WO2004070488A1 - Microfluidic device - Google Patents

Microfluidic device Download PDF

Info

Publication number
WO2004070488A1
WO2004070488A1 PCT/EP2004/001116 EP2004001116W WO2004070488A1 WO 2004070488 A1 WO2004070488 A1 WO 2004070488A1 EP 2004001116 W EP2004001116 W EP 2004001116W WO 2004070488 A1 WO2004070488 A1 WO 2004070488A1
Authority
WO
WIPO (PCT)
Prior art keywords
values
sensors
microfluidic device
variables
microfluidic
Prior art date
Application number
PCT/EP2004/001116
Other languages
German (de)
French (fr)
Inventor
Herbert Grieb
Astrid Lohf
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2004070488A1 publication Critical patent/WO2004070488A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0694Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means or flow sources of very small size, e.g. microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00867Microreactors placed in series, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00871Modular assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00959Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00963Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00986Microprocessor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/146Employing pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/024Storing results with means integrated into the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks

Definitions

  • Microfluidic systems and their components are extremely sensitive to both blockages and abrasion due to the small diameter ( ⁇ 1 mm) of the fluid channels they contain. While abrasion of a few micrometers is usually negligible in conventional systems, this can e.g. B. in micro gear pumps with gap width of 2 to 3 microns lead to component failure. The same applies not only to the removal of material but also to deposits. Deposits are known for. B. from heat exchangers (so-called fouling) which inter alia interfere with the effectiveness of the heat transfer. The same effects can be expected in micro heat exchangers, only that these lead to blockage of individual or all fluid channels.
  • microfluidic systems should be able to be used as multi-product systems, with which different products can be produced in different phases of use, but also the same products can be produced at different times according to a specified recipe. To do this, it is necessary that these systems do not differ significantly due to deposits or abrasion deviate, so the degree of wear must be diagnosed.
  • the invention is therefore based on the object of making it possible to diagnose wear in microfluidic systems.
  • the object is achieved by a microfluidic device with fluid channels, sensors assigned to them for detecting flow-relevant variables, a storage device for storing the values of the detected flow-relevant variables, a comparison device for comparing the values of the recorded variables with those already stored earlier values and with an evaluation device for generating a message in the event of a deviation between the values compared with one another that exceeds a predetermined dimension.
  • the sensors can be flow sensors for detecting the flow in the fluid channels or differential pressure sensors for detecting pressure differences at different locations in the fluid channels.
  • pressure sensors for detecting the fluid pressure in the fluid channels are provided, the difference values of the pressure sensors differing from the pressure sensors being stored and to be compared with one another
  • microfluidic devices Increasing contamination or clogging of the fluid channels of the microfluidic device is diagnosed by the fact that the fluid flow decreases or the pressure drop across the microfluidic device increases with unchanged general conditions. Conversely, abrasion is caused by an increase in fluid flow and a decrease in pressure drop detected.
  • microfluidic devices There are several types of microfluidic devices:
  • the pressure loss is dependent on operating parameters of the device, such as the channel geometries (length, diameter, cross-sectional shape), the flow velocity of the fluid and the dynamic viscosity of the fluid (type of fluid, fluid temperature, pressure). Increasing pressure drops indicate blockages, while decreasing pressure drops are due to abrasion. If multi-way valves are available, they must be open for this.
  • Needle valves these generate pressure losses defined by opening and closing the valve path. In this case, the valve position must also be taken into account in addition to the operating parameters mentioned under a).
  • the valve When the valve is open, the fluid channels can be checked for abrasion and deposits as described above, while the valve can be checked for leaks when closed.
  • Three states can be distinguished for carrying out the diagnosis of the microfluidic device, namely new state, start state and current state.
  • new state the flow-relevant variables, in particular the pressure drop before the microfluidic device is used for the first time, are determined.
  • the start state describes the state at the beginning of each new phase of use and in the current state the pressure drop is monitored in order to detect wear, i.e. deposits or abrasion.
  • the pressure drop of the microfluidic device can be determined under defined conditions (pressure, flow rate, temperature of the fluid, type of fluid such as water) and stored in the storage device of the microfluidic device ("water test").
  • the pressure drop in the starting state is first determined using the water test. If this result is compared with the pressure drop when new, the degree of wear can be determined. These pressure drops are also stored in the storage device. The microfluidic device can then be operated with the starting materials actually required and the corresponding operating parameters. At the beginning of production, when the desired steady state is reached, the pressure drop in the start state, but now with the real production parameters, determined again and stored in the storage device.
  • the pressure drops are continuously monitored and evaluated during operation (current status). In comparison to the pressure drops in the initial state with real production parameters, the degree of wear can be concluded. This degree of wear caused by the current use and the degree of wear determined at the start of use based on the water test result in the total degree of wear of the microfluidic device.
  • the determination of the pressure drops of the individual states in the context of automated operating modes such as, for. B. Start-up, productive operation, shutdown, etc. take place automatically.
  • a separate operating mode can be introduced to determine the pressure drops when new or for additional water tests to be initiated manually.
  • the pressure drops in the different states of the microfluidic device, e.g. B. a microfluidic module, it is ensured that this data can also be clearly assigned to the entire life cycle of the module, even if the module is used in different system configurations.
  • the monitoring and diagnosis of the microfluidic device according to the invention enables not only the mere detection of wear but also the prediction of how long it can still be used.
  • Two cases can be distinguished here.
  • the degree of wear is determined and the remaining service life is predicted. This is based on the total operating time of the microfluidic device and the current degree of wear, which make up the remaining remaining service life ⁇ can be calculated. So that a user can, for. B. decide before the start of production whether the equipment used is still suitable for a planned productive use over a certain period.
  • the remaining service life is also continuously calculated during operation, with the current operating parameters also being used for this purpose, which makes the prediction more accurate.
  • the microfluidic device can be a complete microfluidic system, individual microfluidic modules or module combinations of several microfluidic modules connected in series and / or in series.
  • each individual module preferably has its own sensors and its own storage device, comparison device and evaluation device.
  • the sensors preferably record input and output variables of the modules, with either only the input variables or only the output variables being recorded on each module in order to reduce the sensor effort, and as a replacement for the output variables or the input variables the input variables or those recorded on a subordinate module output variables recorded in a preceding module can be used.
  • the microfluidic device consists of a plurality of microfluidic modules 1, 2, 3, 4 connected in series, which are connected to one another at their fluid inputs 5 and fluid outputs 6. Between the fluid inputs 5 and the fluid outputs 6 extend 1 to 4 fluid channels 7 within each module, in the course of which functional units, such as. B. a mixer 8 can be arranged. In the area of the fluid inlets 5, the individual fluid channels 7 are assigned pressure sensors 9 which detect the fluid pressure in the fluid channels 7.
  • the pressure sensors 9 are connected to a module-specific computing device 10, which also receives the values of the fluid pressures detected by the pressure sensors 9 in the subsequent module via a bus connection 11, and the difference values of the pressure sensors 9 of the modules 2 and 12, for example, in a subtraction device 12 3 recorded pressures.
  • the pressure difference values are stored in a memory device 13 and at the same time fed to a comparison device 14 where they are compared with the differential pressure values stored in the memory device 13 at an earlier point in time.
  • a subordinate evaluation device 15 evaluates the comparison result coming from the comparison device 14 with additional consideration of the operating parameters of the module 2 and generates a message when the deviation between the values compared with one another exceeds a predetermined level and thus indicates increased wear.
  • the message can be transmitted to a central monitoring device 16 via the data bus 11.
  • the operating parameters such as. B. geometries of the fluid channels 7, type of fluids, fluid temperature, can, as far as possible, be measured by means of further sensors or entered at the monitoring device 16 and transmitted via the bus connection 11 to the individual modules 1 to 4 and stored there in the storage device 13 become.
  • the results of the evaluation by the evaluation device 15, in particular the calculated degree of wear or the remaining service life, are likewise stored in the storage device 13.

Abstract

In order to monitor the wear and tear of a microfluidic device with fluid channels (7), sensors (9) for detecting flow-relevant quantities are assigned to said fluid channels. A device (13) stores the values of the detected quantities and a comparison device (14) compares the values of the detected quantities with already stored former values. An evaluation device (15) generate a message when the difference between the values that are compared to one another exceed a predetermined measure.

Description

Beschreibungdescription
Mikrofluidik-EinrichtungMicrofluidic device
Mikrofluidische Anlagen und ihre Komponenten (Ventile, Pumpen, Reaktoren) sind aufgrund der geringen Durchmesser (< 1 mm) der in ihnen enthaltenen Fluidkanäle extrem empfindlich sowohl gegen Verstopfungen als auch gegen Abrasion. Während in konventionellen Anlagen eine Abrasion von einigen Mikrometern in der Regel vernachlässigbar ist, kann dies z. B. bei Mikrozahnradpumpen mit Spaltweiteh von 2 bis 3 μm zum Versagen der Komponenten führen. Entsprechendes gilt nicht nur für den Abtrag von Material sondern auch für Ablagerungen. Bekannt sind Ablagerungen z. B. aus Wärmeübertra- gern (sog. Fouling) die unter anderem die Effektivität des Wärmeübergangs stören. In MikroWärmeübertragern sind die gleichen Effekte zu erwarten, nur dass diese zur Blockade einzelner oder aller Fluidkanäle führen. Berücksichtigt man, dass Mikroreaktoren insbesondere auch für extreme exotherme Reaktionen, explosive Gemische oder toxische Chemikalien eingesetzt werden, so wird verständlich, dass frühzeitig erkannt werden muss, wenn eine sichere Temperierung aufgrund der Verstopfung von Wärmeübertragern nicht mehr gewährleistet werden kann. Zur Durchsatzerhöhung sind in Mikroreaktoren und Mikro- apparaturen häufig Fluidkanäle parallel geschaltet. EineMicrofluidic systems and their components (valves, pumps, reactors) are extremely sensitive to both blockages and abrasion due to the small diameter (<1 mm) of the fluid channels they contain. While abrasion of a few micrometers is usually negligible in conventional systems, this can e.g. B. in micro gear pumps with gap width of 2 to 3 microns lead to component failure. The same applies not only to the removal of material but also to deposits. Deposits are known for. B. from heat exchangers (so-called fouling) which inter alia interfere with the effectiveness of the heat transfer. The same effects can be expected in micro heat exchangers, only that these lead to blockage of individual or all fluid channels. If one takes into account that microreactors are also used in particular for extreme exothermic reactions, explosive mixtures or toxic chemicals, it is understandable that it must be recognized at an early stage when safe temperature control can no longer be guaranteed due to the blockage of heat exchangers. Fluid channels are often connected in parallel in microreactors and micro-equipment to increase throughput. A
Gleichverteilung der Fluide auf diese Fluidkanäle wird durch deren relativ hohen Strömungswiderstand erreicht. Werden nun einzelne Fluidkanäle blockiert, so wird die Verweilzeitverteilung im Reaktor aufgeweitet, wodurch die Selektivität der Reaktion sinkt. Schließlich sollen mikrofluidische Anlagen als Mehrproduktanlagen eingesetzt werden können, mit denen in unterschiedlichen Nutzungsphasen unterschiedliche Produkte, aber auch zu unterschiedlichen Zeitpunkten die gleichen Produkte nach einem vorgegebenen Rezept produziert werden kön- nen. Dazu ist es aber notwendig, dass diese Anlagen nicht aufgrund von Ablagerungen oder Abrasion erheblich voneinander abweichen, so dass der Grad der Abnutzung diagnostiziert werden muss.Uniform distribution of the fluids on these fluid channels is achieved by their relatively high flow resistance. If individual fluid channels are now blocked, the residence time distribution in the reactor is widened, as a result of which the selectivity of the reaction decreases. After all, microfluidic systems should be able to be used as multi-product systems, with which different products can be produced in different phases of use, but also the same products can be produced at different times according to a specified recipe. To do this, it is necessary that these systems do not differ significantly due to deposits or abrasion deviate, so the degree of wear must be diagnosed.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Diagnose der Abnutzung bei mikrofluidischen Anlagen zu ermöglichen.The invention is therefore based on the object of making it possible to diagnose wear in microfluidic systems.
Gemäß der Erfindung wird die Aufgabe gelöst durch eine Mikro- fluidik-Einrichtung mit Fluidkanälen, diesen zugeordneten Sensoren zur Erfassung strömungsrelevanter Größen, eine Spei- chereinrichtung zur Speicherung der Werte der erfassten strömungsrelevanten Größen, einer Vergleichseinrichtung zum Vergleich der Werte der erfassten Größen mit bereits abgespeicherten früheren Werten und mit einer Auswerteeinrichtung zur Erzeugung einer Meldung bei einer ein vorgegebenes Maß über- steigenden Abweichung zwischen den miteinander verglichenen Werten.According to the invention, the object is achieved by a microfluidic device with fluid channels, sensors assigned to them for detecting flow-relevant variables, a storage device for storing the values of the detected flow-relevant variables, a comparison device for comparing the values of the recorded variables with those already stored earlier values and with an evaluation device for generating a message in the event of a deviation between the values compared with one another that exceeds a predetermined dimension.
Bei den Sensoren kann es sich um Durchflusssensoren zur Erfassung des Durchflusses in den Fluidkanälen oder um Diffe- renzdrucksensoren zur Erfassung von Druckdifferenzen an unterschiedlichen Stellen der Fluidkanäle handeln. In besonders vorteilhafter Weise sind Drucksensoren zur Erfassung des Fluiddrucks in den Fluidkanälen vorgesehen, wobei als abzuspeichernde und miteinander zu vergleichende Werte die Diffe- renzwerte der von den Drucksensoren an unterschiedlichenThe sensors can be flow sensors for detecting the flow in the fluid channels or differential pressure sensors for detecting pressure differences at different locations in the fluid channels. In a particularly advantageous manner, pressure sensors for detecting the fluid pressure in the fluid channels are provided, the difference values of the pressure sensors differing from the pressure sensors being stored and to be compared with one another
Stellen der Fluidkanäle erfassten Drücke herangezogen werden. Im einfachsten Fall werden die Druckdifferenzen an den Fluid- eingängen und Fluidausgängen der Mikrofluidik-Einrichtung und somit der Druckabfall in der Mikrofluidik-Einrichtung er- fasst.Locations of the fluid channels detected pressures are used. In the simplest case, the pressure differences at the fluid inlets and fluid outlets of the microfluidic device and thus the pressure drop in the microfluidic device are recorded.
Eine zunehmende Verschmutzung oder Verstopfung der Fluidkanäle der Mikrofluidik-Einrichtung wird dadurch diagnostiziert, dass bei unveränderten Rahmenbedingungen der Fluiddurchfluss abnimmt bzw. der Druckabfall über der Mikrofluidik-Einrichtung zunimmt. Umgekehrt wird eine Abrasion durch eine Erhöhung des Fluiddurchflusses und eine Abnahme des Druckabfalls detektiert. Dabei sind mehrere Typen von Mikrofluidik-Ein- richtungen zu unterscheiden:Increasing contamination or clogging of the fluid channels of the microfluidic device is diagnosed by the fact that the fluid flow decreases or the pressure drop across the microfluidic device increases with unchanged general conditions. Conversely, abrasion is caused by an increase in fluid flow and a decrease in pressure drop detected. There are several types of microfluidic devices:
a) Bei Einrichtungen ohne Regelventile oder Pumpen, wie z. B. Mischer- und Verweilermodule, ist der Druckverlust von Betriebsparametern der Einrichtung, wie den Kanalgeometrien (Länge, Durchmesser, Querschnittsform) , der Strömungsgeschwindigkeit des Fluids und der dynamischen Viskosität des Fluids (Art des Fluids, Fluidtemperatur, Druck) abhängig. Steigende Druckverluste lassen auf Verstopfungen schließen, wogegen sinkende Druckverluste auf Abrasion zurückzuführen sind. Soweit Mehrwegventile vorhanden sind, müssen diese hierfür geöffnet sein.a) For facilities without control valves or pumps, such as. B. Mixer and dwell modules, the pressure loss is dependent on operating parameters of the device, such as the channel geometries (length, diameter, cross-sectional shape), the flow velocity of the fluid and the dynamic viscosity of the fluid (type of fluid, fluid temperature, pressure). Increasing pressure drops indicate blockages, while decreasing pressure drops are due to abrasion. If multi-way valves are available, they must be open for this.
b) Bei Mikrofluidik-Einrichtungen mit Regelventilen, z. B.b) For microfluidic devices with control valves, e.g. B.
Nadelventilen, erzeugen diese durch das Öffnen und Schließen des Ventilweges definierte Druckverluste. In diesem Fall ist neben den unter a) genannten Betriebsparameter noch die Ventilstellung zu berücksichtigen. Bei offenem Ventil können die Fluidkanäle wie oben beschrieben auf Abrasion und Ablagerungen geprüft werden, während das Ventil im geschlossenen Zustand auf Dichtheit geprüft werden kann.Needle valves, these generate pressure losses defined by opening and closing the valve path. In this case, the valve position must also be taken into account in addition to the operating parameters mentioned under a). When the valve is open, the fluid channels can be checked for abrasion and deposits as described above, while the valve can be checked for leaks when closed.
c) Bei Mikrofluidik-Einrichtungen mit Pumpen muss die erziel- te Drucksteigerung bzw. der erzielte Fluiddurchfluss bestimmt werden, wobei die zu berücksichtigenden Betriebsparameter je nach Pumpentyp unterschiedlich sein können. Werden z. B. Zahnradpumpen getestet, so muss neben den unter a) angeführten Betriebsparameter auch die Pumpendrehzahl berücksichtigt werden. Besonders ist hier auf die Verwendung gasfreier Flüssigkeiten zu achten, da die Pumpenleistung von Zahnradpumpen bei Gasen extrem stark abfallen kann. Hinzu kommt die Temperatur des Pumpenkopfs. Wird eine kalte Zahnradpumpe in Betrieb genommen, so kann sich der Pumpenkopf erwärmen, auch wenn Fluide mit Umgebungstemperatur gepumpt werden. Dadurch werden die Spalte zwischen den Zahnrädern kleiner und die Pumpleistung steigt bei ansonsten unveränderten Parametern an. In diesem Fall ist also sicherzustellen, dass die Erfassung der durchflussrelevanten Größen wirklich in stationärem Zustand durchgeführt wird. Bei Zahnradpumpen kann der Abnutzungszustand statt über die erzeugte Druckdifferenz auch über Änderungen bei der Leistungsaufnahme ermittelt werden. Dabei ist jedoch darauf zu achten, dass druckseitig keine Schwankungen auftreten, was zum Beispiel der Fall sein kann, wenn zwei Pumpen fluidisch über einen Mikromischer gekoppelt sind.c) In the case of microfluidic devices with pumps, the pressure increase or the fluid flow achieved must be determined, the operating parameters to be taken into account depending on the type of pump. Are z. B. Gear pumps are tested, the pump speed must also be taken into account in addition to the operating parameters listed under a). Particular attention should be paid to the use of gas-free liquids, since the pump performance of gear pumps can drop extremely sharply with gases. Then there is the temperature of the pump head. If a cold gear pump is started up, the pump head can heat up, even if fluids are pumped at ambient temperature. As a result, the gaps between the gears become smaller and the pump output increases with otherwise unchanged parameters on. In this case, it must be ensured that the acquisition of the flow-relevant quantities is actually carried out in a stationary state. With gear pumps, the state of wear can be determined via changes in the power consumption instead of the pressure difference generated. However, it must be ensured that there are no fluctuations on the pressure side, which can be the case, for example, if two pumps are fluidly coupled via a micromixer.
Für die Durchführung der Diagnose der Mikrofluidik-Einrichtung lassen sich drei Zustände, nämlich Neuzustand, Startzustand und aktueller Zustand, unterscheiden. Im Neuzustand werden die durchflussrelevanten Größen, insbesondere der Druckabfall vor der ersten Benutzung der Mikrofluidik-Ein- richtung ermittelt. Der Startzustand beschreibt den Zustand bei Beginn jeder neuen Nutzungsphase und im aktuellen Zustand wird der Druckabfall überwacht, um die Abnutzung, also Ablagerungen oder Abrasion zu erkennen.Three states can be distinguished for carrying out the diagnosis of the microfluidic device, namely new state, start state and current state. When new, the flow-relevant variables, in particular the pressure drop before the microfluidic device is used for the first time, are determined. The start state describes the state at the beginning of each new phase of use and in the current state the pressure drop is monitored in order to detect wear, i.e. deposits or abrasion.
Im Neuzustand kann der Druckabfall der Mikrofluidik-Einrichtung unter definierten Bedingungen (Druck, Durchfluss, Temperatur des Fluids, Fluidart wie z. B. Wasser) ermittelt und in der Speichereinrichtung der Mikrofluidik-Einrichtung abgespeichert werden ("Wassertest").When new, the pressure drop of the microfluidic device can be determined under defined conditions (pressure, flow rate, temperature of the fluid, type of fluid such as water) and stored in the storage device of the microfluidic device ("water test").
Bei Beginn einer neuen Nutzung, nachdem die Mikrofluidik-Einrichtung früher bereits benutzt worden war, wird der Druckabfall im Startzustand zunächst mit dem Wassertest ermittelt. Wird dieses Ergebnis mit dem Druckabfall im Neuzustand ver- glichen, so kann daraus der Grad der Abnutzung bestimmt werden. Auch diese Druckabfälle werden in der Speichereinrichtung abgespeichert. Anschließend kann die Mikrofluidik-Einrichtung mit den tatsächlich benötigten Edukten und den entsprechenden Betriebsparametern betrieben werden. Zu Beginn der Produktion, wenn der gewünschte stationäre Betriebszustand erreicht ist, wird der Druckabfall im Startzustand, jetzt allerdings mit den realen Produktionsparametern, erneut ermittelt und in der Speichereinrichtung abgespeichert.When a new use begins after the microfluidic device has already been used, the pressure drop in the starting state is first determined using the water test. If this result is compared with the pressure drop when new, the degree of wear can be determined. These pressure drops are also stored in the storage device. The microfluidic device can then be operated with the starting materials actually required and the corresponding operating parameters. At the beginning of production, when the desired steady state is reached, the pressure drop in the start state, but now with the real production parameters, determined again and stored in the storage device.
Im laufenden Betrieb (aktueller Zustand) werden die Druckab- fälle laufend überwacht und ausgewertet. Im Vergleich zu den Druckabfällen im Startzustand mit realen Produktionsparametern kann auf den weiteren Abnutzungsgrad geschlossen werden. Dieser durch die momentane Nutzung hervorgerufene Abnutzungsgrad und der bereits beim Start der Nutzung anhand des Wassertests ermittelte Abnutzungsgrad ergeben den Gesamtabnutzungsgrad der Mikrofluidik-Einrichtung. Bei einer Automatisierung der Mikrofluidik-Einrichtung kann die Ermittlung der Druckabfälle der einzelnen Zustände im Rahmen von automatisierten Betriebsarten, wie z. B. Anfahren, Produktivbe- trieb, Abfahren usw. automatisch erfolgen. Für die Ermittlung der Druckabfälle im Neuzustand oder für zusätzliche manuell anzustoßende Wassertests kann eine eigene Betriebsart eingeführt werden.The pressure drops are continuously monitored and evaluated during operation (current status). In comparison to the pressure drops in the initial state with real production parameters, the degree of wear can be concluded. This degree of wear caused by the current use and the degree of wear determined at the start of use based on the water test result in the total degree of wear of the microfluidic device. When the microfluidic device is automated, the determination of the pressure drops of the individual states in the context of automated operating modes, such as, for. B. Start-up, productive operation, shutdown, etc. take place automatically. A separate operating mode can be introduced to determine the pressure drops when new or for additional water tests to be initiated manually.
Durch die Speicherung der Werte der erfassten Größen, hier der Druckabfälle, in den verschiedenen Zuständen der Mikrofluidik-Einrichtung, z. B. eines Mikrofluidik-Moduls, ist sichergestellt, dass diese Daten auch über den gesamten Lebenslauf des Moduls diesem eindeutig zugeordnet werden kön- nen, auch wenn das Modul in verschiedenen Anlagenkonfigurationen eingesetzt wird.By storing the values of the detected quantities, here the pressure drops, in the different states of the microfluidic device, e.g. B. a microfluidic module, it is ensured that this data can also be clearly assigned to the entire life cycle of the module, even if the module is used in different system configurations.
Die erfindungsgemäße Überwachung und Diagnose der Mikrofluidik-Einrichtung ermöglicht nicht nur das bloße Erkennen von Abnutzung sondern auch die Vorhersage, wie lange eine Nutzung noch möglich ist. Hier können zwei Fälle unterschieden werden. Im ersten Fall wird aufgrund des Wassertests im Neuzustand und des Wassertests vor einer erneuten Nutzung, z. B. Produktion, der Abnutzungsgrad ermittelt und die verbleibende Restnutzungsdauer vorhergesagt. Basis dafür sind die Gesamtbetriebszeit der Mikrofluidik-Einrichtung und der aktuelle Abnutzungsgrad, aus denen die verbleibende Restnutzungsdauer β berechnet werden kann. Damit kann ein Anwender z. B. vor dem Produktionsstart entscheiden, ob die verwendete Einrichtung für einen geplanten Produktiveinsatz über eine bestimmte Dauer noch geeignet ist. Im zweiten Fall wird im laufenden Betrieb ebenfalls die verbleibende Restnutzungsdauer ständig berechnet, wobei hierzu zusätzlich die momentanen Betriebsparameter herangezogen werden, wodurch die Vorhersage genauer wird.The monitoring and diagnosis of the microfluidic device according to the invention enables not only the mere detection of wear but also the prediction of how long it can still be used. Two cases can be distinguished here. In the first case, due to the water test in new condition and the water test before being used again, e.g. B. Production, the degree of wear is determined and the remaining service life is predicted. This is based on the total operating time of the microfluidic device and the current degree of wear, which make up the remaining remaining service life β can be calculated. So that a user can, for. B. decide before the start of production whether the equipment used is still suitable for a planned productive use over a certain period. In the second case, the remaining service life is also continuously calculated during operation, with the current operating parameters also being used for this purpose, which makes the prediction more accurate.
Bei der oben beschriebenen Vorgehensweise ist für jeden produktiven Einsatz der Mikrofluidik-Einrichtung ein Wassertest notwendig. Werden jedoch beim ersten Wassertest unter Variation der Betriebsparameter Kennlinienfelder ermittelt, die es erlauben, die Druckabfälle unter den realen Produktionsbedin- gungen zu ermitteln, so kann dieser zusätzlicher Wassertest entfallen.With the procedure described above, a water test is necessary for every productive use of the microfluidic device. However, if characteristic fields are determined in the first water test, varying the operating parameters, which make it possible to determine the pressure drops under the real production conditions, this additional water test can be omitted.
Bei der Mikrofluidik-Einrichtung kann es sich um eine komplette mikrofluidische Anlage, um einzelne Mikrofluidik- Module oder um Modulkombinationen von mehreren in Reihe und/oder in Serie geschalteten Mikrofluidik-Modulen handeln. Im Falle von Mikrofluidik-Modulen weist vorzugsweise jedes einzelne Modul jeweils eigene Sensoren und eine eigene Speichereinrichtung, Vergleichseinrichtung und Auswerteeinrich- tung auf. Die Sensoren erfassen dabei vorzugsweise Eingangsund Ausgangsgrößen der Module, wobei zur Reduzierung des Sensoraufwandes vorzugsweise an jedem Modul entweder nur die Eingangsgrößen oder nur die Ausgangsgrößen erfasst werden und als Ersatz für die Ausgangsgrößen bzw. die Eingangsgrößen die an einem nachgeordneten Modul erfassten Eingangsgrößen bzw. die an einem vorgeordneten Modul erfassten Ausgangsgrößen herangezogen werden.The microfluidic device can be a complete microfluidic system, individual microfluidic modules or module combinations of several microfluidic modules connected in series and / or in series. In the case of microfluidic modules, each individual module preferably has its own sensors and its own storage device, comparison device and evaluation device. The sensors preferably record input and output variables of the modules, with either only the input variables or only the output variables being recorded on each module in order to reduce the sensor effort, and as a replacement for the output variables or the input variables the input variables or those recorded on a subordinate module output variables recorded in a preceding module can be used.
Zur weiteren Erläuterung der Erfindung wird im Folgenden auf die Figur der Zeichnung Bezug genommen, die ein vereinfachtes Blockschaltbild der erfindungsgemäßen Mikrofluidik-Einrichtung zeigt. Bei dem hier gezeigten Ausführungsbeispiel besteht die Mikrofluidik-Einrichtung aus mehreren in Reihe geschalteten Mikro- fluidik-Modulen 1, 2, 3, 4, die an ihren Fluideingängen 5 und Fluidausgängen 6 miteinander verbunden sind. Zwischen den Fluideingängen 5 und den Fluidausgängen 6 erstrecken sich innerhalb jedes Moduls 1 bis 4 Fluidkanäle 7, in deren Verlauf Funktionseinheiten, wie z. B. ein Mischer 8 angeordnet sein können. Im Bereich der Fluideingänge 5 sind den einzelnen Fluidkanälen 7 Drucksensoren 9 zugeordnet, die den Fluiddruck in den Fluidkanälen 7 erfassen. Die Drucksensoren 9 sind an einer moduleigenen Recheneinrichtung 10 angeschlossen, die über eine Busverbindung 11 auch die Werte der von den Drucksensoren 9 in dem nachfolgenden Modul erfassten Fluiddrücke erhält und in einer Subtrahiereinrichtung 12 die Differenz- werte der beispielsweise von den Drucksensoren 9 der Module 2 und 3 erfassten Drücke bildet. Die Druckdifferenzwerte werden in einer Speichereinrichtung 13 abgelegt und gleichzeitig einer Vergleichseinrichtung 14 zugeführt wo sie mit den zu einem früheren Zeitpunkt in der Speichereinrichtung 13 abge- legten Differenzdruckwerten verglichen werden. Eine nachge- ordnete Auswerteeinrichtung 15 wertet das von der Vergleichseinrichtung 14 kommende Vergleichsergebnis unter zusätzlicher Berücksichtigung von Betriebsparametern des Moduls 2 aus und erzeugt eine Meldung, wenn die Abweichung zwischen den mit- einander verglichenen Werten ein vorgegebenes Maß übersteigt und somit auf eine erhöhte Abnutzung hinweist. Die Meldung kann über den Datenbus 11 an eine zentrale Überwachungseinrichtung 16 übertragen werden. Die Betriebsparameter, wie z. B. Geometrien der Fluidkanäle 7, Art der Fluide, Fluidtem- peratur, können, soweit möglich, mittels weiterer Sensorik gemessen oder an der Überwachungseinrichtung 16 eingegeben und über die Busverbindung 11 an die einzelnen Module 1 bis 4 übertragen und dort in der Speichereinrichtung 13 abgespeichert werden. Die Ergebnisse der Auswertung durch die Auswer- teeinrichtung 15, insbesondere der berechnete Abnutzungsgrad bzw. die Restnutzungsdauer, werden ebenfalls in der Speichereinrichtung 13 abgespeichert. To further explain the invention, reference is made below to the figure of the drawing, which shows a simplified block diagram of the microfluidic device according to the invention. In the exemplary embodiment shown here, the microfluidic device consists of a plurality of microfluidic modules 1, 2, 3, 4 connected in series, which are connected to one another at their fluid inputs 5 and fluid outputs 6. Between the fluid inputs 5 and the fluid outputs 6 extend 1 to 4 fluid channels 7 within each module, in the course of which functional units, such as. B. a mixer 8 can be arranged. In the area of the fluid inlets 5, the individual fluid channels 7 are assigned pressure sensors 9 which detect the fluid pressure in the fluid channels 7. The pressure sensors 9 are connected to a module-specific computing device 10, which also receives the values of the fluid pressures detected by the pressure sensors 9 in the subsequent module via a bus connection 11, and the difference values of the pressure sensors 9 of the modules 2 and 12, for example, in a subtraction device 12 3 recorded pressures. The pressure difference values are stored in a memory device 13 and at the same time fed to a comparison device 14 where they are compared with the differential pressure values stored in the memory device 13 at an earlier point in time. A subordinate evaluation device 15 evaluates the comparison result coming from the comparison device 14 with additional consideration of the operating parameters of the module 2 and generates a message when the deviation between the values compared with one another exceeds a predetermined level and thus indicates increased wear. The message can be transmitted to a central monitoring device 16 via the data bus 11. The operating parameters, such as. B. geometries of the fluid channels 7, type of fluids, fluid temperature, can, as far as possible, be measured by means of further sensors or entered at the monitoring device 16 and transmitted via the bus connection 11 to the individual modules 1 to 4 and stored there in the storage device 13 become. The results of the evaluation by the evaluation device 15, in particular the calculated degree of wear or the remaining service life, are likewise stored in the storage device 13.

Claims

Patentansprüche claims
1. Mikrofluidik-Einrichtung mit Fluidkanälen (7), diesen zugeordneten Sensoren (9) zur Erfassung durchflussrelevanter Größen, einer Speichereinrichtung (13) zur Speicherung der Werte der erfassten Größen, einer Vergleichseinrichtung (14) zum Vergleich der Werte der erfassten Größen mit bereits abgespeicherten früheren Werten und mit einer Auswerteeinrichtung (15) zur Erzeugung einer Meldung bei einer ein vorgege- benes Maß übersteigenden Abweichung zwischen den miteinander verglichenen Werten.1. Microfluidic device with fluid channels (7), sensors (9) assigned to them for detecting flow-relevant variables, a memory device (13) for storing the values of the recorded variables, a comparison device (14) for comparing the values of the recorded variables with those already stored earlier values and with an evaluation device (15) for generating a message in the event of a deviation between the values compared with one another that exceeds a predetermined dimension.
2. Mikrofluidik-Einrichtung nach Anspruch 1, d a du r c h g e k e n n z e i c h n e t , dass die Sensoren (9) Durch- flusssensoren zur Erfassung des Durchflusses in den Fluidkanälen (7) sind.2. Microfluidic device according to claim 1, so that the sensors (9) are flow sensors for detecting the flow in the fluid channels (7).
3. Mikrofluidik-Einrichtung nach Anspruch 1, d a du r c h g e k e n n z e i c h n e t , dass die Sensoren (9) Diffe- renzdrucksensoren zur Erfassung von Differenzdrücken des3. Microfluidic device according to claim 1, that means that the sensors (9) differential pressure sensors for detecting differential pressures of the
Fluids an unterschiedlichen Stellen der Fluidkanäle (7) sind.Are fluids at different locations of the fluid channels (7).
4. Mikrofluidik-Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Sensoren (9) Drucksen- soren zur Erfassung des Fluiddrucks in den Fluidkanälen (7) sind und dass als abzuspeichernde und miteinander zu vergleichende Werte die Differenzwerte von den Drucksensoren an unterschiedlichen Stellen der Fluidkanäle (7) erfassten Drücke herangezogen werden.4. Microfluidic device according to claim 1, characterized in that the sensors (9) are pressure sensors for detecting the fluid pressure in the fluid channels (7) and that, as values to be stored and compared with one another, the difference values from the pressure sensors at different locations of the fluid channels (7) recorded pressures can be used.
5. Mikrofluidik-Einrichtung nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Werte zusammen mit Betriebsparametern der Mikrofluidik-Einrichtung abgespeichert sind und dass die Weiterverarbeitung der Werte in der Vergleichseinrichtung (14) und/oder Auswerteeinrichtung (15) in Abhängigkeit von den Betriebsparametern erfolgt . 5. Microfluidic device according to one of the preceding claims, characterized in that the values are stored together with operating parameters of the microfluidic device and that the further processing of the values in the comparison device (14) and / or evaluation device (15) takes place as a function of the operating parameters ,
6. Mikrofluidik-Einrichtung nach einem der vorangehenden Ansprüche, d a du r c h g e k e n n z e i c h n e t , dass die Auswerteeinrichtung (15) aus der Abweichung zwischen den miteinander verglichenen Werten die Abnutzung der Mikrofluidik- Einrichtung und/oder deren Restnutzungsdauer berechnet.6. Microfluidic device according to one of the preceding claims, that the evaluation device (15) calculates the wear of the microfluidic device and / or its remaining useful life from the deviation between the values compared with one another.
7. Mikrofluidik-Einrichtung nach einem der vorangehenden Ansprüche, d a du r c h g e k e n n z e i c h n e t , dass sie unterschiedliche Mikrofluidik-Module (1, 2, 3, 4) umfasst, wobei jedes Modul (1 bis 4) jeweils eigene Sensoren (9) und eine eigene Speichereinrichtung (13) , Vergleichseinrichtung (14) und Auswerteeinrichtung (15) aufweist.7. Microfluidic device according to one of the preceding claims, since you rchgek characterized in that it comprises different microfluidic modules (1, 2, 3, 4), each module (1 to 4) each having its own sensors (9) and its own storage device (13), comparison device (14) and evaluation device (15).
8. Mikrofluidik-Einrichtung nach Anspruch 7, d a du r c h g e k e n n z e i c h n e t , dass die Sensoren (9) durchflussrelevante Eingangs- und Ausgangsgrößen der Module (1 bis 4) erfassen, wobei an jedem Modul (z. B. 2) entweder nur die Eingangsgrößen oder nur die Ausgangsgrößen erfasst werden und als Ersatz für die Ausgangsgrößen bzw. die Eingangsgrößen die an einem nachgeordneten Modul (z. B. 3) erfassten Eingangsgrößen bzw. die an einem vorgeordneten Modul erfassten Ausgangsgrößen herangezogen werden. 8. microfluidic device according to claim 7, since you rchgek characterized that the sensors (9) detect flow-relevant input and output variables of the modules (1 to 4), with each module (z. B. 2) either only the input variables or only the output variables are recorded and the input variables recorded on a subordinate module (e.g. 3) or the output variables recorded on a preceding module are used as a replacement for the output variables or the input variables.
PCT/EP2004/001116 2003-02-07 2004-02-06 Microfluidic device WO2004070488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10305102A DE10305102A1 (en) 2003-02-07 2003-02-07 Microfluidic device
DE10305102.3 2003-02-07

Publications (1)

Publication Number Publication Date
WO2004070488A1 true WO2004070488A1 (en) 2004-08-19

Family

ID=32747625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001116 WO2004070488A1 (en) 2003-02-07 2004-02-06 Microfluidic device

Country Status (2)

Country Link
DE (1) DE10305102A1 (en)
WO (1) WO2004070488A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007037669A1 (en) * 2006-09-29 2008-04-24 Hitachi, Ltd. Device for chemical synthesis
WO2009101434A3 (en) * 2008-02-14 2010-05-06 Compactgtl Plc Catalytic reaction module
EP3237212A4 (en) * 2015-04-30 2018-09-19 Hewlett-Packard Development Company, L.P. Drop ejection based flow sensor calibration

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013915A1 (en) * 2005-03-24 2006-09-28 Siemens Ag Process engineering, in particular micro process engineering plant
SG140513A1 (en) * 2006-09-05 2008-03-28 Yokogawa Electric Corp A method to evaluate a performance of a control valve and a system thereof
DE102014221499A1 (en) 2014-10-23 2016-04-28 Robert Bosch Gmbh Method and device for testing a microfluidic system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707796A (en) * 1983-10-19 1987-11-17 Calabro Salvatore R Reliability and maintainability indicator
WO2000062919A1 (en) * 1999-04-16 2000-10-26 Norbert Schwesinger Modular chemical microsystem
WO2001036085A1 (en) * 1999-11-15 2001-05-25 Siemens Aktiengesellschaft System for carrying out the automated processing of fluids which comprises combinable and interchangeable process modules
WO2001050095A1 (en) * 1999-12-29 2001-07-12 Schlumberger Industries, S.A. Method and device for detecting a dysfunction of an ultrasonic flowmeter
US6302130B1 (en) * 1998-08-24 2001-10-16 Fujikin Incorporated Method and apparatus for detection of orifice clogging in pressure-type flow rate controllers
WO2002090894A1 (en) * 2001-05-09 2002-11-14 Rosemount Inc. Flow diagnostic system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707796A (en) * 1983-10-19 1987-11-17 Calabro Salvatore R Reliability and maintainability indicator
US6302130B1 (en) * 1998-08-24 2001-10-16 Fujikin Incorporated Method and apparatus for detection of orifice clogging in pressure-type flow rate controllers
WO2000062919A1 (en) * 1999-04-16 2000-10-26 Norbert Schwesinger Modular chemical microsystem
WO2001036085A1 (en) * 1999-11-15 2001-05-25 Siemens Aktiengesellschaft System for carrying out the automated processing of fluids which comprises combinable and interchangeable process modules
WO2001050095A1 (en) * 1999-12-29 2001-07-12 Schlumberger Industries, S.A. Method and device for detecting a dysfunction of an ultrasonic flowmeter
WO2002090894A1 (en) * 2001-05-09 2002-11-14 Rosemount Inc. Flow diagnostic system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007037669A1 (en) * 2006-09-29 2008-04-24 Hitachi, Ltd. Device for chemical synthesis
WO2009101434A3 (en) * 2008-02-14 2010-05-06 Compactgtl Plc Catalytic reaction module
EA019000B1 (en) * 2008-02-14 2013-12-30 КОМПАКТДЖТЛ ПиЭлСи Catalytic reaction module
EP3237212A4 (en) * 2015-04-30 2018-09-19 Hewlett-Packard Development Company, L.P. Drop ejection based flow sensor calibration
US10495507B2 (en) 2015-04-30 2019-12-03 Hewlett-Packard Development Company, L.P. Drop ejection based flow sensor calibration

Also Published As

Publication number Publication date
DE10305102A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
DE60036362T2 (en) METHOD FOR DETECTING AN ORIGINAL FLOW IN A FLOW REGULATOR FOR A PRESSURE-FLUIDUM
EP1233165B1 (en) Determination of gas turbine degradation
DE69723839T2 (en) MONITORING SYSTEM FOR INDUSTRIAL SYSTEM
EP3232282B1 (en) Diagnostic device and method for monitoring the operation of a technical plant
DE10204414A1 (en) Microfluidic system
DE2714069A1 (en) METHOD AND DEVICE FOR DETERMINING AND ANALYZING SOURCES OF ERRORS
DE102012209540A1 (en) TOOL LUBRICANT FEED MONITORING SYSTEM AND METHOD
DE102008060005A1 (en) A safety controller and method for controlling an automated plant having a plurality of plant hardware components
DE102008006066A1 (en) Microreactor system
WO2004070488A1 (en) Microfluidic device
WO1995026494A1 (en) Device and method for mixing, measuring the flow rate of and supplying a multi-phase mixture
DE10035763B4 (en) Device for dosing a gaseous medium
EP3234519B1 (en) Thermal flow meter having diagnostic function
AT508437A2 (en) METHOD FOR THE AUTOMATIC DETECTION AND PRESENTATION OF THE OPERATION, AND THE WORK AND FUNCTIONING OF BUILDING-TECHNICAL AND / OR MANUFACTURING EQUIPMENT WITH REGARD TO THEIR ENERGY EFFICIENCY
EP2139598A1 (en) Method and device for the continuous transfer and analysis of fluids
WO2005054734A2 (en) Connectors for measuring instruments and a measuring probe provided with a connector of this type
DE10135448B4 (en) Device for detecting fluid contamination
DE102010050599B4 (en) Apparatus and method for testing catalysts with improved process pressure setting
EP0815387B1 (en) Method and device for monitoring the feed-water supply to a steamgenerator
EP3940211A1 (en) Diagnostic method for a piston cooling nozzle valve, diagnostic device, control device, motor vehicle
EP0631218A2 (en) District heating system
DE19520917A1 (en) Reverse osmosis assembly used in conjunction with blood dialysis units, etc.
DE10202210B4 (en) flow sensor
DE10014752B4 (en) Method and device for monitoring a thermostatic valve
DE102020204488B4 (en) Method and evaluation system for determining a filter contamination condition, as well as filter system and machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase