WO2004047619A2 - Tissue material and process for bioprosthesis - Google Patents

Tissue material and process for bioprosthesis Download PDF

Info

Publication number
WO2004047619A2
WO2004047619A2 PCT/US2003/037683 US0337683W WO2004047619A2 WO 2004047619 A2 WO2004047619 A2 WO 2004047619A2 US 0337683 W US0337683 W US 0337683W WO 2004047619 A2 WO2004047619 A2 WO 2004047619A2
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
heart valve
vena cava
bioprosthesis
valve
Prior art date
Application number
PCT/US2003/037683
Other languages
French (fr)
Other versions
WO2004047619A3 (en
Inventor
Narendra Vyavahare
Dan T. Simionescu
Original Assignee
Clemson University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clemson University filed Critical Clemson University
Priority to AU2003298696A priority Critical patent/AU2003298696A1/en
Publication of WO2004047619A2 publication Critical patent/WO2004047619A2/en
Publication of WO2004047619A3 publication Critical patent/WO2004047619A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/909Method or apparatus for assembling prosthetic

Definitions

  • Prosthetic heart valves are used to replace damaged or diseased heart valves.
  • Prosthetic heart valves may be used to replace a heart's natural valves including aortic, mitral, and pulmonary valves.
  • the predominant types of prosthetic heart valves are either mechanical valves or bioprosthetic valves.
  • Bioprosthetic valves include allograft valves, which include biomaterial supplied from human cadavers; autologous valves, which include biomaterial supplied from the individual receiving the valve; and xenograft valves, which include biomaterial obtained from non-human biological sources including pigs, cows or other animals.
  • BHVs bioprosthetic heart valves
  • xenografts and allografts require that the graft biomaterial be chemically fixed, or cross-linked, prior to use, in order to render the biomaterial non-antigenic as well as improve resistance to degradation.
  • glutaraldehyde fixation of xenograft or allograft biomaterial is commonly used.
  • Glutaraldehyde fixation forms covalent cross-links between free amines in the tissue proteins. As a result, the tissue is less susceptible to adverse immune reactions by the patient. Fixation is also believed to improve the valve durability by making the tissue stronger and less susceptible to enzymatic degradation.
  • xenograft materials require replacement within five to ten years of the original repair. This is at least in part due to the fact that xenografts, particularly those chemically fixed with glutaraldehyde, are stiffer and less pliable than the recipient's original valve. As a consequence of the increased stiffness, the periodic opening and closing of the valve leads to material fatigue of the bioprosthetic replacement tissue. In addition, the recipient's heart will be required to work harder to overcome the stiffness of the bioprosthetic valve as compared to the exertion required for the original valve to function. As the material integrity of the xenograft valve is. lessened overtime, the efficiency of the valve operation also decreases. Additionally, fatigue and mechanical degradation of the xenograft valve is associated with increased calcification of the valve. The calcification causes additional stiffening which further degrades the physical and biological integrity of the valve.
  • One form of a conventional bioprosthetic tissue valve comprises a stent which may be in the form of a rigid, annular ring portion onto which separate leaflets of fixed bovine or porcine pericardium are attached. The leaflets are sewn together so as to provide a movement similar to that of an actual heart valve.
  • the pericardium source material used to form the BHV leaflets can have notable variations in physical properties, even when harvested from the same pericardial sac. For example, Simionescu et al. (Mapping of Glutaraldehyde-treated Bovine Pericardium and Tissue Selection forBio- Prosthetic Heart Valves, Journal of Biomedical Materials Research.
  • a bioprosthesis can include a tissue having an elastin content of at least about 10% by weight of the tissue and a support material attached to the tissue.
  • the elastin content of the tissue can be higher, for instance at least about 30% by weight of the tissue.
  • the bioprostheses of the invention can include an anisotropic tissue, for example, an anisotropic tissue exhibiting greater stiffness in a first direction and greater elasticity in a second direction.
  • the tissue can be vena cava tissue, for example, porcine vena cava tissue.
  • the support materials used in conjunction with the disclosed tissue can be any bioprosthetic support materials as are generally known in the art, for instance, stents and/or suture rings.
  • Bioprostheses that can be formed utilizing the disclosed tissues can include bioprosthetic heart valves.
  • the bioprostheses of the invention can include tricuspid heart valves and bicuspid heart valves.
  • the present invention is also directed to methods for forming the disclosed bioprostheses.
  • the methods generally include providing tissue in a flat orientation and excising a portion of the flat tissue for attachment to a support material.
  • the portion of the flat tissue that is excised from the flat sheet can generally have the desired shape to be attached in the bioprosthesis, for example, the shape of an individual tricuspid or bicuspid valve leaflet.
  • the tissue used in the bioprosthesis is an anisotropic material
  • the tissue portion that is excised from the flat tissue can be oriented so as to improve the mechanical properties of the bioprosthesis.
  • the excised portion can have the general shape of a heart valve leaflet.
  • the direction of greater elasticity of the anisotropic material can be substantially equivalent to the center- most radius of the leaflet as cut from the sheet.
  • the flat tissue sheet may be formed by opening a vena cava section with a longitudinal incision.
  • the present invention is also directed to methods of replacing damaged heart valves with bioprosthetic heart valves including the tissue as herein disclosed.
  • Figure 1 is a graph setting forth longitudinal and circumferential stress and strain properties of glutaraldehyde-fixed porcine vena cava tissue as may be used in accordance with the present invention
  • Figure 2 is a graph indicating the thermal denaturation temperature of various xenograft materials before and after fixation in glutaraldehyde;
  • Figure 3A illustrates the circumferential and radial stress-strain profiles for fresh and glutaraldehyde-fixed porcine aortic cusp tissues;
  • Figure 3B illustrates the stress-strain profile for glutaraldehyde-fixed pericardial tissue over the same ranges as shown in Figure 3A;
  • Figure 3C illustrates the stress-strain profile for glutaraldehyde- fixed porcine vena cava tissue over the same range as shown in Figures 3A and 3B;
  • Figure 4 is a schematic view showing one embodiment for obtaining a flat template of biomaterial from porcine vena cava and additionally setting forth one embodiment for the orientation of individual valve leaflets that may be attached onto a conventional 3-prong stent to create a porcine vena cava-based tricuspid BHV; and
  • Figure 5 is a graph indicating the relative composition of various
  • bioprosthesis includes any prosthesis which is derived in whole or in part from human, animal, or other organic tissue and which can be implanted into a human or an animal. Accordingly, the term “bioprosthesis” includes cardiac prostheses such as heart valves, other replacement heart components, and cardiac vascular grafts. In addition, the properties of the tissue described herein may also lend itself as a prosthetic material for use with other organs and tissue systems. [0029] As used herein, the term “cross-link” refers generally to the process
  • bonds e.g., covalent bonds
  • bonds between free, active moieties on or within tissue or between a cross-linking agent or other compound which reacts with a reactive moiety of the tissue. It is generally recognized that in forming bioprostheses, it is desirable to leave as few active moieties within the biological tissue as possible. The resulting cross-linked tissue is considered “fixed.”
  • fixed in regard to tissue is defined to refer to tissue that is stabilized so as to be less antigenic and less susceptible to physical and biological degradation.
  • tissue is used as understood by those having skill in the art to include any natural or synthetic material derived from an organic source and which may be implanted in a mammal. While exemplary forms of a tissue are described herein, the term “tissue” is not limited to the exemplary embodiments but may include other types of tissues having properties similar to the exemplary tissue. [0032] In general, the present invention is directed to improved bioprostheses utilizing tissue that exhibits improved physical characteristics over biomaterials utilized in the past.
  • tissue can be provided for use in a bioprosthesis that exhibits improved physical characteristics over materials used in the past, including xenograft, autologous, and allograft aortic cusp and pericardium derived biomaterials.
  • tissue having an elastin content greater than about 10% can be utilized to form a bioprosthesis.
  • the tissue can be an anisotropic material, that is, a material in which the measured characteristics of the material differ depending upon the direction of measurement.
  • vena cava tissue can be utilized in forming a bioprosthesis.
  • the tissue of the present invention can generally be utilized in any of a number of bioprostheses.
  • bioprostheses can be formed according to the present invention including any of a variety of cardiac bioprostheses that can serve to replace damaged sections of the cardiovascular system.
  • bioprosthetic heart valves, veins, or arteries can be formed.
  • the bioprostheses of the present invention can include the tissues herein discussed in conjunction with other support materials as are generally known in the art.
  • bioprostheses according to the present invention can include the disclosed tissue in suitable combination with support materials such as wire forms, stents, suture rings, conduits, flanges, and the like.
  • a bioprosthetic heart valve can be formed including heart valve leaflets formed of the disclosed biomaterials and secured to a stent.
  • Suitable stent materials can generally include stent materials as may generally be found in other known heart valves, including both mechanical and bioprosthetic heart valves.
  • tissue leaflets according to the present invention can be attached to a flexible polymer stent formed of, for example, polypropylene, reinforced with a metal ring (such as, for example, a HaynesTM alloy no. 25 metal ring).
  • a polymer stent in another embodiment, can be used including a polyester film support secured to a surgically acceptable metal ring such as an ElgiloyTM metal stiffener.
  • a stent may be formed of only polymeric materials, and not include any metals.
  • the disclosed bioprosthesis can include a wire stent, such as an ElgiloyTM wire stent, or a titanium stent, which can be optionally covered with a material cover, such as, for example, DacronTM.
  • the valve can include a sewing or suture ring such as, for example, a polyester, DacronTM, or TeflonTM suture ring, as is generally known in the art.
  • the disclosed bioprosthesis can be a stentless heart valve. It should be clear, however, that these are exemplary materials, and the make-up of the support material in the disclosed bioprostheses is not critical to the disclosed invention.
  • the improved bioprostheses of the present invention can include tissue that can be xenograft, allograft, or even autologous graft materials. In general, suitable biomaterials can be provided by tissue culture techniques as are generally known in the art, and thus, such techniques need not be discussed in detail herein.
  • the tissues that can be used in the bioprostheses of the present invention can display improved properties of strength, durability, and elasticity.
  • the disclosed tissues can exhibit similar cross-link densities following fixation as previously known bioprosthetic tissue, while exhibiting greatly improved elasticity over these fixed materials. While not wishing to be bound by any particular theory, these improvements are believed to be due at least in part to the relative levels of collagen and elastin contained in the disclosed tissues.
  • Collagen is the fibrous protein constituent of connective tissue. Chemically, it is a triple helix formed of three extended protein chains that wrap around one another. In vivo, many rod-like collagen molecules are cross-linked together in the extracellular space to form unextendable collagen fibrils that have the tensile strength of steel.
  • Elastin is a protein similar to collagen in make-up and is the principal structural component of elastic fibers. Elastin polypeptide chains are cross-linked together to form rubber-like, elastic fibers. Unlike collagen, elastin molecules can uncoil into a more extended conformation when the fiber is stretched and will recoil spontaneously as soon as the stretching force is relaxed.
  • bioprostheses including tissues which have a greater elastin content than tissues used in similar bioprostheses in the past.
  • the tissues of the present invention can also have a lower collagen content than the tissues used in similar bioprostheses in the past.
  • the bioprostheses of the disclosed invention can exhibit improved physical characteristics, and in particular improved elasticity and durability.
  • the bioprosthetic tissue can have three to four times greater elasticity than tissue derived from the pericardium of the same donor species.
  • the greater extensibility of the tissue is believed to offer long-term benefits in terms of durability and resistance to mechanical degradation.
  • the increase in mechanical durability is believed to provide additional attributes in terms of reducing the onset and amount of calcification which is frequently associated with bioprosthesis failure, and in particular, with BHV failure.
  • greater resistance to biological degradation is also provided. Both the resistance to calcification and the resistance to biological degradation are believed to further enhance the longevity of implanted bioprostheses formed of the presently disclosed tissues.
  • the bioprostheses of the present invention can include tissue having an elastin content greater than about 10% by weight. In another embodiment, the bioprostheses of the present invention can include tissue having an elastin content greater than about 30% by weight.
  • Collagen content can be proportional to the stiffness of the tissue which, as discussed above, can contribute to the lack of durability of a bioprosthesis.
  • the disclosed tissues can have a lower collagen content than tissues utilized in the past in similar bioprostheses.
  • the bioprostheses of the disclosed invention can include tissue having a collagen content less than about 50% by weight.
  • vena cava source material such as porcine, bovine or other large animal vena cava.
  • vena cava tissue may be provided from allograft or autologous vena cava source material. While the examples below are described in reference to porcine inferior vena cava material, it is believed that superior vena cava material can also provide the benefits as noted below. Additionally, to the extent vena cava tissue derived from other animal species provide similar benefits, the scope of the present disclosure and claims should not be limited to vena cava material derived from any particular species.
  • the useful nature of the vena cava derived tissue is reflective of the molecular and structural composition of the vena cava source material. As seen in reference to Figure 5, a comparison of elastin and collagen composition is provided for bovine pericardium, porcine aortic cusps, and porcine vena cava tissues. As seen, the vena cava material has only about 40% by weight collagen compared to a 90% value for pericardium. Additionally, the vena cava material has a much higher percentage of elastin. The increased elastin content for the vena cava tissues contributes to the improved properties of the resulting bioprosthesis.
  • the tissue of the disclosed prostheses can display anisotropic properties.
  • anisotropic materials can display both great versatility and utility due to the variety of physical characteristics obtainable from the material through variation of orientation of the material.
  • anisotropic tissue can be oriented in the disclosed bioprostheses so as to exhibit a greater stiffness in one direction, preferably a direction requiring less movement from the tissue following implant, and a greater elasticity in a second direction which can be the direction in which motion of the tissue will generally be expected following implant.
  • test results have revealed that fixed vena cava tissue as provided herein can be extended up to about 200% in the longitudinal direction without breakage, and even farther in the circumferential direction.
  • the tissue of the present invention can closely mimic the natural action and elasticity of the tissue in a healthy organ.
  • this mimicking effect can be maximized through optimal utilization of tissue exhibiting anisotropic characteristics.
  • Utilization of tissue having anisotropic characteristics such as, for example, anisotropic vena cava tissue, can allow the tissue to be positioned and oriented within a particular bioprosthesis so as to achieve enhanced mechanical performance as well as mimic the natural action of the healthy, original tissue.
  • the tissue of the present invention can be utilized in forming the individual leaflets of a BHV.
  • an anisotropic tissue leaflet can be oriented within the heart valve so as to provide increased elasticity in the radial direction and increased stiffness in the circumferential direction, as is found in undamaged heart valves. Increased elasticity in the radial direction can enhance the longevity and mechanical performance of the leaflet, specifically with regard to the repeating motion required of the leaflets in opening and closing the valve. Similarly, increased stiffness in the . circumferential direction of the leaflets can help maintain the overall structure and shape of the valve over time.
  • utilization of anisotropic tissue of the present invention can improve longevity of a BHV, thereby reducing the occurrence of subsequent surgery to repair a damaged or failing prosthesis.
  • the tissue of the disclosed bioprostheses can be prepared from a substantially flat sheet.
  • a single flat sheet can have a size sufficient to excise all of the necessary portions of a single bioprosthesis.
  • the flat sheet can be large enough such that all of the cusps for a single replacement heart valve can be cut from a single sheet, be it a tricuspid valve (e.g., an aortic or pulmonary valve) or a bicuspid valve (e.g., a mitral valve) that will be formed.
  • harvested section "A" derived from vena cava may be opened using a longitudinal incision as seen by the dotted line.
  • the opened vena cava tissue can be chemically fixed, such as using glutaraldehyde, as is generally known in the art or using any other suitable fixative agent such as, for example, a phenolic tannin fixative agent such as tannic acid, either alone or in combination with a glutaraldehyde fixative agent.
  • the fixed tissue may then be manipulated to form a substantially flat sheet of tissue as seen in reference to "B" in Figure 4.
  • the tissue sheet seen in Figure 4 "B” may then be used to provide portions of a bioprosthesis as indicated by the dashed lines.
  • the portions may then be used in any manner for which conventional tissue is used, such as, for example, pericardium tissue, with respect to valve replacements and related grafts.
  • tissue portion can be sutured onto a 3-prong stent to provide a bioprosthetic heart valve.
  • the biomaterial of the present invention can alternatively be utilized in forming other valves and other bioprostheses.
  • shaded arrows are used to designate the circumferential direction of the anisotropic vena cava tissue.
  • the circumferential direction of the original vein can be oriented to substantially equate with the radial direction of the excised leaflet; that is, with the circumferential direction of the vena cava tissue generally corresponding to the center-most radius of the excised leaflet.
  • the leaflets may be excised from the biomaterial in an orientation that achieves maximum elasticity in a radial direction of each leaflet.
  • the anisotropic properties of the vena cava- derived biomaterial can be used to advantage to orient and mount the leaflets and supports so as to achieve improved mechanical properties, as discussed above.
  • a BHV including the tissue of the invention can be implanted in the heart of a person or an animal according to known surgical procedures such as, for example, procedures described in U.S. Patent No. 6,532,388 to Hill, et al., U.S. Patent 6,506,197 to Rollero, et al.. and U.S. Patents 6,402,780, 6,042,607, and 5,716,370 all to Williamson. IV, et al.. all of which are incorporated herein by reference.
  • surgical procedures include removal of a damaged cardiac valve, implantation of the new replacement valve in the cardiac valve annulus, and attachment of the BHV to the adjacent tissue.
  • Porcine inferior vena cava was collected from a slaughterhouse and placed in ice-cold saline. The vena cava was manually cleaned of adherent tissues, followed by opening the veins using a longitudinal incision. After rinsing the vena cava material in fresh saline, the tissue was fixed for 7 days at room temperature in 0.6% glutaraldehyde (GA) prepared in 50 mM HEPES buffered saline at pH 7.4. The fixative was changed with fresh GA solution following an initial 24-hour fixation interval. [0055] Glutaraldehyde fixed vena cava was cut with a template to obtain samples approximately 40 mm long and 5 mm wide.
  • T d indicates the amount of energy absorbed by a sample.
  • T represents the temperature at which native collagen molecules unravel. This process leads to protein denaturation and is recorded as a peak maximum for three different tissues types in Figure 2.
  • Porcine vena cava tissue (native and GA fixed, as described above) was rinsed in saline and 2 mm 2 samples were cut and hermetically sealed in Differential Scanning Calorimetry (DSC) aluminum pans. Samples were heated at a rate of 10°C/min, from 25°C to 110°C and the temperature of thermal denaturation (T d ) for each sample was recorded on a Perkin Elmer DSC 7 machine.
  • FIG. 3A sets forth stress/strain data obtained for both GA-fixed and fresh porcine aortic cusps in both the radial and circumferential directions. The circumferential direction of an individual cusp runs parallel to the aortic wall, and the radial direction runs from the center of the cusp to the edge of the aorta.
  • Figure 3B sets forth the data obtained for GA-fixed pericardium
  • Figure 3C sets forth the data obtained for GA-fixed porcine vena cava in both the longitudinal (with blood flow) direction and circumferential (perpendicular to blood flow) direction.
  • GA-fixed vena cava is anisotropic, exhibiting greater elasticity in the circumferential direction than in the longitudinal direction. Further, in comparison to pericardial tissue ( Figure 3B), the vena cava biomaterial is significantly more extensible in both longitudinal and circumferential directions.
  • individual BHV leaflets can be excised from vena cava tissue with the circumferential direction of the vein substantially corresponding to the radial direction of the prepared leaflet, and the longitudinal direction of the vein substantially corresponding to the circumferential direction of the prepared leaflet.
  • vena cava oriented in a longitudinal direction was found to be more elastic than GA-fixed aortic cusps in their circumferential direction.
  • Vena cava tested in the circumferential direction is also more elastic than aortic cusps in the radial direction.
  • vena cava tissue has great strength and beneficial elasticity properties. Such properties may be used to advantage in the construction of a bioprosthetic heart valve.

Abstract

A biomaterial useful for bioprostheses such as bioprosthetic heart valves is provided in which the fixed tissue has improved elastic properties. The high elastin-containing biomaterial is further characterized by having anisotropic properties wherein the biological material has a greater stiffness in one direction and a greater elasticity in a cross direction. For instance, the biological material has an elastin content of about 30% by weight. In one embodiment, the biological material is vena cava tissue.

Description

TISSUE MATERIAL AND PROCESS FOR BIOPROSTHESIS
Cross Reference to Related Application
[001] This application claims benefit to United States Provisional Application serial number 60/429,191 filed November 26, 2002.
Federally Sponsored Research and Development [002] The United States Government may have rights in this invention pursuant to Grant No. HL 61652 between Clemson University and the National Institutes of Health.
Background of the Invention [003] Prosthetic heart valves are used to replace damaged or diseased heart valves. Prosthetic heart valves may be used to replace a heart's natural valves including aortic, mitral, and pulmonary valves. The predominant types of prosthetic heart valves are either mechanical valves or bioprosthetic valves. Bioprosthetic valves include allograft valves, which include biomaterial supplied from human cadavers; autologous valves, which include biomaterial supplied from the individual receiving the valve; and xenograft valves, which include biomaterial obtained from non-human biological sources including pigs, cows or other animals.
[004] Presently, mechanical valves have the longest durability of available replacement heart valves. However, implantation of a mechanical valve requires a recipient to be prescribed anticoagulants to prevent formation of blood clots. Unfortunately, continuous use of anticoagulants can be dangerous, as it greatly increases the user's risk of serious hemorrhage. In addition, a mechanical valve can often be audible to the recipient and may fail without warning, which can result in serious consequences, even death. [005] The use of bioprosthetic heart valves (BHVs) in valve replacement procedures is often preferred as BHVs do not require ongoing patient treatment with anticoagulants. Allograft transplants have been quite effective, with good compatibility and blood flow characteristics in the recipients. However, the availability of human valves for transplantation continues to decline as a percentage of cardiac surgeries performed each year. As such, the choice of xenograft materials for use in replacement BHVs is becoming more common. [006] Both xenografts and allografts require that the graft biomaterial be chemically fixed, or cross-linked, prior to use, in order to render the biomaterial non-antigenic as well as improve resistance to degradation. Currently, glutaraldehyde fixation of xenograft or allograft biomaterial is commonly used. Glutaraldehyde fixation forms covalent cross-links between free amines in the tissue proteins. As a result, the tissue is less susceptible to adverse immune reactions by the patient. Fixation is also believed to improve the valve durability by making the tissue stronger and less susceptible to enzymatic degradation.
[007] One disadvantage of current xenograft materials is poor durability. At present, conventional xenograft valves require replacement within five to ten years of the original repair. This is at least in part due to the fact that xenografts, particularly those chemically fixed with glutaraldehyde, are stiffer and less pliable than the recipient's original valve. As a consequence of the increased stiffness, the periodic opening and closing of the valve leads to material fatigue of the bioprosthetic replacement tissue. In addition, the recipient's heart will be required to work harder to overcome the stiffness of the bioprosthetic valve as compared to the exertion required for the original valve to function. As the material integrity of the xenograft valve is. lessened overtime, the efficiency of the valve operation also decreases. Additionally, fatigue and mechanical degradation of the xenograft valve is associated with increased calcification of the valve. The calcification causes additional stiffening which further degrades the physical and biological integrity of the valve.
[008] One form of a conventional bioprosthetic tissue valve comprises a stent which may be in the form of a rigid, annular ring portion onto which separate leaflets of fixed bovine or porcine pericardium are attached. The leaflets are sewn together so as to provide a movement similar to that of an actual heart valve. Unfortunately, due to the heterogenic nature of the pericardium, the pericardium source material used to form the BHV leaflets can have notable variations in physical properties, even when harvested from the same pericardial sac. For example, Simionescu et al. (Mapping of Glutaraldehyde-treated Bovine Pericardium and Tissue Selection forBio- Prosthetic Heart Valves, Journal of Biomedical Materials Research. 27(6), 697, 1993, which is incorporated herein by reference) discusses differences in individual pericardium sacs with respect to fiber orientation, suture holding power, and thickness. In an effort to form more homogeneous bio-prosthetic heart valve leaflets, it has been suggested that individual heart valve leaflets be tested and evaluated prior to BHV formation so as to use leaflets having similar properties, such as similar deflection values (see, for example, U.S. Patent No. 6,413,275 B1, which is incorporated herein by reference).
[009] Despite these advances in addressing the needs for longer lasting and better performing BHVs, there remains room for variation and improvement within the art.
Summary of the Invention [0010] The present invention is generally directed to improved bioprostheses and methods for forming the improved bioprostheses. In accordance with the invention, a bioprosthesis can include a tissue having an elastin content of at least about 10% by weight of the tissue and a support material attached to the tissue. In one embodiment, the elastin content of the tissue can be higher, for instance at least about 30% by weight of the tissue.
[0011] In one embodiment, the bioprostheses of the invention. can include an anisotropic tissue, for example, an anisotropic tissue exhibiting greater stiffness in a first direction and greater elasticity in a second direction.
[0012] In one particular embodiment of the invention, the tissue can be vena cava tissue, for example, porcine vena cava tissue.
[0013] The support materials used in conjunction with the disclosed tissue can be any bioprosthetic support materials as are generally known in the art, for instance, stents and/or suture rings. [0014] Bioprostheses that can be formed utilizing the disclosed tissues can include bioprosthetic heart valves. For example, the bioprostheses of the invention can include tricuspid heart valves and bicuspid heart valves.
[0015] The present invention is also directed to methods for forming the disclosed bioprostheses. The methods generally include providing tissue in a flat orientation and excising a portion of the flat tissue for attachment to a support material. The portion of the flat tissue that is excised from the flat sheet can generally have the desired shape to be attached in the bioprosthesis, for example, the shape of an individual tricuspid or bicuspid valve leaflet. [0016] In one embodiment, wherein the tissue used in the bioprosthesis is an anisotropic material, the tissue portion that is excised from the flat tissue can be oriented so as to improve the mechanical properties of the bioprosthesis. For example, in one embodiment, the excised portion can have the general shape of a heart valve leaflet. In this particular embodiment, the direction of greater elasticity of the anisotropic material can be substantially equivalent to the center- most radius of the leaflet as cut from the sheet.
[0017] In those embodiments wherein the tissue is vena cava tissue, the flat tissue sheet may be formed by opening a vena cava section with a longitudinal incision. [0018] The present invention is also directed to methods of replacing damaged heart valves with bioprosthetic heart valves including the tissue as herein disclosed.
Brief Description of the Figures [0019] A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings in which:
[0020] Figure 1 is a graph setting forth longitudinal and circumferential stress and strain properties of glutaraldehyde-fixed porcine vena cava tissue as may be used in accordance with the present invention; [0021] Figure 2 is a graph indicating the thermal denaturation temperature of various xenograft materials before and after fixation in glutaraldehyde;
[0022] Figure 3A illustrates the circumferential and radial stress-strain profiles for fresh and glutaraldehyde-fixed porcine aortic cusp tissues; [0023] Figure 3B illustrates the stress-strain profile for glutaraldehyde-fixed pericardial tissue over the same ranges as shown in Figure 3A;
[0024] Figure 3C illustrates the stress-strain profile for glutaraldehyde- fixed porcine vena cava tissue over the same range as shown in Figures 3A and 3B; [0025] Figure 4 is a schematic view showing one embodiment for obtaining a flat template of biomaterial from porcine vena cava and additionally setting forth one embodiment for the orientation of individual valve leaflets that may be attached onto a conventional 3-prong stent to create a porcine vena cava-based tricuspid BHV; and [0026] Figure 5 is a graph indicating the relative composition of various
BHV biological tissues.
Detailed Description of the invention [0027] Reference now will be made in detail to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. Other objects, features, and aspects of the present invention are disclosed in the following detailed description. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
[0028] As used herein the term "bioprosthesis" includes any prosthesis which is derived in whole or in part from human, animal, or other organic tissue and which can be implanted into a human or an animal. Accordingly, the term "bioprosthesis" includes cardiac prostheses such as heart valves, other replacement heart components, and cardiac vascular grafts. In addition, the properties of the tissue described herein may also lend itself as a prosthetic material for use with other organs and tissue systems. [0029] As used herein, the term "cross-link" refers generally to the process
" of forming bonds, e.g., covalent bonds, between free, active moieties on or within tissue or between a cross-linking agent or other compound which reacts with a reactive moiety of the tissue. It is generally recognized that in forming bioprostheses, it is desirable to leave as few active moieties within the biological tissue as possible. The resulting cross-linked tissue is considered "fixed."
[0030] As used herein, the term "fixed" in regard to tissue is defined to refer to tissue that is stabilized so as to be less antigenic and less susceptible to physical and biological degradation.
[0031] The term "tissue" is used as understood by those having skill in the art to include any natural or synthetic material derived from an organic source and which may be implanted in a mammal. While exemplary forms of a tissue are described herein, the term "tissue" is not limited to the exemplary embodiments but may include other types of tissues having properties similar to the exemplary tissue. [0032] In general, the present invention is directed to improved bioprostheses utilizing tissue that exhibits improved physical characteristics over biomaterials utilized in the past. More specifically, it has been found that a tissue can be provided for use in a bioprosthesis that exhibits improved physical characteristics over materials used in the past, including xenograft, autologous, and allograft aortic cusp and pericardium derived biomaterials. According to the present invention, tissue having an elastin content greater than about 10% can be utilized to form a bioprosthesis. In one embodiment, the tissue can be an anisotropic material, that is, a material in which the measured characteristics of the material differ depending upon the direction of measurement. In one embodiment of the present invention, vena cava tissue can be utilized in forming a bioprosthesis.
[0033] The tissue of the present invention can generally be utilized in any of a number of bioprostheses. For instance, bioprostheses can be formed according to the present invention including any of a variety of cardiac bioprostheses that can serve to replace damaged sections of the cardiovascular system. For example, bioprosthetic heart valves, veins, or arteries can be formed. In general, the bioprostheses of the present invention can include the tissues herein discussed in conjunction with other support materials as are generally known in the art. For instance, bioprostheses according to the present invention can include the disclosed tissue in suitable combination with support materials such as wire forms, stents, suture rings, conduits, flanges, and the like. [0034] In one embodiment, a bioprosthetic heart valve (BHV) can be formed including heart valve leaflets formed of the disclosed biomaterials and secured to a stent. Suitable stent materials can generally include stent materials as may generally be found in other known heart valves, including both mechanical and bioprosthetic heart valves. For example, in one embodiment, tissue leaflets according to the present invention can be attached to a flexible polymer stent formed of, for example, polypropylene, reinforced with a metal ring (such as, for example, a Haynes™ alloy no. 25 metal ring). In another embodiment of the invention, a polymer stent can be used including a polyester film support secured to a surgically acceptable metal ring such as an Elgiloy™ metal stiffener. Optionally, a stent may be formed of only polymeric materials, and not include any metals. Alternatively, the disclosed bioprosthesis can include a wire stent, such as an Elgiloy™ wire stent, or a titanium stent, which can be optionally covered with a material cover, such as, for example, Dacron™. In some embodiments, the valve can include a sewing or suture ring such as, for example, a polyester, Dacron™, or Teflon™ suture ring, as is generally known in the art. In yet another embodiment, the disclosed bioprosthesis can be a stentless heart valve. It should be clear, however, that these are exemplary materials, and the make-up of the support material in the disclosed bioprostheses is not critical to the disclosed invention. [0035] The improved bioprostheses of the present invention can include tissue that can be xenograft, allograft, or even autologous graft materials. In general, suitable biomaterials can be provided by tissue culture techniques as are generally known in the art, and thus, such techniques need not be discussed in detail herein. [0036] The tissues that can be used in the bioprostheses of the present invention can display improved properties of strength, durability, and elasticity. In one embodiment, the disclosed tissues can exhibit similar cross-link densities following fixation as previously known bioprosthetic tissue, while exhibiting greatly improved elasticity over these fixed materials. While not wishing to be bound by any particular theory, these improvements are believed to be due at least in part to the relative levels of collagen and elastin contained in the disclosed tissues.
[0037] Collagen is the fibrous protein constituent of connective tissue. Chemically, it is a triple helix formed of three extended protein chains that wrap around one another. In vivo, many rod-like collagen molecules are cross-linked together in the extracellular space to form unextendable collagen fibrils that have the tensile strength of steel.
[0038] Elastin is a protein similar to collagen in make-up and is the principal structural component of elastic fibers. Elastin polypeptide chains are cross-linked together to form rubber-like, elastic fibers. Unlike collagen, elastin molecules can uncoil into a more extended conformation when the fiber is stretched and will recoil spontaneously as soon as the stretching force is relaxed.
[0039] According to the present invention, bioprostheses are disclosed including tissues which have a greater elastin content than tissues used in similar bioprostheses in the past. In one embodiment, the tissues of the present invention can also have a lower collagen content than the tissues used in similar bioprostheses in the past. As such, the bioprostheses of the disclosed invention can exhibit improved physical characteristics, and in particular improved elasticity and durability.
[0040] For example, in one particular embodiment of the present invention, the bioprosthetic tissue can have three to four times greater elasticity than tissue derived from the pericardium of the same donor species. The greater extensibility of the tissue is believed to offer long-term benefits in terms of durability and resistance to mechanical degradation. The increase in mechanical durability is believed to provide additional attributes in terms of reducing the onset and amount of calcification which is frequently associated with bioprosthesis failure, and in particular, with BHV failure. Additionally, to the extent the more elastic tissue can be more resistant to mechanical damage and degradation, it is believed that greater resistance to biological degradation is also provided. Both the resistance to calcification and the resistance to biological degradation are believed to further enhance the longevity of implanted bioprostheses formed of the presently disclosed tissues.
[0041] In one embodiment, the bioprostheses of the present invention can include tissue having an elastin content greater than about 10% by weight. In another embodiment, the bioprostheses of the present invention can include tissue having an elastin content greater than about 30% by weight.
[0042] Collagen content can be proportional to the stiffness of the tissue which, as discussed above, can contribute to the lack of durability of a bioprosthesis. As such, in one embodiment, the disclosed tissues can have a lower collagen content than tissues utilized in the past in similar bioprostheses. For example, in one embodiment, the bioprostheses of the disclosed invention can include tissue having a collagen content less than about 50% by weight.
[0043] One preferred tissue suitable for use in the bioprostheses of the present invention can be provided from vena cava source material such as porcine, bovine or other large animal vena cava. In an alternative embodiment, vena cava tissue may be provided from allograft or autologous vena cava source material. While the examples below are described in reference to porcine inferior vena cava material, it is believed that superior vena cava material can also provide the benefits as noted below. Additionally, to the extent vena cava tissue derived from other animal species provide similar benefits, the scope of the present disclosure and claims should not be limited to vena cava material derived from any particular species.
[0044] The useful nature of the vena cava derived tissue is reflective of the molecular and structural composition of the vena cava source material. As seen in reference to Figure 5, a comparison of elastin and collagen composition is provided for bovine pericardium, porcine aortic cusps, and porcine vena cava tissues. As seen, the vena cava material has only about 40% by weight collagen compared to a 90% value for pericardium. Additionally, the vena cava material has a much higher percentage of elastin. The increased elastin content for the vena cava tissues contributes to the improved properties of the resulting bioprosthesis. [0045] In addition to increased elastin levels, in one embodiment, the tissue of the disclosed prostheses can display anisotropic properties. In general, anisotropic materials can display both great versatility and utility due to the variety of physical characteristics obtainable from the material through variation of orientation of the material. For example, anisotropic tissue can be oriented in the disclosed bioprostheses so as to exhibit a greater stiffness in one direction, preferably a direction requiring less movement from the tissue following implant, and a greater elasticity in a second direction which can be the direction in which motion of the tissue will generally be expected following implant. As such, even greater improvements in mechanical characteristics can be obtained in the bioprostheses prepared with the disclosed anisotropic materials. For example, test results have revealed that fixed vena cava tissue as provided herein can be extended up to about 200% in the longitudinal direction without breakage, and even farther in the circumferential direction.
[0046] Desirably, the tissue of the present invention can closely mimic the natural action and elasticity of the tissue in a healthy organ. In one embodiment of the invention, this mimicking effect can be maximized through optimal utilization of tissue exhibiting anisotropic characteristics. Utilization of tissue having anisotropic characteristics, such as, for example, anisotropic vena cava tissue, can allow the tissue to be positioned and oriented within a particular bioprosthesis so as to achieve enhanced mechanical performance as well as mimic the natural action of the healthy, original tissue.
[0047] For example, in one embodiment, the tissue of the present invention can be utilized in forming the individual leaflets of a BHV. In this embodiment, an anisotropic tissue leaflet can be oriented within the heart valve so as to provide increased elasticity in the radial direction and increased stiffness in the circumferential direction, as is found in undamaged heart valves. Increased elasticity in the radial direction can enhance the longevity and mechanical performance of the leaflet, specifically with regard to the repeating motion required of the leaflets in opening and closing the valve. Similarly, increased stiffness in the. circumferential direction of the leaflets can help maintain the overall structure and shape of the valve over time. Thus, utilization of anisotropic tissue of the present invention can improve longevity of a BHV, thereby reducing the occurrence of subsequent surgery to repair a damaged or failing prosthesis.
[0048] In general, the tissue of the disclosed bioprostheses can be prepared from a substantially flat sheet. In one particular embodiment, a single flat sheet can have a size sufficient to excise all of the necessary portions of a single bioprosthesis. For instance, when forming a BHV according to the present invention, the flat sheet can be large enough such that all of the cusps for a single replacement heart valve can be cut from a single sheet, be it a tricuspid valve (e.g., an aortic or pulmonary valve) or a bicuspid valve (e.g., a mitral valve) that will be formed.
[0049] As best seen in reference to Figure 4, harvested section "A" derived from vena cava may be opened using a longitudinal incision as seen by the dotted line. The opened vena cava tissue can be chemically fixed, such as using glutaraldehyde, as is generally known in the art or using any other suitable fixative agent such as, for example, a phenolic tannin fixative agent such as tannic acid, either alone or in combination with a glutaraldehyde fixative agent. Following fixation, the fixed tissue may then be manipulated to form a substantially flat sheet of tissue as seen in reference to "B" in Figure 4. The tissue sheet seen in Figure 4 "B" may then be used to provide portions of a bioprosthesis as indicated by the dashed lines. The portions, such as the illustrated leaflets, may then be used in any manner for which conventional tissue is used, such as, for example, pericardium tissue, with respect to valve replacements and related grafts. As seen in "C", on Figure 4, the tissue portion can be sutured onto a 3-prong stent to provide a bioprosthetic heart valve. [0050] It should be understood that, while illustrated in this particular embodiment as forming a tricuspid valve, the biomaterial of the present invention can alternatively be utilized in forming other valves and other bioprostheses. [0051] In further reference to Figure 4, the shaded arrows are used to designate the circumferential direction of the anisotropic vena cava tissue. As is further discussed in the example section below, in the case of vena cava tissue, the circumferential direction exhibits the greatest elasticity. As seen in reference to Figure 4, the circumferential direction of the original vein can be oriented to substantially equate with the radial direction of the excised leaflet; that is, with the circumferential direction of the vena cava tissue generally corresponding to the center-most radius of the excised leaflet. Thus, the leaflets may be excised from the biomaterial in an orientation that achieves maximum elasticity in a radial direction of each leaflet. In so doing, the anisotropic properties of the vena cava- derived biomaterial can be used to advantage to orient and mount the leaflets and supports so as to achieve improved mechanical properties, as discussed above.
[0052] Following formation of a bioprosthetic device according to the present invention, the device can be implanted by any surgical procedure as is generally known in the art. For example, a BHV including the tissue of the invention can be implanted in the heart of a person or an animal according to known surgical procedures such as, for example, procedures described in U.S. Patent No. 6,532,388 to Hill, et al., U.S. Patent 6,506,197 to Rollero, et al.. and U.S. Patents 6,402,780, 6,042,607, and 5,716,370 all to Williamson. IV, et al.. all of which are incorporated herein by reference. In general, such procedures include removal of a damaged cardiac valve, implantation of the new replacement valve in the cardiac valve annulus, and attachment of the BHV to the adjacent tissue.
[0053] Reference now will be made to exemplary embodiments of the invention set forth below. Each example is provided by way of explanation of the invention, not as a limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations may be made of this invention without departing from the scope or spirit of the invention.
Example 1 Tissue Collection and Characterization
[0054] Porcine inferior vena cava was collected from a slaughterhouse and placed in ice-cold saline. The vena cava was manually cleaned of adherent tissues, followed by opening the veins using a longitudinal incision. After rinsing the vena cava material in fresh saline, the tissue was fixed for 7 days at room temperature in 0.6% glutaraldehyde (GA) prepared in 50 mM HEPES buffered saline at pH 7.4. The fixative was changed with fresh GA solution following an initial 24-hour fixation interval. [0055] Glutaraldehyde fixed vena cava was cut with a template to obtain samples approximately 40 mm long and 5 mm wide. Six samples were obtained and examined in both a longitudinal direction (parallel to the axis of the blood flow) and in a circumferential direction (perpendicular to blood flow). Stress and strain tests were performed at room temperature on a Vitrodyne V-1000 mechanical tester (Lifeco Inc, Burlington, VT) equipped with a 10-pound load cell. Specimens were clamped onto serrated tester grips and initial tissue' length and thickness were measured under a load of about 1 gram. Each specimen was subsequently extended until rupture under a constant extension rate of 6 mm/min. Data recordings for load (N) and percent extension in millimeters were acquired on a personal computer using an I/O interface. Stress/Strain profiles were generated by converting applied loads to Stress (N/tissue cross sectional area) and extension values to % Strain (100 x Extended length-Initial length / Initial length). The resulting data is set forth in Figure 1.
Example 2 Thermal Denaturation (Td) Profiles Assessed by Differential Scanning Calorimetry (DSC)
[0056] Td indicates the amount of energy absorbed by a sample. In the case of connective tissues, T represents the temperature at which native collagen molecules unravel. This process leads to protein denaturation and is recorded as a peak maximum for three different tissues types in Figure 2. Fresh, native tissues exhibit a Td of around 65°C, while chemically cross-linked tissues require a larger amount of heat to denature, and therefore their T increases proportionally to the number of cross-links.
[0057] Porcine vena cava tissue (native and GA fixed, as described above) was rinsed in saline and 2 mm2 samples were cut and hermetically sealed in Differential Scanning Calorimetry (DSC) aluminum pans. Samples were heated at a rate of 10°C/min, from 25°C to 110°C and the temperature of thermal denaturation (Td) for each sample was recorded on a Perkin Elmer DSC 7 machine.
[0058] Fresh vena cava exhibited a Td of around 65°C, while chemical cross-linking with GA increased Td values to 87°C (Table 1) indicative of a high degree of cross-linking. These values are similar to those reported in the literature for glutaraldehyde cross-linked bovine pericardium and aortic cusp tissues as set forth in Table 1 and illustrated graphically in Figure 2.
Table 1 - Thermal denaturation temperatures for glutaraldehyde fixed tissues used in bioprosthetic heart valves.
Figure imgf000015_0001
[0059] The data indicate that fixation of vena cava with GA induces the formation of a large number of intermolecular cross-links and that the procedure outlined above yields a tissue biomaterial similar in cross-link density to tissues that are currently used in manufacturing of bioprosthetic heart valves. Example 3
Comparison of Elastic Properties of Various Tissues
[0060] Porcine vena cava tissue, porcine aortic cusps, and bovine pericardial tissue were prepared and subjected to stress/strain tests as disclosed above in Example 1. Figure 3A sets forth stress/strain data obtained for both GA-fixed and fresh porcine aortic cusps in both the radial and circumferential directions. The circumferential direction of an individual cusp runs parallel to the aortic wall, and the radial direction runs from the center of the cusp to the edge of the aorta. Figure 3B sets forth the data obtained for GA-fixed pericardium, and Figure 3C sets forth the data obtained for GA-fixed porcine vena cava in both the longitudinal (with blood flow) direction and circumferential (perpendicular to blood flow) direction.
[0061] As seen in reference to Figure 3C, GA-fixed vena cava is anisotropic, exhibiting greater elasticity in the circumferential direction than in the longitudinal direction. Further, in comparison to pericardial tissue (Figure 3B), the vena cava biomaterial is significantly more extensible in both longitudinal and circumferential directions.
[0062] As discussed above in regard to Figure 4, in one embodiment of the disclosed invention, individual BHV leaflets can be excised from vena cava tissue with the circumferential direction of the vein substantially corresponding to the radial direction of the prepared leaflet, and the longitudinal direction of the vein substantially corresponding to the circumferential direction of the prepared leaflet. As seen in comparison of Figures 3A and 3C, vena cava oriented in a longitudinal direction was found to be more elastic than GA-fixed aortic cusps in their circumferential direction. Vena cava tested in the circumferential direction is also more elastic than aortic cusps in the radial direction. [0063] At the conclusion of the stress-strain tests, aortic cusps ruptured at around 1 MPa, while vena cava was able to withstand stresses higher than 5 MPa, as shown in Figure . The data provided suggests that vena cava tissue has great strength and beneficial elasticity properties. Such properties may be used to advantage in the construction of a bioprosthetic heart valve.
[0064] Although preferred embodiments of the invention have been described using specific terms, devices, and methods, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or the scope of the present invention, which is set forth in the following claims. In addition, it should be understood that aspects of the various embodiments may be interchanged, both in whole or in part. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained therein.

Claims

THAT WHICH IS CLAIMED IS:
1. A bioprosthesis comprising: a tissue having an elastin content of at least about 10% by weight of the tissue; and a support material attached to the tissue.
2. The bioprosthesis of claim 1 , in which the tissue has an elastin content of greater than about 30% by weight of the tissue.
3. The bioprosthesis of claim 1 , wherein the tissue is an anisotropic tissue.
4. The bioprosthesis of claim 3, wherein the anisotropic tissue exhibits greater stiffness in a first direction and greater elasticity in a second direction.
5. The bioprosthesis of claim 1 , wherein the tissue is vena cava tissue.
6. The bioprosthesis of claim 5, wherein the vena cava tissue is porcine vena cava tissue.
7. The bioprosthesis of claim 1 , wherein the support material comprises a stent.
8. The bioprosthesis of claim 1 , wherein the support material comprises a suture ring.
9. The bioprosthesis of claim 1 , wherein the bioprosthesis is a bioprosthetic heart valve.
,
10. A bioprosthetic heart valve comprising: a fixed tissue having an elastin content of at least about 10% by weight of the tissue; and a support structure selected from the group consisting of a suture ring and a stent.
11. The bioprosthetic heart valve of claim 10, wherein the tissue has an elastin content of at least about 30% by weight of the tissue.
12. The bioprosthetic heart valve of claim 10, wherein the tissue is vena cava tissue.
13. The bioprosthetic heart valve of claim 10, wherein the tissue is porcine vena cava tissue.
14. The bioprosthetic heart valve of claim 10, wherein the bioprosthetic heart valve is a tricuspid heart valve.
15. The bioprosthetic heart valve of claim 10, wherein the bioprosthetic heart valve is a bicuspid heart valve.
16. A process for forming a bioprosthesis comprising: providing a flat tissue having an elastin content of at least about 10%; excising a portion of the flat tissue; and attaching the portion to a support material of the bioprosthesis.
17. The process of claim 16, wherein the flat tissue is an anisotropic material, and the excised portion of the flat tissue exhibits greater stiffness in a first direction and greater elasticity in a second direction.
18. The process of claim 17, wherein the excised portion of the flat tissue is formed in the shape of a heart valve leaflet, the direction of greater elasticity of the excised portion being substantially equivalent to the center-most radius of the heart valve leaflet.
19. The process of claim 17, wherein the excised portion of the flat tissue is formed in the shape of a heart valve leaflet.
20. The process of claim 19, wherein the heart valve leaflet is a tricuspid valve leaflet.
21. The process of claim 19, wherein the heart valve leaflet is a bicuspid valve leaflet.
22. The process of claim 16, wherein the bioprosthesis is a bioprosthetic heart valve.
23. The process of claim 16, wherein the support material comprises a suture ring.
24. The process of claim 16, wherein the flat tissue is vena cava tissue.
25. The process of claim 24, further comprising obtaining a section of vena cava, and opening the section of vena cava with a longitudinal incision to form a flat tissue.
26. The process of claim 24, wherein the vena cava is porcine vena cava.
27. The process of claim 16, further comprising chemically fixing the tissue.
28. A process for replacing a damaged cardiac valve comprising: surgical removal of a damaged cardiac valve from the heart of a patient; implantation of a bioprosthetic heart valve in the cardiac valve annulus, wherein the bioprosthetic heart valve comprises a fixed tissue having an elastin content of at least about 10% by weight of the tissue and a support structure selected from the group consisting of a suture ring and a stent; and attachment of the bioprosthetic heart valve to the tissue of the cardiac valve annulus.
29. The process of claim 28, wherein the tissue has an elastin content of at least about 30% by weight of the tissue.
30. The process of claim 28, wherein the tissue is vena cava tissue.
31. The process of claim 30, wherein the tissue is porcine vena cava tissue.
32. The process of claim 28, wherein the bioprosthetic heart valve is a tricuspid heart valve.
33. The process of claim 28, wherein the bioprosthetic heart valve is a bicuspid heart valve.
PCT/US2003/037683 2002-11-26 2003-11-25 Tissue material and process for bioprosthesis WO2004047619A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003298696A AU2003298696A1 (en) 2002-11-26 2003-11-25 Tissue material and process for bioprosthesis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42919102P 2002-11-26 2002-11-26
US60/429,191 2002-11-26
US10/722,581 US7189259B2 (en) 2002-11-26 2003-11-24 Tissue material and process for bioprosthesis

Publications (2)

Publication Number Publication Date
WO2004047619A2 true WO2004047619A2 (en) 2004-06-10
WO2004047619A3 WO2004047619A3 (en) 2005-01-27

Family

ID=32829625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/037683 WO2004047619A2 (en) 2002-11-26 2003-11-25 Tissue material and process for bioprosthesis

Country Status (3)

Country Link
US (2) US7189259B2 (en)
AU (1) AU2003298696A1 (en)
WO (1) WO2004047619A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038761A1 (en) * 2007-09-19 2009-03-26 St. Jude Medical, Inc. Fiber-reinforced synthetic sheets for prosthetic heart valve leaflets
US9289290B2 (en) 2007-09-28 2016-03-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US11426275B2 (en) 2012-06-29 2022-08-30 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment having tabs and flaps

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US6214054B1 (en) 1998-09-21 2001-04-10 Edwards Lifesciences Corporation Method for fixation of biological tissues having mitigated propensity for post-implantation calcification and thrombosis and bioprosthetic devices prepared thereby
DE10010073B4 (en) * 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
US7078163B2 (en) 2001-03-30 2006-07-18 Medtronic, Inc. Process for reducing mineralization of tissue used in transplantation
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US6878168B2 (en) 2002-01-03 2005-04-12 Edwards Lifesciences Corporation Treatment of bioprosthetic tissues to mitigate post implantation calcification
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
ES2488766T3 (en) * 2002-01-25 2014-08-28 Biomedical Design, Inc. Calcification resistant fixation
US20040153145A1 (en) * 2002-11-26 2004-08-05 Clemson University Fixation method for bioprostheses
US7189259B2 (en) * 2002-11-26 2007-03-13 Clemson University Tissue material and process for bioprosthesis
US7955788B2 (en) * 2003-10-30 2011-06-07 Medtronic, Inc. Bioprosthetic tissue preparation with synthetic hydrogels
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
WO2006099016A2 (en) * 2005-03-09 2006-09-21 Providence Health System A composite multi-layered vascular graft prosthesis
US7252834B2 (en) 2005-04-25 2007-08-07 Clemson University Research Foundation (Curf) Elastin stabilization of connective tissue
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005052628B4 (en) * 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
EP2077718B2 (en) 2006-10-27 2022-03-09 Edwards Lifesciences Corporation Biological tissue for surgical implantation
US9138315B2 (en) * 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
WO2008138584A1 (en) 2007-05-15 2008-11-20 Jenavalve Technology Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
US20080294247A1 (en) * 2007-05-25 2008-11-27 Medical Entrepreneurs Ii, Inc. Prosthetic Heart Valve
US9101691B2 (en) 2007-06-11 2015-08-11 Edwards Lifesciences Corporation Methods for pre-stressing and capping bioprosthetic tissue
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US8257434B2 (en) 2007-12-18 2012-09-04 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US8357387B2 (en) 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
US8617899B2 (en) * 2008-02-14 2013-12-31 Palo Alto Research Center Incorporated Enhanced drop mixing using magnetic actuation
EP2257274A4 (en) * 2008-02-21 2011-07-20 Vatrix Medical Inc Treatment of aneurysm with application of connective tissue stabilization agent in combination with a delivery vehicle
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8317858B2 (en) * 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9044318B2 (en) * 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
US20100119605A1 (en) * 2008-11-12 2010-05-13 Isenburg Jason C Compositions for tissue stabilization
WO2010114941A1 (en) * 2009-03-31 2010-10-07 Medical Entrepreneurs Ii, Inc. Leaflet alignment fixture and methods therefor
US8468667B2 (en) * 2009-05-15 2013-06-25 Jenavalve Technology, Inc. Device for compressing a stent
AU2010289856B2 (en) * 2009-09-02 2015-02-12 Lifecell Corporation Vascular grafts derived from acellular tissue matrices
WO2011044455A1 (en) * 2009-10-09 2011-04-14 Vatrix Medical, Inc. In vivo chemical stabilization of vulnerable plaque
FR2951549B1 (en) 2009-10-15 2013-08-23 Olivier Schussler PROCESS FOR OBTAINING IMPLANTABLE MEDICAL BIOPROTHESES
AU2011223708A1 (en) 2010-03-01 2012-09-27 Colibri Heart Valve Llc Percutaneously deliverable heart valve and methods associated therewith
NZ602066A (en) 2010-03-23 2013-09-27 Edwards Lifesciences Corp Methods of conditioning sheet bioprosthetic tissue
US11246697B2 (en) 2010-05-05 2022-02-15 Markman Biologics Corporation Method and apparatus for creating a reconstructive graft
US11701213B2 (en) 2010-05-05 2023-07-18 Markman Biologics Corporation Method and apparatus for creating a modified tissue graft
US11877921B2 (en) 2010-05-05 2024-01-23 Markman Biologics Corporation Method and apparatus for creating a modified tissue graft
US8858647B2 (en) 2010-05-05 2014-10-14 Barry Markman Method and apparatus for a process creating an internal tissue graft for animal and human reconstructive purposes
US9622845B2 (en) 2010-05-05 2017-04-18 Barry Markman Method and apparatus for creating a reconstructive graft
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US10856978B2 (en) 2010-05-20 2020-12-08 Jenavalve Technology, Inc. Catheter system
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
US8906601B2 (en) 2010-06-17 2014-12-09 Edwardss Lifesciences Corporation Methods for stabilizing a bioprosthetic tissue by chemical modification of antigenic carbohydrates
CN103153384B (en) 2010-06-28 2016-03-09 科利柏心脏瓣膜有限责任公司 For the device of device in the delivery of vascular of chamber
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US9579193B2 (en) 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US9351829B2 (en) 2010-11-17 2016-05-31 Edwards Lifesciences Corporation Double cross-linkage process to enhance post-implantation bioprosthetic tissue durability
SG191008A1 (en) 2010-12-14 2013-07-31 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
US8911468B2 (en) 2011-01-31 2014-12-16 Vatrix Medical, Inc. Devices, therapeutic compositions and corresponding percutaneous treatment methods for aortic dissection
JP2014516695A (en) 2011-05-18 2014-07-17 バトリックス・メディカル・インコーポレイテッド Coated balloon for vascular stabilization
KR20140026541A (en) 2011-05-27 2014-03-05 코매트릭스 카디오바스컬라 인코포레이티드 Extracellular matrix material valve conduit and methods of making thereof
US9549817B2 (en) 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
CN104159543B (en) 2011-10-21 2016-10-12 耶拿阀门科技公司 For expansible heart valve bracket is introduced conduit system in the patient
JP6227632B2 (en) 2012-05-16 2017-11-08 イェーナヴァルヴ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Catheter delivery system for introducing expandable heart substitute valve and medical device for treatment of heart valve defects
US10238771B2 (en) 2012-11-08 2019-03-26 Edwards Lifesciences Corporation Methods for treating bioprosthetic tissue using a nucleophile/electrophile in a catalytic system
EP2964277B1 (en) 2013-03-08 2018-10-24 St. Jude Medical, Cardiology Division, Inc. Method of preparing a tissue swatch for a bioprosthetic device
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US9615922B2 (en) 2013-09-30 2017-04-11 Edwards Lifesciences Corporation Method and apparatus for preparing a contoured biological tissue
US10959839B2 (en) 2013-10-08 2021-03-30 Edwards Lifesciences Corporation Method for directing cellular migration patterns on a biological tissue
US20170014115A1 (en) 2014-03-27 2017-01-19 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
US11034928B2 (en) 2014-07-23 2021-06-15 Clemson University Research Foundation Modular bioreactor, compliance chamber for a bioreactor, and cell seeding apparatus
US10022225B2 (en) 2014-07-23 2018-07-17 Clemson University Research Foundation Self-adjusting tissue holder
US10293082B2 (en) 2014-07-23 2019-05-21 Clemson University Research Foundation Decellularization method and system and decellularized tissue formed thereby
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
WO2017049003A1 (en) 2015-09-15 2017-03-23 Nasser Rafiee Devices and methods for effectuating percutaneous glenn and fontan procedures
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
EP3668451A1 (en) 2017-08-17 2020-06-24 Incubar LLC Prosthetic vascular valve and methods associated therewith
WO2019051476A1 (en) 2017-09-11 2019-03-14 Incubar, LLC Conduit vascular implant sealing device for reducing endoleak
CN109260517B (en) * 2018-09-19 2020-10-30 杭州启明医疗器械股份有限公司 Prefillable dry biological heart valve and preparation method thereof
WO2020092205A1 (en) 2018-11-01 2020-05-07 Edwards Lifesciences Corporation Transcatheter pulmonic regenerative valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716370A (en) * 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US5990379A (en) * 1994-11-15 1999-11-23 Kenton W. Gregory & Sisters Of Providence Prosthetic devices including elastin or elastin-based materials
US6342070B1 (en) * 1997-12-24 2002-01-29 Edwards Lifesciences Corp. Stentless bioprosthetic heart valve with patent coronary protuberances and method of surgical use thereof
US20030078659A1 (en) * 2001-10-23 2003-04-24 Jun Yang Graft element

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522579A (en) * 1980-01-10 1985-06-11 Rotondo Philip L Apparatus for making reinforced concrete products
US4378224A (en) 1980-09-19 1983-03-29 Nimni Marcel E Coating for bioprosthetic device and method of making same
US4400833A (en) * 1981-06-10 1983-08-30 Kurland Kenneth Z Means and method of implanting bioprosthetics
DE3238639A1 (en) 1982-10-19 1984-04-19 Karlheinz 7900 Ulm Bachhuber METHOD FOR PRODUCING THIN SECTIONS OF BIOLOGICAL TISSUES AND CURABLE INFILTRATION AGENT FOR SUCH TISSUES
US4801299A (en) * 1983-06-10 1989-01-31 University Patents, Inc. Body implants of extracellular matrix and means and methods of making and using such implants
GB8413319D0 (en) * 1984-05-24 1984-06-27 Oliver Roy Frederick Biological material
IT1180531B (en) * 1984-09-21 1987-09-23 Ge Sv In Srl BICUSPID HEART VALVE PROSTHESIS
JP3133095B2 (en) 1990-04-25 2001-02-05 兆岐 史 Gastrointestinal sclerosis agent
AU662342B2 (en) * 1991-05-16 1995-08-31 3F Therapeutics, Inc. Cardiac valve
US5374539A (en) 1991-06-17 1994-12-20 Nimni; Marcel E. Process for purifying collagen and generating bioprosthesis
US5376376A (en) 1992-01-13 1994-12-27 Li; Shu-Tung Resorbable vascular wound dressings
US5480424A (en) * 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5931969A (en) * 1994-07-29 1999-08-03 Baxter International Inc. Methods and apparatuses for treating biological tissue to mitigate calcification
CA2196165C (en) * 1994-07-29 2004-06-08 Sophie Carpentier Methods for treating implantable biological tissues to mitigate the calcification thereof and bioprosthetic articles treated by such methods
US5641373A (en) * 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
EP0821573A4 (en) * 1995-04-19 2000-08-09 St Jude Medical Matrix substrate for a viable body tissue-derived prosthesis and method for making the same
US6110206A (en) * 1995-09-15 2000-08-29 Crosscart, Inc. Anterior cruciate ligament xenografts
US6328763B1 (en) * 1995-10-06 2001-12-11 Cardiomend, Llc Optimized geometry of a tissue pattern for semilunar heart valve reconstruction
US6402780B2 (en) * 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
US6532388B1 (en) * 1996-04-30 2003-03-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US5834449A (en) 1996-06-13 1998-11-10 The Research Foundation Of State University Of New York Treatment of aortic and vascular aneurysms with tetracycline compounds
US5800531A (en) * 1996-09-30 1998-09-01 Baxter International Inc. Bioprosthetic heart valve implantation device
US5899937A (en) * 1997-03-05 1999-05-04 Cryolife, Inc. Pulsatile flow system for developing heart valves
US5928281A (en) * 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5961549A (en) * 1997-04-03 1999-10-05 Baxter International Inc. Multi-leaflet bioprosthetic heart valve
WO1998044874A1 (en) * 1997-04-04 1998-10-15 Barnes-Jewish Hospital Neocartilage and methods of use
WO1999012555A1 (en) 1997-09-11 1999-03-18 Purdue Research Foundation Galactosidase modified submucosal tissue
US6626939B1 (en) * 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6071541A (en) 1998-07-31 2000-06-06 Murad; Howard Pharmaceutical compositions and methods for managing skin conditions
US6214054B1 (en) * 1998-09-21 2001-04-10 Edwards Lifesciences Corporation Method for fixation of biological tissues having mitigated propensity for post-implantation calcification and thrombosis and bioprosthetic devices prepared thereby
DE19860712A1 (en) 1998-12-23 2000-07-13 Arnold & Richter Kg Film guide for a motion picture camera
AU757091B2 (en) * 1999-01-26 2003-01-30 Edwards Lifesciences Corporation Flexible heart valve
US6558418B2 (en) * 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
US6278079B1 (en) * 1999-02-09 2001-08-21 Edwards Lifesciences Corp. Laser cutting of fabric grafts
WO2000064371A1 (en) 1999-04-27 2000-11-02 The Children's Hospital Of Philadelphia Stabilization of implantable bioprosthetic devices
EP1214106B1 (en) 1999-09-22 2003-11-19 Baxter International Inc. Cardiac valve and method for preparing a biological tissue
US6416547B1 (en) * 1999-10-06 2002-07-09 Edwards Lifesciences Corporation Heart valve carrier and rinse cage
US6479079B1 (en) * 1999-12-13 2002-11-12 Sulzer Carbomedics Inc. Anticalcification treatments for fixed biomaterials
US6579538B1 (en) * 1999-12-22 2003-06-17 Acell, Inc. Tissue regenerative compositions for cardiac applications, method of making, and method of use thereof
US6228387B1 (en) 2000-01-27 2001-05-08 Murray Borod Integrated comprehensive hemorrhoid treatment compositions and regimen
US6391538B1 (en) 2000-02-09 2002-05-21 The Children's Hospital Of Philadelphia Stabilization of implantable bioprosthetic tissue
US6378221B1 (en) * 2000-02-29 2002-04-30 Edwards Lifesciences Corporation Systems and methods for mapping and marking the thickness of bioprosthetic sheet
US6454799B1 (en) * 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
DE60125177T2 (en) * 2000-07-12 2007-03-29 Edwards Lifesciences Corp., Irvine METHOD AND DEVICE FOR FORMING A WIRE FORM FOR A HEART LAPTOP PROSTHESIS
US6409758B2 (en) * 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
US6458155B1 (en) * 2000-09-01 2002-10-01 Edwards Lifesciences Corporation Fresh donor heart valve sizer and method of use
US20020073359A1 (en) 2000-09-08 2002-06-13 Wade Jennifer A. System and method for high priority machine check analysis
US6461382B1 (en) * 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6506197B1 (en) * 2000-11-15 2003-01-14 Ethicon, Inc. Surgical method for affixing a valve to a heart using a looped suture combination
US6444222B1 (en) 2001-05-08 2002-09-03 Verigen Transplantation Services International Ag Reinforced matrices
GB0121985D0 (en) * 2001-09-11 2001-10-31 Isis Innovation Tissue engineering scaffolds
AU2002364558A1 (en) * 2001-12-11 2003-06-23 Cytograft Tissue Engineering, Inc. Tissue engineered cellular sheets, methods of making and use thereof
US20030130729A1 (en) * 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
DE10235237A1 (en) * 2002-08-01 2004-02-12 Symetis Ag In vitro preparation of homologous heart valves, useful for replacement of diseased valves, by inoculating biodegradable carrier with fibroblasts and attachment to a non-degradable stent
US7189259B2 (en) * 2002-11-26 2007-03-13 Clemson University Tissue material and process for bioprosthesis
US20040153145A1 (en) 2002-11-26 2004-08-05 Clemson University Fixation method for bioprostheses
US7160299B2 (en) * 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
AR047692A1 (en) * 2003-07-10 2006-02-08 Epix Medical Inc IMAGES OF STATIONARY WHITE
US7252834B2 (en) 2005-04-25 2007-08-07 Clemson University Research Foundation (Curf) Elastin stabilization of connective tissue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990379A (en) * 1994-11-15 1999-11-23 Kenton W. Gregory & Sisters Of Providence Prosthetic devices including elastin or elastin-based materials
US5716370A (en) * 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US6342070B1 (en) * 1997-12-24 2002-01-29 Edwards Lifesciences Corp. Stentless bioprosthetic heart valve with patent coronary protuberances and method of surgical use thereof
US20030078659A1 (en) * 2001-10-23 2003-04-24 Jun Yang Graft element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038761A1 (en) * 2007-09-19 2009-03-26 St. Jude Medical, Inc. Fiber-reinforced synthetic sheets for prosthetic heart valve leaflets
US9289290B2 (en) 2007-09-28 2016-03-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US9364321B2 (en) 2007-09-28 2016-06-14 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US9615921B2 (en) 2007-09-28 2017-04-11 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US10405973B2 (en) 2007-09-28 2019-09-10 St. Jude Medical, Llc Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US11426275B2 (en) 2012-06-29 2022-08-30 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment having tabs and flaps

Also Published As

Publication number Publication date
US20040158320A1 (en) 2004-08-12
US7189259B2 (en) 2007-03-13
US7753840B2 (en) 2010-07-13
WO2004047619A3 (en) 2005-01-27
AU2003298696A8 (en) 2004-06-18
US20070005132A1 (en) 2007-01-04
AU2003298696A1 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
US7753840B2 (en) Tissue material process for forming bioprosthesis
US6352708B1 (en) Solution and method for treating autologous tissue for implant operation
CA2272097C (en) Artificial vascular valves
CA2241181C (en) Heart valve replacement using flexible tubes
US5713950A (en) Method of replacing heart valves using flexible tubes
US20030229394A1 (en) Processed tissue for medical device formation
US6797000B2 (en) Tri-composite, full root, stentless valve
US20040024452A1 (en) Valved prostheses with preformed tissue leaflets
US20040153145A1 (en) Fixation method for bioprostheses
Korossis et al. Cardiac valve replacement: a bioengineering approach
US6540781B2 (en) Cryopreserved homografts and other stentless bioprosthetic heart valves having natural tissue sewing rings
WO1997024083A1 (en) Method of replacing heart valves using flexible tubes
Simionescu et al. Tissue material and process for bioprosthesis
Yoganathan et al. Heart valve replacements: Problems and developments
AU755439B2 (en) Artificial vascular valves
AU774141B2 (en) Heart valve replacement
Matrix Jun Liao, Erinn M. Joyce, W. David Merryman, Hugh L. Jones, Mina Tahai, MF Horstemeyer, Lakiesha N. Williams, Richard A. Hopkins, et al.
July Novel biomaterial of cross-linked peritoneal tissue

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP