WO2004061979A1 - Photoelectric detector with coplanar geometry - Google Patents

Photoelectric detector with coplanar geometry Download PDF

Info

Publication number
WO2004061979A1
WO2004061979A1 PCT/EP2003/050947 EP0350947W WO2004061979A1 WO 2004061979 A1 WO2004061979 A1 WO 2004061979A1 EP 0350947 W EP0350947 W EP 0350947W WO 2004061979 A1 WO2004061979 A1 WO 2004061979A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
photoelectric detector
bias voltage
detector
Prior art date
Application number
PCT/EP2003/050947
Other languages
French (fr)
Inventor
Jean-Yves Duboz
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU2003300574A priority Critical patent/AU2003300574A1/en
Publication of WO2004061979A1 publication Critical patent/WO2004061979A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type

Definitions

  • the present invention relates to a photoelectric detector with coplanar geometry.
  • Current photoelectric detectors are generally of two main types: those with coplanar geometry and those with non-coplanar geometry such as pn junction detectors and Schottky diodes. These detectors, although having good photoelectric conversion qualities, are relatively complex to manufacture because they require several levels of lithography or metallization. The electrodes cannot be removed in one operation, which can cause problems with the relative alignment of the electrodes.
  • detectors with coplanar geometry comprise on a semiconductor substrate positive and negative electrodes of material of the same nature, which makes it possible to deposit these electrodes in a single operation. These detectors are called MSM (Metal - Semiconductor - Metal) detectors.
  • MSM Metal - Semiconductor - Metal
  • the present invention relates more particularly to photoelectric detectors with coplanar geometry of the MSM type.
  • Known detectors of this type include positive and negative electrodes in the form of interdigital combs.
  • the “fingers” of the electrodes of one of the polarities have shapes and dimensions identical to those of the electrodes of the other polarity.
  • When such a detector is illuminated and no voltage is applied across its terminals, it produces no photocurrent.
  • a low bias voltage is applied across its terminals, it produces a photocurrent whose intensity increases, up to a certain maximum value, as a function of the increase in this bias voltage and according to a law which is a function of the material constituting it and of the geometry of its electrodes.
  • the subject of the present invention is a coplanar MSM type photoelectric detector which can produce a higher photocurrent than that of known coplanar MSM detectors of the same type, and can produce a photocurrent even in the absence of bias voltage.
  • the photoelectric detector according to the invention is a photoelectric detector with coplanar geometry of the MSM type, comprising, on an active semiconductor layer, two electrodes facing one another, to which a bias voltage is applied, and it is characterized in that in a direction transverse to the direction of extension of the inter-electrode space, the width of one of the electrodes is greater than that of the other. According to another characteristic of the invention, the ratio between the respective widths of the electrodes is between approximately 1.5 and 20.
  • FIG. 1 is a simplified top view of a MSM type detector of the prior art
  • - Figure 2 is a partial sectional view along ll-ll of Figure 1
  • Figure 3 is a simplified top view of an MSM type detector according to the invention
  • FIG. 4 is a partial sectional view along IV-IV of FIG. 1
  • FIG. 5 is a diagram of examples of characteristic curves typical of the detector of FIGS. 3 and 4.
  • the photoelectric detector 1 shown in FIGS. 1 and 2 comprises, on an active semiconductor layer 2, which will hereinafter be called, for convenience, substrate, electrodes 3 and 4 in the form of interdigital combs.
  • Layer 2 is formed on an inactive support substrate (not shown).
  • the widths of the “fingers” of the electrodes 3 and 4 are identical.
  • the two electrodes are deposited at the same time and are therefore of the same nature. They form a blocking contact of Schottky diode type.
  • the only electric field present is that which prevails under the electrode-substrate contacts, in an area called the desertion area.
  • the detector is illuminated from the rear, on the substrate side (arrow 5 in FIG.
  • the photoelectric detector 6 of the invention comprises, on an active layer of semiconductor material 7, electrodes 8 and 9, which also have the form of interdigitated combs.
  • the active layer 7 is formed on an inactive substrate (not shown).
  • layer 7 will hereinafter be called substrate.
  • the width of the fingers of the electrode 8 is different from that of the fingers of the electrode 9, and in this case, the fingers of the electrode 8 are wider than the fingers of the electrode 9. In such a structure, the electron-hole pairs are also separated under the electrodes and charges are collected.
  • the detector is operated with a zero bias voltage, with a non-zero response. If we want a bigger answer, we do operate the detector with a negative bias voltage, with, in return, a non-zero dark current.
  • the behavior of the detector of the invention is similar to that of a conventional detector having a Schottky type electrode and an ohmic contact electrode.
  • the electrodes of this known detector are manufactured successively, and the manufacturing lithography of the second series of electrodes must be aligned with respect to the first, which makes its manufacturing process complex and expensive, while the two electrodes of the detector of the invention are manufactured simultaneously, so much simpler.
  • the width of the widest electrode There is an upper limit to the width of the widest electrode. Indeed, the lateral electric field under this electrode decreases when one moves away from its edge, under this electrode, towards the middle of its width. For a very large electrode, the electric charges created far from the edge are no longer collected at zero or low bias voltage. There is therefore an optimum for the width of the widest electrode and for the ratio of the widths of the two electrodes. According to an exemplary embodiment, with an AIGaN substrate, this optimal ratio is less than 10, the width of the narrowest electrode being approximately 2 ⁇ m, and the distance between the facing edges of the electrodes being approximately 5 ⁇ m.
  • FIG. 5 shows an example of three curves A, B, C of photocurrent evolution, in solid lines (at a wavelength of 270 nm and for a refresh rate of 80 Hz, for an AIGaN substrate ), and three corresponding curves of the dark current, respectively D, E, F, in dashed lines.
  • the curves A, B, C on the one hand, and the curves D, E, F, on the other hand, correspond respectively to combs whose dimensions, in ⁇ m, of the narrow electrode, of the wide electrode and of the inter-electrode space, are 2/25/5, 2/40/5 and 2/90/5 respectively.
  • the detector of the invention has very varied fields of application, since it can operate at various wavelengths, in the entire visible range and around. If illuminated from the back, the material of the semiconductor substrate must, of course, be transparent to the length of the illumination wave. This limitation does not exist if the detector is illuminated from the front, but in this case, its efficiency can be much lower than in the first case due to the small surface of the illuminated substrate.

Abstract

The invention relates to an MSM-type photoelectric detector with coplanar geometry, comprising two electrodes which are disposed facing one another on a semiconductor substrate, whereby a polarisation voltage is applied to said electrodes. The inventive device is characterised in that, in a direction transverse to the direction of extension of the inter-electrode space, the width of one of the electrodes is greater than that of the other and, preferably, said ratio is between 1.5 and 20 approximately.

Description

DETECTEUR PHOTOELECTRIQUE A GEOMETRIE COPLANAIRE PHOTOELECTRIC DETECTOR WITH COPLANAR GEOMETRY
La présente invention se rapporte à un détecteur photoélectrique à géométrie coplanaire. Les détecteurs photoélectriques actuels sont généralement de deux types principaux : ceux à géométrie coplanaire et ceux à géométrie non coplanaire comme les détecteurs à jonctions pn et diodes Schottky. Ces détecteurs, bien que présentant de bonnes qualités de conversion photoélectrique, sont relativement complexes à fabriquer du fait qu'ils nécessitent plusieurs niveaux de lithographie ou de métallisation. Les électrodes ne peuvent pas être déposées en une seule opération, ce qui peut poser des problèmes d'alignement relatif des électrodes. Par contre, les détecteurs à géométrie coplanaire comportent sur un substrat semiconducteur des électrodes positive et négative en matériau de même nature, ce qui permet de déposer ces électrodes en une seule opération. Ces détecteurs sont appelés détecteurs MSM ( Métal - Semiconducteur- Métal).The present invention relates to a photoelectric detector with coplanar geometry. Current photoelectric detectors are generally of two main types: those with coplanar geometry and those with non-coplanar geometry such as pn junction detectors and Schottky diodes. These detectors, although having good photoelectric conversion qualities, are relatively complex to manufacture because they require several levels of lithography or metallization. The electrodes cannot be removed in one operation, which can cause problems with the relative alignment of the electrodes. On the other hand, detectors with coplanar geometry comprise on a semiconductor substrate positive and negative electrodes of material of the same nature, which makes it possible to deposit these electrodes in a single operation. These detectors are called MSM (Metal - Semiconductor - Metal) detectors.
La présente invention se rapporte plus particulièrement aux détecteurs photoélectriques à géométrie coplanaire de type MSM. Les détecteurs connus de ce type comportent des électrodes positive et négative en forme de peignes interdigités. Les « doigts » des électrodes de l'une des polarités ont des formes et dimensions identiques à celles des électrodes de l'autre polarité. Lorsqu'un tel détecteur est illuminé et qu'aucune tension n'est appliquée à ses bornes, il ne produit aucun photocourant. Dès qu'une faible tension de polarisation est appliquée à ses bornes, il produit un photocourant dont l'intensité augmente, jusqu'à une certaine valeur maximale, en fonction de l'augmentation de cette tension de polarisation et selon une loi qui est fonction du matériau le constituant et de la géométrie de ses électrodes.The present invention relates more particularly to photoelectric detectors with coplanar geometry of the MSM type. Known detectors of this type include positive and negative electrodes in the form of interdigital combs. The “fingers” of the electrodes of one of the polarities have shapes and dimensions identical to those of the electrodes of the other polarity. When such a detector is illuminated and no voltage is applied across its terminals, it produces no photocurrent. As soon as a low bias voltage is applied across its terminals, it produces a photocurrent whose intensity increases, up to a certain maximum value, as a function of the increase in this bias voltage and according to a law which is a function of the material constituting it and of the geometry of its electrodes.
La présente invention a pour objet un détecteur photoélectrique de type MSM coplanaire pouvant produire un photocourant plus élevé que celui des détecteurs MSM coplanaires connus de même type, et peut produire un photocourant même en l'absence de tension de polarisation.The subject of the present invention is a coplanar MSM type photoelectric detector which can produce a higher photocurrent than that of known coplanar MSM detectors of the same type, and can produce a photocurrent even in the absence of bias voltage.
Le détecteur photoélectrique conforme à l'invention est un détecteur photoélectrique à géométrie coplanaire de type MSM, comportant, sur une couche semiconductrice active, deux électrodes en regard l'une de l'autre, auxquelles est appliquée une tension de polarisation, et il est caractérisé en ce que, dans une direction transversale par rapport à la direction d'extension de l'espace inter- électrodes, la largeur de l'une des électrodes est supérieure à celle de l'autre. Selon une autre caractéristique de l'invention, le rapport entre les largeurs respectives des électrodes est compris entre 1,5 et 20 environ. La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel : la figure 1 est une vue de dessus simplifiée d'un détecteur de type MSM de l'art antérieur, - la figure 2 est une vue partielle en coupe selon ll-ll de la figure 1 , la figure 3 est une vue de dessus simplifiée d'un détecteur de type MSM conforme à l'invention, la figure 4 est une vue partielle en coupe selon IV-IV de la figure 1 , et la figure 5 est un diagramme d'exemples de courbes caractéristiques typiques du détecteur des figures 3 et 4.The photoelectric detector according to the invention is a photoelectric detector with coplanar geometry of the MSM type, comprising, on an active semiconductor layer, two electrodes facing one another, to which a bias voltage is applied, and it is characterized in that in a direction transverse to the direction of extension of the inter-electrode space, the width of one of the electrodes is greater than that of the other. According to another characteristic of the invention, the ratio between the respective widths of the electrodes is between approximately 1.5 and 20. The present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing, in which: FIG. 1 is a simplified top view of a MSM type detector of the prior art, - Figure 2 is a partial sectional view along ll-ll of Figure 1, Figure 3 is a simplified top view of an MSM type detector according to the invention , FIG. 4 is a partial sectional view along IV-IV of FIG. 1, and FIG. 5 is a diagram of examples of characteristic curves typical of the detector of FIGS. 3 and 4.
Le détecteur photoélectrique 1 représenté en figures 1 et 2 comporte, sur une couche semiconductrice active 2, que l'on appellera par la suite, par commodité, substrat, des électrodes 3 et 4 en forme de peignes interdigités. La couche 2 est formée sur un substrat de support inactif (non représenté). Les largeurs des « doigts » des électrodes 3 et 4 sont identiques. Pour faciliter la fabrication du détecteur, les deux électrodes sont déposées en même temps et sont donc de même nature. Elles forment un contact bloquant de type diode Schottky. Lorsque l'on n'applique aucune tension aux bornes des électrodes 3 et 4, le seul champ électrique présent est celui qui règne sous les contacts électrodes-substrat, dans une zone appelée zone de désertion. Quand le détecteur est illuminé par l'arrière, du côté du substrat ( flèche 5 en figure 2), des paires électron-trou sont créées dans le substrat au voisinage des électrodes. Dans les zones de champ électrique, les électrons et les trous sont séparés. Dans un matériau semiconducteur de type n, les trous sont collectés par les électrodes, tandis que les électrons sont chassés vers le semiconducteur. Dans un matériau de type p, l'inverse se produit. La largeur des doigts de l'électrode 3 étant la même que celle des doigts de l'électrode 4, aucune tension ou aucun photocourant n'apparaît aux bornes de ces électrodes en l'absence de tension de polarisation. On peut considérer le détecteur comme la somme de deux générateurs de courant fonctionnant en sens inverses, neutralisant leurs effets respectifs. Un photocourant apparaît lorsqu'une tension de polarisation est appliquée aux bornes des électrodes, et augmente progressivement lorsque la tension de polarisation augmente.The photoelectric detector 1 shown in FIGS. 1 and 2 comprises, on an active semiconductor layer 2, which will hereinafter be called, for convenience, substrate, electrodes 3 and 4 in the form of interdigital combs. Layer 2 is formed on an inactive support substrate (not shown). The widths of the “fingers” of the electrodes 3 and 4 are identical. To facilitate the manufacture of the detector, the two electrodes are deposited at the same time and are therefore of the same nature. They form a blocking contact of Schottky diode type. When no voltage is applied across the electrodes 3 and 4, the only electric field present is that which prevails under the electrode-substrate contacts, in an area called the desertion area. When the detector is illuminated from the rear, on the substrate side (arrow 5 in FIG. 2), electron-hole pairs are created in the substrate in the vicinity of the electrodes. In the electric field zones, the electrons and the holes are separated. In an n-type semiconductor material, the holes are collected by the electrodes, while the electrons are expelled to the semiconductor. In a p-type material, the opposite occurs. The width of the fingers of the electrode 3 being the same as that of the fingers of the electrode 4, no voltage or no photocurrent appears at the terminals of these electrodes in the absence of bias voltage. We can consider the detector as the sum of two current generators operating in opposite directions, neutralizing their respective effects. A photocurrent appears when a bias voltage is applied across the electrodes, and gradually increases as the bias voltage increases.
Le détecteur photoélectrique 6 de l'invention, schématiquement représenté en figures 3 et 4, comporte, sur une couche active en matériau semiconducteur 7, des électrodes 8 et 9, qui ont également la forme de peignes interdigités. Comme dans le cas du détecteur 1, la couche active 7 est formée sur un substrat inactif (non représenté). Par commodité, la couche 7 sera appelée substrat par la suite. Par contre, à la différence du photodétecteur connu, dans celui de l'invention, la largeur des doigts de l'électrode 8 est différente de celle des doigts de l'électrode 9, et en l'occurrence, les doigts de l'électrode 8 sont plus larges que les doigts de l'électrode 9. Dans une telle structure, les paires électron-trou sont également séparées sous les électrodes et des charges sont collectées. Mais, contrairement au cas précédent, grâce à la différence de largeur des doigts des électrodes, le courant généré sous l'électrode à doigts plus larges est supérieur à celui créé sous l'autre électrode, et les deux courants ne s'annulent pas mutuellement. On obtient un photocourant même lorsque la tension de polarisation des électrodes est nulle. Si on applique une tension de polarisation négative ( pour un substrat 7 de type n) sur l'électrode large, le photocourant augmente. Si on applique une tension de polarisation positive croissante, le photocourant diminue, puis s'annule, et finalement change de signe. Le régime de fonctionnement de ce photodétecteur est évidemment celui obtenu pour une tension de polarisation négative ou nulle appliquée sur l'électrode à doigts plus larges et pour un matériau de substrat de type n (ou, inversement pour une tension de polarisation nulle ou positive si ce matériau est de type p ). Si on désire obtenir un courant d'obscurité nul, on fait fonctionner le détecteur avec une tension de polarisation nulle, avec une réponse non nulle. Si on désire une réponse plus grande, on fait fonctionner le détecteur avec une tension de polarisation négative, avec, en contrepartie, un courant d'obscurité non nul.The photoelectric detector 6 of the invention, diagrammatically represented in FIGS. 3 and 4, comprises, on an active layer of semiconductor material 7, electrodes 8 and 9, which also have the form of interdigitated combs. As in the case of the detector 1, the active layer 7 is formed on an inactive substrate (not shown). For convenience, layer 7 will hereinafter be called substrate. On the other hand, unlike the known photodetector, in that of the invention, the width of the fingers of the electrode 8 is different from that of the fingers of the electrode 9, and in this case, the fingers of the electrode 8 are wider than the fingers of the electrode 9. In such a structure, the electron-hole pairs are also separated under the electrodes and charges are collected. But, unlike the previous case, thanks to the difference in width of the fingers of the electrodes, the current generated under the electrode with wider fingers is greater than that created under the other electrode, and the two currents do not cancel each other out. . A photocurrent is obtained even when the bias voltage of the electrodes is zero. If a negative bias voltage (for an n-type substrate 7) is applied to the wide electrode, the photocurrent increases. If an increasing positive bias voltage is applied, the photocurrent decreases, then vanishes, and finally changes sign. The operating regime of this photodetector is obviously that obtained for a negative or zero bias voltage applied to the electrode with wider fingers and for an n-type substrate material (or, conversely, for a zero or positive bias voltage if this material is of type p). If one wishes to obtain a zero dark current, the detector is operated with a zero bias voltage, with a non-zero response. If we want a bigger answer, we do operate the detector with a negative bias voltage, with, in return, a non-zero dark current.
Le comportement du détecteur de l'invention est similaire à celui d'un détecteur classique ayant une électrode de type Schottky et une électrode à contact ohmique. Cependant, les électrodes de ce détecteur connu sont fabriquées successivement, et la lithographie de fabrication de la seconde série d'électrodes doit être alignée par rapport à la première, ce qui rend son procédé de fabrication complexe et onéreux, alors que les deux électrodes du détecteur de l'invention sont fabriquées simultanément, donc de façon beaucoup plus simple.The behavior of the detector of the invention is similar to that of a conventional detector having a Schottky type electrode and an ohmic contact electrode. However, the electrodes of this known detector are manufactured successively, and the manufacturing lithography of the second series of electrodes must be aligned with respect to the first, which makes its manufacturing process complex and expensive, while the two electrodes of the detector of the invention are manufactured simultaneously, so much simpler.
Il existe une limite supérieure à la largeur de l'électrode la plus large. En effet le champ électrique latéral sous cette électrode décroît lorsque l'on s'éloigne de son bord, sous cette électrode, en direction du milieu de sa largeur. Pour une électrode très large, les charges électriques créées loin du bord ne sont plus collectées à tension de polarisation nulle ou faible. Il existe donc un optimum pour la largeur de l'électrode la plus large et pour le rapport des largeurs des deux électrodes. Selon un exemple de réalisation, avec un substrat en AIGaN, ce rapport optimal est inférieur à 10, la largeur de l'électrode la plus étroite étant d'environ 2 μm, et la distance entre les bords en regard des électrodes étant d'environ 5 μm.There is an upper limit to the width of the widest electrode. Indeed, the lateral electric field under this electrode decreases when one moves away from its edge, under this electrode, towards the middle of its width. For a very large electrode, the electric charges created far from the edge are no longer collected at zero or low bias voltage. There is therefore an optimum for the width of the widest electrode and for the ratio of the widths of the two electrodes. According to an exemplary embodiment, with an AIGaN substrate, this optimal ratio is less than 10, the width of the narrowest electrode being approximately 2 μm, and the distance between the facing edges of the electrodes being approximately 5 μm.
On a représenté en figure 5 un exemple de trois courbes A, B, C d'évolution du photocourant, en traits pleins ( à une longueur d'onde de 270 nm et pour une fréquence de rafraîchissement de 80 Hz, pour un substrat en AIGaN), et de trois courbes correspondantes du courant d'obscurité, respectivement D, E, F, en traits interrompus. Les courbes A, B, C d'une part, et les courbes D, E, F, d'autre part, correspondent respectivement à des peignes dont les dimensions, en μm, de l'électrode étroite, de l'électrode large et de l'espace inter- électrodes, sont respectivement de 2/25/5, 2/40/5 et 2/90/5. On constate une forte asymétrie des courbes d'évolution du photocourant en fonction de la tension de polarisation, et une réponse d'amplitude variable pour une tension de polarisation nulle.FIG. 5 shows an example of three curves A, B, C of photocurrent evolution, in solid lines (at a wavelength of 270 nm and for a refresh rate of 80 Hz, for an AIGaN substrate ), and three corresponding curves of the dark current, respectively D, E, F, in dashed lines. The curves A, B, C on the one hand, and the curves D, E, F, on the other hand, correspond respectively to combs whose dimensions, in μm, of the narrow electrode, of the wide electrode and of the inter-electrode space, are 2/25/5, 2/40/5 and 2/90/5 respectively. There is a strong asymmetry of the photocurrent evolution curves as a function of the bias voltage, and a response of variable amplitude for a zero bias voltage.
Le détecteur de l'invention a des domaines d'application très variés, car il peut fonctionner à diverses longueurs d'onde, dans tout le domaine visible et autour. S'il est illuminé par l'arrière, le matériau du substrat semiconducteur doit, bien entendu, être transparent à la longueur d'onde d'illumination. Cette limitation n'existe pas si le détecteur est illuminé par l'avant, mais dans ce cas, son rendement peut être beaucoup plus faible que dans le premier cas du fait de la faible surface de substrat illuminée. The detector of the invention has very varied fields of application, since it can operate at various wavelengths, in the entire visible range and around. If illuminated from the back, the material of the semiconductor substrate must, of course, be transparent to the length of the illumination wave. This limitation does not exist if the detector is illuminated from the front, but in this case, its efficiency can be much lower than in the first case due to the small surface of the illuminated substrate.

Claims

REVENDICATIONS
1. Détecteur photoélectrique à géométrie coplanaire de type MSM, comportant, sur une couche semiconductrice active (7), deux électrodes en regard l'une de l'autre (8, 9), auxquelles est appliquée une tension de polarisation, caractérisé en ce que, dans une direction transversale par rapport à la direction d'extension de l'espace inter-électrodes, la largeur de l'une des électrodes est supérieure à celle de l'autre. 1. Photoelectric detector with coplanar geometry of MSM type, comprising, on an active semiconductor layer (7), two electrodes facing each other (8, 9), to which a bias voltage is applied, characterized in that that, in a transverse direction relative to the direction of extension of the inter-electrode space, the width of one of the electrodes is greater than that of the other.
2. Détecteur photoélectrique selon la revendication 1 , caractérisé en ce que le rapport entre les largeurs respectives des électrodes est compris entre 1 ,5 et 20 environ.2. Photoelectric detector according to claim 1, characterized in that the ratio between the respective widths of the electrodes is between 1, 5 and 20 approximately.
3. Détecteur photoélectrique selon l'une des revendications précédentes, caractérisé en ce que, pour une couche semiconductrice active de type n, une tension de polarisation nulle ou négative est appliquée sur l'électrode la plus large, et sur l'électrode la moins large pour une couche semiconductrice de type p.3. Photoelectric detector according to one of the preceding claims, characterized in that, for an active n-type semiconductor layer, a zero or negative bias voltage is applied to the widest electrode, and to the least electrode wide for a p-type semiconductor layer.
4. Détecteur photoélectrique selon l'une des revendications précédentes, caractérisé en ce que les électrodes sont en forme de peignes interdigités. 4. Photoelectric detector according to one of the preceding claims, characterized in that the electrodes are in the form of interdigitated combs.
PCT/EP2003/050947 2002-12-13 2003-12-05 Photoelectric detector with coplanar geometry WO2004061979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003300574A AU2003300574A1 (en) 2002-12-13 2003-12-05 Photoelectric detector with coplanar geometry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0215846A FR2848729B1 (en) 2002-12-13 2002-12-13 PHOTOELECTRIC SENSOR WITH COPLANAR GEOMETRY
FR0215846 2002-12-13

Publications (1)

Publication Number Publication Date
WO2004061979A1 true WO2004061979A1 (en) 2004-07-22

Family

ID=32338783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/050947 WO2004061979A1 (en) 2002-12-13 2003-12-05 Photoelectric detector with coplanar geometry

Country Status (3)

Country Link
AU (1) AU2003300574A1 (en)
FR (1) FR2848729B1 (en)
WO (1) WO2004061979A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496648A (en) * 2011-11-28 2012-06-13 南京大学 Ultraviolet light single-photon detector with built-in negative feedback metal-semiconductor-metal structure
CN103943720A (en) * 2014-03-27 2014-07-23 中国科学院长春光学精密机械与物理研究所 Self-driven oxygen zinc magnesium ultraviolet detector and preparing method thereof
DE102014225632B3 (en) * 2014-12-11 2016-03-31 Forschungsverbund Berlin E.V. Photodetector and device for disinfecting water comprising this

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651448A1 (en) * 1993-10-28 1995-05-03 Hitachi Europe Limited Improved metal-semiconductor-metal photodetector
US5780916A (en) * 1995-10-10 1998-07-14 University Of Delaware Asymmetric contacted metal-semiconductor-metal photodetectors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0651448A1 (en) * 1993-10-28 1995-05-03 Hitachi Europe Limited Improved metal-semiconductor-metal photodetector
US5780916A (en) * 1995-10-10 1998-07-14 University Of Delaware Asymmetric contacted metal-semiconductor-metal photodetectors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN E ET AL: "Wavelength detector using a pair of metal-semiconductor-metal photodetectors with subwavelength finger spacings", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 32, no. 16, 1 August 1996 (1996-08-01), pages 1510 - 1511, XP006005478, ISSN: 0013-5194 *
SARTO A W ET AL: "PHOTOCURRENTS IN A METAL-SEMICONDUCTOR-METAL PHOTODETECTOR", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE INC. NEW YORK, US, vol. 33, no. 12, 1 December 1997 (1997-12-01), pages 2188 - 2194, XP000724777, ISSN: 0018-9197 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496648A (en) * 2011-11-28 2012-06-13 南京大学 Ultraviolet light single-photon detector with built-in negative feedback metal-semiconductor-metal structure
CN103943720A (en) * 2014-03-27 2014-07-23 中国科学院长春光学精密机械与物理研究所 Self-driven oxygen zinc magnesium ultraviolet detector and preparing method thereof
DE102014225632B3 (en) * 2014-12-11 2016-03-31 Forschungsverbund Berlin E.V. Photodetector and device for disinfecting water comprising this

Also Published As

Publication number Publication date
FR2848729A1 (en) 2004-06-18
FR2848729B1 (en) 2005-02-18
AU2003300574A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
EP3151290B1 (en) Spad photodiode
EP1756872B1 (en) Mesa structure photon detection circuit
EP0591499A1 (en) Multispectral photovoltaic component
EP2843715A1 (en) Semiconductor structure with switchable emission regions, method for manufacturing such a structure and semiconductor device comprising such a structure
FR3006459A1 (en) DYNAMIC ELECTRO-OPTICAL DEHASTER WITH POSITIVE COEFFICIENT
EP2975643B1 (en) Low-noise cdhgte photodiode array
EP3012876A1 (en) Method for manufacturing a low-noise photodiode
WO2013189997A1 (en) Semiconductor structure comprising an absorbing area placed in a focusing cavity
EP2750203B1 (en) Avalanche-photodiode semiconductor structure with low response time and method for manufacturing such a photodiode
FR2758657A1 (en) METAL-SEMICONDUCTOR-METAL PHOTODETECTOR
WO2004061979A1 (en) Photoelectric detector with coplanar geometry
EP3267493A1 (en) Avalanche photodiode structure and method for manufacturing such a structure
EP3353818A1 (en) Photodetector comprising a stack of vertically adjacent layers
EP0082787A2 (en) Photodiode with separated absorption and avalanche regions
EP0845817A1 (en) Avalanche photodiode
FR3009888A1 (en) SPAD PHOTODIODE WITH HIGH QUANTUM EFFICIENCY
EP0146430B1 (en) Field-effect transistor having a regulable threshold voltage, and integrated circuit comprising that transistor
FR2561822A1 (en) Field-effect semiconductor device with low breakdown voltage.
EP3693997B1 (en) Photo-detector array with barrier with pixellation by local depletion
FR2771855A1 (en) PHOTODETECTION DEVICE, MANUFACTURING METHOD THEREOF AND APPLICATION TO MULTISPECTRAL DETECTION
EP2948988B1 (en) Semiconductor structure and method for manufacturing a semiconductor structure
EP0098209A1 (en) Switching power transistor having a digitated structure
FR3040537A1 (en) ISOLATED CATHODE PHOTODIOD MATRIX
EP3000132A1 (en) Photodiode array having adjustable charge-absorption
EP2599125A1 (en) Semiconductor structure for an electronic power switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP