WO2004053951A1 - Exposure method, exposure apparatus and method for manufacturing device - Google Patents

Exposure method, exposure apparatus and method for manufacturing device Download PDF

Info

Publication number
WO2004053951A1
WO2004053951A1 PCT/JP2003/015408 JP0315408W WO2004053951A1 WO 2004053951 A1 WO2004053951 A1 WO 2004053951A1 JP 0315408 W JP0315408 W JP 0315408W WO 2004053951 A1 WO2004053951 A1 WO 2004053951A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
exposure
area
liquid
optical system
Prior art date
Application number
PCT/JP2003/015408
Other languages
French (fr)
Japanese (ja)
Inventor
Nobutaka Magome
Masahiro Nei
Shigeru Hirukawa
Naoyuki Kobayashi
Soichi Owa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003302831A priority Critical patent/AU2003302831A1/en
Publication of WO2004053951A1 publication Critical patent/WO2004053951A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum

Definitions

  • the present invention relates to an exposure method for exposing a pattern on a substrate via a projection optical system while the image plane side of the projection optical system is locally filled with a liquid, and a device manufacturing method using the exposure method.
  • Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate.
  • An exposure apparatus used in the photolithographic process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and a pattern of the mask is projected while moving the mask stage and the substrate stage sequentially.
  • C In recent years, in order to cope with higher integration of device patterns, further improvement in the resolution of the projection optical system is desired.
  • the resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases. Therefore, the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing.
  • the current mainstream exposure wavelength is 248 nm for a KrF excimer laser, but a shorter wavelength of 193 nm for an ArF excimer laser is also being put into practical use.
  • the depth of focus (DOF) is as important as the resolution.
  • the resolution R and the depth of focus ⁇ 5 are respectively expressed by the following equations.
  • Equations (1) and (2) show that when the exposure wavelength ⁇ is shortened and the numerical aperture ⁇ ⁇ ⁇ ⁇ is increased to increase the resolution R, the depth of focus (5 becomes narrower). If the depth of focus (5 becomes too narrow), it becomes difficult to match the substrate surface to the image plane of the projection optical system, and there is a possibility that the margin during the exposure operation may be insufficient.
  • a method of shortening and increasing the depth of focus for example, International Publication No.
  • the liquid immersion method disclosed in Japanese Patent Application Laid-Open No. 9/495504 has been proposed.
  • this immersion method the space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent, and the wavelength of the exposure light in the liquid is 1 / n (n is the refraction of the liquid) in air.
  • the resolution is improved by taking advantage of the fact that the ratio is usually about 1.2 to 1.6), and the depth of focus is increased by about n times.
  • the above-mentioned prior art has the following problems.
  • the space between the lower surface, which is the image plane side of the projection optical system, and the substrate (wafer) is locally filled with liquid.
  • the liquid When a short area near the center of the substrate is exposed, the liquid is exposed. No outflow to the outside of the substrate occurs. However, for example, as shown in the schematic diagram of FIG. 15, the peripheral area (edge area) E of the substrate P is moved to the projection area 100 of the projection optical system, and the edge area E of the substrate P is exposed. Then, the liquid flows out of the substrate P. Leaving the spilled liquid will cause fluctuations in the environment (humidity, etc.) in which the substrate P is placed, causing it to be placed on the optical path of an interferometer that measures the position information of the substrate stage that holds the substrate, and various optical devices. A change in the refractive index on the optical path of the detection light
  • An exposure method capable of preventing the liquid from flowing out of the substrate even when the substrate is subjected to liquid immersion exposure in a state where the liquid is filled between the projection optical system and the substrate, and a case in which the substrate is subjected to liquid immersion exposure Another object of the present invention is to provide an exposure method capable of transferring a pattern to an edge area of a substrate, a device manufacturing method using the exposure method, and an exposure apparatus for executing the exposure method.
  • a liquid (50) is supplied between the substrate (PL) and the substrate (P), a first area (AR1) on the substrate (P) is exposed through the liquid (50), and a first area (AR1) is exposed.
  • An exposure method is provided for exposing a second area (AR2) on a substrate (P) different from that of (2) without supplying a liquid (50).
  • the above-described exposure method is provided, wherein the exposure condition and the exposure condition for exposing the second area (AR2) are different.
  • the second region is exposed through the projection optical system without liquid,
  • the outflow of the liquid to the outside of the substrate can be suppressed.
  • the pattern can be transferred well to the second area. Therefore, fluctuations in the environment in which the substrate is placed are suppressed, and inconveniences such as the occurrence of contracts on mechanical parts around the substrate stage that supports the substrate are also suppressed.
  • CMP Chemical Mechanical Polishing
  • the numerical aperture of the projection optical system when exposing the second area is smaller than when exposing the first area. Further, it is preferable that the second region is exposed by the two-beam interference method. Further, it is preferable that an image of a line 'and' space pattern in which a line pattern is formed at a predetermined pitch is projected on the second area. W 200
  • the first pattern used for exposing the first area is different from the second pattern used for exposing the second area. Further, it is preferable that the first area is exposed while moving the first pattern and the substrate, and the second area is exposed while the second pattern and the substrate are stationary. The first region may be exposed while moving the first pattern and the substrate, and the second region may be exposed while moving the substrate while the second pattern is stationary. Further, in the exposure method of the present invention, it is preferable that the first pattern and the second pattern are formed on the same mask. The first pattern may be formed on a mask, and the second pattern may be formed on a mask stage holding the mask, and on a substrate fixed at a position separated from the mask.
  • a distance between the projection optical system and the substrate is different between when exposing the first region and when exposing the second region. Further, when exposing the first region and exposing the second region, the projection optical system is formed through the projection optical system so that the distance between the projection optical system and the substrate is substantially the same. The position of the image plane may be adjusted. Further, in the present invention, it is preferable that the exposure of the first region is performed after the exposure of the second region is completed.
  • a third aspect of the present invention there is provided a method of exposing a substrate (P) having a first region (AR 1) and a second region (AR 2) using a projection light ⁇ : system (PL).
  • An exposure method is provided in which only the area excluding the upper page (AR 2) is exposed.
  • the edge of the substrate it is not necessary to move the edge of the substrate to the liquid immersion area between the projection optical system and the substrate.
  • the process conditions do not perform the CMP process on the substrate P, the pattern may not be formed at the edge. And Therefore, since it is not necessary to expose the edge portion, it is not necessary to move the edge of the substrate to the liquid immersion area between the projection optical system and the substrate. Therefore, it is possible to prevent the liquid from flowing out of the substrate.
  • a device manufacturing method using the exposure method according to the above aspect there is provided a device manufacturing method using the exposure method according to the above aspect.
  • an exposure light is applied to a first area (AR1) on the substrate (P).
  • the first optical system (IL, PL) for irradiating (EL) and the second region (AR 2) on the substrate (P) different from the first region (AR 1) are irradiated with exposure light (EL 2)
  • An exposure apparatus (EX) including a second optical system (IL 2, PL 2) is provided. According to the present invention, it is possible to easily expose each of the first and second regions on the substrate under different conditions.
  • the first optical system and the second optical system it is possible to expose the first and second regions on the substrate in parallel with the first and second optical systems, so that throughput is increased. Can be improved.
  • the first and second optical systems may be constructed according to the target exposure accuracy (pattern formation accuracy) when exposing the first and second regions, for example, the exposure accuracy for the second region is relatively rough.
  • the second optical system can have a simple (low-priced) configuration, and the apparatus cost and running cost can be reduced.
  • the wavelength of the exposure light used for exposing the first area is different from the wavelength of the exposure light used for exposing the second area.
  • a first movable body that can move while holding the substrate having the first and second regions; and a second movable body that can move while holding the substrate having the first and second regions During exposure of a first region on the substrate held by the first movable body using the first optical system, a second region on the substrate held by the second movable body using the second optical system is exposed. Exposing an area, and after exposing the first area on the substrate held by the first movable body, using the first optical system, 2 It is preferable to start exposure of the first area on the substrate held by the movable body. Further, the second region may be around the edge of the substrate. Further, the second region may be exposed by a two-beam interference method.
  • the first region is exposed through a liquid between the first optical system and the substrate, and the second region is between the second optical system and the substrate. Exposure is preferably performed without a liquid.
  • a device manufacturing method using the exposure apparatus (EX) according to the fourth aspect there is provided an exposure apparatus for exposing a substrate,
  • a first station (A) including a liquid supply device (1), wherein a substrate is exposed through the liquid supplied by the liquid supply device;
  • immersion exposure is performed in a first station, and exposure without using a normal liquid is performed in a second station.
  • the substrate has first and second areas, and the first area has The first area may be exposed via the liquid and the second area may be exposed at the second station without the liquid. Therefore, by performing control according to exposure conditions separately at the two stations, complicated exposure control according to the application can be performed. In addition, the problem of liquid (water) treatment associated with immersion exposure is sufficient if concentrated processing is performed in one station.
  • the exposure apparatus may further include a first projection optical system provided in the first station, and a second projection optical system provided in the second station.
  • the exposure apparatus may include a first and second movable body, for example, a moving stage that alternately moves while holding the substrate between the first station and the second station.
  • a first and second movable body for example, a moving stage that alternately moves while holding the substrate between the first station and the second station.
  • the substrate is moved to the first stage by the first or second movable body, and the liquid is supplied to the first region and the first region is supplied. Is exposed.
  • substrate alignment measurement AF / AL measurement, alignment measurement, etc.
  • the substrate on which the in-place measurement has been performed is transferred to the first station.
  • the throughput of the twin stage can be improved by taking advantage of the immersion exposure.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of an exposure apparatus used in the exposure method of the present invention.
  • FIG. 2 is a diagram showing the position of the tip of a projection optical system and a liquid supply device and a liquid recovery device. It is a figure which shows a relationship.
  • FIG. 3 is a diagram showing an example of the arrangement of the supply nozzle and the recovery nozzle.
  • FIG. 4 is a diagram showing an example of the arrangement of the supply nozzle and the recovery nozzle.
  • FIG. 5 is a plan view showing a mask according to the present invention.
  • FIG. 6 is a plan view showing a substrate according to the present invention.
  • FIGS. 7A and 7B are diagrams showing an example of the configuration of an optical system when exposing the second area.
  • FIG. 8 is a diagram showing an arrangement of a glass substrate on which a pattern for exposure of a second region is formed on a mask stage.
  • FIG. 9 is a diagram showing another configuration example of the optical system when exposing the second area.
  • FIG. 10 is a schematic configuration diagram showing another embodiment of the exposure apparatus of the present invention.
  • FIG. 11 is a view showing an example of a glass substrate on which a pattern for exposure in a second region is formed.
  • FIG. 12 is a view showing another example of the glass substrate on which the pattern for exposure in the second region is formed.
  • FIG. 13 is a schematic configuration diagram showing another embodiment of the exposure apparatus of the present invention.
  • FIG. 14 is a flowchart showing an example of a semiconductor device manufacturing process.
  • FIG. 15 is a diagram for explaining a conventional problem. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an exposure apparatus used for the exposure method of the present invention.
  • an exposure apparatus EX includes a mask stage MST that supports a mask M, a substrate stage PST that supports a substrate P, and an illumination optical system IL that illuminates the mask M supported by the mask stage MST with exposure light EL. And a projection optical system PL that projects and exposes the image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P supported by the substrate stage PST, and a control device C that controls the overall operation of the exposure apparatus EX 0 NT and it is raining.
  • scanning is performed by exposing the pattern formed on the mask M to the substrate P while synchronously moving the mask M and the substrate P in different directions (opposite directions) in the scanning direction.
  • the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction
  • the synchronous movement direction (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis direction
  • the direction perpendicular to the Z-axis direction and the Y-axis direction (non-scanning direction) is defined as the Y-axis direction.
  • the directions around the X axis, Y axis, and Z axis are 0 °, ⁇ ⁇ ⁇ , and the directions, respectively.
  • the “substrate” includes a semiconductor wafer coated with a resist
  • the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed.
  • the illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light E, and equalizes the illuminance of the exposure light source and the luminous flux emitted from the exposure light source. Exposure light from optical light gray evening
  • the exposure light EL emitted from the illumination optical system IL includes, for example, ultraviolet bright lines (g-line, h-line, i-line) emitted from a mercury lamp and KrF excimer laser light (wavelength: 248 nm).
  • the mask stage MST supports the mask M, and can be moved two-dimensionally in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in the XY plane, and can be minutely rotated in the 0 Z direction.
  • the mask stage MST is driven by a mask stage driving device MSTD such as a linear motor.
  • the mask stage drive MS TD is controlled by the controller CONT.
  • the position and rotation angle of the mask M on the mask stage MST in the two-dimensional direction are measured in real time by a laser interferometer, and the measurement results are output to the controller C0NT.
  • the controller C 0 NT drives the mask stage driving device MS TD based on the measurement result of the laser interferometer to position the mask M supported by the mask stage MST.
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification / ?, and is composed of a plurality of optical elements (lenses).
  • the lens barrel is supported by PK.
  • the projection optical system PL is a reduction system whose projection magnification 3 is, for example, 1Z4 or 1/5.
  • the projection optical system PL may be either a unity magnification system or an enlargement system.
  • an optical element (lens) 60 is exposed from the lens barrel PK on the distal end side (substrate P side) of the projection optical system PL of the present embodiment.
  • the optical element 60 is provided detachably (replaceable) with respect to the lens barrel PK.
  • the substrate stage PST supports the substrate P, and the substrate P
  • the XY stage 52 supports the Z stage 51
  • the XY stage 52 supports the Z stage 51
  • the base 53 supports the XY stage 52.
  • the substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor.
  • the substrate stage drive PSTD is controlled by the controller CONT.
  • the Z stage 51 By driving the Z stage 51, the standing (focus position) in the Z-axis direction and the position in the 0X direction of the substrate P held on the Z stage 51 are controlled.
  • the XY stage 52 By driving the XY stage 52, the position of the substrate P in the XY direction (the position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. That is, the Z stage 51 controls the force position and the tilt angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system P by the autofocus method and the intelligent repelling method.
  • the XY stage 52 positions the substrate P in the X-axis direction and the Y-axis direction. It goes without saying that the Z stage and the XY stage may be provided integrally.
  • a movable mirror 54 is provided on the substrate stage PST (Z stage 51).
  • a laser interferometer 55 is provided at a position facing the movable mirror 54.
  • the position and the rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 55, and the measurement results are output to the control device CONT.
  • the controller C CNT positions the substrate P supported on the substrate stage PST by driving the substrate stage driving device PSTD based on the measurement result of the laser interferometer 55.
  • an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially widen the depth of focus.
  • the predetermined liquid 50 is filled.
  • the lens 60 is exposed at the distal end side of the projection optical system PL; the 'night body 50 is configured to contact only the lens 60. This prevents corrosion of the lens barrel PK made of metal.
  • the liquid 50 is a projection optical system
  • the structure is such that the image plane side of the PL is locally filled. That is, the liquid immersion part between the projection optical system PL and the substrate P is sufficiently smaller than the substrate P.
  • pure water is used as the liquid 50.
  • the exposure apparatus EX includes a liquid supply device 1 that supplies a predetermined liquid 50 to a space 56 between the front end surface (the front end surface of the lens 60) 7 of the projection optical system PL and the substrate P; And a liquid recovery device 2 for recovering the liquid 50.
  • the liquid supply device 1 is used to locally fill the image plane side of the projection optical system PL with the liquid 50, and supplies the liquid 50 to the ink tank, the pressure pump, and the space 56.
  • a temperature adjusting device for adjusting the temperature of the liquid 50 is provided.
  • One end of a supply pipe 3 is connected to the liquid supply device 1, and a supply nozzle 4 is connected to the other end of the supply pipe 3.
  • the liquid supply device 1 supplies the liquid 50 to the space 56 via the supply pipe 3 and the supply nozzle 4.
  • the liquid recovery device 2 includes a suction pump, a tank for storing the recovered liquid 50, and the like.
  • One end of a recovery pipe 6 is connected to the liquid recovery device 2, and a recovery nozzle 5 is connected to the other end of the recovery pipe 6.
  • the liquid recovery device 2 recovers the liquid 50 in the space 56 through the recovery nozzle 5 and the recovery pipe 6.
  • controller CONT drives liquid supply device 1 and supplies a predetermined amount of liquid 50 per unit time to space 56 via supply pipe 3 and supply nozzle 4.
  • the liquid recovery device 2 is driven to recover a predetermined amount of liquid 50 per unit time from the space 56 via the recovery nozzle 5 and the recovery pipe 6.
  • the liquid 50 is disposed in the space 56 between the front end surface 7 of the projection optical system PL and the substrate P, and a liquid immersion part is formed.
  • the control device CONT can arbitrarily set the liquid supply amount per unit time to the space 56 by controlling the liquid supply device 1 and control the liquid recovery device 2 from above the substrate P.
  • FIG. 2 is a front view showing a lower portion of the projection optical system PL of the exposure apparatus EX, a liquid supply device 1, a liquid recovery device 2, and the like.
  • the lens 60 at the lowermost end of the projection optical system PL is formed in a rectangular shape elongated in the Y-axis direction (non-scanning direction) except for a portion where the tip 6OA is required in the scanning direction.
  • a partial pattern image of the mask M is projected on a rectangular projection area immediately below the tip 6 OA, and the mask M is moved in the ⁇ X direction (or + X direction) with respect to the projection optical system PL.
  • the substrate P moves in the + X direction (or one X direction) at a speed of 3 ⁇ V (3 is a projection magnification) via the XY stage 52. Then, after the exposure to one shot area is completed, the next shot area is moved to the scanning start position by the stepping of the substrate P. Thereafter, the exposure processing for each shot area is sequentially performed by the step-and-scan method. Done.
  • the liquid 50 is set to flow in the same direction as the movement direction of the substrate P along the movement direction of the substrate P.
  • the Z stage 51 is provided with a suction hole 24 for holding the substrate P by suction.
  • Each of the suction holes 24 is connected to a flow path 25 formed inside the Z stage 51.
  • the flow path 25 connected to the suction hole 24 is connected to one end of a pipe 30 provided outside the Z stage 51.
  • the other end of the conduit 30 is connected to a pump 33 as a suction device via a tank 31 and a valve 32 provided outside the Z stage 51.
  • the tank 31 is provided with a discharge channel 31A, and when a predetermined amount of liquid is accumulated, the liquid is discharged from the discharge channel 31A. During the immersion exposure, the liquid 50 flowing out of the substrate P may reach the back side of the substrate P.
  • the liquid 50 that has entered the rear surface side of the substrate P may flow into the suction holes 24 for holding the substrate P by suction.
  • the suction hole 24 is connected to a pump 33 as a suction device via a flow path 25, a pipe 30, and a tank 31, and a valve is provided for sucking and holding the substrate P. Since the opening of 32 and the driving of the pump 33 are performed, the liquid 50 flowing into the adsorption hole 24 can be collected in the tank 31 via the flow path 25 and the pipe 30.
  • Fig. 3 shows the liquid crystal 50 in the X-axis direction with the tip 6 OA of the lens 60 of the projection optical system PL.
  • the tip 6OA of the lens 60 has a rectangular shape elongated in the Y-axis direction, so that the tip 60A of the lens 60 of the projection optical system PL is located in the + X direction so as to sandwich the tip 60A in the X-axis direction.
  • the tip 60A of the lens 60 of the projection optical system PL is located in the + X direction so as to sandwich the tip 60A in the X-axis direction.
  • the supply nozzles 4A to 4C are connected to the liquid supply device 1 via the supply pipe 3, and the recovery nozzles 5A and 5B are connected to the liquid recovery device 2 via the recovery pipe 4. Also, the supply nozzles 8A to 8C and the collection nozzles 9A and 9B are located at positions where the supply nozzles 4A to 4C and the collection nozzles 5A and 5B are rotated by approximately 180 ° with respect to the center of the tip 6OA. And are arranged.
  • the nozzle rows 4A to 4C, 9A and 9B and the nozzle rows 8A to 8C, 5A and 5B are arranged to face each other, and the distance between the supply nozzle and the recovery nozzle facing each other (for example, 4A Is larger than the width in the scanning direction of the projection area defined below the tip 60A of the lens 60, but smaller than the diameter of the substrate P. Therefore, when exposing the shot area near the outer periphery of the substrate P, the immersion area protrudes out of the edge of the substrate P, and the liquid is supplied to the opposite side so that the liquid does not leak outside the substrate P. It is desirable that the distance between the nozzle and the collection nozzle be as close as possible to the width of the projection area in the scanning direction.
  • the supply nozzles 4A to 4C and the collection nozzles 9A and 9B are alternately arranged in the Y-axis direction.
  • the supply nozzles 8A to 8C and the collection nozzles 5A and 5B are alternately arranged in the Y-axis direction.
  • supply nozzle 8 A ⁇ 8C are connected to the liquid supply apparatus 1 via the supply pipe 1
  • recovery nozzle 9A, 9 B are connected to the liquid recovery apparatus 2 via the recovery pipe 1 1.
  • the liquid is supplied from the nozzle so that no gas part is generated between the projection optical system PL and the substrate P.o As shown in Fig. 4, the liquid is supplied to both sides in the Y-axis Supply nozzles 13 and 14 and recovery nozzles 15 and 16 can also be provided.
  • the supply nozzle and the recovery nozzle stably supply the liquid 50 between the projection optical system PL and the substrate P even when the substrate P moves in the non-scanning direction (Y-axis direction) during the step movement. can do.
  • the shape of the nozzle described above is not particularly limited.
  • the supply or recovery of the liquid 50 may be performed with two pairs of nozzles on the long side of the tip 6 OA.
  • the supply nozzle and the recovery nozzle are arranged vertically. You may.
  • FIG. 5 is a plan view of the mask M according to the present embodiment. In FIG.
  • a mask M is composed of a first pattern formation area MA 1 in which device patterns (first patterns) 41 for forming devices are formed, and a line pattern in which line patterns are formed at a predetermined pitch. It has a second pattern forming area MA 2 in which a space pattern (second pattern) 42 is formed.
  • the device pattern 41 is transferred to a first area AR1 on the substrate P, which will be described later, and the line and space pattern (L / S pattern) 42 is the first area AR1 on the substrate P different from the first area AR1. It is now transcribed into two regions, AR2.
  • FIG. 6 is a plan view of the substrate P.
  • the device pattern 41 formed on the mask M is transferred to the first area AR1, which is the pattern formation area set near the center of the substantially circular substrate P, and the vicinity of the edge of the substrate P
  • the L / S pattern 42 formed on the mask M is transferred to the second region AR2 which is a region.
  • a plurality of shot areas SH are set in the first area AR1.
  • the boundary between the first area AR1 and the second area AR2 is not limited to that shown in Fig. 6, but is determined according to the acceleration distance and deceleration distance before and after scanning and exposing each shot area, or the range of the liquid immersion area. Just fine.
  • a procedure for exposing the pattern of the mask M to the substrate P using the above-described exposure apparatus EX will be described.
  • the control device C 0 NT drives the liquid supply device 1 and the liquid recovery device 2 to supply the liquid 50 and supply the liquid 50.
  • the controller CONT illuminates the first pattern formation region M1 of the mask M with the exposure light EL by the illumination optical system IL while moving the mask M and the substrate P synchronously. Is sequentially projected onto each shot area SH of the first area AR1 on the substrate P via the projection optical system PL and the liquid 50.
  • the controller CONT uses the L / S pattern 42 provided at a different position from the device pattern 41 of the mask M to expose the second area AR 2 of the substrate P to the mask stage MST and the substrate stage PST. Is driven to position the mask M and the substrate P at predetermined positions. Before or after this positioning operation, the control device CONT stops the supply and recovery operations of the liquid 50 by the liquid supply device 1 and the liquid recovery device.
  • the control device CONT prepares to expose the second area AR2 via the projection optical system PL without the liquid 50.
  • the control unit CONT determines the illumination condition (exposure condition) of the exposure light EL to the mask M when performing the exposure processing on the second area AR2, and the condition when performing the exposure processing on the first area AR1.
  • the aperture of the illumination optical system IL is changed, and the illumination condition for the mask M is changed from normal illumination to oblique incidence illumination (deformed illumination).
  • the control device CONT illuminates the L / S pattern 42 of the mask M obliquely with the exposure light EL, and uses two diffracted lights out of the plurality of diffracted lights diffracted by the L / S pattern 42 to the substrate P.
  • FIG. 7 is a diagram showing an example of an optical system when exposing the second area AR2.
  • a monopole illumination stop 71 having one opening at a position shifted from the optical axis is arranged downstream of the light path of the light source 70 of the illumination optical system IL.
  • the light beam emitted from the light source 70 passes through the opening of the monopole illumination stop 71, passes through the lens system 73, and is obliquely incident on the mask / S pattern 42 of the mask M.
  • the second area AR2 of the substrate P is exposed to the L / S pattern 42 by the two-beam interference method based on the 0th-order light and the + 1st-order light (1st-order light).
  • exposure can be performed using a dipole illumination stop 72 having two openings at positions shifted from the optical axis.
  • a quadrupole illumination stop having four apertures may be used.
  • the illumination condition may be changed not only by changing the aperture, but also by using a zoom optical system or a diffractive optical element. Exposure using the two-beam interference method increases the depth of focus.
  • the exposure condition based on the two-beam interference method is an exposure condition resistant to defocus
  • the second region AR2 on the substrate P is exposed under an exposure condition resistant to defocus.
  • the projection optical system PL of the exposure apparatus EX in the present embodiment is designed so as to obtain optimal imaging characteristics by passing through the liquid 50, so that, for example, the liquid does not pass under normal illumination (circular stop).
  • the exposure condition was changed to the exposure condition based on the two-light interference method, and the exposure condition was set to be resistant to defocus, so that the surface of the substrate P did not pass through the liquid. It can fit within the depth of focus of the projection optical system PL.
  • the first area AR1 is exposed under an exposure condition such as oblique incidence illumination that is resistant to defocusing.In such a case, simply change the exposure condition with liquid to the exposure condition without liquid.
  • the second area AR2 may be exposed.
  • the mask M (L / S pattern 42) and the substrate P are moved synchronously as in the exposure processing for the first area AR 1. Exposure may be performed, exposure may be performed with the mask M and the substrate P stationary, or exposure may be performed while moving the substrate P with the mask M stationary. For example, in FIG. 6, in the second area AR2, an area AR2A that is short in the scanning direction can be exposed while the mask M and the substrate P are stationary.
  • the projected pattern image is projected in the moving direction (scanning direction) of the substrate P. May shake continuously.
  • the longitudinal direction of the line pattern of the L / S pattern 42 of the mask M is made to coincide with the moving direction of the substrate P in order to transfer the pattern to the area AR 2 B well even if the pattern image is blurred. It is desirable to keep.
  • the edge region AR2 of the substrate P which is difficult to hold the liquid under the projection optical system PL (image side), is exposed without passing through the liquid.
  • the liquid is flowing out of the substrate.
  • the optical characteristics of the projection optical system PL are optimized for immersion exposure, a desired imaging position cannot be obtained without passing through a liquid, but two-beam interference occurs without passing through a liquid.
  • the LZS pattern 42 can be formed on the substrate P without using a liquid.
  • the L / S pattern 42 as a dummy pattern is formed in the second area AR 2 other than the first area AR 1 where the device pattern 41 is formed on the substrate P. In this case, it is possible to avoid the inconvenience that occurs when the substrate P hits one side against the polishing surface of the CMP apparatus.
  • the second area AR 2 is exposed without liquid, but a collecting device for collecting the liquid flowing out of the substrate P is provided around the substrate P, and the second area AR 2 is exposed.
  • the exposure may be performed based on the two-beam interference method with the liquid disposed below the projection optical system PL or while the supply of the liquid is continued.
  • the liquid flows out of the substrate P, so that there is insufficient liquid between the projection optical system PL and the substrate P.
  • the second area AR2 is exposed under the exposure conditions that are resistant to differential focusing such as two-beam interferometry, so that an L / S pattern is formed in the second area AR2. it can.
  • the first area AR1 and the second area AR2 are separated by the shot area.
  • the first area AR1 and the second area AR2 are set in one short area. Is also good.
  • the area AR2 may be subjected to processing such as exposure or non-exposure using a method resistant to defocus.
  • the first area AR1 and the second area AR2 may be arranged in the scanning direction or may be separated in the non-scanning direction.c
  • the first area AR1 is exposed to light.
  • the second area AR2 is exposed, but the exposure of the second area AR2 may be performed before the first area AR1.
  • the exposure of the first area AR 1 is performed, thereby further improving the formation accuracy of the device pattern 41 of the first area AR 1 that requires high pattern formation accuracy. be able to.
  • the photoresist after the exposure light irradiation starts to deteriorate due to exposure to the outside air (air).
  • the first area AR1 is exposed. The time from the exposure of the area AR 1 to the development processing can be shortened, and the first area AR 1 to which the device pattern 41 has been exposed before the deterioration of the heat resist is accelerated. Can be developed.
  • the device pattern 41 can be formed with desired pattern formation accuracy.
  • the L / S pattern 42 is provided separately from the device pattern 41 on the mask M.
  • the second region AR is formed by using a part of the pattern of the device pattern 41. 2 may be exposed, or a pattern used for exposure of the second area AR2 may be provided on another mask.
  • the glass substrate MF on which the L / S pattern 42 is formed is used.
  • the mask P is fixed on the mask stage MS so as to be juxtaposed with the mask M, and the image of the pattern 42 formed on the glass substrate MF is placed on the substrate P via an opening (not shown) of the mask stage MST.
  • the second area AR 2 may be exposed by projecting the light onto the two area AR 2.
  • the pattern used when exposing the second area AR2 is not limited to the L / S pattern, and the fineness may be the same as the device pattern 41 or may be coarser than the device pattern 41. It may be a pattern. In short, it is only necessary to form a pattern that does not cause any problem in performing the CMP process in the subsequent process.
  • FIG. 9 is a diagram showing another example of the optical system when exposing the second area AR2.
  • a first lens system 81 including a collimating lens and a light beam passing through the first lens system 81 are located downstream of an optical path of a light source 80 capable of emitting coherent light such as laser light.
  • a half mirror 82 that splits the light into two light beams, a second lens system 83, and an aperture stop 85 are provided.
  • the light beam emitted from the light source 80 passes through the first lens system 81, is split into two light beams by the half mirror 82, and the two light beams enter the projection optical system PL via the second lens system 83. I do.
  • an interference fringe pattern is formed by a two-beam interference method based on two beams.
  • the light source 80 the light source of the illumination optical system I may be used, or a light source different from the illumination optical system IL may be used.
  • Her The interference fringe pitch can be changed by providing the mirrors 82 so as to be movable in the tilt direction and tilting the half mirrors 82 to change the directions of the two light beams as shown by the broken line 8 2 ′.
  • a slit member having two slit-shaped openings may be arranged on the optical path, and an interference fringe pattern may be formed by two light beams passing through each slit-shaped opening.
  • the second region AR 2 is exposed under the exposure condition that is resistant to defocusing such as the two-beam interference method, but when the second region AR 2 is exposed, the liquid 50
  • the position of the Z stage 51 in the Z-axis direction may be adjusted in consideration of the image plane displacement caused by the outflow.
  • the second area AR2 may be exposed at an interval different from the interval between the projection optical system PL and the substrate P when exposing the first area AR1.
  • the position of an image plane formed via the projection optical system PL may be adjusted. That is, even when the liquid between the projection optical system PL and the substrate P is not enough, the image plane position is set so that the image plane is formed at the same position in the Z-axis direction as when the first area AR1 is exposed. Adjustments may be made. This adjustment of the image plane position is achieved by adjusting the projection optical system PL, for example, by moving some lenses to change the spherical aberration.
  • the image plane position can also be adjusted by adjusting the wavelength of the exposure light EL or moving the mask M. It goes without saying that the position adjustment of the Z stage 51 and the adjustment of the image plane position may be used together. Further, the numerical aperture of the projection optical system PL when exposing the first area AR1 may be simply made smaller than when exposing the second area AR2 without changing the illumination conditions as in the above embodiment. . Further, the width of the line pattern formed in the second area AR2 or the width of the space between the line pattern and the line pattern may be adjusted by the exposure amount. In the above embodiment, a force CMP process for stabilizing a post-process such as a CMP process is not performed by forming a pattern also in the second region AR2 which is an edge region.
  • the edge area AR2 may not be exposed during the exposure processing based on the immersion method. This can prevent the liquid from flowing out of the substrate.
  • the exposure apparatus EX of the present embodiment is a so-called scanning stepper. Therefore, when scanning exposure is performed by moving the substrate P in the scanning direction ( ⁇ X direction) indicated by the arrow Xa (see FIG. 3), the supply pipe 3, the supply nozzles 4A to 4C, the collection pipe 4, The liquid 50 is supplied and recovered by the liquid supply device 1 and the liquid recovery device 2 using the recovery nozzles 5A and 5B.
  • the liquid 50 is supplied from the liquid supply device 1 to the projection optical system PL and the substrate P through the supply pipe 3 and the supply nozzle 4 (4A to 4C). While being supplied, the liquid 50 is recovered by the liquid recovery device 2 via the recovery nozzle 5 (5A, 5B) and the recovery pipe 6, and is moved in the X direction so as to fill the space between the lens 60 and the substrate P. Liquid 50 flows.
  • the supply pipe 10 when scanning exposure is performed by moving the substrate P in the scanning direction (+ X direction) indicated by the arrow Xb, the supply pipe 10, the supply nozzles 8A to 8C, the collection pipe 11, and the collection nozzle 9 A
  • the liquid 50 is supplied and collected by the liquid supply device 1 and the liquid recovery device 2 by using the liquid supply device 9B and the liquid supply device 9B. That is, when the substrate P moves in the + X direction, the liquid 50 is supplied between the projection optical system PL and the substrate P from the liquid supply device 1 through the supply pipe 10 and the supply nozzle 8 (8A-8C).
  • the liquid 50 is collected in the liquid collection device 2 via the collection nozzle 9 (9A, 9B) and the collection pipe 11 so as to fill the space between the lens 60 and the substrate P.
  • Liquid 50 flows in + X direction.
  • the control device CONT uses the liquid supply device 1 and the liquid recovery device 2 to flow the liquid 50 along the moving direction of the substrate P.
  • the liquid 50 supplied from the liquid supply device 1 via the supply nozzle 4 flows so as to be drawn into the space 56 with the movement of the substrate P in the X direction.
  • the liquid 50 can be easily supplied to the space 56 even if the supply energy is small.
  • the substrate P can be scanned in either the + X direction or the 1X direction.
  • the space can be filled with liquid 50, and high resolution and wide depth of focus can be obtained.
  • FIG. 10 is a schematic configuration diagram of a twin-stage type exposure apparatus equipped with two stages for holding a substrate P.
  • the twin-stage type exposure apparatus has a first substrate stage (first movable body) PST 1 and a second substrate stage that can independently move on a common base 91 while holding the substrate P. (Second movable body) PST 2 is provided.
  • the twin-stage type exposure apparatus has an exposure station A (liquid immersion exposure station) and a measuring station B (normal exposure station).
  • the exposure station A includes the system described with reference to FIG.
  • the exposure light EL is applied to the first area AR 1 of the substrate P via the projection optical system (first optical system) PL and the liquid 50 filled between the substrate P and the projection optical system PL .
  • FIG. 10 does not show a liquid supply device, a liquid recovery device, and the like.
  • the reference members 94 and 94 'on the first and second substrate stages PST1 and PST2 are provided via the mask M and the projection optical system PL.
  • Reference mark A mask alignment system 89 for detecting MFM is provided.
  • the exposure station A is provided with a focus / leveling detection system 84 for detecting surface information (positional information and tilt information in the Z-axis direction) on the surface of the substrate P.
  • the forcing force leveling detection system 84 includes a projection system 84A for projecting detection light onto the surface of the substrate P and a light receiving system 84B for receiving light reflected from the substrate P.
  • the measuring station B is provided at a position conjugate with the substrate P supported on the substrate stage PST 2 (PST 1), and has a glass substrate 95 on which a plurality of patterns including an LS pattern are formed, and a glass substrate.
  • a second illumination optical system (second optical system) that illuminates the exposure light EL 2 on the pattern of the material 95 (the second optical system).
  • the second projection optical system (second optical system) PL 2 that projects onto the substrate P on the substrate P and the alignment mark on the substrate P or the first and second substrates
  • a leveling detection system 93 is provided.
  • the second region AR2 of the substrate P is exposed to the exposure light EL2 via the second projection optical system PL2 without liquid between the second projection optical system PL2 and the substrate P. I do.
  • FIG. 11 is a plan view of the glass substrate 95. As shown in FIG. 11, the glass substrate 95 is a disk and has a plurality of patterns. In the example shown in FIG.
  • the L / S pattern 96 having a line pattern extending in the first direction (Y-axis direction), the dot pattern 97 having a large number of dots, and the first L / S pattern 98 having a line pattern extending in a second direction (X-axis direction) perpendicular to the direction of the block, and a block pattern 9 in which rectangular light-shielding patterns are provided in a staggered (chessboard-like) manner. 9 are provided at substantially equal intervals in the circumferential direction of the glass substrate 95. Note that the pattern shape is not limited to that shown in FIG.
  • the glass substrate 95 is rotatable in the 0 Z direction about the shaft 95A.
  • the L / S pattern 96 is arranged on the optical path of the exposure light EL2.
  • the glass substrate 95 is not limited to a disk shape, and may be a plate member having a rectangular shape in plan view as shown in FIG.
  • a plurality of patterns 96 to 99 arranged in a predetermined direction are formed on the rectangular glass base 95.
  • the glass substrate 95 ′ can be translated in the predetermined direction, and by moving in the predetermined direction, one of a plurality of patterns 96 to 99 on the glass substrate 95 ′ is changed.
  • Exposure light EL 2 As shown in FIG.
  • the reference members 94, 94 provided on the first and second substrate stages PST1, PST2 respectively have A reference mark PFM detected by the substrate alignment system 92 and a reference mark MFM detected by the mask alignment system 89 are provided in a predetermined positional relationship.
  • the surface is almost flat, and also serves as a reference plane for the focus 'leveling detection system.Furthermore, the surface of the reference members 94, 94' is at the same height as the surface of the substrate P.
  • the configuration of the above-mentioned focus / leveling detection system for example, the configuration disclosed in Japanese Patent Application Laid-Open No. 8-37149 can be used.
  • the configuration of the substrate alignment system 92 is disclosed in The configuration of the mask alignment system 89 can be, for example, the configuration disclosed in Japanese Patent Application Laid-Open No. 7-176468. The contents described in each of these documents are incorporated as a part of the description of the text as far as is permitted by the laws of the country designated or selected in this international application.
  • the operation of the twin-stage type exposure apparatus will be described with reference to Fig. 10.
  • the measurement process of the substrate P on the second substrate stage PST 2 and the second substrate stage PST 2 using the second projection optical system PL 2 are performed in the measurement station B.
  • Second area AR 2 on held substrate P Exposure is performed without the intermediary of the liquid.Before the substrate P that has been exposed in the first area AR1 at the exposure station A, the measurement processing is performed at the measurement station B and the exposure processing is performed on the second area AR2. Has been performed in advance.
  • the substrate alignment system 92, the focus / leveling detection system 93, and the reference member 94 ′ are connected. Measurement processing is performed using no liquid.
  • the control device C ⁇ NT monitors the output of the laser interferometer that detects the position of the second substrate stage PST 2 in the XY direction, and moves the second substrate stage PST 2.
  • the substrate alignment system 92 detects a plurality of alignment marks (not shown) formed on the substrate P corresponding to the shot areas without passing through the liquid.
  • the second substrate stage PST 2 is stopped.
  • the position information of each alignment mark in the coordinate system defined by the laser interferometer is measured, and the measurement result is stored in the controller C0NT.
  • the substrate alignment system 92 can detect an alignment mark on the moving substrate P, the second substrate stage PST 2 need not be stopped.
  • the surface information of the substrate P is detected by the focus / leveling detection system 93 without passing through the liquid.
  • the detection of surface information by the focus and repeller detection system 93 is performed, for example, for every shot area on the substrate P, and the detection results correspond to the position of the substrate P in the scanning direction (X-axis direction).
  • CONT Stored in CONT.
  • the control device CONT operates so that the detection area of the substrate alignment system 92 is positioned on the reference member 94 ′. 2 Move the substrate stage PST 2.
  • the substrate alignment system 92 detects the reference mark PFM on the reference member 94 'and measures the position information of the reference mark PFM in the coordinate system defined by the laser interferometer.
  • Completion of the detection process of the reference mark PFM causes the positional relationship between the reference mark PFM and a plurality of alignment marks on the substrate P, that is, the positional relationship between the reference mark PFM and the plurality of shot areas on the substrate P, respectively. That is what was required. Also, the reference mark PFM of the reference member 94 ′ on the second substrate stage PST2 and the exposure stage W
  • the control device CONT Before or after detecting the reference mark PFM on the reference member 94 ′ by the substrate alignment system 92, the control device CONT focuses on the surface information of the surface (reference surface) of the reference member 94 ′. Detected by ring detection system 93. By the completion of the detection processing of the surface of the reference member 94 ', the relationship between the surface of the reference member 94' and the surface of the substrate P has been obtained.
  • the exposure processing is performed on the second area AR2 that does not pass through the liquid using the second projection optical system PL2.
  • one of the plurality of patterns 96 to 99 of the glass substrate 95 is formed according to the device pattern 41 formed in the first region AR1. Selected and placed on the optical path of the exposure light EL2.
  • a pattern used for exposing the second area AR2 is selected based on the shape of the device pattern 41. For example, if the device pattern 41 is an L / S pattern extending in a predetermined direction, the pattern exposed on the second area AR2 is also an L / S pattern extending in the predetermined direction.
  • a pattern exposed to the second area AR2 is also a dot pattern.
  • the second area AR2 is exposed to a pattern similar to (or the same as) the pattern exposed to the first area AR1. This makes it possible to prevent the substrate P from hitting the CMP polished surface even in, for example, the CMP process, thereby preventing the inconvenience.
  • a pattern used to expose the second area AR2 may be selected based on the pattern formation density of the device pattern 41.
  • the pattern formation density is a ratio of a pattern formed per unit area on the substrate P, in other words, a ratio of an area irradiated with exposure light.
  • line width and width A plurality of L / S patterns each having a different ratio from the L / S pattern are provided, and one L / S pattern is formed from the plurality of L / S patterns in accordance with the pattern formation density of the device pattern 41 formed in the first area AR1.
  • the / S pattern and exposing the second area AR2 it is possible to prevent the inconvenience that occurs when the substrate P collides with the CMP polishing surface in the CMP processing.
  • the first substrate stage PST 1 moves to the measurement station B, and in parallel, the second substrate stage PST 2 moves to the exposure station A, where the first substrate stage PST 1 and the second substrate stage PST 1 Exchange work (swapping) with 2 is performed.
  • the substrate P after the exposure processing on the first substrate stage PST1 is unloaded and transported to the developing device, and the substrate P before the exposure processing is transferred to the first substrate stage PST1.
  • the substrate P is subjected to measurement processing and exposure processing.
  • the second substrate stage PST2 is positioned such that the reference member 94 'of the second substrate stage PST2 faces the projection optical system PL.
  • the controller CONT starts supplying the liquid 50 using the liquid supply device, fills the space between the projection optical system PL and the reference member 94 'with the liquid 50, and performs the measurement process via the liquid 50.
  • the control unit CON T as can detect the reference mark MFM on the reference member 94 'by Masukuaraimen Bok system 89, while c appreciated that moving the second substrate stage PST 2 in this state of the projection optical system PL
  • the controller CONT starts supply and recovery of the liquid 50 by the liquid supply device and the liquid recovery device, and fills the space between the projection optical system PL and the reference member 94 'with the liquid.
  • the control unit CONT detects the reference mark MFM through the mask M, the projection optical system PL, and the liquid 50 by the mask alignment system 89. That is, the positional relationship between the mark of the mask M and the reference mark MFM is detected via the projection optical system PL and the liquid 50.
  • the position of the mask M in the XY plane that is, the projection position information of the image of the pattern of the mask M is detected using the reference mark MFM via the projection optical system PL and the liquid 50.
  • the control device CONT focuses on the surface (reference surface) of the reference member 94 'while the liquid 50 is supplied between the projection optical system PL and the reference member 94'.
  • the leveling detection system 84 detects the focus.
  • the relationship between the image plane formed via the projection optical system PL and the liquid 50 and the surface of the reference member 94 ' is measured.
  • the controller CONT temporarily stops driving the liquid supply device and the liquid recovery device, and then moves the second substrate stage S so that the projection optical system PL and the substrate P face each other. Move PT 2.
  • the controller CONT drives the liquid supply device and the liquid recovery device to form a liquid immersion portion between the projection optical system PL and the substrate P, and exposes the second region AR2 to the second substrate.
  • the exposure of the device pattern 41 to the first area AR1 of the substrate P on the stage PST2 is started.
  • the scanning exposure for each shot area on the substrate P is started via the projection optical system PL and the liquid 50 using the information obtained during the above-described measurement processing.
  • information on the positional relationship between the reference mark PFM obtained before the supply of the liquid 50 and each shot area (the position of the shot area obtained in advance at the measuring station B).
  • the position of each shot area on the substrate P and the mask M are aligned based on the projection position information of the image of the pattern of the mask M obtained by using the reference mark MFM.
  • the reference part determined before the supply of the liquid 50 was used.
  • the surface information on the surface of the substrate P may be detected using the focus leveling detection system 84 during the scanning exposure, and may be used to confirm the adjustment result of the positional relationship between the surface of the substrate P and the image surface. .
  • the surface ft information of the substrate P surface is detected using the focus leveling detection system 84, and the surface information detected during the scanning exposure is further taken into account to obtain an image of the substrate P surface and the image. You may make it adjust the positional relationship with a surface.
  • the adjustment of the positional relationship between the surface of the substrate P and the image plane may be performed by moving the second substrate stage PST 2 holding the substrate P, or the mask M or the projection optical system PL.
  • the image plane may be adjusted to the surface of the substrate P by moving a part of the plurality of lenses constituting the lens. Then, for the substrate P before the exposure processing, which is moved to the first substrate stage PST 1 moved to the measurement station B, in the same manner as the above-described procedure, the measurement processing using the reference member 94 and the liquid are not interposed. Exposure processing is performed on the second area AR2.
  • a second illumination optical system IL2 for irradiating the exposure light EL2 and a second optical system including the second projection optical system PL2 are provided respectively, those of the first and second areas AR1 and AR2 are provided. Exposure processing for each of them can be performed in parallel, and the throughput of the exposure processing can be improved.
  • a plurality of patterns are provided on the glass substrate 95, and among the plurality of patterns, according to the device pattern 41 to be formed in the first area AR1.
  • the mask station is transferred to the measurement station B.
  • a mask having a pattern for exposing the second area AR 2 of the substrate P is placed on the mask stage MST, and the pattern of the mask is exposed to the second area of the substrate P using the exposure light EL 2. You may make it expose to AR2.
  • the optical system described with reference to FIG. 9 and the like may be provided at the measurement station B, and the second area AR 2 on the substrate P may be exposed by the two-beam interference method. .
  • the half mirror 82 it is preferable to drive the half mirror 82 according to the device pattern 41 of the first area AR 1 and to expose at an interference fringe pitch corresponding to the pattern formation density of the device pattern 41.
  • exposure light having different wavelengths is used when exposing the first area AR1 and exposing the second area AR2. Since the second area AR 2 is an edge portion of the substrate P and the pattern formation accuracy is acceptable to some extent, for example, when exposing the first area AR 1, a short-wavelength laser beam is used, and the second area AR 2 is exposed.
  • the light beam emitted from the light source of the exposure light EL of the exposure station A is branched, for example, using an optical fiber and transmitted to the measurement station B, and the branched light is used for the second area AR 2 on the substrate P. Can also be exposed. Further, since the second projection optical system PL 2 is allowed even if the resolution is relatively low, the cost of the apparatus can be reduced. However, it goes without saying that exposure light having the same wavelength may be used. In the present embodiment, a twin-stage type exposure apparatus having two substrate stages has been described as an example, but as shown in FIG.
  • a projection optical system PL that irradiates exposure light EL to first area AR1 on substrate P, and a second projection optical system PL that irradiates exposure light EL2 to second area AR2 2 may be provided.
  • the exposure light EL and the exposure light EL 2 may be emitted from different light sources, or may be emitted from the same light source.
  • alignment processing is performed on the substrate P before exposure processing loaded on the substrate stage PST.
  • the first area AR is transmitted through the projection optical system PL and the liquid 50. Exposure of 1 is performed.
  • the second optical system for exposing the second area AR2 on the substrate P does not need to be provided alongside the projection optical system (first optical system) PL. Coating a resist and developing the exposed substrate ⁇ Expose the second area AR 2 on the substrate P halfway along the transport path between the developer device and the substrate stage PST of the exposure device. May be provided with an exposure processing section having the second optical system.
  • the substrate P is placed on the substrate stage PST and is exposed through the projection optical system PL before or after the exposure process (immediately after the photoresist is applied in a short time, or
  • the second area AR2 can be exposed just before being developed in a paper.
  • an exposure processing unit (second optical system) for exposing the second area AR2 of the substrate P may be provided in the co-developing device.
  • an exposure apparatus including a first optical system that irradiates the first region AR1 of the substrate P with exposure light and a second optical system that irradiates the second region AR2 with exposure light includes a projection optical system and a liquid.
  • an immersion exposure apparatus that performs exposure via a liquid it is of course possible to apply the present invention to an exposure apparatus that performs exposure without using a liquid.
  • the first optical system for exposing the first area AR 1 is an optical system using vacuum ultraviolet light, and the life of optical elements and light sources is relatively short, this first optical system is used.
  • the second area AR2 may be defined by the size of the immersion area. In other words, the area where the liquid can be held in the optical path of the exposure light may be defined as the first area AR1, and the area where the optical path of the exposure light cannot be filled with the liquid may be defined as the second area AR2.
  • the liquid supply device and the liquid recovery device in the above-described embodiment have a supply nozzle and a recovery nozzle on both sides of the projection area of the projection optical system PL, and one side of the projection area according to the scanning direction of the substrate P. This is a configuration in which the liquid is supplied from the other side and the liquid is recovered on the other side.However, the configuration of the liquid supply device and the liquid recovery device is not limited to this. If possible.
  • the “local immersion area” refers to an immersion area smaller than the substrate P.
  • the liquid 50 in the above embodiment is composed of pure water. Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the optical resistor (lens) or the like on the substrate P. In addition, pure water has no adverse effect on the environment and has very low impurity content, so it can be expected to clean the surface of the substrate and the surface of the optical element provided on the tip end of the projection optical system PL. .
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is about 1.47 to 1.4.4, and Ar is used as a light source of the exposure light EL.
  • F excimer laser light wavelength: 193 nm
  • the wavelength is shortened to 1 / n on the substrate P, that is, about 131-134 nm, and high resolution is obtained.
  • the depth of focus is expanded to about n times compared to that in the air, that is, about 1.47 to 1.44 times, so if it is sufficient to secure the same depth of focus as when using it in the air
  • the numerical aperture of the projection optical system PL can be further increased, and the resolution is also improved in this regard.
  • the lens 60 is attached to the tip of the projection optical system PL, but the optical element attached to the tip of the projection optical system PL includes the optical characteristics of the projection optical system PL, For example, it may be an optical plate used for adjusting aberrations (spherical aberration, coma aberration, etc.) c or a parallel flat plate that can transmit the exposure light EL.
  • the transmittance of the projection optical system PL and the exposure light EL on the substrate P during transportation, assembly, and adjustment of the exposure apparatus EX Even if a substance (for example, a silicon-based organic substance, etc.) that reduces the illuminance and the uniformity of the illuminance distribution adheres to the parallel plate, it is sufficient to replace the parallel plate just before supplying the liquid 50, There is an advantage that the replacement cost is lower than in the case where the optical element that comes into contact with the liquid 50 is a lens.
  • the surface of the optical element that comes into contact with the liquid 50 due to scattering particles generated from the resist due to the irradiation of the exposure light EL or the adhesion of impurities in the liquid 50 is stained.
  • the cost of replacement parts and the time required for replacement can be reduced as compared with a lens, and maintenance costs can be reduced. (Running cost) and a decrease in throughput can be suppressed.
  • liquid 5 0 of the above embodiment is water
  • a liquid other than water may be, if example embodiment, when the light source of exposure light EL is an F 2 laser, the F 2 laser beam is transmitted through the water does not, in this case, as the liquid 5 0 may be a F 2 laser beam capable of transmitting as fluorine-based oil (full Uz Motokei liquid) or over full Uz polyether (PFPE).
  • the liquid 50 other liquids that have transparency to the exposure light EL, have the highest possible refractive index, and are stable with respect to the photoresist applied to the projection optical system PL and the substrate P surface ( It is also possible to use, for example, Seda Oil.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or a mask or reticle used in an exposure apparatus. Of the original (Eng synthetic stone, silicon wafer) etc. are applied.
  • the exposure apparatus EX is a step of scanning and exposing the pattern of the mask M by synchronously moving the mask M and the substrate P.
  • the mask M and the substrate P can also be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively while the substrate is stationary, and the substrate P is sequentially stepped.
  • the present invention can be applied to a step-and-stitch type exposure apparatus that transfers at least two patterns on a substrate P while partially overlapping each other.
  • the type of exposure equipment EX is not limited to exposure equipment for manufacturing semiconductor elements, which exposes semiconductor element patterns to the substrate P, but also exposure equipment for manufacturing liquid crystal display elements or displays, and thin film magnets.
  • the present invention can be widely applied to an exposure apparatus for manufacturing a head, an image sensor (CCD), a reticle or a mask, and the like. Further, as described above, the structure and the exposure operation of the c- twin stage type exposure apparatus that can be applied to the twin stage type exposure apparatus are described in, for example, JP-A-10-163099 and JP-A-10-13099. — 2 1 4783 (corresponding U.S. Patents 6,341,007, 6,400,441, 6,549,269 and 6,590,634), Special Table 2000—505958 (corresponding U.S. Patents 5,969,441) Or as disclosed in U.S. Patent No.
  • the drive mechanism for each stage PST, MS ⁇ is as follows: a magnet unit with a two-dimensional magnet arranged and an armature unit with a two-dimensional coil arranged face each other to drive each stage PST, MST by electromagnetic force Alternatively, a flat motor may be used. In this case, one of the magnet unit and the armature unit is connected to the stages PST and MS, and the other of the magnet unit and the armature unit is provided on the moving surface side of the stage PST and MST. I'll do it.
  • the reaction force generated by the movement of the substrate stage PST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL.
  • the method of dealing with this reaction force is disclosed in detail in, for example, U.S. Pat. No. 5,528,118 (Japanese Patent Laid-Open Publication No. Hei 8-166475), and this U.S. Pat. To the extent permitted by the laws of the country specified or selected in the international application, they are incorporated by reference into this text.
  • the reaction force generated by the movement of the mask stage MST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL.
  • the method of dealing with this reaction force is disclosed in detail in, for example, US Pat. No. 5,874,820 (Japanese Patent Application Laid-Open Publication No. H8-330224), and is specified or designated in the present international application.
  • the exposure apparatus EX controls various subsystems including the respective components listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • Manufactured by assembling Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical systems were performed before and after this assembly. Adjustments are made to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems.
  • microdevices such as semiconductor devices have the following steps: Step 201 for designing the function and performance of the microdevice, Step 202 for manufacturing a mask (reticle) based on this design step, and Device.
  • Step 203 for manufacturing a substrate which is a base material of the above Exposure processing step 204 for exposing a mask pattern onto the substrate using the exposure apparatus EX of the above-described embodiment, Device assembly step (dicing step, bonding step, package It is manufactured through the steps of 205, inspection step 206, etc.
  • INDUSTRIAL APPLICABILITY According to the present invention, when performing immersion exposure, the first region and the second region on the substrate are exposed under different exposure conditions, so that the outflow of liquid to the outside of the substrate is suppressed. However, it is possible to transfer a pattern well to an edge region of a substrate, and to manufacture a device capable of exhibiting desired performance.

Abstract

When a substrate (P) is exposed to light through a projection optical system, a liquid (50) is supplied between the projection optical system and the substrate (P). Accordingly, a pattern forming area (AR1) of the substrate (P) is exposed to light through a projection optical system (PL) and the liquid, and an edge area (AR2) of the substrate (P) is exposed to light through a projection optical system (PL2) but not through the liquid. Exposure with a large depth of focus can be realized while preventing the liquid from flowing out of the substrate.

Description

明細書 露光方法及び露光装置並びにデバイス製造方法 技術分野  Description Exposure method, exposure apparatus, and device manufacturing method
本発明は、 投影光学系の像面側を局所的に液体で満たした状態で投影光学系を介 して基板にパターンを露光する露光方法、 及びこの露光方法を用いるデバイス製造 方法に関するものである。 背景技術  The present invention relates to an exposure method for exposing a pattern on a substrate via a projection optical system while the image plane side of the projection optical system is locally filled with a liquid, and a device manufacturing method using the exposure method. . Background art
半導体デバイスや液晶表示デバイスは、 マスク上に形成されたパターンを感光性 の基板上に転写する、 いわゆるフォトリソグラフィの手法により製造される。 この フォトリソグラフイエ程で使用される露光装置は、 マスクを支持するマスクステー ジと基板を支持する基板ステージとを有し、 マスクステージ及び基板ステージを逐 次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである c 近年、 デバイスパターンのより一層の高集積化に対応するために投影光学系の更な る高解像度化が望まれている。 投影光学系の解像度は、 使用する露光波長が短くな るほど、 また投影光学系の開口数が大きいほど高くなる。 そのため、 露光装置で使 用される露光波長は年々短波長化しており、 投影光学系の開口数も増大している。 そして、 現在主流の露光波長は、 K r Fエキシマレーザの 2 4 8 n mであるが、 更 に短波長の A r Fエキシマレーザの 1 9 3 n mも実用化されつつある。 また、 露光 を行う際には、 解像度と同様に焦点深度 (D O F ) も重要となる。解像度 R、 及び 焦点深度 <5はそれぞれ以下の式で表される。  Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate. An exposure apparatus used in the photolithographic process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and a pattern of the mask is projected while moving the mask stage and the substrate stage sequentially. C In recent years, in order to cope with higher integration of device patterns, further improvement in the resolution of the projection optical system is desired. The resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases. Therefore, the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing. The current mainstream exposure wavelength is 248 nm for a KrF excimer laser, but a shorter wavelength of 193 nm for an ArF excimer laser is also being put into practical use. When performing exposure, the depth of focus (DOF) is as important as the resolution. The resolution R and the depth of focus <5 are respectively expressed by the following equations.
R = k 1 ■ λ/Ν Α … ( 1 )  R = k 1 ■ λ / Ν…… (1)
5二士 k 2 ■ λ / Ν A 2 … ( 2 ) 5 k2 k 2 ■ λ / Ν A 2 … (2)
ここで、 λは露光波長、 Ν Αは投影光学系の開口数、 k 1、 k 2はプロセス係数 である。 ( 1 ) 式、 (2 ) 式より、 解像度 Rを高めるために、 露光波長 λを短く し て、 開口数 Ν Αを大きくすると、 焦点深度 (5が狭〈なることが分かる。 焦点深度 (5が狭くなり過ぎると、 投影光学系の像面に対して基板表面を合致させ ることが困難となり、 露光動作時のマージンが不足する恐れがある。 そこで、 実質 的に露光波長を短く して、 且つ焦点深度を広くする方法として、 例えば国際公開第Here, λ is the exposure wavelength, Ν is the numerical aperture of the projection optical system, and k 1 and k 2 are the process coefficients. Equations (1) and (2) show that when the exposure wavelength λ is shortened and the numerical aperture Ν 大 き く is increased to increase the resolution R, the depth of focus (5 becomes narrower). If the depth of focus (5 becomes too narrow), it becomes difficult to match the substrate surface to the image plane of the projection optical system, and there is a possibility that the margin during the exposure operation may be insufficient. As a method of shortening and increasing the depth of focus, for example, International Publication No.
9 9 /4 9 5 0 4号公報に開示されている液浸法が提案されている。 この液浸法は、 投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たし、 液体中での 露光光の波長が、 空気中の 1 / n ( nは液体の屈折率で通常 1 . 2 ~ 1 . 6程度) になることを利用して解像度を向上するとともに、 焦点深度を約 n倍に拡大すると いうものである。 ところで、 上記従来技術には以下に述べる問題が存在する。 上記従来技術は、 投 影光学系の像面側である下面と基板 (ウェハ) との間を局所的に液体で満たす構成 であり、 基板の中央付近のショヅト領域を露光する場合には液体の基板の外側への 流出は生じない。 しかしながら、 例えば、 図 1 5に示す模式図のように、 基板 Pの 周辺領域 (エッジ領域) Eを投影光学系の投影領域 1 0 0に移動して、 この基板 P のエッジ領域 Eを露光しょうとすると、 液体は基板 Pの外側へ流出してしまう。 こ の流出した液体を放置しておくと、 基板 Pがおかれている環境 (湿度など) の変動 をもたらし、 基板を保持する基板ステージの位置情報を計測する干渉計の光路上や 各種光学的検出装置の検出光の光路上の屈折率の変化を引き起こすなど所望のパ夕The liquid immersion method disclosed in Japanese Patent Application Laid-Open No. 9/495504 has been proposed. In this immersion method, the space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent, and the wavelength of the exposure light in the liquid is 1 / n (n is the refraction of the liquid) in air. The resolution is improved by taking advantage of the fact that the ratio is usually about 1.2 to 1.6), and the depth of focus is increased by about n times. By the way, the above-mentioned prior art has the following problems. In the above-described prior art, the space between the lower surface, which is the image plane side of the projection optical system, and the substrate (wafer) is locally filled with liquid. When a short area near the center of the substrate is exposed, the liquid is exposed. No outflow to the outside of the substrate occurs. However, for example, as shown in the schematic diagram of FIG. 15, the peripheral area (edge area) E of the substrate P is moved to the projection area 100 of the projection optical system, and the edge area E of the substrate P is exposed. Then, the liquid flows out of the substrate P. Leaving the spilled liquid will cause fluctuations in the environment (humidity, etc.) in which the substrate P is placed, causing it to be placed on the optical path of an interferometer that measures the position information of the substrate stage that holds the substrate, and various optical devices. A change in the refractive index on the optical path of the detection light
—ン転写精度を得られなくなるおそれが生じる。 更に、 流出した液体により基板 P を支持する基板ステージ周辺の機械部品などに請びを生じさせるなどの不都合も生 し o 発明の開示 本発明はこのような事情に鑑みてなされたものであって、 投影光学系と基板との 間に液体を満たした状態で基板を液浸露光処理する場合においても、 基板の外側へ の液体の流出を防止できる露光方法、 及び基板を液浸露光処理する場合にもその基 板のエツジ領域にノ、'タ一ン転写できる露光方法、 及びこれらの露光方法を用いるデ バイス製造方法並びにそれらの露光方法を実行する露光装置を提供することを目的 とする。 本発明の第 1の態様に従えば、 投影光学系 (P L) により所定パターンの像を基 板 (P) 上に転写することで基板 (P) を露光する露光方法であって、 投影光学系 (P L) と基板 ( P ) との間に液体 ( 50) を供給し、 基板 ( P ) 上の第 1領域 (A R 1 ) を液体 (50) を介して露光し、 第 1領域 (A R 1 ) とは異なる基板 (P) 上の第 2領域 (AR 2) を、 液体 (50) を供給せずに露光する露光方法が 提供される。 また、 本発明の第 2の態様に従えば、 投影光学系 (PL) を用いて、 第 1領域 (AR 1 ) 及び第 2領域 (AR 2) を有する基板 (P) を露光する方法で あって、 投影光学系 (P L) と基板 (P) との間に液体 ( 50) を供給し、 液体 (50) を介して基板 (P) を露光し、 第 1領域 (AR 1 ) を露光する露光条件と、 第 2領域 (AR 2) を露光する露光条件とが異なる前記露光方法が提供される。 本発明によれば、 例えば基板中央付近のパターン形成領域を第 1領域とし基板の ェッジ付近領域を第 2領域とした場合、 第 2領域を液体なしに投影光学系を介して 露光することで、 液体の基板の外側への流出を抑えることができる。 そして、 第 1、 第 2領域のそれぞれを異なる露光条件で露光することで、 第 2領域に対しても良好 にパターン転写できる。 したがって、 基板の置かれている環境の変動が抑えられる とともに、 基板を支持する基板ステージ周辺の機械部品に請びなどが発生するとい つた不都合の発生も抑えられる。 しかも後工程である CMP (化学的機械的研磨) 処理において C M P装置の研磨面に対して基板が片当たりして良好に研磨できない という不都合の発生を抑えることができるので、 高いパターン精度を有するデバイ スを製造することができる。 ' 本発明の露光方法において、 前記第 1領域を露光するときよりも、 前記第 2領域 を露光するときの前記投影光学系の開口数を小さくすることが好ましい。 また、 前 記第 2領域は二光束干渉法により露光されることが好ましい。 さらに、 前記第 2領 域には、 ラインパターンが所定ピッチで形成されたライン 'アンド 'スペースパ夕 一ンの像を投影することが好ましい。 W 200 The transfer accuracy may not be obtained. In addition, the leaked liquid may cause inconvenience, such as the occurrence of contracts on mechanical parts around the substrate stage that supports the substrate P.o Disclosure of the Invention The present invention has been made in view of such circumstances. An exposure method capable of preventing the liquid from flowing out of the substrate even when the substrate is subjected to liquid immersion exposure in a state where the liquid is filled between the projection optical system and the substrate, and a case in which the substrate is subjected to liquid immersion exposure Another object of the present invention is to provide an exposure method capable of transferring a pattern to an edge area of a substrate, a device manufacturing method using the exposure method, and an exposure apparatus for executing the exposure method. And According to a first aspect of the present invention, there is provided an exposure method for exposing a substrate (P) by transferring an image of a predetermined pattern onto a substrate (P) by using a projection optical system (PL). A liquid (50) is supplied between the substrate (PL) and the substrate (P), a first area (AR1) on the substrate (P) is exposed through the liquid (50), and a first area (AR1) is exposed. An exposure method is provided for exposing a second area (AR2) on a substrate (P) different from that of (2) without supplying a liquid (50). Further, according to a second aspect of the present invention, there is provided a method for exposing a substrate (P) having a first region (AR 1) and a second region (AR 2) using a projection optical system (PL). And supplying a liquid (50) between the projection optical system (PL) and the substrate (P), exposing the substrate (P) through the liquid (50), and exposing the first area (AR 1). The above-described exposure method is provided, wherein the exposure condition and the exposure condition for exposing the second area (AR2) are different. According to the present invention, for example, when the pattern formation region near the center of the substrate is the first region and the region near the edge of the substrate is the second region, the second region is exposed through the projection optical system without liquid, The outflow of the liquid to the outside of the substrate can be suppressed. By exposing each of the first and second areas under different exposure conditions, the pattern can be transferred well to the second area. Therefore, fluctuations in the environment in which the substrate is placed are suppressed, and inconveniences such as the occurrence of contracts on mechanical parts around the substrate stage that supports the substrate are also suppressed. Moreover, in the subsequent CMP (Chemical Mechanical Polishing) process, it is possible to suppress the disadvantage that the substrate cannot be polished satisfactorily due to the one-sided contact with the polishing surface of the CMP apparatus. Can be manufactured. In the exposure method of the present invention, it is preferable that the numerical aperture of the projection optical system when exposing the second area is smaller than when exposing the first area. Further, it is preferable that the second region is exposed by the two-beam interference method. Further, it is preferable that an image of a line 'and' space pattern in which a line pattern is formed at a predetermined pitch is projected on the second area. W 200
また、 本発明の露光方法では、 前記第 1領域の露光に使われる第 1パターンは、 前記第 2領域の露光に使われる第 2パターンと異なることが好ましい。 また、 前記 第 1領域は前記第 1パターンと前記基板とを移動しながら露光し、 前記第 2領域は 前記第 2パターンと前記基板とを静止した状態で露光することが好ましい。前記第 1領域は、 前記第 1パターンと前記基板とを移動しながら露光し、 前記第 2領域は、 前記第 2パターンを静止した状態で、 前記基板を移動しながら露光してもよい。 また、 本発明の露光方法では、 前記第 1パターンと前記第 2パターンとは同一マ スク上に形成されていることが好ましい。前記第 1パターンはマスク上に形成され、 前記第 2パターンは前記マスクを保持するマスクステージ上に、 前記マスクとは離 れた位置に固定された基材に形成されていてもよい。 本発明の露光方法では、 前記第 1領域を露光するときと前記第 2領域を露光する ときとで、 前記投影光学系と前記基板との間隔が異なることが好ましい。 また、 前 記第 1領域を露光するときと前記第 2領域を露光するときとで、 前記投影光学系と 前記基板との間隔がほぼ同じになるように、 前記投影光学系を介して形成される像 面の位置調整を行ってもよい。 さらに、 本発明では、 前記第 2領域の露光が完了し た後に、 前記第 1領域の露光を行うことが好ましい。 本発明の第 3の態様に従えば、 投影光^:系 (P L) を用いて、 第 1領域 (A R 1 ) 及び第 2領域 (AR 2) を有する基板 (P) を露光する方法であって、 投影光 学系 (P L) と基板 (P) との間に液体 (50) を供給することと、 液体 (50) を介して基板 (P) を露光することを含み、 基板 (P) 上のェヅジ部 (AR 2) を 除く領域のみが露光される露光方法提供される。 基板 Pのエッジ部を露光する必要のない条件の下では、 基板のエッジを投影光学 系と基板との間の液浸領域にまで移動する必要がない。例えば、 基板 Pに対して C MP処理を行わないプロセス条件であればエッジ部にパターンを形成しな〈てもよ し、。 従って、 エッジ部を露光する必要がないので、 基板のエッジを投影光学系と基 板との間の液浸領域にまで移動する必要がない。 それゆえ、 基板の外側への液体の 流出を防ぐことができる。 本発明では、 上記態様の露光方法を用いることを特徴とするデバイス製造方法が 提供される。 本発明の第 4の態様に従えば、 基板 (P) 上の複数の領域 (AR 1、 AR 2) を 露光する露光装置において、 基板 (P) 上の第 1領域 (AR 1 ) に露光光 (EL) を照射する第 1光学系 ( I L、 P L) と、 第 1領域 (A R 1 ) とは異なる基板 (P) 上の第 2領域 (AR 2) に露光光 (EL 2) を照射する第 2光学系 (I L 2、 P L 2) とを備える露光装置 (EX) が提供される。 本発明によれば、 基板上の第 1、 第 2領域のそれぞれを容易に異なる条件で露光 することが可能となる。 また、 第 1光学系と第 2光学系の配置によっては、 基板上 の第 1、 第 2領域のそれぞれを第 1、 第 2光学系で並行して露光することが可能と なるので、 スループッ卜を向上できる。 さらに、 第 1、 第 2領域を露光するときの 目標露光精度 (パターン形成精度) に応じて、 第 1、 第 2光学系を構築すればよい ので、 例えば第 2領域に対する露光精度が比較的ラフな精度を許容されている場合、 第 2光学系を簡易 (安価) な構成とすることができ、 装置コストやランニングコス 卜を抑えることができる。 本発明の露光装置では、 前記第 1領域の露光に用いられる露光光の波長は、 前記 第 2領域の露光に用いられる露光光の波長とは異なることが好ましい。 また、 前記 第 1及び第 2領域を有する基板を保持して移動可能な第 1可動体と、 前記第 1及び 第 2領域を有する基板を保持して移動可能な第 2可動体とを備え、 前記第 1光学系 を用いて前記第 1可動体に保持された基板上の第 1領域の露光中に、 前記第 2光学 系を用いて前記第 2可動体に保持された基板上の第 2領域を露光し、 前記第 1可動 体に保持された基板上の第 1領域の露光終了後に、 前記第 1光学系を用いて前言己第 2可動体に保持された基板上の第 1領域の露光を開始することが好ましい。 さらに、 前記第 2領域は、 前記基板のエッジ周辺であればよい。 また、 前記第 2領域は二光 束干渉法により露光されてもよい。 本発明の露光装置において、 前記第 1領域は、 前記第 1光学系と前記基板との間 の液体を介して露光され、 前記第 2領域は、 前記第 2光学系と前記基板との間に液 体なしに露光されることが好ましい。 本発明では、 上記第 4の態様の露光装置 (E X ) を用いることを特徴とするデバ イス製造方法が提供される。 本発明の第 5の態様に従えば、 基板を露光する露光装置であって、 In the exposure method of the present invention, it is preferable that the first pattern used for exposing the first area is different from the second pattern used for exposing the second area. Further, it is preferable that the first area is exposed while moving the first pattern and the substrate, and the second area is exposed while the second pattern and the substrate are stationary. The first region may be exposed while moving the first pattern and the substrate, and the second region may be exposed while moving the substrate while the second pattern is stationary. Further, in the exposure method of the present invention, it is preferable that the first pattern and the second pattern are formed on the same mask. The first pattern may be formed on a mask, and the second pattern may be formed on a mask stage holding the mask, and on a substrate fixed at a position separated from the mask. In the exposure method according to the aspect of the invention, it is preferable that a distance between the projection optical system and the substrate is different between when exposing the first region and when exposing the second region. Further, when exposing the first region and exposing the second region, the projection optical system is formed through the projection optical system so that the distance between the projection optical system and the substrate is substantially the same. The position of the image plane may be adjusted. Further, in the present invention, it is preferable that the exposure of the first region is performed after the exposure of the second region is completed. According to a third aspect of the present invention, there is provided a method of exposing a substrate (P) having a first region (AR 1) and a second region (AR 2) using a projection light ^: system (PL). And supplying a liquid (50) between the projection optical system (PL) and the substrate (P), and exposing the substrate (P) through the liquid (50), An exposure method is provided in which only the area excluding the upper page (AR 2) is exposed. Under conditions that do not require exposure of the edge of the substrate P, it is not necessary to move the edge of the substrate to the liquid immersion area between the projection optical system and the substrate. For example, if the process conditions do not perform the CMP process on the substrate P, the pattern may not be formed at the edge. And Therefore, since it is not necessary to expose the edge portion, it is not necessary to move the edge of the substrate to the liquid immersion area between the projection optical system and the substrate. Therefore, it is possible to prevent the liquid from flowing out of the substrate. According to the present invention, there is provided a device manufacturing method using the exposure method according to the above aspect. According to a fourth aspect of the present invention, in an exposure apparatus for exposing a plurality of areas (AR1, AR2) on a substrate (P), an exposure light is applied to a first area (AR1) on the substrate (P). The first optical system (IL, PL) for irradiating (EL) and the second region (AR 2) on the substrate (P) different from the first region (AR 1) are irradiated with exposure light (EL 2) An exposure apparatus (EX) including a second optical system (IL 2, PL 2) is provided. According to the present invention, it is possible to easily expose each of the first and second regions on the substrate under different conditions. In addition, depending on the arrangement of the first optical system and the second optical system, it is possible to expose the first and second regions on the substrate in parallel with the first and second optical systems, so that throughput is increased. Can be improved. Furthermore, since the first and second optical systems may be constructed according to the target exposure accuracy (pattern formation accuracy) when exposing the first and second regions, for example, the exposure accuracy for the second region is relatively rough. When a high degree of precision is allowed, the second optical system can have a simple (low-priced) configuration, and the apparatus cost and running cost can be reduced. In the exposure apparatus of the present invention, it is preferable that the wavelength of the exposure light used for exposing the first area is different from the wavelength of the exposure light used for exposing the second area. A first movable body that can move while holding the substrate having the first and second regions; and a second movable body that can move while holding the substrate having the first and second regions, During exposure of a first region on the substrate held by the first movable body using the first optical system, a second region on the substrate held by the second movable body using the second optical system is exposed. Exposing an area, and after exposing the first area on the substrate held by the first movable body, using the first optical system, 2 It is preferable to start exposure of the first area on the substrate held by the movable body. Further, the second region may be around the edge of the substrate. Further, the second region may be exposed by a two-beam interference method. In the exposure apparatus of the present invention, the first region is exposed through a liquid between the first optical system and the substrate, and the second region is between the second optical system and the substrate. Exposure is preferably performed without a liquid. According to the present invention, there is provided a device manufacturing method using the exposure apparatus (EX) according to the fourth aspect. According to a fifth aspect of the present invention, there is provided an exposure apparatus for exposing a substrate,
液体供給装置 ( 1 ) を備え、 該液体供給装置により供給された液体を介して基板 が露光される第 1ステーション (A ) と;  A first station (A) including a liquid supply device (1), wherein a substrate is exposed through the liquid supplied by the liquid supply device;
液体が供給されない基板が露光される第 2ステーション (B ) と;を備える露光 装置が提供される。 この露光装置では第 1ステーションで液浸露光が行われ、 第 2 ステーションで通常の液体を使わない露光が行われるため、 例えば、 基板が第 1及 び第 2領域を有し、 第 1領域が第 1ステーションで液体を介して露光され、 第 2領 域が第 2ステーションで液体を介さずに露光され得る。 それゆえ、 露光条件に応じ た制御を二つのステーションで別々に行うことで、 用途に応じた複雑な露光制御も 可能となる。 また、 液浸露光に伴う液体 (水) 処理の問題も一つのステーションで 集中して処理すれば足りる。 露光装置は、 さらに、 第 1ステーションに設けられた第 1投影光学系と、 第 2ス テーシヨンに設けられた第 2投影光学系とを備え得る。 また、 露光装置は、 第 1ス テーシヨンと第 2ステーションの間を、 基板を保持して交互に移動する第 1及び第 2可動体、 例えば、 移動ステージを備え得る。 この場合、 基板の第 2領域が第 2ス テーシヨンで露光された後に、 該基板が第 1 または第 2可動体により第 1ステージ ヨンに移動され、 第 1領域に液体が供給されて第 1領域が露光される。 さらに、 第 2ステーションでは予め基板の位置合せ計測 (A F / A L計測、 ァライメント計測 等) を行うことができ、 その基板を第 1ステーションに移動し、 そのィ立置合せ計測 が行われた基板を第 1ステーションで液浸露光することができる。 このようにツイ ンステージの利点を液浸露光に生かしてスループッ卜を向上することができる。 第 2ステーションでの基板の位置合せ計測には、 可動体に設けられた基準部材を用い て基板のショット領域の位置合せ計測がされ得る。 図面の簡単な説明 図 1は、 本発明の露光方法に用いる露光装置の一実施形態を示す概略構成図であ 図 2は、 投影光学系の先端部と液体供給装置及び液体回収装置との位置関係を示 す図である。 A second station (B) for exposing a substrate to which liquid is not supplied. In this exposure apparatus, immersion exposure is performed in a first station, and exposure without using a normal liquid is performed in a second station. For example, the substrate has first and second areas, and the first area has The first area may be exposed via the liquid and the second area may be exposed at the second station without the liquid. Therefore, by performing control according to exposure conditions separately at the two stations, complicated exposure control according to the application can be performed. In addition, the problem of liquid (water) treatment associated with immersion exposure is sufficient if concentrated processing is performed in one station. The exposure apparatus may further include a first projection optical system provided in the first station, and a second projection optical system provided in the second station. Further, the exposure apparatus may include a first and second movable body, for example, a moving stage that alternately moves while holding the substrate between the first station and the second station. In this case, after the second region of the substrate is exposed by the second station, the substrate is moved to the first stage by the first or second movable body, and the liquid is supplied to the first region and the first region is supplied. Is exposed. In addition, In the two stations, substrate alignment measurement (AF / AL measurement, alignment measurement, etc.) can be performed in advance, the substrate is moved to the first station, and the substrate on which the in-place measurement has been performed is transferred to the first station. For immersion exposure. As described above, the throughput of the twin stage can be improved by taking advantage of the immersion exposure. In the measurement of the alignment of the substrate in the second station, the alignment of the shot area of the substrate can be measured using a reference member provided on the movable body. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing one embodiment of an exposure apparatus used in the exposure method of the present invention. FIG. 2 is a diagram showing the position of the tip of a projection optical system and a liquid supply device and a liquid recovery device. It is a figure which shows a relationship.
図 3は、 供給ノズル及び回収ノズルの配置例を示す図である。  FIG. 3 is a diagram showing an example of the arrangement of the supply nozzle and the recovery nozzle.
図 4は、 供給ノズル及び回収ノズルの配置例を示す図である。  FIG. 4 is a diagram showing an example of the arrangement of the supply nozzle and the recovery nozzle.
図 5は、 本発明に係るマスクを示す平面図である。  FIG. 5 is a plan view showing a mask according to the present invention.
図 6は、 本発明に係る基板を示す平面図である。  FIG. 6 is a plan view showing a substrate according to the present invention.
図 7 ( a ) 及 (b ) は、 第 2領域を露光する際の光学系の構成例を示す図であ る  FIGS. 7A and 7B are diagrams showing an example of the configuration of an optical system when exposing the second area.
図 8は、 第 2領域の露光用のパ夕一ンが形成されたガラス基材のマスクステージ 上での配置を示す図である。  FIG. 8 is a diagram showing an arrangement of a glass substrate on which a pattern for exposure of a second region is formed on a mask stage.
図 9は、 第 2領域を露光する際の光学系の他の構成例を示す図である。  FIG. 9 is a diagram showing another configuration example of the optical system when exposing the second area.
図 1 0は、 本発明の露光装置の他の実施形態を示す概略構成図である。  FIG. 10 is a schematic configuration diagram showing another embodiment of the exposure apparatus of the present invention.
図 1 1は、 第 2領域の露光用のパターンが形成されたガラス基材の一例を示す図 であ ·©。  FIG. 11 is a view showing an example of a glass substrate on which a pattern for exposure in a second region is formed.
図 1 2は、 第 2領域の露光用のパターンが形成されたガラス基材の他の例を示す 図である。  FIG. 12 is a view showing another example of the glass substrate on which the pattern for exposure in the second region is formed.
図 1 3は、 本発明の露光装置の他の実施形態を示す概略構成図である。  FIG. 13 is a schematic configuration diagram showing another embodiment of the exposure apparatus of the present invention.
図 1 4は、 半導体デバイスの製造工程の一例を示すフローチヤ一卜図である。 W FIG. 14 is a flowchart showing an example of a semiconductor device manufacturing process. W
図 1 5は、 従来の課題を説明するための図である。 発明を実施するための最良の形態 以下、 本発明の露光方法及びデバイス製造方法について図面を参照しながら説明 する。 図 1は本発明の露光方法に用いる露光装置の一実施形態を示す概略構成図で ある。 第 1実施形態 FIG. 15 is a diagram for explaining a conventional problem. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an exposure method and a device manufacturing method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of an exposure apparatus used for the exposure method of the present invention. First embodiment
図 1において、 露光装置 E Xは、 マスク Mを支持するマスクステージ M S Tと、 基板 Pを支持する基板ステージ P S Tと、 マスクステージ M S Tに支持されている マスク Mを露光光 E Lで照明する照明光学系 I Lと、 露光光 E Lで照明されたマス ク Mのパターンの像を基板ステージ P S Tに支持されている基板 Pに投影露光する 投影光学系 P Lと、 露光装置 E X全体の動作を統括制御する制御装置 C 0 N Tとを 雨えている。 ここで、 本実施形態では、 露光装置 E Xとしてマスク Mと基板 Pとを走査方向に おける互いに異なる向き (逆方向) に同期移動しつつマスク Mに形成されたパター ンを基板 Pに露光する走査型露光装置 (所謂スキャニングステツパ) を使用する場 合を例にして説明する。 以下の説明において、 投影光学系 P Lの光軸 A Xと一致す る方向を Z軸方向、 Z軸方向に垂直な平面内でマスク Mと基板 Pとの同期移動方向 (走査方向) を X軸方向、 Z軸方向及び Y軸方向に垂直な方向 (非走査方向) を Y 軸方向とする。 また、 X軸、 Y軸、 及び Z軸まわり方向をそれぞれ、 0 Χ、 Θ Ί 及び 方向とする。 なお、 ここでいう 「基板」 は半導体ウェハ上にレジス卜を塗 布したものを含み、 「マスク」 は基板上に縮小投影されるデバイスパターンを形成 されたレチクルを含む。 照明光学系 I Lは、 マスクステージ M S Tに支持されているマスク Mを露光光 E しで照明するものであり、 露光用光源、 露光用光源から射出された光束の照度を均 一化するオプティカルィンテグレー夕、 オプティカルィンテグレー夕からの露光光In FIG. 1, an exposure apparatus EX includes a mask stage MST that supports a mask M, a substrate stage PST that supports a substrate P, and an illumination optical system IL that illuminates the mask M supported by the mask stage MST with exposure light EL. And a projection optical system PL that projects and exposes the image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P supported by the substrate stage PST, and a control device C that controls the overall operation of the exposure apparatus EX 0 NT and it is raining. Here, in the present embodiment, as the exposure apparatus EX, scanning is performed by exposing the pattern formed on the mask M to the substrate P while synchronously moving the mask M and the substrate P in different directions (opposite directions) in the scanning direction. An example in which a mold exposure apparatus (a so-called scanning stepper) is used will be described. In the following description, the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction, and the synchronous movement direction (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis direction. The direction perpendicular to the Z-axis direction and the Y-axis direction (non-scanning direction) is defined as the Y-axis direction. The directions around the X axis, Y axis, and Z axis are 0 °, Χ 及 び, and the directions, respectively. Here, the “substrate” includes a semiconductor wafer coated with a resist, and the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed. The illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light E, and equalizes the illuminance of the exposure light source and the luminous flux emitted from the exposure light source. Exposure light from optical light gray evening
E Lを集光するコンデンサレンズ、 リレーレンズ系、 露光光 E Lによるマスク M上 の照明領域をスリツ 卜状に設定する可変視野絞り等を有している。 マスク M上の所 定の照明領域は照明光学系 I Lにより均一な照度分布の露光光 E Lで照明される。 照明光学系 I Lから射出される露光光 ELとしては、 例えば水銀ランプから射出さ れる紫外域の輝線 (g線、 h線、 i線) 及び K r Fエキシマレ一ザ光 (波長 248 nm) 等の遠紫外光 (DUV光) や、 A r Fエキシマレーザ光 (波長 1 93 nm) 及び F2レーザ光 (波長 1 57 nm)等の真空紫外光 (VUV光) などが用いられ る。 本実施形態では A r Fエキシマレーザ光を用いることにする。 マスクステージ MS Tは、 マスク Mを支持するものであって、 投影光学系 PLの 光軸 AXに垂直な平面内、 すなわち XY平面内で 2次元移動可能及び 0 Z方向に微 小回転可能である。 マスクステージ M S Tはリニアモータ等のマスクステージ駆動 装置 MS T Dにより駆動される。 マスクステージ駆動装置 MS T Dは制御装置 CO N Tにより制御される。 マスクステージ MS T上のマスク Mの 2次元方向の位置、 及び回転角はレーザ干渉計によりリアルタイムで計測され、 計測結果は制御装置 C 0 N Tに出力される。制御装置 C 0 N Tはレーザ干渉計の計測結果に基づいてマス クステージ駆動装置 MS T Dを駆動することでマスクステージ MS Tに支持されて いるマスク Mの位置決めを行う。 投影光学系 P Lは、 マスク Mのパターンを所定の投影倍率/?で基板 Pに投影露光 するものであって、 複数の光学素子 (レンズ) で構成されており、 これら光学素子 は金属部材としての鏡筒 P Kで支持されている。 本実施形態において、 投影光学系 P Lは、 投影倍率 3が例えば 1Z4あるいは 1/5の縮小系である。 なお、 投影光 学系 PLは等倍系及び拡大系のいずれでもよい。 また、 本実施形態の投影光学系 P Lの先端側 (基板 P側) には、 光学素子 (レンズ) 60が鏡筒 PKより露出してい る。 この光学素子 60は鏡筒 PKに対して着脱 (交換) 可能に設けられている。 基板ステージ PS Tは、 基板 Pを支持するものであって、 基板 Pを基板ホルダを 介して保持する Zステージ 5 1 と、 Zステージ 5 1を支持する X Yステージ 5 2と、 X Yステージ 5 2を支持するベース 5 3とを備えている。 基板ステージ P S Tはリ ニァモータ等の基板ステージ駆動装置 P S T Dにより駆動される。基板ステージ駆 動装置 P S T Dは制御装置 C O N Tにより制御される。 Zステージ 5 1を駆動する ことにより、 Zステージ 5 1に保持されている基板 Pの Z軸方向におけるィ立置 (フ ォ一カス位置) 、 及び 0 X、 方向における位置が制御される。 また、 X Yステ ージ 5 2を駆動することにより、 基板 Pの X Y方向における位置 (投影光学系 P L の像面と実質的に平行な方向の位置) が制御される。 すなわち、 Zステージ 5 1は、 基板 Pのフォー力ス位置及び傾斜角を制御して基板 Pの表面をオートフォーカス方 式、 及び才一卜レペリング方式で投影光学系 Pしの像面に合わせ込み、 X Yステー ジ 5 2は基板 Pの X軸方向及び Y軸方向における位置決めを行う。 なお、 Zステー ジと X Yステージとを一体的に設けてよいことは言うまでもない。 基板ステージ P S T ( Zステージ 5 1 ) 上には移動鏡 5 4が設けられている。 ま た、 移動鏡 5 4に対向する位置にはレーザ干渉計 5 5が設けられている。基板ステ ージ P S T上の基板 Pの 2次元方向の位置、 及び回転角はレーザ干渉計 5 5により リアルタイムで計測され、 計測結果は制御装置 C O N Tに出力される。制御装置 C 〇 N Tはレーザ干渉計 5 5の計測結果に基づいて基板ステージ駆動装置 P S T Dを 駆動することで基板ステージ P S Tに支持されている基板 Pの位置決めを行う。 本実施形態では、 露光波長を実質的に短く して解像度を向上するとともに、 焦点 深度を実質的に広くするために、 液浸法を適用する。 そのため、 少なくともマスク Mのパターンの像を基板 P上に転写している間は、 基板 Pの表面と投影光学系 P L の基板 P側の光学素子 (レンズ) 6 0の先端面 (下面) 7との間に所定の液体 5 0 が満たされる。 上述したように、 投影光学系 P Lの先端側にはレンズ 6 0が露出し ており、 ;'夜体 5 0はレンズ 6 0のみに接触するように構成されている。 これにより、 金属からなる鏡筒 P Kの腐蝕等が防止されている。 また、 レンズ 6 0の先端面 7は 投影光学系 P Lの鏡筒 P K及び基板 Pより十分小さく、 且つ上述したように液体 5 0はレンズ 6 0のみに接触するように構成されているため、 液体 5 0は投影光学系 P Lの像面側に局所的に満たされている構成となっている。 すなわち、 投影光学系 P Lと基板 Pとの間の液浸部分は基板 Pより十分に小さい。本実施形態において、 液体 5 0には純水が用いられる。純水は、 A r Fレーザ光のみならず、 露光光 E L を例えば水銀ランプから射出される紫外域の輝線 (g線、 h線、 i線) 及び K r F エキシマレ一ザ光 (波長 2 4 8 n m ) 等の違紫外光 (D U V光) とした場合、 この 露光光 E Lを透過可能である。 露光装置 E Xは、 投影光学系 P Lの先端面 (レンズ 6 0の先端面) 7と基板 Pと の間の空間 5 6に所定の液体 5 0を供給する液体供給装置 1と、 空間 5 6の液体 5 0を回収する液体回収装置 2とを備えている。 液体供給装置 1は、 投影光学系 P L の像面側を局所的に液体 5 0で満たすためのものであって、 液体 5 0を収容する夕 ンク、 加圧ポンプ、 及び空間 5 6に供給する液体 5 0の温度を調整する温度調整装 置などを備えている。 液体供給装置 1には供給管 3の一端部が接続され、 供給管 3 の他端部には供給ノズル 4が接続されている。 液体供給装置 1は供給管 3及び供給 ノズル 4を介して空間 5 6に液体 5 0を供給する。 液体回収装置 2は、 吸引ポンプ、 回収した液体 5 0を収容するタンクなどを備え ている。 液体回収装置 2には回収管 6の一端部が接続され、 回収管 6の他端部には 回収ノズル 5が接続されている。液体回収装置 2は回収ノズル 5及び回収管 6を介 して空間 5 6の液体 5 0を回収する。 空間 5 6に液体 5 0を満たす際、 制御装置 C O N Tは液体供給装置 1を駆動し、 供給管 3及び供給ノズル 4を介して空間 5 6に 対して単位時間当たり所定量の液体 5 0を供給するとともに、 液体回収装置 2を駆 動し、 回収ノズル 5及び回収管 6を介して単位時間当たり所定量の液体 5 0を空間 5 6より回収する。 これにより投影光学系 P Lの先端面 7と基板 Pとの間の空間 5 6に液体 5 0が配置され、 液浸部分が形成される。 ここで、 制御装置 C O N Tは、 液体供給装置 1を制御することで空間 5 6に対する単位時間当たりの液体供給量を 任意に設定可能であるとともに、液体回収装置 2を制御することで基板 P上からの 単位時間当たりの液体回収量を任意に設定可能である。 図 2は、 露光装置 E Xの投影光学系 P Lの下部、 液体供給装置 1、 及び液体回収 装置 2などを示す正面図である。 図 2において、 投影光学系 P Lの最下端のレンズ 6 0は、 先端部 6 O Aが走査方向に必要な部分だけを残して Y軸方向 (非走査方 向) に細長い矩形状に形成されている。 走査露光時には、 先端部 6 O Aの直下の矩 形の投影領域にマスク Mの一部のパターン像が投影され、 投影光学系 P Lに対して、 マスク Mがー X方向 (又は + X方向) に速度 Vで移動するのに同期して、 X Yステ —ジ 5 2を介して基板 Pが + X方向 (又は一 X方向) に速度 3 ■ V ( 3は投影倍 率) で移動する。 そして、 1つのショッ卜領域への露光終了後に、 基板 Pのステヅ ビングによって次のショヅト領域が走査開始位置に移動し、 以下、 ステップ.アン ド -スキャン方式で各ショッ卜領域に対する露光処理が順次行われる。 本実施形態 では、 基板 Pの移動方向に沿って基板 Pの移動方向と同一方向に液体 5 0を流すよ うに設定されている。 It has a condenser lens that condenses EL, a relay lens system, and a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape. A predetermined illumination area on the mask M is illuminated by the illumination optical system IL with the exposure light EL having a uniform illuminance distribution. The exposure light EL emitted from the illumination optical system IL includes, for example, ultraviolet bright lines (g-line, h-line, i-line) emitted from a mercury lamp and KrF excimer laser light (wavelength: 248 nm). and deep ultraviolet light (DUV light), a r F excimer laser beam (wavelength 1 93 nm) and F 2 laser beam (wavelength: 1 57 nm) vacuum ultraviolet light (VUV light) such as the Ru used. In this embodiment, an ArF excimer laser beam is used. The mask stage MST supports the mask M, and can be moved two-dimensionally in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in the XY plane, and can be minutely rotated in the 0 Z direction. . The mask stage MST is driven by a mask stage driving device MSTD such as a linear motor. The mask stage drive MS TD is controlled by the controller CONT. The position and rotation angle of the mask M on the mask stage MST in the two-dimensional direction are measured in real time by a laser interferometer, and the measurement results are output to the controller C0NT. The controller C 0 NT drives the mask stage driving device MS TD based on the measurement result of the laser interferometer to position the mask M supported by the mask stage MST. The projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification / ?, and is composed of a plurality of optical elements (lenses). The lens barrel is supported by PK. In the present embodiment, the projection optical system PL is a reduction system whose projection magnification 3 is, for example, 1Z4 or 1/5. Note that the projection optical system PL may be either a unity magnification system or an enlargement system. Further, an optical element (lens) 60 is exposed from the lens barrel PK on the distal end side (substrate P side) of the projection optical system PL of the present embodiment. The optical element 60 is provided detachably (replaceable) with respect to the lens barrel PK. The substrate stage PST supports the substrate P, and the substrate P The XY stage 52 supports the Z stage 51, the XY stage 52 supports the Z stage 51, and the base 53 supports the XY stage 52. The substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor. The substrate stage drive PSTD is controlled by the controller CONT. By driving the Z stage 51, the standing (focus position) in the Z-axis direction and the position in the 0X direction of the substrate P held on the Z stage 51 are controlled. By driving the XY stage 52, the position of the substrate P in the XY direction (the position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. That is, the Z stage 51 controls the force position and the tilt angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system P by the autofocus method and the intelligent repelling method. The XY stage 52 positions the substrate P in the X-axis direction and the Y-axis direction. It goes without saying that the Z stage and the XY stage may be provided integrally. A movable mirror 54 is provided on the substrate stage PST (Z stage 51). In addition, a laser interferometer 55 is provided at a position facing the movable mirror 54. The position and the rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 55, and the measurement results are output to the control device CONT. The controller C CNT positions the substrate P supported on the substrate stage PST by driving the substrate stage driving device PSTD based on the measurement result of the laser interferometer 55. In the present embodiment, an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially widen the depth of focus. Therefore, at least while the image of the pattern of the mask M is being transferred onto the substrate P, the surface of the substrate P and the tip surface (lower surface) 7 of the optical element (lens) 60 on the substrate P side of the projection optical system PL During this time, the predetermined liquid 50 is filled. As described above, the lens 60 is exposed at the distal end side of the projection optical system PL; the 'night body 50 is configured to contact only the lens 60. This prevents corrosion of the lens barrel PK made of metal. In addition, since the tip surface 7 of the lens 60 is sufficiently smaller than the lens barrel PK and the substrate P of the projection optical system PL, and the liquid 50 is configured to contact only the lens 60 as described above, the liquid 50 is a projection optical system The structure is such that the image plane side of the PL is locally filled. That is, the liquid immersion part between the projection optical system PL and the substrate P is sufficiently smaller than the substrate P. In this embodiment, pure water is used as the liquid 50. Pure water is used not only for the A r F laser light, but also for the exposure light EL, for example, ultraviolet emission lines (g-line, h-line, i-line) and K r F excimer laser light (wavelength 24 In the case of different ultraviolet light (DUV light) such as 8 nm), this exposure light EL can be transmitted. The exposure apparatus EX includes a liquid supply device 1 that supplies a predetermined liquid 50 to a space 56 between the front end surface (the front end surface of the lens 60) 7 of the projection optical system PL and the substrate P; And a liquid recovery device 2 for recovering the liquid 50. The liquid supply device 1 is used to locally fill the image plane side of the projection optical system PL with the liquid 50, and supplies the liquid 50 to the ink tank, the pressure pump, and the space 56. A temperature adjusting device for adjusting the temperature of the liquid 50 is provided. One end of a supply pipe 3 is connected to the liquid supply device 1, and a supply nozzle 4 is connected to the other end of the supply pipe 3. The liquid supply device 1 supplies the liquid 50 to the space 56 via the supply pipe 3 and the supply nozzle 4. The liquid recovery device 2 includes a suction pump, a tank for storing the recovered liquid 50, and the like. One end of a recovery pipe 6 is connected to the liquid recovery device 2, and a recovery nozzle 5 is connected to the other end of the recovery pipe 6. The liquid recovery device 2 recovers the liquid 50 in the space 56 through the recovery nozzle 5 and the recovery pipe 6. When space 50 is filled with liquid 50, controller CONT drives liquid supply device 1 and supplies a predetermined amount of liquid 50 per unit time to space 56 via supply pipe 3 and supply nozzle 4. At the same time, the liquid recovery device 2 is driven to recover a predetermined amount of liquid 50 per unit time from the space 56 via the recovery nozzle 5 and the recovery pipe 6. As a result, the liquid 50 is disposed in the space 56 between the front end surface 7 of the projection optical system PL and the substrate P, and a liquid immersion part is formed. Here, the control device CONT can arbitrarily set the liquid supply amount per unit time to the space 56 by controlling the liquid supply device 1 and control the liquid recovery device 2 from above the substrate P. The amount of liquid recovered per unit time can be set arbitrarily. FIG. 2 is a front view showing a lower portion of the projection optical system PL of the exposure apparatus EX, a liquid supply device 1, a liquid recovery device 2, and the like. In FIG. 2, the lens 60 at the lowermost end of the projection optical system PL is formed in a rectangular shape elongated in the Y-axis direction (non-scanning direction) except for a portion where the tip 6OA is required in the scanning direction. . At the time of scanning exposure, a partial pattern image of the mask M is projected on a rectangular projection area immediately below the tip 6 OA, and the mask M is moved in the −X direction (or + X direction) with respect to the projection optical system PL. In synchronization with the movement at the speed V, the substrate P moves in the + X direction (or one X direction) at a speed of 3 方向 V (3 is a projection magnification) via the XY stage 52. Then, after the exposure to one shot area is completed, the next shot area is moved to the scanning start position by the stepping of the substrate P. Thereafter, the exposure processing for each shot area is sequentially performed by the step-and-scan method. Done. In the present embodiment, the liquid 50 is set to flow in the same direction as the movement direction of the substrate P along the movement direction of the substrate P.
Zステージ 5 1には基板 Pを吸着保持するための吸着孔 2 4が設けられている。 そして、 吸着孔 2 4のそれぞれは、 Zステージ 5 1内部に形成された流路 2 5に接 続している。 吸着孔 2 4に接続されている流路 2 5は、 Zステージ 5 1外部に設け られている管路 3 0の一端部に接続されている。 一方、 管路 3 0の他端部は、 Zス テ一ジ 5 1外部に設けられたタンク 3 1及びバルブ 3 2を介して吸引装置であるポ ンプ 3 3に接続されている。 タンク 3 1には排出流路 3 1 Aが設けられており、 液 体が所定量溜まったら排出流路 3 1 Aより排出されるようになっている。 液浸露光 する際、 基板 Pの外側に流出した液体 5 0が基板 Pの裏面側に達する場合も考えら れる。 そして、 基板 Pの裏面側に入り込んだ液体 5 0が基板 Pを吸着保持するため の吸着孔 2 4に流入する可能性もある。 この場合、 吸着孔 2 4は、 流路 2 5、 管路 3 0、 及びタンク 3 1を介して吸引装置としてのポンプ 3 3に接続されており、 基 板 Pを吸着保持するために、 バルブ 3 2の開放及びポンプ 3 3の駆動を行っている ので、 吸着孔 2 4に流入した液体 5 0を流路 2 5及び管路 3 0を介してタンク 3 1 に集めることができる。 図 3は、 投影光学系 P Lのレンズ 6 0の先端部 6 O Aと、 液体 5 0を X軸方向に 供給する供給ノズル 4 (4A〜4C) と、 液体 50を回収する回収ノズル 5 (5八、 5 B) との位置関係を示す図である。 図 3において、 レンズ 60の先端部 6 OAの 形状は Y軸方向に細長い矩形状となっており、 投影光学系 P Lのレンズ 60の先端 部 60 Aを X軸方向に挾むように、 + X方向側に 3つの供給ノズル 4 A〜4 Cが配 置され、 一X方向側に 2つの回収ノズル 5 A、 5 Bが配置されている。 そして、 供 給ノズル 4 A〜4Cは供給管 3を介して液体供給装置 1に接続され、 回収ノズル 5 A、 5 Bは回収管 4を介して液体回収装置 2に接続されている。 また、 供給ノズル 4A〜4Cと回収ノズル 5 A、 5 Bとを先端部 6 O Aの中心に対してほぼ 1 8 0° 回転した位置に、 供給ノズル 8A〜8Cと、 回収ノズル 9 A、 9 Bとが配置 されている。 ここで、 ノズル列 4 A〜4C, 9 A及び 9 Bとノズル列 8 A〜8C, 5 A及び 5 Bは対向して配置されており、 対向する供給ノズルと回収ノズルの間隔 (例えば 4 Aと 8 Aの間隔) はレンズ 60の先端部 60 Aの下に区画される投影領 域の走査方向の幅よりも広いが、 基板 Pの直径よりも小さい。 したがって、 基板 P の外周に近いショッ卜領域を露光するときに、 液浸領域が基板 Pのェッジょり外に はみ出して、 液が基板 Pの外側に漏れないようにするために、 対向する供給ノズル と回収ノズルの間隔は極力投影領域の走査方向の幅に近づけられていることが望ま しい。供給ノズル 4A〜4Cと回収ノズル 9 A、 9 Bとは Y軸方向に交互に配列さ れ、 供給ノズル 8 A~8Cと回収ノズル 5 A、 5 Bとは Y軸方向に交互に配列され、 供給ノズル 8 A〜8Cは供給管 1 0を介して液体供給装置 1に接続され、 回収ノズ ル 9A、 9 Bは回収管 1 1を介して液体回収装置 2に接続されている。 ノズルから の液体供給は、 投影光学系 P Lと基板 Pとの間に気体部分が生じないように行われ る o 図 4に示すように、 先端部 6 OAを挟んで Y軸方向両側のそれぞれに供給ノズル 1 3、 1 4及び回収ノズル 1 5、 1 6を設けることもできる。 この供給ノズル及び 回収ノズルにより、 ステップ移動する際の基板 Pの非走査方向 (Y軸方向) への移 動時においても、 投影光学系 P Lと基板 Pとの間に液体 50を安定して供給するこ とができる。 なお、 上述したノズルの形状は特に限定されるものでなく、 例えば先端部 6 O A の長辺について 2対のノズルで液体 5 0の供給又は回収を行うようにしてもよい。 なお、 この場合には、 + X方向、 又は— X方向のどちらの方向からも液体 5 0の供 給及び回収を行うことができるようにするため、 供給ノズルと回収ノズルと上下に 並べて配置してもよい。 図 5は本実施形態に係るマスク Mの平面図である。 図 5において、 マスク Mはデ バイスを形成するためのデバイスパターン (第 1パターン) 4 1が形成された第 1 パターン形成領域 M A 1 と、 ラインパターンが所定ピッチで形成されたライン■ァ ンド 'スペースパターン (第 2パターン) 4 2が形成された第 2パターン形成領域 M A 2とを有している。 デバイスパターン 4 1は、 後述する基板 P上の第 1領域 A R 1に転写され、 ライン 'アンド .スペースパターン (L / Sパターン) 4 2は、 第 1領域 A R 1 とは異なる基板 P上の第 2領域 A R 2に転写されるようになってい 。 図 6は基板. Pの平面図である。 略円形状の基板 Pのうち中央付近に設定されたパ 夕一ン形成領域である第 1領域 A R 1にマスク Mに形成されているデバイスパター ン 4 1が転写され、 基板 Pのエッジ付近の領域である第 2領域 A R 2にマスク Mに 形成されている L / Sパターン 4 2が転写されるようになっている。 また、 第 1領 域 A R 1には複数のショッ 卜領域 S Hが設定されている。 なお、 第 1領域 A R 1 と 第 2領域 A R 2との境界は図 6に限らず、 各ショッ卜領域を走査露光る前後の加速 距離や減速距離、 あるいは液浸領域の範囲などに応じて決めればよい。 次に、 上述した露光装置 E Xを用いてマスク Mのバターンを基板 Pに露光する手 順について説明する。 マスク Mがマスクステージ M S丁にロードされるとともに、 基板 Pが基板ステー ジ P S Tにロードされたら、 制御装置 C 0 N Tは液体供給装置 1及び液体回収装置 2を駆動し、 液体 5 0の供給及び回収をすることで空間 5 6に液体 5 0の液浸部分 を形成する。 そして、 制御装置 CONTは、 マスク Mと基板 Pとを同期移動しなが ら、 照明光学系 I Lによりマスク Mの第 1パターン形成領域 M 1を露光光 E Lで照 明し、 デバイスパターン 41の像を投影光学系 P L及び液体 50を介して基板 P上 の第 1領域 A R 1の各ショッ卜領域 S Hに順次投影する。 ここで、 基板 Pの中央付 近の第 1領域 A R 1を露光している間は、 液体供給装置 1から供給された液体 50 は液体回収装置 2により回収され、 投影光学系 P Lと基板 Pとの間の液浸領域が基 板 Pのエッジにかからないので基板 Pの外側に流出しない。 次に、 制御装置 CON Tは、 マスク Mのデバイスパターン 41と異なる位置に設 けられた L/Sパターン 42を基板 Pの第 2領域 A R 2を露光するためにマスクス テージ MS T及び基板ステージ P S Tを駆動してマスク M及び基板 Pを所定の位置 に位置決めする。 この位置決め動作の前あるいは後に、 制御装置 CO NTは液体供 給装置 1及び液体回収装置 による液体 50の供給及び回収動作を停止する。 すな わち、 制御装置 CONTは、 第 2領域 AR 2を、 液体 50なしに、 投影光学系 P L を介して露光する準備をする。 ここで、 制御装置 CO NTは、 第 2領域 A R 2を露光処理する際のマスク Mに対 する露光光 ELの照明条件 (露光条件) を、 第 1領域 AR 1を露光処理したときの 条件と異なる条件に設定する。例えば、 照明光学系 I Lの絞りを変更し、 マスク M に対する照明条件を通常照明から斜入射照明 (変形照明) に変更する。 そして、 制 御装置 CON Tは、 マスク Mの L/Sパターン 42を露光光 E Lで斜入射照明し、 L/Sパターン 42で回折した複数の回折光のうち 2つの回折光を用いて基板 Pを 露光する。 図 7は第 2領域 A R 2を露光するときの光学系の一例を示す図である。 図 7 (a) において、 照明光学系 I Lの光源 70の光路下流に、 光軸に対してずれた位 置に 1つの開口を有する一極照明絞り 71が配置される。 光源 70から射出した光 束は一極照明絞り 71の開口を通過後、 レンズ系 73を通過してマスク Mのし/ S パターン 42に斜め入射する。 マスク Mの L/Sパターン 42で回折した 0次光及 び土 1次光のうち、 0次光及び + 1次光 (あるいは— 1次光) のみが投影光学系 P Lに入射する。基板 Pの第 2領域 A R 2は 0次光及び + 1次光 (一 1次光) に基 づくニ光束干渉法により L / Sパターン 4 2を露光される。 あるいは、 図 7 ( b ) に示すように、 光軸に対してずれた位置に 2つの開口を有する二極照明絞り 7 2を 用いて露光することもできる。 あるいは 4つの開口を有する四重極照明絞りを用い てもよい。 また、 照明条件の変更は、 絞りの変更のみならず、 ズーム光学系や回折 光学素子などを併用して変更するようにしてもよい。 二光束干渉法で露光することで、 焦点深度が大き〈なる。 すなわち、 二光束干渉 法に基づく露光条件はデフオーカスに耐性のある露光条件であつて、 基板 P上の第 2領域 A R 2はデフォーカスに耐性のある露光条件で露光されたことになる。 更に このとき、 投影光学系 P Lの開口数を小さくすることで不要な次数の回折光をカツ 卜して焦点深度を低下させないようにするのが望ましい。 本実施形態おける露光装置 E Xの投影光学系 P Lは液体 5 0を介することで最適 な結像特性が得られるように設計されるので、 例えば、 通常照明 (円形の絞り) の まま液体を介さない露光を行おうとするとフォーカス位置 (投影光学系 P Lを介し て形成される像面の位置) が大きくずれ、 基板 P上にパターンの像を結像させるこ とができない可能性がある。 しかしながら、 液体を介さない露光処理をする際、 露 光条件をニ光朿干渉法に基づく露光条件に変更し、 デフオーカスに耐性のある露光 条件としたので、 基板 Pの表面を、 液体を介さない投影光学系 P Lの焦点深度内に 納めることができる。 なお、 第 1領域 A R 1を斜入射照明などのデフォーカスに耐性のある露光条件で 露光する場合もあるので、 その場合は単に、 液体ありの露光条件から液体なしの露 光条件に変更して第 2領域 A R 2を露光してもよい。 The Z stage 51 is provided with a suction hole 24 for holding the substrate P by suction. Each of the suction holes 24 is connected to a flow path 25 formed inside the Z stage 51. The flow path 25 connected to the suction hole 24 is connected to one end of a pipe 30 provided outside the Z stage 51. On the other hand, the other end of the conduit 30 is connected to a pump 33 as a suction device via a tank 31 and a valve 32 provided outside the Z stage 51. The tank 31 is provided with a discharge channel 31A, and when a predetermined amount of liquid is accumulated, the liquid is discharged from the discharge channel 31A. During the immersion exposure, the liquid 50 flowing out of the substrate P may reach the back side of the substrate P. Then, the liquid 50 that has entered the rear surface side of the substrate P may flow into the suction holes 24 for holding the substrate P by suction. In this case, the suction hole 24 is connected to a pump 33 as a suction device via a flow path 25, a pipe 30, and a tank 31, and a valve is provided for sucking and holding the substrate P. Since the opening of 32 and the driving of the pump 33 are performed, the liquid 50 flowing into the adsorption hole 24 can be collected in the tank 31 via the flow path 25 and the pipe 30. Fig. 3 shows the liquid crystal 50 in the X-axis direction with the tip 6 OA of the lens 60 of the projection optical system PL. It is a figure which shows the positional relationship of the supply nozzle 4 (4A-4C) which supplies, and the collection nozzle 5 (58, 5B) which collects the liquid 50. In FIG. 3, the tip 6OA of the lens 60 has a rectangular shape elongated in the Y-axis direction, so that the tip 60A of the lens 60 of the projection optical system PL is located in the + X direction so as to sandwich the tip 60A in the X-axis direction. Are provided with three supply nozzles 4A to 4C, and two collection nozzles 5A and 5B are arranged on the 1X direction side. The supply nozzles 4A to 4C are connected to the liquid supply device 1 via the supply pipe 3, and the recovery nozzles 5A and 5B are connected to the liquid recovery device 2 via the recovery pipe 4. Also, the supply nozzles 8A to 8C and the collection nozzles 9A and 9B are located at positions where the supply nozzles 4A to 4C and the collection nozzles 5A and 5B are rotated by approximately 180 ° with respect to the center of the tip 6OA. And are arranged. Here, the nozzle rows 4A to 4C, 9A and 9B and the nozzle rows 8A to 8C, 5A and 5B are arranged to face each other, and the distance between the supply nozzle and the recovery nozzle facing each other (for example, 4A Is larger than the width in the scanning direction of the projection area defined below the tip 60A of the lens 60, but smaller than the diameter of the substrate P. Therefore, when exposing the shot area near the outer periphery of the substrate P, the immersion area protrudes out of the edge of the substrate P, and the liquid is supplied to the opposite side so that the liquid does not leak outside the substrate P. It is desirable that the distance between the nozzle and the collection nozzle be as close as possible to the width of the projection area in the scanning direction. The supply nozzles 4A to 4C and the collection nozzles 9A and 9B are alternately arranged in the Y-axis direction.The supply nozzles 8A to 8C and the collection nozzles 5A and 5B are alternately arranged in the Y-axis direction. supply nozzle 8 A~8C are connected to the liquid supply apparatus 1 via the supply pipe 1 0, recovery nozzle 9A, 9 B are connected to the liquid recovery apparatus 2 via the recovery pipe 1 1. The liquid is supplied from the nozzle so that no gas part is generated between the projection optical system PL and the substrate P.o As shown in Fig. 4, the liquid is supplied to both sides in the Y-axis Supply nozzles 13 and 14 and recovery nozzles 15 and 16 can also be provided. The supply nozzle and the recovery nozzle stably supply the liquid 50 between the projection optical system PL and the substrate P even when the substrate P moves in the non-scanning direction (Y-axis direction) during the step movement. can do. The shape of the nozzle described above is not particularly limited. For example, the supply or recovery of the liquid 50 may be performed with two pairs of nozzles on the long side of the tip 6 OA. In this case, in order to be able to supply and recover the liquid 50 from either the + X direction or the −X direction, the supply nozzle and the recovery nozzle are arranged vertically. You may. FIG. 5 is a plan view of the mask M according to the present embodiment. In FIG. 5, a mask M is composed of a first pattern formation area MA 1 in which device patterns (first patterns) 41 for forming devices are formed, and a line pattern in which line patterns are formed at a predetermined pitch. It has a second pattern forming area MA 2 in which a space pattern (second pattern) 42 is formed. The device pattern 41 is transferred to a first area AR1 on the substrate P, which will be described later, and the line and space pattern (L / S pattern) 42 is the first area AR1 on the substrate P different from the first area AR1. It is now transcribed into two regions, AR2. FIG. 6 is a plan view of the substrate P. The device pattern 41 formed on the mask M is transferred to the first area AR1, which is the pattern formation area set near the center of the substantially circular substrate P, and the vicinity of the edge of the substrate P The L / S pattern 42 formed on the mask M is transferred to the second region AR2 which is a region. Also, a plurality of shot areas SH are set in the first area AR1. The boundary between the first area AR1 and the second area AR2 is not limited to that shown in Fig. 6, but is determined according to the acceleration distance and deceleration distance before and after scanning and exposing each shot area, or the range of the liquid immersion area. Just fine. Next, a procedure for exposing the pattern of the mask M to the substrate P using the above-described exposure apparatus EX will be described. When the mask M is loaded on the mask stage MS and the substrate P is loaded on the substrate stage PST, the control device C 0 NT drives the liquid supply device 1 and the liquid recovery device 2 to supply the liquid 50 and supply the liquid 50. By collecting the liquid, the liquid 50 immersed in the space 56 To form Then, the controller CONT illuminates the first pattern formation region M1 of the mask M with the exposure light EL by the illumination optical system IL while moving the mask M and the substrate P synchronously. Is sequentially projected onto each shot area SH of the first area AR1 on the substrate P via the projection optical system PL and the liquid 50. Here, while the first area AR 1 near the center of the substrate P is being exposed, the liquid 50 supplied from the liquid supply device 1 is recovered by the liquid recovery device 2, and the projection optical system PL and the substrate P Since the liquid immersion area between them does not cover the edge of the substrate P, it does not flow out of the substrate P. Next, the controller CONT uses the L / S pattern 42 provided at a different position from the device pattern 41 of the mask M to expose the second area AR 2 of the substrate P to the mask stage MST and the substrate stage PST. Is driven to position the mask M and the substrate P at predetermined positions. Before or after this positioning operation, the control device CONT stops the supply and recovery operations of the liquid 50 by the liquid supply device 1 and the liquid recovery device. That is, the control device CONT prepares to expose the second area AR2 via the projection optical system PL without the liquid 50. Here, the control unit CONT determines the illumination condition (exposure condition) of the exposure light EL to the mask M when performing the exposure processing on the second area AR2, and the condition when performing the exposure processing on the first area AR1. Set different conditions. For example, the aperture of the illumination optical system IL is changed, and the illumination condition for the mask M is changed from normal illumination to oblique incidence illumination (deformed illumination). Then, the control device CONT illuminates the L / S pattern 42 of the mask M obliquely with the exposure light EL, and uses two diffracted lights out of the plurality of diffracted lights diffracted by the L / S pattern 42 to the substrate P. Exposure. FIG. 7 is a diagram showing an example of an optical system when exposing the second area AR2. In FIG. 7A, a monopole illumination stop 71 having one opening at a position shifted from the optical axis is arranged downstream of the light path of the light source 70 of the illumination optical system IL. The light beam emitted from the light source 70 passes through the opening of the monopole illumination stop 71, passes through the lens system 73, and is obliquely incident on the mask / S pattern 42 of the mask M. 0th order light diffracted by L / S pattern 42 of mask M Of the primary light, only the zero-order light and the + first-order light (or the first-order light) enter the projection optical system PL. The second area AR2 of the substrate P is exposed to the L / S pattern 42 by the two-beam interference method based on the 0th-order light and the + 1st-order light (1st-order light). Alternatively, as shown in FIG. 7B, exposure can be performed using a dipole illumination stop 72 having two openings at positions shifted from the optical axis. Alternatively, a quadrupole illumination stop having four apertures may be used. The illumination condition may be changed not only by changing the aperture, but also by using a zoom optical system or a diffractive optical element. Exposure using the two-beam interference method increases the depth of focus. That is, the exposure condition based on the two-beam interference method is an exposure condition resistant to defocus, and the second region AR2 on the substrate P is exposed under an exposure condition resistant to defocus. Further, at this time, it is desirable to reduce the numerical aperture of the projection optical system PL so as to cut unnecessary orders of diffracted light so as not to lower the depth of focus. The projection optical system PL of the exposure apparatus EX in the present embodiment is designed so as to obtain optimal imaging characteristics by passing through the liquid 50, so that, for example, the liquid does not pass under normal illumination (circular stop). When the exposure is performed, the focus position (the position of the image plane formed via the projection optical system PL) is greatly shifted, and there is a possibility that a pattern image cannot be formed on the substrate P. However, when performing the exposure treatment that does not pass through the liquid, the exposure condition was changed to the exposure condition based on the two-light interference method, and the exposure condition was set to be resistant to defocus, so that the surface of the substrate P did not pass through the liquid. It can fit within the depth of focus of the projection optical system PL. In some cases, the first area AR1 is exposed under an exposure condition such as oblique incidence illumination that is resistant to defocusing.In such a case, simply change the exposure condition with liquid to the exposure condition without liquid. The second area AR2 may be exposed.
L / Sパターン 4 2を基板 Pの第 2領域 A R 2に露光する際、 第 1領域 A R 1に 対する露光処理同様、 マスク M ( L / Sパターン 4 2 ) と基板 Pとを同期移動しつ つ露光してもよいし、 マスク Mと基板 Pとを静止した状態で露光しても良いし、 マ スク Mを静止した状態で基板 Pを移動しながら露光してもよい。例えば、 図 6にお いて、 第 2領域 A R 2のうち走査方向に短い領域 A R 2 Aに対しては、 マスク Mと 基板 Pとを静止した状態で露光できる。 また、 走査方向に長い領域 A R 2 Bを、 マ スク Mを静止した状態で基板 Pを移動しながら露光する際には、 投影されるパタ一 ン像は基板 Pの移動方向 (走査方向) に連続的にぶれることがある。 この場合、 パ ターン像がぶれても領域 A R 2 Bにパターンを良好に転写するために、 マスク Mの L / Sパターン 4 2のラインパターンの長手方向と前記基板 Pの移動方向とを一致 させておくことが望ましい。 また、 第 2領域 A R 2を露光するときは、 投影光学系 P Lの開口数を小さくすることが好ましい。 これにより、 不要な次数の回折光が投 影光学系 P Lに入射しても、 パターン像のコントラスト低下や焦点深度低下を回避 することができる。 以上説明したように、 投影光学系 P Lの下 (像面側) に液体を保持することが困 難な基板 Pのエッジ領域 A R 2に対しては、 液体を介さないで露光するようにした ので、 液体の基板外側への流出を防ぐことができる。 この場合、 投影光学系 P Lの 光学特性は液浸露光に最適化されているため、 液体を介さない場合は所望の結像位 置を得られないが、 液体を介さない場合には二光束干渉法を用いて焦点深度を大き くすることで、 液体を介さなくても基板 P上に L Z Sパターン 4 2を形成すること ができる。 そして、 基板 P上においてデバイスパターン 4 1が形成される第 1領域 A R 1以外の第 2領域 A R 2にダミーパターンである L / Sパターン 4 2を形成し たことにより、 後工程である C M P処理において、 C M P装置の研磨面に対して基 板 Pが片当たりするといつた不都合の発生を回避することができる。 なお、 上記実施形態では、 第 2領域 A R 2を液体なしに露光していたが、 基板 P の周囲に、 基板 Pの外側に流出した液体を回収する回収装置を設けておき、 第 2領 域 A R 2を露光処理する際にも投影光学系 P Lの下に液体を配置した状態で、 ある いは液体の供給を続けながら、 二光束干渉法に基づいて露光してもよい。 この場合、 基板 Pの外側へ液体が流出するため、 投影光学系 P Lと基板 Pとの間が不十分な液 浸状態となる可能性があるが、 二光束干渉法などのデフ才ーカスに耐性のある露光 条件で第 2領域 A R 2を露光するので、 第 2領域 A R 2に L / Sパターンなどを形 成できる。 なお、 上記実施形態では第 1領域 A R 1 と第 2領域 A R 2とをショッ卜領域で区 別したが、 1つのショヅト領域内に第 1領域 A R 1 と第 2領域 A R 2とを設定して もよい。例えば、 1つのショッ卜領域内に 2つのチヅプ領域が存在する場合、 基板 Pの中心に近い一方のチップ領域だけを第 1領域 A R 1 として液浸露光を行い、 他 方のチップ領域を第 2領域 A R 2として、 デフォーカスに耐性のある方式で露光を 行ったり、 露光しないなどの処理を施してもよい。 この場合、 第 1領域 A R 1 と第 2領域 A R 2とは走査方向に並んでいてもよいし、 非走査方向に離れていてもよい c また、 上記実施形態では、 第 1領域 A R 1 を露光した後に、 第 2領域 A R 2を露 光するようにしているが、 第 2領域 A R 2の露光を第 1領域 A R 1の前に行っても よい。 第 2領域 A R 2の露光が完了した後に、 第 1領域 A R 1の露光を行うことに より、 高いパターン形成精度が要求される第 1領域 A R 1のデバイスパターン 4 1 の形成精度を更に向上することができる。 つまり、 露光光照射後のフォトレジスト は外気 (空気) に曝されることで劣化を開始するが、 第 2領域 A R 2を露光した後. に第 1領域 A R 1を露光することで、 第 1領域 A R 1が露光されてから現像処理さ れるまでの時間を短くすることができ、 フ才卜レジス卜の劣化が促進される前にデ バイスパターン 4 1が露光された第 1領域 A R 1を現像できる。 したがって、 所望 のパターン形成精度でデバイスパターン 4 1 を形成できる。 また、 上記実施形態では、 マスク M上にデバイスパターン 4 1 とは別に L / Sノ ΐ ターン 4 2を設けているが、 デバイスパ夕一ン 4 1の一部のパターンを使って第 2 領域 A R 2を露光するようにしてもよいし、 第 2領域 A R 2の露光に使われるバタ ーンを別のマスクに設けてもよい。 または、 図 8に示すように、 L / Sパターン 4 2が形成されたガラス基材 M Fを マスクステージ M S丁上にマスク Mに並置されるように固定し、 そのガラス基材 M Fに形成されたし パターン 4 2の像をマスクステージ M S Tの不図示の開口部 を介して基板 P上の第 2領域 A R 2に投影して第 2領域 A R 2を露光するようにし てもよい。 この場合には、 第 2領域 A R 2の露光のためにマスク交換作業を行う必 要がないのでスループヅ卜の低下を防止できるばかりでなく、 マスク M上に第 2領 域 A R 2を露光するための L/ Sパターン 4 2を設ける必要がないという利点もあ る。 また、 第 2領域 A R 2を露光するときに使われるパターンは L/ Sパターンに限 らず、 その微細度もデバイスパターン 4 1 と同程度であってもよいし、 デバイスパ ターン 4 1よりも粗いパターンであってもよい。 要は、 後工程の C M P処理を行う のに問題のない程度のバタ一ンが形成されればよい。 また、 上記実施形態においては、 第 2領域 A R 2を露光するときにパターンに照 明光を照射し、 そのパターンの像を第 2領域 A R 2に投影するようにしているが、 パターンは必ずしも必要ない。 すなわち、 可干渉性の 2光束を交差させ、 その 2光 束の干渉によって干渉縞を形成し、 その干渉縞を第 2領域 A R 2上に投影して、 第 2領域 A R 2に干渉縞バタ一ンを形成するようにしてもよい。 図 9は第 2領域 A R 2を露光するときの光学系の他の例を示す図である。 図 9に おいて、 レーザ光等の可干渉性光を射出可能な光源 8 0の光路下流に、 コリメ一夕 レンズを含む第 1 レンズ系 8 1 と、 第 1 レンズ系 8 1を通過した光束を 2光束に分 岐するハーフミラ一 8 2と、 第 2レンズ系 8 3と、 開口絞り 8 5とが設けられてい る。 光源 8 0から射出した光束は第 1 レンズ系 8 1を通過後、 ハーフミラー 8 2で 2つの光束に分岐され、 この 2つの光束は第 2レンズ系 8 3を介して投影光学系 P Lに入射する。 基板 Pの第 2領域 A R 2には 2つの光束に基づく二光束干渉法によ り干渉縞パターンが形成される。 このように、 パターン (マスク M ) を使わずに、 第 2領域 A R 2を露光することも可能である。 なお光源 8 0としては、 照明光学系 Iしの光源を使ってもよいし、 照明光学系 I Lとは別の光源でもよい。 また、 ハー フミラー 8 2を傾斜方向に移動可能に設け、 破線 8 2 ' に示すようにハーフミラー 8 2を傾けて 2つの光束の向きをかえることで、 干渉縞ピッチをかえることができ る。 また、 2つのスリツ卜状開口部を有するスリツ卜部材を光路上に配置し、 各ス リッ 卜状開口部を通過した 2光束により干渉縞パターンを形成してもよい。 また、 上記実施形態においては、 二光束干渉法などのデフォーカスに耐性のある 露光条件で第 2領域 A R 2を露光しているが、 第 2領域 A R 2を露光するときに、 液体 5 0の流出に起因する像面のずれを考慮して、 Zステージ 5 1の Z軸方向の位 置を調整するようにしてもよい。 すなわち、 第 1領域 A R 1を露光するときの投影 光学系 P Lと基板 Pとの間隔とは異なる間隔で第 2領域 A R 2を露光するようにし てもよい。 また Zステージ 5 1の Z軸方向の位置を調整するかわりに、 投影光学系 P Lを介して形成される像面の位置を調整するようにしてもよい。 すなわち、 投影 光学系 P Lと基板 Pとの間の液体が十分でない場合にも第 1領域 A R 1を露光する ときとほぼ同じ Z軸方向の位置に像面が形成されるように像面位置の調整を行って もよい。 この像面位置の調整は、 投影光学系 P Lの調整、 例えば一部のレンズを動 かして球面収差を変化させるなどを実行することによって達成される。 また露光光 E Lの波長調整やマスク Mを動かすことによつても像面位置の調整を行うことがで きる。 Zステージ 5 1の位置調整と像面位置の調整とを併用してもよいことは言う までもない。 また、 上記実施形態のように照明条件を変えずに、 第 1領域 A R 1を露光すると きの投影光学系 P Lの開口数を、 第 2領域 A R 2を露光するときよりも小さくする だけでもよい。 また、 第 2領域 A R 2に形成されるラインパターンの幅やラインパターンとライ ンパターンとの間のスペースの幅を露光量で調整するようにしてもよい。 なお、 上記実施形態では、 エッジ領域である第 2領域 A R 2に対してもパターン 形成をすることで C M P処理等の後工程を安定化している力 C M P処理を行わな いプロセス条件の下では、 液浸法に基づく露光処理の際、 エッジ領域 A R 2を露光 しない構成とすることができる。 これにより、 液体の基板外側への流出を防ぐこと ができる。 なお、 本実施形態の露光装置 EXは所謂スキャニングステツバである。 したがつ て、 矢印 Xa (図 3参照) で示す走査方向 (― X方向) に基板 Pを移動させて走査 露光を行う場合には、 供給管 3、 供給ノズル 4A〜4C、 回収管 4、 及び回収ノズ ル 5 A、 5 Bを用いて、 液体供給装置 1及び液体回収装置 2により液体 50の供給 及び回収が行われる。 すなわち、 基板 Pがー X方向に移動する際には、供給管 3及 び供給ノズル 4 (4A〜4C) を介して液体供給装置 1から液体 50が投影光学系 P Lと基板 Pとの間に供給されるとともに、 回収ノズル 5 (5A、 5 B) 、 及び回 収管 6を介して液体 50が液体回収装置 2に回収され、 レンズ 60と基板 Pとの間 を満たすように一 X方向に液体 50が流れる。 一方、 矢印 X bで示す走査方向 (+ X方向) に基板 Pを移動させて走査露光を行う場合には、 供給管 1 0、 供給ノズル 8A〜8C、 回収管 1 1、 及び回収ノズル 9 A、 9 Bを用いて、 液体供給装置 1及 び液体回収装置 2により液体 50の供給及び回収が行われる。 すなわち、 基板 Pが + X方向に移動する際には、 供給管 1 0及び供給ノズル 8 (8A-8C) を介して 液体供給装置 1から液体 50が投影光学系 P Lと基板 Pとの間に供給されるととも に、 回収ノズル 9 ( 9 A、 9 B) 、 及び回収管 1 1を介して液体 50が液体回収装 置 2に回収され、 レンズ 60と基板 Pとの間を満たすように +X方向に液体 50が 流れる。 このように、 制御装置 CO N Tは、 液体供給装置 1及び液体回収装置 2を 用いて、 基板 Pの移動方向に沿って液体 50を流す。 この場合、 例えば液体供給装 置 1から供給ノズル 4を介して供給される液体 50は基板 Pの一 X方向への移動に 伴って空間 56に引き込まれるようにして流れるので、 液体供給装置 1の供給エネ ルギ一が小さくでも液体 50を空間 56に容易に供給できる。 そして、 走査方向に 応じて液体 50を流す方向を切り替えることにより、 +X方向、 又は一 X方向のど ちらの方向に基板 Pを走査する場合にも、 レンズ 60の先端面 7と基板 Pとの間を 液体 50で満たすことができ、 高い解像度及び広い焦点深度を得ることができる。 第 2実施形態 When exposing the L / S pattern 42 to the second area AR 2 of the substrate P, the mask M (L / S pattern 42) and the substrate P are moved synchronously as in the exposure processing for the first area AR 1. Exposure may be performed, exposure may be performed with the mask M and the substrate P stationary, or exposure may be performed while moving the substrate P with the mask M stationary. For example, in FIG. 6, in the second area AR2, an area AR2A that is short in the scanning direction can be exposed while the mask M and the substrate P are stationary. When exposing an area AR2B long in the scanning direction while moving the substrate P while the mask M is stationary, the projected pattern image is projected in the moving direction (scanning direction) of the substrate P. May shake continuously. In this case, the longitudinal direction of the line pattern of the L / S pattern 42 of the mask M is made to coincide with the moving direction of the substrate P in order to transfer the pattern to the area AR 2 B well even if the pattern image is blurred. It is desirable to keep. When exposing the second area AR2, it is preferable to reduce the numerical aperture of the projection optical system PL. As a result, even if unnecessary orders of diffracted light enter the projection optical system PL, it is possible to avoid a decrease in the contrast of the pattern image and a decrease in the depth of focus. As described above, the edge region AR2 of the substrate P, which is difficult to hold the liquid under the projection optical system PL (image side), is exposed without passing through the liquid. However, it is possible to prevent the liquid from flowing out of the substrate. In this case, since the optical characteristics of the projection optical system PL are optimized for immersion exposure, a desired imaging position cannot be obtained without passing through a liquid, but two-beam interference occurs without passing through a liquid. By increasing the depth of focus using the method, the LZS pattern 42 can be formed on the substrate P without using a liquid. Then, the L / S pattern 42 as a dummy pattern is formed in the second area AR 2 other than the first area AR 1 where the device pattern 41 is formed on the substrate P. In this case, it is possible to avoid the inconvenience that occurs when the substrate P hits one side against the polishing surface of the CMP apparatus. In the above embodiment, the second area AR 2 is exposed without liquid, but a collecting device for collecting the liquid flowing out of the substrate P is provided around the substrate P, and the second area AR 2 is exposed. When performing the exposure process on the AR 2, the exposure may be performed based on the two-beam interference method with the liquid disposed below the projection optical system PL or while the supply of the liquid is continued. In this case, the liquid flows out of the substrate P, so that there is insufficient liquid between the projection optical system PL and the substrate P. Although the immersion state may occur, the second area AR2 is exposed under the exposure conditions that are resistant to differential focusing such as two-beam interferometry, so that an L / S pattern is formed in the second area AR2. it can. In the above embodiment, the first area AR1 and the second area AR2 are separated by the shot area. However, the first area AR1 and the second area AR2 are set in one short area. Is also good. For example, when two chip regions exist in one shot region, only one chip region near the center of the substrate P is subjected to immersion exposure as the first region AR1, and the other chip region is set to the second region. The area AR2 may be subjected to processing such as exposure or non-exposure using a method resistant to defocus. In this case, the first area AR1 and the second area AR2 may be arranged in the scanning direction or may be separated in the non-scanning direction.c In the above embodiment, the first area AR1 is exposed to light. After the exposure, the second area AR2 is exposed, but the exposure of the second area AR2 may be performed before the first area AR1. After the exposure of the second area AR 2 is completed, the exposure of the first area AR 1 is performed, thereby further improving the formation accuracy of the device pattern 41 of the first area AR 1 that requires high pattern formation accuracy. be able to. In other words, the photoresist after the exposure light irradiation starts to deteriorate due to exposure to the outside air (air). However, after exposing the second area AR2, the first area AR1 is exposed. The time from the exposure of the area AR 1 to the development processing can be shortened, and the first area AR 1 to which the device pattern 41 has been exposed before the deterioration of the heat resist is accelerated. Can be developed. Therefore, the device pattern 41 can be formed with desired pattern formation accuracy. In the above embodiment, the L / S pattern 42 is provided separately from the device pattern 41 on the mask M. However, the second region AR is formed by using a part of the pattern of the device pattern 41. 2 may be exposed, or a pattern used for exposure of the second area AR2 may be provided on another mask. Alternatively, as shown in FIG. 8, the glass substrate MF on which the L / S pattern 42 is formed is used. The mask P is fixed on the mask stage MS so as to be juxtaposed with the mask M, and the image of the pattern 42 formed on the glass substrate MF is placed on the substrate P via an opening (not shown) of the mask stage MST. The second area AR 2 may be exposed by projecting the light onto the two area AR 2. In this case, since it is not necessary to perform a mask changing operation for exposing the second area AR2, it is possible not only to prevent a decrease in throughput but also to expose the second area AR2 on the mask M. There is also an advantage that it is not necessary to provide the L / S pattern 42 of FIG. Also, the pattern used when exposing the second area AR2 is not limited to the L / S pattern, and the fineness may be the same as the device pattern 41 or may be coarser than the device pattern 41. It may be a pattern. In short, it is only necessary to form a pattern that does not cause any problem in performing the CMP process in the subsequent process. Further, in the above embodiment, when exposing the second area AR 2, the pattern is irradiated with illuminating light and an image of the pattern is projected on the second area AR 2, but the pattern is not necessarily required. . That is, two coherent light beams intersect, an interference fringe is formed by the interference of the two light beams, and the interference fringe is projected on the second area AR2, and the interference fringe pattern is projected on the second area AR2. May be formed. FIG. 9 is a diagram showing another example of the optical system when exposing the second area AR2. In FIG. 9, a first lens system 81 including a collimating lens and a light beam passing through the first lens system 81 are located downstream of an optical path of a light source 80 capable of emitting coherent light such as laser light. A half mirror 82 that splits the light into two light beams, a second lens system 83, and an aperture stop 85 are provided. The light beam emitted from the light source 80 passes through the first lens system 81, is split into two light beams by the half mirror 82, and the two light beams enter the projection optical system PL via the second lens system 83. I do. In the second area AR2 of the substrate P, an interference fringe pattern is formed by a two-beam interference method based on two beams. Thus, it is also possible to expose the second area AR2 without using the pattern (mask M). As the light source 80, the light source of the illumination optical system I may be used, or a light source different from the illumination optical system IL may be used. Also, Her The interference fringe pitch can be changed by providing the mirrors 82 so as to be movable in the tilt direction and tilting the half mirrors 82 to change the directions of the two light beams as shown by the broken line 8 2 ′. Alternatively, a slit member having two slit-shaped openings may be arranged on the optical path, and an interference fringe pattern may be formed by two light beams passing through each slit-shaped opening. Further, in the above embodiment, the second region AR 2 is exposed under the exposure condition that is resistant to defocusing such as the two-beam interference method, but when the second region AR 2 is exposed, the liquid 50 The position of the Z stage 51 in the Z-axis direction may be adjusted in consideration of the image plane displacement caused by the outflow. That is, the second area AR2 may be exposed at an interval different from the interval between the projection optical system PL and the substrate P when exposing the first area AR1. Instead of adjusting the position of the Z stage 51 in the Z-axis direction, the position of an image plane formed via the projection optical system PL may be adjusted. That is, even when the liquid between the projection optical system PL and the substrate P is not enough, the image plane position is set so that the image plane is formed at the same position in the Z-axis direction as when the first area AR1 is exposed. Adjustments may be made. This adjustment of the image plane position is achieved by adjusting the projection optical system PL, for example, by moving some lenses to change the spherical aberration. The image plane position can also be adjusted by adjusting the wavelength of the exposure light EL or moving the mask M. It goes without saying that the position adjustment of the Z stage 51 and the adjustment of the image plane position may be used together. Further, the numerical aperture of the projection optical system PL when exposing the first area AR1 may be simply made smaller than when exposing the second area AR2 without changing the illumination conditions as in the above embodiment. . Further, the width of the line pattern formed in the second area AR2 or the width of the space between the line pattern and the line pattern may be adjusted by the exposure amount. In the above embodiment, a force CMP process for stabilizing a post-process such as a CMP process is not performed by forming a pattern also in the second region AR2 which is an edge region. Under a poor process condition, the edge area AR2 may not be exposed during the exposure processing based on the immersion method. This can prevent the liquid from flowing out of the substrate. Note that the exposure apparatus EX of the present embodiment is a so-called scanning stepper. Therefore, when scanning exposure is performed by moving the substrate P in the scanning direction (−X direction) indicated by the arrow Xa (see FIG. 3), the supply pipe 3, the supply nozzles 4A to 4C, the collection pipe 4, The liquid 50 is supplied and recovered by the liquid supply device 1 and the liquid recovery device 2 using the recovery nozzles 5A and 5B. That is, when the substrate P moves in the −X direction, the liquid 50 is supplied from the liquid supply device 1 to the projection optical system PL and the substrate P through the supply pipe 3 and the supply nozzle 4 (4A to 4C). While being supplied, the liquid 50 is recovered by the liquid recovery device 2 via the recovery nozzle 5 (5A, 5B) and the recovery pipe 6, and is moved in the X direction so as to fill the space between the lens 60 and the substrate P. Liquid 50 flows. On the other hand, when scanning exposure is performed by moving the substrate P in the scanning direction (+ X direction) indicated by the arrow Xb, the supply pipe 10, the supply nozzles 8A to 8C, the collection pipe 11, and the collection nozzle 9 A The liquid 50 is supplied and collected by the liquid supply device 1 and the liquid recovery device 2 by using the liquid supply device 9B and the liquid supply device 9B. That is, when the substrate P moves in the + X direction, the liquid 50 is supplied between the projection optical system PL and the substrate P from the liquid supply device 1 through the supply pipe 10 and the supply nozzle 8 (8A-8C). At the same time, the liquid 50 is collected in the liquid collection device 2 via the collection nozzle 9 (9A, 9B) and the collection pipe 11 so as to fill the space between the lens 60 and the substrate P. Liquid 50 flows in + X direction. As described above, the control device CONT uses the liquid supply device 1 and the liquid recovery device 2 to flow the liquid 50 along the moving direction of the substrate P. In this case, for example, the liquid 50 supplied from the liquid supply device 1 via the supply nozzle 4 flows so as to be drawn into the space 56 with the movement of the substrate P in the X direction. The liquid 50 can be easily supplied to the space 56 even if the supply energy is small. By switching the direction in which the liquid 50 flows according to the scanning direction, the substrate P can be scanned in either the + X direction or the 1X direction. The space can be filled with liquid 50, and high resolution and wide depth of focus can be obtained. Second embodiment
次に、 本発明の他の実施形態について説明する。 ここで、 以下の説明において上 述した実施形態と同一又は同等の構成部分については同一の符号を付し、 その説明 を簡略若しくは省略する。 図 1 0は、 基板 Pを保持するステージを 2つ搭載したツインステージ型露光装置 の概略構成図である。 図 1 0において、 ツインステージ型露光装置は、 基板 Pを保 持した状態で、 共通のベース 91上を各々独立に移動可能な第 1基板ステージ (第 1可動体) PST 1及び第 2基板ステージ (第 2可動体) PS T 2を備えている。 また、 ツインステージ型露光装置は露光ステーシヨン A (液浸露光ステーシヨン) と計測ステーション B (ノーマル露光ステーション) とを有しており、 露光ステ一 シヨン Aには図 1を参照して説明したシステムが搭載されており、 投影光学系 (第 1光学系) P Lと基板 Pとの間に満たされる液体 50及び投影光学系 P Lを介して 基板 Pの第 1領域 AR 1に露光光 E Lが照射される。 なお簡単のため、 図 1 0には 液体供給装置や液体回収装置等は図示されていない。 また、 露光ステーション Aの マスクステージ MSTの近傍には、 マスク Mと投影光学系 P Lとを介して第 1、 第 2基板ステージ PST 1、 P ST 2上の基準部材 94、 94' に設けられた基準マ ーク MFMを検出するマスクァライメン卜系 89が設けられている。 更に、 露光ス テーシヨン Aには、 基板 Pの表面の面情報 (Z軸方向における位置情報及び傾斜情 報) を検出するフォーカス ■ レべリング検出系 84が設けられている。 フォー力 ス■ レべリング検出系 84は、 検出光を基板 P表面に投射する投射系 84 Aとその 基板 Pからの反射光を受光する受光系 84 Bとを備えている。 一方、 計測ステーション Bは、 基板ステージ PST 2 (PST 1 ) に支持された 基板 Pと共役な位置に設けられ、 L Sパターンを含む複数のバタ一ンが形成され たガラス基材 95と、 ガラス基材 95のバタ一ンに露光光 E L 2を照明する第 2照 明光学系 (第 2光学系) I L 2と、 露光光 E L 2で照明されたガラス基材 95のパ ターンを基板ステージ P S T 2 (P S T 1 ) 上の基板 Pに投影する第 2投影光学系 (第 2光学系) PL 2と、 基板 P上のァライメントマークあるいは第 1、 第 2基板 ステージ P S T 1、 P S T 2上の基準部材 9 4、 9 4 ' に設けられた基準マーク P F Mを検出する基板ァライメン卜系 9 2と、 投射系 9 3 A及び受光系 9 3 Bを有す るフォーカス · レべリング検出系 9 3とを備えている。 計測ステーション Bでは、 第 2投影光学系 P L 2を介して、 この第 2投影光学系 P L 2と基板 Pとの間に液体 なしで、 基板 Pの第 2領域 A R 2に露光光 E L 2を照射する。 ここで、 露光ステーション Aにおける露光光 E Lの光源と、 計測ステーション B における露光光 E L 2の光源とは互いに異なっており、 計測ステーション Bにおい て第 2領域 A R 2の露光に用いられる露光光 E L 2の波長は、 露光ステーション A において第 1領域 A R 1の露光に用いられる露光光 E Lの波長と異なる。 図 1 1は、 ガラス基材 9 5の平面図である。 図 1 1に示すように、 ガラス基材 9 5は円板であって、 複数のパターンを有している。 図 1 1に示す例では、 第 1の方 向 (Y軸方向) に延在するラインパターンを有する L / Sパターン 9 6と、 多数の ドヅ トを有するドットパターン 9 7と、 前記第 1の方向と直交する第 2の方向 (X 軸方向) に延在するラインパターンを有する L / Sパターン 9 8と、 矩形状の遮光 パターンが千鳥状 (チェスボード状) に設けられたブロックパターン 9 9とが、 ガ ラス基材 9 5の周方向にほぼ等間隔で設けられている。 なお、 パターン形状として は図 1 1に示されるものに限定されない。 また、 ガラス基材 9 5は軸部 9 5 Aを中 心に 0 Z方向に回転可能となっている。 そして、 ガラス基材 9 5が回転することで、 複数のパターン 9 6〜9 9のぅちの1つのパターンが露光光 E L 2の光路上に配置 されるようになつている。 図 1 1に示す例では、 L / Sパターン 9 6が露光光 E L 2の光路上に配置されている。 なお、 ガラス基材 9 5としては円板状に限らず、 図 1 2に示すように、 平面視矩 形状の板部材であってもよい。 そして、 この矩形状のガラス基材 9 5, 上に、 所定 方向に並んだ複数のパターン 9 6〜9 9が形成されている。 このガラス基材 9 5 ' は前記所定方向に並進移動可能となっており、 所定方向に移動することで、 ガラス 基材 9 5 ' 上の複数のパターン 9 6〜 9 9のうち 1つのパターンが露光光 E L 2の 光路上に配置されるよう (こなっている。 図 1 0に示すように、 第 1、 第 2基板ステージ P S T 1、 P S T 2上のそれぞれ に設けられた基準部材 9 4、 9 4 ' には、 基板ァライメント系 9 2により検出され る基準マーク P F Mと、 マスクァライメン卜系 8 9により検出される基準マーク M F Mとが所定の位置関係で設けられている。 また、 基準部材 9 4、 9 4 ' の表面は ほぼ平坦となっており、 フォーカス ' レべリング検出系の基準面としての役割も果 たす。 更に、 基準部材 9 4、 9 4 ' の表面は基板 Pの表面とほぼ同じ高さに設定さ れている。 なお、 上記才ー卜フォーカス · レべリング検出系の構成としては、 例えば特開平 8 - 3 7 1 4 9号公報に開示されているものを用いることができる。 また、 基板ァ ライメン卜系 9 2の構成としては、 特開平 4— 6 5 6 0 3号公報に開示されている ものを用いることができ、 マスクァライメント系 8 9の構成としては、 例えば特開 平 7— 1 7 6 4 6 8号公報に開示されているものを用いることができる。 これらの 各文献に記載の内容については、 本国際出願で指定または選択された国の法令で許 容される限りにおいて、 援用して本文の記載の一部とする。 次に、 上述した構成を有するツインステージ型露光装置の動作について、 図 1 0 を用いて説明する。 露光ステーション Aにおいて、 投影光学系 P Lを用いて第 1基板ステージ P S T 1に保持された基板 P上の第 1領域 A R 1の液体 5 0を介した露光中に、 計測ステ —シヨン Bにおいて、 第 2基板ステージ P S T 2上の基板 Pの計測処理、 及び第 2 投影光学系 P L 2を用いた第 2基板ステージ P S T 2に保持された基板 P上の第 2 領域 A R 2の露光が、 液体を介さずに行われる。 なお、 露光ステーション Aで第 1 領域 A R 1を露光されている基板 Pには、 その前に計測ステーション Bで計測処理 及び第 2領域 A R 2に対する露光処理が予め行われている。 ここで、 第 2基板ステージ P S T 2上の基板 Pに対する計測ステ一シヨン Bにお ける計測処理では、 基板ァライメン卜系 9 2、 フォーカス · レべリング検出系 9 3、 及び基準部材 9 4 ' を用いて液体を介さない計測処理が行われる。制御装置 C〇 N Tは、 第 2基板ステージ P S T 2の X Y方向の位置を検出するレーザ干渉計の出力 をモニタしつっこの第 2基板ステージ P S T 2を移動する。 その移動の途中で、 基 板ァライメン卜系 9 2は基板 P上にショヅ卜領域に対応して形成されている複数の ァライメントマーク (不図示) を液体を介さずに検出する。 なお、 基板ァライメン 卜系 9 2がァライメン卜マークの検出を行うときは第 2基板ステージ P S T 2は停 止される。 その結果、 レーザ干渉計によって規定される座標系内での各ァライメン 卜マークの位置情報が計測され、 この計測結果は制御装置 C 0 N Tに記憶される。 ただし、 基板ァライメン卜系 9 2が移動中の基板 P上のァライメン卜マークを検出 できる場合には、 第 2基板ステージ P S T 2を止めなくてもよい。 また、 その第 2基板ステージ P S T 2の移動中に、 フォーカス ' レべリング検出 系 9 3により基板 Pの表面情報が液体を介さずに検出される。 フォーカス . レペリ ング検出系 9 3による表面情報の検出は基板 P上の例えば全てのショッ卜領域毎に 行われ、 検出結果は基板 Pの走査方向 (X軸方向) の位置を対応させて制御装置 C O N Tに記憶される。 基板 Pのァライメン卜マークの検出、 及び基板 Pの表面†S報の検出が終了すると、 基板ァライメント系 9 2の検出領域が基準部材 9 4 ' 上に位置決めされるように、 制御装置 C O N Tは第 2基板ステージ P S T 2を移動する。 基板ァライメン卜系 9 2は基準部材 9 4 ' 上の基準マーク P F Mを検出し、 レーザ干渉計によって規定さ れる座標系内での基準マーク P F Mの位置情報を計測する。 この基準マーク P F Mの検出処理の完了により、 基準マーク P F Mと基板 P上の 複数のァライメン卜マークとの位置関係、 すなわち、 基準マーク P F Mと基板 P上 の複数のショウ 卜領域との位置関係がそれぞれ求められたことになる。 また、 第 2 基板ステージ P S T 2上の基準部材 9 4 ' の基準マーク P F Mと、 露光ステ—ショ W Next, another embodiment of the present invention will be described. Here, in the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof will be simplified or omitted. FIG. 10 is a schematic configuration diagram of a twin-stage type exposure apparatus equipped with two stages for holding a substrate P. In FIG. 10, the twin-stage type exposure apparatus has a first substrate stage (first movable body) PST 1 and a second substrate stage that can independently move on a common base 91 while holding the substrate P. (Second movable body) PST 2 is provided. The twin-stage type exposure apparatus has an exposure station A (liquid immersion exposure station) and a measuring station B (normal exposure station). The exposure station A includes the system described with reference to FIG. The exposure light EL is applied to the first area AR 1 of the substrate P via the projection optical system (first optical system) PL and the liquid 50 filled between the substrate P and the projection optical system PL . For simplicity, FIG. 10 does not show a liquid supply device, a liquid recovery device, and the like. In addition, near the mask stage MST of the exposure station A, the reference members 94 and 94 'on the first and second substrate stages PST1 and PST2 are provided via the mask M and the projection optical system PL. Reference mark A mask alignment system 89 for detecting MFM is provided. Further, the exposure station A is provided with a focus / leveling detection system 84 for detecting surface information (positional information and tilt information in the Z-axis direction) on the surface of the substrate P. The forcing force leveling detection system 84 includes a projection system 84A for projecting detection light onto the surface of the substrate P and a light receiving system 84B for receiving light reflected from the substrate P. On the other hand, the measuring station B is provided at a position conjugate with the substrate P supported on the substrate stage PST 2 (PST 1), and has a glass substrate 95 on which a plurality of patterns including an LS pattern are formed, and a glass substrate. A second illumination optical system (second optical system) that illuminates the exposure light EL 2 on the pattern of the material 95 (the second optical system). (PST 1) The second projection optical system (second optical system) PL 2 that projects onto the substrate P on the substrate P and the alignment mark on the substrate P or the first and second substrates A substrate alignment system 92 for detecting the reference mark PFM provided on the reference members 94, 94 'on the stages PST1 and PST2, and a focus having a projection system 93A and a light receiving system 93B · A leveling detection system 93 is provided. At the measurement station B, the second region AR2 of the substrate P is exposed to the exposure light EL2 via the second projection optical system PL2 without liquid between the second projection optical system PL2 and the substrate P. I do. Here, the light source of the exposure light EL at the exposure station A is different from the light source of the exposure light EL 2 at the measurement station B, and the exposure light EL 2 used for the exposure of the second area AR 2 at the measurement station B is different. Is different from the wavelength of the exposure light EL used for exposing the first area AR1 at the exposure station A. FIG. 11 is a plan view of the glass substrate 95. As shown in FIG. 11, the glass substrate 95 is a disk and has a plurality of patterns. In the example shown in FIG. 11, the L / S pattern 96 having a line pattern extending in the first direction (Y-axis direction), the dot pattern 97 having a large number of dots, and the first L / S pattern 98 having a line pattern extending in a second direction (X-axis direction) perpendicular to the direction of the block, and a block pattern 9 in which rectangular light-shielding patterns are provided in a staggered (chessboard-like) manner. 9 are provided at substantially equal intervals in the circumferential direction of the glass substrate 95. Note that the pattern shape is not limited to that shown in FIG. The glass substrate 95 is rotatable in the 0 Z direction about the shaft 95A. Then, by rotating the glass base 95, one of the plurality of patterns 96 to 99 is arranged on the optical path of the exposure light EL2. In the example shown in FIG. 11, the L / S pattern 96 is arranged on the optical path of the exposure light EL2. The glass substrate 95 is not limited to a disk shape, and may be a plate member having a rectangular shape in plan view as shown in FIG. A plurality of patterns 96 to 99 arranged in a predetermined direction are formed on the rectangular glass base 95. The glass substrate 95 ′ can be translated in the predetermined direction, and by moving in the predetermined direction, one of a plurality of patterns 96 to 99 on the glass substrate 95 ′ is changed. Exposure light EL 2 As shown in FIG. 10, the reference members 94, 94 provided on the first and second substrate stages PST1, PST2 respectively have A reference mark PFM detected by the substrate alignment system 92 and a reference mark MFM detected by the mask alignment system 89 are provided in a predetermined positional relationship. The surface is almost flat, and also serves as a reference plane for the focus 'leveling detection system.Furthermore, the surface of the reference members 94, 94' is at the same height as the surface of the substrate P. As the configuration of the above-mentioned focus / leveling detection system, for example, the configuration disclosed in Japanese Patent Application Laid-Open No. 8-37149 can be used. The configuration of the substrate alignment system 92 is disclosed in The configuration of the mask alignment system 89 can be, for example, the configuration disclosed in Japanese Patent Application Laid-Open No. 7-176468. The contents described in each of these documents are incorporated as a part of the description of the text as far as is permitted by the laws of the country designated or selected in this international application. The operation of the twin-stage type exposure apparatus will be described with reference to Fig. 10. In an exposure station A, a first area AR1 on a substrate P held on a first substrate stage PST1 using a projection optical system PL. During the exposure through the liquid 50, the measurement process of the substrate P on the second substrate stage PST 2 and the second substrate stage PST 2 using the second projection optical system PL 2 are performed in the measurement station B. Second area AR 2 on held substrate P Exposure is performed without the intermediary of the liquid.Before the substrate P that has been exposed in the first area AR1 at the exposure station A, the measurement processing is performed at the measurement station B and the exposure processing is performed on the second area AR2. Has been performed in advance. Here, in the measurement processing in the measurement stage B for the substrate P on the second substrate stage PST2, the substrate alignment system 92, the focus / leveling detection system 93, and the reference member 94 ′ are connected. Measurement processing is performed using no liquid. The control device C〇NT monitors the output of the laser interferometer that detects the position of the second substrate stage PST 2 in the XY direction, and moves the second substrate stage PST 2. During the movement, the substrate alignment system 92 detects a plurality of alignment marks (not shown) formed on the substrate P corresponding to the shot areas without passing through the liquid. When the substrate alignment system 92 detects an alignment mark, the second substrate stage PST 2 is stopped. As a result, the position information of each alignment mark in the coordinate system defined by the laser interferometer is measured, and the measurement result is stored in the controller C0NT. However, if the substrate alignment system 92 can detect an alignment mark on the moving substrate P, the second substrate stage PST 2 need not be stopped. Also, while the second substrate stage PST 2 is moving, the surface information of the substrate P is detected by the focus / leveling detection system 93 without passing through the liquid. The detection of surface information by the focus and repeller detection system 93 is performed, for example, for every shot area on the substrate P, and the detection results correspond to the position of the substrate P in the scanning direction (X-axis direction). Stored in CONT. When the detection of the alignment mark of the substrate P and the detection of the surface † S report of the substrate P are completed, the control device CONT operates so that the detection area of the substrate alignment system 92 is positioned on the reference member 94 ′. 2 Move the substrate stage PST 2. The substrate alignment system 92 detects the reference mark PFM on the reference member 94 'and measures the position information of the reference mark PFM in the coordinate system defined by the laser interferometer. Completion of the detection process of the reference mark PFM causes the positional relationship between the reference mark PFM and a plurality of alignment marks on the substrate P, that is, the positional relationship between the reference mark PFM and the plurality of shot areas on the substrate P, respectively. That is what was required. Also, the reference mark PFM of the reference member 94 ′ on the second substrate stage PST2 and the exposure stage W
ン Aのマスクァライメン卜系 8 9で検出される基準部材 9 4, 上の基準マーク M F Mとは所定の位置関係にあるので、 X Y平面内における基準マーク M F Mと基板 P 上の複数のショウ 卜領域との位置関係がそれぞれ決定されたことになる。 そして、 これら位置関係も制御装置 C 0 N Tに記憶される。 また、 基板ァライメン卜系 9 2による基準部材 9 4 ' 上の基準マーク P F Mの検 出の前又は後に、 制御装置 C O N Tは基準部材 9 4 ' の表面 (基準面) の表面情報 をフォーカス - レべリング検出系 9 3により検出する。 この基準部材 9 4 ' の表面 の検出処理の完了により、 基準部材 9 4 ' 表面と基板 P表面との関係が求められた ことになる。 そして、 液体を介さない計測処理が完了すると、 第 2投影光学系 P L 2を使って 液体を介さない第 2領域 A R 2に対する露光処理が行われる。基板 Pの第 2領域 A R 2を露光する際、 第 1領域 A R 1に形成されるデバイスパターン 4 1に応じて、 ガラス基材 9 5の複数のパターン 9 6〜9 9のうち 1つのパターンが選択され、 露 光光 E L 2の光路上に配置される。具体的には、 デバイスパターン 4 1の形状に基 づいて、 第 2領域 A R 2を露光するために使用されるパターンが選択される。例え ば、 デバイスパターン 4 1が所定方向に延在する L / Sバタ一ンであれば、 第 2領 域 A R 2に露光するパターンも、 前記所定方向に延在する L / Sパターンとする。 また、 デバイスパターン 4 1がド ト状のパターンであれば、 第 2領域 A R 2に露 光するパターンもドヅ卜パターンとする。 つまり、 第 2領域 A R 2には、 第 1領域 A R 1に露光されるパターンに類、似した (あるいは同じ) パターンが露光される。 これにより、 例えば C M P処理においても基板 Pが C M P研磨面に片当たりすると し、つた不都合を防止することができる。 あるいは、 デバイスパターン 4 1のパターン形成密度に基づいて、 第 2領域 A R 2を露光するために使用するパターンを選択してもよい。 ここで、 パターン形成密 度とは、 基板 P上の単位面積あたりに形成されるパターンの割合、 換言すれば露光 光が照射される面積の割合である。例えば、 ガラス基材 9 5上に、 ライン幅とスぺ —ス幅との比率がそれぞれ異なる L/Sパターンを複数設けておき、 第 1領域 A R 1に形成されるデバイスパターン 41のパターン形成密度に応じて、 前記複数の L /Sパターンから 1つの L/Sパターンを選択し、 第 2領域 AR 2に露光すること によっても、 CM P処理において基板 Pが CM P研磨面に片当たりするといつた不 都合を防止することができる。 第 1基板ステージ P S T 1に保持された基板 P上の第 1領域 A R 1に対する露光 処理、 及び第 2基板ステージ P S T 2に保持された基板 P上の計測処理及び第 2領 域 A R 2に対する露光処理が終了すると、 第 1基板ステージ P S T 1が計測ステー シヨン Bに移動し、 それと並行して第 2基板ステージ P S T 2が露光ステーション Aに移動し、 第 1基板ステージ P ST 1 と第 2基板ステージ P S T 2との交換作業 (スワッピング) が行われる。 そして、 計測ステーション Bにおいて、 第 1基板ス テージ P S T 1上の露光処理を終えた基板 Pがアンロードされて現像装置に搬送さ れるとともに、 露光処理前の基板 Pが第 1基板ステージ P ST 1にロードされ、 こ の基板 Pに対して計測処理及び露光処理が行われる。 一方、 露光ステーション Aでは、 第 2基板ステージ P S T 2の基準部材 94' と 投影光学系 P Lとが対向するように、 第 2基板ステージ P S T 2の位置決めがされ る。 この状態で、 制御装置 CO NTは液体供給装置を使って液体 50の供給を開始 し、 投影光学系 P Lと基準部材 94' との間を液体 50で満たし、 液体 50を介し た計測処理を行う。 つまり、 制御装置 CON Tは、 マスクァライメン卜系 89により基準部材 94' 上の基準マーク MFMを検出できるように、 第 2基板ステージ P S T 2を移動する c 当然のことながらこの状態では投影光学系 P Lの先端部と基準部材 94' とは対向 している。 ここで、 制御装置 CO N Tは液体供給装置及び液体回収装置による液体 50の供給及び回収を開始し、 投影光学系 P Lと基準部材 94' との間を液体で満 たす。 次に、 制御装置 CONTは、 マスクァライメン卜系 89によりマスク M、 投影光 学系 P L、 及び液体 50を介して基準マーク MFMの検出を行う。 すなわち、 マス ク Mのマークと基準マーク MFMとの位置関係が投影光学系 P Lと液体 50とを介 して検出される。 これにより投影光学系 P Lと液体 50とを介して、 XY平面内に おけるマスク Mの位置、 すなわちマスク Mのパターンの像の投影位置情報が基準マ ーク MFMを使って検出されたことになる。 また、 制御装置 CONTは、 投影光学系 P Lと基準部材 94' との間に液体 50 を供給した状態で、 基準部材 94' の表面 (基準面) をフォーカス ■ レベリング検 出系 84で検出し、 投影光学系 P L及び液体 50を介して形成される像面と基準部 材 94' の表面との関係を計測する。 これにより、 投影光学系 P L及び液体 50を 介して形成される像面と基板 P表面との関係が、 基準部材 94' を使って検出され たことになる。 以上のような計測処理が終了すると、 制御装置 CO NTは、 液体供給装置及び液 体回収装置の駆動を一旦停止した後、 投影光学系 P Lと基板 Pとが対向するように 第 2基板ステージ S PT 2を移動する。 そして、 制御装置 CO NTは液体供給装置 及び液体回収装置を駆動することで、 投影光学系 P Lと基板 Pとの間に液浸部分を 形成し、 第 2領域 A R 2を露光された第 2基板ステージ P ST 2上の基板 Pの第 1 領域 AR 1に対するデバイスパターン 41の露光を開始する。 つまり、 前述の計測 処理中に求めた各情報を使って、 投影光学系 P L及び液体 50を介して、 基板 P上 の各ショッ卜領域に対する走査露光を開始する。 各ショッ 卜領域のそれぞれに対す る走査露光中は、 液体 50の供給前に求めた基準マーク P FMと各ショウ 卜領域と の位置関係の情報 (計測ステーション Bで予め求めたショッ卜領域の位置情報) 、 及び液体 50の供給後に基準マーク MFMを使つて求めたマスク Mのパターンの像 の投影位置情報に基づいて、 基板 P上の各ショッ卜領域とマスク Mとの位置合わせ が行われる。 また、 各ショッ卜領域に対する走査露光中は、 液体 50の供給前に求めた基準部 材 9 4 ' 表面と基板 P表面との関係の情報、 及び液体 5 0の供給後に求めた基準部 材 9 4 ' 表面と液体 5 0を介して形成される像面との位置関係の情報に基づいて、 フォーカス · レべリング検出系 8 4を使うことなしに、 基板 P表面と液体 5 0を介 して形成される像面との位置関係が調整される。 なお、 走査露光中にフォーカス■ レべリング検出系 8 4を使って基板 P表面の面 情報を検出し、 基板 P表面と像面との位置関係の調整結果の確認に用いるようにし てもよい。 また、 走査露光中に、 フォーカス . レべリング検出系 8 4を使って基板 P表面の面 ft報を検出し、 走査露光中に検出された面情報を更に加味して、 基板 P 表面と像面との位置関係を調整するようにしてもよい。 また、 上述の実施形態では、 基板 P表面と像面との位置関係の調整は基板 Pを保 持する第 2基板ステージ P S T 2を動かすことによって行ってもよいし、 マスク M や投影光学系 P Lを構成する複数のレンズの一部を動かして、 像面を基板 P表面に 合わせるようにしてもよい。 そして、 計測ステーション Bに移動した第 1基板ステージ P S T 1に口一ドされ た露光処理前の基板 Pに対しては、 上述した手順同様、 基準部材 9 4を使った計測 処理及び液体を介さない第 2領域 A R 2に対する露光処理が行われる。 以上説明したように、 基板 Pの第 1領域 A R 1に対して露光光 E Lを照射する照 明光学系 I L及び投影光学系 P Lを含む第 1光学系と、 基板 Pの第 2領域 A R 2に 対して露光光 E L 2を照射する第 2照明光学系 I L 2及び第 2投影光学系 P L 2を 含む第 2光学系とをそれぞれ設けたので、 第 1、 第 2領域 A R 1、 A R 2のそれぞ れに対する露光処理を並行して行うことができ、 露光処理のスループッ 卜を向上す ることができる。 なお、 本実施形態では、 ガラス基材 9 5に複数のパターンを設けておき、 第 1領 域 A R 1に形成されるべきデバイスパターン 4 1に応じて、 複数のパターンのうち の 1つを選択してガラス基材 9 5を回転し、 このパターンを基板 Pの第 2領域 A R 2に露光しているが、 ガラス基材 9 5のかわりに、 計測ステーション Bにマスクス テ一ジ M S Tを設け、 このマスクステージ M S Tに基板 Pの第 2領域 A R 2を露光 するためのパターンを有するマスクを載置し、 このマスクのパターンを露光光 E L 2を使って基板 Pの第 2領域 A R 2に露光するようにしてもよい。 あるいは、 バタ ーンを使わずに、 図 9等を参照して説明した光学系を計測ステーション Bに設けて おき、 基板 P上の第 2領域 A R 2を二光束干渉法により露光してもよい。 この場合、 第 1領域 A R 1のデバイスパターン 4 1に応じてハーフミラ一 8 2を駆動し、 デバ イスパターン 4 1のパターン形成密度に応じた干渉縞ピッチで露光することが好ま しい。 本実施形態では、 第 1領域 A R 1を露光するときと第 2領域 A R 2を露光すると きとで、 互いに波長の異なる露光光を使用している。第 2領域 A R 2は基板 Pのェ ッジ部であってパターン形成精度がある程度低くても許容されるため、 例えば第 1 領域 A R 1を露光するときには短波長のレーザ光を使い、 第 2領域 A R 2を露光す るときは水銀ランプから射出された光束やその他フ才トレジス卜を感光可能な光束 を使えばよい。 あるいは、 露光ステーション Aの露光光 E Lの光源から射出された 光束を例えば光ファィバを使って分岐して計測ステ一シヨン Bまで伝送し、 この分 岐光を使って基板 Pの第 2領域 A R 2を露光することもできる。 また、 第 2投影光 学系 P L 2は比較的解像度が低くても許容されるので、 装置コストを抑えることが できる。 ただし、 互いに波長の同一な露光光を用いてもよいことは言うまでもない 本実施形態では、 基板ステージを 2つ有するツインステージ型露光装置を例にし て説明したが、 図 1 3に示すように、 1つの基板ステージ P S Tの上方に、 基板 P 上の第 1領域 A R 1に露光光 E Lを照射する投影光学系 P Lと、 第 2領域 A R 2に 露光光 E L 2を照射する第 2投影光学系 P L 2とが設けられている構成であっても よい。 この場合、 露光光 E Lと露光光 E L 2とは互いに異なる光源から射出された ものでもよいし、 同じ光源から射出されたものでもよい。 露光する際には、 基板ス テ一ジ P S Tにロードされた露光処理前の基板 Pに対してァライメント処理が行わ れ、 第 2投影光学系 P L 2を使って、 液体なしの、 基板 P上の第 2領域 A R 2に対 する露光が完了した後に、 投影光学系 P L及び液体 5 0を介して第 1領域 A R 1の 露光が行われる。 また、 基板 P上の第 2領域 A R 2を露光する第 2光学系は、 投影光学系 (第 1光 学系) P Lに併設されている必要は無く、 例えば露光処理前の基板にフ才卜レジス 卜を塗布し露光処理後の基板を現像するコ一夕 ■デベロツバ装置と、 露光装置の基 板ステージ P S Tとの間の搬送経路の途中に、 基板 P上の第 2領域 A R 2を露光す るための前記第 2光学系を有する露光処理部を設けてもよい。 これにより、 基板 P は、 基板ステージ P S T上に載置された状態で投影光学系 P Lを介して露光される 露光処理の前又は後に (コ一夕でフォトレジス卜を塗布された直後、 あるいはデべ 口ヅパで現像される直前に) 、 第 2領域 A R 2を露光されることが可能となる。 あ るいは、 基板 Pの第 2領域 A R 2を露光する露光処理部 (第 2光学系) を、 コ一 夕 ·デベロヅパ装置に設ける構成とすることも可能である。 また、 基板 Pの第 1領域 A R 1に露光光を照射する第 1光学系、 及び第 2領域 A R 2に露光光を照射する第 2光学系を備えた露光装置は、 投影光学系及び液体を介 して露光する液浸露光装置の他に、 液体を介さないで露光する露光装置に適用する ことももちろん可能である。例えば、 第 1領域 A R 1 (デバイスパターン) を露光 するための第 1光学系が、 真空紫外光を使った光学系である等、 光学素子や光源の 寿命が比較的短い場合、 この第 1光学系を使って第 1、 第 2領域 A R 1 s A R 2の 双方を露光すると、 短期間で寿命となる。 そこで、 低い解像度が許容される第 2領 域 A R 2に対する露光を、 真空紫外光を使わない第 2光学系を用いて行うことで、 第 1光学系の寿命低下を抑制し、 装置コス卜やランニングコス卜を低減することが できる。 なお、 第 2領域 A R 2は、 液浸領域の大きさによって規定すればよい。 すなわち、 露光光の光路に液体を保持できる領域を第 1領域 A R 1、 露光光の光路を液体で満 たすことのできない領域を第 2領域 A R 2と規定すればよい。 液浸領域が大きけれ ば、 第 2領域 A R 2は広く、 逆に液浸領域が小さければ、 第 2領域 A R 2は小さく 規定されることになり、 液浸領域の大きさと基板 P上のショヅト領域 (チップ) の 配置からいずれのショット領域 (チップ) を第 2領域 A R 2とするかを決めること ができる。 また、 上述の実施形態における液体供給装置と液体回収装置は、 投影光学系 P L の投影領域の両側に供給ノズルと回収ノズルとを有し、 基板 Pの走査方向に応じて、 投影領域の一方側から液体を供給し、 他方側で液体を回収する構成であるが、 液体 供給装置と液体回収装置の構成はこれに限られず、 投影光学系 P Lの像面側に局所 的に液浸領域が形成できればよい。 ここで、 「局所的な液浸領域」 とは、 基板 Pよ りも小さな液浸領域をいう。 上述したように、 上記実施形態における液体 5 0は純水により構成されている。 純水は、 半導体製造工場等で容易に大量に入手できるとともに、 基板 P上のフ才卜 レジス卜や光学素子 (レンズ) 等に対する悪影響がない利点がある。 また、 純水は 環境に対する悪影響がないとともに、 不純物の含有量が極めて低いため、 基板 の 表面、 及び投影光学系 P Lの先端面に設けられている光学素子の表面を洗浄する作 用も期待できる。 そして、 波長が 1 9 3 n m程度の露光光 E Lに対する純水 (水) の屈折率 nはほ ぽ 1 . 4 7〜1 . 4 4程度と言われており、 露光光 E Lの光源として A r Fエキシ マレーザ光 (波長 1 9 3 n m ) を用いた場合、 基板 P上では 1 / n、 すなわち約 1 3 1〜1 3 4 n m程度に短波長化されて高い解像度が得られる。 更に、 焦点深度は 空気中に比べて約 n倍、 すなわち約 1 . 4 7〜1 . 4 4倍程度に拡大されるため、 空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学 系 P Lの開口数をより増加させることができ、 この点でも解像度が向上する。 上記実施形態では、 投影光学系 P Lの先端にレンズ 6 0が取り付けられているが、 投影光学系 P Lの先端に取り付ける光学素子としては、 投影光学系 P Lの光学特性、 例えば収差 (球面収差、 コマ収差等) の調整に用いる光学プレー卜であってもよい c あるいは露光光 E Lを透過可能な平行平面板であってもよい。 液体 5 0と接触する 光学素子を、 レンズより安価な平行平面板とすることにより、 露光装置 E Xの運搬、 組立、 調整時等において投影光学系 P Lの透過率、 基板 P上での露光光 E Lの照度、 及び照度分布の均一性を低下させる物質 (例えばシリコン系有機物等) がその平行 平面板に付着しても、 液体 5 0を供給する直前にその平行平面板を交換するだけで よく、 液体 5 0と接触する光学素子をレンズとする場合に比べてその交換コス卜が 低くなるという利点がある。 すなわち、 露光光 E Lの照射によりレジストから発生 する飛散粒子、 または液体 5 0中の不純物の付着などに起因して液体 5 0に接触す る光学素子の表面が汚れるため、 その光学素子を定期的に交換する必要があるが、 この光学素子を安価な平行平面板とすることにより、 レンズに比べて交換部品のコ ス卜が低く、 且つ交換に要する時間を短くすることができ、 メンテナンスコス卜 (ランニングコスト) の上昇やスループットの低下を抑えることができる。 また液 体 5 0の流れによって生じる投影光学系の先端の光学素子と基板 Pとの間の圧力が 大きい場合には、 その光学素子を交換可能とするのではなく、 その圧力によって光 学素子が動かないように堅固に固定してもよい。 なお、 上記実施形態の液体 5 0は水であるが、 水以外の液体であってもよい、 例 えば、 露光光 E Lの光源が F 2レーザである場合、 この F 2レーザ光は水を透過し ないので、 この場合、 液体 5 0としては F 2レーザ光を透過可能な例えばフッ素系 オイル (フヅ素系の液体) や過フヅ化ポリエーテル (P F P E ) であってもよい。 また、 液体 5 0としては、 その他にも、 露光光 E Lに対する透過性があってできる だけ屈折率が高く、投影光学系 P Lや基板 P表面に塗布されているフォトレジスト に対して安定なもの (例えばセダ一油) を用いることも可能である。 なお、 上記各実施形態の基板 Pとしては、 半導体デバイス製造用の半導体ウェハ のみならず、 ディスプレイデバイス用のガラス基板や、 薄膜磁気へッ ド用のセラミ ヅクウェハ、 あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石 英、 シリコンウェハ) 等が適用される。 露光装置 EXとしては、 マスク Mと基板 Pとを同期移動してマスク Mのパターン を走査露光するステップ .アンド 'スキャン方式の走査型露光装置 (スキャニング ステツパ) の他に、 マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一 括露光し、 基板 Pを順次ステップ移動させるステップ■アンド · リピー卜方式の投 影露光装置 (ステツパ) にも適用することができる。 また、 本発明は基板 P上で少 なくとも 2つのパターンを部分的に重ねて転写するステップ'アンド ·スティツチ 方式の露光装置にも適用できる。 露光装置 E Xの種類としては、 基板 Pに半導体素子パ夕一ンを露光する半導体素 子製造用の露光装置に限られず、 液晶表示素子製造用又はデイスプレイ製造用の露 光装置や、 薄膜磁気へヅド、 撮像素子 (CC D) あるいはレチクル又はマスクなど を製造するための露光装置などにも広く適用できる。 また、 上述したように、 本発明は、 ツインステージ型の露光装置にも適用できる c ツインステージ型の露光装置の構造及び露光動作は、 例えば特開平 1 0— 1 630 99号及び特開平 1 0— 2 1 4783号 (対応米国特許 6, 341 , 007、 6, 400, 441、 6, 549, 269及び 6, 590, 634) 、 特表 2000— 505958号 (対応米国特許 5, 969, 441 ) あるいは米国特許 6 , 208, 407に開示されており、 それぞれ本国際出願で指定または選択された国の法令 で許容される限りにおいて、 これらの文献の記載を援用して本文の記載の一部と する。 基板ステージ P S Tやマスクステージ MS Tにリニアモータ (USP5, 623,853 ま たは USP5,528,118参照) を用いる場合は、 エアベアリングを用いたエア浮上型お よび口一レンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよ い。 また、 各ステージ P S T、 MSTは、 ガイ ドに沿って移動するタイプでもよく、 ガイ ドを設けないガイ ドレスタイプであってもよい。 米国特許 5, 623, 853及 び 5, 528, 1 1 8を、 本国際出願で指定または選択された国の法令で許容され る限りにおいて、 援用して本文の記載の一部とする。 各ステージ P S T、 M S Τの駆動機構としては、 二次元に磁石を配置した磁石ュ ニッ 卜と、 二次元にコイルを配置した電機子ュニッ卜とを対向させ電磁力により各 ステージ P S T、 M S Tを駆動する平面モータを用いてもよい。 この場合、 磁石ュ ニヅ 卜と電機子ュニッ卜とのいずれか一方をステージ P S T、 M S Τに接続し、 磁 石ュニヅトと電機子ュニッ 卜との他方をステージ P S T . M S Tの移動面側に設け ればよ.い。 基板ステージ P S Tの移動により発生する反力は、 投影光学系 P Lに伝わらない ように、 フレー厶部材を用いて機械的に床 (大地) に逃がしてもよい。 この反力の 処理方法は、 例えば、 米国特許 5 , 5 2 8 , 1 1 8 (特開平 8— 1 6 6 4 7 5号公 報) に詳細に開示されており、 この米国特許を、 本国際出願で指定または選択さ れた国の法令で許容される限りにおいて、 援用して本文の記載の一部とする。 マスクステージ M S Tの移動により発生する反力は、 投影光学系 P Lに伝わらな いように、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。 この反力 の処理方法は、 例えば、 米国特許 5, 8 7 4 , 8 2 0 (特開平 8— 3 3 0 2 2 4号公 報) に詳細に開示されており、 本国際出願で指定または選択された国の法令で許 容される限りにおいて、 この文献の記載内容を援用して本文の記載の一部とする。 以上のように、 本願実施形態の露光装置 E Xは、 本願特許請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、所定の機械的精度、 電気的精度、 光学的 精度を保つように、 組み立てることで製造される。 これら各種精度を確保するため に、 この組み立ての前後には、 各種光学系については光学的精度を達成するための 調整、 各種機械系については機械的精度を達成するための調整、 各種電気系につい ては電気的精度を達成するための調整が行われる。 各種サブシステムから露光装置 への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回路の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露光装置への組み立 て工程の前に、 各サブシステム個々の組み立て工程があることはいうまでもない。 各種サブシステムの露光装置への組み立て工程が終了したら、 総合調整が行われ、 露光装置全体としての各種精度が確保される。 なお、 露光装置の製造は温度および クリーン度等が管理されたクリーンルームで行うことが望ましい。 半導体デバイス等のマイクロデバイスは、 図 1 4に示すように、 マイクロデバイ スの機能■性能設計を行うステップ 2 0 1 、 この設計ステップに基づいたマスク (レチクル) を製作するステップ 2 0 2、 デバイスの基材である基板を製造するス テツプ 2 0 3、 前述した実施形態の露光装置 E Xによりマスクのパターンを基板に 露光する露光処理ステップ 2 0 4、 デバイス組み立てステップ (ダイシング工程、 ボンディング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6等を経て 製造される。 産業上の利用可能性 本発明によれば、 液浸露光する際、 基板上の第 1領域と第 2領域とを異なる露光 条件で露光するようにしたので、 基板外側への液体の流出を抑えながら基板のエツ ジ領域に対しても良好にパターン転写でき、 所望の性能を発揮できるデバイスを製 造できる。 Since the reference mark MFM on the reference member 94 detected by the mask alignment system 89 of A is in a predetermined positional relationship, the reference mark MFM in the XY plane and the plurality of shot areas on the substrate P Are determined. These positional relationships are also stored in the control device C 0 NT. Before or after detecting the reference mark PFM on the reference member 94 ′ by the substrate alignment system 92, the control device CONT focuses on the surface information of the surface (reference surface) of the reference member 94 ′. Detected by ring detection system 93. By the completion of the detection processing of the surface of the reference member 94 ', the relationship between the surface of the reference member 94' and the surface of the substrate P has been obtained. Then, when the measurement processing that does not pass through the liquid is completed, the exposure processing is performed on the second area AR2 that does not pass through the liquid using the second projection optical system PL2. When exposing the second region AR2 of the substrate P, one of the plurality of patterns 96 to 99 of the glass substrate 95 is formed according to the device pattern 41 formed in the first region AR1. Selected and placed on the optical path of the exposure light EL2. Specifically, a pattern used for exposing the second area AR2 is selected based on the shape of the device pattern 41. For example, if the device pattern 41 is an L / S pattern extending in a predetermined direction, the pattern exposed on the second area AR2 is also an L / S pattern extending in the predetermined direction. If the device pattern 41 is a dot pattern, a pattern exposed to the second area AR2 is also a dot pattern. In other words, the second area AR2 is exposed to a pattern similar to (or the same as) the pattern exposed to the first area AR1. This makes it possible to prevent the substrate P from hitting the CMP polished surface even in, for example, the CMP process, thereby preventing the inconvenience. Alternatively, a pattern used to expose the second area AR2 may be selected based on the pattern formation density of the device pattern 41. Here, the pattern formation density is a ratio of a pattern formed per unit area on the substrate P, in other words, a ratio of an area irradiated with exposure light. For example, on a glass substrate 95, line width and width A plurality of L / S patterns each having a different ratio from the L / S pattern are provided, and one L / S pattern is formed from the plurality of L / S patterns in accordance with the pattern formation density of the device pattern 41 formed in the first area AR1. By selecting the / S pattern and exposing the second area AR2, it is possible to prevent the inconvenience that occurs when the substrate P collides with the CMP polishing surface in the CMP processing. Exposure processing on the first area AR1 on the substrate P held on the first substrate stage PST1, and measurement processing on the substrate P held on the second substrate stage PST2 and exposure processing on the second area AR2 Is completed, the first substrate stage PST 1 moves to the measurement station B, and in parallel, the second substrate stage PST 2 moves to the exposure station A, where the first substrate stage PST 1 and the second substrate stage PST 1 Exchange work (swapping) with 2 is performed. Then, at the measurement station B, the substrate P after the exposure processing on the first substrate stage PST1 is unloaded and transported to the developing device, and the substrate P before the exposure processing is transferred to the first substrate stage PST1. The substrate P is subjected to measurement processing and exposure processing. On the other hand, in the exposure station A, the second substrate stage PST2 is positioned such that the reference member 94 'of the second substrate stage PST2 faces the projection optical system PL. In this state, the controller CONT starts supplying the liquid 50 using the liquid supply device, fills the space between the projection optical system PL and the reference member 94 'with the liquid 50, and performs the measurement process via the liquid 50. . That is, the control unit CON T, as can detect the reference mark MFM on the reference member 94 'by Masukuaraimen Bok system 89, while c appreciated that moving the second substrate stage PST 2 in this state of the projection optical system PL The tip and the reference member 94 'face each other. Here, the controller CONT starts supply and recovery of the liquid 50 by the liquid supply device and the liquid recovery device, and fills the space between the projection optical system PL and the reference member 94 'with the liquid. Next, the control unit CONT detects the reference mark MFM through the mask M, the projection optical system PL, and the liquid 50 by the mask alignment system 89. That is, the positional relationship between the mark of the mask M and the reference mark MFM is detected via the projection optical system PL and the liquid 50. As a result, the position of the mask M in the XY plane, that is, the projection position information of the image of the pattern of the mask M is detected using the reference mark MFM via the projection optical system PL and the liquid 50. . The control device CONT focuses on the surface (reference surface) of the reference member 94 'while the liquid 50 is supplied between the projection optical system PL and the reference member 94'. The leveling detection system 84 detects the focus. The relationship between the image plane formed via the projection optical system PL and the liquid 50 and the surface of the reference member 94 'is measured. As a result, the relationship between the image plane formed via the projection optical system PL and the liquid 50 and the surface of the substrate P is detected using the reference member 94 '. When the above-described measurement processing is completed, the controller CONT temporarily stops driving the liquid supply device and the liquid recovery device, and then moves the second substrate stage S so that the projection optical system PL and the substrate P face each other. Move PT 2. The controller CONT drives the liquid supply device and the liquid recovery device to form a liquid immersion portion between the projection optical system PL and the substrate P, and exposes the second region AR2 to the second substrate. The exposure of the device pattern 41 to the first area AR1 of the substrate P on the stage PST2 is started. In other words, the scanning exposure for each shot area on the substrate P is started via the projection optical system PL and the liquid 50 using the information obtained during the above-described measurement processing. During the scanning exposure for each shot area, information on the positional relationship between the reference mark PFM obtained before the supply of the liquid 50 and each shot area (the position of the shot area obtained in advance at the measuring station B). Information), and after the supply of the liquid 50, the position of each shot area on the substrate P and the mask M are aligned based on the projection position information of the image of the pattern of the mask M obtained by using the reference mark MFM. In addition, during the scanning exposure for each shot area, the reference part determined before the supply of the liquid 50 was used. Information on the relationship between the surface of the material 94 'and the surface of the substrate P, and information on the positional relationship between the surface of the reference material 94' and the image plane formed via the liquid 50, obtained after the supply of the liquid 50. Based on the above, the positional relationship between the surface of the substrate P and the image plane formed via the liquid 50 is adjusted without using the focus / leveling detection system 84. The surface information on the surface of the substrate P may be detected using the focus leveling detection system 84 during the scanning exposure, and may be used to confirm the adjustment result of the positional relationship between the surface of the substrate P and the image surface. . In addition, during scanning exposure, the surface ft information of the substrate P surface is detected using the focus leveling detection system 84, and the surface information detected during the scanning exposure is further taken into account to obtain an image of the substrate P surface and the image. You may make it adjust the positional relationship with a surface. In the above-described embodiment, the adjustment of the positional relationship between the surface of the substrate P and the image plane may be performed by moving the second substrate stage PST 2 holding the substrate P, or the mask M or the projection optical system PL. The image plane may be adjusted to the surface of the substrate P by moving a part of the plurality of lenses constituting the lens. Then, for the substrate P before the exposure processing, which is moved to the first substrate stage PST 1 moved to the measurement station B, in the same manner as the above-described procedure, the measurement processing using the reference member 94 and the liquid are not interposed. Exposure processing is performed on the second area AR2. As described above, the first optical system including the illumination optical system IL and the projection optical system PL for irradiating the first region AR1 of the substrate P with the exposure light EL and the second region AR2 of the substrate P Since a second illumination optical system IL2 for irradiating the exposure light EL2 and a second optical system including the second projection optical system PL2 are provided respectively, those of the first and second areas AR1 and AR2 are provided. Exposure processing for each of them can be performed in parallel, and the throughput of the exposure processing can be improved. In the present embodiment, a plurality of patterns are provided on the glass substrate 95, and among the plurality of patterns, according to the device pattern 41 to be formed in the first area AR1. Is selected, and the glass substrate 95 is rotated, and this pattern is exposed on the second area AR2 of the substrate P. Instead of the glass substrate 95, the mask station is transferred to the measurement station B. A mask having a pattern for exposing the second area AR 2 of the substrate P is placed on the mask stage MST, and the pattern of the mask is exposed to the second area of the substrate P using the exposure light EL 2. You may make it expose to AR2. Alternatively, without using the pattern, the optical system described with reference to FIG. 9 and the like may be provided at the measurement station B, and the second area AR 2 on the substrate P may be exposed by the two-beam interference method. . In this case, it is preferable to drive the half mirror 82 according to the device pattern 41 of the first area AR 1 and to expose at an interference fringe pitch corresponding to the pattern formation density of the device pattern 41. In the present embodiment, exposure light having different wavelengths is used when exposing the first area AR1 and exposing the second area AR2. Since the second area AR 2 is an edge portion of the substrate P and the pattern formation accuracy is acceptable to some extent, for example, when exposing the first area AR 1, a short-wavelength laser beam is used, and the second area AR 2 is exposed. When exposing the AR 2, it is sufficient to use a light beam emitted from a mercury lamp or another light beam that can sense the light source. Alternatively, the light beam emitted from the light source of the exposure light EL of the exposure station A is branched, for example, using an optical fiber and transmitted to the measurement station B, and the branched light is used for the second area AR 2 on the substrate P. Can also be exposed. Further, since the second projection optical system PL 2 is allowed even if the resolution is relatively low, the cost of the apparatus can be reduced. However, it goes without saying that exposure light having the same wavelength may be used. In the present embodiment, a twin-stage type exposure apparatus having two substrate stages has been described as an example, but as shown in FIG. Above one substrate stage PST, a projection optical system PL that irradiates exposure light EL to first area AR1 on substrate P, and a second projection optical system PL that irradiates exposure light EL2 to second area AR2 2 may be provided. In this case, the exposure light EL and the exposure light EL 2 may be emitted from different light sources, or may be emitted from the same light source. At the time of exposure, alignment processing is performed on the substrate P before exposure processing loaded on the substrate stage PST. After the exposure of the second area AR2 on the substrate P without liquid using the second projection optical system PL2 is completed, the first area AR is transmitted through the projection optical system PL and the liquid 50. Exposure of 1 is performed. Also, the second optical system for exposing the second area AR2 on the substrate P does not need to be provided alongside the projection optical system (first optical system) PL. Coating a resist and developing the exposed substrate ■ Expose the second area AR 2 on the substrate P halfway along the transport path between the developer device and the substrate stage PST of the exposure device. May be provided with an exposure processing section having the second optical system. Thus, the substrate P is placed on the substrate stage PST and is exposed through the projection optical system PL before or after the exposure process (immediately after the photoresist is applied in a short time, or The second area AR2 can be exposed just before being developed in a paper. Alternatively, an exposure processing unit (second optical system) for exposing the second area AR2 of the substrate P may be provided in the co-developing device. Further, an exposure apparatus including a first optical system that irradiates the first region AR1 of the substrate P with exposure light and a second optical system that irradiates the second region AR2 with exposure light, includes a projection optical system and a liquid. In addition to an immersion exposure apparatus that performs exposure via a liquid, it is of course possible to apply the present invention to an exposure apparatus that performs exposure without using a liquid. For example, if the first optical system for exposing the first area AR 1 (device pattern) is an optical system using vacuum ultraviolet light, and the life of optical elements and light sources is relatively short, this first optical system is used. Exposure of both the first and second areas AR 1 s AR 2 using the system will have a short life span. Therefore, exposure to the second area AR2 where low resolution is allowed is performed by using the second optical system that does not use vacuum ultraviolet light, thereby suppressing a reduction in the life of the first optical system and reducing the cost and equipment. Running costs can be reduced. The second area AR2 may be defined by the size of the immersion area. In other words, the area where the liquid can be held in the optical path of the exposure light may be defined as the first area AR1, and the area where the optical path of the exposure light cannot be filled with the liquid may be defined as the second area AR2. Large immersion area For example, if the second area AR2 is large, and if the immersion area is small, the second area AR2 is defined to be small, the size of the immersion area and the arrangement of the short area (chip) on the substrate P From this, it is possible to determine which shot area (chip) is to be the second area AR2. Further, the liquid supply device and the liquid recovery device in the above-described embodiment have a supply nozzle and a recovery nozzle on both sides of the projection area of the projection optical system PL, and one side of the projection area according to the scanning direction of the substrate P. This is a configuration in which the liquid is supplied from the other side and the liquid is recovered on the other side.However, the configuration of the liquid supply device and the liquid recovery device is not limited to this. If possible. Here, the “local immersion area” refers to an immersion area smaller than the substrate P. As described above, the liquid 50 in the above embodiment is composed of pure water. Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the optical resistor (lens) or the like on the substrate P. In addition, pure water has no adverse effect on the environment and has very low impurity content, so it can be expected to clean the surface of the substrate and the surface of the optical element provided on the tip end of the projection optical system PL. . It is said that the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is about 1.47 to 1.4.4, and Ar is used as a light source of the exposure light EL. When F excimer laser light (wavelength: 193 nm) is used, the wavelength is shortened to 1 / n on the substrate P, that is, about 131-134 nm, and high resolution is obtained. Furthermore, the depth of focus is expanded to about n times compared to that in the air, that is, about 1.47 to 1.44 times, so if it is sufficient to secure the same depth of focus as when using it in the air In this case, the numerical aperture of the projection optical system PL can be further increased, and the resolution is also improved in this regard. In the above embodiment, the lens 60 is attached to the tip of the projection optical system PL, but the optical element attached to the tip of the projection optical system PL includes the optical characteristics of the projection optical system PL, For example, it may be an optical plate used for adjusting aberrations (spherical aberration, coma aberration, etc.) c or a parallel flat plate that can transmit the exposure light EL. By making the optical element that comes into contact with the liquid 50 a parallel flat plate, which is cheaper than the lens, the transmittance of the projection optical system PL and the exposure light EL on the substrate P during transportation, assembly, and adjustment of the exposure apparatus EX Even if a substance (for example, a silicon-based organic substance, etc.) that reduces the illuminance and the uniformity of the illuminance distribution adheres to the parallel plate, it is sufficient to replace the parallel plate just before supplying the liquid 50, There is an advantage that the replacement cost is lower than in the case where the optical element that comes into contact with the liquid 50 is a lens. That is, the surface of the optical element that comes into contact with the liquid 50 due to scattering particles generated from the resist due to the irradiation of the exposure light EL or the adhesion of impurities in the liquid 50 is stained. By replacing the optical element with an inexpensive parallel flat plate, the cost of replacement parts and the time required for replacement can be reduced as compared with a lens, and maintenance costs can be reduced. (Running cost) and a decrease in throughput can be suppressed. When the pressure between the optical element at the tip of the projection optical system and the substrate P caused by the flow of the liquid 50 is large, the optical element is not replaced, but the optical element is changed by the pressure. You may fix firmly so that it may not move. Although liquid 5 0 of the above embodiment is water, a liquid other than water may be, if example embodiment, when the light source of exposure light EL is an F 2 laser, the F 2 laser beam is transmitted through the water does not, in this case, as the liquid 5 0 may be a F 2 laser beam capable of transmitting as fluorine-based oil (full Uz Motokei liquid) or over full Uz polyether (PFPE). In addition, as the liquid 50, other liquids that have transparency to the exposure light EL, have the highest possible refractive index, and are stable with respect to the photoresist applied to the projection optical system PL and the substrate P surface ( It is also possible to use, for example, Seda Oil. The substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or a mask or reticle used in an exposure apparatus. Of the original (Eng synthetic stone, silicon wafer) etc. are applied. The exposure apparatus EX is a step of scanning and exposing the pattern of the mask M by synchronously moving the mask M and the substrate P. In addition to the scanning type exposure apparatus (scanning stepper) of the AND scan type, the mask M and the substrate P It can also be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively while the substrate is stationary, and the substrate P is sequentially stepped. In addition, the present invention can be applied to a step-and-stitch type exposure apparatus that transfers at least two patterns on a substrate P while partially overlapping each other. The type of exposure equipment EX is not limited to exposure equipment for manufacturing semiconductor elements, which exposes semiconductor element patterns to the substrate P, but also exposure equipment for manufacturing liquid crystal display elements or displays, and thin film magnets. The present invention can be widely applied to an exposure apparatus for manufacturing a head, an image sensor (CCD), a reticle or a mask, and the like. Further, as described above, the structure and the exposure operation of the c- twin stage type exposure apparatus that can be applied to the twin stage type exposure apparatus are described in, for example, JP-A-10-163099 and JP-A-10-13099. — 2 1 4783 (corresponding U.S. Patents 6,341,007, 6,400,441, 6,549,269 and 6,590,634), Special Table 2000—505958 (corresponding U.S. Patents 5,969,441) Or as disclosed in U.S. Patent No. 6,208,407, each of which is incorporated by reference into these documents, to the extent permitted by the laws of the country designated or selected in this international application. I do. When a linear motor (see USP5,623,853 or USP5,528,118) is used for the substrate stage PST and mask stage MST, an air levitation type using an air bearing and a magnetic levitation using a mouth-Lentz force or a reactance force Either type can be used. Further, each of the stages PST and MST may be of a type that moves along a guide or a guideless type that does not have a guide. US Patents 5,623,853 and 5,528,118 are granted under the laws of the country specified or selected in this international application. To the extent possible, incorporated by reference into the text. The drive mechanism for each stage PST, MSΤ is as follows: a magnet unit with a two-dimensional magnet arranged and an armature unit with a two-dimensional coil arranged face each other to drive each stage PST, MST by electromagnetic force Alternatively, a flat motor may be used. In this case, one of the magnet unit and the armature unit is connected to the stages PST and MS, and the other of the magnet unit and the armature unit is provided on the moving surface side of the stage PST and MST. I'll do it. The reaction force generated by the movement of the substrate stage PST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL. The method of dealing with this reaction force is disclosed in detail in, for example, U.S. Pat. No. 5,528,118 (Japanese Patent Laid-Open Publication No. Hei 8-166475), and this U.S. Pat. To the extent permitted by the laws of the country specified or selected in the international application, they are incorporated by reference into this text. The reaction force generated by the movement of the mask stage MST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL. The method of dealing with this reaction force is disclosed in detail in, for example, US Pat. No. 5,874,820 (Japanese Patent Application Laid-Open Publication No. H8-330224), and is specified or designated in the present international application. To the extent permitted by the legislation of the selected country, the contents of this document are incorporated by reference into the text. As described above, the exposure apparatus EX according to the embodiment of the present invention controls various subsystems including the respective components listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical systems were performed before and after this assembly. Adjustments are made to achieve electrical accuracy. The process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. Assembling these various subsystems into exposure equipment Needless to say, there is an assembly process for each subsystem before the process. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable that the exposure apparatus be manufactured in a clean room where the temperature, cleanliness, etc. are controlled. As shown in Fig. 14, microdevices such as semiconductor devices have the following steps: Step 201 for designing the function and performance of the microdevice, Step 202 for manufacturing a mask (reticle) based on this design step, and Device. Step 203 for manufacturing a substrate which is a base material of the above, Exposure processing step 204 for exposing a mask pattern onto the substrate using the exposure apparatus EX of the above-described embodiment, Device assembly step (dicing step, bonding step, package It is manufactured through the steps of 205, inspection step 206, etc. INDUSTRIAL APPLICABILITY According to the present invention, when performing immersion exposure, the first region and the second region on the substrate are exposed under different exposure conditions, so that the outflow of liquid to the outside of the substrate is suppressed. However, it is possible to transfer a pattern well to an edge region of a substrate, and to manufacture a device capable of exhibiting desired performance.

Claims

請求の範囲 The scope of the claims
1 . 投影光学系により所定パターンの像を基板上に転写することで基板を露光す る露光方法であって、 1. An exposure method for exposing a substrate by transferring an image of a predetermined pattern onto the substrate by a projection optical system,
前記投影光学系と前記基板との間に液体を供給し、 前記基板上の第 1領域を前記 液体を介して露光し、  Supplying a liquid between the projection optical system and the substrate, exposing a first region on the substrate via the liquid,
前記第 1領域とは異なる前記基板上の第 2領域を、 前記液体を供給せずに露光す る E¾7t方法。  An E¾7t method for exposing a second area on the substrate different from the first area without supplying the liquid.
2 . 投影光学系を用いて、 第 1領域及び第 2領域を有する基板を露光する方法で あって、 2. A method of exposing a substrate having a first region and a second region using a projection optical system,
前記投影光学系と基板との間に液体を供給し、 前記液体を介して前記基板を露光 し、  Supplying a liquid between the projection optical system and the substrate, exposing the substrate via the liquid,
第 1領域を露光する露光条件と、 第 2領域を露光する露光条件とが異なる前記露 先 ¾法。  The above exposure method, wherein an exposure condition for exposing the first region and an exposure condition for exposing the second region are different.
3 . 前記第 2領域は、 前記基板のエッジ周辺である請求項 1 または 2に記載の露 先 }2 3. The exposure device according to claim 1, wherein the second region is around an edge of the substrate.
4 . 前記基板上の第 2領域をデフォーカスに耐性のある露光条件で露光する請求 項 1 または 2に記載の露光方法。 4. The exposure method according to claim 1, wherein the second area on the substrate is exposed under an exposure condition resistant to defocus.
5 . 前記第 1領域を露光するときよりも、 前言己第 2領域を露光するときの前記投 影光学系の開口数を小さくする請求項 1または 2に記載の露光方法。 5. The exposure method according to claim 1, wherein a numerical aperture of the projection optical system when exposing the second region is smaller than when exposing the first region.
6 . 前記第 2領域は二光束干渉法により露光される請求項 1 または 2に記載の露 光方法。 6. The exposure method according to claim 1, wherein the second region is exposed by a two-beam interference method.
7 . 前記第 2領域には、 ラインパターンが所定ピッチで形成されたライン .アン ド -スペースパターンの像を投影する請求項 6に記載の露光方法。 7. In the second area, a line pattern in which a line pattern is formed at a predetermined pitch. 7. The exposure method according to claim 6, wherein an image of a space pattern is projected.
8 . 前記第 1領域の露光に使われる第 1パターンは、 前記第 2領域の露光に使わ れる第 2パターンと異なる請求項 1 または 2に記載の露光方法。 8. The exposure method according to claim 1, wherein the first pattern used for exposing the first area is different from the second pattern used for exposing the second area.
9 . 前記第 1領域は前記第 1パターンと前記基板とを移動しながら露光し、 前記 第 2領域は前記第 2パターンと前記基板とを静止した状態で露光する請求項 8に記 載の露光方法。 9. The exposure according to claim 8, wherein the first area is exposed while moving the first pattern and the substrate, and the second area is exposed while the second pattern and the substrate are stationary. Method.
1 0 . 前記第 1領域は、 前記第 1パターンと前記基板とを移動しながら露光し、 前記第 2領域は、 前記第 2パターンを静止した状態で、 前記基板を移動しながら露 光する請求項 8に記載の露光方法。 10. The first region is exposed while moving the first pattern and the substrate, and the second region is exposed while moving the substrate while the second pattern is stationary. Item 9. The exposure method according to Item 8.
1 1 . 前記第 1パターンと前記第 2パターンとは同一マスク上に形成されている 請求項 8に記載の露光方法。 11. The exposure method according to claim 8, wherein the first pattern and the second pattern are formed on the same mask.
1 2 . 前記第 1パ夕一ンはマスク上に形成され、 前記第 2パターンは前記マスク を保持するマスクステージ上に、 前記マスクとは離れた位置に固定された基材に形 成されている請求項 8に記載の露光方法。 12. The first pattern is formed on a mask, and the second pattern is formed on a mask stage holding the mask, on a substrate fixed at a position away from the mask. 9. The exposure method according to claim 8, wherein
1 3 . 前記第 1領域を露光するときと前記第 2領域を露光するときとで、 前記投 影光学系と前記基板との間隔が異なる請求項 1または 2に記載の露光方法。 13. The exposure method according to claim 1, wherein a distance between the projection optical system and the substrate is different between when exposing the first area and when exposing the second area.
1 4 . 前記第 1領域を露光するときと前記第 2領域を露光するときとで、 前記投 影光学系と前記基板との間隔がほぼ同じになるように、 前記投影光学系を介して形 成される像面の位置調整を行う請求項 1 または 2に記載の露光方法。 14. Through the projection optical system, the distance between the projection optical system and the substrate is substantially the same between when exposing the first area and when exposing the second area. 3. The exposure method according to claim 1, wherein the position of an image plane to be formed is adjusted.
1 5 . 前記第 2領域の露光が完了した後に、 前記第 1領域の露光を行う請求項 1 または 2に記載の露光方法。 15. The exposure method according to claim 1, wherein the exposure of the first area is performed after the exposure of the second area is completed.
1 6 . 投影光学系を用いて、 第 1領域及び第 2領域を有する基板を露光する方法 であって、 16. A method of exposing a substrate having a first region and a second region using a projection optical system,
前記投影光学系と基板との間に液体を供給することと;  Supplying a liquid between the projection optical system and the substrate;
前記液体を介して前記基板を露光することを;含み、  Exposing the substrate through the liquid;
前記基板上のエツジ部を除く領域のみが露光される露光方法。  An exposure method wherein only an area excluding an edge portion on the substrate is exposed.
1 7 . 請求項 1、 2及び 1 6のいずれか一項に記載の露光方法を用いるデバイス 製造方法。 17. A device manufacturing method using the exposure method according to any one of claims 1, 2 and 16.
1 8 . 基板上の複数の領域を露光する露光装置において、 1 8. In an exposure apparatus that exposes a plurality of regions on a substrate,
基板上の第 1領域に露光光を照射する第 1光学系と、  A first optical system that irradiates a first region on the substrate with exposure light,
前記第 1領域とは異なる前記基板上の第 2領域に露光光を照射する第 2光学系と を備える露光装置。  A second optical system that irradiates a second region on the substrate different from the first region with exposure light.
1 9 . 前記第 1領域の露光に用いられる露光光の波長は、 前記第 2領域の露光に 用いられる露光光の波長とは異なる請求項 1 8に記載の露光装置。 19. The exposure apparatus according to claim 18, wherein the wavelength of the exposure light used for exposing the first area is different from the wavelength of the exposure light used for exposing the second area.
2 0 . 前記第 1及び第 2領域を有する基板を保持して移動可能な第 1可動体と、 前記第 1及び第 2領域を有する基板を保持して移動可能な第 2可動体とを備え、 前記第 1光学系を用いて前記第 1可動体に保持された基板上の第 1領域の露光中 に、 前記第 2光学系を用いて前記第 2可動体に保持された基板上の第 2領域を露光 し、 前記第 1可動体に保持された基板上の第 1領域の露光終了後に、 前記第 1光学 系を用いて前記第 2可動体に保持された基板上の第 1領域の露光を開始する請求項 1 8に記載の露光装置。 20. A first movable body that can move while holding the substrate having the first and second areas, and a second movable body that can move while holding the substrate having the first and second areas. While exposing a first region on the substrate held by the first movable body using the first optical system, the first region on the substrate held by the second movable body using the second optical system is exposed. After exposing two regions and exposing the first region on the substrate held by the first movable body, the first optical system is used to expose the first region on the substrate held by the second movable body. 19. The exposure apparatus according to claim 18, wherein exposure is started.
2 1 · 前記第 2領域は、 前記基板のエッジ周辺である請求項 1 8に記載の露光装 21. The exposure apparatus according to claim 18, wherein the second area is around an edge of the substrate.
2 2 . 前記第 2領域は二光束干渉法により露光される請求項 1 8に記載の露光装 22. The exposure apparatus according to claim 18, wherein the second area is exposed by a two-beam interference method.
2 3 . 前記第 1領域は、 前記第 1光学系と前記基板との間の液体を介して露光さ れ、 前記第 2領域は、 前記第 2光学系と前記基板との間に液体なしに露光される請 求項 1 8に記載の露光装置。 23. The first region is exposed through a liquid between the first optical system and the substrate, and the second region is exposed without a liquid between the second optical system and the substrate. The exposure apparatus according to claim 18, wherein the exposure apparatus is exposed.
2 4 . 請求項 1 8に記載の露光装置を用いることを特徴とするデバイス製造方法 c 24. A device manufacturing method c using the exposure apparatus according to claim 18.
2 5 . 基板を露光する露光装置であって、 25. An exposure apparatus for exposing a substrate, comprising:
液体供給装置を備え、 該液体供給装置により供給された液体を介して基板が露光 される第 1ステーションと;  A first station including a liquid supply device, wherein the substrate is exposed through the liquid supplied by the liquid supply device;
液体が供給されない基板が露光される第 2ステーションと;を備える露光装置。  A second station for exposing a substrate to which liquid is not supplied.
2 6 . 前記基板が第 1及び第 2領域を有し、 第 1領域が第 1ステーションで液体 を介して露光され、 第 2領域が第 2ステーションで液体を介さずに露光される請求 項 2 5に記載の露光装置。 26. The substrate having first and second regions, wherein the first region is exposed via a liquid at a first station and the second region is exposed without a liquid via a second station. 6. The exposure apparatus according to 5.
2 7 . さらに、 第 1ステーションに設けられた第 1投影光学系と、 第 2ステージ ョンに設けられた第 2投影光学系とを備える請求項 2 5に記載の露光装置。 27. The exposure apparatus according to claim 25, further comprising a first projection optical system provided in the first station, and a second projection optical system provided in the second stage.
2 8 . さらに、 第 1ステーションと第 2ステーションの間を、 基板を保持して交 互に移動する第 1及び第 2可動体を備える請求項 2 5に記載の露光装置。 28. The exposure apparatus according to claim 25, further comprising first and second movable bodies that hold the substrate and move alternately between the first station and the second station.
2 9 . 第 1及び第 2可動体に、 基板の露光領域の位置合せのための基準部材が設 けられており、 第 1ステーションで露光が行われる前に、 第 2ステーションにおい て基板の露光領域の位置合せが行われる請求項 2 8に記載の露光装置。 29. The first and second movable bodies are provided with a reference member for aligning the exposure area of the substrate, and the exposure of the substrate is performed in the second station before the exposure is performed in the first station. 29. The exposure apparatus according to claim 28, wherein the alignment of the area is performed.
3 0 . 前記基板の第 2領域が第 2ステーションで露光された後に、 該基板が第 1 または第 2可動体により第 1ステーションに移動され、 第 1領域に液体が供給され て第 1領域が露光される請求項 2 5 ~ 2 8のいずれか一項に記載の露光装置。 30. After the second area of the substrate is exposed at the second station, the substrate is 30. The exposure apparatus according to claim 25, wherein the exposure apparatus is moved to the first station by the second movable body, and the liquid is supplied to the first area to expose the first area.
PCT/JP2003/015408 2002-12-10 2003-12-02 Exposure method, exposure apparatus and method for manufacturing device WO2004053951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003302831A AU2003302831A1 (en) 2002-12-10 2003-12-02 Exposure method, exposure apparatus and method for manufacturing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-357959 2002-12-10
JP2002357959 2002-12-10
JP2003169903 2003-06-13
JP2003-169903 2003-06-13

Publications (1)

Publication Number Publication Date
WO2004053951A1 true WO2004053951A1 (en) 2004-06-24

Family

ID=32510637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015408 WO2004053951A1 (en) 2002-12-10 2003-12-02 Exposure method, exposure apparatus and method for manufacturing device

Country Status (2)

Country Link
AU (1) AU2003302831A1 (en)
WO (1) WO2004053951A1 (en)

Cited By (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081293A1 (en) * 2004-02-19 2005-09-01 Nikon Corporation Exposure apparatus and exposure method, and device producing method
WO2005081291A1 (en) * 2004-02-19 2005-09-01 Nikon Corporation Exposure apparatus and method of producing device
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7009682B2 (en) 2002-11-18 2006-03-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7012673B2 (en) 2003-06-27 2006-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7038760B2 (en) 2003-06-30 2006-05-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7075616B2 (en) 2002-11-12 2006-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7081943B2 (en) 2002-11-12 2006-07-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110087B2 (en) 2003-06-30 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119874B2 (en) 2003-06-27 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7184122B2 (en) 2003-07-24 2007-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193232B2 (en) 2002-11-12 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with substrate measurement not through liquid
US7193681B2 (en) 2003-09-29 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7196770B2 (en) 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7199858B2 (en) 2002-11-12 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224431B2 (en) 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7291850B2 (en) 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317507B2 (en) 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7330238B2 (en) 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
US7352435B2 (en) 2003-10-15 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7359030B2 (en) 2002-11-29 2008-04-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7405805B2 (en) 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7420194B2 (en) 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7428038B2 (en) 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433015B2 (en) 2003-10-15 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7468779B2 (en) 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7491661B2 (en) 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
JP2009060099A (en) * 2007-08-15 2009-03-19 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7633073B2 (en) 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652746B2 (en) 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7656501B2 (en) 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7670730B2 (en) 2004-12-30 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7671963B2 (en) 2004-05-21 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684010B2 (en) 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7705962B2 (en) 2005-01-14 2010-04-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7710541B2 (en) 2003-12-23 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7733459B2 (en) 2003-08-29 2010-06-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7791709B2 (en) 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
US7804574B2 (en) 2003-05-30 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US7817245B2 (en) 2003-09-29 2010-10-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7817244B2 (en) 2002-12-10 2010-10-19 Nikon Corporation Exposure apparatus and method for producing device
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US7841352B2 (en) 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7868998B2 (en) 2003-10-28 2011-01-11 Asml Netherlands B.V. Lithographic apparatus
US7866330B2 (en) 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7907255B2 (en) 2003-08-29 2011-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7924403B2 (en) 2005-01-14 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device and device manufacturing method
US7936444B2 (en) 2003-05-13 2011-05-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8045137B2 (en) 2004-12-07 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US8045135B2 (en) 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
US8054445B2 (en) 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8077291B2 (en) 2004-12-10 2011-12-13 Asml Netherlands B.V. Substrate placement in immersion lithography
US8102502B2 (en) 2003-10-28 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208124B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8218125B2 (en) 2003-07-28 2012-07-10 Asml Netherlands B.V. Immersion lithographic apparatus with a projection system having an isolated or movable part
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8319939B2 (en) 2004-07-07 2012-11-27 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method detecting residual liquid
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8638415B2 (en) 2004-05-18 2014-01-28 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US8705009B2 (en) 2009-09-28 2014-04-22 Asml Netherlands B.V. Heat pipe, lithographic apparatus and device manufacturing method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8859188B2 (en) 2005-02-10 2014-10-14 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2015172772A (en) * 2003-07-28 2015-10-01 株式会社ニコン Exposure apparatus, method for manufacturing device, and method for controlling exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9229333B2 (en) 2007-12-28 2016-01-05 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265326A (en) * 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPH05304072A (en) * 1992-04-08 1993-11-16 Nec Corp Manufacture of semiconductor device
JPH06124873A (en) * 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JPH07220990A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
JPH08335545A (en) * 1995-06-07 1996-12-17 Hitachi Ltd Exposing method and apparatus
JPH10255319A (en) * 1997-03-12 1998-09-25 Hitachi Maxell Ltd Master disk exposure device and method therefor
JPH10303114A (en) * 1997-04-23 1998-11-13 Nikon Corp Immersion aligner
JPH10340846A (en) * 1997-06-10 1998-12-22 Nikon Corp Aligner, its manufacture, exposing method and device manufacturing method
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2000021882A (en) * 1998-07-01 2000-01-21 Hitachi Ltd Manufacture of semiconductor integrated circuit device and the device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265326A (en) * 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPH05304072A (en) * 1992-04-08 1993-11-16 Nec Corp Manufacture of semiconductor device
JPH06124873A (en) * 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JPH07220990A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
JPH08335545A (en) * 1995-06-07 1996-12-17 Hitachi Ltd Exposing method and apparatus
JPH10255319A (en) * 1997-03-12 1998-09-25 Hitachi Maxell Ltd Master disk exposure device and method therefor
JPH10303114A (en) * 1997-04-23 1998-11-13 Nikon Corp Immersion aligner
JPH10340846A (en) * 1997-06-10 1998-12-22 Nikon Corp Aligner, its manufacture, exposing method and device manufacturing method
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2000021882A (en) * 1998-07-01 2000-01-21 Hitachi Ltd Manufacture of semiconductor integrated circuit device and the device

Cited By (488)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366972B2 (en) 2002-11-12 2016-06-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9057967B2 (en) 2002-11-12 2015-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7075616B2 (en) 2002-11-12 2006-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7081943B2 (en) 2002-11-12 2006-07-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9360765B2 (en) 2002-11-12 2016-06-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10620545B2 (en) 2002-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9091940B2 (en) 2002-11-12 2015-07-28 Asml Netherlands B.V. Lithographic apparatus and method involving a fluid inlet and a fluid outlet
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885965B2 (en) 2002-11-12 2018-02-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8344341B2 (en) 2002-11-12 2013-01-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7795603B2 (en) 2002-11-12 2010-09-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10191389B2 (en) 2002-11-12 2019-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222706B2 (en) 2002-11-12 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7482611B2 (en) 2002-11-12 2009-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10962891B2 (en) 2002-11-12 2021-03-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8558989B2 (en) 2002-11-12 2013-10-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9588442B2 (en) 2002-11-12 2017-03-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10261428B2 (en) 2002-11-12 2019-04-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193232B2 (en) 2002-11-12 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with substrate measurement not through liquid
US8472002B2 (en) 2002-11-12 2013-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8797503B2 (en) 2002-11-12 2014-08-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with a liquid inlet above an aperture of a liquid confinement structure
US8208120B2 (en) 2002-11-12 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10788755B2 (en) 2002-11-12 2020-09-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7932999B2 (en) 2002-11-12 2011-04-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7199858B2 (en) 2002-11-12 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224436B2 (en) 2002-11-12 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7982850B2 (en) 2002-11-12 2011-07-19 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with gas supply
US8446568B2 (en) 2002-11-12 2013-05-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9195153B2 (en) 2002-11-12 2015-11-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119881B2 (en) 2002-11-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7009682B2 (en) 2002-11-18 2006-03-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7359030B2 (en) 2002-11-29 2008-04-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7817244B2 (en) 2002-12-10 2010-10-19 Nikon Corporation Exposure apparatus and method for producing device
US8767173B2 (en) 2002-12-10 2014-07-01 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7834976B2 (en) 2002-12-10 2010-11-16 Nikon Corporation Exposure apparatus and method for producing device
US7907254B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7932991B2 (en) 2003-02-26 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102504B2 (en) 2003-02-26 2012-01-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8736809B2 (en) 2003-02-26 2014-05-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9348239B2 (en) 2003-02-26 2016-05-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9766555B2 (en) 2003-02-26 2017-09-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7911583B2 (en) 2003-02-26 2011-03-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10180632B2 (en) 2003-02-26 2019-01-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9182684B2 (en) 2003-02-26 2015-11-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US10466595B2 (en) 2003-05-13 2019-11-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7936444B2 (en) 2003-05-13 2011-05-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8724083B2 (en) 2003-05-13 2014-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8964164B2 (en) 2003-05-13 2015-02-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8724084B2 (en) 2003-05-13 2014-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9477160B2 (en) 2003-05-13 2016-10-25 Asml Netherland B.V. Lithographic apparatus and device manufacturing method
US9798246B2 (en) 2003-05-13 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804574B2 (en) 2003-05-30 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US7808611B2 (en) 2003-05-30 2010-10-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using acidic liquid
US8416385B2 (en) 2003-05-30 2013-04-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9081299B2 (en) 2003-06-09 2015-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving removal of liquid entering a gap
US10678139B2 (en) 2003-06-09 2020-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8154708B2 (en) 2003-06-09 2012-04-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9152058B2 (en) 2003-06-09 2015-10-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a member and a fluid opening
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8482845B2 (en) 2003-06-09 2013-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9541843B2 (en) 2003-06-09 2017-01-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a sensor detecting a radiation beam through liquid
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9110389B2 (en) 2003-06-11 2015-08-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8363208B2 (en) 2003-06-11 2013-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9964858B2 (en) 2003-06-11 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9709899B2 (en) 2003-06-19 2017-07-18 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US9715178B2 (en) 2003-06-19 2017-07-25 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US7119874B2 (en) 2003-06-27 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7012673B2 (en) 2003-06-27 2006-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
USRE42741E1 (en) 2003-06-27 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7038760B2 (en) 2003-06-30 2006-05-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110087B2 (en) 2003-06-30 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US8879043B2 (en) 2003-07-09 2014-11-04 Nikon Corporation Exposure apparatus and method for manufacturing device
US8711323B2 (en) 2003-07-16 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8913223B2 (en) 2003-07-16 2014-12-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10656538B2 (en) 2003-07-16 2020-05-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9383655B2 (en) 2003-07-16 2016-07-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10151989B2 (en) 2003-07-16 2018-12-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8823920B2 (en) 2003-07-16 2014-09-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9733575B2 (en) 2003-07-16 2017-08-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7557901B2 (en) 2003-07-24 2009-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7184122B2 (en) 2003-07-24 2007-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10146143B2 (en) 2003-07-24 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9804509B2 (en) 2003-07-24 2017-10-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9594308B2 (en) 2003-07-24 2017-03-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8711333B2 (en) 2003-07-24 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10444644B2 (en) 2003-07-24 2019-10-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9213247B2 (en) 2003-07-24 2015-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10303066B2 (en) 2003-07-28 2019-05-28 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7746445B2 (en) 2003-07-28 2010-06-29 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US8964163B2 (en) 2003-07-28 2015-02-24 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with a projection system having a part movable relative to another part
JP2015172772A (en) * 2003-07-28 2015-10-01 株式会社ニコン Exposure apparatus, method for manufacturing device, and method for controlling exposure apparatus
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US9639006B2 (en) 2003-07-28 2017-05-02 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US8218125B2 (en) 2003-07-28 2012-07-10 Asml Netherlands B.V. Immersion lithographic apparatus with a projection system having an isolated or movable part
US9285686B2 (en) 2003-07-31 2016-03-15 Asml Netherlands B.V. Lithographic apparatus involving an immersion liquid supply system with an aperture
US8937704B2 (en) 2003-07-31 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a resistivity sensor
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8142852B2 (en) 2003-07-31 2012-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US10175584B2 (en) 2003-08-26 2019-01-08 Nikon Corporation Optical element and exposure apparatus
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US9046796B2 (en) 2003-08-26 2015-06-02 Nikon Corporation Optical element and exposure apparatus
EP2284615A2 (en) 2003-08-26 2011-02-16 Nikon Corporation Optical element and exposure apparatus
EP2278402A2 (en) 2003-08-26 2011-01-26 Nikon Corporation Optical element and exposure apparatus
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8953144B2 (en) 2003-08-29 2015-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10146142B2 (en) 2003-08-29 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9442388B2 (en) 2003-08-29 2016-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025204B2 (en) 2003-08-29 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7907255B2 (en) 2003-08-29 2011-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947637B2 (en) 2003-08-29 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208124B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8629971B2 (en) 2003-08-29 2014-01-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9316919B2 (en) 2003-08-29 2016-04-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7733459B2 (en) 2003-08-29 2010-06-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8035798B2 (en) 2003-08-29 2011-10-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025127B2 (en) 2003-08-29 2015-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9581914B2 (en) 2003-08-29 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11003096B2 (en) 2003-08-29 2021-05-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8804097B2 (en) 2003-08-29 2014-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10514618B2 (en) 2003-08-29 2019-12-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9606448B2 (en) 2003-08-29 2017-03-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7817245B2 (en) 2003-09-29 2010-10-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193681B2 (en) 2003-09-29 2007-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8400615B2 (en) 2003-09-29 2013-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7961293B2 (en) 2003-10-15 2011-06-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8711330B2 (en) 2003-10-15 2014-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8570486B2 (en) 2003-10-15 2013-10-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7352435B2 (en) 2003-10-15 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8174674B2 (en) 2003-10-15 2012-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433015B2 (en) 2003-10-15 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9285685B2 (en) 2003-10-15 2016-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8542343B2 (en) 2003-10-28 2013-09-24 Asml Netherlands B.V. Lithographic apparatus
US9182679B2 (en) 2003-10-28 2015-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US8860922B2 (en) 2003-10-28 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8860923B2 (en) 2003-10-28 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8542344B2 (en) 2003-10-28 2013-09-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482962B2 (en) 2003-10-28 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US8638418B2 (en) 2003-10-28 2014-01-28 Asml Netherlands B.V. Lithographic apparatus
US10248034B2 (en) 2003-10-28 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8102502B2 (en) 2003-10-28 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7868998B2 (en) 2003-10-28 2011-01-11 Asml Netherlands B.V. Lithographic apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US8810771B2 (en) 2003-10-28 2014-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10527955B2 (en) 2003-10-28 2020-01-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10345712B2 (en) 2003-11-14 2019-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134623B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134622B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8634056B2 (en) 2003-11-14 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US8472006B2 (en) 2003-11-24 2013-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10768538B2 (en) 2003-12-23 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8767171B2 (en) 2003-12-23 2014-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US9465301B2 (en) 2003-12-23 2016-10-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7710541B2 (en) 2003-12-23 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10613447B2 (en) 2003-12-23 2020-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
USRE42849E1 (en) 2004-02-09 2011-10-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JPWO2005081291A1 (en) * 2004-02-19 2007-10-25 株式会社ニコン Exposure apparatus and device manufacturing method
WO2005081293A1 (en) * 2004-02-19 2005-09-01 Nikon Corporation Exposure apparatus and exposure method, and device producing method
JP4572896B2 (en) * 2004-02-19 2010-11-04 株式会社ニコン Exposure apparatus and device manufacturing method
JP2011082573A (en) * 2004-02-19 2011-04-21 Nikon Corp Exposure apparatus, exposure method, and device fabricating method
JPWO2005081293A1 (en) * 2004-02-19 2007-10-25 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP4720743B2 (en) * 2004-02-19 2011-07-13 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
WO2005081291A1 (en) * 2004-02-19 2005-09-01 Nikon Corporation Exposure apparatus and method of producing device
US7834977B2 (en) 2004-04-01 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8755033B2 (en) 2004-04-14 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier to collect liquid
US10234768B2 (en) 2004-04-14 2019-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8704998B2 (en) 2004-04-14 2014-04-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier to collect liquid
US9207543B2 (en) 2004-04-14 2015-12-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a groove to collect liquid
US10705432B2 (en) 2004-04-14 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9568840B2 (en) 2004-04-14 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652751B2 (en) 2004-05-03 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8638415B2 (en) 2004-05-18 2014-01-28 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US10761438B2 (en) 2004-05-18 2020-09-01 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US8553201B2 (en) 2004-05-21 2013-10-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8749754B2 (en) 2004-05-21 2014-06-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7671963B2 (en) 2004-05-21 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9857699B2 (en) 2004-06-16 2018-01-02 Asml Netherlands B.V. Vacuum system for immersion photolithography
US10168624B2 (en) 2004-06-16 2019-01-01 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9507270B2 (en) 2004-06-16 2016-11-29 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8830440B2 (en) 2004-06-16 2014-09-09 Asml Netherlands B.V. Vacuum system for immersion photolithography
US10338478B2 (en) 2004-07-07 2019-07-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9104117B2 (en) 2004-07-07 2015-08-11 Bob Streefkerk Lithographic apparatus having a liquid detection system
US10739684B2 (en) 2004-07-07 2020-08-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8319939B2 (en) 2004-07-07 2012-11-27 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method detecting residual liquid
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US7804575B2 (en) 2004-08-13 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having liquid evaporation control
US10254663B2 (en) 2004-08-13 2019-04-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US11378893B2 (en) 2004-08-13 2022-07-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US10838310B2 (en) 2004-08-13 2020-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US9188880B2 (en) 2004-08-13 2015-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US9268242B2 (en) 2004-08-13 2016-02-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater and a temperature sensor
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8031325B2 (en) 2004-08-19 2011-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8755028B2 (en) 2004-08-19 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8446563B2 (en) 2004-08-19 2013-05-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9904185B2 (en) 2004-08-19 2018-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746788B2 (en) 2004-08-19 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10599054B2 (en) 2004-08-19 2020-03-24 Asml Holding N.V. Lithographic apparatus and device manufacturing method
US10705439B2 (en) 2004-08-19 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10331047B2 (en) 2004-08-19 2019-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9097992B2 (en) 2004-08-19 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9488923B2 (en) 2004-08-19 2016-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9507278B2 (en) 2004-08-19 2016-11-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7808614B2 (en) 2004-09-24 2010-10-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8427629B2 (en) 2004-09-24 2013-04-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8068210B2 (en) 2004-09-28 2011-11-29 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8027026B2 (en) 2004-10-05 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8755027B2 (en) 2004-10-05 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving fluid mixing and control of the physical property of a fluid
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8934082B2 (en) 2004-10-18 2015-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436097B2 (en) 2004-10-18 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9753380B2 (en) 2004-10-18 2017-09-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248033B2 (en) 2004-10-18 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9261797B2 (en) 2004-11-12 2016-02-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10620546B2 (en) 2004-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7852457B2 (en) 2004-11-12 2010-12-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7710537B2 (en) 2004-11-12 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9964861B2 (en) 2004-11-12 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US9645507B2 (en) 2004-11-12 2017-05-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10274832B2 (en) 2004-11-12 2019-04-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US8817231B2 (en) 2004-11-12 2014-08-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9798247B2 (en) 2004-11-12 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a liquid confinement structure
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7978306B2 (en) 2004-11-17 2011-07-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9188882B2 (en) 2004-11-17 2015-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9581916B2 (en) 2004-11-17 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7812924B2 (en) 2004-12-02 2010-10-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7764356B2 (en) 2004-12-03 2010-07-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US8045137B2 (en) 2004-12-07 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7196770B2 (en) 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7643127B2 (en) 2004-12-07 2010-01-05 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8860926B2 (en) 2004-12-08 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8115905B2 (en) 2004-12-08 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9740106B2 (en) 2004-12-10 2017-08-22 Asml Netherlands B.V. Substrate placement in immersion lithography
US8441617B2 (en) 2004-12-10 2013-05-14 Asml Netherlands B.V. Substrate placement in immersion lithography
US10345711B2 (en) 2004-12-10 2019-07-09 Asml Netherlands B.V. Substrate placement in immersion lithography
US8077291B2 (en) 2004-12-10 2011-12-13 Asml Netherlands B.V. Substrate placement in immersion lithography
US9182222B2 (en) 2004-12-10 2015-11-10 Asml Netherlands B.V. Substrate placement in immersion lithography
US7751032B2 (en) 2004-12-15 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8233135B2 (en) 2004-12-15 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus
US8462312B2 (en) 2004-12-20 2013-06-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9417535B2 (en) 2004-12-20 2016-08-16 Asml Netherlands B.V. Lithographic apparatus
US8233137B2 (en) 2004-12-20 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8115899B2 (en) 2004-12-20 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9329494B2 (en) 2004-12-20 2016-05-03 Asml Netherlands B.V. Lithographic apparatus
US8638419B2 (en) 2004-12-20 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8013978B2 (en) 2004-12-28 2011-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8913225B2 (en) 2004-12-28 2014-12-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7405805B2 (en) 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7763355B2 (en) 2004-12-28 2010-07-27 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US7491661B2 (en) 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US7670730B2 (en) 2004-12-30 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8102507B2 (en) 2004-12-30 2012-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8354209B2 (en) 2004-12-30 2013-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7705962B2 (en) 2005-01-14 2010-04-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8675173B2 (en) 2005-01-14 2014-03-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7924403B2 (en) 2005-01-14 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device and device manufacturing method
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US9164391B2 (en) 2005-02-10 2015-10-20 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US9454088B2 (en) 2005-02-10 2016-09-27 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US10712675B2 (en) 2005-02-10 2020-07-14 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US8859188B2 (en) 2005-02-10 2014-10-14 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US9772565B2 (en) 2005-02-10 2017-09-26 Asml Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US8902404B2 (en) 2005-02-22 2014-12-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7914687B2 (en) 2005-02-22 2011-03-29 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7224431B2 (en) 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8246838B2 (en) 2005-02-22 2012-08-21 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7428038B2 (en) 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US8958051B2 (en) 2005-02-28 2015-02-17 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US8107053B2 (en) 2005-02-28 2012-01-31 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7843551B2 (en) 2005-03-04 2010-11-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8514369B2 (en) 2005-03-04 2013-08-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9477159B2 (en) 2005-03-04 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8390778B2 (en) 2005-03-09 2013-03-05 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
US7684010B2 (en) 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
US7859644B2 (en) 2005-03-28 2010-12-28 Asml Netherlands B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
US7330238B2 (en) 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
US8259287B2 (en) 2005-04-05 2012-09-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8988651B2 (en) 2005-04-05 2015-03-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9429853B2 (en) 2005-04-05 2016-08-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8976334B2 (en) 2005-04-05 2015-03-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9857695B2 (en) 2005-04-05 2018-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10209629B2 (en) 2005-04-05 2019-02-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495984B2 (en) 2005-04-05 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7291850B2 (en) 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7582881B2 (en) 2005-04-08 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US7317507B2 (en) 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025196B2 (en) 2005-05-03 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11016394B2 (en) 2005-05-03 2021-05-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8860924B2 (en) 2005-05-03 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9477153B2 (en) 2005-05-03 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9606449B2 (en) 2005-05-03 2017-03-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10353296B2 (en) 2005-05-03 2019-07-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9146478B2 (en) 2005-05-03 2015-09-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9081300B2 (en) 2005-05-03 2015-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8115903B2 (en) 2005-05-03 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10684554B2 (en) 2005-05-03 2020-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9229335B2 (en) 2005-05-03 2016-01-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9268236B2 (en) 2005-06-21 2016-02-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having heat pipe with fluid to cool substrate and/or substrate holder
US7652746B2 (en) 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8687168B2 (en) 2005-06-28 2014-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11327404B2 (en) 2005-06-28 2022-05-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9448494B2 (en) 2005-06-28 2016-09-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9099501B2 (en) 2005-06-28 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8120749B2 (en) 2005-06-28 2012-02-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10386725B2 (en) 2005-06-28 2019-08-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7929112B2 (en) 2005-06-28 2011-04-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9952514B2 (en) 2005-06-28 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7468779B2 (en) 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9766556B2 (en) 2005-06-28 2017-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8848165B2 (en) 2005-06-28 2014-09-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8054445B2 (en) 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004654B2 (en) 2005-10-06 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8958054B2 (en) 2005-10-06 2015-02-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8421996B2 (en) 2005-11-16 2013-04-16 Asml Netherlands B.V. Lithographic apparatus
US9140996B2 (en) 2005-11-16 2015-09-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9618853B2 (en) 2005-11-16 2017-04-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10126664B2 (en) 2005-11-16 2018-11-13 Asml Netherlands, B.V. Lithographic apparatus and device manufacturing method
US10768536B2 (en) 2005-11-16 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11209738B2 (en) 2005-11-16 2021-12-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7656501B2 (en) 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US8786823B2 (en) 2005-11-16 2014-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11789369B2 (en) 2005-11-16 2023-10-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8138486B2 (en) 2005-11-23 2012-03-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7633073B2 (en) 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8481978B2 (en) 2005-11-23 2013-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7928407B2 (en) 2005-11-23 2011-04-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US8456611B2 (en) 2005-11-29 2013-06-04 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7420194B2 (en) 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US8232540B2 (en) 2005-12-27 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US8003968B2 (en) 2005-12-27 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US8564760B2 (en) 2005-12-28 2013-10-22 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US10761433B2 (en) 2005-12-30 2020-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11669021B2 (en) 2005-12-30 2023-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8743339B2 (en) 2005-12-30 2014-06-03 Asml Netherlands Lithographic apparatus and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222711B2 (en) 2005-12-30 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11275316B2 (en) 2005-12-30 2022-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482967B2 (en) 2006-03-13 2016-11-01 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10802410B2 (en) 2006-04-14 2020-10-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier structure to handle liquid
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8045135B2 (en) 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
US9330912B2 (en) 2006-11-22 2016-05-03 Asml Netherlands B.V. Lithographic apparatus, fluid combining unit and device manufacturing method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10185231B2 (en) 2006-12-07 2019-01-22 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US10649349B2 (en) 2006-12-07 2020-05-12 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US9645506B2 (en) 2006-12-07 2017-05-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10268127B2 (en) 2006-12-07 2019-04-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7791709B2 (en) 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7866330B2 (en) 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7841352B2 (en) 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8896809B2 (en) 2007-08-15 2014-11-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009060099A (en) * 2007-08-15 2009-03-19 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9690205B2 (en) 2007-12-28 2017-06-27 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US10310384B2 (en) 2007-12-28 2019-06-04 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US10274831B2 (en) 2007-12-28 2019-04-30 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US9229333B2 (en) 2007-12-28 2016-01-05 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8705009B2 (en) 2009-09-28 2014-04-22 Asml Netherlands B.V. Heat pipe, lithographic apparatus and device manufacturing method
US10209624B2 (en) 2010-04-22 2019-02-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US10620544B2 (en) 2010-04-22 2020-04-14 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9846372B2 (en) 2010-04-22 2017-12-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply

Also Published As

Publication number Publication date
AU2003302831A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
WO2004053951A1 (en) Exposure method, exposure apparatus and method for manufacturing device
EP1646075B1 (en) Exposure apparatus and device manufacturing method
JP4232449B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4605014B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4655763B2 (en) Exposure apparatus, exposure method, and device manufacturing method
WO2006030908A1 (en) Substrate holding apparatus, exposure apparatus and device manufacturing method
US20170205714A1 (en) Lithographic apparatus and device manufacturing method
WO2004105106A1 (en) Exposure method, exposure device, and device manufacturing method
JP2004207711A (en) Exposure device, exposure method, and device manufacturing method
JP2010118714A (en) Exposure apparatus, exposure method, and method for manufacturing device
JP2004207710A (en) Exposure system, exposure method, and device-manufacturing method
WO2005006418A1 (en) Exposure apparatus and method for manufacturing device
WO2005081293A1 (en) Exposure apparatus and exposure method, and device producing method
JP4622340B2 (en) Exposure apparatus and device manufacturing method
JP4701606B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4752320B2 (en) Substrate holding apparatus and exposure apparatus, substrate holding method, exposure method, and device manufacturing method
US20100033700A1 (en) Optical element, optical element holding device, exposure apparatus, and device manufacturing method
WO2005106930A1 (en) Exposure method, exposure system, and method for fabricating device
JP5055549B2 (en) Immersion exposure equipment
US20090091715A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4572539B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2005072132A (en) Aligner and device manufacturing method
JP2007012832A (en) Exposure device
JP2010212695A (en) Exposure method and apparatus, and device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase