WO2004045072A1 - Step attenuator and method using frequency dependent components - Google Patents

Step attenuator and method using frequency dependent components Download PDF

Info

Publication number
WO2004045072A1
WO2004045072A1 PCT/US2003/035600 US0335600W WO2004045072A1 WO 2004045072 A1 WO2004045072 A1 WO 2004045072A1 US 0335600 W US0335600 W US 0335600W WO 2004045072 A1 WO2004045072 A1 WO 2004045072A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency dependent
signals
dependent component
filter
Prior art date
Application number
PCT/US2003/035600
Other languages
French (fr)
Inventor
Ahmet Burak Olcen
Henry Pixley
Original Assignee
John Mezzalingua Associates, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by John Mezzalingua Associates, Inc. filed Critical John Mezzalingua Associates, Inc.
Priority to AU2003291375A priority Critical patent/AU2003291375A1/en
Priority to BR0307610-5A priority patent/BR0307610A/en
Publication of WO2004045072A1 publication Critical patent/WO2004045072A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1791Combined LC in shunt or branch path

Definitions

  • This invention relates generally to the field of radio frequency signal transmission over a cable system, and more particularly to attenuating electrical signals over a predetermined frequency range to balance signals in both the forward path and return path.
  • Diplex filters for example, have been used for processing both the forward and return paths in CATV communication systems.
  • U.S. Patent No. 5,745,838 to Tresness et al. discloses a special form of diplex filter including fixed-value resistors in a TEE or PI configuration which attenuates signals in the return path by a predetermined amount.
  • the fixed resistors providing the attenuation operate, of course, independently of frequency.
  • the present invention is directed to circuit and methods for effecting step attenuation of return path, or both forward and return path signals in two way communication systems through the use of a return path filter network having only frequency dependent components.
  • the invention provides a number of advantages over prior art circuits which perform this function using a fixed resistors. Such advantages include: reducing the number of circuit components, reducing filter size and cost, and/or increasing the filter's electric surge and power handling capabilities.
  • a filter circuit directed primarily to use in the CATV industry includes at least one frequency dependent component, such as an RP choke, capacitor, or inductor, for attenuating signals over at least a portion of the frequency range of signals which pass through the filter.
  • RP choke RP choke
  • capacitor or inductor
  • signals are transmitted and received in both forward and return paths at each end of a multi-channel, two-way communication system.
  • Signals in the frequency range of the return path, or of both paths are attenuated by a desired amount, which amount is essentially constant over the frequency range of attenuation.
  • the circuit component providing the attenuation is frequency dependent, thus providing a number of advantages such as reducing the number of circuit components, reducing filter size and cost, and/or increasing electric surge and power handling capabilities of the filter.
  • a filter circuit through which electrical communication signals of a first range of frequencies pass comprises at least one frequency dependent component which attenuates the signals by a predetermined, substantially constant level signals having frequencies within the first range.
  • a filter assembly for use in CATV applications includes a printed circuit board having opposite, planar surfaces; a filter circuit composed of a plurality of surface mount components mounted upon each of the surfaces, wherein the filter circuit includes a first plurality of components establishing a predetermined range of signal frequencies which pass through the circuit; a housing within which the circuit board is positioned; and at least one frequency dependent component establishing a predetermined level of attenuation of signal frequencies within the predetermined range.
  • a method of attenuating electrical communications signals over a predetermined range of frequencies which pass through a filter circuit includes the step of including within the circuit at least one frequency dependent component having a value appropriate to providing a predetermined level of attenuation over the range.
  • the filter apparatus of the invention includes input and output ends connected, for example, to the head end and subscriber terminal, respectively, of a cable television system, as well as the usual forward and return communication paths.
  • the filter's forward path includes series-connected capacitors, as in the prior art, providing a high pass filter for passing signals above a predetermined frequency, e.g., RF television signals, to the subscriber end.
  • the invention is based on designing the return path filter network using frequency dependent components to provide a desired amount of signal attenuation.
  • electromagnetic RF chokes replace traditional, fixed- value resistors and associated inductors, thus providing the desired attenuation while realizing the aforementioned improvements over corresponding, prior art filters.
  • the RF chokes provide a combined response having both inductance and impedance characteristics, which is frequency dependent, as opposed to the purely resistive, frequency independent response of the prior art return path filters.
  • the amount of flat loss as well as optimization of overall network performance can be achieved.
  • FIG. 1 shows an electrical schematic of a circuit embodying the filter of the invention to provide attenuation of return path or, with proper selection of component values, both forward and return path signals.
  • Fig. 2 shows a graph showing a typical attenuation/frequency relationship, or insertion loss, of the filter of Fig. 1.
  • FIG. 3 is an exploded perspective view showing a typical embodiment of a filter assembly including a circuit embodying the present invention.
  • Figs. 4a and 4b are plan views of opposite sides of a circuit board showing a typical layout of components which embody the circuit of the invention.
  • Fig. 5 is an electrical schematic of an alternate embodiment of the circuit of the invention.
  • Fig. 6 is a graph showing a typical attenuation/frequency relationship of the circuit of Fig. 5.
  • a filter circuit denoted generally by reference numeral 10 connected on one side to forward path signal source 12 and to data receiver 14 is shown. At the other side, filter 10 is connected to forward path signal receiver 16 and to return path signal source 18.
  • forward path signal source 12 may be the head end of a CATV system and receiver 16 may be a television receiver
  • return path signal source 18 may be a subscriber terminal transmitter (e.g., set- top addressable converter) obtained from the cable service provider, and receiver 14 an appropriate device for receiving and processing signals from source 18.
  • Filter 10 includes one branch 20 having series-connected capacitors Cl, C3 and C5, with inductors LI and L2 connected in parallel on opposite sides of capacitor C3.
  • Capacitor C2 is connected in parallel with capacitor C3 and is connected, together with inductor LI, to ground at 22.
  • the values of capacitors Cl, C2, C3 and C5 and inductors LI and L2 are chosen to form a filter which passes signals in the frequency range (e.g., 50 to 1,000 MHz) of forward path communication, i.e., the range of signals emanating from source 12 and received by receiver 16.
  • a second branch 24 includes series connected inductors L3 and L4 which, together with capacitors C6 and C7, respectively, provide a filter limiting the frequency band of signals carried by branch 24, i.e., the return path signals, to the desired frequency range, e.g., 5 to 40 MHz.
  • capacitors C6 and C7 Interposed between the connections of capacitors C6 and C7 to branch 24 are the circuit components providing attenuation of return path signals, namely, RF chokes RFCl, RFC2 and RFC3.
  • Capacitor C4 is also incorporated in the attenuation circuit to allow power to pass; that is, the presence of capacitor C4 prevents the grounding of all power.
  • the RF chokes have both impedance and inductance characteristics, and are frequency dependent. That is, the amount of attenuation introduced by the RF chokes is a function of frequency. Inductors and capacitors are other examples of frequency dependent components, whereas the fixed resistors used to provide attenuation of signals in prior art two-way communication systems are frequency independent.
  • a frequency dependent component to provide the desired attenuation permits replacement of two components (e.g., a fixed resistor and inductor typically used in prior art step attenuators) with a single component, such as an RF choke.
  • the number and electrical values of RF chokes and manner of connection in branch 24 is a function of the desired amount of attenuation over the frequency band established by inductor/capacitor pairs L3-C6 and L4-C7 and may be calculated by well known techniques.
  • Fig. 2 provides a graphical depiction of the frequency/attenuation relationship of the circuit of Fig. 1.
  • Signals in the 5 - 40 MHz range i.e., return path signals, are attenuated by a substantially uniform 10 decibels, while signals above the 50 MHz level experience little or no attenuation. This effect is achieved with a circuit which is typically smaller and less expensive than prior art circuits providing the same attenuation effects.
  • a filter assembly incorporating the invention in a typical, physical embodiment is shown.
  • the circuit shown schematically in Fig. 1, or other circuit configuration of the invention is formed by surface-mount components on both surfaces of printed circuit board 26, together with the electrical paths (traces) on the board interconnecting such components with one another and the input, output and grounding contacts.
  • Female and male connectors 28 and 30, respectively are connected both mechanically and electrically in the usual manner to circuit board 26.
  • Board 26 is positioned within a housing consisting of two members 32 and 34 which are mutually assembled and held in permanently engagement by means of solder preform 36. The interior of the housing is sealed against entry of moisture and foreign matter, and the connectors are insulated from the housing, by seal 38 and insulators 40 and 42.
  • Figs. 4a and 4b provide an illustration of a typical layout of surface-mount components on opposite surfaces 26 A and 26B of circuit board 26.
  • the circuit formed by capacitors C1-C6 and inductors L1-L6 on surface 4b and capacitor C7 and inductors L7, L8 and L9 on surface 4a is another example of the circuit of the invention.
  • the components indicated at L7, L8 and L9 may in practice be RF chokes, such as described in connection with Fig. 1, or may be inductors in the usual sense which, as previously mentioned, serve as frequency dependent components in providing the desired attenuation.
  • FIG. 5 an alternate embodiment of the filter circuit, denoted generally by reference numeral 50, is shown schematically.
  • Terminals 52 and 54 are connected to forward and return path signal sources, respectively, as before.
  • Capacitors C8 and C9 are connected in series in circuit branch 56 and inductor L5 is connected to ground between these two capacitors.
  • Circuit branch 58 includes inductors L6 and L7, each connected on one side to terminals 52 and 54, respectively.
  • the single component providing attenuation of return path signals namely, RF choke RFC4, is connected between inductors L6 and L7.
  • Series connected inductor L8 and capacitor CIO are connected at one end to the line between inductor L6 and choke RFC4 and at the other end to ground.
  • inductor L9 and capacitor Cl 1 are connected to the line between choke RFC4 and inductor L7 and to ground.
  • the return loss for this embodiment is not as good as that of the previously described embodiment.
  • the circuit is fully operative and uses fewer components than the circuit of Fig. 1, having only a single, frequency dependent component (RFC4) providing a predetermined level of attenuation over a range of signal frequencies.
  • the circuit of Fig. 1 may be designed to attenuate signals across the full frequency range of both forward and return path frequencies by selection of proper values of the components using well known electrical design principles.
  • the circuit of Fig. 1, and equivalent circuits will provide substantially uniform attenuation of signals over a desires frequency band using components which are frequency dependent with resulting advantages in size and cost.
  • the filter circuit may conveniently embodied in a plurality of components which are surface mounted upon a very small circuit board with the component(s) providing the attenuation mounted upon one surface and all or most of the other components mounted upon the opposite surface.

Abstract

A filter circuit directed primarily to use in the CATV industry includes at least one frequency dependent component, such as an RF choke, capacitor, or inductor, for attenuating signals over at least a portion of the frequency range of signals which pass through the filter. In a typical application, signals are transmitted and received in both forward and return paths at each end of a multi-channel, two-way communication system. Signals in the frequency range of the return path, or of both paths, are attenuated y a desired amount, which amount is essentially constant over the frequency range of attenuation. The circuit component providing the attenuation is frequency dependent, thus providing a number of advantages such as reducing the number of circuit components, reducing filter size and cost, and/or increasing electric surge and power handling capabilities of the filter.

Description

STEP ATTENUATOR AND METHOD USING FREQUENCY DEPENDENT
COMPONENTS
FIELD OF THE INVENTION
[01] This invention relates generally to the field of radio frequency signal transmission over a cable system, and more particularly to attenuating electrical signals over a predetermined frequency range to balance signals in both the forward path and return path.
BACKGROUND OF THE INVENTION
[02] In multi-channel communication systems it is common to transmit signals at frequencies higher than a predetermined value from an input to an output end over what is termed a forward path, and to transmit signals at frequencies below the predetermined value from the output back to the input end over a so-called return path. In order to improve network performance and reduce noise ingress, it is desirable to attenuate signals in the return path by a substantially uniform amount over the range of return path frequencies. Forward path signals are most commonly transmitted substantially unimpeded, i.e., without attenuation, although in some applications it may be desirable to attenuate the signals over the full frequency band of both forward and return path signals. Such communication systems, particularly as employed in the field of CATV, are well known and a number of systems have been devised to provide the step attenuation (flat loss) in the transmitted signals.
[03] Diplex filters, for example, have been used for processing both the forward and return paths in CATV communication systems. U.S. Patent No. 5,745,838 to Tresness et al. discloses a special form of diplex filter including fixed-value resistors in a TEE or PI configuration which attenuates signals in the return path by a predetermined amount. The fixed resistors providing the attenuation operate, of course, independently of frequency.
[04] The present invention is directed to circuit and methods for effecting step attenuation of return path, or both forward and return path signals in two way communication systems through the use of a return path filter network having only frequency dependent components. The invention provides a number of advantages over prior art circuits which perform this function using a fixed resistors. Such advantages include: reducing the number of circuit components, reducing filter size and cost, and/or increasing the filter's electric surge and power handling capabilities.
SUMMARY OF THE INVENTION
Briefly stated, a filter circuit directed primarily to use in the CATV industry includes at least one frequency dependent component, such as an RP choke, capacitor, or inductor, for attenuating signals over at least a portion of the frequency range of signals which pass through the filter. In a typical application, signals are transmitted and received in both forward and return paths at each end of a multi-channel, two-way communication system. Signals in the frequency range of the return path, or of both paths, are attenuated by a desired amount, which amount is essentially constant over the frequency range of attenuation. The circuit component providing the attenuation is frequency dependent, thus providing a number of advantages such as reducing the number of circuit components, reducing filter size and cost, and/or increasing electric surge and power handling capabilities of the filter.
[05] According to an embodiment of the invention, a filter circuit through which electrical communication signals of a first range of frequencies pass, comprises at least one frequency dependent component which attenuates the signals by a predetermined, substantially constant level signals having frequencies within the first range.
[06] According to an embodiment of the invention, a filter assembly for use in CATV applications includes a printed circuit board having opposite, planar surfaces; a filter circuit composed of a plurality of surface mount components mounted upon each of the surfaces, wherein the filter circuit includes a first plurality of components establishing a predetermined range of signal frequencies which pass through the circuit; a housing within which the circuit board is positioned; and at least one frequency dependent component establishing a predetermined level of attenuation of signal frequencies within the predetermined range.
[07] According to an embodiment of the invention, a method of attenuating electrical communications signals over a predetermined range of frequencies which pass through a filter circuit includes the step of including within the circuit at least one frequency dependent component having a value appropriate to providing a predetermined level of attenuation over the range.
[08] The filter apparatus of the invention includes input and output ends connected, for example, to the head end and subscriber terminal, respectively, of a cable television system, as well as the usual forward and return communication paths. The filter's forward path includes series-connected capacitors, as in the prior art, providing a high pass filter for passing signals above a predetermined frequency, e.g., RF television signals, to the subscriber end. The invention is based on designing the return path filter network using frequency dependent components to provide a desired amount of signal attenuation. In the disclosed embodiment, electromagnetic RF chokes replace traditional, fixed- value resistors and associated inductors, thus providing the desired attenuation while realizing the aforementioned improvements over corresponding, prior art filters. The RF chokes provide a combined response having both inductance and impedance characteristics, which is frequency dependent, as opposed to the purely resistive, frequency independent response of the prior art return path filters. By choosing from a wide variety of commercially available RF chokes, the amount of flat loss as well as optimization of overall network performance can be achieved.
BRIEF DESCRIPTION OF THE DRAWINGS
[09] Fig. 1 shows an electrical schematic of a circuit embodying the filter of the invention to provide attenuation of return path or, with proper selection of component values, both forward and return path signals.
[010] Fig. 2 shows a graph showing a typical attenuation/frequency relationship, or insertion loss, of the filter of Fig. 1.
[011] Fig. 3 is an exploded perspective view showing a typical embodiment of a filter assembly including a circuit embodying the present invention.
[012] Figs. 4a and 4b are plan views of opposite sides of a circuit board showing a typical layout of components which embody the circuit of the invention. [013] Fig. 5 is an electrical schematic of an alternate embodiment of the circuit of the invention.
[014] Fig. 6 is a graph showing a typical attenuation/frequency relationship of the circuit of Fig. 5.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[015] Referring to Fig. 1, a filter circuit denoted generally by reference numeral 10 connected on one side to forward path signal source 12 and to data receiver 14 is shown. At the other side, filter 10 is connected to forward path signal receiver 16 and to return path signal source 18. In a typical application, forward path signal source 12 may be the head end of a CATV system and receiver 16 may be a television receiver, while return path signal source 18 may be a subscriber terminal transmitter (e.g., set- top addressable converter) obtained from the cable service provider, and receiver 14 an appropriate device for receiving and processing signals from source 18.
[016] Filter 10 includes one branch 20 having series-connected capacitors Cl, C3 and C5, with inductors LI and L2 connected in parallel on opposite sides of capacitor C3. Capacitor C2 is connected in parallel with capacitor C3 and is connected, together with inductor LI, to ground at 22. The values of capacitors Cl, C2, C3 and C5 and inductors LI and L2 are chosen to form a filter which passes signals in the frequency range ( e.g., 50 to 1,000 MHz) of forward path communication, i.e., the range of signals emanating from source 12 and received by receiver 16. A second branch 24 includes series connected inductors L3 and L4 which, together with capacitors C6 and C7, respectively, provide a filter limiting the frequency band of signals carried by branch 24, i.e., the return path signals, to the desired frequency range, e.g., 5 to 40 MHz.
[017] Interposed between the connections of capacitors C6 and C7 to branch 24 are the circuit components providing attenuation of return path signals, namely, RF chokes RFCl, RFC2 and RFC3. Capacitor C4 is also incorporated in the attenuation circuit to allow power to pass; that is, the presence of capacitor C4 prevents the grounding of all power. The RF chokes have both impedance and inductance characteristics, and are frequency dependent. That is, the amount of attenuation introduced by the RF chokes is a function of frequency. Inductors and capacitors are other examples of frequency dependent components, whereas the fixed resistors used to provide attenuation of signals in prior art two-way communication systems are frequency independent. Use of a frequency dependent component to provide the desired attenuation permits replacement of two components (e.g., a fixed resistor and inductor typically used in prior art step attenuators) with a single component, such as an RF choke. The number and electrical values of RF chokes and manner of connection in branch 24 is a function of the desired amount of attenuation over the frequency band established by inductor/capacitor pairs L3-C6 and L4-C7 and may be calculated by well known techniques.
[018] Fig. 2 provides a graphical depiction of the frequency/attenuation relationship of the circuit of Fig. 1. Signals in the 5 - 40 MHz range, i.e., return path signals, are attenuated by a substantially uniform 10 decibels, while signals above the 50 MHz level experience little or no attenuation. This effect is achieved with a circuit which is typically smaller and less expensive than prior art circuits providing the same attenuation effects.
[019] In Fig. 3 a filter assembly incorporating the invention in a typical, physical embodiment is shown. The circuit shown schematically in Fig. 1, or other circuit configuration of the invention, is formed by surface-mount components on both surfaces of printed circuit board 26, together with the electrical paths (traces) on the board interconnecting such components with one another and the input, output and grounding contacts. Female and male connectors 28 and 30, respectively, are connected both mechanically and electrically in the usual manner to circuit board 26. Board 26 is positioned within a housing consisting of two members 32 and 34 which are mutually assembled and held in permanently engagement by means of solder preform 36. The interior of the housing is sealed against entry of moisture and foreign matter, and the connectors are insulated from the housing, by seal 38 and insulators 40 and 42. The circuit is electrically grounded by soldered connection of housing member 32 with portions of the electrical paths on one or both of tabs 44 and 46 of board 26. [020] Figs. 4a and 4b provide an illustration of a typical layout of surface-mount components on opposite surfaces 26 A and 26B of circuit board 26. Although not physically identical to the circuit shown schematically in Fig. 1, the circuit formed by capacitors C1-C6 and inductors L1-L6 on surface 4b and capacitor C7 and inductors L7, L8 and L9 on surface 4a is another example of the circuit of the invention. The components indicated at L7, L8 and L9 may in practice be RF chokes, such as described in connection with Fig. 1, or may be inductors in the usual sense which, as previously mentioned, serve as frequency dependent components in providing the desired attenuation.
[021] Referring to Fig. 5, an alternate embodiment of the filter circuit, denoted generally by reference numeral 50, is shown schematically. Terminals 52 and 54, are connected to forward and return path signal sources, respectively, as before. Capacitors C8 and C9 are connected in series in circuit branch 56 and inductor L5 is connected to ground between these two capacitors. Circuit branch 58 includes inductors L6 and L7, each connected on one side to terminals 52 and 54, respectively. The single component providing attenuation of return path signals, namely, RF choke RFC4, is connected between inductors L6 and L7. Series connected inductor L8 and capacitor CIO are connected at one end to the line between inductor L6 and choke RFC4 and at the other end to ground. Likewise, inductor L9 and capacitor Cl 1 are connected to the line between choke RFC4 and inductor L7 and to ground. As indicated by the graph of Fig. 6, the return loss for this embodiment is not as good as that of the previously described embodiment. However, the circuit is fully operative and uses fewer components than the circuit of Fig. 1, having only a single, frequency dependent component (RFC4) providing a predetermined level of attenuation over a range of signal frequencies.
[022] Although filters providing step attenuation in two way communication systems have predominantly been directed to return path signals, it is sometimes desirable to attenuate signals in the forward path as well. The circuit of Fig. 1 may be designed to attenuate signals across the full frequency range of both forward and return path frequencies by selection of proper values of the components using well known electrical design principles. Thus, the circuit of Fig. 1, and equivalent circuits, will provide substantially uniform attenuation of signals over a desires frequency band using components which are frequency dependent with resulting advantages in size and cost. It is further apparent that the filter circuit may conveniently embodied in a plurality of components which are surface mounted upon a very small circuit board with the component(s) providing the attenuation mounted upon one surface and all or most of the other components mounted upon the opposite surface.
[023] While the present invention has been described with reference to a particular preferred embodiment and the accompanying drawings, it will be understood by those skilled in the art that the invention is not limited to the preferred embodiment and that various modifications and the like could be made thereto without departing from the scope of the invention as defined in the following claims.

Claims

What is claimed is:
1. A filter circuit through which electrical communication signals of a first range of frequencies pass, said circuit comprising at least one frequency dependent component which attenuates said signals by a predetermined, substantially constant level signals having frequencies within said first range.
2. The circuit of claim 1 wherein said frequency dependent component comprises at least one RF choke.
3. The circuit of claim 2 wherein said frequency dependent component comprises a single RF choke.
4. The circuit of claim 2 wherein said frequency dependent component comprises three RF chokes.
5. The circuit of claim 4 wherein said RF chokes are ferrite chokes.
6. The circuit of claim 1 wherein said frequency dependent component comprises at least one inductor.
7. The circuit of claim 6 wherein said frequency dependent component comprises three inductors.
8. The circuit of claim 1 wherein the level of said attenuation is substantially constant over at least one of said first or second frequency ranges.
9. The circuit of claim 1 wherein said at least one of said ranges is said second range.
10. The circuit of claim 1 wherein said signals are attenuated over both said first and second frequency ranges.
11. The circuit of claim 1 wherein said first range of frequencies corresponds to the range of frequencies in the return path of a two-way communications system.
12. A filter assembly for use in CATV applications, comprising: a printed circuit board having opposite, planar surfaces; a filter circuit composed of a plurality of surface mount components mounted upon each of said surfaces, wherein said filter circuit includes a first plurality of components establishing a predetermined range of signal frequencies which pass through said circuit; a housing within which said circuit board is positioned; and at least one frequency dependent component establishing a predetermined level of attenuation of signal frequencies within said predetermined range.
13. The filter assembly of claim 12 wherein said frequency dependent component comprises at least one RF choke.
14. The filter assembly of claim 13 wherein said frequency dependent component comprises a single RF choke.
15. The filter assembly of claim 12 wherein said frequency dependent component comprises three RF chokes.
16. The filter assembly of claim 12 wherein said frequency dependent component comprises at least one inductor.
17. The filter assembly of claim 12 wherein substantially all of said first plurality of components is mounted upon one of said opposite surfaces and said frequency dependent component is mounted upon the other of said opposite surfaces.
18. The filter assembly of claim 12 wherein each of said first plurality of components is either a capacitor or an inductor.
19. A method of attenuating electrical communications signals over a predetermined range of frequencies which pass through a filter circuit, comprising the step of including within said circuit at least one frequency dependent component having a value appropriate for providing a predetermined level of attenuation over said range.
20. The method of claim 19 wherein said frequency dependent component is at least one ferrite RF choke.
PCT/US2003/035600 2002-11-06 2003-11-06 Step attenuator and method using frequency dependent components WO2004045072A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003291375A AU2003291375A1 (en) 2002-11-06 2003-11-06 Step attenuator and method using frequency dependent components
BR0307610-5A BR0307610A (en) 2002-11-06 2003-11-06 Filter circuit, filter assembly for use in catv applications, and method of attenuating electrical communication signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/287,866 US6784760B2 (en) 2002-11-06 2002-11-06 Step attenuator using frequency dependent components and method of effecting signal attenuation
US10/287,866 2002-11-06

Publications (1)

Publication Number Publication Date
WO2004045072A1 true WO2004045072A1 (en) 2004-05-27

Family

ID=32175776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/035600 WO2004045072A1 (en) 2002-11-06 2003-11-06 Step attenuator and method using frequency dependent components

Country Status (5)

Country Link
US (1) US6784760B2 (en)
AU (1) AU2003291375A1 (en)
BR (1) BR0307610A (en)
TW (1) TWI328345B (en)
WO (1) WO2004045072A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9516774B2 (en) 2006-08-25 2016-12-06 Ppc Broadband, Inc. Outer sleeve for CATV filter

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950300B2 (en) * 2003-05-06 2005-09-27 Marvell World Trade Ltd. Ultra low inductance multi layer ceramic capacitor
DE102005046445B4 (en) * 2005-09-28 2019-10-10 Snaptrack, Inc. Bandpass filter
US7442084B2 (en) * 2006-06-21 2008-10-28 John Mezzalingua Associates, Inc. Filter housing
US8150004B2 (en) * 2006-12-27 2012-04-03 John Mezzalingua Associates, Inc. Low-pass step attenuator
US7821359B2 (en) * 2007-07-09 2010-10-26 John Messalingua Associates, Inc. Band-stop filters
US7965152B2 (en) * 2008-12-02 2011-06-21 Microchip Technology Incorporated Attenuator with a control circuit
US8022785B2 (en) * 2008-12-03 2011-09-20 Arcom Digital, Llc Step attenuator circuit with improved insertion loss
US20100251322A1 (en) * 2009-03-30 2010-09-30 Raymond Palinkas Upstream bandwidth conditioning device
US8125752B2 (en) * 2009-04-17 2012-02-28 John Mezzalingua Associates, Inc. Coaxial broadband surge protector
US8264272B2 (en) * 2009-04-22 2012-09-11 Microchip Technology Incorporated Digital control interface in heterogeneous multi-chip module
US8125299B2 (en) * 2009-07-10 2012-02-28 John Mezzalingua Associates, Inc. Filter circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745838A (en) * 1997-03-14 1998-04-28 Tresness Irrevocable Patent Trust Return path filter
US6323743B1 (en) * 1999-08-24 2001-11-27 Tresness Irrevocable Patent Trust Electronic filter assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397037A (en) 1981-08-19 1983-08-02 Rca Corporation Diplexer for television tuning systems
US4937865A (en) 1988-11-15 1990-06-26 Syrcuits International Inc. Cable TV channel security system having remotely addressable traps
US5191459A (en) 1989-12-04 1993-03-02 Scientific-Atlanta, Inc. Method and apparatus for transmitting broadband amplitude modulated radio frequency signals over optical links
US4963966A (en) 1989-12-04 1990-10-16 Scientific Atlanta, Inc. CATV distribution system, especially adapted for off-premises premium channel interdiction
US5130664A (en) 1991-03-07 1992-07-14 C-Cor Electronics, Inc. One GHZ CATV repeater station
US5434610A (en) 1992-07-13 1995-07-18 Scientific-Atlanta, Inc. Methods and apparatus for the reconfiguration of cable television systems
US5481389A (en) 1992-10-09 1996-01-02 Scientific-Atlanta, Inc. Postdistortion circuit for reducing distortion in an optical communications system
US5425027A (en) 1993-01-04 1995-06-13 Com21, Inc. Wide area fiber and TV cable fast packet cell network
US5404161A (en) 1993-07-27 1995-04-04 Information Resources, Inc. Tuned signal detector for use with a radio frequency receiver
US6031432A (en) 1997-02-28 2000-02-29 Schreuders; Ronald C. Balancing apparatus for signal transmissions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745838A (en) * 1997-03-14 1998-04-28 Tresness Irrevocable Patent Trust Return path filter
US6323743B1 (en) * 1999-08-24 2001-11-27 Tresness Irrevocable Patent Trust Electronic filter assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9516774B2 (en) 2006-08-25 2016-12-06 Ppc Broadband, Inc. Outer sleeve for CATV filter
US10424893B2 (en) 2006-08-25 2019-09-24 Ppc Broadband, Inc. Outer sleeve for CATV filter
US11621533B2 (en) 2006-08-25 2023-04-04 Ppc Broadband, Inc. Outer sleeve for CATV filter

Also Published As

Publication number Publication date
US6784760B2 (en) 2004-08-31
TW200503414A (en) 2005-01-16
US20040085156A1 (en) 2004-05-06
AU2003291375A1 (en) 2004-06-03
TWI328345B (en) 2010-08-01
BR0307610A (en) 2004-12-21

Similar Documents

Publication Publication Date Title
US5745838A (en) Return path filter
US5805053A (en) Appliance adapted for power line communications
US6784760B2 (en) Step attenuator using frequency dependent components and method of effecting signal attenuation
US20040104786A1 (en) Diplex circuit forming bandstop filter
US8022785B2 (en) Step attenuator circuit with improved insertion loss
US6020793A (en) Non-reciprocal circuit device
US5323127A (en) Branching filter having specific impedance and admittance characteristics
US6031432A (en) Balancing apparatus for signal transmissions
US9124091B2 (en) Surge protector for a transmission line connector
US6646519B2 (en) RF equalizer
US20020044402A1 (en) Noise eliminating apparatus of high-frequency transmission system
CN114826187A (en) Filter and electronic device
US5999796A (en) Return path attenuation filter
CN115398886A (en) MOCA distributor device
WO2001052344A1 (en) Ceramic bandstop monoblock filter with coplanar waveguide transmission lines
EP0862237B1 (en) Tunable passive-gain equalizer
KR100201808B1 (en) Low pass filter of radio transmitter
CN211791459U (en) MOCA filter
US6600900B1 (en) System and method providing bi-directional communication services between a service provider and a plurality of subscribers
KR960008981B1 (en) Filter circuit for attenuating high frequency signals
JP2001054083A (en) Attenuator for cable modem
CN113258269B (en) Antenna assembly and electronic equipment
CN110265756B (en) Reflection-free band-pass filter and radio frequency communication device
CN218920390U (en) Equalizer circuit easy to debug
JP5088107B2 (en) Signal distribution device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP