WO2004027358A1 - Device for detecting heat and corresponding method - Google Patents

Device for detecting heat and corresponding method Download PDF

Info

Publication number
WO2004027358A1
WO2004027358A1 PCT/DE2003/002791 DE0302791W WO2004027358A1 WO 2004027358 A1 WO2004027358 A1 WO 2004027358A1 DE 0302791 W DE0302791 W DE 0302791W WO 2004027358 A1 WO2004027358 A1 WO 2004027358A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber layer
heat
sensing element
self
test
Prior art date
Application number
PCT/DE2003/002791
Other languages
German (de)
French (fr)
Inventor
Hans-Peter Baer
Arnim Hoechst
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004027358A1 publication Critical patent/WO2004027358A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • G01J5/532Reference sources, e.g. standard lamps; Black bodies using a reference heater of the emissive surface type, e.g. for selectively absorbing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention is based on a device for heat detection and a method according to the type of the independent claims.
  • Devices for heat detection in particular infrared sensors, are already known, in which a heat-sensing element and an absorber layer are provided on a substrate.
  • a heating resistor can be arranged on the membrane in addition to the heat-sensing element, the temperature increase being measured when the heating resistor is heated with the heat-sensing element.
  • the device according to the invention and the method with the features of the independent claims have the advantage that a self-test function can be provided without additional layers.
  • an electrically conductive resistance material is used as the absorber layer or as the absorber.
  • the absorber layer is thus also used as a heating resistor. Additional layers such as, for example, an intermediate insulator and a resistance layer with, if appropriate, further passivation layers are not required.
  • the absorber layer itself is included in the self-test.
  • the Absorber layer is provided electrically contactable by means of a contacting means. This makes it possible with simple means to use the absorber layer as a heating resistor for self-test functionality. It is also advantageous that the heat-sensing element is provided on a membrane. This makes it possible according to the invention to produce a good thermal decoupling of the heat-sensing element from the substrate. It is also advantageous that an electrical voltage can be applied to the absorber layer at least temporarily. This makes it possible to carry out the self-test with simple means.
  • FIG. 1 shows a device according to the invention in plan view
  • FIG. 2 shows a device according to the invention in side view.
  • FIG. 1 shows a device according to the invention, the device for heat detection being provided according to the invention on a substrate 10.
  • the substrate 10 is configured or processed such that a membrane 2 is provided in a specific substrate area.
  • a heat-sensing element 1 on the membrane which is provided in particular as a thermopile.
  • the various wires of a plurality of such thermopile elements are shown in FIG.
  • the electrical signal can then be further processed in an evaluation circuit and serve as a signal for the incident heat radiation.
  • the evaluation circuit and the electrical connection of the heat-sensing element 1 are not shown in FIG. 1.
  • the prior art provides for a heating resistor to be provided on the thermopile or in the region of the absorber layer 3.
  • the heating resistor simulates the heating of the absorber layer 3 by normal heat radiation.
  • heating is carried out by the heating resistor.
  • additional layers must generally be provided in the area of the absorber layer 3. According to the invention, this is not necessary.
  • the absorber layer 3 is provided in an electrically conductive manner.
  • the absorber layer can be built up from the following materials or comprise these: graphite-containing pastes, graphite-containing lacquers, so-called “black” metal layers (Au, Ag, Pt), which get rough surfaces under special deposition conditions
  • a resistance material can also be used as the absorber layer 3, as is known from hybrid technology, for example ruthenium-containing resistance paste.
  • the absorber layer 3 can also be used as a heating resistor. Additional layers such as an intermediate insulator, a resistance layer and possibly a passivation layer can be omitted and are not required.
  • the absorber layer 3 can thus be included in the self-test. To operate the absorber layer 3 in the event of a self-test of the device according to the invention, it is provided according to the invention to provide first and second contacting means 4, 6 in the region of the absorber layer 3, ie in particular on the absorber layer 3.
  • the first contacting means 4 and the second contacting means 6 make the absorber layer 3 electrically contactable.
  • the contacting means 4, 6 are provided in particular as metal interconnects, which can be located above the absorber layer 3 or below the absorber layer 3.
  • the contacting means 4, 6 are each connected to a connection pad, the first contacting means 4 being connected to a connection pad 5 and the second contacting means 6 being connected to a connection pad 7. Via the connection pads or by applying a voltage to the connection pads 5, 7, it is possible to apply an electrical voltage to the absorber layer 3, so that in the absorber layer 3 an electrical current, which in FIG. 1 is indicated by an arrow with the reference symbol 45 is shown, can flow.
  • the heat-sensing element 1 is provided in a thermally insulated manner from the surroundings due to its arrangement on the membrane 2.
  • FIG. A membrane 2 is provided on the substrate 10, which carries the heat-sensing element 1 and the absorber layer 3.
  • the first contacting means 4 and the first connection pad 5 are shown in FIG.
  • the thin membrane 2 makes it possible for the heat-sensing element 1 to be thermally well insulated from its surroundings.
  • the absorber layer 3 is applied, for example, to the heat-sensing element 1 or to the membrane 2 by means of a screen printing method.
  • the connection pads 5, 7 are used to connect bonding wires.
  • a voltage is applied to the contacting means 4, 6, which drives the current 45 through the absorber layer 3.
  • the current 45 is thus impressed in the absorber layer 3, so that the resistance of the absorber layer 3 results in a temperature increase in the absorber layer 3 which is of the same order of magnitude as the temperature increase which is to be detected by the heat radiation by means of the device according to the invention.
  • a signal which is of the order of magnitude of the measurement signal is registered by means of the self-test at the output of the heat-sensing element 1.
  • the self-test takes a few milliseconds.
  • the resistances are of the order of a few ohms (metals) to kiloohms (graphite-filled pastes / lacquers, resistance pastes).
  • the layer thickness of the absorber is between a few hundred nanometers and a few micrometers.

Abstract

The invention relates to a device and a method involving a heat sensing element (1), provided with an absorbent layer (3) that is electrically conductive.

Description

Vorrichtung zur Wär edetektion und VerfahrenHeat detection device and method
Stand der TechnikState of the art
Die Erfindung geht aus von einer Vorrichtung zur Wärmedetektion und einem Verfahren nach der Gattung der nebengeordneten Ansprüche. Es sind bereits Vorrichtungen zur Wärmedetektion, insbesondere Infrarotsensoren, bekannt, bei denen auf einem Substrat ein wärmesensierendes Element und eine Absorberschicht vorgesehen ist. Für eine Selbsttestfunktion kann zusätzlich zum wärmesensierenden Element ein Heizwiderstand auf der Membran angeordnet sein, wobei die Temperaturerhöhung bei einer Beheizung des Heizwiderstandes mit dem wärmesensierenden Element gemessen wird.The invention is based on a device for heat detection and a method according to the type of the independent claims. Devices for heat detection, in particular infrared sensors, are already known, in which a heat-sensing element and an absorber layer are provided on a substrate. For a self-test function, a heating resistor can be arranged on the membrane in addition to the heat-sensing element, the temperature increase being measured when the heating resistor is heated with the heat-sensing element.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Vorrichtung und das Verfahren mit den Merkmalen der nebengeordneten Ansprüche haben demgegenüber den Vorteil, dass eine Selbsttestfunktion ohne zusätzliche Schichten zur Verfügung gestellt werden kann. Erfindungsgemäß wird als Absorberschicht bzw. als Absorber ein elektrisch leitfähiges Widerstandsmaterial eingesetzt. Die Absorberschicht wird damit gleichzeitig auch als Heizwiderstand genutzt. Zusätzliche Schichten wie beispielsweise einen Zwischenisolator und eine Widerstandsschicht mit gegebenenfalls weiteren Passivierungsschichten werden nicht benötigt. Die Absorberschicht selbst ist in den Selbsttest miteinbezogen.The device according to the invention and the method with the features of the independent claims have the advantage that a self-test function can be provided without additional layers. According to the invention, an electrically conductive resistance material is used as the absorber layer or as the absorber. The absorber layer is thus also used as a heating resistor. Additional layers such as, for example, an intermediate insulator and a resistance layer with, if appropriate, further passivation layers are not required. The absorber layer itself is included in the self-test.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des in den nebengeordneten Ansprüchen angegebenen Verfahrens und der Vorrichtung möglich. Besonders vorteilhaft ist, dass die Absorberschicht mittels eines Kontaktierungsmittels elektrisch kontaktierbar vorgesehen ist. Dadurch ist es mit einfachen Mitteln möglich, die Absorberschicht als Heizwiderstand zur Selbsttestfunktionalität einzusetzen. Weiterhin ist es von Vorteil, dass das wärmesensierende Element auf einer Membran vorgesehen ist. Dadurch ist es erfindungsgemäß möglich, eine gute thermische Entkopplung des wärmesensierenden Elementes von dem Substrat herzustellen. Weiterhin ist es von Vorteil, dass an die Absorberschicht wenigstens zeitweise eine elektrische Spannung anlegbar ist. Damit ist es mit einfachen Mitteln möglich, den Selbsttest durchzuführen.The measures listed in the subclaims allow advantageous developments and improvements of the method and the device specified in the independent claims. It is particularly advantageous that the Absorber layer is provided electrically contactable by means of a contacting means. This makes it possible with simple means to use the absorber layer as a heating resistor for self-test functionality. It is also advantageous that the heat-sensing element is provided on a membrane. This makes it possible according to the invention to produce a good thermal decoupling of the heat-sensing element from the substrate. It is also advantageous that an electrical voltage can be applied to the absorber layer at least temporarily. This makes it possible to carry out the self-test with simple means.
Zeichnungdrawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine erfindungsgemäße Vorrichtung in Draufsicht und Figur 2 eine erfindungsgemäße Vorrichtung in Seitenansicht.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. 1 shows a device according to the invention in plan view and FIG. 2 shows a device according to the invention in side view.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In Figur 1 ist eine erfϊndungsgemäße Vorrichtung dargestellt, wobei die Vorrichtung zur Wärmedetektion erfindungsgemäß auf einem Substrat 10 vorgesehen ist. Das Substrat 10 ist derart konfiguriert bzw. bearbeitet, dass eine Membran 2 in einem bestimmten Substratbereich vorgesehen ist. Auf der Membran befindet sich ein wärmesensierendes Element 1, welches insbesondere als Thermopile vorgesehen ist. In Figur 1 dargestellt sind die verschiedenen Drähte einer Mehrzahl von solchen Thermopile-Elementen. Auf dem wärmesensierenden Element 1 bzw. auf dem Thermopile 1 befindet sich eine Absorberschicht 3, welche Wärmestrahlung, die insbesondere als Infrarotstrahlung vorgesehen ist, absorbiert. Bei der Absorption von Infrarotstrahlung durch die Absorberschicht 3 kommt es zu einer Erwärmung der Absorberschicht 3. Diese Erwärmung der Absorberschicht 3 wird über das wärmesensierende Element 1 detektiert und in ein elektrisches Signal umgewandelt. Das elektrische Signal kann dann in einer Auswerteschaltung weiterverarbeitet werden und als Signal für die einfallende Wärmestrahlung dienen. Die Auswerteschaltung und die elektrische Anbindung des wärmesensierenden Elementes 1 ist jedoch in Figur 1 nicht dargestellt. Um bei einer solchen Vorrichtung das korrekte Funktionieren testen zu können, ist es gemäß dem Stand der Technik vorgesehen, auf dem Thermopile bzw. im Bereich der Absorberschicht 3 einen Heizwiderstand vorzusehen. Der Heizwiderstand simuliert die Erwärmung der Absorberschicht 3 durch eine im Normalfall einfallende Wärmestrahlung. Für den Selbsttestfall wird die Erwärmung durch den Heizwiderstand vorgenommen. Zur Erzeugung des Heizwiderstandes für die Selbsttestfunktion müssen in der Regel zusätzliche Schichten im Bereich der Absorberschicht 3 vorgesehen sein. Erfindungsgemäß ist dies nicht notwendig. Erfindungsgemäß ist die Absorberschicht 3 elektrisch leitend vorgesehen. Hierzu kann die Absorberschicht aus folgenden Materialien aufgebaut sein bzw. diese umfassen: Graphithaltige Pasten, Graphithaltige Lacke, sogenannte „schwarze" Metallschichten (Au, Ag, Pt), die unter speziellen Abscheidebedingungen, rauhe Oberflächen bekommenFIG. 1 shows a device according to the invention, the device for heat detection being provided according to the invention on a substrate 10. The substrate 10 is configured or processed such that a membrane 2 is provided in a specific substrate area. There is a heat-sensing element 1 on the membrane, which is provided in particular as a thermopile. The various wires of a plurality of such thermopile elements are shown in FIG. On the heat-sensing element 1 or on the thermopile 1 there is an absorber layer 3, which absorbs heat radiation, which is provided in particular as infrared radiation. When infrared radiation is absorbed by the absorber layer 3, the absorber layer 3 is heated. This heating of the absorber layer 3 is detected via the heat-sensing element 1 and converted into an electrical signal. The electrical signal can then be further processed in an evaluation circuit and serve as a signal for the incident heat radiation. However, the evaluation circuit and the electrical connection of the heat-sensing element 1 are not shown in FIG. 1. In order to be able to test the correct functioning of such a device, the prior art provides for a heating resistor to be provided on the thermopile or in the region of the absorber layer 3. The heating resistor simulates the heating of the absorber layer 3 by normal heat radiation. For the self-test case, heating is carried out by the heating resistor. To generate the heating resistor for the self-test function, additional layers must generally be provided in the area of the absorber layer 3. According to the invention, this is not necessary. According to the invention, the absorber layer 3 is provided in an electrically conductive manner. For this purpose, the absorber layer can be built up from the following materials or comprise these: graphite-containing pastes, graphite-containing lacquers, so-called “black” metal layers (Au, Ag, Pt), which get rough surfaces under special deposition conditions
Es kann als Absorberschicht 3 auch ein Widerstandsmaterial eingesetzt werden, wie es aus der Hybridtechnik bekannt ist, beispielsweise Rutheniumhaltige Widerstandspaste Durch das Vorsehen der Absorberschicht 3 mit einem Material, welches elektrisch leitend ist, kann die Absorberschicht 3 gleichzeitig auch als Heizwiderstand genutzt werden. Zusätzliche Schichten wie beispielsweise einen Zwischenisolator, eine Widerstandsschicht und eventuell eine Passivierungsschicht können entfallen und werden nicht benötigt. Damit kann die Absorberschicht 3 in den Selbsttest miteinbezogen werden. Zum Betrieb der Absorberschicht 3 für den Fall eines Selbsttestes der erfindungsgemäßen Vorrichtung ist es erfindungsgemäß vorgesehen, im Bereich der Absorberschicht 3, d.h. insbesondere auf der Absorberschicht 3, erste und zweite Kontaktierungsmittel 4, 6 vorzusehen. Durch das erste Kontaktierungsmittel 4 und das zweite Kontaktierungsmittel 6 ist die Absorberschicht 3 elektrisch kontaktierbar vorgesehen. Die Kontaktierungsmittel 4, 6 sind insbesondere als Metallleitbahnen vorgesehen, die sich oberhalb der Absorberschicht 3 oder unterhalb der Absorberschicht 3 befinden können. Die Kontaktierungsmittel 4, 6 sind jeweils mit einem Anschlusspad verbunden, wobei das erste Kontaktierungsmittel 4 mit einem Anschlusspad 5 und das zweite Kontaktierungsmittel 6 mit einem Anschlusspad 7 verbunden ist. Über die Anschlusspads bzw. über die Beaufschlagung der Anschlusspads 5, 7 mit einer Spannung ist es möglich, eine elektrische Spannung an die Absorberschicht 3 anzulegen, sodass in der Absorberschicht 3 ein elektrischer Strom, der in Figur 1 mittels eines mit dem Bezugszeichen 45 versehenen Pfeils dargestellt ist, fließen kann. Erfindungsgemäß ist es insbesondere vorgesehen, dass das wärmesensierende Element 1 durch seine Anordnung auf der Membran 2 thermisch von der Umgebung isoliert vorgesehen ist. Hierzu ist in Figur 2 eine Seitenansicht der erfindungsgemäßen Vorrichtung dargestellt. Auf dem Substrat 10 ist eine Membran 2 vorgesehen, welche das wärmesensierende Element 1 und die Absorberschicht 3 trägt. Weiterhin sind in Figur 2 das erste Kontaktierungsmittel 4 und der erste Anschlusspad 5 dargestellt. Durch die dünne Membran 2 ist es möglich, dass das wärmesensierende Element 1 thermisch von seiner Umgebung gut isoliert ist. Die Absorberschicht 3 wird beispielsweise mittels eines Siebdruckverfahrens auf das wärmesensierende Element 1 aufgebracht bzw. auf die Membran 2. Die Anschlusspads 5, 7 dienen dem Anschluss von Bonddrähten. Zur Durchführung des erfindungsgemäßen Verfahrens wird an die Kontaktierungsmittel 4, 6 eine Spannung angelegt, welche den Strom 45 durch die Absorberschicht 3 treibt. Hierdurch wird also der Strom 45 in der Absorberschicht 3 eingeprägt, sodass sich durch den Widerstand der Absorberschicht 3 eine Temperaturerhöhung in der Absorberschicht 3 einstellt, die in der Größenordnung der Temperaturerhöhung ist, die durch die Wärmestrahlung mittels der erfindungsgemäßen Vorrichtung detektiert werden soll. Dadurch wird also mittels des Selbsttestes am Ausgang des wärmesensierenden Elements 1 ein Signal registriert, welches in der Größenordnung des Messsignals ist. Die Zeitdauer des Selbsttests liegt bei einigen Millisekunden. Die Widerstände haben abhängig vom Material Größenordnungen von einigen Ohm (Metalle) bis Kiloohm (graphitgefüllte Pasten/Lacke, Widerstandspasten). Die Schichtdicke des Absorbers liegt zwischen einigen hundert Nanometern und einigen Mikrometern. A resistance material can also be used as the absorber layer 3, as is known from hybrid technology, for example ruthenium-containing resistance paste. By providing the absorber layer 3 with a material that is electrically conductive, the absorber layer 3 can also be used as a heating resistor. Additional layers such as an intermediate insulator, a resistance layer and possibly a passivation layer can be omitted and are not required. The absorber layer 3 can thus be included in the self-test. To operate the absorber layer 3 in the event of a self-test of the device according to the invention, it is provided according to the invention to provide first and second contacting means 4, 6 in the region of the absorber layer 3, ie in particular on the absorber layer 3. The first contacting means 4 and the second contacting means 6 make the absorber layer 3 electrically contactable. The contacting means 4, 6 are provided in particular as metal interconnects, which can be located above the absorber layer 3 or below the absorber layer 3. The contacting means 4, 6 are each connected to a connection pad, the first contacting means 4 being connected to a connection pad 5 and the second contacting means 6 being connected to a connection pad 7. Via the connection pads or by applying a voltage to the connection pads 5, 7, it is possible to apply an electrical voltage to the absorber layer 3, so that in the absorber layer 3 an electrical current, which in FIG. 1 is indicated by an arrow with the reference symbol 45 is shown, can flow. According to the invention, it is provided in particular that the heat-sensing element 1 is provided in a thermally insulated manner from the surroundings due to its arrangement on the membrane 2. For this purpose, a side view of the device according to the invention is shown in FIG. A membrane 2 is provided on the substrate 10, which carries the heat-sensing element 1 and the absorber layer 3. Furthermore, the first contacting means 4 and the first connection pad 5 are shown in FIG. The thin membrane 2 makes it possible for the heat-sensing element 1 to be thermally well insulated from its surroundings. The absorber layer 3 is applied, for example, to the heat-sensing element 1 or to the membrane 2 by means of a screen printing method. The connection pads 5, 7 are used to connect bonding wires. To carry out the method according to the invention, a voltage is applied to the contacting means 4, 6, which drives the current 45 through the absorber layer 3. The current 45 is thus impressed in the absorber layer 3, so that the resistance of the absorber layer 3 results in a temperature increase in the absorber layer 3 which is of the same order of magnitude as the temperature increase which is to be detected by the heat radiation by means of the device according to the invention. As a result, a signal which is of the order of magnitude of the measurement signal is registered by means of the self-test at the output of the heat-sensing element 1. The self-test takes a few milliseconds. Depending on the material, the resistances are of the order of a few ohms (metals) to kiloohms (graphite-filled pastes / lacquers, resistance pastes). The layer thickness of the absorber is between a few hundred nanometers and a few micrometers.

Claims

Ansprüche Expectations
1. Vorrichtung zur Wärmedetektion mit einem Substrat (10), einem wärmesensierenden Element (1) und einer Absorberschicht (3), dadurch gekennzeichnet, dass die Absorberschicht (3) elektrisch leitend vorgesehen ist.1. Device for heat detection with a substrate (10), a heat-sensing element (1) and an absorber layer (3), characterized in that the absorber layer (3) is provided in an electrically conductive manner.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Absorberschicht (3) mittels eines Kontaktierungsmittels (4, 6) elektrisch kontaktierbar vorgesehen ist.2. Device according to claim 1, characterized in that the absorber layer (3) by means of a contacting means (4, 6) is provided electrically contactable.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das wärmesensierende Element (1) auf einer Membran (2) vorgesehen ist.3. Device according to claim 1 or 2, characterized in that the heat-sensing element (1) is provided on a membrane (2).
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an die Absorberschicht (3) wenigstens zeitweise eine elektrische Spannung anlegbar ist.4. Device according to one of the preceding claims, characterized in that an electrical voltage can be applied to the absorber layer (3) at least temporarily.
5. Verfahren zum Betrieb einer Vorrichtung zur Wärmedetektion nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens kurzzeitig die Absorberschicht (1) von einem elektrischen Strom (45) durchflössen wird.5. Method for operating a device for heat detection according to one of the preceding claims, characterized in that at least briefly an electrical current (45) flows through the absorber layer (1).
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass während des Stromflusses des Stromes (45) ein Selbsttest durchführbar ist. 6. The method according to claim 5, characterized in that a self-test can be carried out during the current flow of the current (45).
PCT/DE2003/002791 2002-09-17 2003-08-21 Device for detecting heat and corresponding method WO2004027358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10243012A DE10243012B4 (en) 2002-09-17 2002-09-17 Device for heat detection and method
DE10243012.8 2002-09-17

Publications (1)

Publication Number Publication Date
WO2004027358A1 true WO2004027358A1 (en) 2004-04-01

Family

ID=31896065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002791 WO2004027358A1 (en) 2002-09-17 2003-08-21 Device for detecting heat and corresponding method

Country Status (2)

Country Link
DE (1) DE10243012B4 (en)
WO (1) WO2004027358A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599474A (en) * 1969-07-25 1971-08-17 Whittaker Corp Self-calibrating heat flux transducer
US6372656B1 (en) * 1998-09-25 2002-04-16 Robert Bosch Gmbh Method of producing a radiation sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735379B4 (en) * 1997-08-14 2008-06-05 Perkinelmer Optoelectronics Gmbh Sensor system and manufacturing process
US6133572A (en) * 1998-06-05 2000-10-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Infrared detector system with controlled thermal conductance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599474A (en) * 1969-07-25 1971-08-17 Whittaker Corp Self-calibrating heat flux transducer
US6372656B1 (en) * 1998-09-25 2002-04-16 Robert Bosch Gmbh Method of producing a radiation sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method
US9659374B2 (en) 2008-06-03 2017-05-23 Covidien Lp Feature-based registration method
US10096126B2 (en) 2008-06-03 2018-10-09 Covidien Lp Feature-based registration method
US11074702B2 (en) 2008-06-03 2021-07-27 Covidien Lp Feature-based registration method
US11783498B2 (en) 2008-06-03 2023-10-10 Covidien Lp Feature-based registration method

Also Published As

Publication number Publication date
DE10243012B4 (en) 2006-01-05
DE10243012A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
DE69925878T2 (en) Method and device for "flip-chip" mounting of an electronic component
DE102006055520A1 (en) Device and method for checking the functionality or plausibility of a sensor based on an interdigital electrode system sensor and a sensor for detecting particles in a gas stream and its use
EP1990612B1 (en) Device for two-dimensional measuring of the velocity field in flows
EP3615903B1 (en) Sensor for measuring a spatial temperature profile and method for producing a sensor unit
WO2015162267A1 (en) Shunt current measurement featuring temperature compensation
WO2014161521A1 (en) Device for measuring the thermal conductivity of gas components of a gas mixture
EP2435797A2 (en) Sensor element
DE19600541C2 (en) Semiconductor acceleration detection device
WO2004027358A1 (en) Device for detecting heat and corresponding method
DE3902096A1 (en) METHOD AND DEVICE FOR DETERMINING THE THICKNESS OF A COATING ON A METAL SUBSTRATE
DE19708053B4 (en) Method and sensor arrangement for the detection of condensation on surfaces
EP2534466B1 (en) Sensing system for determining the fatigue on metal components
WO1999018429A1 (en) Method for operating a gas sensor
DE102016200270A1 (en) Apparatus and method for detecting a fluid
Mavinkurve et al. Copper wire interconnect reliability evaluation using in-situ High Temperature Storage Life (HTSL) tests
WO2003026932A1 (en) Method and device for recognition of a side impact on a motor vehicle
WO2006079488A2 (en) Thermopile
EP1680771A1 (en) Method for identifying analog measuring sensors and associated assembly
WO2020052860A1 (en) Method for testing the integrity of a printed conductive track
DE102013216227A1 (en) Capacitive self-diagnosis of the electrode system of a particle sensor
DE102019122701A1 (en) Level detection using heating structures
WO2019120789A1 (en) Sensor assembly for detecting particles of a measurement gas in a measurement gas chamber, and method for detecting particles of a measurement gas in a measurement gas chamber
DE102014214620A1 (en) Device for gas analysis with thermally activated conversion element
EP1962070B1 (en) High temperature sensor and test method therefor
Huff et al. 1 mil gold bond wire study.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP