reservoir system and manufacturing method of the reservoir system
JP5650750B2 (en) 2009-10-15 2015-01-07 アドレンズ ビーコン インコーポレイテッド Fluid-filled lens and inflation mechanism for the same
US10061214B2 (en) 2009-11-09 2018-08-28 Nikon Corporation Exposure apparatus, exposure method, exposure apparatus maintenance method, exposure apparatus adjustment method and device manufacturing method
US20110153387A1 (en) * 2009-12-17 2011-06-23 Google Inc. Customizing surveys
US9036264B2 (en) 2010-08-12 2015-05-19 Adlens Beacon, Inc. Fluid-filled lenses and their ophthalmic applications
PT2628043T (en) 2010-10-11 2019-05-30 Adlens Beacon Inc Non powered concepts for a wire frame of fluid filled lenses
USD665009S1 (en) 2010-10-14 2012-08-07 Adlens Beacon, Inc. Spectacles frame
CA2993068C (en) 2010-11-10 2020-04-14 Adlens Beacon, Inc. Fluid-filled lenses and actuation systems thereof
US8830590B2 (en) * 2012-05-30 2014-09-09 Ultratech, Inc. Unit magnification large-format catadioptric lens for microlithography
US9535264B2 (en) 2012-07-13 2017-01-03 Adlens Beacon, Inc. Fluid lenses, lens blanks, and methods of manufacturing the same
CN103698885B (en) * 2014-01-06 2016-01-20 中国科学院光电技术研究所 A kind of high picture element projection optical system of ultraviolet band
WO2015133998A1 (en) * 2014-03-04 2015-09-11 Halliburton Energy Services, Inc. Design techniques for optical processing elements
DE102017204619A1 (en) 2016-04-05 2017-10-05 Carl Zeiss Smt Gmbh Projection exposure method, projection objective and projection exposure apparatus for microlithography
DE102017108595B3 (en) * 2017-04-21 2018-05-09 Leica Microsystems Cms Gmbh Immersion lens for a microscope
KR102174605B1 (en) 2020-06-26 2020-11-05 대림스타릿 주식회사 Auto air permeability tester

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605103B1 (en) * 1992-11-27 1998-10-14 Canon Kabushiki Kaisha Projection apparatus for immersed exposure
US6191429B1 (en) * 1996-10-07 2001-02-20 Nikon Precision Inc. Projection exposure apparatus and method with workpiece area detection
JP2002244035A (en) * 2000-12-11 2002-08-28 Nikon Corp Projection optical system and exposure device provided with it
US20030030916A1 (en) * 2000-12-11 2003-02-13 Nikon Corporation Projection optical system and exposure apparatus having the projection optical system
WO2003077037A1 (en) * 2002-03-08 2003-09-18 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023231B1 (en) 1979-07-27 1982-08-11 Tabarelli, Werner, Dr. Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4346164A (en) 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
DD221563A1 (en) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech IMMERSIONS OBJECTIVE FOR THE STEP-BY-STEP PROJECTION IMAGING OF A MASK STRUCTURE
DD224448A1 (en) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
US6512631B2 (en) * 1996-07-22 2003-01-28 Kla-Tencor Corporation Broad-band deep ultraviolet/vacuum ultraviolet catadioptric imaging system
CN2288462Y (en) * 1996-04-10 1998-08-19 中国科学院光电技术研究所 Ultraviolet (i ray) projection photoetching optical lens system
US5852490A (en) * 1996-09-30 1998-12-22 Nikon Corporation Projection exposure method and apparatus
JP3612920B2 (en) * 1997-02-14 2005-01-26 ソニー株式会社 Exposure apparatus for producing an optical recording medium master
US5900354A (en) * 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
US6020964A (en) * 1997-12-02 2000-02-01 Asm Lithography B.V. Interferometer system and lithograph apparatus including an interferometer system
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
US6198576B1 (en) * 1998-07-16 2001-03-06 Nikon Corporation Projection optical system and exposure apparatus
US6166865A (en) * 1999-05-19 2000-12-26 Nikon Corporation Projection optical system and exposure apparatus
EP1115019A3 (en) 1999-12-29 2004-07-28 Carl Zeiss Projection exposure lens with aspheric elements
JP2002118058A (en) * 2000-01-13 2002-04-19 Nikon Corp Projection aligner and projection exposure method
US7301605B2 (en) * 2000-03-03 2007-11-27 Nikon Corporation Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices
DE10127227A1 (en) * 2001-05-22 2002-12-05 Zeiss Carl Catadioptric reduction lens
US20030004757A1 (en) * 2001-06-29 2003-01-02 Haines Jack J. Facility and a method of operating a facility for providing care
DE10258718A1 (en) * 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projection lens, in particular for microlithography, and method for tuning a projection lens
US7180576B2 (en) * 2003-02-11 2007-02-20 Asml Netherlands B.V. Exposure with intensity balancing to mimic complex illuminator shape
WO2004095135A2 (en) 2003-04-17 2004-11-04 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
DE10324477A1 (en) 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Microlithographic projection exposure system
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US6961186B2 (en) * 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
JP3870207B2 (en) * 2004-08-05 2007-01-17 キヤノン株式会社 Immersion exposure apparatus and device manufacturing method
DE102005045862A1 (en) * 2004-10-19 2006-04-20 Carl Zeiss Smt Ag Optical system for ultraviolet light has liquid lens arranged in space between first and second limiting optical elements and containing liquid transparent for wavelength less than or equal to 200 nm
US7317507B2 (en) 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7215478B1 (en) * 2006-03-06 2007-05-08 Olympus Corporation Immersion objective optical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605103B1 (en) * 1992-11-27 1998-10-14 Canon Kabushiki Kaisha Projection apparatus for immersed exposure
US6191429B1 (en) * 1996-10-07 2001-02-20 Nikon Precision Inc. Projection exposure apparatus and method with workpiece area detection
JP2002244035A (en) * 2000-12-11 2002-08-28 Nikon Corp Projection optical system and exposure device provided with it
US20030030916A1 (en) * 2000-12-11 2003-02-13 Nikon Corporation Projection optical system and exposure apparatus having the projection optical system
WO2003077037A1 (en) * 2002-03-08 2003-09-18 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1532489A2 *

Cited By (998)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
US7382540B2 (en) 2002-03-01 2008-06-03 Carl Zeiss Smt Ag Refractive projection objective
US7312847B2 (en) 2002-03-08 2007-12-25 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US7193232B2 (en) 2002-11-12 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with substrate measurement not through liquid
US10222706B2 (en) 2002-11-12 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9057967B2 (en) 2002-11-12 2015-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10620545B2 (en) 2002-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10788755B2 (en) 2002-11-12 2020-09-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7932999B2 (en) 2002-11-12 2011-04-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9091940B2 (en) 2002-11-12 2015-07-28 Asml Netherlands B.V. Lithographic apparatus and method involving a fluid inlet and a fluid outlet
US10261428B2 (en) 2002-11-12 2019-04-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10962891B2 (en) 2002-11-12 2021-03-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7795603B2 (en) 2002-11-12 2010-09-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10191389B2 (en) 2002-11-12 2019-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7482611B2 (en) 2002-11-12 2009-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7199858B2 (en) 2002-11-12 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224436B2 (en) 2002-11-12 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7075616B2 (en) 2002-11-12 2006-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7081943B2 (en) 2002-11-12 2006-07-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885965B2 (en) 2002-11-12 2018-02-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7009682B2 (en) 2002-11-18 2006-03-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119881B2 (en) 2002-11-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7359030B2 (en) 2002-11-29 2008-04-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004650B2 (en) 2002-12-10 2011-08-23 Nikon Corporation Exposure apparatus and device manufacturing method
US7515246B2 (en) 2002-12-10 2009-04-07 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8237915B2 (en) 2002-12-10 2012-08-07 Carl Zeiss Smt Gmbh Method for improving an optical imaging property of a projection objective of a microlithographic projection exposure apparatus
US7911582B2 (en) 2002-12-10 2011-03-22 Nikon Corporation Exposure apparatus and device manufacturing method
US7379158B2 (en) 2002-12-10 2008-05-27 Nikon Corporation Exposure apparatus and method for producing device
US7446851B2 (en) 2002-12-10 2008-11-04 Nikon Corporation Exposure apparatus and device manufacturing method
US8089611B2 (en) 2002-12-10 2012-01-03 Nikon Corporation Exposure apparatus and method for producing device
US7834976B2 (en) 2002-12-10 2010-11-16 Nikon Corporation Exposure apparatus and method for producing device
US7466392B2 (en) 2002-12-10 2008-12-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7817244B2 (en) 2002-12-10 2010-10-19 Nikon Corporation Exposure apparatus and method for producing device
US8767173B2 (en) 2002-12-10 2014-07-01 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7505111B2 (en) 2002-12-10 2009-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
US7460207B2 (en) 2002-12-10 2008-12-02 Nikon Corporation Exposure apparatus and method for producing device
US7639343B2 (en) 2002-12-10 2009-12-29 Nikon Corporation Exposure apparatus and device manufacturing method
US7589821B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and device manufacturing method
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7948604B2 (en) 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
US8294876B2 (en) 2002-12-10 2012-10-23 Nikon Corporation Exposure apparatus and device manufacturing method
US7436486B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and device manufacturing method
US8034539B2 (en) 2002-12-10 2011-10-11 Nikon Corporation Exposure apparatus and method for producing device
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
US7436487B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and method for producing device
US8836929B2 (en) 2002-12-20 2014-09-16 Carl Zeiss Smt Gmbh Device and method for the optical measurement of an optical system by using an immersion fluid
US8120763B2 (en) 2002-12-20 2012-02-21 Carl Zeiss Smt Gmbh Device and method for the optical measurement of an optical system by using an immersion fluid
US7869121B2 (en) 2003-02-21 2011-01-11 Kla-Tencor Technologies Corporation Small ultra-high NA catadioptric objective using aspheric surfaces
US9182684B2 (en) 2003-02-26 2015-11-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10180632B2 (en) 2003-02-26 2019-01-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9766555B2 (en) 2003-02-26 2017-09-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7932991B2 (en) 2003-02-26 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102504B2 (en) 2003-02-26 2012-01-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9348239B2 (en) 2003-02-26 2016-05-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7907254B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7911583B2 (en) 2003-02-26 2011-03-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8736809B2 (en) 2003-02-26 2014-05-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8018570B2 (en) 2003-03-25 2011-09-13 Nikon Corporation Exposure apparatus and device fabrication method
US7916272B2 (en) 2003-03-25 2011-03-29 Nikon Corporation Exposure apparatus and device fabrication method
US8558987B2 (en) 2003-03-25 2013-10-15 Nikon Corporation Exposure apparatus and device fabrication method
US8804095B2 (en) 2003-03-25 2014-08-12 Nikon Corporation Exposure apparatus and device fabrication method
US8111375B2 (en) 2003-04-07 2012-02-07 Nikon Corporation Exposure apparatus and method for manufacturing device
US8537331B2 (en) 2003-04-07 2013-09-17 Nikon Corporation Exposure apparatus and method for manufacturing device
US9618852B2 (en) 2003-04-09 2017-04-11 Nikon Corporation Immersion lithography fluid control system regulating flow velocity of gas based on position of gas outlets
US7339650B2 (en) 2003-04-09 2008-03-04 Nikon Corporation Immersion lithography fluid control system that applies force to confine the immersion liquid
US8102501B2 (en) 2003-04-09 2012-01-24 Nikon Corporation Immersion lithography fluid control system using an electric or magnetic field generator
US8797500B2 (en) 2003-04-09 2014-08-05 Nikon Corporation Immersion lithography fluid control system changing flow velocity of gas outlets based on motion of a surface
US8497973B2 (en) 2003-04-09 2013-07-30 Nikon Corporation Immersion lithography fluid control system regulating gas velocity based on contact angle
US7929111B2 (en) 2003-04-10 2011-04-19 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8830443B2 (en) 2003-04-10 2014-09-09 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8810768B2 (en) 2003-04-10 2014-08-19 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9244362B2 (en) 2003-04-10 2016-01-26 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9244363B2 (en) 2003-04-10 2016-01-26 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8836914B2 (en) 2003-04-10 2014-09-16 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US7965376B2 (en) 2003-04-10 2011-06-21 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8456610B2 (en) 2003-04-10 2013-06-04 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US7929110B2 (en) 2003-04-10 2011-04-19 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8243253B2 (en) 2003-04-10 2012-08-14 Nikon Corporation Lyophobic run-off path to collect liquid for an immersion lithography apparatus
US7969552B2 (en) 2003-04-10 2011-06-28 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9007561B2 (en) 2003-04-10 2015-04-14 Nikon Corporation Immersion lithography apparatus with hydrophilic region encircling hydrophobic region which encircles substrate support
US9910370B2 (en) 2003-04-10 2018-03-06 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8089610B2 (en) 2003-04-10 2012-01-03 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9977350B2 (en) 2003-04-10 2018-05-22 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US8269946B2 (en) 2003-04-11 2012-09-18 Nikon Corporation Cleanup method for optics in immersion lithography supplying cleaning liquid at different times than immersion liquid
US9329493B2 (en) 2003-04-11 2016-05-03 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US7932989B2 (en) 2003-04-11 2011-04-26 Nikon Corporation Liquid jet and recovery system for immersion lithography
US8514367B2 (en) 2003-04-11 2013-08-20 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8610875B2 (en) 2003-04-11 2013-12-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8493545B2 (en) 2003-04-11 2013-07-23 Nikon Corporation Cleanup method for optics in immersion lithography supplying cleaning liquid onto a surface of object below optical element, liquid supply port and liquid recovery port
US8634057B2 (en) 2003-04-11 2014-01-21 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US10185222B2 (en) 2003-04-11 2019-01-22 Nikon Corporation Liquid jet and recovery system for immersion lithography
US8670103B2 (en) 2003-04-11 2014-03-11 Nikon Corporation Cleanup method for optics in immersion lithography using bubbles
US8488100B2 (en) 2003-04-11 2013-07-16 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8670104B2 (en) 2003-04-11 2014-03-11 Nikon Corporation Cleanup method for optics in immersion lithography with cleaning liquid opposed by a surface of object
US8351019B2 (en) 2003-04-11 2013-01-08 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8035795B2 (en) 2003-04-11 2011-10-11 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the protection lens during wafer exchange in an immersion lithography machine
US8879047B2 (en) 2003-04-11 2014-11-04 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens using a pad member or second stage during wafer exchange in an immersion lithography machine
US8059258B2 (en) 2003-04-11 2011-11-15 Nikon Corporation Liquid jet and recovery system for immersion lithography
US8848166B2 (en) 2003-04-11 2014-09-30 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8848168B2 (en) 2003-04-11 2014-09-30 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8269944B2 (en) 2003-04-11 2012-09-18 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9081298B2 (en) 2003-04-11 2015-07-14 Nikon Corporation Apparatus for maintaining immersion fluid in the gap under the projection lens during wafer exchange using a co-planar member in an immersion lithography machine
US7443482B2 (en) 2003-04-11 2008-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
US8085381B2 (en) 2003-04-11 2011-12-27 Nikon Corporation Cleanup method for optics in immersion lithography using sonic device
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9785057B2 (en) 2003-04-11 2017-10-10 Nikon Corporation Liquid jet and recovery system for immersion lithography
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US9304409B2 (en) 2003-04-11 2016-04-05 Nikon Corporation Liquid jet and recovery system for immersion lithography
US8953250B2 (en) 2003-04-17 2015-02-10 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US8599488B2 (en) 2003-04-17 2013-12-03 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US8810915B2 (en) 2003-04-17 2014-08-19 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US8094379B2 (en) 2003-04-17 2012-01-10 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US9086636B2 (en) 2003-04-17 2015-07-21 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US8018657B2 (en) 2003-04-17 2011-09-13 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US10156792B2 (en) 2003-05-06 2018-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9846366B2 (en) 2003-05-06 2017-12-19 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7309870B2 (en) 2003-05-06 2007-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7312463B2 (en) 2003-05-06 2007-12-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
US9933705B2 (en) 2003-05-06 2018-04-03 Nikon Corporation Reduction projection optical system, exposure apparatus, and exposure method
US9086635B2 (en) 2003-05-06 2015-07-21 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9606443B2 (en) 2003-05-06 2017-03-28 Nikon Corporation Reducing immersion projection optical system
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9798246B2 (en) 2003-05-13 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10466595B2 (en) 2003-05-13 2019-11-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8780327B2 (en) 2003-05-23 2014-07-15 Nikon Corporation Exposure apparatus and method for producing device
US9285684B2 (en) 2003-05-23 2016-03-15 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US8384877B2 (en) 2003-05-23 2013-02-26 Nikon Corporation Exposure apparatus and method for producing device
US8472001B2 (en) 2003-05-23 2013-06-25 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US9977336B2 (en) 2003-05-23 2018-05-22 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8174668B2 (en) 2003-05-23 2012-05-08 Nikon Corporation Exposure apparatus and method for producing device
US8072576B2 (en) 2003-05-23 2011-12-06 Nikon Corporation Exposure apparatus and method for producing device
US8488108B2 (en) 2003-05-23 2013-07-16 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8169592B2 (en) 2003-05-23 2012-05-01 Nikon Corporation Exposure apparatus and method for producing device
US8134682B2 (en) 2003-05-23 2012-03-13 Nikon Corporation Exposure apparatus and method for producing device
US9354525B2 (en) 2003-05-23 2016-05-31 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8125612B2 (en) 2003-05-23 2012-02-28 Nikon Corporation Exposure apparatus and method for producing device
US9304392B2 (en) 2003-05-23 2016-04-05 Nikon Corporation Exposure apparatus and method for producing device
US9933708B2 (en) 2003-05-23 2018-04-03 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8760617B2 (en) 2003-05-23 2014-06-24 Nikon Corporation Exposure apparatus and method for producing device
US9488920B2 (en) 2003-05-28 2016-11-08 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8711324B2 (en) 2003-05-28 2014-04-29 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8421992B2 (en) 2003-05-28 2013-04-16 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US10082739B2 (en) 2003-05-28 2018-09-25 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8233133B2 (en) 2003-05-28 2012-07-31 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US7532306B2 (en) 2003-05-30 2009-05-12 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus
US7808611B2 (en) 2003-05-30 2010-10-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US7804574B2 (en) 2003-05-30 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US7570343B2 (en) 2003-05-30 2009-08-04 Carl Zeis Smt Ag Microlithographic projection exposure apparatus
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9081299B2 (en) 2003-06-09 2015-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving removal of liquid entering a gap
US10678139B2 (en) 2003-06-09 2020-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9964858B2 (en) 2003-06-11 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9268237B2 (en) 2003-06-13 2016-02-23 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US8384880B2 (en) 2003-06-13 2013-02-26 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US8208117B2 (en) 2003-06-13 2012-06-26 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US8040491B2 (en) 2003-06-13 2011-10-18 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US9019467B2 (en) 2003-06-13 2015-04-28 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US9846371B2 (en) 2003-06-13 2017-12-19 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US7812925B2 (en) 2003-06-19 2010-10-12 Nikon Corporation Exposure apparatus, and device manufacturing method
US8705001B2 (en) 2003-06-19 2014-04-22 Nikon Corporation Exposure apparatus, and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US8692976B2 (en) 2003-06-19 2014-04-08 Nikon Corporation Exposure apparatus, and device manufacturing method
US9715178B2 (en) 2003-06-19 2017-07-25 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8319941B2 (en) 2003-06-19 2012-11-27 Nikon Corporation Exposure apparatus, and device manufacturing method
US8018575B2 (en) 2003-06-19 2011-09-13 Nikon Corporation Exposure apparatus, and device manufacturing method
US9025129B2 (en) 2003-06-19 2015-05-05 Nikon Corporation Exposure apparatus, and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
US8717537B2 (en) 2003-06-19 2014-05-06 Nikon Corporation Exposure apparatus, and device manufacturing method
US8724085B2 (en) 2003-06-19 2014-05-13 Nikon Corporation Exposure apparatus, and device manufacturing method
US9001307B2 (en) 2003-06-19 2015-04-07 Nikon Corporation Exposure apparatus and device manufacturing method
US9709899B2 (en) 2003-06-19 2017-07-18 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8027027B2 (en) 2003-06-19 2011-09-27 Nikon Corporation Exposure apparatus, and device manufacturing method
US8767177B2 (en) 2003-06-19 2014-07-01 Nikon Corporation Exposure apparatus, and device manufacturing method
US9019473B2 (en) 2003-06-19 2015-04-28 Nikon Corporation Exposure apparatus and device manufacturing method
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8830445B2 (en) 2003-06-19 2014-09-09 Nikon Corporation Exposure apparatus, and device manufacturing method
US9274437B2 (en) 2003-06-19 2016-03-01 Nikon Corporation Exposure apparatus and device manufacturing method
US8436978B2 (en) 2003-06-19 2013-05-07 Nikon Corporation Exposure apparatus, and device manufacturing method
US8436979B2 (en) 2003-06-19 2013-05-07 Nikon Corporation Exposure apparatus, and device manufacturing method
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7119874B2 (en) 2003-06-27 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7012673B2 (en) 2003-06-27 2006-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7038760B2 (en) 2003-06-30 2006-05-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110087B2 (en) 2003-06-30 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8508718B2 (en) 2003-07-08 2013-08-13 Nikon Corporation Wafer table having sensor for immersion lithography
US8120751B2 (en) 2003-07-09 2012-02-21 Nikon Corporation Coupling apparatus, exposure apparatus, and device fabricating method
US9977352B2 (en) 2003-07-09 2018-05-22 Nikon Corporation Exposure apparatus and device manufacturing method
EP2264532A2 (en) 2003-07-09 2010-12-22 Nikon Corporation Exposure apparatus and device manufacturing method
EP2264531A2 (en) 2003-07-09 2010-12-22 Nikon Corporation Exposure apparatus and device manufacturing method
US8879043B2 (en) 2003-07-09 2014-11-04 Nikon Corporation Exposure apparatus and method for manufacturing device
US8228484B2 (en) 2003-07-09 2012-07-24 Nikon Corporation Coupling apparatus, exposure apparatus, and device fabricating method
US8218127B2 (en) 2003-07-09 2012-07-10 Nikon Corporation Exposure apparatus and device manufacturing method
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US9097988B2 (en) 2003-07-09 2015-08-04 Nikon Corporation Exposure apparatus and device manufacturing method
US9500959B2 (en) 2003-07-09 2016-11-22 Nikon Corporation Exposure apparatus and device manufacturing method
US8797505B2 (en) 2003-07-09 2014-08-05 Nikon Corporation Exposure apparatus and device manufacturing method
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8711323B2 (en) 2003-07-16 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10656538B2 (en) 2003-07-16 2020-05-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9733575B2 (en) 2003-07-16 2017-08-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10151989B2 (en) 2003-07-16 2018-12-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10146143B2 (en) 2003-07-24 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7557901B2 (en) 2003-07-24 2009-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9213247B2 (en) 2003-07-24 2015-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9594308B2 (en) 2003-07-24 2017-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10444644B2 (en) 2003-07-24 2019-10-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8711333B2 (en) 2003-07-24 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7184122B2 (en) 2003-07-24 2007-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9804509B2 (en) 2003-07-24 2017-10-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7843550B2 (en) 2003-07-25 2010-11-30 Nikon Corporation Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method
US7868997B2 (en) 2003-07-25 2011-01-11 Nikon Corporation Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method
US9639006B2 (en) 2003-07-28 2017-05-02 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US8451424B2 (en) 2003-07-28 2013-05-28 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US8749757B2 (en) 2003-07-28 2014-06-10 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US9494871B2 (en) 2003-07-28 2016-11-15 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US10303066B2 (en) 2003-07-28 2019-05-28 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US10185232B2 (en) 2003-07-28 2019-01-22 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US10203608B2 (en) 2003-08-21 2019-02-12 Nikon Corporation Exposure apparatus and device manufacturing method having lower scanning speed to expose peripheral shot area
US10209622B2 (en) 2003-08-21 2019-02-19 Nikon Corporation Exposure method and device manufacturing method having lower scanning speed to expose peripheral shot area
US8064037B2 (en) 2003-08-21 2011-11-22 Nikon Corporation Immersion exposure apparatus and device manufacturing method with no liquid recovery during exposure
EP2284615A2 (en) 2003-08-26 2011-02-16 Nikon Corporation Optical element and exposure apparatus
US10175584B2 (en) 2003-08-26 2019-01-08 Nikon Corporation Optical element and exposure apparatus
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US9046796B2 (en) 2003-08-26 2015-06-02 Nikon Corporation Optical element and exposure apparatus
EP2278402A2 (en) 2003-08-26 2011-01-26 Nikon Corporation Optical element and exposure apparatus
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US7993008B2 (en) 2003-08-26 2011-08-09 Nikon Corporation Optical element and exposure apparatus
US8189170B2 (en) 2003-08-26 2012-05-29 Nikon Corporation Optical element and exposure apparatus
US8208124B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10514618B2 (en) 2003-08-29 2019-12-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11003096B2 (en) 2003-08-29 2021-05-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
JP2009016871A (en) * 2003-08-29 2009-01-22 Asml Netherlands Bv Lithographic device and device manufacturing method
US9442388B2 (en) 2003-08-29 2016-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8804097B2 (en) 2003-08-29 2014-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9606448B2 (en) 2003-08-29 2017-03-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10146142B2 (en) 2003-08-29 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025204B2 (en) 2003-08-29 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8520187B2 (en) 2003-09-03 2013-08-27 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US9547243B2 (en) 2003-09-03 2017-01-17 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8896807B2 (en) 2003-09-03 2014-11-25 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US10203610B2 (en) 2003-09-03 2019-02-12 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US9817319B2 (en) 2003-09-03 2017-11-14 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8253921B2 (en) 2003-09-03 2012-08-28 Nikon Corporation Exposure apparatus and device fabricating method
US7924402B2 (en) 2003-09-19 2011-04-12 Nikon Corporation Exposure apparatus and device manufacturing method
EP3007207A2 (en) 2003-09-26 2016-04-13 Nikon Corporation A projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US8035797B2 (en) 2003-09-26 2011-10-11 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US8724076B2 (en) 2003-09-26 2014-05-13 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
EP3093711A2 (en) 2003-09-29 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8139198B2 (en) 2003-09-29 2012-03-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8305552B2 (en) 2003-09-29 2012-11-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JPWO2005031823A1 (en) * 2003-09-29 2007-11-15 株式会社ニコン Immersion lens system, projection exposure apparatus, and device manufacturing method
EP3093710A2 (en) 2003-09-29 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9513558B2 (en) 2003-09-29 2016-12-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10025194B2 (en) 2003-09-29 2018-07-17 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2837969A1 (en) 2003-09-29 2015-02-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7817245B2 (en) 2003-09-29 2010-10-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8400615B2 (en) 2003-09-29 2013-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2312395A1 (en) 2003-09-29 2011-04-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
US8039807B2 (en) 2003-09-29 2011-10-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2005031823A1 (en) * 2003-09-29 2005-04-07 Nikon Corporation Liquid immersion type lens system and projection aligner, device production method
US7193681B2 (en) 2003-09-29 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4492539B2 (en) * 2003-09-29 2010-06-30 株式会社ニコン Immersion type optical system, projection exposure apparatus, and device manufacturing method
US8749759B2 (en) 2003-09-29 2014-06-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8755025B2 (en) 2003-10-08 2014-06-17 Nikon Corporation Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method
US9097986B2 (en) 2003-10-08 2015-08-04 Nikon Corporation Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
US7995186B2 (en) 2003-10-08 2011-08-09 Zao Nikon Co., Ltd. Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
US8345216B2 (en) 2003-10-08 2013-01-01 Nikon Corporation Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
US8107055B2 (en) 2003-10-08 2012-01-31 Zao Nikon Co., Ltd. Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
US7898645B2 (en) 2003-10-08 2011-03-01 Zao Nikon Co., Ltd. Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method
US9110381B2 (en) 2003-10-08 2015-08-18 Nikon Corporation Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
EP3206083A1 (en) 2003-10-09 2017-08-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10209623B2 (en) 2003-10-09 2019-02-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2284614A2 (en) 2003-10-09 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device producing method
US9063438B2 (en) 2003-10-09 2015-06-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3432073A1 (en) 2003-10-09 2019-01-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2937734A1 (en) 2003-10-09 2015-10-28 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8130361B2 (en) 2003-10-09 2012-03-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9383656B2 (en) 2003-10-09 2016-07-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9285685B2 (en) 2003-10-15 2016-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8174674B2 (en) 2003-10-15 2012-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7961293B2 (en) 2003-10-15 2011-06-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433015B2 (en) 2003-10-15 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8711330B2 (en) 2003-10-15 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7352435B2 (en) 2003-10-15 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248034B2 (en) 2003-10-28 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8797506B2 (en) 2003-10-28 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US8272544B2 (en) 2003-10-28 2012-09-25 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US10527955B2 (en) 2003-10-28 2020-01-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7932996B2 (en) 2003-10-28 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US9829801B2 (en) 2003-10-31 2017-11-28 Nikon Corporation Exposure apparatus and device fabrication method
US8928856B2 (en) 2003-10-31 2015-01-06 Nikon Corporation Exposure apparatus and device fabrication method
EP3064998A1 (en) 2003-10-31 2016-09-07 Nikon Corporation Immersion exposure apparatus and method
US10048597B2 (en) 2003-10-31 2018-08-14 Nikon Corporation Exposure apparatus and device fabrication method
EP3392713A1 (en) 2003-10-31 2018-10-24 Nikon Corporation Immersion exposure apparatus and method
US7113259B2 (en) 2003-10-31 2006-09-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9563133B2 (en) 2003-10-31 2017-02-07 Nikon Corporation Exposure apparatus and device fabrication method
US9134622B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8634056B2 (en) 2003-11-14 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10345712B2 (en) 2003-11-14 2019-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134623B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8472006B2 (en) 2003-11-24 2013-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9182685B2 (en) 2003-12-03 2015-11-10 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US8054447B2 (en) 2003-12-03 2011-11-08 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US10088760B2 (en) 2003-12-03 2018-10-02 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US9019469B2 (en) 2003-12-03 2015-04-28 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
EP2717295A1 (en) 2003-12-03 2014-04-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP3370115A1 (en) 2003-12-03 2018-09-05 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US7782538B2 (en) 2003-12-15 2010-08-24 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
US7982857B2 (en) 2003-12-15 2011-07-19 Nikon Corporation Stage apparatus, exposure apparatus, and exposure method with recovery device having lyophilic portion
US7428105B2 (en) 2003-12-15 2008-09-23 Carl Zeiss Smt Ag Objectives as a microlithography projection objective with at least one liquid lens
US7474469B2 (en) 2003-12-15 2009-01-06 Carl Zeiss Smt Ag Arrangement of optical elements in a microlithographic projection exposure apparatus
US7385764B2 (en) 2003-12-15 2008-06-10 Carl Zeiss Smt Ag Objectives as a microlithography projection objective with at least one liquid lens
US9798245B2 (en) 2003-12-15 2017-10-24 Nikon Corporation Exposure apparatus, and exposure method, with recovery device to recover liquid leaked from between substrate and member
US7755839B2 (en) 2003-12-19 2010-07-13 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10613447B2 (en) 2003-12-23 2020-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10768538B2 (en) 2003-12-23 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
EP2199859A2 (en) 2004-01-05 2010-06-23 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9588436B2 (en) 2004-01-05 2017-03-07 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP3376523A1 (en) 2004-01-05 2018-09-19 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9910369B2 (en) 2004-01-05 2018-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8064044B2 (en) 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US10345710B2 (en) 2004-01-20 2019-07-09 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus and measuring device for a projection lens
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US8330935B2 (en) 2004-01-20 2012-12-11 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US8330934B2 (en) 2004-01-26 2012-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
US8553203B2 (en) 2004-02-02 2013-10-08 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8547528B2 (en) 2004-02-02 2013-10-01 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8711328B2 (en) 2004-02-02 2014-04-29 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8724079B2 (en) 2004-02-02 2014-05-13 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8705002B2 (en) 2004-02-02 2014-04-22 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US8736808B2 (en) 2004-02-02 2014-05-27 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US8045136B2 (en) 2004-02-02 2011-10-25 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7990516B2 (en) 2004-02-03 2011-08-02 Nikon Corporation Immersion exposure apparatus and device manufacturing method with liquid detection apparatus
US7990517B2 (en) 2004-02-03 2011-08-02 Nikon Corporation Immersion exposure apparatus and device manufacturing method with residual liquid detector
US8767168B2 (en) 2004-02-03 2014-07-01 Nikon Corporation Immersion exposure apparatus and method that detects residual liquid on substrate held by substrate table after exposure
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US9041906B2 (en) 2004-02-03 2015-05-26 Nikon Corporation Immersion exposure apparatus and method that detects liquid adhered to rear surface of substrate
US8488101B2 (en) 2004-02-03 2013-07-16 Nikon Corporation Immersion exposure apparatus and method that detects residual liquid on substrate held by substrate table on way from exposure position to unload position
US10048602B2 (en) 2004-02-04 2018-08-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3208658A1 (en) 2004-02-04 2017-08-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3093873A2 (en) 2004-02-04 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2765595A1 (en) 2004-02-04 2014-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP3267469A1 (en) 2004-02-04 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3252533A1 (en) 2004-02-04 2017-12-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US8605252B2 (en) 2004-02-04 2013-12-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7557900B2 (en) 2004-02-10 2009-07-07 Nikon Corporation Exposure apparatus, device manufacturing method, maintenance method, and exposure method
EP2256790A2 (en) 2004-02-10 2010-12-01 Nikon Corporation exposure apparatus, device manufacturing method and maintenance method
US8115902B2 (en) 2004-02-10 2012-02-14 Nikon Corporation Exposure apparatus, device manufacturing method, maintenance method, and exposure method
US7719658B2 (en) 2004-02-13 2010-05-18 Carl Zeiss Smt Ag Imaging system for a microlithographical projection light system
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
US8634060B2 (en) 2004-03-16 2014-01-21 Carl Zeiss Smt Gmbh Method for a multiple exposure, microlithography projection exposure installation and a projection system
US8411248B2 (en) 2004-03-25 2013-04-02 Nikon Corporation Exposure apparatus and device fabrication method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US8111373B2 (en) 2004-03-25 2012-02-07 Nikon Corporation Exposure apparatus and device fabrication method
US9411248B2 (en) 2004-03-25 2016-08-09 Nikon Corporation Exposure apparatus and device fabrication method
US9046790B2 (en) 2004-03-25 2015-06-02 Nikon Corporation Exposure apparatus and device fabrication method
US8169590B2 (en) 2004-03-25 2012-05-01 Nikon Corporation Exposure apparatus and device fabrication method
JP2007531060A (en) * 2004-03-29 2007-11-01 ケーエルエー−テンカー テクノロジィース コーポレイション Catadioptric imaging system for broadband microscopy using immersion liquid
US7834977B2 (en) 2004-04-01 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10705432B2 (en) 2004-04-14 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9989861B2 (en) 2004-04-14 2018-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10234768B2 (en) 2004-04-14 2019-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652751B2 (en) 2004-05-03 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9285683B2 (en) 2004-05-04 2016-03-15 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8054448B2 (en) 2004-05-04 2011-11-08 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8107162B2 (en) 2004-05-17 2012-01-31 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
JP2014044445A (en) * 2004-05-17 2014-03-13 Carl Zeiss Smt Gmbh Catadioptric projection objective lens having intermediate image
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US10761438B2 (en) 2004-05-18 2020-09-01 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
JP2012028803A (en) * 2004-06-04 2012-02-09 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
JP2008502127A (en) * 2004-06-04 2008-01-24 カール・ツァイス・エスエムティー・アーゲー Projection system with compensation for intensity variation and compensation element therefor
US8605257B2 (en) 2004-06-04 2013-12-10 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
JP4913041B2 (en) * 2004-06-04 2012-04-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection system with compensation for intensity variation and compensation element therefor
US8325326B2 (en) 2004-06-07 2012-12-04 Nikon Corporation Stage unit, exposure apparatus, and exposure method
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
EP3203498A1 (en) 2004-06-09 2017-08-09 Nikon Corporation Exposure apparatus and device manufacturing method
US8525971B2 (en) 2004-06-09 2013-09-03 Nikon Corporation Lithographic apparatus with cleaning of substrate table
US8520184B2 (en) 2004-06-09 2013-08-27 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US8704997B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Immersion lithographic apparatus and method for rinsing immersion space before exposure
EP2966670A1 (en) 2004-06-09 2016-01-13 Nikon Corporation Exposure apparatus and device manufacturing method
US9778580B2 (en) 2004-06-10 2017-10-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9280058B2 (en) 2004-06-10 2016-03-08 Carl Zeiss Smt Gmbh Projection objective for a microlithographic projection exposure apparatus
US8902407B2 (en) 2004-06-10 2014-12-02 Carl Zeiss Smt Gmbh Projection objective for a microlithographic projection exposure apparatus
EP3203321A1 (en) 2004-06-10 2017-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8064041B2 (en) * 2004-06-10 2011-11-22 Carl Zeiss Smt Gmbh Projection objective for a microlithographic projection exposure apparatus
US10203614B2 (en) 2004-06-10 2019-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8482716B2 (en) 2004-06-10 2013-07-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9529273B2 (en) 2004-06-10 2016-12-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006024915A (en) * 2004-06-10 2006-01-26 Nikon Corp Exposure system, exposing method, and device manufacturing method
US9588445B2 (en) 2004-06-10 2017-03-07 Carl Zeiss Smt Gmbh Projection objective for a microlithographic projection exposure apparatus
EP2605068A2 (en) 2004-06-10 2013-06-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3067750A3 (en) * 2004-06-10 2017-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9977338B2 (en) 2004-06-10 2018-05-22 Carl Zeiss Smt Gmbh Projection objective for a microlithographic projection exposure apparatus
US10168624B2 (en) 2004-06-16 2019-01-01 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9857699B2 (en) 2004-06-16 2018-01-02 Asml Netherlands B.V. Vacuum system for immersion photolithography
WO2005124833A1 (en) * 2004-06-21 2005-12-29 Nikon Corporation Exposure device, exposure device member cleaning method, exposure device maintenance method, maintenance device, and device manufacturing method
US9470984B2 (en) 2004-06-21 2016-10-18 Nikon Corporation Exposure apparatus
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US9904182B2 (en) 2004-06-21 2018-02-27 Nikon Corporation Exposure apparatus
US8810767B2 (en) 2004-06-21 2014-08-19 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
EP3255652A1 (en) 2004-06-21 2017-12-13 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
JP2006165502A (en) * 2004-06-21 2006-06-22 Nikon Corp Exposure apparatus, method of cleaning member thereof, maintenance method of exposure apparatus, maintenance device, and device manufacturing method
EP3190605A1 (en) 2004-06-21 2017-07-12 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3462241A1 (en) 2004-06-21 2019-04-03 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US10739684B2 (en) 2004-07-07 2020-08-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10338478B2 (en) 2004-07-07 2019-07-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US8654308B2 (en) 2004-07-12 2014-02-18 Nikon Corporation Method for determining exposure condition, exposure method, exposure apparatus, and method for manufacturing device
US8384874B2 (en) 2004-07-12 2013-02-26 Nikon Corporation Immersion exposure apparatus and device manufacturing method to detect if liquid on base member
EP2189848A3 (en) * 2004-07-14 2010-06-09 Carl Zeiss SMT AG Catadioptric projection objective
JP2012108540A (en) * 2004-07-14 2012-06-07 Carl Zeiss Smt Gmbh Catadioptric projection objective
JP2014059579A (en) * 2004-07-14 2014-04-03 Carl Zeiss Smt Gmbh Catadioptric projection objective
WO2006005547A1 (en) * 2004-07-14 2006-01-19 Carl Zeiss Smt Ag Catadioptric projection objective
KR101171131B1 (en) 2004-07-14 2012-08-07 칼 짜이스 에스엠티 게엠베하 Catadioptric projection objective
US7914972B2 (en) 2004-07-21 2011-03-29 Nikon Corporation Exposure method and device manufacturing method
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US9063436B2 (en) 2004-08-03 2015-06-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101337007B1 (en) 2004-08-03 2013-12-06 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
EP1783525A4 (en) * 2004-08-03 2009-09-23 Nikon Corp Projection optical system, exposure apparatus, and exposure method
KR101354801B1 (en) 2004-08-03 2014-01-22 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
WO2006013734A1 (en) * 2004-08-03 2006-02-09 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP1783525A1 (en) * 2004-08-03 2007-05-09 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8102508B2 (en) 2004-08-03 2012-01-24 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2006113533A (en) * 2004-08-03 2006-04-27 Nikon Corp Projection optical system, exposure apparatus, and exposure method
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10838310B2 (en) 2004-08-13 2020-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US11378893B2 (en) 2004-08-13 2022-07-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US7804575B2 (en) 2004-08-13 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having liquid evaporation control
US10254663B2 (en) 2004-08-13 2019-04-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US9235133B2 (en) 2004-08-17 2016-01-12 Nikon Corporation Lighting optical device, regulation method for lighting optical device, exposure system, and exposure method
US8305553B2 (en) 2004-08-18 2012-11-06 Nikon Corporation Exposure apparatus and device manufacturing method
US10331047B2 (en) 2004-08-19 2019-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10599054B2 (en) 2004-08-19 2020-03-24 Asml Holding N.V. Lithographic apparatus and device manufacturing method
US9904185B2 (en) 2004-08-19 2018-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746788B2 (en) 2004-08-19 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10705439B2 (en) 2004-08-19 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9341959B2 (en) 2004-09-17 2016-05-17 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US9958785B2 (en) 2004-09-17 2018-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8427629B2 (en) 2004-09-24 2013-04-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7808614B2 (en) 2004-09-24 2010-10-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8068210B2 (en) 2004-09-28 2011-11-29 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US8027026B2 (en) 2004-10-05 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8755027B2 (en) 2004-10-05 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving fluid mixing and control of the physical property of a fluid
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3306647A1 (en) 2004-10-15 2018-04-11 Nikon Corporation Exposure apparatus and device manufacturing method
US8456609B2 (en) 2004-10-15 2013-06-04 Nikon Corporation Exposure apparatus and device manufacturing method
US7456929B2 (en) 2004-10-15 2008-11-25 Nikon Corporation Exposure apparatus and device manufacturing method
EP3046135A2 (en) 2004-10-15 2016-07-20 Nikon Corporation Exposure apparatus and device manufacturing method
EP2426700A2 (en) 2004-10-15 2012-03-07 Nikon Corporation Exposure apparatus and device manufacturing method
EP2108990A1 (en) 2004-10-18 2009-10-14 Nikon Corporation Projection optical system, exposure system, and exposure method
US7688422B2 (en) 2004-10-18 2010-03-30 Nikon Corporation Projection optical system, exposure system, and exposure method
EP1806611A4 (en) * 2004-10-18 2008-12-31 Nikon Corp Projection optical system, exposure system, and exposure method
US10248033B2 (en) 2004-10-18 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006114839A (en) * 2004-10-18 2006-04-27 Nikon Corp Projection optical system, aligner and exposure method
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1806611A1 (en) * 2004-10-18 2007-07-11 Nikon Corporation Projection optical system, exposure system, and exposure method
US9753380B2 (en) 2004-10-18 2017-09-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006043457A1 (en) 2004-10-18 2006-04-27 Nikon Corporation Projection optical system, exposure system, and exposure method
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US9709900B2 (en) 2004-11-01 2017-07-18 Nikon Corporation Exposure apparatus and device fabricating method
US8330939B2 (en) 2004-11-01 2012-12-11 Nikon Corporation Immersion exposure apparatus and device manufacturing method with a liquid recovery port provided on at least one of a first stage and second stage
US8922754B2 (en) 2004-11-01 2014-12-30 Nikon Corporation Immersion exposure apparatus and device fabricating method with two substrate stages and metrology station
EP2472332A1 (en) 2004-11-01 2012-07-04 Nikon Corporation Exposure apparatus and device fabricating method
WO2006051689A1 (en) 2004-11-10 2006-05-18 Nikon Corporation Projection optical system, exposure equipment and exposure method
JP2006163369A (en) * 2004-11-10 2006-06-22 Nikon Corp Projection optical system, exposure apparatus and exposure method
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
JP2010219555A (en) * 2004-11-11 2010-09-30 Nikon Corp Exposure method, method of manufacturing device, and substrate
JP4565270B2 (en) * 2004-11-11 2010-10-20 株式会社ニコン Exposure method, device manufacturing method
JPWO2006051909A1 (en) * 2004-11-11 2008-05-29 株式会社ニコン Exposure method, device manufacturing method, and substrate
WO2006051909A1 (en) * 2004-11-11 2006-05-18 Nikon Corporation Exposure method, device manufacturing method, and substrate
US10620546B2 (en) 2004-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US9964861B2 (en) 2004-11-12 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7710537B2 (en) 2004-11-12 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7852457B2 (en) 2004-11-12 2010-12-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9645507B2 (en) 2004-11-12 2017-05-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9798247B2 (en) 2004-11-12 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US10274832B2 (en) 2004-11-12 2019-04-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9298108B2 (en) 2004-11-18 2016-03-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8054465B2 (en) 2004-11-18 2011-11-08 Nikon Corporation Position measurement method
US8072578B2 (en) 2004-11-18 2011-12-06 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8576379B2 (en) 2004-11-18 2013-11-05 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8059260B2 (en) * 2004-11-18 2011-11-15 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9857692B2 (en) 2004-11-18 2018-01-02 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9348238B2 (en) 2004-11-18 2016-05-24 Niko Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9223230B2 (en) 2004-11-18 2015-12-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9223231B2 (en) 2004-11-18 2015-12-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US10222708B2 (en) 2004-11-18 2019-03-05 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
EP1814146A4 (en) * 2004-11-19 2009-02-11 Nikon Corp Maintenance method, exposure method, exposure apparatus, and device producing method
EP1814146A1 (en) * 2004-11-19 2007-08-01 Nikon Corporation Maintenance method, exposure method, exposure apparatus, and device producing method
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4555903B2 (en) * 2004-12-02 2010-10-06 株式会社ニコン Exposure apparatus and device manufacturing method
JPWO2006059636A1 (en) * 2004-12-02 2008-08-07 株式会社ニコン Exposure apparatus and device manufacturing method
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7812924B2 (en) 2004-12-02 2010-10-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006059636A1 (en) * 2004-12-02 2006-06-08 Nikon Corporation Exposure device and device manufacturing method
US8456608B2 (en) 2004-12-06 2013-06-04 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US8891055B2 (en) 2004-12-06 2014-11-18 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US8115905B2 (en) 2004-12-08 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8035799B2 (en) 2004-12-09 2011-10-11 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP2008523426A (en) * 2004-12-09 2008-07-03 カール・ツアイス・エスエムテイ・アーゲー Transmission optical element and objective lens for microlithography projection exposure apparatus
US8913224B2 (en) 2004-12-09 2014-12-16 Nixon Corporation Exposure apparatus, exposure method, and device producing method
US8570488B2 (en) 2004-12-09 2013-10-29 Carl Zeiss Smt Gmbh Transmitting optical element and objective for a microlithographic projection exposure apparatus
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US9182222B2 (en) 2004-12-10 2015-11-10 Asml Netherlands B.V. Substrate placement in immersion lithography
US10345711B2 (en) 2004-12-10 2019-07-09 Asml Netherlands B.V. Substrate placement in immersion lithography
US8077291B2 (en) 2004-12-10 2011-12-13 Asml Netherlands B.V. Substrate placement in immersion lithography
US9740106B2 (en) 2004-12-10 2017-08-22 Asml Netherlands B.V. Substrate placement in immersion lithography
US8441617B2 (en) 2004-12-10 2013-05-14 Asml Netherlands B.V. Substrate placement in immersion lithography
US9690206B2 (en) 2004-12-15 2017-06-27 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US9964860B2 (en) 2004-12-15 2018-05-08 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
EP3285282A1 (en) 2004-12-15 2018-02-21 Nikon Corporation Exposure apparatus and device fabricating method
US9224632B2 (en) 2004-12-15 2015-12-29 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US8233135B2 (en) 2004-12-15 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP3428724A1 (en) 2004-12-15 2019-01-16 Nikon Corporation Exposure apparatus and device fabricating method
EP2995997A2 (en) 2004-12-15 2016-03-16 Nikon Corporation Exposure apparatus, exposure method, and device fabricating method
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8675173B2 (en) 2005-01-14 2014-03-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7924403B2 (en) 2005-01-14 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device and device manufacturing method
EP1843385A4 (en) * 2005-01-28 2011-04-27 Nikon Corp Projection optical system, exposure system, and exposure method
EP1843385A1 (en) * 2005-01-28 2007-10-10 Nikon Corporation Projection optical system, exposure system, and exposure method
US7978310B2 (en) 2005-01-28 2011-07-12 Nikon Corporation Projection optical system, exposure system, and exposure method
US7710653B2 (en) 2005-01-28 2010-05-04 Nikon Corporation Projection optical system, exposure system, and exposure method
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
EP3079164A1 (en) 2005-01-31 2016-10-12 Nikon Corporation Exposure apparatus and method for producing device
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US7218453B2 (en) 2005-02-04 2007-05-15 Carl Zeiss Smt Ag Projection system, in particular for a microlithographic projection exposure apparatus
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7705968B2 (en) 2005-03-18 2010-04-27 Nikon Corporation Plate member, substrate holding device, exposure apparatus and method, and device manufacturing method
US8638422B2 (en) 2005-03-18 2014-01-28 Nikon Corporation Exposure method, exposure apparatus, method for producing device, and method for evaluating exposure apparatus
EP2426708A1 (en) 2005-03-18 2012-03-07 Nikon Corporation Substrate holding device
US9239524B2 (en) 2005-03-30 2016-01-19 Nikon Corporation Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
EP2187251A3 (en) * 2005-03-31 2010-08-25 KLA-Tencor Technologies Corporation Small ultra-high NA catadioptric objective using a Mangin mirror
USRE45576E1 (en) 2005-04-08 2015-06-23 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE46933E1 (en) 2005-04-08 2018-07-03 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE47943E1 (en) 2005-04-08 2020-04-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE44446E1 (en) 2005-04-08 2013-08-20 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US8724077B2 (en) 2005-04-18 2014-05-13 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US9618854B2 (en) 2005-04-25 2017-04-11 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US9335639B2 (en) 2005-04-25 2016-05-10 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8064039B2 (en) 2005-04-25 2011-11-22 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8941812B2 (en) 2005-04-28 2015-01-27 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
EP2527921A2 (en) 2005-04-28 2012-11-28 Nikon Corporation Exposure method and exposure apparatus
US8236467B2 (en) 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
FR2885234A1 (en) * 2005-04-29 2006-11-03 Sagem Photolithography device`s optical system, has aberration correction units with refractive power higher than refractive power of mirror, and support units extended according to axis parallel to optical axis of system
FR2885235A1 (en) * 2005-04-29 2006-11-03 Sagem Defense Securite OPTICAL SYSTEM FOR A PHOTOLITHOGRAPHY DEVICE
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101762083B1 (en) 2005-05-12 2017-07-26 가부시키가이샤 니콘 Projection optical system, exposure apparatus and exposure method
JP2012168543A (en) * 2005-05-12 2012-09-06 Nikon Corp Projection optical system, exposure device, and exposure method
EP2660852A2 (en) 2005-05-12 2013-11-06 Nikon Corporation Projection optical system, exposure apparatus and exposure method
EP1881521A4 (en) * 2005-05-12 2010-05-26 Nikon Corp Projection optical system, exposure apparatus and exposure method
EP2660852A3 (en) * 2005-05-12 2014-03-26 Nikon Corporation Projection optical system, exposure apparatus and exposure method
JP2012014174A (en) * 2005-05-12 2012-01-19 Nikon Corp Projection optical system, exposure device and exposure method
US7936441B2 (en) 2005-05-12 2011-05-03 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP3232270A2 (en) 2005-05-12 2017-10-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2016118790A (en) * 2005-05-12 2016-06-30 株式会社ニコン Projection optical system, exposure apparatus, and exposure method
EP2660854A2 (en) 2005-05-12 2013-11-06 Nikon Corporation Projection optical system, exposure apparatus and exposure method
US20180052398A1 (en) * 2005-05-12 2018-02-22 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP2660853A3 (en) * 2005-05-12 2014-03-26 Nikon Corporation Projection optical system, exposure apparatus and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP2660854A3 (en) * 2005-05-12 2014-03-26 Nikon Corporation Projection optical system, exposure apparatus and exposure method
WO2006121009A1 (en) 2005-05-12 2006-11-16 Nikon Corporation Projection optical system, exposure apparatus and exposure method
JP2014099615A (en) * 2005-05-12 2014-05-29 Nikon Corp Projection optical system, exposure device, and exposure method
EP2660853A2 (en) 2005-05-12 2013-11-06 Nikon Corporation Projection optical system, exposure apparatus and exposure method
KR101544336B1 (en) 2005-05-12 2015-08-12 가부시키가이샤 니콘 Projection optical system, exposure apparatus and exposure method
JP5449672B2 (en) * 2005-05-12 2014-03-19 株式会社ニコン Projection optical system, exposure apparatus, and exposure method
EP3232270A3 (en) * 2005-05-12 2017-12-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2012155330A (en) * 2005-05-12 2012-08-16 Nikon Corp Projection optical system, exposure equipment, and exposure method
JP2017138606A (en) * 2005-05-12 2017-08-10 株式会社ニコン Projection optical system, exposure apparatus, and exposure method
EP1881521A1 (en) * 2005-05-12 2008-01-23 Nikon Corporation Projection optical system, exposure apparatus and exposure method
WO2006125617A2 (en) 2005-05-27 2006-11-30 Carl Zeiss Smt Ag Method for improving the imaging properties of a projection objective, and such a projection objective
US9581813B2 (en) 2005-05-27 2017-02-28 Carl Zeiss Smt Gmbh Method for improving the imaging properties of a projection objective, and such a projection objective
US9069263B2 (en) 2005-05-27 2015-06-30 Carl Zeiss Smt Gmbh Method for improving the imaging properties of a projection objective, and such a projection objective
US7777963B2 (en) 2005-05-27 2010-08-17 Carl Zeiss Smt Ag Method for improving the imaging properties of a projection objective, and such a projection objective
JP2008546007A (en) * 2005-05-27 2008-12-18 カール・ツァイス・エスエムティー・アーゲー Method for improving the imaging properties of a projection objective and such a projection objective
US9097984B2 (en) 2005-06-02 2015-08-04 Carl Zeiss Smt Gmbh Microlithography projection objective
JP2012186508A (en) * 2005-06-02 2012-09-27 Carl Zeiss Smt Gmbh Microlithography projection objective
JP2014143445A (en) * 2005-06-02 2014-08-07 Carl Zeiss Smt Gmbh Microlithography projection objective
US10281824B2 (en) 2005-06-02 2019-05-07 Carl Zeiss Smt Gmbh Microlithography projection objective
WO2006137410A1 (en) 2005-06-21 2006-12-28 Nikon Corporation Exposure apparatus, exposure method, maintenance method and device manufacturing method
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
JP2007005571A (en) * 2005-06-24 2007-01-11 Nikon Corp Exposure device and device manufacturing method
JPWO2007000984A1 (en) * 2005-06-28 2009-01-22 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
US8179517B2 (en) 2005-06-30 2012-05-15 Nikon Corporation Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
US8659744B2 (en) 2005-07-01 2014-02-25 Carl Zeiss Smt Gmbh Method for correcting a lithography projection objective, and such a projection objective
US8174676B2 (en) 2005-07-01 2012-05-08 Carl Zeiss Smt Gmbh Method for correcting a lithography projection objective, and such a projection objective
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
WO2007023813A1 (en) 2005-08-23 2007-03-01 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8018571B2 (en) 2005-08-23 2011-09-13 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method
US8668191B2 (en) 2005-08-26 2014-03-11 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US8070145B2 (en) 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US7812926B2 (en) 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US8724075B2 (en) 2005-08-31 2014-05-13 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
WO2007040254A1 (en) 2005-10-05 2007-04-12 Nikon Corporation Exposure apparatus and exposure method
US8064067B2 (en) 2005-10-05 2011-11-22 Nikon Corporation Exposure apparatus and exposure method
US7433050B2 (en) 2005-10-05 2008-10-07 Nikon Corporation Exposure apparatus and exposure method
WO2007055237A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007055373A1 (en) 2005-11-14 2007-05-18 Nikon Corporation Liquid recovery member, exposure apparatus, exposure method, and device production method
US8345217B2 (en) 2005-11-14 2013-01-01 Nikon Corporation Liquid recovery member, exposure apparatus, exposing method, and device fabricating method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US8456611B2 (en) 2005-11-29 2013-06-04 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
WO2007066692A1 (en) 2005-12-06 2007-06-14 Nikon Corporation Exposure method, exposure apparatus, and method for manufacturing device
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
US8547520B2 (en) 2005-12-06 2013-10-01 Nikon Corporation Exposing method, exposure apparatus, and device fabricating method
US8243254B2 (en) 2005-12-06 2012-08-14 Nikon Corporation Exposing method, exposure apparatus, and device fabricating method
US8089615B2 (en) 2005-12-08 2012-01-03 Nikon Corporation Substrate holding apparatus, exposure apparatus, exposing method, and device fabricating method
EP3327759A1 (en) 2005-12-08 2018-05-30 Nikon Corporation Substrate holding apparatus, exposure apparatus, exposing method, and device fabricating method
EP2768016A1 (en) 2005-12-08 2014-08-20 Nikon Corporation Exposure apparatus and method
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11275316B2 (en) 2005-12-30 2022-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10761433B2 (en) 2005-12-30 2020-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11669021B2 (en) 2005-12-30 2023-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222711B2 (en) 2005-12-30 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10133195B2 (en) 2006-01-19 2018-11-20 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10203613B2 (en) 2006-01-19 2019-02-12 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US9423702B2 (en) 2006-01-19 2016-08-23 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method measuring position of substrate stage by switching between encoder and interferometer
US10185227B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185228B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US9372414B2 (en) 2006-01-19 2016-06-21 Nikon Corporation Exposure method and device manufacturing method measuring position of substrate stage using at least three of four encoder heads
US9423703B2 (en) 2006-01-19 2016-08-23 Nikon Corporation Exposure apparatus and device manufacturing method measuring position of substrate stage using at least three of four encoder heads
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US8027020B2 (en) 2006-02-16 2011-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2007094407A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094470A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
US8390779B2 (en) 2006-02-16 2013-03-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
US8854632B2 (en) 2006-02-21 2014-10-07 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
EP2813893A1 (en) 2006-02-21 2014-12-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3267259A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8054472B2 (en) 2006-02-21 2011-11-08 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
EP3267258A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
EP3270226A1 (en) 2006-02-21 2018-01-17 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3279739A1 (en) 2006-02-21 2018-02-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3327507A1 (en) 2006-02-21 2018-05-30 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
EP3293577A1 (en) 2006-02-21 2018-03-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US8027021B2 (en) 2006-02-21 2011-09-27 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9103700B2 (en) 2006-02-21 2015-08-11 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US8908145B2 (en) 2006-02-21 2014-12-09 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
WO2007097466A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
US9423705B2 (en) 2006-02-21 2016-08-23 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
WO2007100081A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure method and apparatus, and device manufacturing method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
US7916270B2 (en) 2006-03-03 2011-03-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
WO2007108414A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
WO2007108415A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device manufacturing method
US8982322B2 (en) 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007119501A1 (en) 2006-03-23 2007-10-25 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US7920338B2 (en) 2006-03-28 2011-04-05 Carl Zeiss Smt Gmbh Reduction projection objective and projection exposure apparatus including the same
US7965453B2 (en) 2006-03-28 2011-06-21 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus including the same
US7738188B2 (en) 2006-03-28 2010-06-15 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus including the same
WO2007114024A1 (en) 2006-04-03 2007-10-11 Nikon Corporation Projection optical system, aligner, and method for fabricating device
US7884921B2 (en) 2006-04-12 2011-02-08 Nikon Corporation Illumination optical apparatus, projection exposure apparatus, projection optical system, and device manufacturing method
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7848016B2 (en) 2006-05-05 2010-12-07 Carl Zeiss Smt Ag High-NA projection objective
US9810996B2 (en) 2006-05-09 2017-11-07 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
US9817322B2 (en) 2006-05-19 2017-11-14 Carl Zeiss Smt Gmbh Optical imaging device and method for reducing dynamic fluctuations in pressure difference
US8027023B2 (en) 2006-05-19 2011-09-27 Carl Zeiss Smt Gmbh Optical imaging device and method for reducing dynamic fluctuations in pressure difference
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
WO2007138834A1 (en) 2006-05-31 2007-12-06 Nikon Corporation Exposure apparatus and exposure method
US10042265B2 (en) 2006-07-03 2018-08-07 Carl Zeiss Smt Gmbh Lithographic projection objective
US9494868B2 (en) 2006-07-03 2016-11-15 Carl Zeiss Smt Gmbh Lithographic projection objective
US8605253B2 (en) 2006-07-03 2013-12-10 Carl Zeiss Smt Gmbh Lithographic projection objective
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US8390784B2 (en) 2006-08-14 2013-03-05 Carl Zeiss Smt Gmbh Catadioptric projection objective with pupil mirror, projection exposure apparatus and projection exposure method
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US8675171B2 (en) 2006-08-31 2014-03-18 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US9568844B2 (en) 2006-08-31 2017-02-14 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US8013982B2 (en) 2006-08-31 2011-09-06 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US8203697B2 (en) 2006-08-31 2012-06-19 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US10353301B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
US10353302B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10162274B2 (en) 2006-08-31 2018-12-25 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10338482B2 (en) 2006-08-31 2019-07-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026709A1 (en) 2006-09-01 2008-03-06 Nikon Corporation Discharge lamp, light source apparatus, exposure apparatus and exposure apparatus manufacturing method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9081301B2 (en) 2006-09-01 2015-07-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9429854B2 (en) 2006-09-01 2016-08-30 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10197924B2 (en) 2006-09-01 2019-02-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10289010B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10289012B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US8704431B2 (en) 2006-09-01 2014-04-22 Nikon Corporation Discharge lamp, light source apparatus, exposure apparatus, and exposure apparatus manufacturing method
US8860925B2 (en) 2006-09-01 2014-10-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8531093B2 (en) 2006-09-01 2013-09-10 Nikon Corporation Discharge lamp, light source apparatus, exposure apparatus, and exposure apparatus manufacturing method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US8134688B2 (en) 2006-09-01 2012-03-13 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US8609301B2 (en) 2006-09-08 2013-12-17 Nikon Corporation Mask, exposure apparatus and device manufacturing method
US9563116B2 (en) 2006-09-08 2017-02-07 Nikon Corporation Mask, exposure apparatus and device manufacturing method
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US8743341B2 (en) 2006-09-15 2014-06-03 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US8922748B2 (en) 2006-09-29 2014-12-30 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8289500B2 (en) 2006-09-29 2012-10-16 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP2392971A1 (en) 2006-11-16 2011-12-07 Nikon Corporation Surface treatment method and surface treatment apparatus, exposure method and exposure apparatus, and device manufacturing method
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8749755B2 (en) 2006-11-17 2014-06-10 Nikon Corporation Stage apparatus and exposure apparatus
US9360775B2 (en) 2006-11-30 2016-06-07 Carl Zeiss Smt Gmbh Method of manufacturing a projection objective and projection objective
US8310752B2 (en) 2006-11-30 2012-11-13 Carl Zeiss Smt Gmbh Method of manufacturing a projection objective and projection objective
US8040490B2 (en) 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8013975B2 (en) 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8542346B2 (en) 2006-12-01 2013-09-24 Carl Zeiss Smt Gmbh Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations
US8659745B2 (en) 2006-12-01 2014-02-25 Carl Zeiss Smt Gmbh Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations
US8721803B2 (en) 2006-12-05 2014-05-13 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
EP1998223A2 (en) 2007-01-23 2008-12-03 Carl Zeiss SMT AG Projection lens for lithography
US8891059B2 (en) 2007-01-23 2014-11-18 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US7835073B2 (en) 2007-01-23 2010-11-16 Carl Zeiss Smt Ag Projection objective for lithography
US8068276B2 (en) 2007-01-23 2011-11-29 Carl Zeiss Smt Gmbh Projection objective for lithography
US8004651B2 (en) 2007-01-23 2011-08-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
EP2653924A2 (en) 2007-01-23 2013-10-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposure method, and device fabricating method
DE102007062894A1 (en) 2007-01-23 2008-07-24 Carl Zeiss Smt Ag Lithographic projection lens has optical array of optical elements between object plane and image plane, and optical array has two correction elements for correcting aberration
EP3407137A1 (en) 2007-01-23 2018-11-28 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8323855B2 (en) 2007-03-01 2012-12-04 Nikon Corporation Pellicle frame apparatus, mask, exposing method, exposure apparatus, and device fabricating method
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US9217933B2 (en) 2007-03-15 2015-12-22 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8400610B2 (en) 2007-03-15 2013-03-19 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8743343B2 (en) 2007-03-15 2014-06-03 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
DE102008000790A1 (en) 2007-03-20 2008-09-25 Carl Zeiss Smt Ag A method for improving imaging properties of an optical system and such an optical system
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US9013675B2 (en) 2007-03-23 2015-04-21 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
WO2008122410A3 (en) * 2007-04-05 2009-01-29 Zeiss Carl Smt Ag Optical correction element and method for the correction of temperature-induced imaging aberrations in optical systems, projection objective and projection exposure apparatus for semiconductor lithography
WO2008122410A2 (en) * 2007-04-05 2008-10-16 Carl Zeiss Smt Ag Optical correction element and method for the correction of temperature-induced imaging aberrations in optical systems, projection objective and projection exposure apparatus for semiconductor lithography
EP3617588A1 (en) 2007-04-12 2020-03-04 Nikon Corporation Discharge lamp, connecting cable. light source apparatus, and exposure apparatus
EP2985526A1 (en) 2007-04-12 2016-02-17 Nikon Corporation Discharge lamp, light source apparatus, and exposure apparatus
US8334654B2 (en) 2007-04-12 2012-12-18 Nikon Corporation Discharge lamp, connecting cable, light source apparatus, and exposure apparatus
US9165738B2 (en) 2007-04-12 2015-10-20 Nikon Corporation Discharge lamp, connecting cable, light source apparatus, and exposure apparatus
WO2008129932A1 (en) 2007-04-12 2008-10-30 Nikon Corporation Discharge lamp, cable for connection, light source device, and exposure device
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
US9063439B2 (en) 2007-05-25 2015-06-23 Carl Zeiss Smt Gmbh Projection objective for microlithography with stray light compensation and related methods
DE102008001800A1 (en) 2007-05-25 2008-11-27 Carl Zeiss Smt Ag Projection lens for microlithography, microlithography projection exposure apparatus with such a projection lens, microlithographic manufacturing method for components as well as produced by this method component
WO2008145296A1 (en) 2007-05-25 2008-12-04 Carl Zeiss Smt Ag Projection objective for microlithography, microlithography projection exposure apparatus with said projection objective, microlithographic manufacturing method for components, as well as a component manufactured with said method
US8189168B2 (en) 2007-05-28 2012-05-29 Nikon Corporation Exposure apparatus, device production method, cleaning apparatus, cleaning method, and exposure method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
US8441613B2 (en) 2007-06-01 2013-05-14 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus for microlithography
US7929115B2 (en) 2007-06-01 2011-04-19 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus for microlithography
US8294991B2 (en) 2007-07-23 2012-10-23 Carl Zeiss Smt Gmbh Interference systems for microlithgraphic projection exposure systems
DE102008040613A1 (en) 2007-07-23 2009-01-29 Carl Zeiss Smt Ag Optical system of a microlithographic projection exposure apparatus
US8582084B2 (en) 2007-07-24 2013-11-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8547527B2 (en) 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
WO2009013903A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US9612539B2 (en) 2007-07-24 2017-04-04 Nikon Corporation Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head
EP3193212A1 (en) 2007-07-24 2017-07-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8264669B2 (en) 2007-07-24 2012-09-11 Nikon Corporation Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head
US9025126B2 (en) 2007-07-31 2015-05-05 Nikon Corporation Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8767182B2 (en) 2007-08-24 2014-07-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US8553202B2 (en) 2007-10-01 2013-10-08 Carl Zeiss Smt Gmbh Projection objective for microlithography
US8773638B2 (en) 2007-10-09 2014-07-08 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus with correction optical system that heats projection objective element
WO2009060745A1 (en) 2007-11-06 2009-05-14 Nikon Corporation Control device, exposure method, and exposure device
DE102007054731A1 (en) 2007-11-14 2009-05-20 Carl Zeiss Smt Ag Optical element for reflection of UV radiation, manufacturing method therefor and projection exposure apparatus therewith
US8488103B2 (en) 2007-11-14 2013-07-16 Carl Zeiss Smt Gmbh Optical element for reflection of UV radiation, method for manufacturing the same and projection exposure apparatus comprising the same
DE102007055567A1 (en) 2007-11-20 2009-05-28 Carl Zeiss Smt Ag Optical system
US8379188B2 (en) 2007-11-20 2013-02-19 Carl Zeiss Smt Gmbh Optical system
US10310384B2 (en) 2007-12-28 2019-06-04 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US10274831B2 (en) 2007-12-28 2019-04-30 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US9690205B2 (en) 2007-12-28 2017-06-27 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US8451425B2 (en) 2007-12-28 2013-05-28 Nikon Corporation Exposure apparatus, exposure method, cleaning apparatus, and device manufacturing method
US9229333B2 (en) 2007-12-28 2016-01-05 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US8436981B2 (en) 2008-01-10 2013-05-07 Nikon Corporation Exposing method, exposure apparatus, and device fabricating method
DE102008054683A1 (en) 2008-03-13 2009-09-17 Carl Zeiss Smt Ag Optical system for microlithographic projection exposure system, has partial sections to which distinct-polarization states are assigned, which remain obtained by sections so that light enters in sections with two input-polarization states
US8233139B2 (en) 2008-03-27 2012-07-31 Nikon Corporation Immersion system, exposure apparatus, exposing method, and device fabricating method
US8953173B2 (en) 2008-04-04 2015-02-10 Carl Zeiss Smt Gmbh Apparatus for microlithographic projection exposure and apparatus for inspecting a surface of a substrate
US8345267B2 (en) 2008-04-04 2013-01-01 Carl Zeiss Smt Gmbh Apparatus for microlithographic projection exposure and apparatus for inspecting a surface of a substrate
US8654306B2 (en) 2008-04-14 2014-02-18 Nikon Corporation Exposure apparatus, cleaning method, and device fabricating method
US9176393B2 (en) 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US11187991B2 (en) 2008-05-28 2021-11-30 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US8126669B2 (en) 2008-06-09 2012-02-28 Carl Zeiss Smt Gmbh Optimization and matching of optical systems by use of orientation Zernike polynomials
US9354524B2 (en) 2008-09-25 2016-05-31 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
US9052609B2 (en) 2008-09-25 2015-06-09 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
US10054860B2 (en) 2008-09-25 2018-08-21 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
US8203696B2 (en) 2008-09-25 2012-06-19 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
DE102008042356A1 (en) 2008-09-25 2010-04-08 Carl Zeiss Smt Ag Projection exposure system with optimized adjustment option
EP2177934A1 (en) 2008-10-17 2010-04-21 Carl Zeiss SMT AG High transmission, high aperture catadioptric projection objective and projection exposure apparatus
EP2372404A1 (en) 2008-10-17 2011-10-05 Carl Zeiss SMT GmbH High transmission, high aperture projection objective and projection exposure apparatus
US8345222B2 (en) 2008-10-17 2013-01-01 Carl Zeiss Smt Gmbh High transmission, high aperture catadioptric projection objective and projection exposure apparatus
US8896806B2 (en) 2008-12-29 2014-11-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9612538B2 (en) 2008-12-29 2017-04-04 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2010076894A1 (en) 2008-12-29 2010-07-08 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2010087504A1 (en) 2009-01-30 2010-08-05 Nikon Corporation Exposure apparatus and exposing method
US9041902B2 (en) 2009-03-10 2015-05-26 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9753378B2 (en) 2009-03-10 2017-09-05 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US10310383B2 (en) 2009-03-10 2019-06-04 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8953143B2 (en) 2009-04-24 2015-02-10 Nikon Corporation Liquid immersion member
US8619231B2 (en) 2009-05-21 2013-12-31 Nikon Corporation Cleaning method, exposure method, and device manufacturing method
WO2011038840A1 (en) 2009-09-29 2011-04-07 Carl Zeiss Smt Gmbh Catadioptric projection objective comprising deflection mirrors and projection exposure method
US9817220B2 (en) 2009-09-29 2017-11-14 Carl Zeiss Smt Gmbh Catadioptric projection objective comprising deflection mirrors and projection exposure method
US10120176B2 (en) 2009-09-29 2018-11-06 Carl Zeiss Smt Gmbh Catadioptric projection objective comprising deflection mirrors and projection exposure method
US9274327B2 (en) 2009-09-29 2016-03-01 Carl Zeiss Smt Gmbh Catadioptric projection objective comprising deflection mirrors and projection exposure method
US8896814B2 (en) 2009-09-29 2014-11-25 Carl Zeiss Smt Gmbh Catadioptric projection objective comprising deflection mirrors and projection exposure method
DE102009048553A1 (en) 2009-09-29 2011-03-31 Carl Zeiss Smt Gmbh Catadioptric projection objective with deflecting mirrors and projection exposure method
US9459435B2 (en) 2009-09-29 2016-10-04 Carl Zeiss Smt Gmbh Catadioptric projection objective comprising deflection mirrors and projection exposure method
US8300211B2 (en) 2009-09-30 2012-10-30 Carl Zeiss Smt Gmbh Catadioptric projection objective
WO2011051069A1 (en) 2009-10-28 2011-05-05 Carl Zeiss Smt Gmbh Catadioptric projection objective comprising a reflective optical component and a measuring device
US10578976B2 (en) 2009-10-28 2020-03-03 Carl Zeiss Smt Gmbh Catadioptric projection objective including a reflective optical component and a measuring device
US10146137B2 (en) 2009-10-28 2018-12-04 Carl Zeiss Smt Gmbh Catadioptric projection objective including a reflective optical component and a measuring device
WO2011081062A1 (en) 2009-12-28 2011-07-07 株式会社ニコン Liquid immersion member, method for manufacturing liquid immersion member, exposure apparatus, and device manufacturing method
US9223225B2 (en) 2010-01-08 2015-12-29 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, and device manufacturing method
WO2011111878A1 (en) 2010-03-12 2011-09-15 Nikon Corporation Liquid immersion member and exposure apparatus
US10620544B2 (en) 2010-04-22 2020-04-14 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9846372B2 (en) 2010-04-22 2017-12-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US10209624B2 (en) 2010-04-22 2019-02-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
DE102010021539A1 (en) 2010-05-19 2011-11-24 Carl Zeiss Smt Gmbh Projection lens with apertures
US8488104B2 (en) 2010-05-19 2013-07-16 Carl Zeiss Smt Gmbh Projection objective with diaphragms
WO2012008605A1 (en) 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012008604A1 (en) 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
US8937703B2 (en) 2010-07-14 2015-01-20 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
WO2012008606A1 (en) 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012008620A2 (en) 2010-07-16 2012-01-19 Nikon Corporation Liquid recovery apparatus, exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
WO2012011605A1 (en) 2010-07-23 2012-01-26 Nikon Corporation Liquid immersion member and cleaning method
WO2012011613A2 (en) 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, cleaning apparatus, device fabricating method, program, and storage medium
WO2012011612A2 (en) 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, immersion exposure apparatus, device fabricating method, program, and storage medium
WO2012041341A1 (en) 2010-09-30 2012-04-05 Carl Zeiss Smt Gmbh Projection exposure system and projection exposure method
WO2012091162A1 (en) 2010-12-27 2012-07-05 Nikon Corporation Liquid immersion member and cleaning method
WO2012091163A1 (en) 2010-12-27 2012-07-05 Nikon Corporation Liquid immersion member, immersion exposure apparatus, exposing method, device fabricating method, program, and storage medium
US9411246B2 (en) 2011-06-30 2016-08-09 Nikon Corporation Full-field maskless lithography projection optics
US9494876B2 (en) 2011-07-21 2016-11-15 Nikon Corporation Exposure apparatus, exposure method, method of manufacturing device, program, and storage medium
US9329496B2 (en) 2011-07-21 2016-05-03 Nikon Corporation Exposure apparatus, exposure method, method of manufacturing device, program, and storage medium
WO2013027866A1 (en) 2011-08-25 2013-02-28 Nikon Corporation Exposure apparatus and method of confining a liquid
US9256137B2 (en) 2011-08-25 2016-02-09 Nikon Corporation Exposure apparatus, liquid holding method, and device manufacturing method
WO2013072388A1 (en) 2011-11-18 2013-05-23 Carl Zeiss Smt Gmbh Projection lens of a microlithographic projection exposure apparatus
DE102011086665A1 (en) 2011-11-18 2013-05-23 Carl Zeiss Smt Gmbh Projection objective of a microlithographic projection exposure apparatus
WO2013077467A1 (en) 2011-11-25 2013-05-30 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2013100205A2 (en) 2011-12-28 2013-07-04 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US9268231B2 (en) 2012-04-10 2016-02-23 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US10520828B2 (en) 2012-04-10 2019-12-31 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
US9810999B2 (en) 2012-04-10 2017-11-07 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
US9557654B2 (en) 2012-04-10 2017-01-31 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US10139736B2 (en) 2012-04-10 2018-11-27 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
US10409177B2 (en) 2012-04-10 2019-09-10 Nikon Corporation Liquid immersion exposure apparatus
WO2013153939A1 (en) 2012-04-10 2013-10-17 Nikon Corporation Liquid immersion member and exposure apparatus
US9323160B2 (en) 2012-04-10 2016-04-26 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
US10768537B2 (en) 2012-04-10 2020-09-08 Nikon Corporation Liquid immersion exposure apparatus
US9927724B2 (en) 2012-04-10 2018-03-27 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
WO2013153965A1 (en) 2012-04-10 2013-10-17 Nikon Corporation Liquid immersion member and exposure apparatus
WO2014014123A1 (en) 2012-07-20 2014-01-23 Nikon Corporation Liquid immersion member and exposure apparatus
US10739683B2 (en) 2012-07-20 2020-08-11 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9823580B2 (en) 2012-07-20 2017-11-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9829800B2 (en) 2012-07-20 2017-11-28 Carl Zeiss Smt Gmbh System correction from long timescales
US10007189B2 (en) 2012-07-20 2018-06-26 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
DE102012212758A1 (en) 2012-07-20 2014-01-23 Carl Zeiss Smt Gmbh System correction from long time scales
US9915882B2 (en) 2012-10-12 2018-03-13 Nikon Corporation Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
WO2014057925A1 (en) 2012-10-12 2014-04-17 株式会社ニコン Exposure device provided with damper
US9568828B2 (en) 2012-10-12 2017-02-14 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
US10444634B2 (en) 2012-10-12 2019-10-15 Nikon Corporation Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9910365B2 (en) 2012-10-12 2018-03-06 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
US9507265B2 (en) 2012-10-12 2016-11-29 Nikon Corporation Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9857700B2 (en) 2012-10-12 2018-01-02 Nikon Corporation Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US10599050B2 (en) 2012-10-12 2020-03-24 Nikon Corporation Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9494870B2 (en) 2012-10-12 2016-11-15 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
WO2014057926A1 (en) 2012-10-12 2014-04-17 株式会社ニコン Exposure device, exposure method, device production method, program, and recording medium
US10678141B2 (en) 2012-10-12 2020-06-09 Nikon Corporation Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
WO2014104159A1 (en) 2012-12-27 2014-07-03 株式会社ニコン Liquid-immersion member and exposure device
US9823582B2 (en) 2012-12-27 2017-11-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
US9720331B2 (en) 2012-12-27 2017-08-01 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
US10095127B2 (en) 2012-12-27 2018-10-09 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
US9904184B2 (en) 2012-12-27 2018-02-27 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US10133189B2 (en) 2012-12-27 2018-11-20 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
WO2014104107A1 (en) 2012-12-27 2014-07-03 株式会社ニコン Exposure device, exposure method, device production method, program, and recording medium
US9823583B2 (en) 2012-12-27 2017-11-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
EP3330799A1 (en) 2012-12-27 2018-06-06 Nikon Corporation Exposure apparatus, exposing method and device manufacturing method
US9651873B2 (en) 2012-12-27 2017-05-16 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
EP3309821A1 (en) 2012-12-27 2018-04-18 Nikon Corporation Liquid-immersion member, exposure apparatus, exposing method, and method of manufacturing device
US10423080B2 (en) 2012-12-27 2019-09-24 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
EP3528050A1 (en) 2012-12-27 2019-08-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, and method of manufacturing device
WO2014104139A1 (en) 2012-12-27 2014-07-03 株式会社ニコン Liquid-immersion member and exposure device
WO2014115755A1 (en) 2013-01-22 2014-07-31 株式会社ニコン Functional coating, liquid immersion member, method for manufacturing liquid immersion member, light exposure apparatus, and device manufacturing method
US9057955B2 (en) 2013-01-22 2015-06-16 Nikon Corporation Functional film, liquid immersion member, method of manufacturing liquid immersion member, exposure apparatus, and device manufacturing method
US9352073B2 (en) 2013-01-22 2016-05-31 Niko Corporation Functional film
US9481846B2 (en) 2013-02-28 2016-11-01 Nikon Corporation Sliding film, member on which sliding film is formed, and manufacturing method therefor
US9651872B2 (en) 2013-03-13 2017-05-16 Carl Zeiss Smt Gmbh Projection lens with wavefront manipulator
WO2014139719A1 (en) 2013-03-13 2014-09-18 Carl Zeiss Smt Gmbh Projection lens with wavefront manipulator
US9298102B2 (en) 2013-03-13 2016-03-29 Carl Zeiss Smt Gmbh Projection lens with wavefront manipulator
US9817316B2 (en) 2013-10-02 2017-11-14 Carl Zeiss Smt Gmbh Projection exposure method and projection exposure apparatus for microlithography
DE102013219986A1 (en) 2013-10-02 2015-04-02 Carl Zeiss Smt Gmbh Projection exposure method and projection exposure apparatus for microlithography
WO2015052781A1 (en) 2013-10-08 2015-04-16 株式会社ニコン Immersion member, exposure device and exposure method, and device production method
US10474036B2 (en) 2014-03-06 2019-11-12 Carl Zeiss Smt Gmbh Optical element and optical arrangement therewith
DE102014204171A1 (en) 2014-03-06 2015-09-24 Carl Zeiss Smt Gmbh Optical element and optical arrangement with it
DE102014212710A1 (en) 2014-07-01 2016-01-07 Carl Zeiss Smt Gmbh Optical manipulator, projection lens and projection exposure system
DE102014212711A1 (en) 2014-07-01 2016-01-07 Carl Zeiss Smt Gmbh Plate-shaped optical element, optical manipulator, projection lens and projection exposure system
WO2016001090A2 (en) 2014-07-01 2016-01-07 Carl Zeiss Smt Gmbh Optical manipulator, projection lens and projection exposure apparatus
US10976667B2 (en) 2014-07-01 2021-04-13 Carl Zeiss Smt Gmbh Optical manipulator, projection lens and projection exposure apparatus
DE102015211699A1 (en) 2014-08-13 2016-02-18 Carl Zeiss Smt Gmbh Imaging optical system and optical design method
DE102016224403A1 (en) 2016-12-07 2017-12-28 Carl Zeiss Smt Gmbh Catadioptric projection objective and projection exposure method
US11360293B2 (en) 2016-12-07 2022-06-14 Carl Zeiss Smt Gmbh Catadioptric projection lens and method for producing same
WO2018104178A1 (en) 2016-12-07 2018-06-14 Carl Zeiss Smt Gmbh Catadioptric projection lens and method for producing same
DE102016224400A1 (en) 2016-12-07 2018-06-07 Carl Zeiss Smt Gmbh Catadioptric projection objective and method for its production

Also Published As

Publication number Publication date
TW200403547A (en) 2004-03-01
US20080049306A1 (en) 2008-02-28
US7619827B2 (en) 2009-11-17
TWI249082B (en) 2006-02-11
US7362508B2 (en) 2008-04-22
JP2010097221A (en) 2010-04-30
AU2003256081A8 (en) 2004-03-11
US7551362B2 (en) 2009-06-23
KR20050035890A (en) 2005-04-19
US20080068573A1 (en) 2008-03-20
AU2003256081A1 (en) 2004-03-11
JP2010061159A (en) 2010-03-18
US7701640B2 (en) 2010-04-20
US20080049336A1 (en) 2008-02-28
US20080068576A1 (en) 2008-03-20
EP1532489A2 (en) 2005-05-25
TWI242691B (en) 2005-11-01
WO2004019128A3 (en) 2004-10-28
JP2005536775A (en) 2005-12-02
CN1668984A (en) 2005-09-14
US20080094696A1 (en) 2008-04-24
US7609455B2 (en) 2009-10-27
US20050248856A1 (en) 2005-11-10
US7580197B2 (en) 2009-08-25
TW200426542A (en) 2004-12-01
CN100462844C (en) 2009-02-18
US7688517B2 (en) 2010-03-30
US20080068724A1 (en) 2008-03-20
JP4803301B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US7688517B2 (en) Projection optical system and method for photolithography and exposure apparatus and method using same
US20180299785A1 (en) Projection optical system, exposure apparatus, and exposure method
JP4245286B2 (en) Catadioptric optical system and exposure apparatus provided with the optical system
US9500943B2 (en) Projection optical system, exposure apparatus, and exposure method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038172534

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004530609

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10525372

Country of ref document: US

Ref document number: 1020057003082

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003792812

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057003082

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003792812

Country of ref document: EP