WO2004051629A1 - 磁気ディスク装置及びその製造方法 - Google Patents

磁気ディスク装置及びその製造方法 Download PDF

Info

Publication number
WO2004051629A1
WO2004051629A1 PCT/JP2003/015300 JP0315300W WO2004051629A1 WO 2004051629 A1 WO2004051629 A1 WO 2004051629A1 JP 0315300 W JP0315300 W JP 0315300W WO 2004051629 A1 WO2004051629 A1 WO 2004051629A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antiferromagnetic
magnetic disk
chamber
film
Prior art date
Application number
PCT/JP2003/015300
Other languages
English (en)
French (fr)
Inventor
Akifumi Aono
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/535,994 priority Critical patent/US7312958B2/en
Priority to JP2004556866A priority patent/JPWO2004051629A1/ja
Publication of WO2004051629A1 publication Critical patent/WO2004051629A1/ja
Priority to US11/928,342 priority patent/US7542247B2/en
Priority to US11/928,473 priority patent/US7463458B2/en
Priority to US12/289,380 priority patent/US7733613B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3263Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being symmetric, e.g. for dual spin valve, e.g. NiO/Co/Cu/Co/Cu/Co/NiO

Definitions

  • the present invention relates to a magnetic disk device and a method of manufacturing the same, and more particularly, to a magnetic disk device having a magnetoresistive effect element using a spin valve magnetoresistive effect, which is used for a reproducing head magnetic field detection sensor, and a magnetic disk device having the same. It relates to a manufacturing method. Background art
  • a spin-valve type magnetoresistive film is generally used for the magnetoresistive element of the reproducing head.
  • the spin-valve magnetic resistance effect film has a basic structure of a multilayer structure of a free magnetic layer / nonmagnetic layer / pinned magnetic layer / antiferromagnetic layer.
  • “Kamiguchi et al“ CoFe SPECULAR SPIN V ALVES WITH A NANO OXIDE LAYER ”Digests of Intermag 1999, DB-01.1999” includes an ultra-thin oxide layer called NOL (Nano Oxide Layer) and a free magnetic layer.
  • NOL Nano Oxide Layer
  • a conduction electron is inserted into a fixed magnetic layer and reflected at an interface between an oxide layer and a metal layer to obtain a so-called specular reflection effect. According to such a configuration, the spin valve film becomes like a pseudo artificial lattice film, and the MR ratio can be improved.
  • Japanese Patent Application Laid-Open No. 7-265250 discloses a current perpendicular-to-the-plane (CPP) mode in which a current flows perpendicularly to the film surface in a multi-layer GMR element. It has been reported that the resistance change is more than twice as large as that of the current in-the-plane (CIP) mode, in which current flows parallel to a large plane. Adaptation is actively taking place.
  • CIP current in-the-plane
  • the magnetoresistive effect element of the reproducing head is required to reproduce signals recorded at a short wavelength on the magnetic recording medium.
  • Another problem is that it is necessary to further increase the sensitivity of the magnetoresistive film. Disclosure of the invention
  • the present invention has been made in view of the above-mentioned technical problems in the known art, and by devising a configuration of a magnetoresistive film used for a magnetoresistive element of a magnetic disk device, a more sensitive thin film magnetic head has been developed.
  • Magnetic di An object of the present invention is to realize a disk device and a method of manufacturing the disk device.
  • a magnetic disk device is a magnetic disk device having a magnetoresistive element, wherein a magnetoresistive film used for the magnetoresistive element has an anti-magnetic effect.
  • a spin-valve type multilayer film composed of a ferromagnetic layer, a ferromagnetic layer, a non-magnetic layer, and a free magnetic layer.
  • An antiferromagnetic reaction layer is provided between the antiferromagnetic layer and the ferromagnetic layer.
  • the antiferromagnetic layer is formed of a metal compound containing oxygen.
  • the magnetic disk device is a magnetic disk device having a magnetoresistive element operating in a current direction (CPP mode) perpendicular to a film surface, wherein the magnetoresistive effect is
  • the magnetoresistive film used in the device is a spin-valve type multilayer film composed of an antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic layer, and a free magnetic layer.
  • An antiferromagnetic reaction layer is provided therebetween, and the antiferromagnetic layer is made of a metal compound containing oxygen.
  • the antiferromagnetic it is preferable that the reaction layer is formed of an oxygen-containing Mn-based metal compound and has a thickness of 0.1 to 2.5 nm.
  • the antiferromagnetic reaction layer, nitrogen, hydrogen, and at least one or more selected from H 2 0 is included preferable. Further, the antiferromagnetic reaction layer is preferably formed by natural oxidation or plasma oxidation.
  • the antiferromagnetic layer is formed of a Mn-based alloy and contains at least one or more selected from Pt, Ir, Ru, and Rh.
  • the underlayer of the antiferromagnetic layer is formed of NiFe or NiFeCr.
  • the ferromagnetic layer and the free magnetic layer may be formed of an alloy containing at least one of Fe, Co, and Ni, and the nonmagnetic layer may be formed of an alloy containing Cu.
  • the ferromagnetic layer has a stacked ferrimagnetic structure including a first ferromagnetic layer / a metal intermediate layer / a second ferromagnetic layer, and the metal intermediate layer is composed of Ru, Cu, Rh, Pd It is preferably formed of an alloy containing at least one selected from Ag, Ir, Pt, and Au.
  • a magnetoresistive film is loaded into the first chamber 1 with the substrate.
  • Forming an antiferromagnetic layer in a vacuum atmosphere carrying the substrate into the second chamber, performing vacuum release at a degree of vacuum lower than that of the first chamber, and forming the antiferromagnetic layer on the substrate;
  • Forming an antiferromagnetic reaction layer on the formation surface removing the substrate from the second chamber, forming a ferromagnetic layer on the antiferromagnetic reaction layer in another chamber, It is a magnetoresistive film in which an antiferromagnetic reaction layer is provided between the ferromagnetic layer and the ferromagnetic layer.
  • a magnetoresistive film is loaded into a first chamber, an antiferromagnetic layer is formed in a vacuum atmosphere, and the substrate is loaded into a second chamber. Then, an antiferromagnetic reaction layer is formed by performing a surface treatment with a gas containing 1 ppm or more of H 2 ⁇ or 0 2 , and the substrate is taken out from the second chamber and the antiferromagnetic reaction is performed by another chamber.
  • the invention is characterized in that a ferromagnetic layer is formed on a reaction layer, and a magnetoresistance effect film is provided in which an antiferromagnetic reaction layer is provided between the antiferromagnetic layer and the ferromagnetic layer.
  • the first, in the second manufacturing method, it is preferred vacuum degree of the first chamber one is in a range of 1 X 1 0- 6 ⁇ 1 X 1 0- 8 P a.
  • a magnetoresistive film is loaded into a first chamber, an antiferromagnetic layer is formed in a vacuum atmosphere, and the substrate is loaded into a second chamber.
  • the antiferromagnetic reaction layer is formed by exposing a 1 H 2 ⁇ than chambers within one concentration or ⁇ 2 concentration under high atmosphere, another Zhang bar one taken out the substrate from the second chamber one A ferromagnetic layer on the antiferromagnetic reaction layer, and a magnetoresistive effect film having an antiferromagnetic reaction layer provided between the antiferromagnetic layer and the ferromagnetic layer.
  • the substrate is exposed for 60 seconds or more in a vacuum atmosphere in the second chamber. Further, after the process in the second chamber is completed, it is preferable that the substrate is transported again to the first chamber and a film forming process for the ferromagnetic layer and thereafter is performed.
  • the first to third manufacturing methods can be easily realized by using a helicon long-throw paddle device.
  • the spin valve type magnetoresistive film including the antiferromagnetic layer, the ferromagnetic layer, the nonmagnetic layer, and the free magnetic layer has an antiferromagnetic layer between the antiferromagnetic layer and the ferromagnetic layer.
  • the MR ratio of the magnetoresistive effect element is increased, and it is possible to increase the head output.
  • Such a magnetic disk device having a high-sensitivity reproducing head can realize high-density recording and high-capacity, which have been demanded in recent years.
  • FIG. 1 is an enlarged schematic cross-sectional view of a main part of a reproducing head of a magnetic disk device according to Embodiment 1 of the present invention, as viewed from a head sliding surface facing a magnetic recording medium.
  • FIG. 2 is a schematic diagram showing the configuration of the magnetoresistive film according to the embodiment.
  • FIG. 3 is an X-ray diffraction profile showing the dependence of the magnetoresistive film in the embodiment on the underlying material.
  • FIG. 4 is a measurement graph of the MR ratio of the spin valve film according to the same embodiment.
  • FIG. 5 is a graph showing the dependence of the MR ratio and the interlayer coupling magnetic field H Int on the thickness of the nonmagnetic layer of the spin valve film in the same embodiment.
  • FIG. 6 is an enlarged schematic cross-sectional view of a main part of the reproducing head of the magnetic disk device according to Embodiment 2 of the present invention, as viewed from a head sliding surface facing a magnetic recording medium.
  • FIG. 7 is a diagram showing the relationship between the junction area of the GMR element and the rate of resistance change in the same embodiment.
  • FIG. 8 is a plan view of the sputtering device used in Embodiment 3 of the present invention.
  • FIG. 9 is a graph showing the MR ratio with respect to the vacuum standing time in the same embodiment.
  • FIG. 10 is a graph showing the MR ratio with respect to the vacuum standing condition in the same embodiment.
  • Embodiment 1 of the present invention show Embodiment 1 of the present invention.
  • the lower shield layer 1 which is a magnetic film formed of a soft magnetic material such as permalloy, Co-based amorphous, and Fe-based fine particles, has 2 ⁇ 3, a 1 N, lower Giyappu insulating layer 2 formed in a non-magnetic insulating material such as S i O 2 is placed.
  • the GMR element 3 is provided on the lower gap insulating layer 2. Although details of the GMR element 3 are not shown, the GMR element 3 is a laminated film including an antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic layer, a free magnetic layer, and the like, and a specific configuration thereof will be described later.
  • Both sides of the laminated film constituting the GMR element 3 are trapezoidal having inclined side surfaces after being subjected to etching treatment such as ion milling.
  • a pair of left and right hard bias layers 4 are provided on both sides of the laminated film.
  • Hard bias layer 4 Is formed on the lower gap insulating layer 2 so as to be in contact with at least both sides of the free magnetic layer constituting the GMR element 3, and is made of a hard magnetic material such as a CoPt alloy. It is formed.
  • a pair of left and right electrode lead layers 5 is formed of a material such as Cu, Cr, and Ta so as to make at least line contact with the GMR element 3.
  • An upper gap insulating layer 6 is formed on the pair of left and right electrode lead layers 5 and the GMR element 3 using the same insulating material as the lower gap insulating section 2.
  • an upper shield layer 7 is formed of the same soft magnetic material as the lower shield layer 1.
  • the GMR element 3 is formed of a spin valve type magnetoresistive film.
  • Figure 2a consists of an underlayer 11, an antiferromagnetic layer 12, an antiferromagnetic reaction layer 13, a ferromagnetic layer 14, a nonmagnetic layer 15, a free magnetic layer 16, and a protective layer 17.
  • This is a spin valve film having a bottom-type spin valve structure.
  • Figure 2b shows the underlayer 11, the first antiferromagnetic layer 12, the antiferromagnetic reaction layer 13, the first ferromagnetic layer 14, the first nonmagnetic layer 15, and the free magnetic layer 1.
  • a spin valve film having a dual spin valve structure including a second nonmagnetic layer 18, a second ferromagnetic layer 19, a second antiferromagnetic layer 20, and a protective layer 17.
  • the antiferromagnetic reaction layer 13 between the antiferromagnetic layer 12 and the ferromagnetic layer 14, the MR ratio of the spin valve film is increased, and the high output of the head output is increased. Is possible.
  • the underlayer 11 is used to enhance the adhesion between the lower gap layer 2 and the spin-valve film and increase the orientation of the spin-valve film. It is generally formed of a Ta film. In order to further enhance the orientation of the spin valve film, it is preferable to form the underlayer 11 into two layers, for example, a two-layer structure of a Ta layer and a NiFe alloy layer. To examine the effect of the underlayer 11 on the spin-valve film, a pot-type spin-valve film was formed on the underlayer 11 made of various materials, and X-ray diffraction was performed. The spin valve film here is the same as the conventional one.
  • Fig. 3 shows the measurement results obtained.
  • the vertical axis is intensity and the horizontal axis is diffraction angle.
  • (A) shows the case where the underlayer 11 is Ta, and (b) shows that the underlayer 11 is the Ta layer / Ni.
  • the two-layer structure of the Fe layer is shown.
  • (C) shows that the underlayer 11 is a Ta layer / Ni.
  • the underlayer 11 has an example of a Ta single-layer structure and an example of a two-layer structure including a Ta layer / NiFe layer and a Ta layer / NiFeCr layer.
  • the present invention is not limited to this, and may be made of another material. You don't have to.
  • the antiferromagnetic layer 12 plays a role of providing exchange coupling with the ferromagnetic layer 14.
  • the first antiferromagnetic layer 12 and the first ferromagnetic layer 14, and the second antiferromagnetic layer 20 and the second ferromagnetic layer 19 It plays a role in providing exchange coupling between them.
  • the antiferromagnetic layers 12 and 20 are preferably formed of a Mn-based alloy, and a Mn-based alloy containing at least one selected from Pt, Ir, Ru, and Rh should be used. Is more preferred. In the present invention, it is particularly preferable to use an IrMn film.
  • the I r Mn film is formed by sputtering with a 20 at% I r -80 at% Mn target to a predetermined film composition under the control of the argon gas pressure. it can.
  • the antiferromagnetic reaction layer 13 which is a feature of the present invention is for obtaining a high MR ratio by increasing the interlayer coupling magnetic field between the antiferromagnetic layer 12 and the ferromagnetic layer 14.
  • This antiferromagnetic reaction layer 13 is preferably formed of a metal compound containing oxygen, and more preferably formed of a Mn-based metal compound containing oxygen.
  • the layer made of such a metal compound can be obtained by an oxidation process such as natural oxidation or plasma oxidation.
  • the antiferromagnetic reaction layer 13 contains at least one or more selected from nitrogen, hydrogen, and H 2 ⁇ ⁇ ⁇ as an additive element.
  • the thickness of the antiferromagnetic reaction layer 13 is preferably in the range of 0.1 to 2.5 nm, more preferably in the range of 0.1 to 2.0 nm. More preferably, it is in the range of 0.15 to 2.0 nm. If the thickness of the antiferromagnetic reaction layer 13 exceeds 2.5 nm, the interlayer coupling magnetic field between the antiferromagnetic layer 12 and the ferromagnetic layer 14 weakens, and the MR ratio cannot be sufficiently increased. If the thickness of the ferromagnetic reaction layer 13 is less than 0.1 nm, a sufficient MR ratio cannot be obtained.
  • the conventional spin valve film without the antiferromagnetic reaction layer and the spin valve film of the present invention having the antiferromagnetic reaction layer 13 were respectively The MR curve was measured for.
  • FIG. 4a shows the MR curve of the conventional spin valve film
  • FIG. 4b shows the MR curve of the spin valve film of the present invention.
  • the vertical axis is the MR ratio
  • the horizontal axis H is the applied magnetic field.
  • each of the spin valve films is of a dual type, and details thereof are as follows.
  • Underlayer 1 1 [Ta layer (3 nm) / NiFeCr layer (3 nm)], antiferromagnetic layer 12 [IrMn layer (5 nm)], antiferromagnetic reaction layer 13 There are [Mn O 2 (l nm)], ferromagnetic layer 14 [Co Fe layer (2 nm)], non-magnetic layer 15 [Cu layer (2.3 nm)], free magnetic Layer 16 [CoFe layer (3 nm)], Non-magnetic layer 18 [Cu layer (2.3 nm)], Ferromagnetic layer 19 [CoFe layer (2 nm)], anti-magnetic layer The ferromagnetic layer was 20 [IrMn layer (5 nm)], and the protective layer was 17 [3 layers (311111)]. The numerical value in 0 is the thickness of each layer.
  • the MR ratio of the conventional spin valve film without the antiferromagnetic reaction layer was about 14%.
  • the spin valve film provided with the antiferromagnetic reaction layer 13 according to the present invention has an MR ratio of about 17%. The MR ratio was higher than before.
  • the ferromagnetic layers 14 and 19 are used for exchange coupling between the antiferromagnetic layer 12 and the ferromagnetic layer 14 and between the antiferromagnetic layer 20 and the ferromagnetic layer 19. Due to the coupling, the magnetizations of the ferromagnetic layers 14 and 19 are fixed in one direction.
  • the ferromagnetic layers 14 and 19 are preferably formed of an alloy containing at least one selected from Fe, Co, and Ni. It is more preferable to use
  • the ferrimagnetic layers 14 and 19 and the antiferromagnetic layers 12 and 20 are further formed as a laminated ferrimagnetic layer in order to further enhance the exchange coupling. Is also good.
  • the laminated ferrimagnetic pinned magnetic layer is a magnet having a Ru layer provided between the first and second ferromagnetic layers 14 and 19, for example, to provide magnetization of the first and second ferromagnetic layers 14 and 19. Are made antiparallel to artificially create a laminated ferrimagnetic structure.
  • the thickness of the Ru layer is preferably 0.6 to 0.8 nm, and is preferably around 0.7 nm, that is, in the range of 0.65 to 0.75 nm. Is more preferred.
  • the intermediate layer inserted in the ferromagnetic layers 14 and 19 is not limited to the Ru layer, and at least one of Cu, Rh, Pd, Ag, Ir, Pt; One used It may be formed of an alloy containing a plurality of components.
  • first and second ferromagnetic layers 14 and 19 may be formed of the same material, or may be formed of different materials.
  • the first and second ferromagnetic layers 14 and 19 are provided with a film thickness difference, or the product (M s X t) of the saturation magnetization M s and the film thickness T in each ferromagnetic layer.
  • the layer-coupling magnetic field H int between the first and second ferromagnetic layers 14 and 19 and the free magnetic layer 16 can be adjusted.
  • the nonmagnetic layers 15 and 18 are preferably formed of Cu, and the interlayer thickness between the ferromagnetic layers 14 and 19 and the free magnetic layer 16 is changed by changing the film thickness.
  • the magnetic field H int can be controlled.
  • the film configuration is Ta layer (3 nm) ZN i FeCr layer (3 nm) / Ir Mn layer (5 nm) / Co Fe layer (2 nm) / Cu layer (t nm)
  • the change in the MR ratio of the spin-valve film when the thickness t of the Cu layer is changed FIG. 5a shows the change in the interlayer coupling magnetic field H int between the fixed magnetic layer and the free magnetic layer 16 in FIG. 5b.
  • the MR ratio determines the sensitivity of the spin-valve film
  • the interlayer coupling magnetic field H int determines the bias point of the free magnetic layer 16, and both are important parameters.
  • the free magnetic layer 16 is preferably formed of an alloy containing at least one selected from Fe, Co, and Ni. The magnetization of the free magnetic layer 16 needs to be able to rotate relatively freely with respect to an external magnetic field, and good soft magnetic properties are required.
  • the free magnetic layer 16 is not only a single-layer structure, but also has two layers: a magnetic layer made of a Co-based alloy having a high scattering coefficient and a layer made of a NiFe alloy having excellent soft magnetic properties. It may be composed of a structure. Further, a laminated free structure / spin filter structure which is relatively advantageous for reducing the thickness of the free magnetic layer 16 can also be applied.
  • the protective film 17 has a role of preventing the spin valve film from being oxidized by each process, and Ta can be preferably used in the present invention.
  • the antiferromagnetic layers 12 and 20 (Mn-based alloys) used for the spin valve film are subjected to a heat treatment process at a high temperature, or after the spin valve film is laminated to form a pattern. Since it is exposed to the air once, the oxidation by such a process can be prevented by providing the protective film 17.
  • the second embodiment differs from the first embodiment in that the GMR element 3 in the CPP mode is used.
  • the lower shield layer 1 which is a magnetic film formed of a soft magnetic material such as ⁇ -malloy, Co-based amorphous
  • the GMR element 3 is formed via the electrode lead layer 21.
  • Ta (3 nm) / Cu (300 nm) / Ta (50 nm) is used as the lower electrode lead layer 21.
  • the spin valve film constituting the GMR element 3 is the same as that described in the first embodiment.
  • An upper electrode lead layer 22 made of the same conductive material as the lower electrode lead layer 21 is provided on the upper part of the GMR element 3, and the lower electrode lead layer 21 and the upper electrode lead layer 2 are provided.
  • the structure 2 is such that the GMR element 3 is sandwiched.
  • Ta (3 nm) / Cu (50 nm) is used as the upper electrode lead layer 22.
  • Both front and rear end surfaces of the GMR element 3 are formed to have inclined surfaces by an etching method such as ion milling. Then, on the lower shield layer 1 on both sides of G MR element 3, A 1 2 O 3, A 1 N, S i 0 2 gap insulation layer is formed in a non-magnetic insulating material such as 2 is provided ing.
  • a common shield layer 7 made of the same soft magnetic material as that of the lower shield layer 1 is provided so as to cover the upper surface of the upper electrode lead layer 2 and the gap insulating layer 2, and the element portion of the read head is provided. Is formed.
  • the current supplied from the lower electrode lead layer 21 flows through the GMR element portion 3 and the upper electrode lead layer 22.
  • a structure in which the supplied current flows in the GMR element section 3 in a direction perpendicular to the film is called a CPP structure. I have.
  • the resistance change rate increases.
  • the head output can be increased.
  • FIG. 8 to 10 show a third embodiment of the present invention.
  • a method of manufacturing a spin valve film constituting a GMR element portion of a reproducing head in each of the above embodiments will be described.
  • the spin valve film forming apparatus is not particularly limited, and a conventionally known apparatus can be used.
  • a helicone long-slope sputtering apparatus is used because it is suitable for forming a magnetic film. This will be explained in detail below.
  • the feature of the helicon long-throw sputter device is that discharge at lower gas pressure is possible, resulting in a large mean free path of fine particles struck from the target surface. Even if the distance between the substrate and the substrate is increased, a sufficient film forming rate can be obtained.
  • Target Increasing the distance between the substrate and the substrate has the effect of making the incident angle of the fine particles flying on the substrate surface more uniform in the vertical direction.
  • fine particles flying obliquely to the substrate surface may impair magnetic properties. It is desirable to form a film mainly from fine particles flying from the surface.
  • FIG. 8 shows a helicon long throw sputtering apparatus.
  • a transfer chamber 27 provided with a transfer device (not shown) such as a transfer arm for sequentially transferring substrates to each chamber 1 is provided.
  • a transfer device such as a transfer arm for sequentially transferring substrates to each chamber 1
  • load lock chambers 23 for loading and unloading substrates into and out of the sputtering equipment, sputter etching equipment 24, high vacuum chambers 25, and low vacuum chambers.
  • Yamber 26 is located. Then, the substrate is sequentially sent to each of the chambers 1 by a transfer device provided in the center transfer chamber 127 to form a multilayer film continuously in the vacuum.
  • the inert gas A r such as sputtering evening gas is used and the ultimate vacuum is about 1 X 1 0 _ 7 P a .
  • the inert gas A r such as sputtering evening gas
  • the ultimate vacuum is about 1 X 1 0 _ 7 P a .
  • the inert gas A r such as sputtering evening gas
  • the ultimate vacuum is about 1 X 1 0- 6 P a.
  • a specific method for manufacturing a spin valve film using the sputtering device configured as described above will be described.
  • the spin valve film the one having the dual spin valve structure shown in FIG. 2B in Embodiment 1 was manufactured.
  • the structure is Ta layer / NiFeCr layer / IrMn layer /
  • a sputter target having a diameter of 5 inches was used.
  • the substrate was placed in the load lock chamber 23, and the load lock chamber 23 was evacuated to a desired degree of vacuum. At this time, the degree of vacuum is not more than 1. 0 X 1 0- 4 P a . After reaching a predetermined degree of vacuum, the substrate was taken out of the load lock chamber 13 and carried into the sputtering etching apparatus 24, where surface treatment for impurities on the substrate surface was performed.
  • the substrate having been subjected to the surface treatment was taken out from the sputtering etching apparatus 24, and was carried into the high vacuum chamber 125, where the underlayer 11 was formed, and subsequently, the spin valve film was formed.
  • the first antiferromagnetic layer 12 was formed on the substrate using the high vacuum chamber 25.
  • the substrate is taken out of the high vacuum chamber 25 and transferred to another chamber, here a load lock chamber 23, and a vacuum lower than the film forming vacuum in the high vacuum chamber 125 is applied.
  • the resultant was left in a vacuum for a desired time, and an antiferromagnetic reaction layer 13 was formed.
  • Vacuum high vacuum for Chiyanba 2 5 is not particularly limited, 1 X 1 0 _ 6 ⁇ : it is not preferred in the range of LX 1 0- 8 P a.
  • the substrate is again transferred to the high vacuum chamber 25, where the first ferromagnetic layer 14, the first nonmagnetic layer 15, and the free magnetic layer 15 are formed.
  • the layer 16, the second nonmagnetic layer 18, the second ferromagnetic layer 19, the second antiferromagnetic layer 20, and the protective layer 17 are formed by a conventionally known method.
  • a spin valve film having a dual spin valve structure was prepared. The above-described series of spin valve film forming processes are performed without breaking the vacuum atmosphere.
  • the substrate on which the antiferromagnetic layer 12 is formed is taken out of the high vacuum chamber 25 and left in the low vacuum load lock chamber 23, so that the antiferromagnetic layer can be easily formed.
  • the reaction layer 13 can be easily formed.
  • FIG. 9 is a graph showing the relationship between the time during which the substrate after forming the antiferromagnetic layer 12 was left in the load lock chamber 23 and the MR ratio of the obtained spin valve film.
  • the triangle is the substrate immediately after the spin-valve film is formed
  • the circle is the substrate on which the spin-valve film has been formed is taken out of the chamber, and is placed in a vacuum at 20 ° C using a conventionally known annealing apparatus.
  • This is the MR ratio of a substrate that has been subjected to a heat treatment process (annealing) under conditions of an applied magnetic field of 240 KA / m for 2.5 hours.
  • Table 1 shows the data of Figure 9.
  • the spin valve film without the conventional antiferromagnetic reaction layer corresponds to a standing time of 0 seconds in FIG.
  • the MR ratio of the non-annealed layer after the formation of the antiferromagnetic layer 12 is about 9.5%, and that of the anneal-treated layer is about 14%. It is.
  • the MR ratio after film formation is about 15%, and the MR ratio after annealing treatment is about 15%. It has increased to about 18%.
  • the antiferromagnetic reaction layer 13 can be formed by the vacuum leaving treatment, and as a result, a spin valve film having a high MR ratio can be obtained. Note that the thickness of the antiferromagnetic reaction layer 13 can be controlled by the degree of vacuum and the time of leaving.
  • FIG. 10 is a graph showing the relationship between the difference in the degree of vacuum left after forming the antiferromagnetic layer 12 and the normalized MR ratio of the spin valve film.
  • a to E on the horizontal axis indicate conditions after the antiferromagnetic layer 12 is formed.
  • triangles indicate those without annealing, and circles indicate those with annealing.
  • a spin valve film was formed by a conventional continuous film forming method.
  • the substrate is once taken out of the chamber and subjected to a heat treatment process in a vacuum using another annealing device.
  • the chamber was returned to the same condition as before, and a spin valve film was subsequently formed.
  • a spin valve film in which the substrate is left in the air as in condition B, and a spin valve film that has been subjected to a heat treatment process as in condition C are less than the conventional spin valve film under condition A. Rather, the MR ratio is falling. In the case where the substrate was exposed to a high vacuum atmosphere as in condition D, the MR ratio was slightly increased, but the effect was not so large.
  • the spin valve film obtained by exposing the substrate to a low vacuum atmosphere has an MR ratio that is approximately lower than that of the conventional spin valve film under the condition A. It has increased by about 25 to 50%.
  • the substrate in order to form the antiferromagnetic reaction layer 13, it is necessary to expose the substrate to a vacuum atmosphere lower than the high vacuum chamber 125 where the antiferromagnetic layer 12 is formed. preferably it is necessary to expose during more vacuum atmosphere 1 X 1 0- 7 P a.
  • the present invention in addition to the above-described method, as an effective method for forming the antiferromagnetic reaction layer 13, after forming the antiferromagnetic layer 12 and before forming the ferromagnetic layer 14 , another switch high H 2 O concentration or 0 2 concentrations than the film formation process chamber one substrate (high vacuum chamber one 2 5) There is also a method in which the substrate is transferred to a chamber and exposed to this atmosphere, for example, for about several 10 seconds, and then the substrate is returned to the film forming process chamber 1 to form a layer after the ferromagnetic layer 14.
  • the surface treatment to the substrate by gas H 2 0 or 0 2 is contained more than 1 ppm
  • the ferromagnetic layer 14 and subsequent layers are formed by returning to the sputtering film forming chamber and returning to the sputter film forming chamber.
  • the surface treatment time of the substrate at this time is not particularly limited, but as shown in Fig. 9 and Table 1, it is clear from the relationship between the surface treatment time and the MR ratio (%) proportional to the head output. Since the saturation region is reached when the surface treatment time reaches about 60 seconds, the surface treatment time is preferably set to 60 seconds or more.
  • the substrate on which the antiferromagnetic reaction layer 13 is formed is returned to the high vacuum chamber 25 again to form a spin valve film.
  • the present invention is not limited to this. It is also possible to form a film with a chamber different from the high vacuum chamber-25.

Abstract

高感度な再生ヘッドを有する磁気ディスク装置及びの製造方法を提供する。再生ヘッドの磁気抵抗効果素子として、反強磁性層、強磁性層、非磁性層、自由磁性層で構成されたスピンバルブ型の多層膜を用いる。反強磁性層と強磁性層との間には反強磁性反応層を設ける。反強磁性層は酸素を含有する金属化合物にて形成する。

Description

明 細 書 磁気ディスク装置及びその製造方法 技術分野
本発明は、 磁気ディスク装置及びその製造方法に関し、 特に、 再 生へッ ドゃ磁界検出用センサに使用される、 スピンバルブ磁気抵抗 効果を利用した磁気抵抗効果素子を有する磁気ディスク装置及びそ の製造方法に関するものである。 背景技術
近年、 磁気ディスク装置 (H D D装置) などの磁気記録メディア に対する記録において、 処理速度の向上と記録容量の大容量化の必 要性が増しており、 磁気記録メディァへの高記録密度化への取り組 みが強化されつつある。 これに伴い、 従来の薄膜磁気ヘッ ドよりも さらに再生トラック幅が小さく、 なおかつ再生出力が大きい再生へ ッ ドが開発されている。 今後、 この傾向がさらに高まっていくこと は確実である。
現在、 再生ヘッ ドの磁気抵抗効果素子には、 一般に、 スピンバル ブ型の磁気抵抗効果膜が用いられている。 スピンバルブ型の磁気抵 抗効果膜は、 自由磁性層/非磁性層/固定磁性層/反強磁性層の多 層構造を基本構成とするものである。
このようなスピンバルブ型の磁気抵抗効果膜の感度を高めて高記 録密度化を図るために、 例えば、 日本国の特開平 6 - 2 3 6 5 2 7 号公報には、 自由磁性層の膜厚を薄く して自由磁性層の背面に隣接 するように導電層を形成し、 伝導電子の平均自由行程を伸ばす構造 が開示されている。
また、 『Kamiguchi et al 「CoFe SPECULAR SPIN V ALVES WITH A NANO OXIDE LAYER」 Digests of Intermag 1999 , DB— 01 . 1999』 には、 N O L ( Nano Oxide Layer) と呼ばれる極薄の酸化層を、 自由磁性層もしくは固定磁性 層中に挿入し、 伝導電子を酸化層と金属層の界面で反射させて、 い わゆる鏡面反射効果を得る手法が開示されている。 このような構成 によると、 スピンバルブ膜が擬似的な人工格子膜のようになり、 M R比を向上させることができる。
また、 日本国の特開平 7— 2 6 2 5 2 0号公報には、 多層膜から なる G M R素子において、 膜面に垂直に電流を流す C P P (current perpendicular― to— the― plane ) モートを is用すると、 ¾t来の莫 面に平行に電流を流す C I P (current in - the - plane ) モードに 比べて抵抗変化が約 2倍以上となることが報告されており、 C P P —スピンバルブ膜への適応が盛んに行われている。
このように、 今後さらに厳しく要望される磁気記録メディァへの 高記録密度化に対して、再生へッ ドの磁気抵抗効果素子においては、 磁気記録メディァに短波長で記録された信号を再生するために、 磁 気抵抗効果膜のさらなる高感度化が必要であるという課題がある。 発明の開示
本発明は、 公知の技術における上記の技術的課題に鑑み、 磁気デ イスク装置の磁気抵抗効果素子に使用される磁気抵抗効果膜の構成 を工夫することで、 より高感度な薄膜磁気ヘッ ドを有する磁気ディ スク装置およびその製造方法を実現できるようにすることを目的と する。
この目的を達成するために、 本発明の第 1の態様における磁気デ イスク装置は、 磁気抵抗効果素子を有する磁気ディスク装置であつ て、 前記磁気抵抗効果素子に使用される磁気抵抗効果膜は反強磁性 層、 強磁性層、 非磁性層、 自由磁性層で構成されるスピンバルブ型 の多層膜であり、 反強磁性層と強磁性層との間に反強磁性反応層が 設けられており、 前記反強磁性層は酸素を含有する金属化合物にて 形成されていることを特徴とする。
このような構成であると、 磁気抵抗効果素子を構成する磁気抵抗 効果膜の反強磁性層と強磁性層との間に反強磁性反応層を設けてい るため、 電子を反強磁性反応層と金属層の界面で反射させることが でき、 電子の拡散度合いが増すことから高 M R比が得られ、 高記録 密度化が実現できる。
また、 本発明の第 2の態様における磁気ディスク装置は、 膜面に 対して垂直な電流方向 (C P Pモー ド) で動作する磁気抵抗効果素 子を有する磁気ディスク装置であって、 前記磁気抵抗効果素子に使 用される磁気抵抗効果膜は反強磁性層、 強磁性層、 非磁性層、 自由 磁性層で構成されるスピンバルブ型の多層膜であり、 反強磁性層と 強磁性層との間に反強磁性反応層が設けられており、 前記反強磁性 層は酸素を含有する金属化合物からなることを特徴とする。
このような構成であると、 C P Pモード動作の磁気抵抗効果素子 を有する磁気ディスク装置においても高 M R比が得られ、 高記録密 度化が図れる。
本発明においては、 上記第 1, 第 2の態様において、 反強磁性反 応層が酸素を含有する Mn系金属化合物にて形成されており、 その 膜厚が 0. 1〜2. 5 nmであることが好ましい。 反強磁性反応層 には、 窒素、 水素、 H20から選ばれる少なくとも 1種類以上が含 まれていることが好ましい。 さらに、 反強磁性反応層が自然酸化あ るいはプラズマ酸化にて形成されてなることが好ましい。
また、 反強磁性層が Mn系合金にて形成されるとともに、 P t、 I r、 Ru、 Rhから選ばれる少なくとも 1種類以上が含まれてい ることが好ましい。 また、 この反強磁性層の下地層が N i F eまた は N i F e C rにて形成されていることが好ましい。
また、 強磁性層ならびに前記自由磁性層は、 F e、 C o、 N iの 少なくとも 1種類以上を含む合金にて形成され、 非磁性層は C uを 含む合金にて形成されていることが好ましい。さらに、強磁性層が、 第 1の強磁性層/金属中間層/第 2の強磁性層で構成された積層フ エリ構造であり、 前記金属中間層は R u、 C u、 Rh、 P d、 Ag、 I r、 P t、 Auから選ばれる少なくとも 1種類以上を含む合金に て形成されることが好ましい。
また、 本発明においては、 上記第 1, 第 2の態様における磁気デ イスク装置を製造するに際し、 第 1の製造方法として、 磁気抵抗効 果膜を、 基板を第 1のチャンバ一に搬入して真空雰囲気下で反強磁 性層を形成し、 前記基板を第 2のチャンバ一へ搬入して前記第 1の チヤンバーの真空度よりも低い真空度で真空放出を行って前記反強 磁性層の形成面に反強磁性反応層を形成し、 前記基板を第 2のチヤ ンバーから取り出して別のチャンバ一にて前記反強磁性反応層の上 に強磁性層を形成し、 反強磁性層と強磁性層との間に反強磁性反応 層が設けられた磁気抵抗効果膜とすることを特徴とする。 また、 第 2の製造方法として、 磁気抵抗効果膜を、 基板を第 1の チャンバ一に搬入して真空雰囲気下で反強磁性層を形成し、 前記基 板を第 2のチャンバ一へ搬入して、 H 2〇または 0 2が 1 p p m以上 含まれるガスにより表面処理を行って反強磁性反応層を形成し、 こ の基板を第 2のチヤンバーから取り出して別のチヤンバーにて前記 反強磁性反応層の上に強磁性層を形成し、 反強磁性層と強磁性層と の間に反強磁性反応層が設けられた磁気抵抗効果膜とすることを特 徵とする。
上記第 1, 第 2の製造方法において、 第 1のチャンバ一の真空度 が 1 X 1 0— 6〜 1 X 1 0— 8 P aの範囲であることが好ましい。
また、 第 3の製造方法として、 磁気抵抗効果膜を、 基板を第 1の チャンバ一に搬入して真空雰囲気下で反強磁性層を形成し、 前記基 板を第 2のチヤンバーへ搬入して、 前記第 1のチャンバ一内よりも H 2〇濃度または〇 2濃度が高い雰囲気下に曝して反強磁性反応層 を形成し、 この基板を第 2のチャンバ一から取り出して別のチャン バ一にて前記反強磁性反応層の上に強磁性層し、 反強磁性層と強磁 性層との間に反強磁性反応層が設けられた磁気抵抗効果膜とするこ とを特徴とする。
また、 上記第 1〜第 3の製造方法において、 第 2のチャンバ一内 の真空雰囲気中で基板を 6 0秒以上曝すことが好ましい。 また、 第 2のチャンバ一内でのプロセスが終了した後に、 基板を再び第 1の チャンバ一に搬送して、 強磁性層以降の成膜プロセスを行なうこと が好ましい。
さらに、 上記第 1〜第 3の製造方法は、 ヘリコンロングスロース パッ夕装置を使用することにより容易に実現できる。 以上のように、 本発明では、 反強磁性層、 強磁性層、 非磁性層、 自由磁性層を備えたスピンバルブ型の磁気抵抗効果膜の反強磁性層 と強磁性層との間に反強磁性反応層を形成することで、 磁気抵抗効 果素子の M R比が増大してへッ ド出力の高出力化が可能となる。 こ のように高感度な再生ヘッ ドを有する磁気ディスク装置は、 近年要 望されている高密度記録化、 高容量化が実現できる。 図面の簡単な説明
図 1は本発明の実施の形態 1 における磁気ディスク装置の再生へ ッ ドを磁気記録メディアに対向するへッ ド摺動面から見た要部の拡 大断面模式図である。
図 2は同実施の形態における磁気抵抗効果膜の構成を示す模式図 である。
図 3は同実施の形態における磁気抵抗効果膜の下地材料への依存 性を示す X線回折プロファイルである。
図 4は同実施の形態におけるスピンバルブ膜の M R比の測定ダラ フである。
図 5は同実施の形態におけるスピンバルブ膜の非磁性層の膜厚に 対する M R比および層間結合磁界 H i n tの依存性を示すグラフで ある。
図 6は本発明の実施の形態 2における磁気ディスク装置の再生へ ッ ドを磁気記録メディァに対向するへッ ド摺動面から見た要部の拡 大断面模式図である。
図 7は同実施の形態における G M R素子の接合面積と抵抗変化率 との関係を示す図である。 図 8は本発明の実施の形態 3で用いたスパッ夕装置の平面図であ る。
図 9は同実施の形態における真空放置時間に対する M R比を示す グラフである。
図 1 0は同実施の形態における真空放置条件に対する M R比を示 すグラフである。 発明を実施するための最良の形態
以下、 本発明の各実施の形態を図面を参照しながら説明するが、 本発明はこれらの実施の形態のみに限定されるものではなく、 スピ ンバルブ型の磁気抵抗効果膜を用いた磁気抵抗効果素子を有する磁 気ディスク装置に適用できる。
実施の形態 1
図 1〜図 5は、 本発明の実施の形態 1を示す。
図 1に示す磁気ディスク装置の再生へッ ドにおいて、パーマロイ、 C o系アモルファス、 F e系微粒子等の軟磁性材料にて形成された 磁性膜である下部シールド層 1の上には、 A 1 23、 A 1 N、 S i O 2等の非磁性絶縁材料にて形成された下部ギヤップ絶縁層 2が配 置されている。 下部ギャップ絶縁層 2の上には、 G M R素子 3が設 けられている。 G M R素子 3の詳細は図示されていないが、 反強磁 性層、強磁性層、非磁性層、 自由磁性層などを備えた積層膜であり、 その具体的な構成については後述する。 G M R素子 3を構成する積 層膜の両側部はイオンミリ ング等のエッチング処理が施されて傾斜 した側面を有する台形状となっている。 この積層膜の両側には左右 一対のハードバイアス層 4が設けられている。 ハードバイアス層 4 は、 少なく とも G M R素子 3を構成する自由磁性層の両側面に接す るようにして下部ギヤップ絶縁層 2の上に形成されたものであり、 C o P t合金等の硬質磁性材料にて形成される。 ハードバイアス層 4の上には、 G M R素子 3に少なくとも線接触するようにして、 C u、 C r 、 T a等の材料により左右一対の電極リード層 5が形成さ れている。 左右一対の電極リード層 5と G M R素子 3の上には、 下 部ギヤップ絶縁部 2と同様の絶縁材料により上部ギヤップ絶縁層 6 が形成されている。 上部ギャップ絶縁層 6の上には、 下部シールド 層 1 と同様の軟磁性材料により上部シールド層 7が形成されている。 図 2 a , 2 bに示すように、 G M R素子 3は、 スピンバルブ型の 磁気抵抗効果膜にて構成されている。
図 2 aは、 下地層 1 1、 反強磁性層 1 2、 反強磁性反応層 1 3 、 強磁性層 1 4、 非磁性層 1 5、 自由磁性層 1 6、 保護層 1 7で構成 されたボトム型スピンバルブ構造のスピンバルブ膜である。
図 2 bは、 下地層 1 1、 第 1の反強磁性層 1 2、 反強磁性反応層 1 3、第 1の強磁性層 1 4、第 1の非磁性層 1 5、 自由磁性層 1 6 、 第 2の非磁性層 1 8、第 2の強磁性層 1 9、第 2の反強磁性層 2 0 、 保護層 1 7で構成されたデュアルスピンバルブ構造のスピンバルブ 膜である。
このように、 反強磁性層 1 2 と強磁性層 1 4との間に反強磁性反 応層 1 3を設けることで、 スピンバルブ膜の M R比が増大し、 へッ ド出力の高出力化が可能となる。
以下、 スピンバルブ膜の詳細を説明する。
下地層 1 1は、 下部ギャップ層 2 とスピンバルブ膜との密着性を 強化するとともにスピンバルブ膜の配向性を高めるために用いられ るものであり、 T a膜にて形成されるのが一般的である。 スピンバ ルブ膜の配向性をより一層高めるためには、 下地層 1 1を 2層化、 例えば T a層/ N i F e系合金層の 2層構造とすることが好ましレ、。 下地層 1 1がスピンバルブ膜に与える影響を調べるために、 ポ卜 ム型のスピンバルブ膜を各種材料からなる下地層 1 1に形成して、 X線回折を行った。 なお、 ここでのスピンバルブ膜は従来と同様の ものである。
得られた測定結果を図 3に示す。
図中、 縦軸は強度であり、 横軸は回折角である。 また、 (a) は 下地層 1 1が T aであるもの、 (b) は下地層 1 1が T a層/ N i
F e層の 2層構造であるもの、 (c) は下地層 1 1が T a層/ N i
F e C r層の 2層構造であるものである。
破線で囲んだ SV ( 1 1 1 ) 配向の拡大グラフを見ると、 (a) に示す T a下地ではスピンバルブ膜の回折ピークは非常に弱いが、 (b) , ( c ) に示す 2層構造の下地ではスピンバルブ膜の ( 1 1
1 ) 回折ピークが非常に強くなつている。 このように、 下地層 1 1 を 2層化することで、 スピンバルブ膜の配向性が高まることが明ら かである。
なお、 ここではポトム型のスピンバルブ膜を例に挙げて説明した 力 デュアルスピンバルブ構造のスピンバルブ膜など、 その他の系 のスピンバルブ膜においても同様のことが確認されている。 また、 上記説明では、 下地層 1 1として T a単層構造のものと、 T a層/ N i F e層および T a層ノ N i F e C r層からなる 2層構造のもの を例に挙げて説明したが、本発明はこれに限定されるものではなく、 別の材料からなるものであってもよく、 または下地層 1 1は特に用 いなくても良い。
反強磁性層 1 2は、 強磁性層 1 4との間に交換結合を持たせる役 割を果たすものである。 デュアルスピンバルブ構造のスピンバルブ 膜においては、 第 1の反強磁性層 1 2と第 1の強磁性層 1 4、 第 2 の反強磁性層 2 0 と第 2の強磁性層 1 9 との間に交換結合を持たせ る役割を果たすものである。
反強磁性層 1 2, 2 0は Mn系合金にて形成されることが好まし く、 P t、 I r、 R u、 R hから選ばれる少なくとも 1種類以上を 含む Mn系合金を用いることがより好ましい。 本発明においては、 特に、 I r Mn膜を用いることが好ましい。 I r Mn膜は、 2 0 a t % I r - 8 0 a t %Mn夕ーゲッ トを用いて、 スパッ夕アルゴン ガス圧の制御下で所定の膜組成になるようにスパッ夕リングするこ とで形成できる。
本発明の特徴である反強磁性反応層 1 3は、 反強磁性層 1 2と強 磁性層 1 4との層間結合磁界を強めて高 MR比を得るためのもので ある。 この反強磁性反応層 1 3は、 酸素を含有する金属化合物にて 形成されることが好ましく、 酸素を含有する Mn系金属化合物にて 形成されることがより好ましい。 このような金属化合物からなる層 は、 自然酸化またはプラズマ酸化などの酸化プロセスにて得ること ができる。
また、 反強磁性反応層 1 3には、 添加元素として、 窒素、 水素、 H 2〇から選ばれる少なく とも 1種類以上を含むことがより好まし い。
反強磁性反応層 1 3の厚みは、 0. 1〜 2. 5 nmの範囲にある ことが好ましく、 0. 1〜 2. 0 nmの範囲であることがより好ま しく、 0. 1 5〜2. 0 nmの範囲であることが更に好ましい。 反 強磁性反応層 1 3の厚みが 2. 5 nmを超えると、 反強磁性層 1 2 と強磁性層 1 4との層間結合磁界が弱まって MR比を十分に高める ことができず、 反強磁性反応層 1 3の厚みが 0. l nm未満である と、 十分な MR比を得ることができない。
反強磁性反応層 1 3による MR比の向上効果を確認するために、 反強磁性反応層のない従来のスピンバルブ膜と、 反強磁性反応層 1 3を有する本発明のスピンバルブ膜のそれぞれについて MRカーブ を測定した。
図 4 aは従来のスピンバルブ膜の MRカーブを示し、 図 4 bは本 発明のスピンバルブ膜の MRカーブを示す。 図中、 縦軸は MR比で あり、 横軸 Hは印加磁場である。
ここで、 スピンバルブ膜はいずれもデュアル型であり、 その詳細 は以下の通りである。
下地層 1 1 [T a層 (3 nm) /N i F e C r層 (3 nm) ] 、 反強磁性層 1 2 [ I r Mn層 (5 nm) ] 、 反強磁性反応層 1 3が あるものは [Mn O 2 ( l nm) ] 、 強磁性層 1 4 [C o F e層 (2 nm) ] 、 非磁性層 1 5 [C u層 ( 2. 3 nm) ] 、 自由磁性層 1 6 [C o F e層(3 nm) ]、非磁性層 1 8 [C u層(2. 3 nm) ]、 強磁性層 1 9 [C o F e層 (2 nm) ] 、 反強磁性層 2 0 [ I r M n層 ( 5 nm) ] 、 保護層 1 7 [丁 3層 ( 3 11111) ] とした。 なぉ、 0 内の数値は各層の厚みである。
図 4 aに示すように、 反強磁性反応層がない従来のスピンバルブ 膜では MR比が約 1 4 %であった。 一方、 本発明における反強磁性 反応層 1 3が設けられたスピンバルブ膜は、 MR比が約 1 7 %であ り、 従来よりも MR比の高いものであった。
このように反強磁性層 1 2と強磁性層 1 4との間に反強磁性反応 層 1 3を形成することで MR比が増大することがわかる。
強磁性層 1 4、 1 9は、 反強磁性層 1 2と強磁性層 14との間、 ならびに反強磁性層 2 0と強磁性層 1 9との間を交換結合するもの であり、 交換結合により強磁性層 14、 1 9の磁化が一方向に固定 される。
強磁性層 1 4、 1 9は、 F e、 C o、 N iから選ばれる少なくと も 1種類以上を含有する合金にて形成されることが好ましく、 本発 明においては、 C o F eを用いることがより好ましい。
また、 スピンバルブ膜がデュアル型である場合には、 強磁性層 1 4、 1 9と反強磁性層 1 2, 2 0との交換結合をより一層高めるた めに、 積層フェリ固定磁性層としてもよい。 積層フェリ固定磁性層 とは、 第 1, 第 2の強磁性層 1 4、 1 9の間に、 例えば R u層を設 けて第 1 , 第 2の強磁性層 1 4、 1 9の磁化を反平行にさせ、 人為 的に積層フェリ構造を作りだすものである。 実際、 C o F e/Ru o F eの系において、 Ru膜厚が 0. 5〜0. 9 nmの範囲で あると、 (膜全体の残留磁化 M r) / (飽和磁化 M s ) の値がほぼ 零となっており、 第 1, 第 2の強磁性層 14、 1 9の磁化が R u層 を介して反平行状態になることが明らかとなっている。 このような 構成とする場合、 Ru層の厚みは 0. 6〜0. 8 nmであることが 好ましく、 0. 7 nm付近、 すなわち 0. 6 5〜0. 7 5 nmの範 囲であることがより好ましい。 強磁性層 14, 1 9に挿入する中間 層は Ru層に限定されるものではなく、 C u、 R h、 P d、 Ag、 I r、 P t; 、 Auから選ばれるうちの少なく とも 1つが用いられて いれば良く、 複数の成分を含有する合金にて形成されるものであつ てもよい。
また、 第 1, 第 2の強磁性層 1 4、 1 9は、 同じ材料にて形成さ れていてもよく、 それぞれ別の材料にて形成されていてもよい。
また、 本発明においては、 第 1 , 第 2の強磁性層 14、 1 9に膜 厚差をもたせる、 もしくは各強磁性層における飽和磁化 M s と膜厚 Tとの積 (M s X t ) の値に差を持たせることで、 第 1 , 第 2の強 磁性層 14、 1 9と自由磁性層 1 6との層関結合磁界 H i n tの調 整を行うこともできる。
非磁性層 1 5, 1 8は C uにて形成されていることが好ましく、 その膜厚を変化させることで上記した強磁性層 1 4、 1 9と自由磁 性層 1 6との層間結合磁界 H i n tを制御することが可能となる。
非磁性層 1 5, 1 8の膜厚が変化することによるスピンバルブ膜 の MR特性の変化は顕著である。 例えば、 膜構成が T a層 (3 nm) ZN i F e C r層 (3 nm) / I r Mn層 (5 nm) /C o F e層 ( 2 nm) / C u層 ( t nm) / C o F e層 (3 nm) / T a層 (3 n m) であるボトム型のスピンバルブ膜において、 C u層の膜厚 t を変化させた時のスピンバルブ膜の MR比の変化を図 5 aに、 固定 磁性層と自由磁性層 1 6との層間結合磁界 H i n tの変化を図 5 b に、 それぞれ示す。
図 5 a, 5 bから、 C u層の膜厚 tの僅かな違いにより、 MR比、 層間結合磁界 H i n tともに大きな影響を受けることが明らかであ る。 MR比はスピンバルブ膜の感度を決めるものであり、 層間結合 磁界 H i n tは自由磁性層 1 6のバイアス点を決めるものであり、 いずれも重要なパラメ一夕である。 自由磁性層 1 6は、 F e、 C o、 N iから選ばれる少なく とも 1 種類以上を含む合金にて形成されることが好ましい。 自由磁性層 1 6の磁化は外部磁界に対して比較的自由に回転できる必要があり、 軟磁気特性が良いことが要求される。 そのため、 自由磁性層 1 6に は、 非磁性層 1 5, 1 8との界面における散乱係数が高く、 非磁性 層 1 5, 1 8 と固溶しにくい C o系合金がよく使用される。しかし、 C o系合金にて形成された自由磁性層 1 6は、 若干、 軟磁気特性が 悪いことから、 本発明においては C o F e合金、 より具体的には C 0 9 0 F e 丄 0を用いることが好ましい。 また、 自由磁性層 1 6は、 単層構造のものだけでなく、 散乱係数が高い C o系合金からなる磁 性層と軟磁気特性に優れた N i F e合金からなる層との 2層構造か らなるものであってもよい。 更に、 自由磁性層 1 6の薄膜化に対し て比較的有利な積層フリ一構造ゃスピンフィルター構造も適用でき る。
保護膜 1 7は、 スピンバルブ膜が各プロセスによって酸化される のを防ぐ役割を有するものであり、 本発明においては T aが好適に 使用できる。 実際、 スピンバルブ膜に用いられる反強磁性層 1 2, 2 0 ( M n系合金) は、 高温での熱処理プロセスが施されたり、 パ 夕一ン形成のためにスピンバルブ膜を積層した後に一度大気中にさ らされたりすることから、 保護膜 1 7を設けることでこのようなプ ロセスによる酸化を防ぐことができる。
実施の形態 2
図 6, 図 7は本発明の実施の形態 2を示す。
この実施の形態 2では C P Pモードの G M R素子 3を用いた点で 上記実施の形態 1 と異なる。 図 6に示す磁気ディスク装置の再生へッ ドにおいて 、°一マロィ、 C o系アモルファス、 F e系微粒子等の軟磁性材料にて形成された 磁性膜である下部シールド層 1の上に、 下部電極リード層 2 1を介 して GMR素子 3が形成されている。 ここでは下部電極リード層 2 1として、 T a ( 3 n m) /C u ( 3 0 0 n m) /T a (5 0 n m) を用いている。
GMR素子 3を構成するスピンバルブ膜は、 上記実施の形態 1で 説明したものと同様である。 GMR素子 3の上部には、 下部電極り ード層 2 1と同様の導電材料にて形成された上部電極リード層 2 2 が設けられており、 下部電極リード層 2 1と上部電極リード層 2 2 とで GMR素子 3をサンドィツチするような構造となっている。 こ こでは、 上部電極リード層 2 2として、 T a ( 3 nm) /C u ( 5 0 n m) を用いている。
GMR素子 3の前後両側端面は、 イオンミ リング等のエッチング 方法により傾斜する面を有するように形成されている。 そして、 G MR素子 3の両側における下部シールド層 1の上には、 A 1 2 O 3、 A 1 N、 S i 02等の非磁性絶縁材料にて形成されたギャップ絶縁 層 2が設けられている。
上部電極リード層 2 2の上面およびギヤップ絶縁層 2を覆うよう に、 下部シールド層 1と同様の軟磁性材料にて形成された共通シー ルド層 7が設けられ、 再生へッ ドの素子部が形成されている。
上記のように構成された再生へッ ドの素子部では、 下部電極リー ド層 2 1から供給された電流は、 GMR素子部 3を通って上部電極 リード層 2 2を流れる。 このように、 供給された電流が GMR素子 部 3を膜に対して垂直方向に流れるものは、 C P P構造と呼ばれて いる。
上記のように本発明のスピンバルブ膜にて構成された C P P - G M R素子と、 従来のスピンバルブ膜にて構成された C P P— G M R 素子とを用いて、 G M R素子 3と下部電極リード層 2 1 との接合面 積 Sと抵抗変化率 との関係を調べた。 得られた測定結果を図 7 に示す。
図 7において、 丸で示すように、 反強磁性層 1 2と強磁性層 1 4 との間に反強磁性反応層 1 3を形成した本発明のスピンバルブ膜を 用いると、 三角で示す従来のものにく らベて抵抗変化率 Δ Rが増大 している。
従って、 G M R素子が C P Pモードで動作するものであり、かつ、 反強磁性層と強磁性層との間に反強磁性反応層を設けたスピンバル ブ膜を用いることで、 抵抗変化率が増大してへッ ド出力の高出力化 が図れる。
実施の形態 3
図 8〜図 1 0は、 本発明の実施の形態 3を示す。 この実施の形態 では、 上記した各実施の形態における再生へッ ドの G M R素子部を 構成するスピンバルブ膜の製造方法について説明する。
スピンバルブ膜の成膜装置としては、 特に限定されるものではな く従来公知のものが使用できるが、 ここでは、 磁性膜の形成に適し ていることからへリコンロングスロ一スパッ夕装置を例に挙げて説 明する。 ヘリコンロングスロースパッ夕装置の特徴は、 より低いガ ス圧での放電が可能である点にあり、 その結果、 ターゲッ ト表面か らたたき出された微粒子の平均自由行程が大きくなり、 夕ーゲッ ト と基板との距離を長く しても充分な成膜速度が得られる。 ターゲッ トと基板との間の距離を長くすることは、 基板表面に飛来する微粒 子の入射角をより垂直方向に揃えるという作用を有する。 スピンバ ルブ膜を構成する磁性膜の成膜に際しては、 基板表面に対して斜め 方向から飛来する微粒子は磁気特性を損なうことがあるため、 磁性 膜の成膜に際しては、 基板表面に対して垂直方向から飛来する微粒 子を主体に成膜することが望ましい。
図 8は、 ヘリコンロングスロースパッタ装置を示す。
装置の中央には、 基板を順次各チャンバ一に送るための搬送ァー ムなどの搬送装置 (図示せず) が設けられた搬送チャンバ一 2 7が 配置されている。 搬送チャンバ一 2 7の周囲には、 基板をスパッ夕 装置内に搬入搬出するためのロードロックチャンバ一 2 3、 スパッ 夕エッチング装置 2 4、 高真空度用チャンバ一 2 5、 低真空度用チ ヤンバー 2 6が配置されている。 そして、 中央の搬送チャンバ一 2 7に設けられた搬送装置により基板を順次各チャンバ一に送り、 真 空中で連続して多層膜を形成するよう構成されている。
高真空度用チャンバ一 2 5では、 スパッ夕ガスとして A r等の不 活性ガスのみが用いられており、 到達真空度は 1 X 1 0 _ 7 P a程度 である。 低真空度用チャンバ一 2 6では、 酸化物等の不純物を含む ターゲッ ト、 またはスパッ夕ガスとして A r等の不活性ガス以外の ガス (例えば、 〇 2や N 2等) を用いてスパッ夕処理が施され、 到達 真空度は 1 X 1 0— 6 P a程度である。
上記のように構成されたスパッ夕装置を用いた、 スピンバルブ膜 の具体的な製造方法を説明する。 スピンバルブ膜としては、 上記実 施の形態 1における図 2 bのデュアルスピンバルブ構造のものを製 造した。 その構成は、 T a層/ N i F e C r層/ I r M n層/反強 磁性反応層/ C o F e層 ZCu層 ZC o F e層/ C u層/ C o.F e 層 / I r Mn層/ T a層である。 また、 スパッタターゲッ トとして は直径 5ィンチのものを使用した。
まず、 基板をロードロックチャンバ一 2 3に配置し、 所望の真空 度になるまでロードロツクチャンバー 2 3内の真空排気を行った。 この際の真空度は 1. 0 X 1 0— 4P a以下とした。 所定の真空度に 到達後、 基板をロードロックチャンバ一 2 3から取り出してスパッ 夕エッチング装置 24に搬入し、 基板表面の不純物に対する表面処 理を施した。
表面処理が施された基板をスパッ夕エッチング装置 24から取り 出して、高真空度用チャンバ一 2 5に搬入し、下地層 1 1を形成し、 引き続きスピンバルブ膜の成膜を行った。
スピンバルブ膜の成膜は、 具体的には、 まず、 高真空度用チャン バー 2 5にて基板に第 1の反強磁性層 1 2を成膜した。
次いで、 この基板を高真空度用チャンバ一 2 5から取り出して、 別チャンバ一、 ここではロードロックチャンバ一 2 3に搬送し、 高 真空度用チャンバ一 2 5における成膜真空度よりも低い真空度で所 望時間、 真空放置を行い、 反強磁性反応層 1 3を成膜した。
高真空度用チヤンバー 2 5内の真空度は特に限定されるものでは ないが、 1 X 1 0 _6〜: L X 1 0— 8 P aの範囲にあることが好まし い。
反強磁性反応層 1 3を成膜した後、 この基板を再び高真空度用チ ヤンバー 2 5に搬送して、 第 1の強磁性層 1 4、 第 1の非磁性層 1 5、 自由磁性層 1 6、 第 2の非磁性層 1 8、 第 2の強磁性層 1 9、 第 2の反強磁性層 20、 保護層 1 7を従来公知の手法により成膜し 0 一 19- て、デュアルスピンバルブ構造のスピンバルブ膜を作成した。なお、 上記した一連のスピンバルブ膜の成膜プロセスは、 真空雰囲気を一 度も破ることなく行っている。
このように、 反強磁性層 1 2を成膜した基板を高真空度用チャン バー 2 5から取り出して、 低い真空度のロードロックチャンバ一 2 3内に放置することで、 容易に反強磁性反応層 1 3を容易に形成す ることができる。
図 9は、 反強磁性層 1 2を成膜した後の基板をロードロックチヤ ンバ一 2 3内に放置した時間と、 得られたスピンバルブ膜の MR比 との関係を示すグラフである。
図中、 三角はスピンバルブ膜を成膜した直後の基板であり、 丸は スピンバルブ膜の成膜が終了した基板をチャンバ一から取り出し、 従来公知のァニール装置を用いて、 真空中、 20 o , 2. 5時間、 印加磁場 240 KA/mの条件下で熱処理プロセス(ァニール処理) を施した基板の MR比である。
なお、 測定に際し、 高真空度用チャンバ一 2 5内の真空度を 6. 0 X 1 0— 8P aとし、 口一ドロツクチャンバー 2 3内の真空度は 3. 0 X 1 0 _6 P aとした。
図 9のデータを表 1に示す。
(表 1 )
表面処理 ァニール処理なし ァニール処理あり
時間 MR MR
(秒) (%) (%)
0 9.4 14.09
60 13.54 17.47
80 13.96 17.05
150 14.94 17.65
300 14.43 18.13 従来の反強磁性反応層が設けられていなスピンバルブ膜は、 図 9 において、 放置時間 0秒に相当する。 反強磁性層 1 2が形成された 後にァニール処理が施されていないものは、 M R比が約 9 . 5 %で あり、 ァニール処理が施されているものは、 M R比が約 1 4 %とな つている。
これに対して、 上記した本発明の製造方法に従い反強磁性反.応層 1 3が形成されたスピンバルブ膜では、成膜後の M R比が約 1 5 %、 ァニール処理後の M R比が約 1 8 %と増大している。
このように、 本発明においては、 真空放置処理によって反強磁性 反応層 1 3の形成が可能となり、 その結果、 高 M R比を有するスピ ンバルブ膜が得られる。 なお、 反強磁性反応層 1 3の膜厚は、 放置 する真空度と放置時間により制御することが可能である。
図 1 0は、 反強磁性層 1 2を成膜した後に放置する真空度の違い と、 スピンバルブ膜の規格化した M R比との関係を示すグラフであ る。 横軸の A〜 Eは、 反強磁性層 1 2を成膜した後の条件を示して いる。 また、 図中、 三角はァニール処理が施されていないもの、 丸 はァニール処理が施されたものを示す。
A : 従来の連続成膜法によってスピンバルブ膜を成膜した。
B : 反強磁性層 1 2を成膜した後、 基板を大気中に一度曝し、 そ の後、 スピンバルブ膜を成膜した。
C : 反強磁性層 1 2を成膜した後、 強磁性層 1 4を形成するまで の間に、 一旦、 基板をチャンバ一から取り出し、 別のァニール装置 にて真空中で熱処理プロセスを施し、 再び前と同じ条件のチヤンバ —に戻し、 引き続いてスピンバルブ膜を成膜した。
D : 反強磁性層 1 2を成膜した後、 基板をロードロックチャンバ 一 2 3に搬入して高真空度用チャンバ一 2 5よりも高い真空雰囲気 下 ( 8 X 1 0— 8 P a) に曝した後、 このプロセスを経てスピンバル ブ膜を成膜した。
E : 反強磁性層 1 2を成膜した後、 基板をロードロックチャンバ -2 3に搬入して高真空度用チャンバ一 2 5よりも低い真空雰囲気 下 (3. 0 X 1 0— 6P a) に曝した後、 このプロセスを経てスピン バルブ膜を成膜した。
図 1 0に示すように、 条件 Bのように基板を大気中に放置したス ピンバルブ膜や、 条件 Cのように熱処理プロセスを施したスピンバ ルブ膜は、 条件 Aの従来のスピンバルブ膜よりもむしろ MR比が低 下している。 また、 条件 Dのように基板を高い真空雰囲気下に曝し たものは、 多少の MR比の増大はあるがそれ程大きな効果は得られ ていない。
これに対して、 本発明の製造方法を用いた条件 Eのもの、 すなわ ち基板を低い真空雰囲気下に曝したスピンバルブ膜は、 条件 Aの従 来のスピンバルブ膜よりも MR比が約 2 5〜 5 0 %程度増大してい る。
このように反強磁性反応層 1 3の形成には、 基板を、 反強磁性層 1 2を成膜する高真空度用チャンバ一 2 5よりも低い真空雰囲気下 に曝すことが必要であり、 好ましくは 1 X 1 0— 7 P a以上の真空雰 囲気中に曝すことが必要である。
本発明においては、 上記した方法のほかに、 反強磁性反応層 1 3 を形成する有効な方法として、 反強磁性層 1 2を成膜した後、 強磁 性層 1 4を成膜する前に、 基板を成膜プロセスチャンバ一 (高真空 度用チャンバ一 2 5)よりも H 2 O濃度または 02濃度の高い別のチ ャンバーに搬送し、この雰囲気下に、例えば数 1 0秒程度曝した後、 基板を成膜プロセスチャンバ一に戻して強磁性層 1 4以降の層を成 膜する方法もある。
また、反強磁性反応層 1 3を形成する更に有効な別の方法として、 反強磁性層 1 2を成膜した後、 H 2 0または 0 2が 1 p p m以上含ま れるガスにより基板に表面処理を行い、 その後スパッタ成膜チャン バーに戻し、 強磁性層 1 4以降の層を成膜する方法もある。 このと きの基板の表面処理時間は特に限定されるものではないが、 図 9 , 表 1 に示すように、 表面処理時間とへッ ド出力に比例する M R比 ( % ) との関係から明らかなように、 表面処理時間が 6 0秒程度に なると飽和領域に達していることから、 表面処理時間を 6 0秒以上 とすることが好ましい。
なお、 上記説明では、 反強磁性反応層 1 3が形成された基板を、 再び高真空度用チヤンバ一 2 5に戻してスピンバルブ膜を形成した が、 本発明はこれに限定されるものではなく、 高真空度用チャンバ - 2 5とは別のチヤンバ一で成膜することも可能である。

Claims

請 求 の 範 囲
1. 磁気抵抗効果素子を有する磁気ディスク装置であって、 前記 磁気抵抗効果素子に使用される磁気抵抗効果膜は反強磁性層( 1 2) 強磁性層 ( 1 4) 、 非磁性層 ( 1 5) 、 自由磁性層 ( 1 6) で構成 されるスピンバルブ型の多層膜であり、 反強磁性層 ( 1 2) と強磁 性層 ( 14) との間に反強磁性反応層 ( 1 3) が設けられており、 前記反強磁性層 ( 1 2) は酸素を含有する金属化合物にて形成され ていることを特徴とする磁気ディスク装置。 2. 膜面に対して垂直な電流方向 (C P Pモー ド) で動作する磁 気抵抗効果素子を有する磁気ディスク装置であって、 前記磁気抵抗 効果素子に使用される磁気抵抗効果膜は反強磁性層( 1 2、 2 0)、 強磁性層 ( 1 4、 1 9) 、 非磁性層 ( 1 5, 1 8) 、 自由磁性層 ( 1 6) で構成されるスピンバルブ型の多層膜であり、 反強磁性層 ( 1 2、 20) と強磁性層 ( 1 4、 1 9) との間に反強磁性反応層 ( 1 3) が設けられており、 前記反強磁性層 ( 1 2、
2 0) は酸素を含 有する金属化合物からなることを特徴とする磁気ディスク装置。
3. 反強磁性反応層 ( 1 3) が酸素を含有する Mn系金属化合物 にて形成されており、 その膜厚が 0. 1〜2. 5 nmであることを 特徴とする請求項 1または請求項 2記載の磁気ディスク装置。
4. 反強磁性反応層 ( 1 3) に窒素、 水素、 H2〇から選ばれる 少なくとも 1種類以上が含まれていることを特徴とする請求項 3記 載の磁気ディスク装置。
5. 反強磁性反応層 ( 1 3) が自然酸化あるいはプラズマ酸化に て形成されてなることを特徴とする請求項 1または 2記載の磁気デ ィスク装置。
6. 反強磁性層 ( 1 2、 2 0) が Mn系合金にて形成されるとと もに、 P t: 、 I r、 R u、 R hから選ばれる少なくとも 1種類以上 が含まれており、 前記反強磁性層 ( 1 2) の下地層 ( 1 1 ) が N i F eまたは N i F e C rにて形成されていることを特徴とする請求 項 1または 2記載の磁気ディスク装置。
7. 強磁性層 ( 14、 1 9) ならびに自由磁性層 ( 1 6) は、 F e、 C o、 N iの少なく とも 1種類以上を含む合金にて形成され、 非磁性層 ( 1 5, 1 8) は C uを含む合金にて形成されていること を特徴とする請求項 1または 2記載の磁気ディスク装置。
8. 強磁性層 ( 14、 1 9) が、 第 1の強磁性層 ( 1 4) /金属 中間層 第 2の強磁性層 ( 1 9) で構成された積層フェリ構造であ り、 前記金属中間層は R u、 C u、 Rh、 P d、 Ag、 I r、 P t、 A uから選ばれる少なく とも 1種類以上を含む合金にて形成される ことを特徴とする請求項 1または 2記載の磁気ディスク装置。
9. 反強磁性層 ( 1 2) 、 強磁性層 ( 1 4) 、 非磁性層 ( 1 5) 、 自由磁性層 ( 1 6) の順に成膜されたスピンバルブ型の磁気抵抗効 果膜を磁気抵抗効果素子として用いた磁気ディスク装置を製造する に際し、
前記磁気抵抗効果膜を、
基板を第 1のチャンバ一 (2 5) に搬入して真空雰囲気下で反強 磁性層 ( 1 2) を形成し、 前記基板を第 2のチャンバ一 (2 3) へ 搬入して前記第 1のチャンバ一の真空度よりも低い真空度で真空放 出を行って前記反強磁性層 ( 1 2) の形成面に反強磁性反応層 ( 1 3 ) を形成し、 前記基板を第 2のチャンバ一 (23) から取り出し て別のチャンバ一にて前記反強磁性反応層 ( 1 3) の上に強磁性層 ( 1 4) を形成し、 反強磁性層 ( 1 2) と強磁性層 ( 1 4) との間 に反強磁性反応層 ( 1 3) が設けられた磁気抵抗効果膜とすること を特徴とする磁気ディスク装置の製造方法。
1 0. 反強磁性層 ( 1 2) 、 強磁性層 ( 1 4) 、 非磁性層 ( 1 5) 、 自由磁性層 ( 1 6) の順に成膜されたスピンバルブ型の磁気抵抗効 果膜を磁気抵抗効果素子として用いた磁気ディスク装置を製造する に際し、
前記磁気抵抗効果膜を、
基板を第 1のチャンバ一 (2 5) に搬入して真空雰囲気下で反強 磁性層 ( 1 2) を形成し、 前記基板を第 2のチャンバ一 (2 3) へ 搬入して、 1^2〇または02が1 p pm以上含まれるガスにより表面 処理を行って反強磁性反応層 ( 1 3) を形成し、 この基板を第 2の チャンバ一 (2 3) から取り出して別のチャンバ一にて前記反強磁 性反応層 ( 1 3) の上に強磁性層 ( 1 4) を形成し、 反強磁性層 ( 1 2) と強磁性層 ( 1 4) との間に反強磁性反応層 ( 1 3) が設けら れた磁気抵抗効果膜とすることを特徴とする磁気ディスク装置の製 造方法
1 1. 第 1のチャンバ一 (2 5) の真空度が 1 X 1 0— 6〜 1 X 1 0一 8 P aの範囲であることを特徴とする請求項 9または 1 0記載 の磁気ディスク装置の製造方法。
1 2. 反強磁性層 ( 1 2) 、 強磁性層 ( 1 4) 、 非磁性層 ( 1 5) 、 自由磁性層 ( 1 6) の順に成膜されたスピンバルブ型の磁気抵抗効 果膜を磁気抵抗効果素子として用いた磁気ディスク装置を製造する に際し、
前記磁気抵抗効果膜を、
基板を第 1のチャンバ一 (2 5) に搬入して真空雰囲気下で反強 磁性層 ( 1 2) を形成し、 前記基板を第 2のチャンバ一 (2 3) へ 搬入して、 前記第 1のチャンバ一 (2 5) 内よりも H2〇濃度また は O 2濃度が高い雰囲気下に曝して反強磁性反応層 ( 1 3) を形成 し、 この基板を第 2のチャンバ一 (2 3) から取り出して別のチヤ ンバーにて前記反強磁性反応層 ( 1 3) の上に強磁性層 ( 14) を 形成し、 反強磁性層 ( 1 2) と強磁性層 ( 1 4) との間に反強磁性 反応層 ( 1 3) が設けられた磁気抵抗効果膜とすることを特徴とす る磁気ディスク装置の製造方法。
1 3. 第 2のチャンバ一 (2 3) 内の真空雰囲気中に基板を 6 0 秒以上曝すことを特徴とする請求項 9、 1 0および 1 2記載の磁気 ディスク装置の製造方法。
14. 第 2のチャンバ一( 23 )内でのプロセスが終了した後に、 基板を再び第 1のチャンバ一 (2 3) に搬送して、 強磁性層 ( 14) 以降の成膜プロセスを行なうことを特徴とする請求項 9、 1 0およ び 1 2記載の磁気ディスク装置の製造方法。
1 5. ヘリコンロングスロースパッ夕装置を使用することを特徴 とする請求項 9、 1 0および 1 2記載の磁気ディスク装置の製造方 法。
PCT/JP2003/015300 2002-12-05 2003-11-28 磁気ディスク装置及びその製造方法 WO2004051629A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/535,994 US7312958B2 (en) 2002-12-05 2003-11-28 Method for manufacturing magnetic disk apparatus
JP2004556866A JPWO2004051629A1 (ja) 2002-12-05 2003-11-28 磁気ディスク装置及びその製造方法
US11/928,342 US7542247B2 (en) 2002-12-05 2007-10-30 Magnetic disk apparatus
US11/928,473 US7463458B2 (en) 2002-12-05 2007-10-30 Magnetoresistive-effect device with a multi-layer magnetoresistive-effect film
US12/289,380 US7733613B2 (en) 2002-12-05 2008-10-27 Method for manufacturing a magnetoresistive-effect device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-354064 2002-12-05
JP2002354064 2002-12-05

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10535994 A-371-Of-International 2003-11-28
US11/928,473 Division US7463458B2 (en) 2002-12-05 2007-10-30 Magnetoresistive-effect device with a multi-layer magnetoresistive-effect film
US11/928,342 Division US7542247B2 (en) 2002-12-05 2007-10-30 Magnetic disk apparatus

Publications (1)

Publication Number Publication Date
WO2004051629A1 true WO2004051629A1 (ja) 2004-06-17

Family

ID=32463324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015300 WO2004051629A1 (ja) 2002-12-05 2003-11-28 磁気ディスク装置及びその製造方法

Country Status (4)

Country Link
US (4) US7312958B2 (ja)
JP (1) JPWO2004051629A1 (ja)
CN (1) CN100412950C (ja)
WO (1) WO2004051629A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004784A (ja) * 2007-06-19 2009-01-08 Headway Technologies Inc 交換結合膜およびこれを用いた磁気抵抗効果素子、並びに磁気抵抗効果素子の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412950C (zh) * 2002-12-05 2008-08-20 松下电器产业株式会社 磁盘装置
US7495871B1 (en) * 2005-07-26 2009-02-24 Storage Technology Corporation Top formed grating stabilizer
US7999336B2 (en) * 2008-04-24 2011-08-16 Seagate Technology Llc ST-RAM magnetic element configurations to reduce switching current
US9190081B2 (en) 2014-02-28 2015-11-17 HGST Netherlands B.V. AF-coupled dual side shield reader with AF-coupled USL
KR102244098B1 (ko) * 2014-03-25 2021-04-26 인텔 코포레이션 자벽 로직 디바이스들 및 인터커넥트
US9099120B1 (en) 2014-04-09 2015-08-04 HGST Netherlands, B.V. Interlayer coupling field control in tunneling magnetoresistive read heads
US9196272B1 (en) 2014-10-27 2015-11-24 Seagate Technology Llc Sensor structure having increased thermal stability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348935A (ja) * 1999-01-21 2000-12-15 Read Rite Corp 2重層構造、スピンバルブセンサ、及びその製造方法
JP2002076474A (ja) * 2000-06-05 2002-03-15 Read Rite Corp 自由層と境界を接する超薄酸化物を有する鏡面巨大磁気抵抗ヘッド

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206590A (en) 1990-12-11 1993-04-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
JPH0595208A (ja) 1991-03-06 1993-04-16 Minnesota Mining & Mfg Co <3M> フイルムキヤリア
US5422571A (en) 1993-02-08 1995-06-06 International Business Machines Corporation Magnetoresistive spin valve sensor having a nonmagnetic back layer
JP3306996B2 (ja) 1993-06-02 2002-07-24 セイコーエプソン株式会社 フレキシブル基板の製造方法
JPH10188234A (ja) * 1996-12-25 1998-07-21 Ulvac Japan Ltd 磁気抵抗ヘッド素子の製造方法
JPH10183347A (ja) * 1996-12-25 1998-07-14 Ulvac Japan Ltd 磁気抵抗ヘッド用成膜装置
WO1998044521A1 (fr) * 1997-03-28 1998-10-08 Migaku Takahashi Procede de fabrication d'un element a magnetoresistance
DE69827737D1 (de) * 1997-09-29 2004-12-30 Matsushita Electric Ind Co Ltd Magnetowiderstandseffektvorrichtung ,magnetoresistive Kopf und Verfahren zur Herstellung einer Magnetowiderstandseffektvorrichtung
US6063244A (en) * 1998-05-21 2000-05-16 International Business Machines Corporation Dual chamber ion beam sputter deposition system
JP3234814B2 (ja) 1998-06-30 2001-12-04 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2000268330A (ja) 1999-03-15 2000-09-29 Victor Co Of Japan Ltd 磁気抵抗効果型薄膜磁気ヘッドの製造方法
US6331773B1 (en) * 1999-04-16 2001-12-18 Storage Technology Corporation Pinned synthetic anti-ferromagnet with oxidation protection layer
US6428657B1 (en) * 1999-08-04 2002-08-06 International Business Machines Corporation Magnetic read head sensor with a reactively sputtered pinning layer structure
WO2001024170A1 (fr) * 1999-09-29 2001-04-05 Fujitsu Limited Tete a effet de resistance magnetique et dispositif de reproduction d'informations
JP2001207257A (ja) 2000-01-24 2001-07-31 Matsushita Electric Ind Co Ltd Gmr膜の製造方法及び製造装置
JP2001283413A (ja) 2000-03-29 2001-10-12 Tdk Corp スピンバルブ膜の製造方法
US6700753B2 (en) * 2000-04-12 2004-03-02 Seagate Technology Llc Spin valve structures with specular reflection layers
US6306266B1 (en) * 2000-05-17 2001-10-23 International Business Machines Corporation Method of making a top spin valve sensor with an in-situ formed seed layer structure for improving sensor performance
JP2001352112A (ja) * 2000-06-07 2001-12-21 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子及び磁気抵抗効果型ヘッド
JP2002007674A (ja) 2000-06-26 2002-01-11 Nec Corp 問い合わせ・回答システムおよび問い合わせ・回答処理方法
JP2002026055A (ja) 2000-07-12 2002-01-25 Seiko Epson Corp 半導体装置及びその製造方法
US6661622B1 (en) 2000-07-17 2003-12-09 International Business Machines Corporation Method to achieve low and stable ferromagnetic coupling field
US6413380B1 (en) * 2000-08-14 2002-07-02 International Business Machines Corporation Method and apparatus for providing deposited layer structures and articles so produced
US6853520B2 (en) * 2000-09-05 2005-02-08 Kabushiki Kaisha Toshiba Magnetoresistance effect element
JP3559513B2 (ja) 2000-09-05 2004-09-02 株式会社東芝 磁気抵抗効果素子、その製造方法及び製造装置並びに磁気再生装置
JP2002092829A (ja) 2000-09-21 2002-03-29 Fujitsu Ltd 磁気抵抗センサ及び磁気抵抗ヘッド
JP2002198584A (ja) * 2000-12-26 2002-07-12 Sony Corp スピンバルブ膜の製造方法及び磁気抵抗効果型磁気ヘッドの製造方法
JP4249399B2 (ja) 2001-01-24 2009-04-02 セイコーエプソン株式会社 可撓性基板およびそれを用いた表示装置
US6809909B2 (en) * 2001-07-16 2004-10-26 Seagate Technology Llc Giant magnetoresistive sensor with high-resistivity magnetic layers
US6500676B1 (en) * 2001-08-20 2002-12-31 Honeywell International Inc. Methods and apparatus for depositing magnetic films
JP3726891B2 (ja) 2001-10-05 2005-12-14 三井金属鉱業株式会社 電子部品実装用フィルムキャリアテープの実装構造および電子部品実装用フィルムキャリアテープの製造方法
KR100448990B1 (ko) * 2001-10-10 2004-09-18 한국과학기술연구원 열적 특성이 우수한 듀얼 스핀밸브 자기저항 박막 및 그제조방법
JP2003142535A (ja) 2001-10-31 2003-05-16 Optrex Corp フレキシブル配線基板およびその製造方法
JP2003203951A (ja) 2001-11-05 2003-07-18 Puroii:Kk フィルムテープキャリア
GB0127251D0 (en) * 2001-11-13 2002-01-02 Nordiko Ltd Apparatus
JP2003183838A (ja) * 2001-12-13 2003-07-03 Hitachi Ltd 酸化膜形成装置及び磁気記録再生装置
US7035060B2 (en) * 2002-03-06 2006-04-25 Headway Technologies, Inc. Easily manufactured exchange bias stabilization scheme
CN100412950C (zh) * 2002-12-05 2008-08-20 松下电器产业株式会社 磁盘装置
JP2004281947A (ja) 2003-03-18 2004-10-07 Mitsui Mining & Smelting Co Ltd 電子部品実装用フィルムキャリアテープの製造方法及びスペーサテープ
US7201827B2 (en) * 2003-09-12 2007-04-10 Headway Technologies, Inc. Process and structure to fabricate spin valve heads for ultra-high recording density application
US7256971B2 (en) * 2004-03-09 2007-08-14 Headway Technologies, Inc. Process and structure to fabricate CPP spin valve heads for ultra-high recording density
US7211447B2 (en) * 2005-03-15 2007-05-01 Headway Technologies, Inc. Structure and method to fabricate high performance MTJ devices for MRAM applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348935A (ja) * 1999-01-21 2000-12-15 Read Rite Corp 2重層構造、スピンバルブセンサ、及びその製造方法
JP2002076474A (ja) * 2000-06-05 2002-03-15 Read Rite Corp 自由層と境界を接する超薄酸化物を有する鏡面巨大磁気抵抗ヘッド

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004784A (ja) * 2007-06-19 2009-01-08 Headway Technologies Inc 交換結合膜およびこれを用いた磁気抵抗効果素子、並びに磁気抵抗効果素子の製造方法

Also Published As

Publication number Publication date
US7312958B2 (en) 2007-12-25
US7733613B2 (en) 2010-06-08
JPWO2004051629A1 (ja) 2006-04-06
CN1720571A (zh) 2006-01-11
CN100412950C (zh) 2008-08-20
US20080068763A1 (en) 2008-03-20
US7463458B2 (en) 2008-12-09
US20080055785A1 (en) 2008-03-06
US20090104345A1 (en) 2009-04-23
US7542247B2 (en) 2009-06-02
US20060072250A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP3558996B2 (ja) 磁気抵抗効果素子、磁気ヘッド、磁気再生装置及び磁気記憶装置
JP4786331B2 (ja) 磁気抵抗効果素子の製造方法
US7265948B2 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
US7583481B2 (en) FCC-like trilayer AP2 structure for CPP GMR EM improvement
US20080068767A1 (en) Exchange-coupled film, method for making exchange-coupled film, and magnetic sensing element including exchange-coupled film
EP1903623A2 (en) Tunnel type magnetic sensor having fixed magnetic layer of composite structure containing CoFeB film and method for manufacturing the same
US20090190264A1 (en) Magnetoresistive element and method of manufacturing the same
US7599157B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with high-resistivity amorphous ferromagnetic layers
EP1630247B1 (en) Method for reactive sputter deposition of an ultra-thin metal oxide film
US7733613B2 (en) Method for manufacturing a magnetoresistive-effect device
JP3908557B2 (ja) 磁気検出素子の製造方法
US20110205669A1 (en) Method for manufacturing magneto-resistance effect element, magnetic head assembly, and magnetic recording and reproducing apparatus
US6891703B2 (en) Exchange coupled film having magnetic layer with non-uniform composition and magnetic sensing element including the same
JP2003318463A (ja) 交換結合膜及びこの交換結合膜の製造方法並びに前記交換結合膜を用いた磁気検出素子
US8081402B2 (en) Magnetoresistive head having a current screen layer for confining current therein and method of manufacture thereof
US20060262459A1 (en) Magnetic detection element and manufacturing the same
JP2002280641A (ja) 交換結合膜及び前記交換結合膜を用いた磁気検出素子
US20080055786A1 (en) Tunnel type magnetic sensor having protective layer formed from Pt or Ru on free magnetic layer, and method for manufacturing the same
JP2004207366A (ja) Cpp磁気抵抗効果素子及びその製造方法、cpp磁気抵抗効果素子を備えた磁気記憶装置
JP2006196745A (ja) 磁気検出素子、およびその製造方法
JP2002246230A (ja) 交換結合膜と前記交換結合膜を用いた磁気検出素子、ならびに前記交換結合膜の製造方法と前記磁気検出素子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

ENP Entry into the national phase

Ref document number: 2006072250

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10535994

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004556866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A50328

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10535994

Country of ref document: US