WO2004029619A1 - 分析用具 - Google Patents

分析用具 Download PDF

Info

Publication number
WO2004029619A1
WO2004029619A1 PCT/JP2003/012295 JP0312295W WO2004029619A1 WO 2004029619 A1 WO2004029619 A1 WO 2004029619A1 JP 0312295 W JP0312295 W JP 0312295W WO 2004029619 A1 WO2004029619 A1 WO 2004029619A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow path
sample
analysis tool
sample liquid
Prior art date
Application number
PCT/JP2003/012295
Other languages
English (en)
French (fr)
Inventor
Takayuki Taguchi
Shigeru Kitamura
Yuichiro Noda
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to US10/529,120 priority Critical patent/US7850909B2/en
Priority to AU2003266637A priority patent/AU2003266637A1/en
Priority to EP03798513A priority patent/EP1548433B1/en
Publication of WO2004029619A1 publication Critical patent/WO2004029619A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices

Definitions

  • the present invention relates to an analysis tool used for analyzing a specific component in a sample liquid (for example, blood or urine).
  • a sample liquid for example, blood or urine
  • a method for analyzing a sample for example, there is a method in which a reaction solution obtained by reacting a sample with a reagent is analyzed by an optical method.
  • an analysis tool that utilizes a reaction field is used.
  • an analysis tool there is one configured to remove a solid component in a sample liquid and then supply the sample liquid to the reagent section. Examples of such analytical tools include those shown in FIGS. 13 and 14 or FIGS. 15 and 16 of the present application (for example, Japanese Patent Publication No. 2002-508698, Japanese Patent Application Laid-Open No. Hei 8-114539). reference).
  • the analytical tool 9A shown in FIGS. 13 and 14 has a filter 92 interposed between a substrate 90 and a cover 91. On the substrate 90, a filter cavity J-90a for fitting the filter 92 is formed. The cover 91 is provided with a liquid inlet 92 a so as to be located above the filter 92. The filter empty egg 0a is connected to the exit area 90b. In the analysis tool 9A, the liquid introduced through the liquid inlet 92a is introduced into the exit area 90b after the solid components are removed by the filter 92. On the other hand, the analysis tool 9B shown in FIGS.
  • a sample receiving port 93 for removing a substance causing a measurement error, and a blank for measuring a blank value.
  • a first photometric chamber 95 for removing a substance causing a measurement error, and a blank for measuring a blank value.
  • a first photometric chamber 95 for removing a substance causing a measurement error, and a blank for measuring a blank value.
  • a first photometric chamber 95 for removing a substance causing a measurement error
  • a second sample processing chamber 96 provided with a reagent section for reacting with the target substance, and a second photometric chamber for measuring optical characteristics of a reaction product of the target substance and the reagent.
  • 97 for a finolator 98 disposed in a region immediately below the sample receiving port 93 in the first sample processing chamber 94, and a pump connection port 99.
  • the sample liquid supplied from the sample liquid receiver B 93 is transferred to the filter 98 to remove solid components. After that, it is introduced into the first sample processing chamber 94.
  • the removal of the solid components in the filters 92 and 98 is mainly performed when the sample liquid advances in the plane direction of the filters 92 and 98. Therefore, in the analytical tools 9A and 9B, a large filtration length can be secured, so that the effect of increasing the efficiency of removing solid components is expected.
  • the longer filtration time and the longer residence time of the sample solution in the finolators 92 and 98 increase the time required to remove solid components, resulting in a longer measurement time. It is feared that it will. In particular, there is a great deal of concern with analytical instruments that are configured to move capillary fluid using capillary force.
  • the cross-sectional dimension of the flow channel is small as in a microdevice, and the flow of the sample liquid is moved by the capillary force as the viscosity of the sample liquid is higher, because the sample liquid has higher viscosity.
  • the above-mentioned concerns are exacerbated.
  • the sample liquid in a configuration in which the sample liquid is moved by using the power of a pump, such as the analysis tool 9B, the sample liquid can be moved relatively easily, and there is little concern about the measurement time.
  • a pump since it is necessary to provide a pump in a device for measuring the analysis tool 9B, the cost of the device increases accordingly.
  • the use of a pump also increases the measurement cost required for a single measurement. Disclosure of the invention
  • An object of the present invention is to provide an analytical tool capable of removing a solid component in a sample solution without significantly increasing the measurement time, in terms of cost.
  • a liquid inlet a liquid inlet, one or more flow paths for moving the sample liquid introduced from the liquid inlet, and a filter for filtering the sample liquid supplied to the liquid inlet.
  • An analysis tool comprising a flow path for introducing into the one or more flow paths, wherein the separation flow is performed by advancing the sample liquid in the direction of the thickness of the flow path.
  • the above configuration is referred to as the number of glues.
  • This analysis tool is configured to advance a sample solution in a thickness direction of a minute to remove solid components in the sample solution.
  • the residence time of the sample liquid in the separation membrane is shorter than that in the case where the sample liquid advances in the plane direction of the separation clan.
  • the sample solution can pass through the separation membrane in a short time without receiving a very large resistance to the separation membrane.
  • the time required for removing the solid component can be shortened, and the measurement time can be reduced. If the resistance during the movement of the sample liquid is reduced, it becomes possible to move the sample liquid in the channel by capillary action. This eliminates the need to use the power of the pump to move the sample solution, thereby reducing the manufacturing cost of an apparatus for performing measurement using analytical tools and eliminating the need to use pump power. Only the measurement cost can be reduced.
  • the analysis tool can be configured as a microphone-mouth device utilizing the capillary phenomenon in the microchannel.
  • the main cross section of the ⁇ , one or more flow paths is, for example, a rectangular cross section having a width dimension of 10 to 500 / zm, a depth dimension of 5 to 500 jum, and a force depth dimension / width dimension of 0.5. It is said.
  • the “main section” as used in the present invention refers to a vertical section perpendicular to the direction of travel of the sample liquid, and the cross-sectional shape of the sample liquid is advanced. Means the longitudinal section of the part whose main purpose is to do so.
  • the inner surface of one or more flow channels is subjected to a hydrophilic treatment.
  • the m3 ⁇ 4 of the hydrophilicity is, for example, in a range where the inversion angle with respect to the thread foR on the inner surface of the flow channel is 0 to 80 degrees, more preferably 0 to 60 degrees.
  • sample liquid for example, a biochemical sample of urine or blood is used.
  • blood is used as the sample solution.
  • the subdivision is arranged, for example, at a higher position than one or a plurality of flow paths. Then, the sample liquid is moved in the thickness direction of the separation membrane, and the solid component in the sample liquid can be removed from the separation membrane.
  • the analysis tool is configured to further include, for example, a liquid receiving port that communicates with the liquid introduction port and one or more flow paths and receives a sample liquid that has passed through the power dividing fiber.
  • the distance between the bottom and the bottom of the receiving part is Are preferably arranged at a distance from each other.
  • the analysis tool of the present invention is, for example, interposed between a substrate having a liquid receiving portion formed thereon, a cover having a liquid inlet formed therein, and a substrate and a canopy, and is used to fit a force-reducing mechanism. And an adhesive layer having a through hole.
  • the analysis tool is configured to include a plurality of flow paths, it is preferable that the plurality of flow paths be formed so as to extend radially from the liquid receiving portion.
  • the size may be selected according to the size of the solid component to be removed, etc.
  • a porous substance can be used.
  • porous materials that can be used as a diligent material include paper, foam (foam), woven fabric, nonwoven fabric, knitted fabric, membrane filter, glass filter, and genole-like material. .
  • the analysis tool is provided, for example, with a reagent part for reacting with a sample solution and having a plurality of flow paths for moving the sample solution.
  • the reagent parts provided in two or more of the plurality of flow paths include different reagents.
  • the analysis tool is configured to measure a plurality of items from one type of sample solution.
  • the reagent portions in the two or more flow paths are preferably provided on the same circumference.
  • each of the flow paths is configured so that the movement of the sample liquid is stopped just before the 3 ⁇ 4m portion, and then the sample liquid is supplied to the reagent portion.
  • the analysis tool is further provided with a branch flow path branched from a branch part set in the flow path, and the branch flow path is in a state where it is communicated with the outside at a portion other than the liquid inlet.
  • the flow of the sample liquid in the flow channel is stopped at the branch portion, while the flow channel is communicated with the outside at a portion other than the liquid inlet, so that the flow exceeds the branch portion in the flow channel.
  • the flow path is connected to a gas discharge outlet for discharging gas inside the flow path, and by opening the gas discharge port, the sample liquid moves over the branch portion. It is preferable to configure.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an example of an analysis device and an analysis tool according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line ⁇ - ⁇ of FIG.
  • FIG. 3 is an overall view of the microdevice shown in FIG.
  • FIG. 4 is a diagram of the microphone port device shown in FIG.
  • FIG. 5I is a cross-sectional view taken along the line Va-Va of FIG.
  • FIG. 5B is a sectional view taken along line Vb-Vb in FIG.
  • FIG. 6 is a plan view of the substrate of the micro device.
  • FIG. 7 is a bottom view of the cover of the microdevice.
  • FIG. 8 is a cross-sectional view for explaining the operation of opening the first gas discharge port.
  • FIG. 9 is a cross-sectional view for explaining the operation of opening the second gas outlet.
  • FIG. 10 is a schematic diagram for explaining a moving state of the sample liquid in the flow channel.
  • FIG. 11 is a perspective view for explaining another example of the microphone port device according to the present invention.
  • FIG. 12 is a cross-sectional view of the microphone port device shown in FIG.
  • FIG. 13 is a plan view showing a main part for describing a conventional analysis tool.
  • FIG. 14 is a sectional view taken along the line XVI-XVI in FIG.
  • FIG. 15 is an exploded perspective view showing another example of the conventional analysis tool.
  • FIG. 16 is a cross-sectional view of a main part of the analysis tool shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the analyzer X shown in Fig. 1 and Fig. 2 is for mounting a microdevice Y as an analysis tool to analyze a sample solution, and a mounting section 1 for mounting the microdevice Y, a light source It has a part 2, a light receiving part 3, and a leak opening structure 4.
  • the microphone opening device Y shown in FIGS. 3 to 5 has a reaction field of ff, and has a substrate 5, a canopy 6, an adhesive layer 7, and a separation layer 8.
  • the substrate 5 is formed in a transparent disk shape, and has a shape in which a peripheral edge is stepped down. As shown in FIG. 5A and FIG. 6, the substrate 5 is provided with a liquid receiver provided at the center. A plurality of flow passages 51 communicating with the liquid receiving portion 50 and extending in a 3 ⁇ 4
  • the liquid receiving section 50 is for holding the sample liquid supplied to the microdevice Y for introduction into each flow path 51.
  • the liquid receiving portion 50 is formed as a circular concave portion on the upper surface 5A of the substrate 5.
  • Each flow path 51 is for moving the sample liquid, and is formed on the upper surface 5A of the substrate 5 so as to communicate with the liquid receiving section 50. As shown in FIG. 5A, each flow path 51 has a branch part 51A and a reaction part 51B. The portion of each flow path 51 excluding the reaction section 51B has a substantially uniform rectangular cross section. Each flow path 51 is formed and formed so that the width and depth of the rectangular cross section are, for example, 10 to 500 ⁇ m and 5 to 500 ⁇ , ⁇ , and ⁇ ⁇ are 0.5 or more. RU
  • a branch channel 53 communicating with the channel 51 extends from the branch portion 51A.
  • the branch part 51 # is set as close as possible to the reaction part 51B, and the distance between the branch part 51A and the reaction part 51B is made as small as possible.
  • the branch channel 53 has a substantially uniform rectangular cross section, and the dimensions of the rectangular cross section are the same as the rectangular cross section of the channel.
  • the reaction section 51B has a larger cross-sectional area than the main cross section of the flow path 51.
  • the individual reaction sections 51B are provided on the same circumference.
  • Each reaction section 51B is provided with a reagent section 54 as shown in FIG. 5A.
  • the reagent section 54 does not necessarily need to be provided in all the flow paths 51.
  • the reagent section is omitted for a flow path used for correcting the influence of the color of the sample liquid.
  • the reagent section 54 is in a solid state that dissolves when the sample liquid is supplied, and reacts with a specific component in the sample liquid to develop a color.
  • a reagent section 54 of a complex type having a different component or composition is provided so that a plurality of items can be measured in the microdevice Y.
  • the plurality of concave portions 52 are portions for emitting transmitted light to the lower surface 5B side of the substrate 5 when the reaction portion 51B is irradiated with light from the upper surface 5A side of the substrate 5 as described later. Yes (see Figures 1 and 2).
  • Each recess 52 is provided with a reaction portion 51 on the lower surface 5B of the substrate 5. It is provided at the site corresponding to B.
  • the plurality of concave portions 52 are arranged on the same circumference at the peripheral edge of the substrate 5.
  • the substrate 5 is formed by resin molding using a transparent resin material such as polystyrene (PS), polycarbonate (PC), or polyethylene terephthalate (PET), in addition to an acryl resin such as polymethyl methacrylate (PMMA).
  • a transparent resin material such as polystyrene (PS), polycarbonate (PC), or polyethylene terephthalate (PET)
  • PMMA polymethyl methacrylate
  • the liquid receiving section 50, the plurality of flow paths 51, the plurality of concave sections 52, and the plurality of branch flow paths 53 can be simultaneously formed at the time of the resin molding by devising the shape of the mold.
  • the inner surfaces of the liquid receiving portion 50, the plurality of flow channels 51, the plurality of concave portions 52, and the number of the branch flow channels 53 are subjected to a hydrophilic treatment.
  • a hydrophilic treatment various known methods can be employed. For example, after a mixed gas containing fluorine gas and oxygen gas is swordwormed on each inner surface, water or steam is applied to each inner surface. It is preferable to carry out the reaction. In this method, since the hydrophilic treatment is performed using gas, water, etc., the hydrophilic treatment is surely performed even on an upright surface (side surface such as a flow path) which is difficult to perform by the known hydrophilic treatment method such as ultraviolet irradiation. It can be carried out.
  • the Szk treatment of each inner surface is performed so that, for example, the withdrawal angle of the yarn # 7 is O to 80 degrees, more preferably O to 60 degrees.
  • the cover 6 is formed in a disk shape whose peripheral edge protrudes downward.
  • the projecting portion 60 of the cover 6 is a portion that comes into contact with the stepped portion of the substrate 5.
  • the cover 6 has a sample liquid inlet 61, a plurality of first gas outlets 62, a plurality of recesses 63, a common channel 64, and a second gas outlet 65, as shown in FIGS. I have.
  • the sample liquid inlet 61 is used for introducing a sample liquid, and is formed as a through hole.
  • the sample liquid inlet 61 is formed in the center of the cover 6 so as to be located directly above the liquid receiving part 50 of the substrate 5, as clearly shown in FIG.
  • Each of the first gas discharge ports 62 is for discharging gas in the flow path 51, and is formed as a through hole.
  • Each first gas discharge port 62 is formed so as to be located immediately above the branch flow path 53 of the substrate 5 as well shown in FIG. 5B.
  • the plurality of first gas outlets 62 are provided so as to be located on the same circumference as shown in FIG. 4 and FIG. As is clearly shown in FIG.
  • each first gas outlet 62 is closed by a seal material 62a.
  • Sealing material 62a is for example It can be formed of metal or resin.
  • Sino Leneo 62a is fixed to the St anti 5 using, for example, an adhesive or by fusion.
  • the plurality of concave portions 63 are portions for irradiating the reaction portion 51B with light from the upper surface 6A side of the cover 6 as described later (see FIGS. 1 and 2). As shown in FIG. 5A, each recess 63 is provided on the upper surface 6A of the cover 6 immediately above the reaction portion 51B. As a result, as shown in FIGS. 4 and 7, the plurality of recesses 63 are arranged on the same circumference at the periphery of the cover 6.
  • the common flow path 64 serves as a flow path for guiding gas to the second gas discharge port 65 when discharging the gas in the flow path 51 to the outside. As shown in FIGS. 5 and 7, the common flow path 64 is formed as an annular recess at the peripheral edge of the lower surface 6B of the cover 6. The common flow path 64 communicates with the plurality of flow paths 51 of the substrate 5 as shown in FIG. 5A and FIG.
  • the second gas discharge port 65 is formed as a through hole communicating with the common flow path 64 as shown in FIGS. 5A and 7.
  • the upper opening of the second gas outlet # 65 is closed by a sealing material 65a.
  • the sealing material 65a the same material as the sealing material 62a for closing the No. 1 gas f forest outlet 62 can be used.
  • the cover 6 can be formed by resin molding using a transparent resin material like the substrate 5.
  • the sample liquid inlet 61, the plurality of first gas outlets 62, the plurality of recesses 63, the common flow path 64, and the second gas outlet 65 can be formed simultaneously during the resin molding.
  • the cover 6 it is preferable that at least a portion of the substrate 5 facing the flow path 51 is subjected to hydrophilic treatment.
  • the hydrophilic treatment method the same method as the hydrophilic treatment method for the substrate 5 can be employed.
  • the adhesive layer 7 has a role of bonding the cover 6 to the substrate 5 as is clearly shown in FIG.
  • the adhesive layer 7 is formed by interposing an adhesive sheet having a through hole 70 at the center between the substrate 5 and the cover 6.
  • the diameter of the through-hole 70 of the adhesive layer 7 is increased by the diameter of the liquid receiving part 50 of the substrate 5 and the diameter of the sample liquid inlet 61 of the cover 6.
  • the adhesive sheet for example, a sheet in which an adhesive layer is formed on both sides of a base material can be used.
  • the minute 8 is used to separate solid components in the sample solution, for example, blood cell components in blood. belongs to.
  • the separating fiber 8 has a diameter corresponding to the diameter of the through hole 70 of the adhesive layer 7, and is fitted into the through hole 70 of the adhesive layer 7 to form the substrate 5. It is interposed between the liquid receiving part 50 and the funnel liquid inlet 61 of the cover 6. Since the liquid receiving portion 50 is formed as a concave portion, the separating fibers 8 are arranged at a distance from the bottom surface of the liquid receiving portion 50.
  • the diameter of the separation membrane 8 corresponds to the diameter of the through hole 70 where the diameter of the liquid receiving part 50 is also large, the diameter of the separation part 8 is close to the liquid receiving part 50 in each flow path 51, and the part is separated. It is covered by.
  • a porous material can be used as the material.
  • porous materials that can be used as a disposable material include yarns, foams, woven fabrics, nonwoven fabrics, knitted fabrics, membrane filters, glass filters, and the like. Is a gel-like substance.
  • pore size 0.1 to 3.0 ⁇ Is preferred.
  • the mounting portion 1 shown in FIGS. 1 and 2 has a concave portion 10 for holding the microphone opening device ⁇ .
  • the mounting section 1 has a light emitting area 11 set therein.
  • the light emitting region 11 is provided at a position corresponding to the reaction portion 51B when the micro device Y is mounted in the concave portion 10.
  • the light transmitting region 11 is formed by forming a target portion of the mounting portion 1 with a transparent material such as a transparent resin. Of course, the entire mounting portion 1 may be formed of a transparent material.
  • the mounting unit 1 is supported by a rotating shaft 12, and the mounting unit 1 is configured to rotate by rotating the rotating shaft 12.
  • the rotating shaft 12 is connected to a driving mechanism (not shown), and is controlled so as to rotate by an angle corresponding to the arrangement pitch of the reaction units 51B in the microdevice Y.
  • the light source section 2 is for irradiating the reaction section 51B of the microdevice Y with light, and is fixed to a portion of the cover 6 which can face the concave section 63.
  • the light source unit 2 is composed of, for example, a mercury lamp or a white LED. These light sources are used; ⁇ is omitted from the drawing, but after the light from the light source unit 2 is incident on the filter, The part 51B is irradiated with light. This is because the filter selects light having a wavelength in accordance with the light absorption characteristics of the analysis components in the reaction solution.
  • the light receiving section 3 is for receiving light transmitted through the reaction section 51B, and is fixed to a portion of the substrate 5 that can face the concave portion 52 on the same axis as the light source section 2.
  • the amount of light received by the light receiving unit 3 is used as a basis for analyzing the sample liquid (for example, calculating the concentration).
  • the light receiving section 3 is constituted by, for example, a photodiode.
  • the opening 4 has a first opening forming element 41 for forming an opening in the seal portion 62a, and a second opening forming element 42 for forming an opening in the seal portion 65a. ing. These aperture forming elements 41 and 42 can be vertically reciprocated by an actuator (not shown).
  • the first hole forming element 41 has a plurality of needle-like portions 41b projecting downward from the lower surface of the disk-shaped substrate 41a. As shown in FIG. 8, each needle-shaped portion 41 b has a smaller diameter than the diameter of the first gas outlet 62 in the cover 6. The individual needle portions 41 b are arranged on the same circumference corresponding to the arrangement of the first gas outlets 62. Therefore, if the first hole forming element 41 is moved downward in a state where the needle-shaped portions 41 b of the first hole forming element 41 and the first gas outlet 62 of the cover 6 are aligned, Openings can be formed in the seal portions 62a collectively. Thereby, each first gas discharge port 62 is opened, and the inside of each flow path 51 is brought into a state of communicating with the outside through the branch flow path 53 and the first gas discharge port 62.
  • the second hole forming element 42 has a needle-like portion 42a as shown in FIGS.
  • the diameter of the needle-shaped portion 42a is also smaller than the diameter of the second gas outlet 65 in the cover 6. For this reason, if the second hole forming element 42 is moved downward while the force S is aligned with each of the needle portions 42 a of the second hole forming element 42 and the second air outlet 65 of the cover 6, An opening can be formed in the seal portion 65a. As a result, the second gas discharge port 65 is opened, and the inside of each flow path 51 communicates with the outside via the common flow path 64 and the second gas discharge port 65.
  • the method of opening the first and second gas discharge ports 62 and 65 is not limited to the above-described example.
  • energy is applied to the sheet members 62a, 65a to melt or deform the sheet members 62a, 65a so that the first and second gas outlets 62, 65 are formed. May be open.
  • a light source such as a laser, an ultrasonic transmitter, or a heating element can be used.
  • the gas outlets 62, 65 may be opened by peeling off the sheet members 62a, 65a.
  • the sample solution S needs to be supplied to the microdevice ⁇ ⁇ ⁇ ⁇ through the sample inlet 61 as shown in FIG.
  • the sample solution S may be supplied with the microphone device ⁇ attached to the analyzer X.
  • the sample solution S is supplied to the micro device ⁇ ⁇ in advance, and then the analyzer X is supplied. It is preferable to mount the micro device ⁇ on the surface.
  • the sample liquid S was supplied to the microdevice :: In the ⁇ , the sample liquid S reaches the liquid receiving part 50 by 3 ⁇ 41 in the thickness direction of 8 mm as expected from FIG. . At this time, solid components in the sample liquid S are removed. For example, when blood is used as a sample solution, blood cell components in the blood are removed.
  • the first and second gas outlets 62 and 65 are closed, so that the sample liquid S is held in the liquid receiving section 50 as schematically shown in FIG. 10A. Ray not introduced into flow path 51.
  • the sample liquid is moved in the thickness direction of Embodiment 8 to remove solid components. Therefore, the retention time of the sample liquid in the sample liquid 8 is shorter than in the case of removing the solid component by moving the sample liquid in the direction of the liquid crystal plane 8. Therefore, the time required to remove the solid components is reduced.
  • the openings may be formed in the plurality of seal portions 62a at the same time.
  • the holes are formed in the plurality of seal portions 62a by moving the first hole forming element 41 downward and inserting the needle-shaped portions 41b into the respective seal portions 62a as shown in FIG. This is performed by moving the first hole forming element 41 upward and pulling out the needle-like portion 41b from each seal portion 62a.
  • openings are simultaneously formed in the plurality of seal portions 62a.
  • the downward movement and the upward movement of the first aperture forming element 41 are automatically performed in the analyzer X by, for example, operating the operation switch by the user.
  • the opening of the sealing portion 65a is formed by moving the second opening forming element 42 downward and inserting the needle-shaped portion 42a into the sealing portion 65a, as shown in FIG. This is performed by moving the component 42 upward and removing the needle-shaped portion 42a from the seal portion 65a.
  • the downward movement and the upward movement of the second aperture forming element 42 are automatically performed by the analyzer X by, for example, operating the operation switch by the user.
  • the inside of the flow path 51 communicates via the second gas discharge port 65 and the common flow path 64. Therefore, the sample liquid S, whose moving force S is stopped before the reaction section 51B, moves through the flow path 51 again by the capillary phenomenon. As a result, in each channel 51, the sample solution S moves beyond the branch portion 51A as shown in FIG. 10C, and collectively enters the plurality of reaction portions 51B. Is supplied.
  • the reagent section 54 is dissolved by the sample liquid, and a liquid phase reaction system S is established.
  • the sample solution S reacts with the reagent, and, for example, exhibits a color that is correlated with the amount of the detected component in the liquid phase reaction system, and a certain level produces a reactant corresponding to the amount of the detected component.
  • the liquid-phase reaction system of the reaction section 51B shows light transmittance (light absorption) according to the amount of the detected component.
  • the light source unit 2 shown in Fig. 1 and Fig. 2 irradiates the reaction unit 51 with light, and the amount of transmitted light at that time is measured in the light receiving unit 3.
  • the transmitted light at 3 is received for all the reaction sections 51 ⁇ set in each flow path 51 while rotating the mounting section 1 at a fixed angle. Based on the amount of received light, the sample is analyzed, for example, the concentration of the component to be detected is calculated.In the analysis method described above, the sample liquid S is guided to the vicinity of the reaction part 51 ⁇ (branch part 51 ⁇ ). Thereafter, the sample liquid S from the branching section 51A is supplied to the reaction section 51B by opening the seal section 65a. In other words, the sample liquid S can be supplied to the reaction section 51B through the plurality of flow paths 51 by opening one gas discharge port.
  • reaction start timing in the reaction section 51B can be appropriately controlled by the operation of opening the seal section 65a.
  • the sample liquid can be simultaneously introduced into the plurality of reaction sections 51B simply by opening one gas outlet. As a result, the reaction time is made uniform for each reaction section 51B and, consequently, for each microphone opening device Y, and the measurement difference can be reduced.
  • the present invention is not limited to the above-described embodiment, and various design changes are possible.
  • the present invention can be applied to a micro device having a plurality of liquid inlets as shown in FIGS.
  • the microdevice Y 'shown in these figures has a configuration in which a cover 6' and a force S are laminated on a substrate 5 'via an adhesive sheet 7'.
  • 3 ⁇ 43 ⁇ 45 ′ reacts the sample liquid and the reagent liquid with the return liquid flow path 51 a ′ and the chemical liquid flow path 51 b ′ having the liquid receiving portions 50 A and 50 B at the ends.
  • a reaction section 51B ′ for the reaction.
  • the cover 6 ' has a sample liquid inlet 61A and a chemical liquid inlet 61B.
  • the adhesive sheet 7 ' has an opening 70' formed so as to expose the two liquid receiving parts 50A and 50B.
  • a separation membrane 8 ' is fitted into the opening 7 (.
  • the sample solution and the chemical solution supplied from the sample solution inlet 61A and the reagent solution inlet 61B move in the thickness direction of the separation tube 8' to receive the liquid. Supplied to 50 A and 50 B. Thereafter, the sample solution and the chemical solution move to the reaction portion 51B 'by capillary action and react in the reaction portion 51B', and the reaction product is analyzed by an optical method.
  • the separation filter 8 ′ was arranged so as to collectively cover the two liquid receiving sections 50 ⁇ and 50 ⁇ . Separation membranes may be individually arranged for 50 mm.
  • the present invention is based on the analysis of the sample based on the reflected light from the reaction section.
  • Performing # ⁇ is also applicable. Be sure to irradiate the reaction area and measure the transmitted light. Also, it is not necessary to carry out the process individually for each reaction section, but it is also possible to perform it for multiple reaction sections at once.
  • the present invention can be applied to the case of using an analytical tool configured to move a moving component by utilizing a capillary phenomenon, the present invention is not limited to one configured to perform analysis by an optical method, Those configured to perform analysis by a method can also be used. Furthermore, the present invention can be applied to not only the method of moving a sample but also the analysis method of moving a reagent instead of a sample or moving a sample or a reagent together with a carrier liquid. Of course, it goes without saying that the present invention can be applied not only to using a micro device as an analysis tool but also to using an analysis tool having another configuration.

Abstract

 本発明は、液導入口(61)と、この液導入口(61)から導入された試料液を移動させるための1または複数の流路(51)と、液導入口(61)に供給された試料液を濾過してから1または複数の流路(51)に導入するための分離膜(8)と、を備えた分析用具(Y)に関する。この分析用具(Y)は、分離膜(8)において、この分離膜(8)の厚み方向に試料液を進行させて試料液を濾過するように構成されている。流路(51)は、たとえば毛細管現象により試料液を移動させるように構成される。

Description

明 細 書 分析用具 技術分野
本発明は、 試料液 (たとえば血液や尿)における特定成分を分析するために使用 される分析用具に関する。 背景技術
試料の分析方法としては、 たとえば試料と試薬を反応させたときの反応液を、 光学的手法により分析する方法がある。 このような手法により試料の分析を行う には、 反応場を «する分析用具が利用されている。 分析用具としては、 試 料液中の固体成分を除去してから、 試薬部に対して試料液を供給するように構成 されたものがある。 このような分析用具としては、 本願の図 13および図 14あるい は図 15および図 16に示したものがある(たとえば日本国特表 2002-508698号公報、 日本国特開平 8 -114539号公報参照)。
図 13および図 14に示した分析用具 9 Aは、 基板 90とカバー 91との間にフィルタ 92を介在させたものである。 基板 90には、 フィルタ 92を嵌め込むためのフィルタ 空戸 J?90 aが形成されている。 カバー 91には、 フィルタ 92の上方に位置するように して液体導入口 92 aが設けられている。 フィルタ空卵 0 aは、 退出領域 90 bにつ なげられている。 この分析用具 9 Aでは、 液体導入口 92 aカゝら導入された液体が フィルタ 92において固体成分が除去されてから退出領域 90 bに導入される。 一方、 図 15および図 16に示した分析用具 9 Bは、 試料受容口 93と、 測定誤差の 要因となる物質を除去するための第 1試料処理室 94と、 ブランク値を測定するた めの第 1測光室 95と、 目的物質と反応させるための試薬部が設けられた第 2試料 処理室 96と、 目的物質と試薬との反応生成物の光学的特性を測定するための第2 測光室 97と、 第 1試料処理室 94における試料受容口 93の直下領域に配置されたフ イノレタ 98と、 ポンプ接続口 99と、 を備えたものである。 この分析用具 9 Bでは、 試料液受液ロ 93から供給された試料液がフィルタ 98におレヽて固体成分が除去され てから第 1試料処理室 94に導入される。 試料液は、 分析用具 9 Bに対してポンプ 接続口 99を介してポンプを接続した上で、 ポンプの動力によって吸引することに より、各室 94〜97の間を移動させられる。
分析用具 9 A, 9 Bでは、 フィルタ 92, 98における固体成分の除去は、 主とし てフィルタ 92, 98の平面方向に試料液が進行する際に行われる。 そのため、 分析 用具 9 A, 9 Bでは、 濾過長を大きく確保できるために固体成分の除去効率が大 きくなる効果が期待される。 その反面、濾過長が大きくなることと、 フイノレタ 92, 98における試料液の滞留時間が長くなることに起因して、 固体成分を除去するの に必要な時間力長くなり、 測定時間が長くなつてしまうことが懸念される。 とく に、 毛細管力を利用して 斗液を移動させるように構成された分析用具において は、 その懸念が大きレ、。 また、 マイクロデバイスのように流路の断面寸法が小さ レ、分析用具にぉレ、ては、 試料液の粘性が高いほど微細流路内にぉレ、て毛細管力に より試料液を移動させるのが困難となるため、 その にも、 上述した懸念が大 きくなる。
一方、 分析用具 9 Bのように、 ポンプの動力を利用して試料液を移動させる構 成においては、 比較的に容易に試料液を移動させることができるため、 測定時間 に対する懸念は少ない。 しかしながら、 分析用具 9 Bを測定するための装置にポ ンプを設ける必要が生じるため、 その分だけ装置コストが高くなつてしまう。 ま た、 ポンプを使用することにより、 一回の測定で必要な測定コストも大きくなつ てしまう。 発明の開示
本発明は、 測定時間がさほど大きくなることなく、 試料液中の固体成分を除去 することができる分析用具をコスト的に^^に提供することを目的としている。 本発明においては、 液導入口と、 この液導入口から導入された試料液を移動さ せるための 1または複数の流路と、 上記液導入口に供給された試料液を濾過して 力 ら上記 1または複数の流路に導入するための分麵莫と、 を備えた分析用具であ つて、 上記分離莫において、 この分難莫の厚み方向に試料液を進行させて試料液 を濾過するように構成されていることを糊数としてレ、る。 この分析用具では、 分麵莫の厚み方向に試料液を進行させて、 試料液中の固体 成分を除去するように構成されている。 そのため、 分離奠の平面方向に試料液を 進行させる ¾ ^に比べて、 分離膜における試料液の滞留時間が短くなる。 その結 果、 試料液は分離膜にぉレヽてさほど大きな抵抗を受けることなく、 短時間で分離 膜を通過することができる。 これにより、 固体成分の除去に必要な時間を短くし、 測定時間の ィ匕を図ることができるようになる。 試料液の移動の際の抵抗が小 さくなれば、 流路内において、 毛細管現象により試料液を移動させることができ るようになる。 これにより、 ポンプの動力を利用して試料液を移動させる必要が なくなるため、分析用具を用レ、て測定を行うための装置の製造コストを低減でき、 またポンプ 力を利用する必要がない分だけ、 測定コストを小さくできるように なる。
分麵莫における移動抵抗が小さくなれば、 分析用具は、 微細流路における毛細 管現象を利用したマイク口デバイスとして構成することができる。 この^、 1 または複数の流路の主断面は、たとえば幅寸法が 10〜500/z m、深さ寸法が 5〜500 ju mであり、 力 深さ寸法/幅寸法 0. 5である矩形断面とされる。 ここで、 本発 明でいう 「主断面」 とは、 試料液の進行方向に直交する縦断面をさし、 断面形状 がー様でなレ、 にぉレ、ては、 試料液の進行させることを主目的とした部分の縦 断面をさすものとする。
流路内における試料液の移動を促進するために、 1または複数の流路の内面に は親水処理を施しておくのが好ましい。 親水化の m¾は、 たとえば流路の内面に おける糸 foRに対する翻虫角が 0〜80度、 より好ましくは O〜60度となる範囲とさ れる。
試料液としては、 たとえば尿や血液の生化学的試料力使用される。 試料液とし ては、 典型的には、 血液が使用される。
分細莫は、たとえば 1または複数の流路よりも高位置となるように配置される。 そうすれば、 分離膜の厚み方向に試料液を移動させ、 分離膜において試料液中の 固体成分を除去できるようになる。 分析用具は、 たとえば液導入口および 1また は複数の流路に連通し、 力ゝっ分繊莫を通過した試料液を するための受液部を さらに備えたものとして構成される。 この 、 分麵莫は、 受液部の底面と間隔 を隔てて配置するのが好ましい。
本発明の分析用具は、 たとえば受液部が形成された基板と、 液導入口が形成さ れたカバーと、 基板とカノく一との間に介在し、 力ゝっ分离制莫をはめ込むための貫通 孔を有する接着層と、 を備えたものとして構成される。
上記分析用具が複数の流路を備えたものとして構成する場合には、 複数の流路 は、 受液部から放射状に延びるように形成するのが好ましレヽ。
分麵莫としては、除去すべき固体成分の大きさなどに応じて選択すればよレヽが、 たとえば多孔質物質を使用することができる。 分難莫として使用できる多孔質物 質としては、 たとえば紙状物、 フォーム (発泡体)、 織布状物、 不織布状物、 編物 状物、 メンブレンフィルター、 ガラスフィルター、 あるいはゲノレ状物質が挙げら れる。 試料液として血液を用い、 分 Mlにおいて血液中の血球成分を分離する場 合には、分 «としては、その最小細孔径 (ポアサイズ:)が i〜3. 0;« mのものを使 用するのが好ましい。
分析用具は、 たとえば試料液と反応させるための試薬部力 '設けられ、 カゝっ試料 液を移動させるための複数の流路を備えたものとして構成される。 この 、 複 数の流路のうちの 2以上の流路に設けられる試薬部は、 互いに異なった試薬を含 んだものとされる。 この 、 分析用具は、 1種類の試料液から複数の項目を測 定できるように構成される。 2以上の流路における試薬部は、 同一円周上に設け られるのが好ましい。
各流路は、 ¾m部の手前において試料液の移動を停止させた後、 試薬部に試料 液が供給されるように構成するのが好ましい。 より具体的には、 たとえば上記分 析用具を流路に設定された分岐部から分岐した分岐流路をさらに備えたものとし、 分岐流路が液導入口以外の部分で外部と連通した状態とすることにより、 分岐部 におレ、て流路内での試料液の進行を停止させる一方、 流路を液導入口以外の部分 で外部と連通させることにより、 流路内において分岐部を超えて試料液を進行さ せるように構成される。 流路は、 この流路の内部の気体を排出するための気体排 出口に繋がったものとされ、 この気体排出口を開放状態とすることにより、 分岐 部を超えて試料液が移動するように構成するのが好ましレヽ。 図面の簡単な説明
図 1は、 本発明に係る分析装置および分析用具の一例の概略構成を示 式図 である。
図 2は、 図 1の Π - Π線に沿う断面図である。
図 3は、 図 1に示したマイクロデバイスの全体 #†見図である。
図 4は、 図 3に示したマイク口デバイスの^ 図である。
図 5 Αは、 図 3の Va - Va線に沿う断面図である。
図 5 Bは、 図 3の Vb - Vb線に沿う断面図である。
図 6は、 マイクロデバイスの基板の平面図である。
図 7は、 マイクロデバイスのカバーの底面図である。
図 8は、 第 1気体排出口を開放させる動作を説明するための断面図である。 図 9は、 第 2気体排出口を開放させる動作を説明するための断面図である。 図 10は、 流路における試料液の移動状態を説明するための模式図である。
図 11は、 本発明に係るマイク口デバイスの他の例を説明するための 榦 見図 である。
図 12は、 図 11に示したマイク口デバイスの断面図である。
図 13は、 従来の分析用具を説明するための要部を示す平面図である。
図 14は、 図 13の XVI - XVI線に沿う断面図である。
図 15は、 従来の分析用具の他の例を示す分解斜視図である。
図 16は、 図 15に示した分析用具の要部断面図である。 発明を実施するための最良の形態
図 1および図 2に示した分析装置 Xは、 分析用具としてのマイクロデバイス Y を装着して試料液の分析を行うためのものであり、 マイクロデバイス Yを装着す るための装着部 1、 光源部 2、 受光部 3および開漏構 4を備えている。
図 3ないし図 5に示したマイク口デバィス Yは、反応場をff共するものであり、 基板 5、 カノく一 6、 接着層 7および分謹 8を有している。
基板 5は、 透明な円盤状に形成されており、 周縁部が段下げされた形態を有し ている。 図 5 Aおよび図 6に示したように、 基板 5は、 中央部に設けられた受液 部 50と、 この受液部 50に連通し、 力 受液部 50から基板 5の周縁部に向けて ¾|f 状に延びる複数の流路 51と、 複数の凹部 52と、 複数の分岐流路 53と、 を有してい る。
受液部 50は、 マイクロデバイス Yに供給された試料液を、 各流路 51に導入する ために保持するためのものである。 受液部 50は、 基板 5の上面 5 Aにおいて、 円 形状の凹部として形成されている。
各流路 51は、 試料液を移動させるためのものであり、 受液部 50に連通するよう に基板 5の上面 5 Aに形成されている。 図 5 Aに示したように、 各流路 51は、 分 岐部 51 Aおよび反応部 51 Bを有してし、る。 各流路 51における反応部 51 Bを除いた 部分は、 略一様な矩形断面とされている。 各流路 51は、 この矩形断面の幅寸法お よび深さ寸法が、 たとえば 10〜500 u mおよび 5〜500μ ΐη、 Ψ畐寸法 Ζ高さ寸法が 0. 5以上となるように形成されてレ、る。
図 4および図 6に示した'ように、 分岐部 51Aからは、 流路 51に連通する分岐流 路 53が延出している。 分岐部 51 Αは、 反応部 51 Bに極力近い部位に設定されてお り、 分岐部 51Aと反応部 51 Bとの距離が極力小さくなるようになされている。 分 岐流路 53は、 略一様な矩形断面を有しており、 この矩形断面の寸法は、 流路の矩 形断面と同様なものとされる。
反応部 51 Bは、 流路 51の主断面よりも大きな断面積を有している。 個々の反応 部 51 Bは、 同一円周上に設けられている。 各反応部 51 Bには、 図 5 Aに示したよ うに試薬部 54が設けられている。 ただし、 試薬部 54は、 必ずしも全ての流路 51に 設ける必要はなく、 たとえば試料液の色味による影響を補正するために利用され る流路については試薬部が省略される。
試薬部 54は、 試料液が供給されたときに溶解する固体状とされており、 試料液 中の特定成分と反応して発色するものである。 本実施の形態では、 マイクロデバ イス Yにおレ、て複数の項目を測定できるように、 たとえば成分または組成の異な る複難類の試薬部 54が輔されている。
複数の凹部 52は、 後述するように反応部 51 Bに対して基板 5の上面 5 A側から 光が照射されたときに、 基板 5の下面 5 B側に透過光を出射させるための部位で ある (図 1および図 2参照) 。 各凹部 52は、 基板 5の下面 5 Bにおける反応部 51 Bに対応した部位に設けられている。 その結果、 図 6に示したように、 複数の凹 部 52は、 基板 5の周縁部において同一円周上に配置されている。
基板 5は、 たとえばポリメチルメタクリレート(PMMA)などのアタリル系樹脂の 他、ポリスチレン(PS)、ポリ力—ボネィ ト(PC)、ポリエチレンテレフタレート(PET) といった透明な樹脂材料を用いた樹脂成形により形成されている。 受液部 50、 複 数の流路 51、 複数の凹部 52、 複数の分岐流路 53は、 金型の形状を工夫することに より、 上記樹脂成形の際に同時に作り込むことができる。
受液部 50、複数の流路 51、複数の凹部 52、およ Ό ^复数の分岐流路 53の内面には、 親水処理を施しておくのが好ましい。 親水処 法としては、 公知の種々の方法 を採用することができるが、 たとえばフッ素ガスおよひ酸素ガスを含む混合ガス を、 各内面に劍虫させた後に、 水または水蒸気を各内面に ¾ させることにより 行うのが好ましい。 この方法では、 ガスや水などを用いて親水処理が行われるた め、 公知の親水処理方法である紫外線照射では困難な起立面 (流路などの側面) に対しても、 親水処理を確実に行うことができる。 各内面の Szk処理は、 たとえ ば糸 ¾7 に対する撤も角が O〜80度、 より好ましくは O〜60度となるように行われ る。
カバー 6は、 周縁部が下方に突出した円盤状に形成されている。 カバ一 6の突 出部分 60は、 基板 5における段下げされた部分に当接する部分である。 カバー 6 は、 図 5および図 7に示したように、試料液導入口 61、複数の第 1気体排出口 62、 複数の凹部 63、 共通流路 64および第 2気体排出口 65を有している。
試料液導入口 61は、 試料液を導入する際に利用されるものであり、 貫通孔とし て形成されている。 試料液導入口 61は、 図 5に良く表れているように、 カバー 6 の中央部において、 基板 5の受液部 50の直上に位置するよう形成されている。 各第 1気体排出口 62は、 流路 51内の気体を排出するためのものであり、 貫通孔 として形成されてレ、る。各第 1気体排出口 62は、図 5 Bによく表れているように、 基板 5の分岐流路 53の直上に位置するように形成されている。 その結果、 複数の 第 1気体排出口 62は、 図 4および図 7に示したように同一円周上に位置するよう に設けられている。 図 5 Bによく表れているように、 各第 1気体排出口 62は、 シ ール材 62 aにより上部開口が塞がれている。 シール材 62 aは、 ァノレミニゥムなど の金属により、 あるいは樹脂により形成することができる。 シーノレネオ 62 aは、 た とえば接着材を用いて、 あるいは融着により St反 5に固定されている。
複数の凹部 63は、 後述するように反応部 51 Bに対してカバー 6の上面 6 A側か ら光を照射するための部位である(図 1および図 2参照)。 各凹部 63は、 図 5 Aに 示したように、 カバ一 6の上面 6 Aにおいて反応部 51 Bの直上に位置するように 設けられている。 その結果、 図 4および図 7に示したように、 複数の凹部 63は、 カバー 6の周縁部において同一円周上に配置されている。
共通流路 64は、 流路 51内の気体を外部に排出する際に、 第 2気体排出口 65に気 体を導くための流路となるものである。 共通流路 64は、 図 5および図 7に示した ように、 カバ一 6の下面 6 Bの周縁部において、 環状の凹部として形成されてい る。 共通流路 64は、 図 5 Aおよび図 6に示したように、 基板 5の複数の流路 51と 連通している。
第 2気体排出口 65は、 図 5 Aおよび図 7に示したように共通流路 64に連通する 貫通孔として形成されている。 第 2気 #¾出口 65の上部開口は、 シール材 65 aに よって塞がれている。 シール材 65 aとしては、 第 1気 f林出口 62を塞ぐためのシ —ル材 62 aと同様なものを使用することができる。
カバー 6は、 基板 5と同様に透明な樹脂材料を用いた樹脂成形により形成する ことができる。 試料液導入口 61、 複数の第 1気体排出口 62、 複数の凹部 63、 共通 流路 64および第 2気体排出口 65は、 上記樹脂成形の際に同時に作り込むことがで きる。 カバー 6についても、 少なくとも基板 5の流路 51を臨む部分に親水処理を 施しておくのが好ましレヽ。 親水処理の方法にっレヽては、 基板 5に対する親水処理 方法と同様な手法を採用することができる。
接着層 7は、 図 5に良く表れているように、 基板 5に対してカバー 6を接合す る役割を果たしている。 図 4および図 5に示したように、 接着層 7は、 中央部に 貫通孔 70を備えた接着シートを、 基板 5とカバー 6との間に介在させることによ り形成されている。 接着層 7の貫通孔 70の径は、 基板 5の受液部 50やカバー 6の 試料液導入口 61の径ょりも大きくされてレヽる。 接着シートとしては、 たとえば基 材の両面に接着層を形成したものを使用することができる。
分 «8は、 試料液中の固体成分、 たとえば血液中の血球成分を分離するため のものである。 分繊莫 8は、 図 5に示したように、 接着層 7の貫通孔 70の径に対 応した径を有しており、 接着層 7の貫通孔 70に嵌まり込むようにして、 基板 5の 受液部 50とカバー 6の辦斗液導入口 61との間に介在させられている。受液部 50は、 凹部として形成されていることから、 分繊莫 8は、 受液部 50の底面に対して間隔 を隔てて配置されている。 分離膜 8の径が受液部 50の径ょりも大きな貫通孔 70の 径に対応してレ、ることから、 各流路 51における受液部 50に近レ、部位は分繊莫 8に よって覆われている。 このように分議莫 8を配置することにより、 試料液導入口 61から導入された試料液は、 分麵莫 8の厚み方向に透過してから受液部 50に到達 することとなる。
分麵莫 8としては、 たとえば多孔質物質を使用することができる。 分難莫 8と して使用できる多孔質物質としては、 たとえば糸氏状物、 フォーム (発泡体)、 織布 状物、 不織布状物、 編物状物、 メンブレンフィルタ一、 ガラスフィルタ一、 ある いはゲル状物質が挙げられる。 試料液として血液を用い、 分繊莫 8において血液 中の血球成分を分離する には、 分繊莫 8として、 最小細孔径 (ポアサイズ:)が 0. 1〜3. 0 μ πιのものを使用するのが好ましい。 '
図 1および図 2に示した装着部 1は、 マイク口デバイス Υを保持するための凹 部 10を有している。 装着部 1には、 光 ¾|領域 11が設定されている。 この光 ¾ 領域 11は、 凹部 10にマイクロデバイス Yを装着したときに反応部 51 Bに対応する 部位に設けられている。 この光透過領域 11は、 装着部 1の目的部位を透明樹脂な どの透明材料により構成することにより形成されている。 もちろん、 装着部 1の 全体を透明な材料により形成してもよい。 装着部 1は、 回転軸 12により支持され ており、 この回転軸 12を回転させることにより、 装着部 1が回転するように構成 されてレ、る。 回転軸 12は、 図外の駆動機構に連結されており、 マイクロデバイス Yにおける反応部 51 Bの配置ピッチに対応した角度ずつ回転するように制御され る。
光源部 2は, マイクロデバイス Yの反応部 51 Bに対して光を照射するためのも のであり、 カバー 6の凹部 63に対向しうる部位に固定されている。 光源部 2は、 たとえば水銀ランプや白色 LEDにより構成される。これらの光源を用いる;^には、 図面上は省略しているが、 光源部 2からの光をフィルタに入射させてから、 反応 部 51 Bに光が照射される。 これは、 フィルタにおいて、 反応液中の分析交豫成分 の光吸収特性に則した波長の光を選択するためである。
受光部 3は、 反応部 51 Bを透過した光を受光するためのものであり、 光源部 2 と同軸上において、 基板 5の凹部 52に対向しうる部位に固定されている。 この受 光部 3での受光量は、 試料液を分析 (たとえば濃度演算)する際の基礎とされる。 受光部 3は、 たとえばフォトダイオードにより構成される。
開 構 4は、 シール部 62 aに開孔を形成するための第 1開孔形成要素 41と、 シール部 65 aに開孔を形成するための第 2開孔形成要素 42と、 を有している。 こ れらの開孔形成要素 41, 42は、 図外のァクチユエータによって上下方向に往復移 動可能とされている。
第 1開孔形成要素 41は、 円盤状の基板 41 aの下面から、 複数の針状部 41 bが下 方に向けて突出したものである。 図 8に示すように、 各針状部 41 bは、 その径が カバー 6における第 1気体排出口 62の径よりも小さいものとされている。 個々の 針状部 41 bは、 第 1気体排出口 62の配置に対応して、 同一円周上に配置されてい る。 このため、 第 1開孔形成要素 41の各針状部 41 bと、 カバー 6の第 1気体排出 口 62とが位置合わせされた状態で第 1開孔形成要素 41を下動させれば、 複数のシ ール部 62 aに対して一括して開孔を形成することができる。 これにより、 各第 1 気体排出口 62が開放し、 各流路 51の内部が分岐流路 53および第 1気体排出口 62を 介して、 外部と連通した状態とされる。
第 2開孔形成要素 42は、 図 1および図 9に示したように針状部 42 aを有してい る。 針状部 42 aの径は、 カバー 6における第 2気体排出口 65の径ょりも小さくさ れている。 このため、 第 2開孔形成要素 42の各針状部 42 aと、 カバー 6の第 2気 出口 65と力 S位置合わせされた状態で第 2開孔形成要素 42を下動させれば、 シ ール部 65 aに対して開孔を形成することができる。 これにより、 第 2気体排出口 65が開放し、 各流路 51の内部が共通流路 64および第 2気体排出口 65を介して、 外 部と連通した状態とされる。
もちろん、 各第 1および第 2気体排出口 62, 65を開放させる方法は、 上述した 例には限定されない。 たとえば、 シート部材 62 a , 65 aにエネルギを付与してシ 一ト部材 62 a , 65 aを溶融または変形させて第 1および第 2気体排出口 62, 65を 開放してもよい。 エネルギの付与は、 レーザなどの光源、 超音波発信器あるいは 発熱体などを用いることもできる。 もちろん、 シート部材 62 a, 65 aを引き剥が すことにより、 気体排出口 62, 65を開 ¾rfるようにしてもよレ、。
試料液の分析時には、 図 5に示したように、 マイクロデバイス Υに対して、 試 料導入口 61を介して試料液 Sを供給する必要がある。 試料液 Sの供給は、 分析装 置 Xにマイク口デバイス Υを装着した状態で行ってもよいが、 予めマイクロデバ イス Υに試料液 Sを供給しておいた上で、 その後に分析装置 Xにマイクロデバイ ス Υを装着するのが好ましい。
マイクロデバイス Υに対して試料液 Sを供給した:^には、 試料液 Sは、 図 5 カゝら予想されるように分麵莫 8の厚み方向に ¾1して受液部 50に到 る。 この とき、 試料液 S中の固体成分が除去される。 たとえば試料液として血液を使用す る には、 血液中の血球成分が除去される。 試料液 Sの供給時には、 第 1およ び第 2気体排出口 62, 65が閉鎖されているので、図 10Aに模式的に示したように、 試料液 Sは受液部 50に保持され、 流路 51内には導入されなレヽ。
本実施の形態にぉレ、ては、 分謹 8の厚み方向に試料液を移動させて固体成分 を除去するように構成されている。 そのため、 試料液を分鹏莫 8の平面方向に移 動させて固体成分を除去する^に比べれば、 分麵莫 8における試料液の滞留時 間が短くなる。 そのため、 固体成分を除去するために必要な時間が短くなる。 流路 51内に試料液 Sを導入する場合には、 複数のシール部 62 aに対して同時に 開孔を形成すればよレ、。 複数のシール部 62 aに対する開孔の形成は、 図 8に示し たように第 1開孔形成要素 41を下動させて各シール部 62 aに針状部 41 bを差し込 んだ後、 第 1開孔形成要素 41を上動させて各シール部 62 aカゝら針状部 41 bを抜く ことにより行われる。 これにより、 複数のシール部 62 aに対して同時に開孔が形 成される。 第 1開孔形成要素 41の下動および上動は、 たとえば使用者が操作スィ ツチを操作することにより、 分析装置 Xにおいて自動的に行われる。
シール部 62 aに開孔を形成した:^には、 流路 51の内部が第 1気体排出口 62お よび分岐流路 53を介して連通する。 したがって、 受液部 50に保持された試料液 S は、 毛細管現象により流路 51の内部を移動する。 図 10Aに矢印で示したように、 分岐部 51 Aに至った試料液 Sは、 分岐部 51 Aを超えて反応部 51 Bに到^ Tること ができず、 分岐流路 53に導入される。 これにより、 図 10 Bに模式的に示したよう に、 反応部 51 Bのごく近傍に試料液 Sが する状態が達成され、 反応部 51 Bに おいて試料液 Sと試薬とを反応させるための «が終了する。
—方、 試料液 Sを反応部 51 Bに供給する齢には、 シール部 65 aに開孔を形成 すればよレ、。 シール部 65 aに対する開孔の形成は、 図 9に示したように第 2開孔 形成要素 42を下動させてシール部 65 aに針状部 42 aを差し込んだ後、 第 2開孔形 成要素 42を上動させてシール部 65 aから針状部 42 aを抜くことにより行われる。 第 2開孔形成要素 42の下動および上動は、 たとえば使用者が操作スィッチを操作 することにより、 分析装置 Xにおレ、て自動的に行われる。
シール部 65 aに開孔を形成した場合には、 流路 51の内部が第 2気体排出口 65お よび共通流路 64を介して連通する。 したがって、 反応部 51 Bの手前で移動力 S停止 された試料液 Sは、 再び毛細管現象により流路 51を移動する。 これにより、 各流 路 51にお ヽては、 図 10 Cに示したように分岐部 51 Aを超えて試料液 Sが移動し、 複数の反応部 51 Bに対して一括して試料液 Sが供給される。
反応部 51 Bでは、 試料液により試薬部 54が溶解させられて液相反応系力 S構築さ れる。 これにより、 試料液 Sと試薬が反応し、 たとえば液相反応系力試料中の被 検知成分の量に相関した呈色を示し、 あるレヽは被検知成分の量に応じた反応物が 生成する。 その結果、 反応部 51 Bの液相反応系は、 被検知成分の量に応じた透光 性 (光吸収 を示すこととなる。 反応部 51 Bへの試; ^共給から一定時間経過し 場合には、 図 1および図 2に示した光源部 2により反応部 51 Βに光を照射し、 そ のときの透過光量が受光部 3において測定される。 光源部 2による光照射および 受光部 3での透過光の受光は、 装着部 1を一定角度ずつ回転させつつ、 各流路 51 に設定された全ての反応部 51 Βに対して行われる。 分析装置 Xでは、 受光部 3で の受光量に基づいて、 試料の分析、 たとえば被検知成分の濃度演算が行われる。 以上に説明した分析手法では、 反応部 51 Βの近傍 (分岐部 51 Α)まで試料液 Sを 導レ、た後、 シール部 65 aを開孔することよつて分岐部 51 Aからの試料液 Sを反応 部 51 Bに供給するようになされている。 つまり、 1つの気体排出口を開放するだ けで、 複数の流路 51におレ、て、 反応部 51 Bに対して試料液 Sを供給することがで きる。 したがって、 試料液 Sの供給開始操作 (シール部 65 aの開孔)から反応部 51 Bに試料液 Sが供給されるまでの時間が短くなつて、 各流路 51毎、 ひいては各回 の測定毎 (各分析用具毎)の供給開始操作から試料の供給までに要する時間のバラ ツキが小さくなる。 つまり、 反応部 51 Bでの反応開始タイミングを、 シール部 65 aの開孔という動作によって適切に制御できるようになる。 とくに、 本実施の形 態では、 1つの気体お出口を開放するだけで、 複数の反応部 51 Bに対して同時的 に試料液を導入することができるようになる。 その結果、 各反応部 51 B、 ひいて は各マイク口デバイス Y毎に反応時間を画一化し、 測^差を小さくできるよう になる。
もちろん、 本発明は上述した実施の形態には限定されず、 種々に設計変更が可 能である。 たとえば、 本発明は、 図 11および図 12に示したような複数の液導入口 を有するマイクロデバイスについて適用することができる。 これらの図に示した マイクロデバイス Y' は、 基板 5 ' に対して接着シート 7 ' を介してカバー 6 ' 力 S積層された構成を有している。 ¾¾ 5' は、 端部に受液部 50A, 50Bが設けら れた歸液用の流路 51 a ' およひ 薬液用の流路 51 b ' と、 試料液と試薬液とを 反応させるための反応部 51 B' と、 を有している。 カバー 6 ' は、 試料液導入口 61 Aおよひ ¾薬液導入口 61 Bを有している。 接着シート 7 ' は、 2つの受液部 50 A, 50Bを露出させるようにして形成された開口部 70' を有している。 この開口 部 7( には、 分離膜 8 ' が嵌め込まれている。
この分析用具 Y' では、 試料液導入口 61 Aおよひ試薬液導入口 61 Bから供給さ れた試料液およひ 薬液は、 分觸莫 8 ' の厚み方向に移動して受液部 50 A, 50 B に供給される。その後、試料液およひ ¾薬液は、毛細管現象によって反応部 51 B' に移動して反応部 51 Β' において反応し、 その反応生成物が光学的手法によって 分析される。
図 11および図 12に示した分析用具 Y' においては、 2つの受液部 50Α, 50Βを —括して覆うようにして分繊莫 8 ' が配置されていたが、 各受液部 50Α, 50Βに 対して個別に分離膜を配置してもよレ、。
本実施の形態では、 反応部に照射したときの透過光に基づレ、て分析を行う を例にとつて説明したが、 本発明は反応部からの反射光に基づレヽて試料の分析を 行う # ^にも適用可能である。 反応部への光照射および透過光の測定は、 必ずし も個々の反応部に対して個別に行う必要はなく、 複数の反応部に対して一括して 行ってもよレヽ。
本発明は、 毛細管現象を利用して移動成分を移動させる構成の分析用具を用い る場合に適用できるため、 光学的手法により分析を行うように構成されたものに 限らず、 電気ィ匕学的手法により分析を行うように構成されたものを用いることも できる。 さらには、 試料を移動させる^^のみならず、 試料に代えて試薬を移動 させ、 あるいはキヤリァ液とともに試料や試薬を移動させる分析手法にも適用す ることができる。 もちろん、 分析用具としてマイクロデバイスを使用する^に 限らず、 その他の構成の分析用具を使用する にも本発明を適用できるのはレヽ うまでもない。

Claims

請 求 の 範 囲
1 . 液導入口と、 この液導入口から導入された試料液を移動させるための 1また は複数の流路と、 上記液導入口に供給された試料液を濾過してから上記 1または 複数の流路に導入するための分麵莫と、 を備えた分析用具であって、
上記分調莫におレ、て、 この分謹の厚み方向に試料液を進行させて試料液を濾 過するように構成されていることを特徴とする、 分析用具。
2 . 上記流路は、 毛細管現象により試料液を移動させるように構成されてレ、る、 請求項 1に記載の分析用具。
3 . 上記試料液は、 血液であり、
上記分麵莫は、 血液中の血球成分を分離するように構成されている、 請求項 1に記載の分析用具。
4 . 上記分雕莫は、最小細孔径が0. 1〜3. 0 !!1の多孔質膜でぁる、請求項 3に記載 の分析用具。
5 . 上記分讓は、 上記流路よりも高位置に配置されている、 請求項 1に記載の 分析用具。
6 . 上記液導入口および上記流路に連通し、 力 上記分離膜を通過した試料液を 保持するための受液部をさらに備えており、
上記分麵莫は、 上記受液部の底面と間隔を隔てて配置されている、 請求項 5 に記載の分析用具。
7 . 上記受液部が形成された基板と、
上記液導入口が形成されたカバーと、
上記基板と上記カバーとの間に介在し、 カゝっ上記分離膜をはめ込むための貫 通孔を有する接着層と、
を備えている、 請求項 6に記載の分析用具。
8 . 上記複数の流路は、 上記受液部から放射状に延びている、 請求項 6に記載の 分析用具。
9 . 上記複数の流路のうちの 2以上の流路には、 試料液と反応させるための試薬 部が設けられており、 力つ上記 2以上の流路に設けられる試薬部は、 互いに異な つた試薬を含んでおり、
1種類の試料液から複数の項目を測定できるように構成されている、 請求項 1に記載の分析用具。
10. 上記 2以上の流路における試薬部は、 同一円周上に設けられている、 請求項 9に記載の分析用具。
11. 上記 2以上の流路は、 上記試薬部の手前にぉレヽて試料液の移動を停止させた 後、 上記試薬部に試料液が供給されるように構成されている、 請求項 9に記載の 分析用具。
12. 上記流路に設定された分岐部から分岐した分岐流路をさらに備えており、 上記分岐流路が上記液導入口以外の部分で外部と連通した状態とすることによ り、 上記分岐部において上記流路内での試料液の進行を停止させる一方、 上記流 路を上記液導入口以外の部分で外部と連通させることにより、 上記流路内におい て上記分岐部を超えて試料液を進行させるように構成されている、 請求項 11に記 載の分析用具。
13. 上記流路は、 この流路の內部の気体を排出するための気体排出口に繋がって おり、 この気体排出口を開放状態とすることにより、 上記分岐部を超えて試料液 が移動するように構成されている、 請求項 12に記載の分析用具。
14. 上記流路の主断面は、 幅寸法が 10〜500 /z m、深さ寸法力 ¾〜500 /z mであり、 か つ、深さ寸法 Z幅寸法 0. 5である矩形断面とされている、請求項 1に記載の分析 用具。
15. 上記流路の内面には、親水処理力 S施されている、請求項 1に記載の分析用具。
16. 上記流路の内面は、 に対する翻虫角が 0〜80度となるように形成されて レ、る、 請求項 15に記載の分析用具。
PCT/JP2003/012295 2002-09-26 2003-09-25 分析用具 WO2004029619A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/529,120 US7850909B2 (en) 2002-09-26 2003-09-25 Analytical tool
AU2003266637A AU2003266637A1 (en) 2002-09-26 2003-09-25 Analyzing tool
EP03798513A EP1548433B1 (en) 2002-09-26 2003-09-25 Analyzing tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-281101 2002-09-26
JP2002281101A JP4210783B2 (ja) 2002-09-26 2002-09-26 分析用具

Publications (1)

Publication Number Publication Date
WO2004029619A1 true WO2004029619A1 (ja) 2004-04-08

Family

ID=32040500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012295 WO2004029619A1 (ja) 2002-09-26 2003-09-25 分析用具

Country Status (6)

Country Link
US (1) US7850909B2 (ja)
EP (1) EP1548433B1 (ja)
JP (1) JP4210783B2 (ja)
CN (1) CN100554961C (ja)
AU (1) AU2003266637A1 (ja)
WO (1) WO2004029619A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4262466B2 (ja) 2002-10-28 2009-05-13 アークレイ株式会社 分析用具および分析装置
JP4504289B2 (ja) * 2004-09-27 2010-07-14 シチズンホールディングス株式会社 バイオセンサ
CN101233412B (zh) 2005-07-29 2011-10-19 爱科来株式会社 分析用具
WO2011131471A1 (de) 2010-04-23 2011-10-27 Boehringer Ingelheim Microparts Gmbh Vorrichtung zur plasmaseparation mittels einer zentralen kanalstruktur
BR112014017854A8 (pt) * 2012-01-24 2017-07-11 Koninklijke Philips Nv Cartucho para processar um fluido
JP7227039B2 (ja) * 2019-03-13 2023-02-21 日東電工株式会社 流路、測定用テープ、及び測定装置
JP7227040B2 (ja) * 2019-03-13 2023-02-21 日東電工株式会社 測定装置、流路、測定用テープ、及び測定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269240A1 (en) 1986-10-29 1988-06-01 Biotrack, Inc. Blood separation device under low pressure conditions
US4933092A (en) 1989-04-07 1990-06-12 Abbott Laboratories Methods and devices for the separation of plasma or serum from whole blood
JPH08114539A (ja) * 1994-08-25 1996-05-07 Nihon Medi Physics Co Ltd 体液成分分析器具および分析方法
JPH1010125A (ja) * 1996-05-09 1998-01-16 Syntron Biores Inc 全血の一工程アッセイ方法および装置
DE10013242A1 (de) 1999-03-17 2000-11-16 Hitachi Ltd Chemisches Analysegerät und chemisches Analysesystem
JP2002508698A (ja) * 1997-08-25 2002-03-19 バイオサイト・ダイアグノスティックス・インコーポレーテッド 流体サンプルを濾過するためのフィルタを組み込んだ装置
US20020047003A1 (en) 2000-06-28 2002-04-25 William Bedingham Enhanced sample processing devices, systems and methods
JP2002202310A (ja) * 2000-10-27 2002-07-19 Morinaga Milk Ind Co Ltd 物質の検出試薬及び検出方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1333850C (en) 1987-08-27 1995-01-10 Michael M. Gorin Apparatus and method for dilution and mixing of liquid samples
US4868129A (en) * 1987-08-27 1989-09-19 Biotrack Inc. Apparatus and method for dilution and mixing of liquid samples
JPH0359457A (ja) 1989-07-27 1991-03-14 Terumo Corp 試験具
US5460974A (en) * 1992-10-13 1995-10-24 Miles Inc. Method of assaying whole blood for HDL cholesterol
EP0764266A4 (en) 1994-06-06 1998-08-05 Abay Sa MODIFIED SIPHONE TO IMPROVE DOSING ACCURACY
JPH08105901A (ja) 1994-10-06 1996-04-23 Nittec Co Ltd 自動分析装置
JPH10513259A (ja) 1995-01-25 1998-12-15 セラコス・インコーポレイテッド 使い捨て溶血検出器
JP3881731B2 (ja) 1996-04-19 2007-02-14 征夫 軽部 酵素反応センサー及びその製造方法
US6391265B1 (en) 1996-08-26 2002-05-21 Biosite Diagnostics, Inc. Devices incorporating filters for filtering fluid samples
JP2953418B2 (ja) 1997-01-09 1999-09-27 日本電気株式会社 生化学分析装置
JPH10206417A (ja) 1997-01-24 1998-08-07 Advance Co Ltd 血液化学分析材料及び血液化学分析方法
US6632399B1 (en) * 1998-05-22 2003-10-14 Tecan Trading Ag Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system for performing biological fluid assays
JP3648081B2 (ja) 1999-01-04 2005-05-18 テルモ株式会社 体液成分測定具
ATE408372T1 (de) * 1999-01-04 2008-10-15 Terumo Corp Landzettenanordnung zur entnahme und zum nachweis von körperflüssigkeiten
JP2001050952A (ja) 1999-08-12 2001-02-23 Kunimune Kogyosho:Kk 血漿分離回収方法及びそのための器具
US20010028862A1 (en) * 2000-01-21 2001-10-11 Kenji Iwata Test device for a multi-items test and the method for producing the same as well as a measuring instrument for the test device
JP2002071684A (ja) 2000-08-25 2002-03-12 Wako Pure Chem Ind Ltd 多項目生体成分測定用試験具及びその製造方法
US6615856B2 (en) * 2000-08-04 2003-09-09 Biomicro Systems, Inc. Remote valving for microfluidic flow control
JP3510597B2 (ja) 2001-02-09 2004-03-29 俊逸 通木 血液分離装置及び血液検査方法
JP4797196B2 (ja) 2001-02-14 2011-10-19 株式会社 フューエンス マイクロチップ
JP4262466B2 (ja) * 2002-10-28 2009-05-13 アークレイ株式会社 分析用具および分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269240A1 (en) 1986-10-29 1988-06-01 Biotrack, Inc. Blood separation device under low pressure conditions
US4933092A (en) 1989-04-07 1990-06-12 Abbott Laboratories Methods and devices for the separation of plasma or serum from whole blood
JPH08114539A (ja) * 1994-08-25 1996-05-07 Nihon Medi Physics Co Ltd 体液成分分析器具および分析方法
JPH1010125A (ja) * 1996-05-09 1998-01-16 Syntron Biores Inc 全血の一工程アッセイ方法および装置
JP2002508698A (ja) * 1997-08-25 2002-03-19 バイオサイト・ダイアグノスティックス・インコーポレーテッド 流体サンプルを濾過するためのフィルタを組み込んだ装置
DE10013242A1 (de) 1999-03-17 2000-11-16 Hitachi Ltd Chemisches Analysegerät und chemisches Analysesystem
US20020047003A1 (en) 2000-06-28 2002-04-25 William Bedingham Enhanced sample processing devices, systems and methods
JP2002202310A (ja) * 2000-10-27 2002-07-19 Morinaga Milk Ind Co Ltd 物質の検出試薬及び検出方法

Also Published As

Publication number Publication date
JP4210783B2 (ja) 2009-01-21
CN100554961C (zh) 2009-10-28
JP2004117178A (ja) 2004-04-15
CN1685231A (zh) 2005-10-19
US20060045799A1 (en) 2006-03-02
AU2003266637A1 (en) 2004-04-19
EP1548433B1 (en) 2012-11-07
EP1548433A4 (en) 2010-10-20
US7850909B2 (en) 2010-12-14
EP1548433A1 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP4262466B2 (ja) 分析用具および分析装置
JP3739537B2 (ja) 光学的分析装置用測定チップ
EP2822689B1 (en) Micro-tube particles for microfluidic assays and methods of manufacture
US7311881B2 (en) Chips, and apparatus and method for reaction analysis
DK1458483T3 (en) flow chamber
US20140176939A1 (en) Microcuvette cartridge
KR102287272B1 (ko) 검사장치 및 그 제어 방법
US20070207057A1 (en) Analyzer, Method for Specifying Reaction Vessel in Analyzer, and Analytical Apparatus
US20060018798A1 (en) Liquid filtering instrument and dry type analysis device
KR20160018200A (ko) 미세유동장치
JP4308231B2 (ja) 測光による面内検出
JP2006105638A (ja) 化学分析装置
KR20150101308A (ko) 미세유동장치 및 이를 포함하는 미세유동시스템
WO2004029619A1 (ja) 分析用具
JP5255628B2 (ja) 微細流路および分析用具
CN112423884A (zh) 用于接收、排出和移动流体的流体系统,在流体系统中处理流体的方法
KR20160056196A (ko) 검사장치 및 그 제어방법
CN115400818A (zh) 样品架
JP2009041984A (ja) 分析装置、分析用具、および光学検知システム
JP2012198050A (ja) マイクロチップ、サンプル液供給装置、サンプル液供給方法及び分析装置
US11331661B2 (en) Fluid analysis cartridge, and fluid analysis apparatus including same
CN212189148U (zh) 微流控芯片、检测装置
CN112023990B (zh) 一种微流控检测芯片及制造方法
US20220323951A1 (en) Extraction device and test system
JP2009014636A (ja) 検体分析方法、分光光度測定方法、検査装置および検査チップ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006045799

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529120

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038230860

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003798513

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003798513

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10529120

Country of ref document: US