WO2004024294A1 - フィルタ - Google Patents

フィルタ Download PDF

Info

Publication number
WO2004024294A1
WO2004024294A1 PCT/JP2003/011776 JP0311776W WO2004024294A1 WO 2004024294 A1 WO2004024294 A1 WO 2004024294A1 JP 0311776 W JP0311776 W JP 0311776W WO 2004024294 A1 WO2004024294 A1 WO 2004024294A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
hole
filter
cross
small
Prior art date
Application number
PCT/JP2003/011776
Other languages
English (en)
French (fr)
Inventor
Sungtae Hong
Teruo Komori
Kazushige Ohno
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to US10/490,206 priority Critical patent/US7326270B2/en
Priority to EP03795443A priority patent/EP1495791B1/en
Priority to JP2004571941A priority patent/JPWO2004024294A1/ja
Publication of WO2004024294A1 publication Critical patent/WO2004024294A1/ja
Priority to US11/760,833 priority patent/US7857885B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4263Means for active heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates to a filter used for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine.
  • a cylindrical honeycomb structure 140 in which a large number of through-holes 141 are arranged in parallel in the longitudinal direction with a partition wall 144 as shown in FIG. Have been.
  • the through hole 14 1 is sealed at one end on the exhaust gas inflow side or the exhaust side with a sealing material 14 2, and one through hole 14 4
  • the exhaust gas that has flowed into 1 always passes through the partition wall 144 that separates the through holes 141, and then flows out of the other through holes 141.
  • a through hole (hereinafter, also referred to as an inflow side through hole) whose end on the exhaust gas outflow side is sealed with a large capacity through hole (hereinafter, also referred to as a large capacity through hole).
  • the through-hole whose end on the exhaust gas inflow side is sealed (hereinafter also referred to as “outflow-side through-hole”) is a small-volume through-hole (hereinafter also referred to as “small-volume through-hole”). It is disclosed that the opening ratio on the exhaust gas inflow side is relatively larger than the opening ratio on the exhaust gas outflow side.
  • FIG. 10 is disclosed in U.S. Pat. No. 4,417,908 (corresponding Japanese patents are JP-A-58-196820, Japanese Patent Publication No. 3-49608 (hereinafter referred to as Patent Document 1)).
  • Patent Document 1 schematically shows a cross section perpendicular to the longitudinal direction of the exhaust gas filter.
  • This exhaust gas filter 60 has a cross-sectional shape such that a square smaller than a regular square forming the grid is arranged at the intersection of the grid, and a small-volume through-hole 61 b corresponding to the small square. And large-volume through-holes 61 a existing around the partition, and partition walls 62 a and 62 b are formed between these through-holes.
  • the exhaust gas filters 300 to 30 include large-volume through-holes 30 1 a, 31 1 a, 32 1 a, and 33 1 a of various shapes, and small-volume through-holes 30 1 b, 31 1 b, It consists of 3 2 1b and 3 3 lb, and partitions 302, 312, 322 and 332 are formed between these through holes.
  • the bulkheads 30 2, 3 1 2, 3 22, 3 3 2 are all large-volume through-holes 30 1a, 3 1 1a, 3 2 1a, 3 3 1a and small-volume through-holes 30 1b, 3 1 1 b, 3 2 1 b, 3 3 1 b are separated from each other, and there is no partition separating large volume through holes 30 1 a, 3 1 1 a, 3 2 1 a, 3 3 1 a. It may be said.
  • a filter increases the pressure loss by collecting particulates in the exhaust gas. As the back pressure increases, the load applied to the engine and the like increases when the back pressure exceeds a certain value. Therefore, it is necessary to perform a regeneration process to remove particulates. Thus, the degree of pressure loss over time is an important factor in evaluating filter performance.
  • Figure 1 is a conceptual diagram that describes the main factors that affect pressure loss.
  • FIG. 2 is a graph schematically showing a change in pressure loss with time in various gas filters.
  • the exhaust gas filter having two types of through-holes described in Patent Documents 1 and 2, etc. has a rectangular cross section shown in FIG. in the state prior to collecting the friction when passing through the aperture ratio ⁇ Pi through hole inlet side of the filter inlet port side due to (1;; ⁇ ⁇ 3 + ®-1 ⁇ [rho b -i) pressure loss is slightly lower, the resistance when passing through the friction and the partition wall when passing through the through hole outlet side pressure loss attributed to (2- 2;; AP b _ 2 + 3 AP C) becomes high.
  • the pressure loss before collecting particulates was higher than that of an exhaust gas filter with almost the same volume of all through holes as shown in Fig. 9.
  • most of the walls of the exhaust gas filter have a large volume through hole in a cross section perpendicular to the longitudinal direction and a wall portion (a) shared with an adjacent large volume through hole, and a large volume through hole in a cross section perpendicular to the longitudinal direction.
  • the pressure loss varies depending on the ratio of the two types of walls.
  • the large volume through-hole directly passes through the wall (a) and exhausts to the small volume through-hole.
  • Pressure drop before collecting particulates (T 0 ) due to difficulty in gas flow The loss tends to be high.
  • the particulates are collected on the surface of the wall (a), so that they pass through the wall (a) directly from the large-capacity through-hole and have a small volume. Rather than the exhaust gas flowing into the through hole, the resistance is lower when the gas first enters the wall (a) and flows through the porous wall to the wall (a), resulting in a lower resistance. Particulates will accumulate uniformly over the entire wall. Therefore, the thickness of the particulates accumulated on the wall is reduced, and the rate of increase of the pressure loss ( ⁇ 3 / (T! -To)), which increases with the collection of the particulates, is reduced.
  • the ratio of the wall (a) shared by the large-volume through-hole with the adjacent large-volume through-hole is relatively large. Therefore, as shown in Fig. 2, the pressure loss before trapping particulates (T.) (hereinafter also referred to as the initial pressure loss) has a high resistance (3; ⁇ ) when passing through the partition wall. And the initial pressure loss is too high, so that the particulate pressure is high when collecting particulates (at T, too).
  • the exhaust gas filter 60 has a problem in that the initial pressure loss becomes too high, and the amount of trapped particulates is substantially limited.
  • the exhaust gas filters 300 to 330 have a problem that the amount of trapped particulates is substantially limited because the rate of increase in pressure loss due to concentration is large.
  • Patent Document 3 discloses a honeycomb structure in which the cell pitch of large-volume through-holes is approximately 1.0 to 2.5 mm.
  • Patent Document 4 discloses that the volume ratio of large-volume through-holes is low.
  • a honeycomb structure in which the volume ratio of the small-volume through-hole is 60 to 70%, the volume ratio of the small-volume through-hole is 20 to 30%, and the cell pitch of the large-volume through-hole is approximately 2.5 to 5.0 mm is disclosed. .
  • FIG. 19 is a cross-sectional view schematically showing a cross section (hereinafter, also simply referred to as a cross section) perpendicular to the longitudinal direction of these honeycomb structures 200.
  • a cross section hereinafter, also simply referred to as a cross section
  • a small-capacity through hole 202 having a triangular cross section is provided around a large-capacity through-hole 201 having a hexagonal shape.
  • Patent Document 5 Japanese Patent Application Laid-Open Publication No. 2000-133414 (see page 5, FIG. 2) (WO 02/100514, hereinafter referred to as Patent Document 5) includes: A honeycomb structure is disclosed in which the percentage of the ratio of the total area of the cross section of the small volume through hole to the total area of the cross section of the large volume through hole is 40 to 120%.
  • FIG. 20 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction of such a honeycomb structure.
  • the shape of the cross section is a regular hexagonal large volume penetration.
  • a small-volume through-hole 221 having the above-mentioned cross-sectional shape is horizontally long and hexagonal.
  • a regular hexagonal large-capacity through-hole 2 11 and a trapezoidal large-volume through-hole 2 13 coexist.
  • the opening ratio on the exhaust gas inflow side may be relatively larger than the opening ratio on the exhaust gas outflow side. It has been disclosed. (For example, see FIG. 3 of Patent Document 1)
  • the aperture ratio at the filter inlet side and the friction when passing through the through-hole inlet side (1; ⁇ ⁇ 3 + ®-1; AP b- the pressure loss is slightly lower, the resistance when passing through the friction and the partition wall when passing through the through hole outlet side (2 over 2; AP b one 2 + 3; ⁇ P c) the pressure loss due to increases
  • the pressure loss before collecting particulates is higher than that of exhaust gas finoleta, as shown in Fig. 9, in which all through holes have substantially the same volume.
  • Patent Document 6 US Pat. No. 4,416,676 and US Pat. No. 4,420,316 (hereinafter referred to as Patent Document 6) adjust the wall thickness and physical properties.
  • Japanese Patent Application Laid-Open No. 58-15015 discloses a filter composed of a square and a rectangle.
  • the filter since the filter has a modified cross section, it is preferable to manufacture the filter by extrusion. Difficult to mass produce.
  • there is a difference between the cross-sectional area of the through-hole on the outflow side is relatively large and that of the through-hole on the outflow side is small. The pressure loss will be high.
  • a filter described in WO03Z20407 includes a honeycomb formed of two types of relatively large squares and small through holes. A cam structure is disclosed.
  • the opening ratio on the exhaust gas inflow side is smaller than that of the honeycomb structure having the same opening ratio on the exhaust gas inflow side and the opening ratio on the exhaust gas outflow side. Since it is relatively large, when used as an exhaust gas purification filter, it is possible to increase the collection limit of particulates and prolong the period until regeneration.
  • the present invention has been made to solve these problems, and it is an object of the present invention to provide a filter capable of collecting a large amount of particulates with a low pressure loss when the particulates are collected. It is the purpose.
  • the phrase "capable of collecting a large amount” means not only that the volume of the collecting portion of the filter is increased, but also that a large amount of collected water can be collected because cracks are less likely to be generated by regeneration. It is assumed that
  • the filter of the present invention is a columnar filter having a honeycomb structure in which a large number of through-holes are arranged in a longitudinal direction with a wall portion therebetween,
  • the above-mentioned through-holes are substantially the same number of two types of through-holes: a large-volume through-hole having a relatively large cross-sectional area perpendicular to the longitudinal direction and a small-volume through-hole having a relatively small cross-sectional area. Consisting of holes,
  • the large volume through hole is sealed at one end of the filter, while the small volume through hole is sealed at the other end of the filter,
  • the length of the large volume through hole and / or the small volume through hole is desirably composed of two types, an octagon and a quadrangle.
  • the shape is such that a partition shared by the large-volume through-hole and the small-volume through-hole has a curved shape on the small-volume side. It is desirable that the shape be expanded at a certain rate.
  • the sum (b) of the wall length shared by one large-volume through-hole and the adjacent small-volume through-hole in the cross section perpendicular to the longitudinal direction is (b) the exhaust gas when the cross section of the filter is viewed. It represents the total length of the bulkhead that can pass perpendicular to the bulkhead.
  • the sum of the wall length (a) that one large-volume through-hole shares with the adjacent large-volume through-hole is (a)
  • the cross section shows the total length of the partition walls where exhaust gas cannot pass perpendicular to the partition walls. This a (a / b) is also referred to as the partition wall length ratio.
  • the ratio of the cross-sectional area ( ⁇ ) of the large-volume through-hole to the cross-sectional area ( ⁇ ) of the small-volume through-hole] 3 ( ⁇ / ⁇ ) represents the aperture ratio of the filter of the present invention.
  • the opening ratio increases, the total volume of the large-volume through-hole on the gas gas inflow side relatively increases.
  • the total value of the pressure loss caused by these factors is as follows. Is calculated or measured experimentally, and determined based on these results.
  • a (a / b) needs to satisfy 0 and ⁇ ⁇ ⁇ .5.
  • 0, the large-capacity through-hole of ⁇ does not have a wall shared with the adjacent large-capacity through-hole, so that the rate of increase in pressure loss increases as in the filter described in Patent Document 2.
  • exceeds 1.5, the sum of the wall lengths (a) that one large-volume through-hole shares with the adjacent large-volume through-hole is too large.
  • APc is too large and the initial pressure loss is too large.
  • a filter having a large number of small volume through holes around a large volume through hole or vice versa for example, a filter shown in FIG. 19 is not included in the filter of the present invention.
  • a filter in which one large-volume through-hole as shown in FIG. 11 does not have a wall shared with an adjacent large-volume through-hole is not included in the filter of the present invention.
  • FIG. 1 is a conceptual diagram illustrating main factors affecting a pressure loss in a filter of the type of the present invention.
  • FIG. 2 is a graph schematically showing a change in pressure loss over time in various exhaust gas filters.
  • FIG. 3 is a perspective view schematically showing an example of the exhaust gas purifying filter of the present invention.
  • FIG. 4 (a) is a perspective view schematically showing an example of a porous ceramic member constituting the filter shown in FIG. 3, and
  • FIG. 4 (b) is a perspective view of the porous ceramic member shown in FIG. 3 (a).
  • FIG. 2 is a sectional view taken along line A-A.
  • FIG. 5 (a) is a perspective view schematically showing another example of the exhaust gas purifying filter of the present invention
  • (b) is a cross-sectional view taken along the line BB of the filter shown in (a).
  • is there. 6 (a) to 6 (d) are cross-sectional views schematically showing a cross section perpendicular to the length direction of the porous ceramic member constituting the filter of the present invention
  • (e) is a conventional filter.
  • FIG. 2 is a cross-sectional view schematically showing a cross section perpendicular to the length direction of a porous ceramic member constituting the present invention.
  • Fig. 7 schematically shows one process for manufacturing the honeycomb filter of the present invention. It is the side view shown.
  • FIG. 8 is a cross-sectional view schematically showing one example of an exhaust gas purifying apparatus using the exhaust gas purifying honeycomb filter of the present invention.
  • FIG. 9 is a perspective view schematically showing an example of a conventional exhaust gas purifying Hucom filter.
  • FIG. 10 is a longitudinal sectional view schematically showing another example of a conventional honeycomb filter for purifying exhaust gas.
  • FIGS. 11 (a) to 11 (d) are longitudinal sectional views schematically showing another example of a conventional honeycomb filter for purifying exhaust gas.
  • FIGS. 12 (a) to 12 (f) are longitudinal sectional views schematically showing examples of the filters of the present invention.
  • FIG. 13 is a graph showing the relationship between ⁇ (partition length ratio) and / 3 (opening ratio) of the filters according to the example and the comparative example.
  • FIG. 14 is a photograph showing the particulate collection state observed at different positions from the inlet of the filter in Example 1.
  • FIG. 15 is a graph showing the relationship between the ash weight and the length of the ash layer in the filters according to the example and the comparative example.
  • FIG. 16 is a graph showing the relationship between the pressure loss and the ash weight of the filters according to the example and the comparative example before the particulates are collected or immediately after the regeneration, in which no particulates are deposited on the filters. is there.
  • FIG. 17 is a graph showing the relationship between the amount of trapped particulates and the pressure loss in the filters according to the example and the comparative example, and (b) shows the (opening) in the filters according to the example and the comparative example.
  • 7 is a graph showing the relationship between the initial pressure loss and the pressure loss when 6 (gZL) of particulates are collected.
  • FIG. 18 is a graph showing the relationship between j3 (aperture ratio) and the reproduction limit value in the filter according to the example.
  • Fig. 19 schematically shows a cross section perpendicular to the length direction of a conventional porous ceramic member configured such that the number of large-volume through holes and small-volume through holes is substantially 1: 2.
  • FIG. 20 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction of a conventional honeycomb structure.
  • FIG. 21 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction of a conventional honeycomb structure.
  • FIG. 22 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction of a conventional honeycomb structure. Explanation of reference numerals
  • the filter of the present invention is a columnar filter having a honeycomb structure in which a large number of through holes are arranged side by side in a longitudinal direction with a wall portion therebetween,
  • the through holes are substantially the same in number as a large-volume through-hole having a relatively large cross-sectional area perpendicular to the longitudinal direction and a small-volume through-hole having a relatively small cross-sectional area.
  • the large volume through hole is sealed at one end of the filter, while the small volume through hole is sealed at the other end of the filter,
  • the ratio (aZb) of the total length (b) of the wall portions shared by the adjacent small volume through-holes, and the area (A) of the cross section of the large volume through-hole and the small volume through-hole When the ratio (A / B) of the area (B) of the cross section of the above is set to! 3, the above-mentioned jS has a relationship of the following formula (1).
  • the filter of the present invention has a large number of through holes separated by a wall.
  • the filter is a columnar filter having a honeycomb structure arranged in the longitudinal direction, and preferably includes at least one porous ceramic block.
  • a plurality of columnar porous ceramic members having through holes arranged in parallel in the longitudinal direction with a partition wall interposed therebetween may be formed by binding a plurality of the porous ceramic members via a sealing material layer (hereinafter, the above-mentioned filter is an assembly type).
  • the filter may be entirely formed of a ceramic member integrally formed by sintering (hereinafter, the filter is also referred to as an integral filter).
  • the wall portion is composed of a partition wall separating the through-hole of the porous ceramic member, and a sealing material layer functioning as an adhesive layer between the outer wall of the porous ceramic member and the porous ceramic member.
  • a partition wall separating the through-hole of the porous ceramic member, and a sealing material layer functioning as an adhesive layer between the outer wall of the porous ceramic member and the porous ceramic member.
  • a sealing material layer functioning as an adhesive layer between the outer wall of the porous ceramic member and the porous ceramic member.
  • it is constituted only by one kind of partition wall.
  • FIG. 3 is a perspective view schematically showing a specific example of an aggregated filter which is an example of the filter of the present invention.
  • FIG. 4 (a) shows a porous ceramic member constituting the filter shown in FIG.
  • FIG. 2 is a perspective view schematically showing one example of the above, and
  • FIG. 2 (b) is a cross-sectional view taken along line AA of the porous ceramic member shown in FIG. 1 (a).
  • a plurality of porous ceramic members 20 are bound via a sealing material layer 14 to form a ceramic block 15.
  • a sealing material layer 13 for preventing leakage of exhaust gas is formed.
  • the porous ceramic member 20 has a large number of through holes 21 arranged in the longitudinal direction.
  • the through holes 21 have a relatively large cross-sectional area perpendicular to the longitudinal direction. It consists of two types, a volume through hole 21 a and a small volume through hole 2 lb, whose cross-sectional area is relatively small.
  • the large volume award hole 2 la is the end of the filter 10 on the exhaust gas outlet side.
  • the small-volume through-hole 2 lb is sealed by the sealant 22 at the end of the filter 10 on the exhaust gas inlet side, and separates these through-holes.
  • the partition wall 23 functions as a filter. That is, the exhaust gas that has flowed into the large-volume through-hole 21a always passes through these partition walls 23 and then flows out from the small-volume through-hole 21b.
  • the through holes 21 are composed of two types, a large volume through hole 21a and a small volume through hole 21b, and the number of the through holes is substantially the same.
  • the number of the through holes is substantially the same.
  • the filter according to the present invention further includes a wall shared by one large-volume through-hole 21 a and an adjacent large-volume through-hole 21 b; and a small-volume through-hole adjacent to one large-volume through-hole 21 a. It has both a wall shared with 2 1b.
  • Figs. 14 (a) to 14 (c) are photographs showing the collection state of particulates observed at different positions from the inlet of the filter in the example.
  • the particulates accumulate uniformly not only on the walls shared by the adjacent large-volume through-holes and the small-volume through-holes, but also on the walls shared by the adjacent large-volume through-holes. This is because the exhaust gas passes through the small volume through the large volume through hole.
  • the filter of the present invention has a larger surface area of the wall for substantially filtering compared to a filter having no wall shared by the large-volume through-holes, When the same amount of particulates is accumulated, the thickness of the accumulated particulates in the partition can be reduced.
  • the rate of increase of the pressure loss that increases as time elapses from the start of use becomes smaller, and it is possible to reduce the pressure loss when the filter is used for a total period of time. You can.
  • the particulates are burned.
  • metals and the like that become oxides by burning are contained. Remains as ash in the filter.
  • the ash usually remains near the outlet of the filter, so the through-holes that make up the filter are filled with ash near the outlet, and the volume of the ash-filled portion gradually increases. At the same time, the volume (area) of the part that functions as a filter gradually decreases.
  • the filter will no longer function as a filter, and will have to be removed from the exhaust pipe, subjected to backwashing, and discarded to remove the ash from the finoletor.
  • the filter of the present invention described above has a portion that functions as a filter when ash accumulates due to the larger volume of the through hole on the exhaust gas inflow side as compared with the filter having the same through hole.
  • the reduction in volume is small and the pressure loss due to ash is also small. Therefore, the period until the necessity of back washing or the like becomes long.
  • the shape of the filter is cylindrical.
  • the filter of the present invention is not limited to a cylindrical shape. It may be.
  • the honeycomb structure does not change its cross-sectional area from the inflow side to the outflow side. This is because the compression strength and the like can be improved, and the production by extrusion molding becomes easy.
  • the material of the porous ceramic member is not particularly limited.
  • nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride; silicon carbide; zirconium carbide; titanium carbide; Examples thereof include carbide ceramics such as tantalum and tungsten carbide, and oxide ceramics such as alumina, zirconium, cordierite, and mullite.
  • it may be formed of two or more kinds of materials such as a composite of silicon and silicon carbide and aluminum titanate. Among these, heat resistance is high, mechanical properties are excellent, and Silicon carbide having a high thermal conductivity is desirable.
  • the porosity of the porous ceramic member is not particularly limited, but is preferably about 20 to 80%. If the porosity is less than 20%, the filter of the present invention may be clogged immediately.On the other hand, if the porosity exceeds 80%, the strength of the porous ceramic member is easily reduced. May be ruptured.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, and a measurement using a scanning electron microscope (SEM). Further, it is desirable that the average pore diameter of the porous ceramic member is 1 to 100 ⁇ m. If the average pore size is less than 1 ⁇ , particulates can easily become clogged. On the other hand, if the average stomatal density exceeds 100 / im, the particulates may pass through the pores, fail to collect the particulates, and may not function as a filter.
  • the particle size of the ceramic used for producing such a porous ceramic member is not particularly limited, but preferably has a small shrinkage in the subsequent firing step, for example, 0.3 to 50; xm 100 parts by weight of a powder having an average particle size of about 0.1 to 1.1 parts by weight. It is desirable to combine 5 to 65 parts by weight of a powder having an average particle size of about 0 ⁇ m. This is because a porous ceramic member can be manufactured by mixing the ceramic powder having the above particle diameter with the above composition.
  • the sealing material is made of porous ceramic.
  • the sealing material is made of the same porous ceramic as the porous ceramic member.
  • the porosity of the sealing material is adjusted in the same manner as in the porous ceramic member described above, so that the thermal expansion coefficient of the porous ceramic member and the sealing material.
  • the coefficient of thermal expansion can be matched, gaps may occur between the sealing material and the partition walls due to thermal stress during manufacturing and use, and cracks may occur in the sealing material and the partition walls in contact with the sealing material. Can be prevented from occurring.
  • the sealing material is made of porous ceramic
  • the material is not particularly limited.
  • the same material as the ceramic material constituting the above-described porous ceramic member can be used.
  • the see-through material layers 13 and 14 are formed between the porous ceramic members 20 and on the outer periphery of the ceramic block 15.
  • the sealing material layer 14 formed between the porous ceramic members 20 also functions as an adhesive for binding the plurality of porous ceramic members 20 to each other.
  • the sealing material layer 14 is formed on the outer periphery of the ceramic block 15.
  • the material constituting the sealing material layer is not particularly limited, and examples thereof include those made of an inorganic binder, an organic binder, inorganic fibers and / or inorganic particles.
  • the sealing material layers are formed between the porous ceramic members and on the outer periphery of the ceramic block, but these sealing material layers are made of the same material. May be of different materials It may be. Further, when the sealing material layers are made of the same material, the compounding ratio of the materials may be the same or different.
  • examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the above inorganic binders, silica sol is desirable.
  • organic binder examples include polyvinyl alcohol, methylcellulose, ethizoresenorelose, and force / repoxymethinoresenorelose. These may be used alone or in combination of two or more. Among the above organic binders, carboxymethylcellulose is desirable.
  • the inorganic fibers include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among the above inorganic fibers, silica-alumina fibers are desirable.
  • the inorganic particles include carbides, nitrides, and the like. Specific examples include inorganic powders made of silicon carbide, silicon nitride, boron nitride, and the like, and whiskers. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • the sealing material layer 14 may be made of a dense body, and may be a porous body so that exhaust gas can flow into the inside thereof. It is desirable to be made of a dense body. This is because the sealing material layer 13 is formed for the purpose of preventing the exhaust gas from leaking from the outer periphery of the ceramic block 15 when the filter 10 of the present invention is installed in the exhaust passage of the internal combustion engine.
  • FIG. 5 (a) is a perspective view schematically showing a specific example of an integrated filter which is an example of the filter of the present invention
  • FIG. 5 (b) is a sectional view taken along line BB of FIG.
  • the filter 30 is composed of a columnar porous ceramic block 35 in which a large number of through holes 31 are juxtaposed in the longitudinal direction across a wall 33. .
  • the through-hole 31 is a large-volume through-hole 3 having a relatively large cross-sectional area perpendicular to the longitudinal direction. 1a and a small-volume through-hole 3 1b having a relatively small cross-sectional area.
  • the large-volume through-hole 3la is the end of the filter 30 on the exhaust gas outlet side.
  • the small-volume through-hole 31b is sealed by the sealing material 32 at the end of the filter 30 on the exhaust gas inlet side, while being sealed by the sealing material 32.
  • the partition wall 33 that functions as a filter is provided.
  • a scintillation material layer may be formed around the porous ceramic block 35, as in the case of the filter 10 shown in FIG. 3, a scintillation material layer may be formed.
  • the filter 30 has the same structure as the aggregated filter 10 except that the porous ceramic block 35 has an integral structure manufactured by sintering, and flows into the large-volume through-hole 31a.
  • the exhaust gas passes through the wall 33 separating the through-holes 31 and then flows out of the small-volume through-holes 31b. Therefore, the same effect as in the case of the collective filter can be obtained also in the integrated filter 30.
  • the shape and size of the integrated filter 30 may be arbitrary, as in the aggregate filter 10, and the porosity is desirably 20 to 80% as in the aggregate filter. However, the pore diameter is desirably about 1 to 100 ⁇ .
  • the porous ceramic constituting the porous ceramic block 35 is not particularly limited, and includes nitride, carbide, and oxide ceramics similar to those of the aggregated filter. Usually, oxide ceramics such as cordierite are used. used. This is because the filter can be manufactured at low cost and has a relatively small coefficient of thermal expansion, so that the filter is less likely to be damaged by thermal stress during manufacturing and use. It is desirable that the sealing material 32 in such an integrated filter 30 is also made of porous ceramics, and the material is not particularly limited. The same material as the ceramic material constituting the material can be used.
  • the cross section of the large-volume through-hole and / or the small-volume through-hole perpendicular to the longitudinal direction is polygonal. .
  • the shape of a polygon when the exhaust gas passes through the large-volume through-hole and the small-volume through-hole, the large frictional portion due to the shape of the through-hole is eliminated, and the friction when passing through the through-hole ( ⁇ —1) ; AP b _ 2 2-2; Reduce the pressure loss caused by AP b _ 2 ), or where the thickness of the partition wall is uneven, that is, where the exhaust gas is difficult to pass locally And the resistance when passing through the bulkhead; ⁇ P. It is considered that the pressure loss caused by the above can be reduced, and that either of these effects can be obtained.
  • quadrilateral or more polygons are desirable, and it is more desirable that at least one of the corners is an obtuse angle. In this way, friction on passing through the friction and the through hole outlet side when passing through the through hole inlet side due to (2 one 1; ⁇ P b _ 2; AP b _ 1 + 2 one 2) This is because the pressure loss can be reduced. Specifically, a combination of an octagon and a rectangle is more desirable.
  • the vicinity of the corner of the cross section of the large-volume through-hole and / or the small-volume through-hole is desirably constituted by a curved line.
  • the “distance between the centers of gravity of the cross sections of the adjacent large-volume through-holes” refers to the center of gravity of a cross section perpendicular to the longitudinal direction of one large-volume through-hole, and the length of the adjacent large-volume through-hole. Means the minimum distance to the center of gravity in a cross section perpendicular to the direction, while the "distance between the centers of gravity of the cross sections of adjacent small volume through holes” is the cross section perpendicular to the longitudinal direction of one small volume through hole. This is the minimum distance between the center of gravity and the centers of gravity of adjacent small volume through holes.
  • FIGS. 6 (a) to (d) and FIGS. 12 (a) to (f) show the aggregate-type filter according to the present invention.
  • FIG. 6 (e) is a cross-sectional view schematically illustrating a part of a cross-section of a conventional filter
  • FIG. 6 (e) is a cross-sectional view schematically illustrating a part of a cross-section of a conventional filter. . Since the cross-sectional shapes of the large-volume through-hole and the small-volume through-hole in the integrated filter are the same combination, the large-volume through-hole and the small-volume through-hole in the filter of the present invention will be described with reference to these drawings. The cross-sectional shape will be described.
  • FIG. 6 (a) the aperture ratio is approximately 1.55, in Fig. 6 (b), approximately 2.54, in Fig. 6 (c), approximately 4.45, and in Fig. 6 (d), approximately 6. 00.
  • Figures 12 (a), (c), and (e) show that the above aperture ratios are all approximately 4.45.
  • Figures 12 (b), (d), and (: f) All are almost 6.00.
  • the cross-sectional shape of the large-volume through-hole is octagonal, and the cross-sectional shape of the small-volume through-hole is square and alternately arranged.
  • the opening ratio can be easily changed arbitrarily.
  • the aperture ratio of the filter shown in FIG. 12 can be arbitrarily varied.
  • the combination of an octagon and a rectangle has good symmetry.
  • the good symmetry makes it easier for the exhaust gas to flow into the large-volume through-hole evenly.
  • improvement in isostatic strength, compressive strength, etc. will be achieved.
  • the compressive strength of the A-axis refers to a honeycomb shape that cuts into at least two planes perpendicular to the through-holes (preferably a rectangular parallelepiped with the remaining four planes cut parallel to each other, or a cubic shape). Then, the through-hole is installed vertically on the table, and the load pressure is applied so that it is sandwiched from above, and the strength is calculated from the crushed load.
  • isostatic strength considered compressive strength is high, also the shapes of all the cross-sectional area square Compared to this, beams will also be provided in the diagonal direction, so it is likely that the strength can be improved similarly.
  • the isostatic strength is also referred to as isotropic pressure rupture strength, and is the strength when crush occurs when an isotropic pressure such as hydrostatic pressure is applied to the filter.
  • the isostatic strength is preferably at least 7 MPa, more preferably at least 9 MPa. Further, the compression strength of the A axis is preferably 18 MPa or more, more preferably 25 MPa or more.
  • the honeycomb shape does not change its cross-sectional area from the inflow side to the outflow side. This is because, for example, in the above-described compressive strength, changing the cross-sectional area of the through-hole causes a decrease in the compressive strength and makes it difficult to manufacture by extrusion.
  • the cross-section of the large-volume through-holes 161a and 261a is pentagonal, and three of The corners are almost right angles, and the cross-sectional shapes of the small-volume through-holes 161b and 261b are quadrangular, and they are configured to occupy the obliquely opposed portions of the large squares.
  • the filters 170 and 270 shown in FIGS. 12 (c) to (d) are modified from the cross-sectional shapes shown in FIGS.
  • the large volume through holes 18 1a and 28 1a and the small volume award holes 28 1 b and 28 1 b is a quadrilateral (rectangular), and as shown in the figure, when two large-volume through-holes and two small-volume through-holes are combined, they are configured to be almost square.
  • one large-volume through-hole in a cross section perpendicular to the longitudinal direction shares a wall portion shared with the adjacent large-volume through-hole in accordance with the variation in the opening ratio.
  • the sum of the length (a) and the sum of the length of the wall portion (b) shared by the small-volume through-hole adjacent to one large-volume through-hole in a cross section perpendicular to the longitudinal direction are almost the same. It fluctuates in a certain relationship.
  • FIG. 10 shows the following equation (3)
  • FIGS. 11 (a) to (d) show the following equation (4)
  • FIGS. 12 (a) and (b) show the following equation (5)
  • FIG. (c :) and (d) can be expressed by the following equation (6)
  • FIGS. 12 (e) and (f) can be uniquely expressed by the following equation (7).
  • partition length ratio
  • partition length ratio may vary slightly depending on the thickness of the partition. Therefore, a wall portion in which one large-capacity through-hole is shared with an adjacent large-volume through-hole and a wall portion in which one large-volume through-hole does not belong to an adjacent small-volume through-hole are both included. In consideration of the effect of the above, it may be treated as a wall shared by the large volume through holes. Also, in the above equations (2), (3), (5), (6), and (7), similarly to the equation (1),
  • the lower limit of ⁇ is preferably 1.55, more preferably 2.0.
  • The upper limit of the aperture ratio is preferably 2.75, more preferably 2.554, and even more preferably 2.42.
  • the regeneration limit value is defined as the amount of particulate matter (g 1) that can be damaged when the filter is cracked and the filter is damaged during regeneration. Say. Therefore, when the regeneration limit value is increased, the amount of particulates that can be collected before the regeneration is performed can be increased, and the period until the regeneration can be lengthened.
  • the structure of the filter of the present invention is an integrated filter composed entirely of one sintered body as shown in FIG. 5, first, the above-mentioned raw material paste containing ceramic as a main component is used. Extrusion molding is performed to produce a ceramic molded body having substantially the same shape as the filter 30 shown in FIG.
  • the raw material paste is not particularly limited as long as the porosity of the porous ceramic block after production is 20 to 80%.
  • a binder and a dispersion medium liquid are added to the above-mentioned ceramic powder. Can be mentioned.
  • the binder is not particularly limited, and includes, for example, methylcellulose, carboxymethyl / rese / relose, hydroxyshetti / resenorelose, polyethylene glycol, phenol resin, epoxy resin and the like.
  • the amount of the binder is preferably about 1 to 10 parts by weight based on 100 parts by weight of the ceramic powder.
  • the dispersion medium is not particularly limited, and examples thereof include an organic solvent such as benzene; an alcohol such as methanol, and water.
  • the dispersion medium is mixed in an appropriate amount so that the viscosity of the raw material paste falls within a certain range.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid stone, and polyalcohol.
  • a pore-forming agent such as a balloon, which is a micro hollow sphere containing an oxide ceramic as a component, a spherical acrylic particle, and graphite may be added to the raw material paste as needed.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, glass microvanolane, silas vanolane, fly ash panolane (FAba / lane), and mullite balloon. Of these, fly ash balloons are preferred.
  • the ceramic molded body is dried using a microwave drier, a hot air drier, a dielectric drier, a reduced pressure drier, a vacuum drier, a freeze drier, or the like, and then a sealing material is inserted into predetermined through holes. Is filled with a sealing material paste, and a sealing process is performed to plug the through hole.
  • the sealing material paste is not particularly limited as long as the porosity of the sealing material manufactured through a post-process is 20 to 80%.
  • the same material paste as the material paste is used.
  • it is preferable that a lubricant, a solvent, a dispersant, and a binder are added to the ceramic powder used in the raw material paste. This is because it is possible to prevent the ceramic particles in the sealing material paste from settling during the sealing process.
  • the filter which is made of a porous ceramic and entirely composed of one sintered body, is degreased and fired under predetermined conditions to the dried ceramic body filled with the sealing material paste. Can be manufactured.
  • the conditions for degreasing and firing the dried ceramic body and the like may be the same as those conventionally used when manufacturing a filter made of a porous ceramic.
  • the structure of the filter of the present invention is an aggregate-type filter configured by binding a plurality of porous ceramic members via a sealing material layer as shown in FIG.
  • extrusion molding is performed using the above-mentioned raw material paste mainly composed of ceramic to produce a formed body having a shape like the porous ceramic member 20 shown in FIG.
  • the raw material paste may be the same as the raw material paste described in the above-described aggregate filter.
  • the formed body is dried using a microwave drier or the like to form a dried body, and a predetermined through hole of the dried body is filled with a sealing material paste serving as a sealing material.
  • a sealing process for closing the holes is performed.
  • the sealing material paste may be the same as the sealing material paste described in the integrated filter described above.
  • the sealing process is performed in the same manner as described above except that the sealing material paste is filled with a different material.
  • the same method as in the case of the integrated filter described above can be used.
  • the dried body that has undergone the above-mentioned sealing treatment is degreased and fired under predetermined conditions, whereby a porous ceramic member in which a plurality of through-holes are juxtaposed in the longitudinal direction with a partition wall therebetween can be manufactured.
  • the conditions for degreasing and firing of the green compact are the same as those conventionally used when manufacturing a filter composed of a plurality of porous ceramic members bound via a sealing material layer. Can be applied.
  • the porous ceramic members 20 are stacked on a base 80 having a V-shaped cross section so that the porous ceramic members 20 can be stacked in an inclined state.
  • the sealing material paste to be the sealing material layer 14 is applied in a uniform thickness to the two side surfaces 20a and 20b facing upward.
  • a sealing material paste layer 81 is formed, and a step of sequentially laminating another porous ceramic member 20 on the sealing material paste layer 81 is repeated to obtain a prismatic porous ceramic member having a predetermined size. 20 laminates are produced.
  • the material constituting the sealing material paste is the same as that described in the above-described filter of the present invention, and a description thereof will be omitted.
  • the laminate of the porous ceramic members 20 is heated to form a sealing material paste layer.
  • 8 1 is dried and solidified to form a sealing material layer 14, and then, for example, using a diamond cutter or the like, the outer peripheral portion is cut into the shape shown in FIG. 3 to obtain a ceramic block.
  • a filter including a plurality of porous ceramic members bound via the sealing material layer is manufactured. can do.
  • Each of the filters manufactured in this way has a columnar shape, and the structure is as shown in FIGS.
  • the use of the filter of the present invention is not particularly limited, but is desirably used for an exhaust gas purifying device of a vehicle.
  • FIG. 8 is a cross-sectional view schematically showing one example of an exhaust gas purifying apparatus for a vehicle in which the filter of the present invention is installed.
  • the exhaust gas purifying apparatus 600 mainly includes a filter 60 of the present invention, a casing 63 covering the outside of the filter 60, and a filter A holding seal material 62 0 disposed between the heating means 61 and a heating means 61 provided on the exhaust gas inflow side of the filter 60, and a side of the casing 63 0 into which the exhaust gas is introduced.
  • An end pipe is connected to an inlet pipe 640 connected to an internal combustion engine such as an engine, and the other end of the casing 630 is connected to an exhaust pipe 650 connected to the outside.
  • the arrows in FIG. 8 indicate the flow of exhaust gas.
  • the filter 60 may be the filter 10 shown in FIG. 3 or the filter 30 shown in FIG.
  • the exhaust gas discharged from the internal combustion engine such as an engine is introduced into the casing 630 through the introduction pipe 640 and the filter After passing through the wall (partition) through the through hole, the particulates are collected and purified by this wall (partition), and then discharged to the outside through the discharge pipe 6550.
  • the filter 60 is regenerated.
  • the gas heated by the heating means 61 is caused to flow into the through-hole of the filter 60, thereby heating the filter 60 and removing the particulates deposited on the wall (partition wall). It is burned and removed.
  • the patikilet may be burned and removed by using a boost injection method.
  • the pores of the filter of the present invention may carry a catalyst capable of purifying CO, HC and NO x in the exhaust gas.
  • the filter of the present invention functions as a filter for trapping particulates in the exhaust gas, and also removes the CO, HC, NOx, and the like contained in the exhaust gas. Functions as a catalytic converter for purification.
  • the catalyst may be one having pores left by being supported on the surface of the particles constituting the honeycomb structure of the present invention, or may be supported with a wall-shaped thickness. Further, the catalyst may be uniformly supported on the surface of the wall of the through hole, or may be supported unevenly at a certain place. In particular, if the above-mentioned catalyst is supported on the surface of the wall of the inlet side through-hole or on the surface of the particles near the surface, or on both of them, the particles easily come into contact with the particulates, so that the particulates can be burned efficiently. .
  • the catalyst examples include noble metals such as platinum, palladium, and rhodium.
  • This noble metal catalyst is a so-called three-way catalyst, and the filter of the present invention carrying such a three-way catalyst functions in the same manner as a conventionally known catalytic converter. Therefore, a detailed description of the case where the filter of the present invention also functions as a catalytic converter is omitted here.
  • the catalyst that can be supported on the filter of the present invention is not limited to the above-mentioned noble metals, and any catalyst can be used as long as it can purify CO, HC, NOx and the like in exhaust gas. Can be carried.
  • BEST MODE FOR CARRYING OUT THE INVENTION will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples.
  • the formed body is dried using a microwave drier or the like to obtain a ceramic dried body, and a paste having the same composition as that of the formed body is filled in predetermined through-holes.
  • 400. Degreasing with C and baking at 2200 ° C for 3 hours under an atmosphere of argon at normal pressure, the porosity is 42%, the average pore diameter is 9 im, and the size is 34.3 mm X 34.3 mm in X 1 50 mm, the number of through holes 28 Zl cm 2 (1 OmmX 1 Omm ) ( large-capacity through hole 14/1 cm 2, the small-capacity through holes 14/1 cm 2), substantially all
  • the porous ceramic member 20 which is a silicon carbide sintered body having a thickness of the partition wall 23 of 0.4 mm was manufactured.
  • the ratio (partition wall length ratio) was 0.20.
  • the thickness of the sealing material layer for binding the porous ceramic members was adjusted to be 1.0 mm.
  • a sealing material paste layer having a thickness of 0.2 mm was formed on the outer peripheral portion of the ceramic block using the sealing material paste. Then, the sealing material paste layer was dried at 120 ° C. to produce a cylindrical filter having a diameter of 144 mm.
  • the cross-sectional shape of the porous ceramic member is defined as a rectangular (substantially square) cross-sectional shape with the large-volume through-hole as the octagon and the small-volume through-hole as the small through-hole.
  • a porous ceramic member was manufactured in the same manner as in (1) of Example 1, except that J3 (opening ratio) and ⁇ (partition wall length ratio) were set to the values shown in Table 1, respectively. did.
  • a filter was manufactured in the same manner as in (2) of Example 1, except that the porous ceramic members manufactured in (1) were used.
  • the cross-sectional shape of the porous ceramic member was selected as a rectangular (substantially square) cross-sectional shape with the large-volume through-hole as the pentagon and the small-volume through-hole. Then, a porous ceramic member was manufactured in the same manner as (1) of Example 1 except that & (opening ratio) and ⁇ (partition length ratio) were set to the values shown in Table 1, respectively.
  • a filter was manufactured in the same manner as in Example 1, (2).
  • the cross-sectional shape of the porous ceramic member is as follows.
  • the large-volume through-hole is widened with curvature at the four corners of the octagon.
  • opening ratio
  • ⁇ ⁇ partition wall length ratio
  • a filter was manufactured in the same manner as in (2) of Example 1, except that the porous ceramic members manufactured in (1) were used.
  • the cross-sectional shape of the porous ceramic member is rectangular (or square in some cases) with the large-volume through-holes as rectangular and small-volume through-holes.
  • opening ratio
  • partition length ratio
  • a filter was manufactured in the same manner as in (2) of Example 1, except that the porous ceramic members manufactured in (1) were used.
  • the cross-sectional shape of the porous ceramic member is made almost the same as the cross-sectional shape shown in Fig. 1.0 (decagonal and square), and its (opening ratio) and ⁇ (partition wall length ratio) are shown in Table 1 respectively.
  • a porous ceramic member was manufactured in the same manner as in Example 1, (1) except that the values shown in (1) were used.
  • a filter was manufactured in the same manner as in (2) of Example 1, except that the porous ceramic members manufactured in (1) were used.
  • FIG. 11 (a) (Comparative Example 20), Fig. 11 (b) (Comparative Examples 21 and 22), and Fig. 11 (c) (Comparative Example 2). 3 to 25) and the cross-sectional shape shown in FIG. 11D (Comparative Examples 26 to 27), respectively.
  • a filter was manufactured in the same manner as in (2) of Example 1, except that the porous ceramic members manufactured in (1) were used.
  • a filter was manufactured in the same manner as in (2) of Example 1, except that the porous ceramic members manufactured in (1) were used.
  • FIG. 19 The cross-sectional shapes of the porous ceramic members are shown in Figure 19 (Comparative Example 30), Figure 20 (Comparative Example 31), Figure 21 (Comparative Example 32), and Figure 22 (Comparative Example 33), respectively.
  • a porous ceramic member was manufactured in the same manner as (1) of Example 1 except that the cross-sectional shape was substantially the same.
  • the cross-sectional shape of the filter 200 (FIG. 19) shown in Comparative Example 30 is such that the number of large-volume through-holes (hexagon) and small-volume through-holes (triangle) is substantially 1: 2.
  • the cross section of the filter 220 FIG.
  • Comparative Example 21 shown in Comparative Example 32 is composed of a large square through-hole 221, a small square through-hole 221, and a rectangular through-hole 222.
  • the cross section of the filter 230 (FIG. 22) shown in Comparative Example 33 was a square through hole 231 and a slightly smaller square through hole 23. 2 are formed by being alternately combined.
  • a filter was manufactured in the same manner as in (2) of Example 1, except that the porous ceramic members manufactured in (1) were used.
  • a porous ceramic member was manufactured in the same manner as in (1) of Example 1, except that the shape of the cross section parallel to the longitudinal direction of the through-hole was tapered.
  • a filter was manufactured in the same manner as in Example 1, (2).
  • the area of the cross section perpendicular to the longitudinal direction of the through hole of the obtained filter gradually increases or decreases, and as described with reference to Fig. 6 (a), the large volume penetration at the exhaust gas inlet side is explained.
  • the hole 21a is a small-capacity through-hole 21b at the exhaust gas outlet side
  • the small-capacity through-hole 21b at the exhaust gas inlet side is a large-capacity through-hole 21b at the exhaust gas outlet side.
  • the filters according to the examples and the comparative examples are disposed in an exhaust passage of an engine to form an exhaust gas purifying device, and the engine is operated at a rotational speed of 300 Om in— ⁇ torque 50 Nm. Then, the pressure loss at the initial stage (before operation) and the pressure loss when a predetermined amount of particulates were collected were measured.
  • the data of 0.5, 4.0, 6.0, 8.0 (g / L) of particulates are shown below.
  • the filters according to the examples and the comparative examples are disposed in an exhaust passage of an engine to form an exhaust gas purifying apparatus.
  • the engine is operated at a predetermined rotational speed of 300 Om in and a torque of 5 O Nm.
  • the experiment was performed on five filters according to each of the examples and the comparative examples. When cracks occurred, the amount of particulates collected was measured, and the average value of the five samples was used as the regeneration limit. The results are shown in Tables 1 to 3 below.
  • FIG. 13 is a graph showing the relationship between the values of] 3 (opening ratio) and a (partition wall length ratio) in Examples 1 to 44 and Comparative Examples 1 to 33.
  • the points in the graph of Fig. 13 are selected from the above Examples and Comparative Examples, and those in which the numerical values are shown in the squares (for example, 16, 17, 13 ⁇ ⁇ ⁇ ) indicate the numbers of the Examples. And only the number is described (for example, 1, 10, 20 ⁇ ⁇ ⁇ ⁇ ) represents the number of the comparative example.
  • the line segment B represents the relationship between ⁇ and ⁇ in the filter having the cross-sectional shape shown in FIG. 11, and the curves C to G are shown in FIGS. 12 (c) to (d) and FIGS. 12 (e) to (f), respectively.
  • the filters shown in the table were cut into cubes of about 3 Omm as in the embodiment, and the compressive strength of the A axis was measured with an Instron 5582.
  • the isostatic strength of a finoleta 144 mm in diameter and 15 Omm in length was measured. At the time of measurement, place aluminum plates (1 mm thick) on the top and bottom of the sample, wrap them in a urethane sheet (1 mm thick), seal them, put them in a pressure vessel filled with water, pressurize, and reduce the broken pressure. The static strength was used.
  • Example 16 Figure 6 (a) to (d) 2.75 0.52 1.61 1.7 3.1 6.6 8.8 11.1 8.9 8.3 27.0
  • Example 17 Figure 6 (a) to (d) 2.88 0.56 1.69 1.7 3.1 6.6 8.8 11.2 8.8 8.2 26.7
  • Example 18 Figure 6 (a) to (d) 3.00 0.59 1.76 1.7 3.1 6.6 8.8 11.2 8.8 8.1 26.4
  • Example 20 Figure 6 (a) to (d) 3.16 0.63 1.87 1.8 3.2 6.9 9.0 11.2 8.7 7.5 26.0
  • Example 21 Figure 6 (a) to (d) 4.45 0.92 2.88 2.0 3.5 7.1 9.2 11.4 8.7 7.0 24.0
  • Example 22 Figure 6 (a) to (d)
  • Example 23 Figure 6 (a) to (d) 6.00 1.23 4.37 2.4 4.1 8.0 10.0 11.8 8.5 6.1 17.7
  • Example 24 Figure 6 (a) to (d) 6.00 1.23 4.37 2.4 4.1 8.0 10.0 11.8 8.5
  • Example 39 Figure 12 (e), (f) 3.00 0.67 1.99 1.9 3.4 6.8 8.9 11.3 8.6 8.2 18.2
  • Example 40 Figure 12 (e), (f) 4.19 0.72 2.15 2.0 3.4 6.8 8.8 11.1 8.6 7.9 17.2
  • Example 41 Fig. 12 (e), (f) 4.45 0.93 2.91 2.1 3.7 7.3 9.4 11.5 8.6 7.1 17.3
  • Example 42 Fig. 12 (e), (4.45 0.93 2.91 2.1 3.7 7.3 9.4 11.5 8.6
  • the filter according to the example has a lower pressure loss when a certain amount of particulates are collected, compared to the filter according to the comparative example. It can be seen that the pressure loss is low when the period up to regeneration is viewed in total. In addition, since the pressure loss is low, it can be said that a large amount of particulates can be captured.
  • the length of the ash layer is shorter with respect to the ash weight in the filters according to Examples 2 and 13 compared to the filter of Comparative Example 28. Since the pressure loss is small, the period until back washing or the like is required is also long. Further, the filter according to the embodiment has a larger regeneration limit value than the filter according to the comparative example, so that a large amount of particulates can be collected before regeneration, and the time until regeneration can be extended. .
  • / 3 is preferably 1.55 to 2.75, and 2.0 / 3 to 2.54. More preferred.
  • the filter of the present invention can suppress the initial pressure loss, and the rate of increase of the pressure loss that increases as the particulates accumulate is also low. Therefore, the pressure loss when a specified amount of particulates are collected is reduced, The pressure loss when the period until regeneration is viewed in total is low. Also, the regeneration limit value, which represents the maximum value of the amount collected before regeneration, is actually larger than that of the comparative example. Therefore, a large amount of particulates can be captured until the reproduction, and the period until the reproduction can be extended. In addition, the length of the ash layer is short and the pressure loss due to the ash layer is small with respect to the ash weight.

Description

明細書
関連出願の記載
本出願は、 2 0 0 2年 9月 1 3日に出願された日本国特許出願 2 0 0 2 _ 2 6 7 8 1 9号、 2 0 0 3年 3月 4日に出願された日本国特許出願 2 0 0 3 - 5 7 6 3 1号を基礎出願として優先権主張する出願である。 技術分野 '
本発明は、 ディーゼルエンジン等の内燃機関から排出される排気ガス中のパ ティキュレート等を除去する目的等で用いられるフィルタに関する。
背景技術
バス、 トラック等の車両や建設機械等の内燃機関から排出される排気ガス中に 含有されるパティキュレートが環境や人体に害を及ぼすことが最近問題となって いる。
この排気ガスを多孔質セラミックに通過させ、 排気ガス中のパティキュレート を捕集して、 排気ガスを浄化することができるセラミックフィルタが種々提案さ れている。
このようなセラミックフィルタとしては、 図 9に示したような、 多数の貫通孔 1 4 1が隔壁 1 4 3を隔てて、 長手方向に並設された円柱状のハニカム構造体 1 4 0が知られている。
貫通孔 1 4 1は、 図 9 ( b ) に示したように、 排気ガスの流入側又は排出側 の端部のいずれかが封止材 1 4 2により目封じされ、 一の貫通孔 1 4 1に流入し た排気ガスは、 必ず貫通孔 1 4 1同士を隔てる隔壁 1 4 3を通過した後、 他の貫 通孔 1 4 1から流出するようになっている。
即ち、 このようなハニカム構造体 1 4 0が内燃機関の排気通路に設置されると、 内燃機関より排出された排気ガス中のパティキュレートは、 このハニカム構造体 1 40を通過する際に隔壁 1 4 3により捕捉され、 排気ガスが浄化される。
また、 このような排気ガスフィルタとして、 排気ガス流出側の端部が封止さ れた貫通孔 (以下、 流入側貫通孔ともいう) を容積の大きな貫通孔 (以下、 大容 積貫通孔ともいう) とし、 排気ガス流入側の端部が封止された貫通孔 (以下、 流 出側貫通孔ともいう) を容積の小さな貫通孔 (以下、 小容積貫通孔ともいう) と することにより、 排気ガス流入側の開口率を排気ガス流出側の開口率よりも相対 的に大きく したものが開示されている。
図 1 0は、 米国特許第 44 1 7 908号明細書 (対応日本特許は特開昭 58— 1 9 6 8 20号、 特公平 3— 49608号公報 (以下、 特許文献 1という) ) に 開示された排気ガスフィルタの長手方向に垂直な断面を模式的に示したものであ る。
この排気ガスフィルタ 60は、 碁盤目の交点に、 該碁盤目を構成する正四角形 よりも小さな四角形が配置されたような断面形状を有し、 小さな四角形に相当す る小容積貫通孔 6 1 bとその周囲に存在する大容積貫通孔 6 1 aとからなり、 こ れらの貫通孔の間に隔壁 6 2 a、 6 2 bが形成されている。
また、 図 1 1 (a) 〜 (d) は、 米国特許第 43647 6 1号公報 (対応する 日本出願は特開昭 56— 1 244= 1 7号、 特開昭 6 2— 9 6 7 1 7号) (以下、 特許文献 2という) 、 米国特許第 42 760 7 1号公報 (対応する日本出願は特 開昭 56— 1 2441 8号) ) に開示された排気ガスフィルタの長手方向に垂直 な断面を模式的に示したものである。
この排気ガスフィルタ 300〜 3 30は、 様々な形状の大容積貫通孔 30 1 a、 3 1 1 a、 3 2 1 a、 33 1 aと、 小容積貫通孔 30 1 b、 3 1 1 b、 3 2 1 b、 3 3 l bとからなり、 これらの貫通孔の間に隔壁 302、 3 1 2、 3 2 2、 3 3 2が形成されている。
隔壁 30 2、 3 1 2、 3 22、 3 3 2は、 いずれも大容積貫通孔 30 1 a、 3 1 1 a、 3 2 1 a、 3 3 1 aと小容積貫通孔 30 1 b、 3 1 1 b、 3 2 1 b、 3 3 1 bとを隔てるものであり、 大容積貫通孔 30 1 a、 3 1 1 a、 3 2 1 a、 3 3 1 a同士を隔てる隔壁は、 存在しないといってもよい。 一般に、 このようなフィルタでは、 排気ガス中のパティキュレートを捕集する ことにより、 圧力損失が大きくなる。 それにつれて背圧が高くなり、 この背圧が 一定値以上になると、 エンジン等に与える負荷が大きくなるため、 再生処理を行 つてパティキュレートを除去する必要が生じる。 従って、 経過時間に対する圧力 損失の程度は、 フィルタの性能を評価するための重要なファクタ一となる。 図 1は、 圧力損失に影響を及ぼす主な要因を記載した概念図である。
図 1に示すように、 圧力損失に影響を及ぼす主な要因としては、 ①フィルタ入 口側の開口率; Δ Ρ 3 Ν ②貫通孔を通過する際の摩擦 (入口側②一 1 ; A P b一い 出口側②一 2 ; A P b _ 2) 、 ③隔壁を通過する際の抵抗; Δ Ρ。等があげられる。 また、 図 2は、 各種 ^気ガスフィルタにおける圧力損失の経過時間による変化 の様子を模式的に示したグラフである。
上記特許文献 1、 2等に記載された 2種類の貫通孔を有する排気ガスフィルタ は、 図 9に示す断面形状が四角形で、 全ての貫通孔の容積がほぼ等しい排気ガス フィルタに比べ、 パティキュレートを捕集する前の状態においては、 フィルタ入 口側の開口率及ぴ貫通孔入口側を通過する際の摩擦 (①; Δ Ρ 3 +®—1 ; 厶 Ρ b -i) に起因する圧力損失は若干低くなるが、 貫通孔出口側を通過する際の摩擦 及び隔壁を通過する際の抵抗 (②— 2 ; A P b _ 2 +③; A P C) に起因する圧力 損失が高くなる。 その結果、 パティキュレートを捕集する前の圧力損失は、 図 9 に示すような全ての貫通孔の容積が略等しい排気ガスフィルタよりも高くなつて しまうことが判明した。
さらに、 排気ガスフィルタの壁部の大部分は長手方向に垂直な断面における一 の大容積貫通孔が隣り合う大容積貫通孔と共有する壁部 (ァ) と、 長手方向に垂 直な断面における一の大容積貫通孔が隣り合う小容積貫通孔と共有する壁部 (ィ ) とからなる排気ガスフィルタでは、 この 2種類の壁部の比率によって、 圧力損 失が変動する。
例えば、 開口比率を一定とした場合、 このうちの壁部 (ァ) の占める割合が大 きいと、 大容積貫通孔から直接的に壁部 (ィ) を通過して、 小容積貫通孔へ排気 ガスが流れにくくなるために、 パティキュレートを捕集する前 (T 0) の圧力損 失が高くなる傾向が生じる。
し力 し、 パティキュレートを捕集するに従って、 壁部 (ィ) の表面にパティキ ュレートが捕集されるために、 大容積貫通孔から直接的に壁部 (ィ) を通過して、 小容積貫通孔へ排気ガスが流れるよりも、 一旦壁部 (ァ) に進入し多孔質壁を伝 わって壁部 (ィ) へ流れる方が、 抵抗が低くなり、 結果的に、 大容積貫通孔の構 成する壁部の全体に均一にパティキュレートが蓄積されることになる。 従って、 壁部に蓄積されるパティキュレートの厚みを下げることになり、 パティキュレー トの捕集に従って上昇する圧力損失の上昇率 (ΔΡ3/ (T!-To) ) は小さく なる。
また、 逆に、 この割合が小さいと、 パティキュレートを捕集する前 (T0) の 圧力損失は低くなるが、 パティキュレートの捕集に従って上昇する圧力損失の上 畀率 (Δ Ρ3Ζ (Τ\— Τ0) ) が大きくなる傾向が表れる。
特許文献 1 (図 10) に開示された排気ガスフィルタ 60では、 この大容積貫 通孔が隣り合う大容積貫通孔と共有する壁部 (ァ) の占める割合が比較的大きい ものである。 そのため図 2に示すように、 パティキュレートを捕集する前 (T。 ) の圧力損失 (以下、 初期の圧力損失ともいう) が、 隔壁を通過する際の抵抗 ( ③; Δ Ρ。) が高いことに起因して高くなるとともに、 初期の圧力損失が高すぎ るため、 パティキュレートの捕集時 (T においても圧力損失が高くなつてし まう。
従って、 エンジンマネージメントの点から、 規定量のパティキュレートをため る前に再生処理を行う必要がある。 すなわち、 排気ガスフィルタ 60は、 初期の 圧力損失が高くなりすぎるために、 実質的にパティキュレートの捕集量が制限さ れてしまうという問題があった。
また、 特許文献 2 (図 1 1) に開示された排気ガスフィルタ 300〜 330で は、 大容積貫通孔 3 O l a, 31 1 a、 321 a、 331 a同士を隔てる隔壁 ( ァ) は、 ほぼ点接触の状態となっており、 殆ど存在しない。
そのため、 図 2に示すように、 パティキュレートを蓄積するに従って上昇する 圧力損失の上昇率 (ΔΡ3ノ (1 — Τ0) ) が大きいことに起因して、 パティキ ュレートを捕集時 (1 ) の圧力損失が高くなりすぎる。
従って、 同様にエンジンマネージメントの点から、 規定量のパティキュレート をためる前に再生処理を行う必要がある。 すなわち、 排気ガスフィルタ 3 0 0〜 3 3 0は、 捕集中の圧力損失の上昇率が大きいために、 実質的にパティキュレー トの捕集量が制限されるという問題があった。
次に、 他の従来技術として、 実願昭 5 6 - 1 8 7 8 9 0号マイクロフィルム (実開昭 5 8 _ 9 2 4 0 9号 (第 4頁、 第 6図参照) 、 以下、 特許文献 3という ) には、 大容積貫通孔のセルピッチをほぼ 1 . 0〜2 . 5 mmとしたハニカム構 造体が開示されている。
また、 特開平 5— 6 8 8 2 8号公報 (特許第 3 1 3 0 5 8 7号明細書 (第 1 頁) 、 以下、 特許文献 4という) には、 大容積貫通孔の容積率が 6 0〜 7 0 %で、 小容積貫通孔の容積率が 2 0〜 3 0 %で、 大容積貫通孔のセルピツチをほぼ 2 . 5〜 5 . O mmとしたハニカム構造体が開示されている。
図 1 9は、 これらのハニカム構造体 2 0 0の長手方向に垂直な断面 (以下、 単に断面ともいう) を模式的に示した断面図であり、 このハニカム構造体 2 0 0 では、 断面の形状が 6角形の大容積貫通孔 2 0 1の周囲に断面の形状が 3角形の 小容積貫通孔 2 0 2を配している。
さらに、 特開 2 0 0 1— 3 3 4 1 1 4号公報 (第 5頁、 図 2参照) (WO 0 2 / 1 0 0 5 1 4号公報、 以下、 特許文献 5という) には、 大容積貫通孔の断面 の総面積に対する小容積貫通孔の断面の総面積の比の百分率が 4 0〜 1 2 0 %の ハエカム構造体が開示されている。
図 2 0は、 このようなハニカム構造体の長手方向に垂直な断面を模式的に示 した断面図であり、 このハニカム構造体 2 1 0では、 上記断面の形状が正 6角形 の大容積貫通孔 2 1 1の周囲に上記断面の形状が横長 6角形の小容積貫通孔 2 1 2を配している。 また、 外周近傍には、 正 6角形の大容積貫通孔 2 1 1と台形の 大容積貫通孔 2 1 3とを並存させている。
また、 流入側貫通孔の数を流出側貫通孔の数よりも多くすることにより、 排気 ガス流入側の開口率を排気ガス流出側の開口率よりも相対的に大きくしたものも 開示されている。 (例えば、 特許文献 1の図 3参照)
このようなハニカムフィルタにおいても、 流入側のセルの個数と流出側のセル の個数が異なるものであって、 図 9に示す断面形状が四角形で、 全ての貫通孔の 容積がほぼ等しい排気ガスフィルタに比べ、 パティキュレートを捕集する前の状 態においては、 フィルタ入口側の開口率及び貫通孔入口側を通過する際の摩擦 ( ①; Δ Ρ 3 +®— 1 ; A P b- に起因する圧力損失は若干低くなるが、 貫通孔 出口側を通過する際の摩擦及び隔壁を通過する際の抵抗 (②ー 2 ; A P b2 +③ ; 厶 P c) に起因する圧力損失が高くなる。 その結果、 パティキュレートを捕集 する前の圧力損失は、 図 9に示すような全ての貫通孔の容積が略等しい排気ガス フィノレタよりも高くなつてしまう。
また、 米国特許第 4 4 1 6 6 7 6号明細書及ぴ米国特許第 4 4 2 0 3 1 6号明 細書 (以下、 特許文献 6という) には、 壁の厚みや、 物性値を調整する技術が公 開されているが、 この技術のみでは、 低い圧損とすることが、 困難であった。 また、 特開昭 5 8— 1 5 0 0 1 5号公報には、 正方形と長方形とからなるフィ ルタが開示されているが、 断面を変更した形であるので、 押出し成形で製造する のが困難であり、 量産製造が難しい。 また、 断面の変更がないとしても、 上述し たように、 流出側の貫通孔の断面積が相対的に大きいものと小さいものとの差が あるので、 流出側のガスの抵抗が高くなり、 圧損が高くなることになる。
このような技術に対応したものとして、 2種類の貫通孔の形状からなるフィル タ、 とりわけ、 八角形と四角形からなるフィルタが開示されている (仏国特許発 明第 2 7 8 9 3 2 7号明細書、 WO 0 2 / 1 0 5 6 2号公報参照) 。
フィルタをこのような形状のものとすることによって、 圧力損失が向上するこ とがわかったが、 様々な、 形状、 開口比率で試験を行なった結果、 低い圧力損失 と、 高いクラック限界といった両方を満足させることは難しいものであって、 結 果的に、 パティキュレートの捕集量が制限されるという問題があった。 加えて、 これらのフィルタは、 ァイソスタティック強度、 圧縮強度に劣るものであった。 さらに、 従来技術として、 WO 0 3 Z 2 0 4 0 7号公報に記載されているフィ ルタには、 相対的に大きな正方形と小さな貫通孔の 2種類の貫通孔からなるハニ カム構造体が開示されてなる。
し力 し、 このフィルタにおいても、 圧損が高く、 ァイソスタティック強度、 圧 縮強度が低いものであり、 クラック限界を高くすることが困難であった。
以上、 全ての従来技術に開示されたハニカム構造体では、 排気ガス流入側の開 口率と排気ガス流出側の開口率とが等しいハニカム構造体と比較して、 排気ガス 流入側の開口率を相対的に大きくしているため、 排気ガス浄化用フィルタとして 用いた際に、 パティキュレートの捕集限界量を多くして再生までの期間を長期化 すること等が可能となる。
しかしながら、 これらのフィルタは通常のフィルタ (即ち、 排気ガス流入側 と流出側の開口率が同じフィルタ) に比べて、 初期の圧力損失がかなり高いもの であることがわかった。 あるいは、 低い強度になってしまうという問題が生じて いた。 従って、 低い圧力損失を持ちながら、 高いアイソスタティック強度、 高い 圧縮強度を持ち、 高いクラック限界というものを満たすことができなかった。 発明の要約
本発明は、 これらの課題を解決するためになされたものであり、 パティキユレ 一トを捕集した際の圧力損失が低く、 パティキュレートを多量に捕集することが 可能なフィルタを提供することを目的とするものである。 なお、 本明細書におい て、 多量に捕集できるとは、 単純にフィルタの捕集部分の容積が増すというだけ でなく、 再生によってクラックが入りにくくなるために、 多量にま甫集できるとい うことも含むものとする。
本発明のフィルタは、 多数の貫通孔が壁部を隔てて長手方向に並設されたハ 二カム構造を有する柱状のフィルタであって、
上記貫通孔は、 長手方向に垂直な断面の面積が相対的に大きい大容積貫通孔 と、 上記断面の面積が相対的に小さい小容積貫通孔との実質的に同数である 2種 類の貫通孔からなり、
上記大容積貫通孔は、 上記フィルタの一端部で封止される一方、 上記小容積 貫通孔は、 上記フィルタの他端部で封止され、 長手方向に垂直な断面における上記一の大容積貫通孔が隣り合う大容積貫通 孔と共有する壁部の長さの合計 (a) と、 長手方向に垂直な断面における上記一 の大容積貫通孔が隣り合う上記小容積貫通孔と共有する壁部の長さの合計 ( b ) との比 (a/b) を Q;とし、 上記大容積貫通孔の上記断面の面積 (A) と、 上記 小容積貫通孔の上記断面の面積 (B) の比 (A/B) を とした際、 上記ひと上 記 とが下記式 (1 ) の関係を有することを特徴とするものである。
β≥ ( 2 0/ 9) α 2+ 1 (ただし、 0く α ^ Ι . 5、 1 < β≤ 6) … (1) 上記フィルタにおいて、 大容積貫通孔及ぴ 又は小容積貫通孔の長手方向に 垂直な断面の形状は、 八角形及び四角形の 2種からなることが望ましく、 加えて、 その形状が、 大容積貫通孔と小容積貫通孔とが共有する隔壁を小容積側にある曲 率をもって広げた形状であることが望ましい。
以下、 本発明のフィルタについて説明する。
本発明において、 長手方向に垂直な断面における一の大容積貫通孔が隣り合う 小容積貫通孔と共有する壁部の長さの合計 (b) は、 フィルタの断面を見た時、 排気ガスが隔壁に対して垂直に通過できる隔壁の長さの合計を表しており、 一の 大容積貫通孔が隣り合う大容積貫通孔と共有する壁部の長さの合計 (a) は、 フ ィルタの断面を見た時、 排気ガスが隔壁に対して垂直に通過できない隔壁の長さ の合計を表している。 この a (a/b) を、 隔壁長さ比ともいうこととする。 こ の a (隔壁長さ比) が大きくなると、 排気ガスが隔壁に対して垂直に通過できる 隔壁の面積の割合が小さくなることになり、 一方、 α (隔壁長さ比) が小さくな ると、 排気ガスが隔壁に対して垂直に通過できる隔壁の面積の割合が大きくなる。 この (隔壁長さ比) は、 前述したように圧力損失及びパティキュレートの蓄積 状態等に大きな影響を与える。
—方、 大容積貫通孔の断面の面積 (Α) と、 小容積貫通孔の断面の面積 (Β) の比 ]3 (Α/Β) は、 本発明のフィルタの開口比率を表しており、 開口比率が高 くなると、 気ガスが流入する側の大容積貫通孔の総容積が相対的に大きくなる。 上記 (1) 式は、 初期 (Τ。) 及びパティキュレート捕集時 (Τ\) において、 これらに起因する圧力損失のトータルの値が、 α、 の値との関係において、 ど のように推移するかを計算し、 又は、 実験により測定し、 これらの結果に基づい て決定したものである。
この際、 a (a/b) は、 0く α^ Ι . 5を満足する必要がある。 α = 0では、 —の大容積貫通孔が隣り合う大容積貫通孔と共有する壁部が存在しなくなるため、 特許文献 2に記載のフィルタのように、 圧力損失の上昇率が高くなる。 一方、 α が 1. 5を超えると、 一の大容積貫通孔が隣り合う大容積貫通孔と共有する壁部 の長さの合計 (a) が大きすぎるため、 ③隔壁を通過する際の抵抗; A P cが增 大し、 初期の圧力損失が大きくなりすぎる。
また、 (A/B) は、 1 < ≤ 6を満足する必要がある。 ]3 = 1では、 小容 積貫通孔と大容積貫通孔とが同じ容積となってしまい、 が 6を超えると、 小容 積貫通孔の容積が小さくなりすぎて、 貫通孔出口側を通過する際の摩擦及び隔壁 を通過する際の抵抗 (②ー 2 ; A Pb_2+③; Δ Ρ。) に起因する圧力損失が増 大し、 初期の圧力損失が大きくなつてしまう。
(1) 式を満足しないフィルタ、 すなわち、 βく ( 20/9) Χ α2+ 1を満 たすフィルタでは、 i3に対して αが大きすぎる。 すなわち、 一の大容積貫通孔が 隣り合う大容積貫通孔と共有する壁部の長さの合計 (a) 力 一の大容積貫通孔 が隣り合う上記小容積貫通孔と共有する壁部の長さの合計 (b) に対して長すぎ ることになる。 このため、 ③隔壁を通過する際の抵抗; Δ Ρ。による圧力損失が 大きくなり、 特許文献 1に記載のフィルタのように、 初期の圧力損失が大きくな りすぎてしまう。
上記 αと上記 ]3とが (1) 式の関係を有するように、 上記 a、 b、 A及び Bを 設定することにより、 図 2に示すように初期 (T0) の圧力損失が高くなるのを、 できるだけ抑制することができるとともに、 パティキュレートの蓄積に従って上 昇する圧力損失の上昇率 (A P t/ (T\— T0) ) を抑えることができ、 その結 果、 規定量のパティキュレートを蓄積した時 (1 ) の圧力損失を低くすること ができる。
このため、 フィルタ使用している期間をトータルで考えた際の圧力損失を低減 することができ、 これによつて、 エンジンに与える負荷を低減することができ、 エンジン停止等の不具合をおこす恐れを減らすことができるとともに、 パティキ ュレートを多量に捕集することも可能となる。
なお、 「大容積貫通孔と小容積貫通孔との実質的に同数である 2種類の貫通孔 からなり」 とは、 本発明のフィルタを、 長手方向に垂直な断面で見た際、 その輪 郭の形状等に起因して、 大容積貫通孔と小容積貫通孔とが同数でない場合がある が、 大容積貫通孔と小容積貫通孔とからなる一定のパターンで判断すると、 両者 が同数の 2種類の貫通孔からなることを意味する。
従って、 例えば、 大容積貫通孔の周囲に多数の小容積貫通孔が存在したり、 そ の逆であるようなフィルタ、 例えば、 図 1 9に示すフィルタは、 本発明のフィル タに含まれない。 また、 図 1 1に示すような一の大容積貫通孔が隣り合う大容積 貫通孔と共有する壁部を有さないものは、 本発明のフィルタに含まれない。 図面の簡単な説明
図 1は、 本発明のような種類のフィルタにおいて、 圧力損失に影響を及ぼす主 な要因を図示した概念図である。
図 2は、 各種排気ガスフィルタにおける圧力損失の経過時間による変化の様子 を模式的に示したグラフである。
図 3は、 本宪明の排気ガス浄化用フィルタの一例を模式的に示す斜視図である。 図 4 ( a ) は、 図 3に示したフィルタを構成する多孔質セラミック部材の一例 を模式的に示した斜視図であり、 (b ) は、 (a ) に示した多孔質セラミック部 材の A— A線断面図である。
図 5 ( a ) は、 本発明の排気ガス浄化用フィルタの別の一例を模式的に示した 斜視図であり、 (b ) は、 (a ) に示したフィルタの B— B線断面図である。 図 6 ( a ) 〜 (d ) は、 本発明のフィルタを構成する多孔質セラミック部材の 長さ方向に垂直な断面を模式的に示した断面図であり、 (e ) は、 従来のフィル タを構成する多孔質セラミック部材の長さ方向に垂直な断面を模式的に示した断 面図である。
図 7は、 本努明のハニカムフィルタを製造するための一工程の様子を模式的に 示した側面図である。
図 8は、 本発明の排気ガス浄化用ハニカムフィルタを用いた排気ガス浄化装置 の一例を模式的に示した断面図である。
図 9は、 従来の排気ガス浄化用ハュカムフィルタの一例を模式的に示した斜視 図である。
図 1 0は、 従来の排気ガス浄化用ハニカムフィルタの別の一例を模式的に示し た縦断面図である。
図 1 1 ( a ) 〜 (d ) は、 従来の排気ガス浄化用ハニカムフィルタの別の例を 模式的に示した縦断面図である。
図 1 2 ( a ) 〜 (f ) は、 本楽明のフィルタの例を模式的に示した縦断面図で める。
図 1 3は、 実施例及び比較例に係るフィルタの α (隔壁長さ比) と /3 (開口比 率) との関係を示すグラフである。
図 1 4は、 実施例 1において、 フィルタの入口から異なる位置で観察されるパ ティキュレートの捕集状態を示す写真である。
図 1 5は、 実施例及び比較例に係るフィルタにおけるアッシュ重量とアッシュ 層の長さとの関係を示すグラフである。
図 1 6は、 実施例及び比較例に係るフィルタにおけるフィルタのパティキユレ 一ト捕集前もしくは再生直後のパティキュレートがフィルタに堆積されていない 状態での圧力損失とアッシュ重量との関係を示すグラフである。
図 1 7は、 実施例及ぴ比較例に係るフィルタにおけるパティキュレートの捕集 量と圧力損失との関係を示すグラフであり、 (b ) は、 上記実施例及び比較例に 係るフィルタにおける (開口比率) と、 初期の圧力損失及ぴパティキュレート を 6 ( g Z L ) 捕集した際の圧力損失との関係を示すグラフである。
図 1 8は、 実施例に係るフィルタにおける j3 (開口率比) と再生限界値との関 係を示すグラフである。
図 1 9は、 大容積貫通孔と小容積貫通孔の数が実質的に 1 : 2となるように 構成された従来の多孔質セラミック部材の長さ方向に垂直な断面を模式的に示し た断面図である。
図 20は、 従来のハニカム構造体の長手方向に垂直な断面を模式的に示した 断面図である。
図 2 1は、 従来のハニカム構造体の長手方向に垂直な断面を模式的に示した 断面図である。
図 2 2は、 従来のハニカム構造体の長手方向に垂直な断面を模式的に示した 断面図である。 符号の説明
1 0, 30 フィルタ
1 3、 1 4 シーノレ材層
1 5 セラミックブ口ック
20、 40、 5 0、 70 多孔質セラミック部材
1 60、 1 70、 1 80、 2 60、 2 70、 28 0 多孔質セラミック部材 2 1 a、 3 1 a、 4 1 a、 5 1 a、 7 1 a 大容積貫通孔
1 6 1 a、 1 7 1 a、 1 8 1 a、 26 1 a、 2 7 1 a、 28 1 a 大容積貫通孔
2 1 b、 3 1 b、 4 1 b、 5 1 b、 7 1 b 小容積貫通孔
1 6 1 b、 1 7 1 b、 1 8 1 b、 26 1 b、 2 7 1 b、 28 1 大容積貫通孔
2 2 封止材
2 3、 4 3、 5 3、 7 3 隔壁
1 6 3、 1 7 3、 1 8 3、 26 3、 2 7 3、 2 8 3 隔壁
3 3 壁部 発明の詳細な開示
本発明のフィルタは、 多数の貫通孔が壁部を隔てて長手方向に並設されたハニ カム構造を有する柱状のフィルタであって、
上記貫通孔は、 長手方向に垂直な断面の面積が相対的に大きい大容積貫通孔 と、 上記断面の面積が相対的に小さい小容積貫通孔との実質的に同数である 2種 類の貫通孔からなり、
上記大容積貫通孔は、 上記フィルタの一端部で封止される一方、 上記小容積 貫通孔は、 上記フィルタの他端部で封止され、
長手方向に垂直な断面における上記一の大容積貫通孔が隣り合う大容積貫通 孔と共有する壁部の長さの合計 (a) と、 長手方向に垂直な断面における上記一 の大容積貫通孔が隣り合う上記小容積貫通孔と共有する壁部の長さの合計 ( b ) との比 (aZb) をひとし、 上記大容積貫通孔の上記断面の面積 (A) と、 上記 小容積貫通孔の上記断面の面積 (B) の比 (A/B) を! 3とした際、 上記ひと上 記 jSとが下記式 (1) の関係を有することを特徴とするものである。
/3 (20ノ9) (¾2+ 1 (ただし、 0く α^ Ι. 5、 1 < |3≤ 6 ) … (1) 本発明のフィルタは、 多数の貫通孔が壁部を隔てて長手方向に並設されたハニ カム構造を有する柱状のフィルタである。 上記フィルタにおいては、 少なくとも 1 つの多孔質セラミックプロックを含んで構成されていることが好ましい。 上記 多孔質セラミックプロックは、 複数の貫通孔が隔壁を隔てて長手方向に並設され た柱状の多孔質セラミック部材がシール材層を介して複数個結束されることによ り構成されていてもよく (以下、 上記フィルタを集合体型フィルタともいう) 、 全体が一体として焼結形成されたセラミック部材から構成されていてもよい (以 下、 上記フィルタを一体型フィルタともいう) 。
上記集合体型フィルタの場合、 壁部は、 多孔質セラミック部材の貫通孔を隔て る隔壁と、 多孔質セラミック部材の外壁及び多孔質セラミック部材間の接着材層 として機能しているシール材層とから構成されており、 上記一体型フィルタの場 合、 一種類の隔壁のみにより構成されている。
図 3は、 本発明のフィルタの一例である集合体型フィルタの具体例を模式的に 示した斜視図であり、 図 4 (a) は、 図 1に示したフィルタを構成する多孔質セ ラミック部材の一例を模式的に示した斜視図であり、 (b) は、 (a) に示した 多孔質セラミック部材の A— A線断面図である。
図 3に示したように、 本発明のフィルタ 10は、 多孔質セラミック部材 20が シール材層 14を介して複数個結束されてセラミックプロック 15を構成し、 こ のセラミックブロック 1 5の周囲には、 排気ガスの漏れを防止するためのシール 材層 1 3が形成されている。
また、 この多孔質セラミック部材 2 0は、 その長手方向に多数の貫通孔 2 1が 並設されているが、 この貫通孔 2 1は、 長手方向に垂直な断面の面積が相対的に 大きい大容積貫通孔 2 1 aと、 上記断面の面積が相対的に小さい小容積貫通孔 2 l bとの 2種類からなり、 大容積賞通孔 2 l aは、 フィルタ 1 0の排気ガス出口 側の端部で封止材 2 2により封止される一方、 小容積貫通孔 2 l bは、 フィルタ 1 0の排気ガス入口側の端部で封止材 2 2により封止され、 これらの貫通孔同士 を隔てる隔壁 2 3がフィルタとして機能するようになっている。 即ち、 大容積貫 通孔 2 1 aに流入した排気ガスは、 必ずこれらの隔壁 2 3を通過した後、 小容積 貫通孔 2 1 bから流出するようになっている。
本発明のフィルタでは、 貫通孔 2 1は大容積貫通孔 2 1 a .と小容積貫通孔 2 1 bとの 2種類からなり、 その貫通孔の数は実質的に同数である。 このような構成 にし、 貫通孔の不必要な分割をなくすことで、 貫通孔入口側を通過する際の摩擦 及び/又は賞通孔出口側を通過する際の摩擦 (②ー 1 ; Δ Ρ ^ ^ ②ー 2 ; 厶 P b _ 2) に起因する圧力損失が必要以上に上昇することのを抑えることが可能であ る。 例えば、 図 1 9に示すような貫通孔の数が実質的に 1 : 2であるフィルタと 比較すると、 本宪明のフィルタのような貫通孔の数が実質的に同数であるフィル タでは、 貫通孔出口側を通過する際の摩擦 (②ー 2 ; A P b _ 2 ) による圧力損失 が低いため、 トータルの圧力損失が低くなる。
また、 本発明のフィルタは、 一の大容積貫通孔 2 1 aが隣り合う大容積貫通孔 2 1 bと共有する壁部と、 一の大容積貫通孔 2 1 aが隣り合う小容積貫通孔 2 1 bと共有する壁部の両方を有する。
図 1 4 ( a ) 〜 (c ) は、 実施例において、 フィルタの入口から異なる位置で 観察されるパティキュレートの捕集状態を示す写真であるが、 この写真より明ら かなように、 本努明のフィルタでは、 隣り合う大容積貫通孔と小容積貫通孔が共 有する壁部のみでなく、 隣り合う大容積貫通孔同士が共有する壁部にも一様にパ ティキュレートが蓄積する。 これは、 排気ガスは、 大容積貫通孔から小容積貫通 孔へ向かって、 フィルタの壁を直接流入する以外にも、 孔のなかで渦をまいたり するような多様な流れを生じさせ、 パティキュレートが捕集されるに従って、 一 旦、 隣り合う大容積貫通孔同士が共有する壁部に侵入した後、 隣り合う大容積貫 通孔と小容積貫通孔が共有する壁部を通って小容積貫通孔に抜ける排気ガスの流 れが形成されるようになるためであると考えられる。
その結果、 大容積貫通孔と小容積貫通孔の容積比を一定にした際、 両方の壁部 を有するフィルタにおいても、 使用するに従って、 大容積貫通孔の壁全てに一様 にパティキュレートが蓄積される。 従って、 開口比率を一定とした時、 大容積貫 通孔同士が共有する壁部のないフィルタと比較すると、 本発明のフィルタでは、 実質的にろ過するための壁部の表面積が大きいこととなり、 同じ量のパティキュ レートを蓄積させたとき、 隔壁部分に蓄積するパティキュレートの厚みを減少さ せることができる。 このため、 本発明のフィルタでは、 使用を開始してから時間 が経過するに従って上昇する圧力損失の上昇率が小さくなり、 フィルタ使用して いる期間トータルで考えた際の圧力損失を低減することができるのである。 また、 フィルタを再生するためには、 パティキュレートを燃焼させるが、 パテ ィキュレート中には、 燃焼して消滅する炭素等のほかに、 燃焼により酸化物とな る金属等が含まれており、 これらがフィルタ中にアッシュとして残留する。 アツ シュは、 通常、 フィルタの出口に近いところに残留し、 そのためフィルタを構成 する貫通孔は、 出口に近いところからアッシュが充填されていき、 アッシュが充 填された部分の容積が次第に大きくなるとともに、 フィルタとして機能する部分 の容積 (面積) が次第に小さくなつていく。
そして、 アッシュの蓄積量が多くなりすぎると、 フィルタは、 最早、 フィルタ として機能しなくなり、 排気管から取り出して逆洗浄を行ってァッシュをフィノレ タから取り除く力 \ フィルタを廃棄することとなる。
上述した本発明のフィルタは、 貫通孔の容積が全て同じものと比べると、 排気 ガス流入側の貫通孔の容積が大きいことに起因して、 ァッシュが蓄積していく際 のフィルタとして機能する部分の容積は減少量が小さく、 アッシュに起因する圧 力損失も小さくなる。 従って、 逆洗浄等を必要とするまでの期間も長くなる。 図 3に示したフィルタ 1 0では、 フィルタの形状は円柱状であるが、 本発明の フィルタは、 円柱状に限定されることはなく、 例えば、 楕円柱状や角柱状等任意 の形状、 大きさのものであってもよい。
本発明のフィルタにおいて、 ハニカム構造は、 流入側から、 流出側にかけて、 断面積を変更させていないことが望ましい。 なぜなら、 圧縮強度等の向上をはか ることができるし、 押出成形での製造が容易になるからである。
本 ¾明のフィルタにおいて、 多孔質セラミック部材の材料としては特に限定さ れず、 例えば、 窒化アルミニウム、 窒化ケィ素、 窒化ホウ素、 窒化チタン等の窒 化物セラミック、 炭化珪素、 炭化ジルコニウム、 炭化チタン、 炭化タンタル、 炭 化タングステン等の炭化物セラミック、 アルミナ、 ジルコユア、 コージユライト、 ムライト、 等の酸化物セラミック等を挙げることができる。 また、 シリコンと炭 化珪素の複合体、 チタン酸アルミ二ゥムといった 2種類以上の材料から形成され ていてもよいが、 これらのなかでは、 耐熱性が大きく、 機械的特性に優れ、 かつ、 熱伝導率も大きい炭化珪素が望ましい。
また、 多孔質セラミック部材の気孔率は特に限定されないが、 2 0〜8 0 %程 度であることが望ましい。 気孔率が 2 0 %未満であると、 本発明のフィルタがす ぐに目詰まりを起こすことがあり、 一方、 気孔率が 8 0 %を超えると、 多孔質セ ラミック部材の強度が低下して容易に破壌されることがある。
なお、 上記気孔率は、 例えば、 水銀圧入法、 アルキメデス法及び走査型電子顕 微鏡 (S E M) による測定等、 従来公知の方法により測定することができる。 また、 上記多孔質セラミック部材の平均気孔径は 1〜 1 0 0 μ mであることが 望ましい。 平均気孔径が 1 μ ηι未満であると、 パティキュレートが容易に目詰ま りを起こすことがある。 一方、 平均気孔怪が 1 0 0 /i mを超えると、 パティキュ レートが気孔を通り抜けてしまい、 該パティキュレートを捕集することができず、 フィルタとして機能することができないことがある。
このような多孔質セラミック部材を製造する際に使用するセラミックの粒径と しては特に限定されないが、 後の焼成工程で収縮が少ないものが望ましく、 例え ば、 0 . 3〜5 0 ;x m程度の平均粒径を有する粉末 1 0 0重量部と、 0 . 1〜1 . 0 μ m程度の平均粒径を有する粉末 5〜 6 5重量部とを耝み合わせたものが望ま しい。 上記粒径のセラミック粉末を上記配合で混合することで、 多孔質セラミツ ク部材を製造することができるからである。
上記封止材は、 多孔質セラミックからなるものであることが望ましい。
本発明のフィルタにおいて、 上記封止材が封止された多孔質セラミック部材は、 多孔質セラミックからなるものであるため、 上記封止材を上記多孔質セラミック 部材と同じ多孔質セラミックとすることで、 両者の接着強度を高くすることがで きるとともに、 封止材の気孔率を上述した多孔質セラミック部材と同様に調整す ることで、 上記多孔質セラミック部材の熱膨張率と封止材の熱膨張率との整合を 図ることができ、 製造時や使用時の熱応力によって封止材と隔壁との間に隙間が 生じたり、 封止材ゃ封止材に接触する部分の隔壁にクラックが発生したりするこ とを防止することができる。
上記封止材が多孔質セラミックからなる場合、 その材料としては特に限定され ず、 例えば、 上述した多孔質セラミック部材を構成するセラミック材料と同様の 材料を挙げることができる。
本発明のフィルタにおいて、 シーノレ材層 1 3、 1 4は、 多孔質セラミック部材 2 0間、 及び、 セラミックプロック 1 5の外周に形成されている。 そして、 多孔 質セラミック部材 2 0間に形成されたシール材層 1 4は、 複数の多孔質セラミツ ク部材 2 0同士を結束する接着剤としても機能し、 一方、 セラミックプロック 1 5の外周に形成されたシール材層 1 3は、 本発明のフィルタ 1 0を内燃機関の排 気通路に設置した際、 セラミックプロック 1 5の外周から排気ガスが漏れ出すこ とを防止するための封止材として機能する。
上記シール材層を構成する材料としては特に限定されず、 例えば、 無機バイン ダー、 有機バインダー、 無機繊維及び/又は無機粒子からなるもの等を挙げるこ とができる。
なお、 上述した通り、 本発明のフィルタにおいて、 シール材層は、 多孔質セラ ミック部材間、 及び、 セラミックプロックの外周に形成されているが、 これらの シール材層は、 同じ材料からなるものであってもよく、 異なる材料からなるもの であってもよい。 さらに、 上記シール材層が同じ材料からなるものである場合、 その材料の配合比は同じものであってもよく、 異なるものであってもよい。
上記無機バインダーとしては、 例えば、 シリカゾル、 アルミナゾル等を挙げる ことができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 上 記無機バインダ一のなかでは、 シリカゾルが望ましい。
上記有機バインダーとしては、 例えば、 ポリビュルアルコール、 メチルセル口 ース、 ェチゾレセノレロース、 力/レポキシメチノレセノレロース等を挙げることができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 上記有機パインダ 一のなかでは、 カルポキシメチルセルロースが望ましい。
上記無機繊維としては、 例えば、 シリカ一アルミナ、 ムライト、 アルミナ、 シ リカ等のセラミックファイバ一等を挙げることができる。 これらは、 単独で用い てもよく、 2種以上を併用してもよい。 上記無機繊維のなかでは、 シリカ一アル ミナファイバーが望ましい。
上記無機粒子としては、 例えば、 炭化物、 窒化物等を挙げることができ、 具体 的には、 炭化珪素、 窒化珪素、 窒化硼素等からなる無機粉末又はウイスカ一等を 挙げることができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよ い。 上記無機粒子のなかでは、 熱伝導性に優れる炭化珪素が望ましい。
シール材層 1 4は、 緻密体からなるものであってもよく、 その内部への排気ガ スの流入が可能なように、 多孔質体であってもよいが、 シーノレ材層 1 3は、 緻密 体からなるものであることが望ましい。 シール材層 1 3は、 本発明のフィルタ 1 0を内燃機関の排気通路に設置した際、 セラミックブロック 1 5の外周から排気 ガスが漏れ出すことを防止する目的で形成されているからである。
図 5 ( a ) は、 本発明のフィルタの一例である一体型フィルタの具体例を模式 的に示した斜視図であり、 (b ) は、 その B— B線断面図である。
図 5 ( a ) に示したように、 フィルタ 3 0は、 多数の貫通孔 3 1が壁部 3 3を 隔てて長手方向に並設された柱状の多孔質セラミックプロック 3 5から構成され ている。
貫通孔 3 1は、 長手方向に垂直な断面の面積が相対的に大きい大容積貫通孔 3 1 aと、 上記断面の面積が相対的に小さい小容積貫通孔 3 1 bとの 2種類の貫通 孔からなり、 大容積貫通孔 3 l aは、 フィルタ 3 0の排気ガス出口側の端部で封 止材 3 2により封止される一方、 小容積貫通孔 3 1 bは、 フィルタ 3 0の排気ガ ス入口側の端部で封止材 3 2により封止され、 これらの貫通孔 3 1を隔てる隔壁 3 3がフィルタとして機能するようになっている。
図 5には示していないが、 多孔質セラミックプロック 3 5の周囲には、 図 3に 示したフィルタ 1 0と同様に、 シーノレ材層が形成されていてもよい。
このフィルタ 3 0では、 多孔質セラミックプロック 3 5が焼結により製造され た一体構造のものであるほかは、 集合体型フィルタ 1 0と同様に構成されており、 大容積貫通孔 3 1 aに流入した排気ガスは、 貫通孔 3 1を隔てる壁部 3 3を通過 した後、 小容積貫通孔 3 1 bから流出するようになっている。 従って、 一体型フ ィルタ 3 0においても、 集合体型フィルタの場合と同様の効果が得られる。
また、 一体型フィルタ 3 0においても、 集合体型フィルタ 1 0同様、 形状、 大 きさは任意のものであってよく、 その気孔率は集合体型フィルタ同様 2 0〜8 0 %であることが望ましく、 その気孔径は 1〜1 0 0 μ πι程度であることが望まし い。
多孔質セラミックブロック 3 5を構成する多孔質セラミックとしては特に限定 されず、 集合体型フィルタと同様の窒化物、 炭化物、 酸化物セラミックを挙げる ことができるが、 通常、 コージエライ ト等の酸化物セラミックが使用される。 安 価に製造することができるとともに、 比較的熱膨張係数が小さいため、 製造中、 及ぴ使用中に熱応力によってフィルタが破損する恐れが少ないからである。 このような一体型フィルタ 3 0における封止材 3 2は、 同様に多孔質セラミツ クからなるものであることが望ましく、 その材料としては、 特に限定されないが、 例えば、 上述した多孔質セラミック 3 5を構成するセラミック材料と同様の材料 を挙げることができる。
図 3及ぴ図 5に示したような構成からなる本発明のフィルタにおいて、 大容積 貫通孔及ぴ /又は小容積貫通孔の長手方向に垂直な断面の形状は、 多角形である ことが望ましい。 多角形にすることにより、 大容積貫通孔及びノ又は小容積貫通孔を排気ガスが 通過する際に貫通孔の形状による摩擦の大きい部分をなくし、 貫通孔を通過する 際の摩擦 (©— 1 ; APb_い ②ー 2 ; APb_2) に起因する圧力損失を低くす ること、 もしくは、 隔壁の厚みの不均一な部分、 つまり、 排気ガスが局所的に通 過しにくくなる部分をなくし、 隔壁を通過する際の抵抗; Δ P。に起因する圧力 損失を低くすること、 このどちらかの効果を得ることができるからであると考え られる。
また、 多角形のなかでも、 4角形以上の多角形が望ましく、 その角の少なくと も 1つが鈍角であることがより望ましい。 このようにすることで、 貫通孔入口側 を通過する際の摩擦及び貫通孔出口側を通過する際の摩擦 (②一 1 ; APb_1 + ②一 2 ; Δ Pb_2) に起因する圧力損失を低くすることができるからである。 具体的には、 八角形と四角形との組み合わせがより望ましい。
大容積貫通孔及ぴ /又は小容積貫通孔の断面の角部の近傍は、 曲線により構成 されていることが望ましい。 曲線にすることにより、 貫通孔入口側を通過する際 の摩擦及び貫通孔出口側を通過する際の摩擦 (②ー 1 ; APb_1+②— 2 ; 厶 P b— 2) に起因する圧力損失をさらに低くすることができるからである。 また、 角 部での応力集中に起因するクラックの発生を防ぐこともできるからである。 なお、 本発明において、 「隣り合う上記大容積貫通孔の上記断面の重心間距離 」 とは、 一の大容積貫通孔の長手方向に垂直な断面における重心と、 隣り合う大 容積貫通孔の長手方向に垂直な断面における重心との最小の距離をいい、 一方、 「隣り合う上記小容積貫通孔の上記断面の重心間距離」 とは、 一の小容積貫通孔 の長手方向に垂直な断面における重心と、 隣り合う小容積貫通孔の重心との最小 の距離のことをいう。
上記 2つの重心間距離が等しいとき、 再生時に熱が均一に拡散することで、 フ ィルタ内の局所的な温度の偏りがなくなり、 長期間繰り返し使用しても、 熱応力 に起因するクラック等が発生することのない耐久性に優れたフィルタとなると考 えられる。
図 6 (a) 〜 (d) 及び図 12 (a) 〜 (f ) は、 本発明に係る集合体型フィ ルタを構成する多孔質セラミック部材の断面の一部を模式的に示した断面図であ り、 図 6 (e) は、 従来のフィルタにおける断面の一部を模式的に示した断面図 である。 なお、 一体型フィルタにおける大容積貫通孔及ぴ小容積貫通孔の断面の 形状も同じ組み合わせであるので、 これらの図を用いて本発明のフィルタにおけ る大容積貫通孔及び小容積貫通孔の断面形状を説明する。
図 6 (a) では、 上記開口比率がほぼ 1. 5 5、 図 6 (b) では、 ほぼ 2. 5 4、 図 6 (c) では、 ほぼ 4. 45、 図 6 (d) では、 ほぼ 6. 00である。 ま た、 図 1 2 (a) 、 (c) , (e) は、 上記開口比率がすべて、 ほぼ 4. 4 5で あり、 図 1 2 (b) 、 (d) 、 (: f ) は、 すべてほぼ 6. 00である。 図 6 (a ) 〜 (d) では全て、 大容積貫通孔の断面の形状は 8角形であり、 小容積貫通孔 の断面の形状は 4角形でそれぞれ交互に配列されており、 小容量貫通孔の断面積 を変化させ、 大容積貫通孔の断面形状を少し変化させることにより、 開口比率を 任意に変動させることが容易にできる。 同様に、 図 1 2に示すフィルタに関して も任意にその開口比率を変動させることができる。
上述したように、 八角形と四角形の組み合わせでは、 対称性がよいものとなる。 対称性がよいものであるので、 排気ガスが均等に大容積貫通孔に流入しやすくな る。 加えて、 ァイソスタティック強度、 圧縮強度等の向上がはかれる。
一例として、 A軸の圧縮強度について考察してみる。 A軸の圧縮強度とは、 ハニカム形状において、 少なくとも、 貫通孔と垂直な 2平面を構成するような立 体、 (好ましくは残りの 4面を互いに平行に切断した直方体、 立方体形状) に切 り出し、 その貫通孔を台に鉛直になるように設置し、 その上部から、 挟み込むよ うに荷重圧力をかけて、 破壌された荷重から、 強度を計算するものである。
この場合、 従来技術にあるように、 断面積の形状が全て正方形のみの形であ ると、 A軸については、 全て同じ圧力で力が加わることになる。
ところが、 八角形と四角形の形であると、 八角形が広がり、 四角形を押しつ ぶそうとする力等に圧縮の力が分散されるし、 また、 大容積貫通孔同士が共通す る壁では、 打ち消しあうことになつて、 圧縮強度が高いものとなると考えられる c 同様にアイソスタティック強度においても、 断面積が全て正方形の形状のも のに比べて、 対角線の方向にも、 梁を設けることになるので、 同様に強度を向上 させることができやすくなると考えられる。 なお、 ァイソスタティック強度は、 等方的圧力破壊強度ともいい、 フィルタに静水圧等の等方的な圧力を印加し、 破 壊が発生したときの強度をいう。
ァイソスタティック強度は、 7MP a以上が好ましく、 9MP a以上がより 好ましい。 また、 A軸の圧縮強度は、 1 8 MP a以上が好ましく、 2 5 MP a以 上がより好ましい。
しかも、 上述した効果は、 ある数値範囲にあると、 より効果的に見出される ものであることが発明者らの研究によってわかった。
このような、 強度に関する安定性と、 ガスの流れ、 熱の伝播といった様々な 要因が合い重なって、 パティキュレートの再生に対する耐久が優れたハニカムフ イノレタになると考えられる。
また、 本発明のフィルタにおいて、 ハニカム形状は、 流入側から、 流出側に かけて、 断面積を変更させていないことが望ましい。 なぜなら、 例えば、 上述し たような圧縮強度において、 貫通孔の断面積を変更することは、 圧縮強度の減少 を引き起こすし、 押出成形での製造が困難になるからである。
なお、 図 1 2 (a) 〜 (b) に示すフィルタ 1 6 0、 26 0では、 大容積貫 通孔 1 6 1 a、 26 1 aの断面の形状は 5角形であり、 そのうちの 3つの角がほ ぼ直角となっており、 小容積貫通孔 1 6 1 b、 26 1 bの断面の形状は 4角形で、 それぞれ大きな四角形の斜めに対向する部分を占めるように構成されている。 図 1 2 (c) ~ (d) に示すフィルタ 1 70、 2 70では、 図 6 (a) 〜 (d) に 示す断面の形状を変形したものであって、 大容積貫通孔 1 7 1 a、 27 1 aと小 容積貫通孔 1 7 1 b、 2 7 1 bとが共有する隔壁を小容積貫通孔側にある曲率を 持つて広げた形状である。 この曲率は任意のものであってよい。
ここでは、 大容積貫通孔 1 7 1 a、 27 1 aと小容積貫通孔 1 7 1 b、 27 1 bとが共有する隔壁を構成する曲線が 1 Z 4円に相当するものを例示する。 この 場合、 その開口比率が最小となる形状は、 おおよそ図 1 2 (c) のような形状と なり、 そのときの開口比率は、 ほぼ 3. 6 6となる。 図 1 2 (e) 〜 ( f ) に示すフイノレタ 1 8 0、 2 8 0では、 大容積貫通孔 1 8 1 a、 2 8 1 a及ぴ小容積賞通孔 2 8 1 b, 2 8 1 bは 4角形 (長方形) からな り、 図のように、 2つの大容積貫通孔と 2つの小容積貫通孔を組み合わせると、 ほぼ正方形となるように構成されている。
貫通孔の形状及び並ぴ方が同様であるならば、 上記開口比率の変動に伴って、 長手方向に垂直な断面における一の大容積貫通孔が隣り合う大容積貫通孔と共有 する壁部の長さの合計 (a) と、 長手方向に垂直な断面における一の大容積貫通 孔が隣り合う上記小容積貫通孔と共有する壁部の長さの合計 (b) とは、 それぞ れほぼ一定の関係で変動する。
従って、 例えば、 図 6 ( a ) 〜 (d) に示す形状のフィルタでは、 実質的に下 記の (2) 式で表すことができる。
β = (α + 21 2) 2— 1 · · · (2)
同様に、 図 1 0は下記 (3) 式、 図 1 1 (a ) 〜 (d) は下記 (4) 式、 図 1 2 ( a ) 、 (b) は下記 (5) 式、 図 1 2 (c:) 、 (d) は下記 ( 6 ) 式、 図 1 2 (e ) 、 ( f ) は下記 (7) 式で実質的に αと との関係を一意に表すことが できる。
β = (α + 1 ) 2- 1 ■ - - ( 3)
α = Ό · ■ · (4)
β = 2 { (2 - 21/2) ひ + 1 } 2_ 1 ■ · · ( 5)
β = { π 2/4 (4— π) } (α + 4/π) 2— 1 ■ · · (6 )
β =- ( 3 α + 2) / (α - 2) … (7)
ただし、 隔壁の厚みによって、 ο; (隔壁長さ比) が若干変動することがある。 そのため、 一の大容積貫通孔が隣り合う大容積貫通孔と共有する壁部、 一の大容 積貫通孔が隣り合う小容積貫通孔と共有する壁部のどちらにも属さない壁部はそ の効果を考慮し、 大容積貫通孔同士が共有する壁部として扱う場合もある。 また、 上記 (2) 、 (3) 、 (5) 、 (6) 、 (7) 式においても、 (1) 式と同様に、
0 < α≤ 1. 5、 1 < |3≤ 6である。
β (開口率比) の下限値は、 1. 5 5が好ましく、 2. 0がより望ましい。 β ( 開口率比) の上限値は、 2 . 7 5が好ましく、 2 . 5 4がより望ましく、 2 . 4 2がより望ましい。
このような開口率比とすることにより、 パティキュレート捕集時の圧力損失 をより低減することができるとともに、 再生限界値を大きくすることができる。 なお、 再生限界値とは、 これ以上パティキュレートを捕集すると、 再生を行 う際に、 フィルタにクラック等が発生し、 フィルタが損傷するおそれがあるパテ ィキュレートの捕集量 (g 1 ) をいう。 従って、 再生限界値が大きくなると、 再生を行うまでに捕集することが可能なパティキュレートの量を増大させること ができ、 再生までの期間を長期化することができる。
次に、 上述した本発明のフィルタの製造方法の一例について説明する。
本発明のフィルタの構造が図 5に示したような、 その全体が一の焼結体から構 成された一体型フィルタである場合、 まず、 上述したようなセラミックを主成分 とする原料ペーストを用いて押出成形を行い、 図 5に示したフィルタ 3 0と略同 形状のセラミック成形体を作製する。
上記原料ペーストは、 製造後の多孔質セラミックブロックの気孔率が 2 0 ~ 8 0 %となるものであれば特に限定されず、 例えば、 上述したようなセラミックか らなる粉末にバインダー及び分散媒液を加えたものを挙げることができる。
上記バインダーとしては特に限定されず、 例えば、 メチルセルロース、 カルボ キシメチ/レセ/レロース、 ヒ ドロキシェチ /レセノレロース、 ポリエチレングリ コール、 フエノール樹脂、 エポキシ樹脂等を挙げることができる。
上記バインダーの配合量は、 通常、 セラミック粉末 1 0 0重量部に対して、 1 〜 1 0重量部程度が望ましい。
上記分散媒液としては特に限定されず、 例えば、 ベンゼン等の有機溶媒;メタ ノール等のアルコール、 水等を挙げることができる。
上記分散媒液は、 原料ペース トの粘度が一定範囲内となるように、 適量配合さ れる。
これらセラミック粉末、 バインダー及ぴ分散媒液は、 アトライター等で混合し、 エーダー等で充分に混練した後、 押出成形して上記セラミック成形体を作製する c また、 上記原料ペース トには、 必要に応じて成形助剤を添加してもよい。 上記成形助剤としては特に限定されず、 例えば、 エチレングリコール、 デキスト リン、 脂肪酸石鹼、 ポリアルコール等を挙げることができる。
さらに、 上記原料ペーストには、 必要に応じて酸化物系セラミックを成分とす る微小中空球体であるバルーンや、 球状アクリル粒子、 グラフアイト等の造孔剤 を添加してもよい。
上記バルーンとしては特に限定されず、 例えば、 アルミナバルーン、 ガラスマ イクロバノレーン、 シラスバノレーン、 フライアッシュパノレーン (F Aバ /レーン) 及 びムライトバルーン等を挙げることができる。 これらのなかでは、 フライアツシ ュバルーンが望ましい。
そして、 上記セラミック成形体を、 マイクロ波乾燥機、 熱風乾燥機、 誘電乾燥 機、 減圧乾燥機、 真空乾燥機及び凍結乾燥機等を用いて乾燥させた後、 所定の貫 通孔に封止材となる封止材ペーストを充填し、 上記貫通孔に目封じする封口処理 を施す。
上記封止材ペーストとしては、 後工程を経て製造される封止材の気孔率が 2 0 〜 8 0 %となるものであれば特に限定されず、 例えば、 上記原料ペーストと同様 のものを用いることができるが、 上記原料ペーストで用いたセラミック粉末に潤 滑剤、 溶剤、 分散剤及びバインダーを添加したものであることが望ましい。 上記 封口処理の途中で封止材ペースト中のセラミック粒子が沈降することを防止する ことができるからである。
次に、 上記封止材ペーストが充填されたセラミック乾燥体に、 所定の条件で脱 脂、 焼成を行うことにより、 多孔質セラミックからなり、 その全体が一の焼結体 から構成されたフィルタを製造することができる。
なお、 上記セラミック乾燥体の脱脂及ぴ焼成の条件等は、 従来から多孔質セラ ミックからなるフィルタを製造する際に用いられている条件を適用することがで さる。
また、 本発明のフィルタの構造が、 図 3に示したような、 多孔質セラミック部 材がシール材層を介して複数個結束されて構成された集合体型フィルタである場 合、 まず、 上述したセラミックを主成分とする原料ペース トを用いて押出成形を 行い、 図 4に示した多孔質セラミック部材 2 0のような形状の生成形体を作製す る。
なお、 上記原料ぺース トは、 上述した集合体型フィルタにおいて説明した原料 ペーストと同様のものを挙げることができる。
次に、 上記生成形体を、 マイクロ波乾燥機等を用いて乾燥させて乾燥体とした 後、 該乾燥体の所定の貫通孔に封止材となる封止材ペース トを充填し、 上記貫通 孔を目封じする封口処理を施す。
なお、 上記封止材ペース トは、 上述した一体型フィルタにおいて説明した封止 材ペーストと同様のものを挙げることができ、 上記封口処理は、 封止材ペースト を充填する対象が異なるほかは、 上述した一体型フィルタの場合と同様の方法を 挙げることができる。
次に、 上記封口処理を経た乾燥体に所定の条件で脱脂、 焼成を行うことにより、 複数の貫通孔が隔壁を隔てて長手方向に並設された多孔質セラミック部材を製造 することができる。
なお、 上記生成形体の脱脂及び焼成の条件等は、 従来から多孔質セラミック部 材がシール材層を介して複数個結束されて構成されたフィルタを製造する際に用 いられている条件等を適用することができる。
次に、 図 7に示したように、 多孔質セラミック部材 2 0が斜めに傾斜した状態 で積み上げることができるように、 上部の断面が V字形状に構成された台 8 0の 上に、 多孔質セラミック部材 2 0を傾斜した状態で載置した後、 上側を向いた 2 つの側面 2 0 a、 2 0 bに、 シール材層 1 4となるシール材ペーストを均一な厚 さで塗布してシール材ペースト層 8 1を形成し、 このシール材ペースト層 8 1の 上に、 順次他の多孔質セラミック部材 2 0を積層する工程を繰り返し、 所定の大 きさの角柱状の多孔質セラミック部材 2 0の積層体を作製する。
なお、 上記シール材ペース トを構成する材料としては、 上述した本発明のフィ ルタにおいて説明した通りであるのでここではその説明を省略する。
次に、 この多孔質セラミック部材 2 0の積層体を加熱してシール材ペースト層 8 1を乾燥、 固化させてシール材層 1 4とし、 その後、 例えば、 ダイヤモンドカ ッタ一等を用いて、 その外周部を図 3に示したような形状に切削することで、 セ ラミックプロック 1 5を作製する。
そして、 セラミックプロック 1 5の外周に上記シール材ペーストを用いてシー ル材層 1 3を形成することで、 多孔質セラミック部材がシール材層を介して複数 個結束されて構成されたフィルタを製造することができる。
このようにして製造したフィルタはいずれも柱状であり、 その構造は、 図 3や 図 5に示した通りである。
本発明のフィルタの用途は特に限定されないが、 車両の排気ガス浄化装置に用 いることが望ましい。
図 8は、 本発明のフィルタが設置された車両の排気ガス浄化装置の一例を模式 的に示した断面図である。
図 8に示したように、 排気ガス浄化装置 6 0 0は、 主に、 本発明のフィルタ 6 0、 フィルタ 6 0の外方を覆うケーシング 6 3 0、 フィルタ 6 0とケーシング 6 3 0との間に配置された保持シール材 6 2 0、 及び、 フィルタ 6 0の排気ガス流 入側に設けられた加熱手段 6 1 0から構成されており、 ケーシング 6 3 0の排気 ガスが導入される側の端部には、 エンジン等の内燃機関に連結された導入管 6 4 0が接続されており、 ケーシング 6 3 0の他端部には、 外部に連結された排出管 6 5 0が接続されている。 なお、 図 8中、 矢印は排気ガスの流れを示している。 また、 図 8において、 フィルタ 6 0は、 図 3に示したフィルタ 1 0であっても よく、 図 5に示したフィルタ 3 0であってもよい。
このような構成からなる排気ガス浄化装置 6 0 0では、 エンジン等の内燃機関 から排出された排気ガスは、 導入管 6 4 0を通ってケーシング 6 3 0内に導入さ れ、 フィルタ 6 0の貫通孔から壁部 (隔壁) を通過してこの壁部 (隔壁) でパテ ィキュレートが捕集されて浄化された後、 排出管 6 5 0を通って外部へ排出され ることとなる。
そして、 フィルタ 6 0の壁部 (隔壁) に大量のパティキュレートが堆積し、 圧 力損失が高くなると、 フィルタ 6 0の再生処理が行われる。 上記再生処理では、 加熱手段 6 1 0を用いて加熱されたガスをフィルタ 6 0の 貫通孔の内部へ流入させることで、 フィルタ 6 0を加熱し、 壁部 (隔壁) に堆積 したパティキュレートを燃焼除去させるのである。
また、 ボストインジェクション方式を用いてパティキユレ トを燃焼除去して あよい。
また、 本発明のフィルタの気孔中には、 排気ガス中の C O、 H C及び N O x等 を浄化することができる触媒が担持されていてもよい。
このような触媒が担持されていることで、 本発明のフィルタは、 排気ガス中の パティキュレートを捕集するフィルタとして機能するとともに、 排気ガスに含有 される上記 C O、 H C及ぴ N O x等を浄化するための触媒コンバータとして機能 する。
上記触媒は、 本発明のハニカム構造体を構成する粒子表面に担持されること で気孔を残したものでもよいし、 壁部状にある厚みをもって担持されていてもよ い。 また、 上記触媒は、 貫通孔の壁部の表面に均一に担持されていてもよいし、 ある一定の場所に偏って担持されていてもよい。 特に入口側貫通孔の壁部の表面 又は表面付近の粒子の表面、 さらにはこれらの両方ともに上記触媒を担持させる と、 パティキュレートと接触しやすいためにパティキュレートの燃焼を効率よく 行なうことができる。
上記触媒としては、 例えば、 白金、 パラジウム、 ロジウム等の貴金属を挙げる ことができる。 この貴金属からなる触媒は、 所謂、 三元触媒であり、 このような 三元触媒が担持された本発明のフィルタは、 従来公知の触媒コンバータと同様に 機能するものである。 従って、 ここでは、 本発明のフィルタが触媒コンバータと しても機能する場合の詳しい説明を省略する。
但し、 本発明のフィルタに担持させることができる触媒は、 上記貴金属に限定 されることはなく、 排気ガス中の C O、 H C及ぴ N O x等を浄化することができ る触媒であれば、 任意のものを担持させることができる。 発明を実施するための最良の形態 以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。
(実施例 1 )
( 1 ) 平均粒径 1 1 μ mの a型炭化珪素粉末 60重量%と、 平均粒径 0. 5 μιηの J3型炭化珪素粉末 40重量%とを湿式混合し、 得られた混合物 100重量 部に対して、 有機バインダー (メチルセルロース) を 5重量部、 水を 10重量部 加えて混練して混合組成物を得た。 次に、 上記混合組成物に可塑剤と潤滑剤とを 少量加えてさらに混練した後、 押出成形を行い、 図 6 (a) 〜 (d) に示したよ うに、 断面形状を大容積貫通孔を八角形、 小容積貫通孔として、 四角形 (略正方 形) を選択して、 焼成後の β (開口比率) が 1. 50となるように生成形体を作 製した。
次に、 マイクロ波乾燥機等を用いて上記生成形体を乾燥させ、 セラミック乾 燥体とした後、 上記生成形体と同様の組成のペーストを所定の貫通孔に充填した 後、 再び乾燥機を用いて乾燥させた後、 400。Cで脱脂し、 常圧のアルゴン雰囲 気下 2200 °C、 3時間で焼成を行うことにより、 気孔率が 42%、 平均気孔径 が 9 im、 その大きさが 34. 3mmX 34. 3 mm X 1 50 mmで、 貫通孔の 数が 28個 Zl cm2 ( 1 OmmX 1 Omm) (大容積貫通孔 14個/ 1 c m2、 小容積貫通孔 14個/ 1 cm2) 、 実質的に全ての隔壁 23の厚さが 0. 4mm の炭化珪素焼結体である多孔質セラミック部材 20を製造した。
なお、 得られた多孔質セラミック部材 20の一方の端面においては、 大容積 貫通孔 21 aのみを封止剤により封止し、 他方の端面においては、 小容積貫通孔 21 bのみを封止剤により封止した。
また、 多孔質セラミック部材 20においてひ (隔壁長さ比) は、 0. 20で めった。
(2) 繊維長 0. 2mmのアルミナフアイパー 30重量%、 平均粒径 0. 6 mの炭化珪素粒子 21重量%、 シリカゾル 1 5重量0 /0、 カルボキシメチルセル ロース 5. 6重量%、 及び、 水 28. 4重量%を含む耐熱性のシール材ペースト を用いて上記多孔質炭化珪素部材を、 図 7を用いて説明した方法により多数結束 させ、 続いて、 ダイヤモンドカッターを用いて切断することにより、 円柱形状の セラミックプロックを作製した。
このとき、 上記多孔質セラミック部材を結束するシール材層の厚さが 1. 0 mmとなるように調整した。
次に、 無機繊維としてアルミナシリケートからなるセラミックファイバー
(ショット含有率: 3 %、 繊維長: 0. 1~100 mm) 23. 3重量%、 無機 粒子として平均粒径 0. 3 /zmの炭化珪素粉末 30. 2重量 °/0、 無機バインダー としてシリカゾル (ゾル中の S i O 2の含有率: 30重量0 /0) 7重量0 /0、 有機バ インダ一としてカルボキシメチルセルロース 0. 5重量%及び水 39重量%を混 合、 混練してシール材ペーストを調製した。
次に、 上記シール材ペーストを用いて、 上記セラミックプロックの外周部に 厚さ 0. 2 mmのシール材ペースト層を形成した。 そして、 このシール材ペース ト層を 120°Cで乾燥して、 直径が 144 mmの円柱形状のフィルタを製造した。
(実施例 2 ~ 24、 及び、 比較例 1〜 2 )
(1) 多孔質セラミック部材の断面形状を図 6 (a) 〜 (d) に示したよう に、 大容積貫通孔を八角形、 小容積貫通孔として、 四角形 (略正方形) の断面形 状を選択して、 その J3 (開口比率) 及び α (隔壁長さ比) をそれぞれ、 表 1に示 した値としたほかは、 実施例 1の (1) と同様にして多孔質セラミック部材を製 造した。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
(実施例 25〜 31、 及び、 比較例 3〜 4 )
(1) 多孔質セラミック部材の断面形状を図 1 2 (a) 、 (b) に示したよ うに、 大容積貫通孔を五角形、 小容積貫通孔として、 四角形 (略正方形) の断面 形状を選択して、 その & (開口比率) 及び α (隔壁長さ比) をそれぞれ、 表 1に 示した値としたほかは、 実施例 1の (1) と同様にして多孔質セラミック部材を 製造した。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
(実施例 3 2〜 3 5、 及び、 比較例 5〜 6 )
( 1) 多孔質セラミック部材の断面形状を図 1 2 (c) 、 (d) に示したよ うに、 大容積貫通孔を八角形の四隅を曲率をもって広げ、 小容積貫通孔として、 四角形 (略正方形) を曲率をもって縮めた断面形状を選択して、 その β (開口比 率) 及ぴ《 (隔壁長さ比) をそれぞれ、 表 1に示した値としたほかは、 実施例 1 の (1) と同様にして多孔質セラミック部材を製造した。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
(実施例 3 6〜 44、 及び、 比較例 7〜 8 )
(1) 多孔質セラミック部材の断面形状を図 1 2 (e) 、 ( f ) に示したよ うに、 大容積貫通孔を長方形、 小容積貫通孔として、 長方形 (場合によっては正 方形) の断面形状を選択して、 その β (開口比率) 及び α (隔壁長さ比) をそれ ぞれ、 表 1に示した値としたほかは、 実施例 1の (1) と同様にして多孔質セラ ミック部材を製造した。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
(比較例 9〜 1 9 )
( 1) 多孔質セラミック部材の断面形状を図 1.0に示した断面形状と略同様 (十二角形と四角形) にし、 その (開口比率) 及び α (隔壁長さ比) をそれぞ れ、 表 1に示した値としたほかは、 実施例 1の (1) と同様にして多孔質セラミ ック部材を製造した。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
(比較例 20〜 2 7 )
(1) 多孔質セラミック部材の断面形状を、 図 1 1 (a) (比較例 20) 、 図 1 1 ( b ) (比較例 2 1、 2 2) 、 図 1 1 (c) (比較例 2 3〜2 5) 、 図 1 1 (d) (比較例 26〜27) にそれぞれ示した断面形状と略同様にし、 その β ( 開口比率) 及び α (隔壁長さ比) を、 それぞれ表 1に示した値 (α = 0) とした ほかは、 実施例 1の (1) と同様にして多孔質セラミック部材を製造した。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
(比較例 2 8〜 2 9 )
( 1) 多孔質セラミック部材の断面形状を図 6 (e) に示した断面形状 (全 て正方形でかつ市松模様に封止) と略同様にし、 その β (開口比率) = 1及ぴ α (隔壁長さ比) を、 それぞれ表 1に示した値 (a = 0) としたほかは、 実施例 1 の (1) と同様にして多孔質セラミック部材を製造した。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
(比較例 3 0 ~ 3 3 )
( 1) 多孔質セラミック部材の断面形状を図 1 9 (比較例 3 0) 、 図 20 ( 比較例 3 1) 、 図 2 1 (比較例 32) 、 図 22 (比較例 33) に、 それぞれ示し た断面形状と略同様にしたほかは、 実施例 1の (1) と同様にして多孔質セラミ ック部材を製造した。 なお、 比較例 30に示したフィルタ 200 (図 1 9) の断 面形状は、 大容積貫通孔 (六角形) と小容積貫通孔 (三角形) の数が実質的に 1 : 2である。 また、 比較例 3 2に示したフィルタ 220 (図 2 1) の断面は、 大 きな正方形の貫通孔 2 2 1 aと小さな正方形の貫通孔 2 2 1 と長方形の貫通孔 2 2 2が組み合わされて格子状に形成されたものであり、 比較例 3 3に示したフ ィルタ 230 (図 22 ) の断面は、 正方形の貫通孔 23 1とそれよりほんのわず かに小さい正方形の貫通孔 23 2が交互に組み合わされて形成されたものである。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
(比較例 34 )
(1) 貫通孔の長手方向に平行な断面の形状をテーパ形状にしたほかは、 実 施例 1の (1) と同様にして多孔質セラミック部材を製造した。
(2) 上記 (1) で製造した多孔質セラミック部材をそれぞれ用いたほかは、 実施例 1の (2) と同様にしてフィルタを製造した。
得られたフィルタの貫通孔の長手方向に垂直な断面の面積は、 徐々に大きく なったり小さくなつたりしており、 図 6 (a) を用いて説明すると、 排気ガス入 口側における大容積貫通孔 2 1 aは、 排気ガス出口側では、 小容量貫通孔 2 1 b となっており、 排気ガス入口側における小容積貫通孔 2 1 bは、 排気ガス出口側 では、 大容量貫通孔 2 1 aとなっている。
(評価方法)
( 1 ) 圧力損失変化
図 8に示したように、 各実施例及び比較例に係るフィルタをエンジンの排気 通路に配設して排気ガス浄化装置とし、 上記エンジンを回転数 3 00 Om i n— \ トルク 5 0 Nmで運転し、 初期 (運転前) の圧力損失及び所定量のパティキ ュレート捕集した際の圧力損失を測定した。 表 1〜 3に全ての実施例及び比較例 の断面形状、 β (開口率比) 、 ο= (隔壁長さ比) 、 (20Ζ9) ひ2 + 1の値と、 そのときの初期の圧力損失、 パティキュレートを 0. 5、 4. 0、 6. 0、 8. 0 (g/L) 捕集した際の圧力損失のデータを示す。
(2) 再生限界値の測定
図 8に示したように、 各実施例及び比較例に係るフィルタをエンジンの排気 通路に配設して排気ガス浄化装置とし、 上記エンジンを回転数 3 00 Om i n一 トルク 5 O Nmで所定の時間運転し、 その後に再生処理を行う実験を、 運転 する時間を増加させながら継続して行い、 フィルタにクラックが発生するか否か を調査した。 上記実験は、 各実施例及ぴ比較例に係るフィルタ 5個について行つ た。 そして、 クラックが発生した際に、 捕集していたパティキュレートの量を測 定し、 5個サンプルの平均値を再生限界値とした。 その結果を下記の表 1〜3に 示した。
図 1 3に、 実施例 1〜 44及ぴ比較例 1〜 3 3における ]3 (開口率比) と a ( 隔壁長さ比) との値の関係をグラフ上で示す。 図 1 3のグラフ中の点は、 上記実 施例及び比較例から選んだものであり、 数値を〇中に記載したもの (例えば⑯、 ⑰、 ⑬ · · ■ ) は、 実施例の番号を表し、 単に番号のみを記載したもの (例えば 1、 10、 20 · · · ) は、 比較例の番号を表す。 また、 線分 Aは、 3= (20 /9) 2+ 1を表す。 線分 Bは図 1 1に示す断面形状のフィルタにおける αと βとの関係を表し、 曲線 C〜Gはそれぞれ図 1 2 (c) 〜 (d) 、 図 1 2 (e) 〜 (f ) 、 図 6 (a) 、 図 12 (a) 〜 (b) 、 図 10に示す断面形状のフィル タにおけるひと との関係を表す線である。
(3) アツシュ重量とアッシュ層の長さ又はフィルタの圧力損失との関係 図 8に示したように、 各実施例及び比較例に係るフィルタをエンジンの排気 通路に配設して排気ガス浄化装置とし、 上記エンジンを回転数 300 Om i η- \ トルク 5 ONmで所定の時間運転し、 その後に再生処理を繰り返す実験を行 い、 フィルタを構成する貫通孔に充填されたアッシュ層の長さ (排気ガスの流れ る方向の長さ) とアッシュ重量との関係、 フィルタの圧力損失とアッシュ重量と の関係を実施例 2、 実施例 13、 比較例 28について測定した。 その結果を図 1 5、 図 16に示す。
(3) フィルタの圧縮強度とァイソスタティック強度
表に記載のフィルタを、 実施のように、 3 Omm程度の立方体に切断し、 ィ ンストロン 5582により A軸の圧縮強度を測定した。
また、 直径 144 mmで長さ 1 5 Ommのフイノレタのアイソスタティック強 度を測定した。 測定の際には、 サンプルの上下にアルミニウム板 (1mmの厚み ) をあて、 ウレタンシート (1mmの厚み) で包んで密封し、 水を満たした圧力 容器に入れて加圧し、 破壊された圧力をァイソスタティック強度とした。
これらの結果も、 同様に表 1〜3に記した。
開口率比 (20/9) Of 2 初期比損 ティキュレ-ト Ag/L捕集時の圧力損失 (kPa)再生限界
断面形状 ァイソスタティック 圧縮強度 比(α ) + 1 (kPa) A=0.5 A=4.0 A=6.0 A=8.0 値 (g/L) 強度 (MPs) (MPa) 実施例 1 図 6(a)〜(d) 1.50 0.20 1.09 1.5 2.6 6.6 9.3 11.7 8.6 7.0 29.4 実施例 2 図 6(a)~(d) 1.55 0.18 1.07 1.5 2.6 6.5 9.0 11.3 8.6 7.2 29.4 実施例 3 図 6(a)〜(d) 1.55 0.18 1.07 1.5 2.6 6.5 9.0 11.3 8.6 7.3 29.4 実施例 4 図 6(a)〜(d) 1.60 0.20 1.09 1.5 2.6 6.5 9.0 11.3 8.6 7.5 29.1 実施例 5 図 6(a)〜(d) 1.75 0.24 1.13 1.5 2.6 6.5 9.0 11.3 8.9 8.3 29.1 実施例 6 図 6(a)~(d) 1.92 0.29 1.19 1.5 2.6 6.5 8.9 11.3 9.0 8.7 29.1 実施例 7 図 6(a)~(d) 2.01 0.32 1.23 1.5 2.7 6.5 8.9 11.2 9.1 9.0 28.8 実施例 8 図 6(a)〜(d) 2.10 0.35 1.27 1.6 2.7 6.5 8.8 11.2 9.2 9.1 28.8 実施例 9 図 6(a)〜(d) 2.20 0.37 1.31 1.6 2.7 6.5 8.8 11.2 9.4 9.2 28.5 実施例 10図 6(a)〜(d) 2.30 0.40 1.36 1.6 2.8 6.5 8.8 11.1 9.5 9.4 28.2 実施例 11 H6(a)~(d) 2.40 0.43 1.41 1.6 2.9 6.5 8.7 11.1 9.5 9.4 28.2 実施例 12図 6(a)〜(d) 2.51 0.46 1.47 1.6 2.9 6.5 8J 11.1 9.3 9.1 27.8 実施例 13図 6(a)〜(d) 2.54 0.47 1.49 1.6 2.9 6.5 8.7 11.1 9.3 9.1 27.8 実施例 14図 6(aト (d) 2.54 0.47 1.49 1.6 2.9 6.5 8.7 11.1 9.2 .
実施例 15 H6(a)~(d) 2.63 0.49 1.54 1.7 3.0 6.6 8.8 11.1 9.0 8.8 27.4 実施例 16図 6(a)~(d) 2.75 0.52 1.61 1.7 3.1 6.6 8.8 11.1 8.9 8.3 27.0 実施例 17図 6(a)〜(d) 2.88 0.56 1.69 1.7 3.1 6.6 8.8 11.2 8.8 8.2 26.7 実施例 18図 6(a)〜(d) 3.00 0.59 1.76 1.7 3.1 6.6 8.8 11.2 8.8 8.1 26.4 実施例 19図 6(a)〜(d) 3.02 0.59 1.78 1.8 3.2 6.9 9.0 11.2 8.8 7.9 26.3 実施例 20図 6(a)~(d) 3.16 0.63 1.87 1.8 3.2 6.9 9.0 11.2 8.7 7.5 26.0 実施例 21図 6(a)〜(d) 4.45 0.92 2.88 2.0 3.5 7.1 9.2 11.4 8.7 7.0 24.0 実施例 22図 6(a)〜(d) 4.45 0.92 2.88 2.0 3.5 7.1 9.2 11.4 8.7
実施例 23図 6(a)~(d) 6.00 1.23 4.37 2.4 4.1 8.0 10.0 11.8 8.5 6.1 17.7 実施例 24図 6(a)~(d) 6.00 1.23 4.37 2.4 4.1 8.0 10.0 11.8 8.5
比較例 1 図 6(a)~(d) 6.50 1.32 4.90 2.6 4.7 8.6 10.7 12.4 8.2 5.5 16.6 比較例 2 図 6(a)~(d) 6.50 1.32 4.90 2.6 4.7 8.6 10J 12.4 8.2
πα m
開 P率比隔壁長さ (20/9) Of 初期圧損 Λ τィキュレート Ag/L捕集時の圧力損失 (kPa)再生限界
断面形状 アイ 'ノスタ亍イツク 圧縮強度
) Άι \ Οί ) + 1 (jKド aノ A=0.5 A=4.0 A=6.0 A=8.0 強度 (MPa) (MPa) 実施例 25図 12(a),(b) 2.54 0.56 1.71 1.8 3.2 6.8 8.9 11.3 8.6 8.7 19.5 実施例 26図 12(a),(b) 2.54 0.56 1.71 1.8 3.2 6.8 8.9 11.3 8.6 —― ,. ― 実施例 27図 12(a),(b) 3.00 0.71 2.11 1.9 3.4 7.0 9.0 1 1.4 8.6 8.4 18.4 実施例 28図 12(a)ズ b) 4.45 1.1 1 3.74 2.2 3.9 7.7 9.7 11.7 8.5 7.3 18.2 実施例 29図 12(a),(b) 4.45 1.11 3.74 2.2 3.9 7.7 9.7 11.7 8.5 ——一1
実施例 30図 12(a),(b) 6.00 1.49 5.91 2.6 4.7 8.4 10.2 12.0 8.3 6.0 18.3 実施例 31図 12(a)ズ b) 6.00 1.49 5.91 2.6 4.7 8.4 10.2 12.0 8.3
比較例 3 図 12(a)ズ b) 6.50 1.60 6.68 2.8 5.1 9.1 11.0 12.9 8.2 5.7 17.6 比較例 4 図 12(a),(b) 6.50 1.60 6.68 2.8 5.1 9.1 11.0 12.9 8.2 一―
実施例 32図 12(c),(d) 4.45 0.10 1.02 1.9 3.1 7.5 10.0 13.0 8.6 6.9 23.7 実施例 33図 12(c),(d) 4.45 0.10 1.02 1.9 3.1 7.5 10.0 13.0 8.6 一一一
実施例 34図 12(c),(d) 6.00 0.29 1.18 2.1 3.3 7.5 9.8 12J 8.3 5.9 17.5 実施例 35図 12(c),(d) 6.00 0.29 1.18 2.1 3.3 7.5 9.8 12.7 8.3 一一一 比較例 5 図 12(c),(d) 6.50 0.34 1.26 2.4 4.0 8.2 10.4 13.2 8.1 5.2 16.1 比較例 6 図 12(c),(d) 6.50 0.34 1.26 2.4 4.0 8.2 10.4 13.2 8.1 ―
実施例 36図 12(e),( 2.39 0.37 1.30 1.7 3.0 6.6 9.0 11.5 8.6 8.4 18.5 実施例 37図 12(e),(f) 2.54 0.56 1.69 1.8 3.1 6.7 8.9 1 1.3 8.6 8.6 19.2 実施例 38図 12(e),(fD 2.54 0.56 1.69 1.8 3.1 6.7 8.9 11.3 8.6
実施例 39図 12(e),(f) 3.00 0.67 1.99 1.9 3.4 6.8 8.9 11.3 8.6 8.2 1 8.2 実施例 40図 12(e),(f) 4.19 0.72 2.15 2.0 3.4 6.8 8.8 11.1 8.6 7.9 17.2 実施例 41図 12(e),(f) 4.45 0.93 2.91 2.1 3.7 7.3 9.4 11.5 8.6 7.1 17.3 実施例 42図 12(e),( 4.45 0.93 2.91 2.1 3.7 7.3 9.4 11.5 8.6
実施例 43図 12(e),(fl 6.00 1.11 3.74 2.4 4.0 7.8 10.0 12.1 8.4 5.8 15.6 実施例 44図 12(e),( 6.00 1.1 1 3.74 2.4 4.0 7.8 10.0 12.1 8.4
比較例 7 図 12(e),(f) 6.50 1.16 3.98 2.5 4.5 8.2 10.6 12.8 8.2 5.3 15.8 比較例 8 図 12(e),(fD 6.50 1.16 3.98 2.5 4.5 8.2 10.6 12.8 8.2
2
*3 表 1〜3及び図 1 7に示した結果より明らかなように、 実施例に係るフィル タでは、 比較例に係るフィルタに比べてパティキュレートを一定の量捕集したと きの圧力損失を低くすることができるため、 再生までの期間をトータルで見たと きの圧力損失が低いものであることがわかる。 また、 圧力損失が低いため、 パテ ィキュレートを多量に捕捉することが可能であるといえる。
さらに、 図 1 5、 図 1 6に示すように、 比較例 2 8のフィルタに比べ、 実施例 2、 1 3に係るフィルタでは、 アッシュ重量に対して、 アッシュ層の長さが短く、 それによる圧力損失が小さいため、 逆洗浄等を必要とするまでの期間も長くなる。 また、 実施例に係るフィルタでは、 比較例に係るフィルタに比べて、 再生限界値 が大きいため、 再生までに多量のパティキュレートを捕集することができ、 再生 までの時間を延長することができる。
また、 図 1 8に示すように、 図 6 ( a ) 〜 (d ) に示した断面形状を有する フィルタでは、 (開口比率) が 2 . 3〜2 . 4付近において、 再生限界値が最 も大きい。 従って、 実施例 1〜4 4及び比較例 1 ~ 3 3で得られた結果を考慮す ると、 /3は 1 . 5 5〜 2 . 7 5が好ましく、 2 . 0〜2 . 5 4がより好ましい。 産業上の利用可能性
本発明のフィルタは、 初期の圧力損失を抑制することができ、 パティキュレー トが蓄積するに従って上昇する圧力損失の上昇率も低いため、 パティキュレート を規定量捕集したときの圧力損失が低くなり、 再生までの期間をトータルで見た ときの圧力損失が低いものである。 また、 実際に、 再生までの捕集量の最大値を 表す再生限界値も、 比較例に比べて大きくなつている。 従って、 再生まで、 パテ ィキュレートを多量に捕捉することが可能となり、 再生までの期間を延長するこ とができる。 また、 アッシュ重量に対して、 アッシュ層の長さが短く、 アッシュ 層に起因する圧力損失も小さいため、 逆洗浄等を必要とするまでの期間も長くな る。

Claims

請求の範囲
1. 多数の貫通孔が壁部を隔てて長手方向に並設されたハニカム構造を有 する柱状のフィルタであって、
前記貫通孔は、 長手方向に垂直な断面の面積が相対的に大きい大容積貫通孔 と、 前記断面の面積が相対的に小さい小容積貫通孔との実質的に同数である 2種 類の貫通孔からなり、
前記大容積貫通孔は、 前記フィルタの一端部で封止される一方、 前記小容積 貫通孔は、 前記フィルタの他端部で封止され、
長手方向に垂直な断面における前記一の大容積貫通孔が隣り合う大容積貫通 孔と共有する壁部の長さの合計 (a) と、 長手方向に垂直な断面における前記一 の大容積賞通孔が隣り合う前記小容積貫通孔と共有する壁部の長さの合計 (b) との比 (a/b) を とし、 前記大容積貫通孔の前記断面の面積 (A) と、 前記 小容積貫通孔の前記断面の面積 (B) の比 (AZB) を とした際、 前記 αと前 記 (3とが下記式 (1) の関係を有することを特徴とするフィルタ。
β≥ (20/9) α 2+ 1 (ただし、 0く 5、 1 < |3≤ 6 ) … (1)
2. 大容積貫通孔及び Ζ又は小容積貫通孔の長手方向に垂直な断面の形状 は、 多角形である請求の範囲 1に記載のフィルタ。
3. 大容積貫通孔及び Ζ又は小容積貫通孔の長手方向に垂直な断面の形状 は、 八角形及ぴ四角形である請求の範囲 1又は 2に記載のフィルタ。
4. 大容積貫通孔の断面の面積と小容積貫通孔の断面の面積の比 (J3) は、 1. 5 5〜2. 7 5である請求の範囲 1〜3のいずれか 1に記載のフィルタ。
5. 長手方向に垂直な断面における前記一の大容積貫通孔が隣り合う大容 積貫通孔と共有する壁部と、 前記一の大容積貫通孔が瞵り合う前記小容積貫通孔 と共有する壁部との交わる角の少なくとも 1つが鈍角である請求の範囲 1〜4の いずれか 1に記载のフイノレタ。
6 . 大容積貫通孔及び//又は小容積貫通孔の長手方向に垂直な断面の角部 の近傍が曲線により構成されている請求の範囲 1〜5のいずれか 1に記載のフィ ルタ。
7 . 隣り合う大容積貫通孔の長手方向に垂直な断面の重心間距離と、 隣り 合う小容積貫通孔の長手方向に垂直な断面の重心間距離とが等しい請求の範囲 1 〜 6のいずれか 1に記載のフィルタ。
8 . 多孔質セラミックブロックは、 複数の貫通孔が隔壁を隔てて長手方向 に並設された柱状の多孔質セラミック部材がシール材層を介して複数個結束され ることにより構成されている請求の範囲 1〜 7のいずれか 1に記載のフィルタ。
9 . アイソスタティック強度が 7 M P a以上である請求の範囲 1〜8のい ずれか 1に記載のフィルタ。
1 0 . A軸の圧縮強度が 1 8 M P a以上である請求の範囲 1〜9のいずれか 1に記載のフィルタ。
1 1 . 車両の排気ガス浄化装置に使用される請求の範囲 1〜1 0のいずれ か 1に記載のフィルタ。
1 2 . 多数の貫通孔が壁部を隔てて長手方向に並設された柱状の多孔質セラ ミックブロックを含んで構成されたフィルタであって、
前記貫通孔は、 長手方向に垂直な断面の面積が相対的に大きい大容積貫通孔 と、 前記断面の面積が相対的に小さい小容積貫通孔の少なくとも 2種類の貫通孔 からなり、 前記大容積貫通孔は、 前記フィルタの一端部で封止される一方、 前記 小容積貫通孔は、 前記フィルタの他端部で封止され、
長手方向に垂直な断面における前記一の大容積貫通孔が隣り合う大容積貫通 孔と共有する壁部の長さの合計 (a) と、 長手方向に垂直な断面における前記一 の大容積貫通孔が隣り合う前記小容積貫通孔と共有する壁部の長さの合計 ( b ) との比 ( a Z b ) を ο:とし、 前記大容積貫通孔の前記断面の面積 (A) と、 前記 小容積貫通孔の前記断面の面積 (B) の比 (A/B) を 0とした際、 前記 αと前 記 βとが下記式 (1) の関係を有することを特徴とするフィルタ。
β≥ (20/9) α 2+ 1 (ただし、 0< α≤ 1. 5、 1 < j3≤ 6 ) … (1)
PCT/JP2003/011776 2002-09-13 2003-09-16 フィルタ WO2004024294A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/490,206 US7326270B2 (en) 2002-09-13 2003-09-16 Filter
EP03795443A EP1495791B1 (en) 2002-09-13 2003-09-16 Filter
JP2004571941A JPWO2004024294A1 (ja) 2002-09-13 2003-09-16 フィルタ
US11/760,833 US7857885B2 (en) 2002-09-13 2007-06-11 Filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-267819 2002-09-13
JP2002267819 2002-09-13
JP2003-57631 2003-03-04
JP2003057631 2003-03-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/760,833 Continuation US7857885B2 (en) 2002-09-13 2007-06-11 Filter

Publications (1)

Publication Number Publication Date
WO2004024294A1 true WO2004024294A1 (ja) 2004-03-25

Family

ID=31996168

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/011776 WO2004024294A1 (ja) 2002-09-13 2003-09-16 フィルタ
PCT/JP2003/011769 WO2004024293A1 (ja) 2002-09-13 2003-09-16 ハニカム構造体

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011769 WO2004024293A1 (ja) 2002-09-13 2003-09-16 ハニカム構造体

Country Status (6)

Country Link
US (3) US7314496B2 (ja)
EP (2) EP1502640B1 (ja)
JP (3) JPWO2004024294A1 (ja)
CN (2) CN1322909C (ja)
DE (1) DE20321503U1 (ja)
WO (2) WO2004024294A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261664A (ja) * 2003-02-28 2004-09-24 Ngk Insulators Ltd ハニカム構造体及びハニカム構造体押出し成形用口金
WO2005121513A1 (de) * 2004-06-08 2005-12-22 Robert Bosch Gmbh Filtereinrichtung für ein abgassystem einer brennkraftmaschine, sowie verfahren zum herstellen einer solchen filtereinrichtung
JP2007519505A (ja) * 2003-09-25 2007-07-19 コーニング インコーポレイテッド 構造強度が改善された非対称ハニカム・ウォールフロー・フィルタ
KR100845205B1 (ko) 2006-03-28 2008-07-10 니뽄 가이시 가부시키가이샤 허니컴 구조체
EP2108433A1 (en) 2008-03-26 2009-10-14 NGK Insulators, Ltd. Manufacturing method of plugged honeycomb structure
JPWO2008120499A1 (ja) * 2007-03-29 2010-07-15 日本碍子株式会社 ハニカムセグメント
JP2010221080A (ja) * 2009-03-19 2010-10-07 Ngk Insulators Ltd ハニカム構造体
JP2011506093A (ja) * 2007-12-20 2011-03-03 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン 非対称六角形の流路を有するガス濾過構造
WO2011042976A1 (ja) * 2009-10-08 2011-04-14 イビデン株式会社 排ガス浄化装置及び排ガス浄化方法
DE102011004343A1 (de) 2010-02-19 2011-08-25 DENSO CORPORATION, Aichi-pref. Abgasreinigungsfilter
US8039415B2 (en) 2006-10-05 2011-10-18 Ibiden Co., Ltd. Honeycomb structure
JP2011224567A (ja) * 2002-09-13 2011-11-10 Ibiden Co Ltd フィルタ
WO2013187442A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2013187444A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
EP2698191A1 (en) 2012-08-13 2014-02-19 NGK Insulators, Ltd. Plugged honeycomb structure
EP2698190A1 (en) 2012-08-13 2014-02-19 NGK Insulators, Ltd. Plugged Honeycomb Structure
WO2014054706A1 (ja) 2012-10-04 2014-04-10 イビデン株式会社 ハニカムフィルタ
JP2014188400A (ja) * 2013-03-26 2014-10-06 Ngk Insulators Ltd ハニカムフィルタ
EP2835168A1 (en) 2013-07-31 2015-02-11 Ibiden Co., Ltd. Honeycomb filter
EP2835169A1 (en) 2013-07-31 2015-02-11 Ibiden Co., Ltd. Honeycomb filter
EP2835167A1 (en) 2013-07-31 2015-02-11 Ibiden Co., Ltd. Honeycomb filter
JP2015029936A (ja) * 2013-07-31 2015-02-16 イビデン株式会社 ハニカムフィルタ
JP2015029940A (ja) * 2013-07-31 2015-02-16 イビデン株式会社 ハニカムフィルタ
EP2851114A1 (en) 2013-07-31 2015-03-25 Ibiden Co., Ltd. Honeycomb filter
WO2018043350A1 (ja) * 2016-09-05 2018-03-08 株式会社デンソー 排ガス浄化フィルタ
US10300424B2 (en) 2014-07-23 2019-05-28 Ibiden Co., Ltd. Honeycomb filter
US10335727B2 (en) 2014-07-23 2019-07-02 Ibiden Co., Ltd. Honeycomb filter

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229843B2 (ja) * 2002-03-22 2009-02-25 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
JP3719232B2 (ja) * 2002-06-18 2005-11-24 トヨタ自動車株式会社 内燃機関のパティキュレートフィルタ
EP1493479B1 (en) * 2002-09-13 2013-03-20 Ibiden Co., Ltd. Honeycomb structure
EP1541817B1 (en) 2003-06-05 2006-12-27 Ibiden Co., Ltd. Honeycomb structure body
EP1520614B1 (en) * 2003-06-10 2007-08-08 Ibiden Co., Ltd. Honeycomb structure body
WO2004113252A1 (ja) * 2003-06-23 2004-12-29 Ibiden Co., Ltd. ハニカム構造体
US8062603B2 (en) 2003-06-23 2011-11-22 Ibiden Co., Ltd. Honeycomb structural body
KR100692356B1 (ko) * 2003-07-15 2007-03-12 이비덴 가부시키가이샤 벌집형 구조체
JP4932256B2 (ja) * 2003-09-12 2012-05-16 イビデン株式会社 セラミック焼結体およびセラミックフィルタ
US7601194B2 (en) * 2003-09-25 2009-10-13 Corning Incorporated Asymmetric honeycomb wall-flow filter having improved structural strength
PL1676620T5 (pl) * 2003-10-20 2012-10-31 Ibiden Co Ltd Struktura plastra miodu
JP4439236B2 (ja) * 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
JP4849891B2 (ja) * 2003-11-05 2012-01-11 イビデン株式会社 ハニカム構造体の製造方法
JPWO2005044422A1 (ja) 2003-11-07 2007-11-29 イビデン株式会社 ハニカム構造体
JP5281733B2 (ja) * 2003-11-12 2013-09-04 日本碍子株式会社 ハニカム構造体
FR2864576B1 (fr) * 2003-12-24 2006-03-03 Saint Gobain Ct Recherches Bloc pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
KR100824243B1 (ko) * 2003-12-25 2008-04-24 이비덴 가부시키가이샤 배기 가스 정화 장치 및 배기 가스 정화 장치의 재생 방법
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
CN100577995C (zh) * 2004-02-23 2010-01-06 揖斐电株式会社 蜂窝结构体及废气净化装置
JP4666390B2 (ja) * 2004-04-05 2011-04-06 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法及び排気ガス浄化装置
KR100796471B1 (ko) * 2004-04-30 2008-01-21 니뽄 가이시 가부시키가이샤 허니컴 구조체 및 그 제조 방법
EP1626037B1 (en) * 2004-05-06 2008-06-04 Ibiden Co., Ltd. Honeycomb structure and method for producing the same
WO2005110578A1 (ja) * 2004-05-18 2005-11-24 Ibiden Co., Ltd. ハニカム構造体及び排気ガス浄化装置
EP1753520B1 (de) * 2004-05-25 2009-01-14 Robert Bosch Gmbh Reinigungseinsatz für abgasreinigungsanlagen, insbesondere für partikelfilter
DE102004028764A1 (de) 2004-06-16 2006-01-12 Henkel Kgaa Strahlungshärtbares elektrisch leitfähiges Beschichtungsgemisch
EP1662219B1 (en) 2004-08-04 2008-09-10 Ibiden Co., Ltd. Firing kiln and process for producing porous ceramic member therewith
WO2006013652A1 (ja) * 2004-08-04 2006-02-09 Ibiden Co., Ltd. 連続焼成炉及びこれを用いた多孔質セラミック部材の製造方法
WO2006016430A1 (ja) 2004-08-10 2006-02-16 Ibiden Co., Ltd. 焼成炉及び該焼成炉を用いたセラミック部材の製造方法
FR2874647B1 (fr) * 2004-08-25 2009-04-10 Saint Gobain Ct Recherches Bloc filtrant a ailettes pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
ATE456397T1 (de) 2004-09-30 2010-02-15 Ibiden Co Ltd Wabenstruktur
JP4870558B2 (ja) 2004-12-27 2012-02-08 イビデン株式会社 ハニカム構造体及びシール材層
CN100435956C (zh) * 2005-02-01 2008-11-26 揖斐电株式会社 蜂窝结构体
CN101146742B (zh) * 2005-03-30 2013-05-01 揖斐电株式会社 含碳化硅颗粒、制造碳化硅质烧结体的方法、碳化硅质烧结体以及过滤器
EP1871525A2 (fr) * 2005-04-08 2008-01-02 Saint-Gobain Centre de Recherches et d'Etudes Européen Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee
FR2886868B1 (fr) * 2005-06-14 2007-08-31 Saint Gobain Ct Recherches Structure et filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee
WO2006126278A1 (ja) * 2005-05-27 2006-11-30 Ibiden Co., Ltd. ハニカム構造体
FR2886869B1 (fr) * 2005-06-14 2007-08-31 Saint Gobain Ct Recherches Structure et filtre catalytique pour la filtration d'un gaz comprenant un ciment hydrophobe ou oleophobe
JPWO2006137157A1 (ja) 2005-06-24 2009-01-08 イビデン株式会社 ハニカム構造体
WO2006137151A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体、及び、排気ガス浄化装置
FR2889184B1 (fr) * 2005-07-29 2007-10-19 Saint Gobain Ct Recherches Procede de preparation d'une structure poreuse utilisant des agents porogenes a base de silice
CN100386150C (zh) * 2005-08-17 2008-05-07 云南菲尔特环保科技有限公司 一种陶瓷催化剂载体、微粒捕集器和微粒捕集装置及其制备方法
JP5000873B2 (ja) * 2005-09-21 2012-08-15 日本碍子株式会社 多孔質体の製造方法
CN100529341C (zh) * 2005-10-12 2009-08-19 揖斐电株式会社 蜂窝单元及蜂窝结构体
JP5469305B2 (ja) * 2005-12-14 2014-04-16 日本碍子株式会社 接合材とその製造方法、及びそれを用いたハニカム構造体
US7517379B2 (en) * 2005-12-16 2009-04-14 Corning Incorporated Honeycomb filters with reduced number of unplugged partial peripheral cells and methods of manufacturing same
WO2007096986A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
WO2007116665A1 (ja) 2006-03-30 2007-10-18 Ngk Insulators, Ltd. 接合体、ハニカムセグメント接合体、及びそれを用いたハニカム構造体
DE202006007876U1 (de) * 2006-05-15 2007-09-20 Bauer Technologies Gmbh Optimierung von zellulären Strukturen, insbesondere für die Abgasreinigung von Verbrennungsaggregaten und andere Anwendungsbereiche
US20100216657A1 (en) * 2006-05-16 2010-08-26 Arcxis Biotechnologies, Inc. Pcr-free sample preparation and detection systems for high speed biologic analysis and identification
DE102006026161A1 (de) 2006-05-23 2007-11-29 Robert Bosch Gmbh Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine
DE102006024075A1 (de) 2006-05-23 2007-11-29 Robert Bosch Gmbh Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine
FR2902424B1 (fr) * 2006-06-19 2008-10-17 Saint Gobain Ct Recherches Ciment de jointoiement a spheres creuses pour filtre a particules.
FR2902423B1 (fr) * 2006-06-19 2008-09-12 Saint Gobain Ct Recherches Ciment de jointoiement pour filtre a particules.
FR2906159B1 (fr) * 2006-09-27 2008-10-31 Saint Gobain Ct Recherches Element monolithique a coins renforces pour la filtration de particules
JP5382347B2 (ja) * 2006-10-11 2014-01-08 フルイディウム コーポレーション 使い捨て可能なマイクロ精製カード、方法、およびそのシステム
WO2008059576A1 (fr) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Corps structural en nid d'abeilles et procédé de fabrication de celui-ci
EP1930061B1 (en) * 2006-12-07 2018-10-03 NGK Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same
EP1939261B1 (en) * 2006-12-25 2010-03-31 Ngk Insulators, Ltd. Joined body and method for manufacturing the same
WO2008096503A1 (ja) * 2007-02-02 2008-08-14 Ngk Insulators, Ltd. ハニカム構造体
JP5498705B2 (ja) * 2007-02-02 2014-05-21 日本碍子株式会社 ハニカム構造体
FR2912069B1 (fr) * 2007-02-05 2011-04-01 Saint Gobain Ct Recherches Structure de filtration d'un gaz a paroi ondulee
WO2008099454A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
EP2130574B1 (en) * 2007-03-28 2017-11-08 NGK Insulators, Ltd. Honeycomb filter
WO2008126329A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126335A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2008129671A1 (ja) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
JP5714897B2 (ja) * 2007-05-04 2015-05-07 ダウ グローバル テクノロジーズ エルエルシー 改良されたハニカムフィルタ
EP2065575B1 (en) * 2007-11-29 2012-08-15 Corning Incorporated Wall-flow honeycomb filter having high-storage capacity and low backpressure
KR101621983B1 (ko) * 2008-02-05 2016-05-31 바스프 코포레이션 미립자 트랩을 갖는 가솔린 엔진 배출물 처리 시스템
WO2009101682A1 (ja) * 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP5328174B2 (ja) * 2008-02-20 2013-10-30 日本碍子株式会社 目封止ハニカム構造体
US8043394B2 (en) * 2008-03-21 2011-10-25 GM Global Technology Operations LLC Particulate matter filter assembly with a flow device
JP2009243274A (ja) * 2008-03-28 2009-10-22 Mazda Motor Corp パティキュレートフィルタ
JP5456268B2 (ja) * 2008-03-28 2014-03-26 日本碍子株式会社 ハニカム構造体
US8007557B2 (en) * 2008-11-26 2011-08-30 Corning Incorporated High-strength low-microcracked ceramic honeycombs and methods therefor
US7855168B2 (en) * 2008-12-19 2010-12-21 Schlumberger Technology Corporation Method and composition for removing filter cake
US20110262311A1 (en) 2008-12-23 2011-10-27 Saint-Gobain Centre De Rech. Et D'etudes Europeen Filtration structure having inlet and outlet surfaces with a different plugging material
EP2383028B1 (en) 2008-12-25 2015-07-01 Kyocera Corporation Honeycomb structure, and filter and exhaust gas treatment device using same
JP2010227755A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd セラミックハニカム構造体
JP5231305B2 (ja) * 2009-03-27 2013-07-10 日本碍子株式会社 ハニカム構造体及び接合型ハニカム構造体
WO2011029481A1 (en) * 2009-09-14 2011-03-17 Aft Auto Filter Technology Gmbh A ceramic element and a method of manufacturing the ceramic element
GB2475097A (en) * 2009-11-06 2011-05-11 Total Vehicle Technology Ltd Analysing an exhaust gas using an inorganic filter
US8636821B2 (en) * 2010-02-22 2014-01-28 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
WO2011114511A1 (ja) * 2010-03-19 2011-09-22 イビデン株式会社 ハニカム構造体
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
US8444730B2 (en) * 2010-09-27 2013-05-21 Ford Global Technologies, Llc Even-loading DPF and regeneration thereof
JP5916714B2 (ja) * 2011-03-31 2016-05-11 日本碍子株式会社 目封止ハニカム構造体及び排ガス浄化装置
CN103458989B (zh) 2011-03-31 2015-12-09 现代自动车株式会社 封孔蜂窝结构体
KR101588785B1 (ko) * 2011-03-31 2016-01-27 현대자동차 주식회사 밀봉된 하니컴 구조체
JP2012254442A (ja) * 2011-05-17 2012-12-27 Sumitomo Chemical Co Ltd ハニカムフィルタの再生方法
JP2012254439A (ja) * 2011-05-17 2012-12-27 Sumitomo Chemical Co Ltd ハニカムフィルタ
JP2012254443A (ja) * 2011-05-17 2012-12-27 Sumitomo Chemical Co Ltd ハニカムフィルタの再生方法
US8865084B2 (en) 2011-11-30 2014-10-21 Corning Incorporated Pass-through catalytic substrate including porous ceramic beveled corner portions and methods
US9724634B2 (en) 2012-03-30 2017-08-08 Ibiden Co., Ltd. Honeycomb filter and method for producing honeycomb filter
JP6170492B2 (ja) * 2012-06-15 2017-07-26 イビデン株式会社 ハニカムフィルタ
JP6068067B2 (ja) * 2012-09-06 2017-01-25 日本碍子株式会社 目封止ハニカム構造体
CN105073361A (zh) * 2012-12-27 2015-11-18 住友化学株式会社 蜂窝结构体的制造方法
EP2948246B1 (en) 2013-01-25 2020-06-17 YARA International ASA Use of a honeycomb monolith structure with cells having elongated cross-section in selective catalytic reduction of nitrogen oxides
JP6140509B2 (ja) * 2013-04-04 2017-05-31 日本碍子株式会社 ウォールフロー型排ガス浄化フィルタ
CN104147872A (zh) * 2014-06-04 2014-11-19 苏州博讯仪器有限公司 一种风质过滤器
NO20140934A1 (no) 2014-07-23 2016-01-25 Yara Int Asa Bikake-monolittstruktur
KR101814459B1 (ko) * 2016-08-16 2018-01-04 희성촉매 주식회사 알킬 방향족 화합물 제조용 고형 촉매 캐리어로서 필터 구조체
MX2019009034A (es) 2017-01-31 2019-11-21 Corning Inc Cuerpos de panal de abeja con patrón conectado, filtros de partículas y troqueles de extrusión de los mismos.
DE102017103341A1 (de) * 2017-02-17 2018-08-23 Umicore Ag & Co. Kg Russpartikelfilter mit speicherzellen für katalysator
CN107490482A (zh) * 2017-08-18 2017-12-19 湖南天雁机械有限责任公司 涡轮增压器耐久考核试验积炭收集器及收集积炭的方法
CN108286466A (zh) * 2017-12-27 2018-07-17 山东国瓷功能材料股份有限公司 一种高抗热震性能的蜂窝陶瓷过滤器
WO2019187126A1 (ja) * 2018-03-30 2019-10-03 日本碍子株式会社 目封止ハニカムセグメント、及び目封止ハニカム構造体
WO2020101913A1 (en) 2018-11-16 2020-05-22 Corning Incorporated Plugged honeycomb bodies, extrusion dies and method of manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276071A (en) * 1979-12-03 1981-06-30 General Motors Corporation Ceramic filters for diesel exhaust particulates
US4643749A (en) * 1984-06-12 1987-02-17 Nippondenso Co., Ltd. Ceramic filters
EP1142619A1 (en) * 1999-09-29 2001-10-10 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP2001334114A (ja) * 2000-05-29 2001-12-04 Ngk Insulators Ltd フィルターエレメントおよびその製造方法

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US97370A (en) * 1869-11-30 Improved support tor elliptic springs
US180117A (en) * 1876-07-25 Improvement in drill-chucks
US167755A (en) * 1875-09-14 Improvement in processes and apparatus for preventing the accumulation of tar
US41730A (en) * 1864-02-23 Improved mosquito-canopy
JPS6248764B2 (ja) * 1979-01-29 1987-10-15 Origobaaken Ai Harumusutatsudo Ab
CA1145270A (en) * 1979-12-03 1983-04-26 Morris Berg Ceramic filters for diesel exhaust particulates and methods of making
GB2064360B (en) 1979-12-03 1984-05-16 Gen Motors Corp Ceramic filters for diesel exhaust particulates and methods for making such filters
US4335023A (en) * 1980-01-24 1982-06-15 Engelhard Corporation Monolithic catalyst member and support therefor
JPS5881420A (ja) * 1981-11-10 1983-05-16 Nippon Denso Co Ltd セラミツクフイルタ
JPS5892409A (ja) 1981-11-27 1983-06-01 Asahi Glass Co Ltd 選択性透過膜
JPS58124418A (ja) * 1982-01-20 1983-07-25 松下電器産業株式会社 便座暖房装置
US4416676A (en) 1982-02-22 1983-11-22 Corning Glass Works Honeycomb filter and method of making it
US4417908A (en) 1982-02-22 1983-11-29 Corning Glass Works Honeycomb filter and method of making it
US4420316A (en) * 1982-02-22 1983-12-13 Corning Glass Works Filter apparatus and method of making it
JPS58150015A (ja) 1982-03-01 1983-09-06 Mazda Motor Corp デイ−ゼルエンジンの排気浄化装置
JPS62225249A (ja) * 1985-12-27 1987-10-03 Ngk Insulators Ltd コ−ジエライトハニカム構造触媒担体及びその製造方法
JPS63185425A (ja) 1987-01-28 1988-08-01 Ngk Insulators Ltd 排ガス浄化用セラミツクハニカムフイルタ
JPH0634923B2 (ja) * 1987-03-14 1994-05-11 日本碍子株式会社 セラミツクハニカム構造体
JPH0751008B2 (ja) 1989-07-15 1995-06-05 ヤンマー農機株式会社 乗用田植機における動力伝達構造
JP2619291B2 (ja) 1989-09-18 1997-06-11 キヤノン株式会社 自動給紙装置
JPH03121213A (ja) * 1989-09-30 1991-05-23 Ibiden Co Ltd 排気ガス浄化装置のハニカムフィルター
JPH03102016U (ja) * 1990-02-02 1991-10-24
JPH04164111A (ja) * 1990-10-29 1992-06-09 Toyota Motor Corp パティキュレートフィルタ
DE4200995C2 (de) * 1991-01-21 2002-02-14 Seibu Giken Fukuoka Kk Verfahren zur Herstellung eines wabenförmigen Gasadsorptionselements oder eines wabenförmigen Katalysatorträgers
JP3130567B2 (ja) 1991-07-15 2001-01-31 株式会社東芝 ゲッタ容器支持装置の製造方法
JP3130587B2 (ja) * 1991-09-17 2001-01-31 イビデン株式会社 排気ガス浄化装置のハニカムフィルタ
JPH0647620A (ja) 1991-10-11 1994-02-22 Isuzu Motors Ltd 歯車類の加工方法
JPH0623215A (ja) * 1992-07-08 1994-02-01 Isuzu Motors Ltd パティキュレートトラップフィルタ
JP2590943Y2 (ja) * 1992-10-22 1999-02-24 イビデン株式会社 排気ガス浄化装置
JPH07124428A (ja) * 1993-11-08 1995-05-16 Noritake Co Ltd モノリス型セラミックフィルター
JP2726616B2 (ja) 1993-12-15 1998-03-11 日本碍子株式会社 多孔質セラミックハニカムフィルタ
US5914187A (en) * 1996-01-12 1999-06-22 Ibiden Co., Ltd. Ceramic structural body
US5930994A (en) * 1996-07-02 1999-08-03 Ibiden Co., Ltd. Reverse cleaning regeneration type exhaust emission control device and method of regenerating the same
JP2000167329A (ja) * 1998-09-30 2000-06-20 Ibiden Co Ltd 排気ガス浄化装置の再生システム
JP2002530175A (ja) * 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
FR2789327B1 (fr) * 1999-02-09 2001-04-20 Ecia Equip Composants Ind Auto Structure de filtration poreuse et dispositif de depollution la comportant
JP3967034B2 (ja) * 1999-03-30 2007-08-29 イビデン株式会社 セラミックフィルタユニットの製造方法
JP4094771B2 (ja) * 1999-06-08 2008-06-04 日本碍子株式会社 セラミックフィルタ用基材とその製造方法
JP4642955B2 (ja) 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
EP1125704B2 (en) 1999-08-30 2011-10-05 NGK Insulators, Ltd. Corrugated wall honeycomb structure and production method thereof
JP4051163B2 (ja) * 1999-09-29 2008-02-20 イビデン株式会社 セラミックフィルタ集合体
JP3803009B2 (ja) 1999-09-29 2006-08-02 イビデン株式会社 セラミックフィルタ集合体
KR100641549B1 (ko) * 1999-11-16 2006-10-31 이비덴 가부시키가이샤 촉매 및 그의 제조방법
JP4455708B2 (ja) * 2000-01-17 2010-04-21 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4049501B2 (ja) 2000-01-24 2008-02-20 日本碍子株式会社 セラミックス構造体
JP2001329830A (ja) * 2000-03-15 2001-11-30 Ibiden Co Ltd 排気ガス浄化フィルタの再生装置及びフィルタ再生方法、排気ガス浄化フィルタの再生プログラム及びそのプログラムを格納する記録媒体
DE10037403A1 (de) 2000-08-01 2002-02-14 Daimler Chrysler Ag Partikelfilter
WO2002011884A1 (fr) * 2000-08-03 2002-02-14 Ngk Insulators, Ltd. Structure céramique alvéolaire
JP2002070531A (ja) * 2000-08-24 2002-03-08 Ibiden Co Ltd 排気ガス浄化装置、排気ガス浄化装置のケーシング構造
ATE330111T1 (de) * 2001-03-22 2006-07-15 Ibiden Co Ltd Abgasreinigungsvorrichtung
JP2002320807A (ja) * 2001-04-27 2002-11-05 Mitsui Eng & Shipbuild Co Ltd ハニカムフィルタ及びその製造方法
EP1403231B1 (en) * 2001-05-31 2012-11-21 Ibiden Co., Ltd. Method of producing a porous ceramic sintered body
JP2003001029A (ja) 2001-06-18 2003-01-07 Hitachi Metals Ltd 多孔質セラミックハニカムフィルタ
JP2003040327A (ja) 2001-08-01 2003-02-13 Sanden Corp 梱包材及びこれを用いた梱包構造
DE60216774T2 (de) * 2001-08-08 2007-11-15 Toyota Jidosha Kabushiki Kaisha, Toyota Abgasreinigungsvorrichtung
JP3826265B2 (ja) 2001-08-08 2006-09-27 トヨタ自動車株式会社 排気浄化装置
US20030041730A1 (en) * 2001-08-30 2003-03-06 Beall Douglas M. Honeycomb with varying channel size
JP3893049B2 (ja) * 2001-11-20 2007-03-14 日本碍子株式会社 ハニカム構造体及びその製造方法
WO2003067041A1 (fr) * 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nid d'abeille pour la decontamination des gaz d'echappement, matiere adhesive et de revetement, et procede d'obtention dudit filtre
CN101126335B (zh) * 2002-02-05 2011-10-26 揖斐电株式会社 废气净化用蜂巢式过滤器
US7427308B2 (en) * 2002-03-04 2008-09-23 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus
US7393376B2 (en) * 2002-03-15 2008-07-01 Ibiden Co., Ltd. Ceramic filter for exhaust gas emission control
JP4229843B2 (ja) * 2002-03-22 2009-02-25 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
JP2004000896A (ja) 2002-03-25 2004-01-08 Ngk Insulators Ltd ハニカムフィルター
EP1491249A4 (en) * 2002-03-25 2005-04-13 Ibiden Co Ltd FILTER FOR DECONTAMINATION OF EXHAUST GASES
EP1829596A1 (en) * 2002-03-29 2007-09-05 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
JPWO2003084640A1 (ja) * 2002-04-09 2005-08-11 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
CN100371562C (zh) * 2002-04-10 2008-02-27 揖斐电株式会社 废气净化用蜂窝状过滤器
EP1500799B1 (en) * 2002-04-11 2007-10-24 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
FR2840545B1 (fr) 2002-06-07 2008-07-04 Saint Gobain Ct Recherches Corps filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
EP1493479B1 (en) 2002-09-13 2013-03-20 Ibiden Co., Ltd. Honeycomb structure
US7314496B2 (en) 2002-09-13 2008-01-01 Ibiden Co., Ltd. Honeycomb structure
WO2004031101A1 (ja) * 2002-10-07 2004-04-15 Ibiden Co., Ltd. ハニカム構造体
US7387657B2 (en) * 2002-10-07 2008-06-17 Ibiden Co., Ltd. Honeycomb structural body
JP4369141B2 (ja) * 2003-02-18 2009-11-18 日本碍子株式会社 ハニカムフィルタ及び排ガス浄化システム
EP1598102B1 (en) * 2003-02-28 2010-09-15 Ibiden Co., Ltd. Ceramic honeycomb structure
CN100386505C (zh) * 2003-05-06 2008-05-07 揖斐电株式会社 蜂巢式结构体
EP1541817B1 (en) * 2003-06-05 2006-12-27 Ibiden Co., Ltd. Honeycomb structure body
EP1520614B1 (en) * 2003-06-10 2007-08-08 Ibiden Co., Ltd. Honeycomb structure body
US8062603B2 (en) * 2003-06-23 2011-11-22 Ibiden Co., Ltd. Honeycomb structural body
WO2004113252A1 (ja) * 2003-06-23 2004-12-29 Ibiden Co., Ltd. ハニカム構造体
KR100692356B1 (ko) * 2003-07-15 2007-03-12 이비덴 가부시키가이샤 벌집형 구조체
JP4439236B2 (ja) * 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
JP4849891B2 (ja) * 2003-11-05 2012-01-11 イビデン株式会社 ハニカム構造体の製造方法
WO2005047210A1 (ja) * 2003-11-12 2005-05-26 Ibiden Co., Ltd. セラミック構造体、セラミック構造体の製造装置、及び、セラミック構造体の製造方法
KR100824243B1 (ko) * 2003-12-25 2008-04-24 이비덴 가부시키가이샤 배기 가스 정화 장치 및 배기 가스 정화 장치의 재생 방법
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
CN100577995C (zh) 2004-02-23 2010-01-06 揖斐电株式会社 蜂窝结构体及废气净化装置
JP4666390B2 (ja) 2004-04-05 2011-04-06 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法及び排気ガス浄化装置
EP1626037B1 (en) * 2004-05-06 2008-06-04 Ibiden Co., Ltd. Honeycomb structure and method for producing the same
WO2005110578A1 (ja) 2004-05-18 2005-11-24 Ibiden Co., Ltd. ハニカム構造体及び排気ガス浄化装置
WO2006003736A1 (ja) 2004-07-01 2006-01-12 Ibiden Co., Ltd. セラミック焼成用治具及び多孔質セラミック体の製造方法
EP1662219B1 (en) 2004-08-04 2008-09-10 Ibiden Co., Ltd. Firing kiln and process for producing porous ceramic member therewith
WO2006013652A1 (ja) 2004-08-04 2006-02-09 Ibiden Co., Ltd. 連続焼成炉及びこれを用いた多孔質セラミック部材の製造方法
WO2006016430A1 (ja) * 2004-08-10 2006-02-16 Ibiden Co., Ltd. 焼成炉及び該焼成炉を用いたセラミック部材の製造方法
WO2006126278A1 (ja) * 2005-05-27 2006-11-30 Ibiden Co., Ltd. ハニカム構造体
KR101046899B1 (ko) 2006-10-05 2011-07-06 이비덴 가부시키가이샤 허니컴 구조체
WO2008129671A1 (ja) 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276071A (en) * 1979-12-03 1981-06-30 General Motors Corporation Ceramic filters for diesel exhaust particulates
US4643749A (en) * 1984-06-12 1987-02-17 Nippondenso Co., Ltd. Ceramic filters
EP1142619A1 (en) * 1999-09-29 2001-10-10 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP2001334114A (ja) * 2000-05-29 2001-12-04 Ngk Insulators Ltd フィルターエレメントおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1495791A4 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224567A (ja) * 2002-09-13 2011-11-10 Ibiden Co Ltd フィルタ
JP2004261664A (ja) * 2003-02-28 2004-09-24 Ngk Insulators Ltd ハニカム構造体及びハニカム構造体押出し成形用口金
JP2007519505A (ja) * 2003-09-25 2007-07-19 コーニング インコーポレイテッド 構造強度が改善された非対称ハニカム・ウォールフロー・フィルタ
WO2005121513A1 (de) * 2004-06-08 2005-12-22 Robert Bosch Gmbh Filtereinrichtung für ein abgassystem einer brennkraftmaschine, sowie verfahren zum herstellen einer solchen filtereinrichtung
KR100845205B1 (ko) 2006-03-28 2008-07-10 니뽄 가이시 가부시키가이샤 허니컴 구조체
US7473456B2 (en) 2006-03-28 2009-01-06 Ngk Insulators, Ltd. Honeycomb structure
US8039415B2 (en) 2006-10-05 2011-10-18 Ibiden Co., Ltd. Honeycomb structure
JPWO2008120499A1 (ja) * 2007-03-29 2010-07-15 日本碍子株式会社 ハニカムセグメント
JP2011506093A (ja) * 2007-12-20 2011-03-03 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン 非対称六角形の流路を有するガス濾過構造
EP2108433A1 (en) 2008-03-26 2009-10-14 NGK Insulators, Ltd. Manufacturing method of plugged honeycomb structure
JP2010221080A (ja) * 2009-03-19 2010-10-07 Ngk Insulators Ltd ハニカム構造体
WO2011042976A1 (ja) * 2009-10-08 2011-04-14 イビデン株式会社 排ガス浄化装置及び排ガス浄化方法
US8057766B2 (en) 2009-10-08 2011-11-15 Ibiden Co., Ltd. Exhaust gas purifying apparatus and method for purifying exhaust gas
DE102011004343A1 (de) 2010-02-19 2011-08-25 DENSO CORPORATION, Aichi-pref. Abgasreinigungsfilter
US9975076B2 (en) 2012-06-15 2018-05-22 Ibiden Co., Ltd. Honeycomb filter
WO2013187442A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2013187444A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
US9861923B2 (en) 2012-06-15 2018-01-09 Ibiden Co., Ltd. Honeycomb filter
US9168479B2 (en) 2012-08-13 2015-10-27 Ngk Insulators, Ltd. Plugged honeycomb structure
EP2698190A1 (en) 2012-08-13 2014-02-19 NGK Insulators, Ltd. Plugged Honeycomb Structure
EP2698191A1 (en) 2012-08-13 2014-02-19 NGK Insulators, Ltd. Plugged honeycomb structure
US9238190B2 (en) 2012-08-13 2016-01-19 Ngk Insulators, Ltd. Plugged honeycomb structure
WO2014054706A1 (ja) 2012-10-04 2014-04-10 イビデン株式会社 ハニカムフィルタ
US9919255B2 (en) 2012-10-04 2018-03-20 Ibiden Co., Ltd. Honeycomb filter
JP2014188400A (ja) * 2013-03-26 2014-10-06 Ngk Insulators Ltd ハニカムフィルタ
EP2835167A1 (en) 2013-07-31 2015-02-11 Ibiden Co., Ltd. Honeycomb filter
US9702283B2 (en) 2013-07-31 2017-07-11 Ibiden Co., Ltd. Honeycomb filter
EP2837419A1 (en) 2013-07-31 2015-02-18 Ibiden Co., Ltd. Honeycomb filter
EP2851114A1 (en) 2013-07-31 2015-03-25 Ibiden Co., Ltd. Honeycomb filter
EP2862616A2 (en) 2013-07-31 2015-04-22 Ibiden Co., Ltd. Honeycomb filter
JP2015029936A (ja) * 2013-07-31 2015-02-16 イビデン株式会社 ハニカムフィルタ
JP2015029937A (ja) * 2013-07-31 2015-02-16 イビデン株式会社 ハニカムフィルタ
US9394814B2 (en) 2013-07-31 2016-07-19 Ibiden Co., Ltd. Honeycomb filter
US9550175B2 (en) 2013-07-31 2017-01-24 Ibiden Co., Ltd. Honeycomb filter
US9650928B2 (en) 2013-07-31 2017-05-16 Ibiden Co., Ltd. Honeycomb filter
US9650929B2 (en) 2013-07-31 2017-05-16 Ibiden Co., Ltd. Honeycomb filter
JP2015029940A (ja) * 2013-07-31 2015-02-16 イビデン株式会社 ハニカムフィルタ
US9707516B2 (en) 2013-07-31 2017-07-18 Ibiden Co., Ltd. Honeycomb filter
JP2015029941A (ja) * 2013-07-31 2015-02-16 イビデン株式会社 ハニカムフィルタ
EP2851114B1 (en) * 2013-07-31 2019-07-10 Ibiden Co., Ltd. Honeycomb filter
US10286358B2 (en) 2013-07-31 2019-05-14 Ibiden Co., Ltd. Honeycomb filter
EP2835169A1 (en) 2013-07-31 2015-02-11 Ibiden Co., Ltd. Honeycomb filter
EP2835168A1 (en) 2013-07-31 2015-02-11 Ibiden Co., Ltd. Honeycomb filter
US10300424B2 (en) 2014-07-23 2019-05-28 Ibiden Co., Ltd. Honeycomb filter
US10335727B2 (en) 2014-07-23 2019-07-02 Ibiden Co., Ltd. Honeycomb filter
JP2018038941A (ja) * 2016-09-05 2018-03-15 株式会社デンソー 排ガス浄化フィルタ
WO2018043350A1 (ja) * 2016-09-05 2018-03-08 株式会社デンソー 排ガス浄化フィルタ

Also Published As

Publication number Publication date
CN1671460A (zh) 2005-09-21
CN1322909C (zh) 2007-06-27
US7314496B2 (en) 2008-01-01
EP1502640A4 (en) 2005-03-09
DE20321503U1 (de) 2007-08-30
JPWO2004024293A1 (ja) 2006-01-05
US7857885B2 (en) 2010-12-28
US7326270B2 (en) 2008-02-05
EP1495791B1 (en) 2013-03-06
US20050011174A1 (en) 2005-01-20
JPWO2004024294A1 (ja) 2006-01-05
JP2011224567A (ja) 2011-11-10
US20050016141A1 (en) 2005-01-27
EP1502640B1 (en) 2013-03-20
WO2004024293A1 (ja) 2004-03-25
EP1495791A1 (en) 2005-01-12
CN1671459A (zh) 2005-09-21
EP1502640A1 (en) 2005-02-02
JP4553737B2 (ja) 2010-09-29
EP1495791A4 (en) 2005-02-09
CN1306985C (zh) 2007-03-28
JP5202693B2 (ja) 2013-06-05
US20070227109A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2004024294A1 (ja) フィルタ
JP4698585B2 (ja) ハニカム構造体及び排気ガス浄化装置
JP4969103B2 (ja) ハニカム構造体
KR100679190B1 (ko) 벌집형 구조체
WO2004024295A1 (ja) ハニカム構造体
JP5270879B2 (ja) ハニカム構造体
WO2008044269A1 (fr) Structure en nid d&#39;abeilles
JPWO2006106785A1 (ja) ハニカム構造体
WO2016039325A1 (ja) ハニカム焼成体及びハニカムフィルタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003795443

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10490206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004571941

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003795443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038178052

Country of ref document: CN