WO2004072712A2 - Process for manufacturing polymeric optical film - Google Patents

Process for manufacturing polymeric optical film Download PDF

Info

Publication number
WO2004072712A2
WO2004072712A2 PCT/US2004/002505 US2004002505W WO2004072712A2 WO 2004072712 A2 WO2004072712 A2 WO 2004072712A2 US 2004002505 W US2004002505 W US 2004002505W WO 2004072712 A2 WO2004072712 A2 WO 2004072712A2
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
film
process according
biaxially stretched
optical
Prior art date
Application number
PCT/US2004/002505
Other languages
French (fr)
Other versions
WO2004072712A3 (en
Inventor
Richard C. Allen
Matthew B. Johnson
Fred J. Roska
Steven J. Rhyner
William W. Merrill
Joan M. Strobel
Kevin M. Hamer
John M. Klaeser
Sebastian F. Zehentmaier
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to JP2006503138A priority Critical patent/JP2006517486A/en
Priority to EP04706488A priority patent/EP1592543A2/en
Publication of WO2004072712A2 publication Critical patent/WO2004072712A2/en
Publication of WO2004072712A3 publication Critical patent/WO2004072712A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • B29C55/165Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • Liquid crystal displays such as for example, twisted nematic (TN), single domain vertically aligned (VA), optically compensated birefringent (OCB) liquid crystal displays and the like, have inherently narrow and non-uniform viewing angle characteristics.
  • Such viewing angle characteristics can describe, at least in part, the optical performance of a display.
  • Characteristics such as contrast, color, and gray scale intensity profile can vary substantially in uncompensated displays for different viewing angles. There is a desire to modify these characteristics from those of an uncompensated display to provide a desired set of characteristics as a viewer changes positions horizontally, vertically, or both and for viewers at different horizontal and vertical positions. For example, in some applications there may be a desire to make the viewing characteristics more uniform over a range of horizontal or vertical positions.
  • the range of viewing angles that are important can depend on the application of the liquid crystal display. For example, in some applications, a broad range of horizontal positions may be desired, but a relatively narrow range of vertical positions may be sufficient. In other applications, viewing from a narrow range of horizontal or vertical angles (or both) may be desirable. Accordingly, the desired optical compensation for non- uniform viewing angle characteristics can depend on the desired range of viewing positions.
  • One viewing angle characteristic is the contrast ratio between the bright state and the dark state of the liquid crystal display.
  • the contrast ratio can be affected by a variety of factors.
  • Another viewing angle characteristic is the color shift of the display with changes in viewing angle.
  • Color shift refers to the change in the color coordinates (e.g., the color coordinates based on the CIE 1931 standard) of the light from the display as viewing angle is altered.
  • Color shift can be measured by taking the difference in the chromaticity color coordinates (e.g., ⁇ x or ⁇ y) at an angle normal to the plane containing the screen and at any non-nonnal viewing angle or set of viewing angles.
  • acceptable color shift is determined by the application, but can be defined as when the absolute value of ⁇ x or ⁇ y exceeds some defined value, for example, exceeds 0.05 or 0.10. For example, it can be determined whether the color shift is acceptable for a desired set of viewing angles. Because the color shift may depend upon the voltage to any pixel or set of pixels, color shift is ideally measured at one or more pixel driving voltages.
  • gray scale inversion occurs when the ratio of intensities of any two adjacent gray levels approaches a value of one, where the gray levels become indistinguishable or even invert. Typically, gray scale inversion occurs only at some viewing angles.
  • Compensators have been proposed to address these issues.
  • One concept includes a compensator film made of discotic molecules.
  • One drawback of current discotic compensators is the typical occurrence of comparatively large color shifts.
  • Other concepts include specific combinations of birefringent layers. There is a need for new compensator structures to provide improved or desired viewing angle characteristics.
  • the present invention relates to polymeric optical film useful for a variety of applications including, for example, optical compensators for displays, such as liquid crystal displays, as well as the displays and other devices containing the optical compensators.
  • a process for making an optical film includes stretching a polyolefin film in a first direction and stretching the polyolefin film in a second direction different than the first direction forming a biaxially stretched polyolefin film. At least a portion of the stretching of the polyolefin film in the second direction occurs simultaneous with the stretching of the polyolefin film in the first direction.
  • the biaxially stretched polyolefin film has a length and a width and substantially non-absorbing and non- scattering for at least one polarization state of visible light.
  • the biaxially stretched polyolefin film has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • a process for making an optical film includes stretching a polymeric film in a first direction and stretching the polymeric film in a second direction different than the first direction forming an biaxially stretched polymeric film. At least a portion of the stretching of the polymeric film in the second direction occurs simultaneous with the stretching of the polymeric film in the first direction.
  • the biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the biaxially stretched polymeric film has x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater and a length and width of at least 0.65 meter and the in-plane and out-of-plane retardance are substantially uniform across the length and width.
  • process for making an optical film includes stretching a polymeric film in a first direction and stretching the polymeric film in a second direction different than the first direction forming an biaxially stretched polymeric film. At least a portion of the stretching of the polymeric film in the second direction occurs simultaneous with the stretching of the polymeric film in the first direction.
  • the biaxially stretched polymeric film has a length and a width and being substantially non-absorbing and non- scattering for at least one polarization state of visible light.
  • the biaxially stretched polymeric film has x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater and a thickness of 5 microns to 200 microns.
  • FIG. 1 is a is a schematic illustration of a coordinate system with an optical film element
  • FIG. 2 is a top schematic view of a tenter apparatus for use to form the optical film element
  • FIG. 3 is a schematic cross-sectional view of an optical compensator stack according to the present invention
  • FIG. 4 is a schematic cross-sectional view of an optical compensator stack according to the present invention.
  • FIG. 5 is a schematic cross-sectional view of a liquid crystal display according to the present invention.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display according to the present invention.
  • optical film of the present invention is believed to be applicable to a variety of applications needing polymeric optical film including, for example, optical compensators for displays, such as liquid crystal displays, as well as the displays and other devices containing the optical compensators. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
  • a “c-plate” denotes a birefringent optical element, such as, for example, a plate or film, with a principle optical axis (often referred to as the "extraordinary axis") substantially perpendicular to the selected surface of the optical element.
  • the principle optical axis corresponds to the axis along which the birefringent optical element has an index of refraction different from the substantially uniform index of refraction along directions normal to the principle optical axis.
  • n x % ⁇ n z
  • n x , n y , and n z are the indices of refraction along the x, y, and z axes, respectively.
  • An "o-plate” denotes a birefringent optical element, such as, for example, a plate or film, having its principle optical axis tilted with respect to the surface of the optical element.
  • a-plate denotes a birefringent optical element, such as, for example, a plate or film, having its principle optical axis within the x-y plane of the optical element.
  • Positively birefringent a-plates can be fabricated using, for example, uniaxially stretched films of polymers such as, for example, poly vinyl alcohol, or uniaxially aligned films of nematic positive optical anisotropy LCP materials.
  • Negatively birefringent a-plates can be formed using uniaxially aligned films of negative optical anisotropy nematic LCP materials, including for example discotic compounds.
  • a "biaxial retarder” denotes a birefringent optical element, such as, for example, a plate or film, having different indices of refraction along all three axes (i.e., n x ⁇ n y ⁇ n z ).
  • Biaxial retarders can be fabricated, for example, by biaxially orienting plastic films. Examples of biaxial retarders are discussed in U.S. Patent No. 5,245,456, incorporated herein by reference. Examples of suitable films include films available from Sumitomo Chemical Co. (Osaka, Japan) and Nitto Denko Co. (Osaka, Japan). In-plane retardation and out-of-plane retardation are parameters used to describe a biaxial retarder.
  • a biaxial retarder as defined herein, has an in-plane retardation of at least 3 nm for 550 nm light. Retarders with lower in-plane retardation are considered c- plates.
  • polymer will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend by, for example, coextrusion or reaction, including transesterification. Both block and random copolymers are included, unless indicated otherwise.
  • polarization refers to plane polarization, circular polarization, elliptical polarization, or any other nonrandom polarization state in which the electric vector of the beam of light does not change direction randomly, but either maintains a constant orientation or varies in a systematic manner.
  • In-plane polarization the electric vector remains in a single plane, while in circular or elliptical polarization, the electric vector of the beam of light rotates in a systematic manner.
  • biaxially stretched refers to a film that has been stretched in two different directions, a first direction and a second direction, in the plane of the film.
  • spontaneous biaxially stretched refers to a film in which at least a portion of stretching in each of the two directions is performed simultaneously.
  • retardation or retardance refers to the difference between two orthogonal indices of refraction times the thickness of the optical element.
  • in-plane retardation refers to the product of the difference between two orthogonal in-plane indices of refraction times the thickness of the optical element.
  • out-of-plane retardation refers to the product of the difference of the index of refraction along the thickness direction (z direction) of the optical element minus one in-plane index of refraction times the thickness of the optical element.
  • this term refers to the product of the difference of the index of refraction along the thickness direction (z direction) of the optical element minus the average of in-plane indices of refraction times the thickness of the optical element.
  • substantially non-absorbing refers to the level of transmission of the optical element, being at least 80 percent transmissive to at least one polarization state of visible light, where the percent transmission is normalized to the intensity of the incident, optionally polarized light.
  • substantially non-scattering refers to the level of collimated or nearly collimated incident light that is transmitted through the optical element, being at least 80 percent transmissive for at least one polarization state of visible light within a cone angle of less than 30 degrees.
  • J-retarder refers to a film or sheet that is substantially non-absorbing and non-scattering for at least one polarization state of visible light, where at least two of the three orthogonal indices of refraction are unequal, and where the in-plane retardation is no more than 100 nm and the out-of plane retardation is at least 50 nm.
  • Weight percent, percent by weight, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
  • Figure 1 illustrates an axis system for use in describing the optical elements.
  • the x and y axes correspond to the width and length of the display and the z axis is typically along the thickness direction of the display. This convention will be used throughout, unless otherwise stated.
  • the x axis and y axis are defined to be parallel to a major surface 102 of the optical element 100 and may correspond to width and length directions of a square or rectangular surface.
  • the z axis is perpendicular to that major surface and is typically along the thickness direction of the optical element.
  • the optical film may include a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in- plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • Any polymeric material capable of being biaxially stretched and possessing the optical properties described herein are contemplated.
  • a partial listing of these polymers include, for example, polyolefin, polyacrylates, polyesters, polycarbonates, fluoropolymers and the like.
  • One or more polymers can be combined to form the polymeric optical film.
  • Polyolefin includes for example: cyclic olefin polymers such as, for example, polystyrene, norbornene and the like; polypropylene; polyethylene; polybutylene; polypentylene; and the like.
  • a specific polybutylene is poly(l-butene).
  • a specific polypentylene is poly(4-methyl-l-pentene).
  • Polyacrylate includes, for example, acrylates, methacrylates and the like.
  • specific polyacrylates include poly(methyl methacrylate), and poly(butyl methacrylate).
  • Fluoropolymer specifically includes, but is not limited to, poly(vinylidene fluoride).
  • the in-plane retardance of the polymeric optical film may be 100 nm or less or 0 nm to 100 nm.
  • the in-plane retardance of the polymeric optical film may be 20 nm or less or 0 nm to 20 nm.
  • the in-plane retardance of the polymeric optical film may be 20 nm to 50 nm.
  • the in-plane retardance of the polymeric optical film may be 50 nm to 100 nm.
  • the out-of-plane retardance of the polymeric optical film may be 50 nm or greater, up to 1000 nm.
  • the out-of-plane retardance of the polymeric optical film may be 75 nm or greater or 75 nm to 1000 nm.
  • the out-of-plane retardance of the polymeric optical film may be 100 nm or greater or 100 nm to 1000 nm.
  • the out-of-plane retardance of the polymeric optical film may be 150 nm or greater or 150 nm to 1000 nm.
  • the polymeric optical film can have a thickness (z direction) of 5 micrometers or greater.
  • the polymeric optical film can have a thickness (z direction) of 5 micrometers to 200 micrometers or 5 micrometers to 100 micrometers.
  • the polymeric optical film can have a thickness (z direction) of 7 micrometers to 75 micrometers.
  • the polymeric optical film can have a thickness (z direction) of 10 micrometers to 50 micrometers.
  • the polymeric optical film can have a length and width of at least 0.65 meter.
  • the polymeric optical film can have a length and width of at least 1.3 meters.
  • the polymeric optical film can have a length and width of at least 1.5 meters.
  • the in-plane and out-of- plane retardance is substantially uniform across the length and width of the polymeric optical film.
  • the phrase "retardance is substantially uniform across the length, and width of the polymeric optical film” refers to retardance (both in-plane and out-of-plane) changing less than 4 nm/cm, or 2 nm/cm or 1 nm/cm along the width and/or length and width of the layer of biaxially stretched polymer film.
  • One quantitative measure of uniformity is defined as,
  • ⁇ TM ax is the maximum in-plane retardation and ⁇ TM m is the minimum in-plane retardation.
  • additional additives may optionally be added to the polymer forming the optical film.
  • a partial listing of additives includes, for example, stabilizers, processing aids, crystallization modifiers, tackifiers, stiffening agents, nano-particles, and the like.
  • Stabilizers include, for example, anti-oxidants, anti-ozone agents, anti-static agents, UV absorbers, and light stabilizers.
  • Processing aids include, for example, lubricants, extrusion aids, blocking agents, and electrostatic pinning aids.
  • Crystallization modifiers include, for example, clarifying agents and nucleating agents. Crystallization modifiers aid in reducing "haze” in the biaxially stretched polymeric optical film. Crystallization modifiers can be present in any amount effective to reduce "haze", such as, for example, 10 ppm to 500000 ppm or 100 ppm to 400000 pm or
  • the range or solid cone of desired viewing angles can be manipulated depending upon the exact nature of the application. For example, in some embodiments, it is desirable to have a large solid angle of acceptable viewing. In other embodiments, it is desirable to strictly control the range of acceptable viewing (for example, for privacy purposes) to a narrower range of angles than is normally associated with an uncompensated display.
  • the polymeric optical film of the invention may replace cellulose triacetate (TAC) layers now present in many optical bodies.
  • TAC may be obtained commercially from Fuji Photo (Japan).
  • TAC films are available in a range of thickness from about 40 micrometers to over 120 micrometers.
  • TAC is made with a solvent casting process and exhibits a nearly isotropic in-plane retardance.
  • TAC exhibits an out-of-plane retardance from 30 nm to 120 nm.
  • the simultaneous biaxially stretched polymeric optical film of the invention may provide a wide range of properties that are different from TAC, such as, for example: lower dispersion of the refractive index; higher levels of ou-of-plane retardation for any given thickness of the polymeric optical film of the invention verses TAC; improved moisture barrier resistance; lower manufacturing costs; environmentally friendly manufacturing; ability to easily customize the optical properties from substantially a c- plate to that of a biaxial retarder.
  • the polymeric optical film of the invention may be thinner than TAC films with a similar or even smaller negative c-plate retardance, the overall thickness of the novel integrated stack of films, described below, can be thinner. New techniques for manufacturing polymeric optical film have been developed.
  • These techniques include stretching a polymer film in a first direction and stretching the polymer film in a second direction different than the first direction forming a biaxially stretched polymeric film. At least a portion of the stretching in the second direction occurs simultaneously with the stretching in the first direction.
  • This technique forms a polymeric optical film with the properties and attributes described above.
  • Simultaneously biaxially stretched polymeric optical film still has some of the problems associated with sequentially biaxially stretched polymeric optical film in addition to issues unique to simultaneously biaxially stretched polymeric optical film. Simultaneously biaxially stretched polymeric optical film does not produce polymeric optical film with "patchy" optical properties and attributes. In addition, by employing a simultaneously biaxially stretching process, improvements in film dimensional stability and reduced thickness variability is realized over a sequential biaxial stretching process. The process described herein produces polymeric optical films with the properties and attributes of the present invention.
  • FIG. 2 illustrates a top schematic view of a tenter apparatus for carrying out the process of the invention.
  • the tenter may be of the type disclosed in U.S. Patent No.
  • Tenter apparatus 10 includes a first side rail 12 and a second side rail 14 on which the driven clips 22 and idler clips 24 ride.
  • the driven clips 22 are illustrated schematically as boxes marked "X" while the idler clips 24 are illustrated schematically as open boxes.
  • Between pairs of driven clips 22 on a given rail there are one or more idler clips 24. As illustrated, there may be two idler clips 24 between each pair of clips 22 on a given rail.
  • One set of clips 22, 24 travels in a closed loop about the first rail 12 in the direction indicated by the arrows at the ends of the rail.
  • another set of clips 22, 24 travels in a closed loop about the second rail 14 in the direction indicated by the arrows at the ends of the rail.
  • the clips 22, 24 hold the film edges and propel film 26 in the direction shown by the arrow at the center of the film. At the ends of the rails 12, 14, the clips 22, 24 release the film 26. The clips then return along the outside of the rails to the entrance of the tenter to grip the cast web to propel it through the tenter. (For clarity of illustration, the clips returning to the entrance on the outside of the rails have been omitted from Figure 2.)
  • the stretched film 26 exiting the tenter may be wound up for later processing or use, or may be processed further.
  • the polymer can be cast into a sheet form to prepare a web suitable for stretching to arrive at the optical film described above.
  • the polymer may be cast by feeding polymer resin into the feed hopper of a single screw, twin screw, cascade, or other extrusion system having an extruder barrel with temperatures adjusted to produce a stable homogeneous melt.
  • the polymer can be extruded through a sheet die onto a rotating cooled metal casting wheel.
  • the web is then biaxially stretched according to the process described herein.
  • the extruded web may be quenched, reheated and fed to the clips 22, 24 on the first and second rails 12, 14 to be propelled through the tenter apparatus 10.
  • the optional heating and the gripping by the clips 22, 24 may occur in any order or simultaneously.
  • the rails 12, 14 pass through three sections: preheat section 16; stretch section 18; and post-stretch treatment section 20.
  • the preheat section 16 the film is heated to within an appropriate temperature range to allow a significant amount of stretching without breaking.
  • the three functional sections 16, 18, and 20 may be broken down further into zones.
  • the preheat section 16 includes zones Zl, Z2, and Z3, the stretch section 18 includes zones Z4, Z5, and Z6, and the post-stretch section 20 may include zones Z7, Z8, and Z9. It is understood that the preheat, stretch, and post-treatment sections may each include fewer or more zones than illustrated.
  • the TD (Transverse Direction) component of stretch or the MD (Machine Direction) component of stretch may be performed in the same or in different zones.
  • MD and TD stretch each may occur in any one, two or three of the zones Z4, Z5, and Z6.
  • one component of stretch may occur before the other, or may begin before the other and overlap the other.
  • either component of stretch may occur in more than one discrete step.
  • MD stretch may occur in Z4 and Z6 without any MD stretch occurring in Z5.
  • Some stretching in the MD and/or TD may also occur in the preheat section or post-stretch treatment section.
  • stretching may begin in zone Z3. Stretching may continue into zone Z7 or beyond. Stretching may resume in any of the zones after zones Z3, Z5, or Z6.
  • the amount of stretching in the MD may be different than the amount of stretching in the TD.
  • the amount of stretching in the MD may be up to 10% or 25% or 50% greater than the amount of stretching in the TD.
  • the amount of stretching in the TD may be up to 10% or 25% or 50% greater than the amount of stretching in the MD.
  • the film may be propelled through the post-treatment section 20.
  • the film 26 may be maintained at a desired temperature while no significant stretching occurs.
  • This treatment can be referred to as a heat set or anneal, and may be performed to improve the properties of the final film, such as dimensional stability.
  • a small amount of relaxation in either or both the TD and MD may occur in the post-treatment section 20. Relaxation here refers to a convergence of the rails in the TD and/or a convergence of the driven clips on each rail in the MD, or simply the reduction of stress on the film in the TD and/or MD.
  • Biaxial stretching of films is sensitive to many process conditions, including but not limited to the composition of the polymer or resin, film casting and quenching parameters, the time-temperature history while preheating the film prior to stretching, the stretching temperature used, the stretch profile used, and the rates of stretching. With the benefits of the teaching herein, one of skill in the art may adjust any or all of these parameters and obtain films having the desired optical properties and characteristics.
  • the cooling of the biaxially stretched optical film may begin before or after the onset of stretching in the stretch section 18.
  • the cooling can be "zone" cooling which refers to cooling substantially the entire width or TD of the web, from the edge portions 28 of the film through the center portion 30 of the film. Surprisingly, zone cooling immediately after the stretching zone has been found to improve uniformity of in-plane retardance of polymeric optical films when applied in an effective amount. Cooling may be provided by forced air convection.
  • zone cooling improves the cross-directional (TD) variation of in-plane retardation.
  • TD cross-directional
  • Optical compensators can be formed using a variety of different optical elements. Among these optical elements are o-plates, c-plates, a-plates, biaxial retarders, twisted o- plates, twisted a-plates, and other retarders. Information regarding o-plates, c-plates, and a-plates can be found, for example, in Yeh et al., Optics of Liquid Crystal Displays, John Wiley & Sons, New York (1999), U.S. Patents Nos. 5,504,603, 5,557,434, 5,612,801, 5,619,352, 5,638,197, 5,986,733, and 5,986,734, and PCT Patent Applications Publication Nos.
  • optical elements are configured in combinations as described below to form optical bodies or optical compensator stacks.
  • Optical bodies or optical compensator stacks can be formed by disposing a polarizer layer or a cholesteric liquid crystal material on the novel polymeric optical film described above.
  • Figure 3 shows an optical compensator stack 300 that includes a J-retarder 310 disposed on a first liquid crystal layer 320.
  • the J-retarder 310 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the J-retarder 310 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • the first liquid crystal layer 320 includes liquid crystal material.
  • the first liquid crystal layer 320 may be an o-plate, an a-plate or the like.
  • Figure 3 shows that the optical compensator stack 300 may include a second liquid crystal layer 325 disposed on the J-retarder 310 or the J-retarder 310 may be disposed between the first liquid crystal layer 320 and the second liquid crystal layer 325.
  • the second liquid crystal layer 325 may be an o-plate, an a-plate or the like.
  • the optical compensator stack 300 may further include a polarizer layer 330 disposed on the first liquid crystal layer 320 or the first liquid crystal layer 320 may be disposed between the polarizer layer 330 and the J-retarder 310.
  • the polarizer layer 330 may be an absorbing polarizer or a reflecting polarizer.
  • a reflecting polarizer layer 340 can be disposed on the absorbing polarizing layer 330 or the absorbing polarizing layer 330 can be disposed between the reflecting polarizing layer 340 and the first liquid crystal layer 320.
  • Figure 4 shows an optical compensator stack 400 that includes a J-retarder 410 disposed on a polarizer layer 430.
  • the J-retarder 410 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the J-retarder 410 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • the optical compensator stack 400 may further include a second polarizer layer 440 disposed on the first polarizing layer 430 or the first polarizing layer 430 can be disposed between the second polarizing layer 440 and the J-retarder 410.
  • the polarizer layer 430 may be an absorbing polarizer or a reflecting polarizer. If the first polarizing layer 430 is an absorbing polarizer, then the second polarizing layer 440 can be a reflecting polarizer layer.
  • Additional layers can be added to or between the optical compensation stacks layers described above. Additional optional layer include, for example, alignment layers, o-plates, a-plates and/or c-plates and the like.
  • One or more optical compensation stacks can be laminated to a first major face and a second major face of a LCD panel in a manner similar to that which conventional dichroic polarizers are laminated.
  • the optical compensation stacks described above provide a wider range of retarder, for example, a biaxial retarder or c-plate, birefringence can be fabricated to make an optical compensation stack without dramatically increasing the thickness of the polarizer.
  • Figure 5 illustrates a schematic cross- sectional view of one illustrative display system 500 including a light modulator 550 disposed on an optical compensator stack 501 that includes a J-retarder 510 disposed on a first liquid crystal layer 520.
  • the J-retarder 510 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light.
  • the J-retarder 510 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in- plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • the first liquid crystal layer 520 includes liquid crystal material.
  • the first liquid crystal layer 520 may be an o-plate, an a-plate and the like.
  • the optical compensator stack 501 may include a second liquid crystal layer 525 disposed on the J-retarder 510 or the J-retarder 510 can be disposed between the second liquid crystal layer 525 and the first liquid crystal layer 520.
  • the second liquid crystal layer 525 may be an o-plate, an a-plate or the like.
  • the optical compensator stack 501 may further include a polarizer layer 530 disposed on the first liquid crystal layer 520 or the first liquid crystal layer 520 can be disposed between the polarizer layer 530 and the J- retarder 510.
  • the polarizer layer 530 may be an absorbing polarizer or a reflecting polarizer.
  • a reflecting polarizer layer 540 can be disposed on the polarizing layer 530 or the polarizing layer 530 can be disposed between the reflecting polarizing layer 540 and the first liquid crystal layer 520.
  • Figure 6 illustrates a schematic cross-sectional view of one illustrative display system 600 including a light modulator 650 disposed on an optical compensator stack 601 that includes a J-retarder 610 disposed on a polarizer layer 630.
  • the J-retarder 610 includes a layer of simultaneous biaxially stretched polymer film being substantially non- absorbing and non-scattering for at least one polarization state of visible light.
  • the J- retarder 610 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
  • the optical compensator stack 601 may further include a second polarizer layer 640 disposed on the first polarizing layer 630 or the first polarizing layer 630 can be disposed between the second polarizer layer 640 and the J-retarder 610.
  • a reflecting polarizer layer 640 can be disposed on the polarizing layer 630 or the first polarizing layer
  • the polarizer layer 630 can be disposed between the second polarizing layer 640 and the J-retarder 610.
  • the polarizer layer 630 may be an absorbing polarizer or a reflecting polarizer. If the first polarizing layer 630 is an absorbing polarizer, then the second polarizing layer 640 can be a reflecting polarizer layer.
  • the light modulator 550, 650 that supplies the light used to view the display system 500, 600 includes, for example, a light source and a light guide, although other lighting systems can be used. Although the light modulator 550, 650 depicted in Figure 5 and Figure 6 has a generally rectangular cross-section, light modulators 550, 650 can use light guides with any suitable shape.
  • the light guide can be wedge-shaped, channeled, a pseudo-wedge guide, etc.
  • the primary consideration is that the light guide be capable of receiving light from the light source and emitting that light.
  • the light can include back reflectors (e.g., optional reflector), extraction mechanisms and other components to achieve the desired functions.
  • Additional films may also include touch components.
  • a number of different types of films may be added to the back of the display or in to a back-light cavity. These films may include diffusers, protective shields, EMI shielding, anti-reflection films, prismatic structured films, such as BEF sold by 3M, or reflective polarizers, such as DBEF sold by 3M or Nipocs sold by Nitto Deriko.
  • reflective polarizers operate by transmitting and reflecting circularly polarized light, such as Nipocs, additional retarder films are required, such as a quarter wave plate and the like.
  • Figure 5 and Figure 6 illustrate one optical compensation stack disposed on a light modulator, however as stated above, two optical compensation stacks can be laminated to a first major face and a second major face of a LCD panel in a manner similar to that which conventional dichroic polarizers are laminated.
  • an LCD panel may be disposed between similar or different optical compensation stacks as described above.
  • optical films improved the adhesion of these films to other optical films normally used in LCD's.
  • Surface treatments include, for example, corona, flame, or plasma. Gases used in these surface treatments included oxygen, nitrogen, noble gases (such as argon and helium), chlorine, ammonia, methane, propane, and butane. Coating (e.g., chlorinated polyolefin, i.e., PVDC), chemical etching, and hydrolysis treatments can also be used to enhance the adhesive properties of the optical films.
  • Coating e.g., chlorinated polyolefin, i.e., PVDC
  • chemical etching i.e., and hydrolysis treatments can also be used to enhance the adhesive properties of the optical films.
  • Liquid crystal displays utilize a variety of optical films in the stack of layers comprising the display. Two examples will be provided to help explain the nature of the optical films used in displays, and how surface treatment of these films improves performance and handling.
  • a polarizer comprises an oriented PVA film, which, at least in some embodiments, is stained with iodine to create the dichroism required to effectively polarize light.
  • the oriented and stained PVA is protected from the environment by encapsulating it between two barrier films.
  • barrier films are often cellulose triacetate (TAC), and the material used to adhere the TAC films to the two major faces of the oriented and stained PVA is a solution including water and PVA, optionally containing methanol. Because TAC film does not wet aqueous solutions, typically the TAC film is treated with a caustic solution to hydrolyze the surfaces prior to the lamination process.
  • compensation films useful in improving the viewing angle characteristics of liquid crystal displays include a number of different layers, such as a substrate, an alignment layer, an LCP layer, a polarizer (optionally with encapsulating layers), optional primer coatings and adhesives.
  • TAC films are often used both as the encapsulating layers for the oriented and stained PVA and as the substrate for the alignment layer.
  • TAC films are often hydrolyzed in order to provide an adequate level of adhesion. A certain level of adhesion is required to assure that, should adhesive failure occur, it does so at the adhesive:glass interface, thus avoiding expensive and tedious removal of films during the optional rework process.
  • the present invention documents improved adhesion of optical films described herein without complex and potentially expensive primer coatings or hydrolysis treatments. It was found that a variety of surface treatments for a range of optical films improved the adhesion of said films. Novel surface treatments include, for example, corona, flame, or plasma. Gases used in these surface treatments included oxygen, nitrogen, noble gases (such as argon and helium), chlorine, ammonia, methane, propane, and butane.
  • the polymeric optical film described herein can be used with a variety of other components and films that enhance or provide other properties to a liquid crystal display.
  • Such components and films include, for example, brightness enhancement films, retardation plates including quarter-wave plates and films, multilayer or continuous/disperse phase reflective polarizers, metallized back reflectors, prismatic back reflectors, diffusely reflecting back reflectors, multilayer dielectric back reflectors, and holographic back reflectors.
  • This example illustrates a method for making simultaneously biaxially oriented polypropylene film with equal biaxial orientation.
  • a homopolymer polypropylene (Fina 3376, commercially available from Atofina,
  • Lambda 900 spectophotometer the transmission reading was 0.015%.
  • a piece of the film was then juxtaposed to the analyzer, rotating the piece of film until the transmission was a minimum.
  • the minimum transmission with the sample in place was 0.15%.
  • the polarizer was then rotated by 90 degrees at align its transmission axis parallel to that of the analyzer.
  • Shrinkage values in both the MD and TD were measured by suspending a film in an oven at 85 degrees Celsius for 1000 hours.
  • the results for Example A were 3% in the MD and l% in the TD.
  • Creep resistance for both the TD and MD was measured at 100 degrees Celsius for 1 minute under a load of 1 lb/linear inch (180 gm/linear cm). The MD and TD creep were both 3.6%.
  • Example A had an
  • Example 1 illustrates a process for making an unbalanced simultaneously biaxially oriented polypropylene film with unequal biaxial orientation that shows improved thermal stability and a lower ⁇ ; n .
  • a film was made in a manner similar to that described in Example A, with the exception that the cast web was 1000 micrometers thick. The final film thickness was 15 micrometers.
  • the temperatures in various sections of the tenter along with the MD and TD draw ratios are listed in Table 1 below.
  • Examples 2 and 3 were made in a manner similar to Example 1 with the exception of those process conditions cited in Table 1.
  • the final film thickness for both Examples was 16 micrometers.
  • Examples 2 and 3 also exhibit a higher out-of-plane retardance and significantly lower in-plane retardance.
  • Example 4 illustrates the effect of adding a clarifying agent. This example was made in a manner similar to Example 3, with the exception that resin containing a clarifying agent or nucleating agent, Atofina 3289MZ was added at a concentration of 25%. The resulting concentration of clarifying or nucleating agent for Example 4 was 1000 ppm.
  • Example 5 illustrates the effect of reducing temperature in the preheat section of the tenter. This example was made in a manner similar to Example 3, with the exception that the preheat temperature was decreased by reducing the fan speed to 55%. Example 5 exhibited a reduced depolarization to 0.03% from 0.05% in Example 3.
  • Example 6 illustrates a means to improve creep resistance. This example was made in a manner similar to Example 1, with the exception that the cooling and annealing temperature were slightly reduced and the orientation was unbalanced. An additional process step was added to Example 6 whereby the film was orientated in the MD by an additional 5% in the post-stretch zone. Example 6 exhibited a 50% reduction in the MD creep resistance relative to Example A.
  • Example 7
  • Examples 7-16 describe improved adhesion of optical films using surface treatment of optical films.
  • Surface treatment may include, for example, corona, flame, and/or plasma. Gases used for these surface treatments include oxygen nitrogen, noble gases, chlorine, ammonia, methane, propane, and butane.
  • the use of coatings, chemical etching, and hydrolysis treatments may also be used to enhance the adhesive properties of the optical films.
  • Example 7 is a 16 micrometer polypropylene film was made in a manner similar to Example 3 and treated using a variety of gaseous surface chemistries:
  • Example 8 describes a film using alternate surface treatment chemistries. In a manner similar to Example 7, a 16 micrometer film was treated with different chemistries. Examples 8(a) and 8(b) are described as atmospheric-pressure plasma treatment performed using the Plasma3 -brand hardware developed by Enercon Industries of Milwaukee. Example 8(c) uses a standard corona type treatment with a different chemistry. (a) 88% 12% He/N 2 at 0.5 J/cm 2 ,
  • Example 9 describes surface-treated film with LCP coatings.
  • Staralign 2110 available from Vantico AG, Basel, Switzerland
  • MEK MEK
  • the thickness of the dried Staralign layer was 50 nm.
  • the Staralign material was then exposed to polarized UN light using an Opto Align (available from Elsicon, Inc., Newark, Delaware) to provide a dose of 15 mJ/cm 2 with an incidence angle of 45 degrees.
  • the Staralign coated films were then scored with razors prior to laminating with an adhesive tape, which was subsequently removed.
  • the Adhesion Tape Test was performed consistent with ASTM D3359. Where poor adhesion of the Staralign coating to the polypropylene film may exist, the tape removes the alignment material. The subsequently coated liquid crystal polymer layer would exhibit random alignment.
  • the coated samples were viewed under crossed polarizers and evaluated specifically for regions where the Adhesion Tape Test removed alignment material. In the order of decreasing quality, the relative performance of the surface treatments was: 9c, 9b, and 9a.
  • the control film (Example film 9d) exhibited the worst performance of any of the substrates.
  • Example 10 describes corona-treated polypropylene film with LCP coatings.
  • Example films 8a, 8b, and 8c were coated with Staralign 2110 and photo-aligned and subsequently coated with LCP in a manner similar to Example 9 to form Examples 10a, 10b, and 10c, respectively.
  • the peel force between polypropylene film and LCP for Examples 10a, 10b and 10c were each around 50 oz/inch (560 g/cm) as tested in a manner consistent with ASTM D3330.
  • Example 11 Example 11
  • Example 11 describes laminates of surface treated polypropylene film and oriented PVA.
  • Surface treated films Examples 7a, 7b, 7c, and 7d were laminated to an oriented and iodine stained PVA film to form Examples 1 la, 1 lb, l ie, and lid, respectively.
  • the oriented and stained PVA actually comprised two films, the PVA and a hydrolyzed TAC layer adhered using a solution comprising 66.5%/27.9%/5.6% MeOH/water/AIRVOL PVA Grade 205 (available from Air Products and Chemicals Inc., Allentown, PA, USA).
  • the designation, "oriented and stained PVA,” is intended to help clarify the major face to which additional laminations are performed.
  • the adhesive used to laminate Examples 7a, 7b, 7c, and 7d to the oriented and stained PVA comprised a solution containing 66.5%/27.9%/5.6% MeOH/water/AIRVOL PVA Grade 205. Following lamination, all samples were autoclaved at 60 degrees Celsius for 1 hour at 1 atmosphere of pressure in an air atmosphere.
  • the laminate films were then environmentally aged at 65 degrees Celsius/90%RH, and the peel forces were tested in a manner consistent with ASTM D3330.
  • the peel forces were: ⁇ 0.4 oz/inch (2.9 g/cm) for Example film l id, 15 oz/inch (170 g/cm) for Example film 1 la, 20 oz/inch (225 g/cm) for Example film 1 lb, and 22 oz/inch (250 g/cm) for Example film lie.
  • Example 12 describes laminates of surface treated polypropylene and oriented PVA.
  • Surface treated films Examples 8a, 8b, 8c, and 8d were laminated to an oriented and iodine stained PVA film in a manner similar to Example 11. Peel forces for all Example 12 films were found to be similar to Example film l ie.
  • Example 13 describes surface treated polypropylene: oriented PVA laminated to glass.
  • the opposite major face comprising polypropylene film of Example film 1 lc was N 2 corona treated (1.0 J/cm ).
  • the resultant surface treated film, designed 13a was then laminated to Soken 2263, a transfer optical adhesive (available from Soken Chemical &
  • Example film 13b which was then adhered to a piece of glass to form Example film 13c.
  • the peel force of the Soken 2263 adhesive / glass interface of Example film 13c was measured to be 22 oz/inch (250 g/cm).
  • Example 14 describes corona treatment of LCP coated polypropylene.
  • the major face of Example film 9c comprising LCP was surface treated to form Example films 14a, 14b, and 14c.
  • the various surface treatments were: a. N 2 corona at 0.5 J/cm 2 ; b. N 2 corona at 1.0 J/cm 2 ; c. N 2 corona at 2.0 J/cm 2 ; d. Control (same as Example film lie).
  • Example 15 describes corona treated "LCP coated polypropylene" laminated to PVA.
  • Example films 14 were laminated to oriented and iodine stained PVA in a manner similar to that described in Example 11 to form Example films 15a, 15b, 15c, and 15d.
  • Example 16 describes "corona treated LCP coated polypropylene": PVA laminate adhered to glass.
  • Example films 15a, 15b, and 15c was then laminated to glass using
  • Soken 2263 adhesive in a manner similar to that described in Example 13.
  • the peel force of adhesive/glass interface was, in all cases, greater than the polypropylene/PVA interface.

Abstract

A process for making an optical film includes stretching a polyolefin film in a first direction and stretching the polyolefin film in a second direction different than the first direction forming a biaxially stretched polyolefin film. At least a portion of the stretching of the polyolefin film in the second direction occurs simultaneous with the stretching of the polyolefin film in the first direction. The biaxially stretched polyolefin film has a length and a width and substantially non-absorbing and non-scattering for at least one polarization state of visible light. The biaxially stretched polyolefin film has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.

Description

PROCESS FOR MANUFACTURING POLYMERIC OPTICAL FILM
Background of the Invention
Liquid crystal displays, such as for example, twisted nematic (TN), single domain vertically aligned (VA), optically compensated birefringent (OCB) liquid crystal displays and the like, have inherently narrow and non-uniform viewing angle characteristics. Such viewing angle characteristics can describe, at least in part, the optical performance of a display. Characteristics such as contrast, color, and gray scale intensity profile can vary substantially in uncompensated displays for different viewing angles. There is a desire to modify these characteristics from those of an uncompensated display to provide a desired set of characteristics as a viewer changes positions horizontally, vertically, or both and for viewers at different horizontal and vertical positions. For example, in some applications there may be a desire to make the viewing characteristics more uniform over a range of horizontal or vertical positions. The range of viewing angles that are important can depend on the application of the liquid crystal display. For example, in some applications, a broad range of horizontal positions may be desired, but a relatively narrow range of vertical positions may be sufficient. In other applications, viewing from a narrow range of horizontal or vertical angles (or both) may be desirable. Accordingly, the desired optical compensation for non- uniform viewing angle characteristics can depend on the desired range of viewing positions.
One viewing angle characteristic is the contrast ratio between the bright state and the dark state of the liquid crystal display. The contrast ratio can be affected by a variety of factors. Another viewing angle characteristic is the color shift of the display with changes in viewing angle. Color shift refers to the change in the color coordinates (e.g., the color coordinates based on the CIE 1931 standard) of the light from the display as viewing angle is altered. Color shift can be measured by taking the difference in the chromaticity color coordinates (e.g., Δx or Δy) at an angle normal to the plane containing the screen and at any non-nonnal viewing angle or set of viewing angles. The definition of acceptable color shift is determined by the application, but can be defined as when the absolute value of Δx or Δy exceeds some defined value, for example, exceeds 0.05 or 0.10. For example, it can be determined whether the color shift is acceptable for a desired set of viewing angles. Because the color shift may depend upon the voltage to any pixel or set of pixels, color shift is ideally measured at one or more pixel driving voltages.
Yet another viewing angle characteristic that can be observed is substantial non- uniform behavior of gray scale changes and even the occurrence of gray scale inversion. The non-uniform behavior occurs when the angular dependent transmission of the liquid crystal layer does not monotonically follow the voltage applied to the layer. Gray scale inversion occurs when the ratio of intensities of any two adjacent gray levels approaches a value of one, where the gray levels become indistinguishable or even invert. Typically, gray scale inversion occurs only at some viewing angles.
Compensators have been proposed to address these issues. One concept includes a compensator film made of discotic molecules. One drawback of current discotic compensators is the typical occurrence of comparatively large color shifts. Other concepts include specific combinations of birefringent layers. There is a need for new compensator structures to provide improved or desired viewing angle characteristics.
Summary of the Invention
Generally, the present invention relates to polymeric optical film useful for a variety of applications including, for example, optical compensators for displays, such as liquid crystal displays, as well as the displays and other devices containing the optical compensators.
In one embodiment, a process for making an optical film includes stretching a polyolefin film in a first direction and stretching the polyolefin film in a second direction different than the first direction forming a biaxially stretched polyolefin film. At least a portion of the stretching of the polyolefin film in the second direction occurs simultaneous with the stretching of the polyolefin film in the first direction. The biaxially stretched polyolefin film has a length and a width and substantially non-absorbing and non- scattering for at least one polarization state of visible light. The biaxially stretched polyolefin film has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater. In a further embodiment, a process for making an optical film includes stretching a polymeric film in a first direction and stretching the polymeric film in a second direction different than the first direction forming an biaxially stretched polymeric film. At least a portion of the stretching of the polymeric film in the second direction occurs simultaneous with the stretching of the polymeric film in the first direction. The biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The biaxially stretched polymeric film has x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater and a length and width of at least 0.65 meter and the in-plane and out-of-plane retardance are substantially uniform across the length and width.
In another embodiment, process for making an optical film includes stretching a polymeric film in a first direction and stretching the polymeric film in a second direction different than the first direction forming an biaxially stretched polymeric film. At least a portion of the stretching of the polymeric film in the second direction occurs simultaneous with the stretching of the polymeric film in the first direction. The biaxially stretched polymeric film has a length and a width and being substantially non-absorbing and non- scattering for at least one polarization state of visible light. The biaxially stretched polymeric film has x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater and a thickness of 5 microns to 200 microns.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.
Brief Description of the Drawings
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which: FIG. 1 is a is a schematic illustration of a coordinate system with an optical film element;
FIG. 2 is a top schematic view of a tenter apparatus for use to form the optical film element; FIG. 3 is a schematic cross-sectional view of an optical compensator stack according to the present invention;
FIG. 4 is a schematic cross-sectional view of an optical compensator stack according to the present invention;
FIG. 5 is a schematic cross-sectional view of a liquid crystal display according to the present invention; and
FIG. 6 is a schematic cross-sectional view of a liquid crystal display according to the present invention.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
Detailed Description
The process for making optical film of the present invention is believed to be applicable to a variety of applications needing polymeric optical film including, for example, optical compensators for displays, such as liquid crystal displays, as well as the displays and other devices containing the optical compensators. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
A "c-plate" denotes a birefringent optical element, such as, for example, a plate or film, with a principle optical axis (often referred to as the "extraordinary axis") substantially perpendicular to the selected surface of the optical element. The principle optical axis corresponds to the axis along which the birefringent optical element has an index of refraction different from the substantially uniform index of refraction along directions normal to the principle optical axis. As one example of a c-plate, using the axis system illustrated in Figure 1, nx = % ≠ nz, where nx, ny, and nz are the indices of refraction along the x, y, and z axes, respectively. The optical anisotropy is defined as Δn-χ = nz - nx. An "o-plate" denotes a birefringent optical element, such as, for example, a plate or film, having its principle optical axis tilted with respect to the surface of the optical element.
An "a-plate" denotes a birefringent optical element, such as, for example, a plate or film, having its principle optical axis within the x-y plane of the optical element. Positively birefringent a-plates can be fabricated using, for example, uniaxially stretched films of polymers such as, for example, poly vinyl alcohol, or uniaxially aligned films of nematic positive optical anisotropy LCP materials. Negatively birefringent a-plates can be formed using uniaxially aligned films of negative optical anisotropy nematic LCP materials, including for example discotic compounds. A "biaxial retarder" denotes a birefringent optical element, such as, for example, a plate or film, having different indices of refraction along all three axes (i.e., nx ≠ ny ≠ nz). Biaxial retarders can be fabricated, for example, by biaxially orienting plastic films. Examples of biaxial retarders are discussed in U.S. Patent No. 5,245,456, incorporated herein by reference. Examples of suitable films include films available from Sumitomo Chemical Co. (Osaka, Japan) and Nitto Denko Co. (Osaka, Japan). In-plane retardation and out-of-plane retardation are parameters used to describe a biaxial retarder. As the in- plane retardation approaches zero, then the biaxial retarder element behaves more like a c- plate. Generally, a biaxial retarder, as defined herein, has an in-plane retardation of at least 3 nm for 550 nm light. Retarders with lower in-plane retardation are considered c- plates.
The term "polymer" will be understood to include polymers, copolymers (e.g., polymers formed using two or more different monomers), oligomers and combinations thereof, as well as polymers, oligomers, or copolymers that can be formed in a miscible blend by, for example, coextrusion or reaction, including transesterification. Both block and random copolymers are included, unless indicated otherwise.
The term "polarization" refers to plane polarization, circular polarization, elliptical polarization, or any other nonrandom polarization state in which the electric vector of the beam of light does not change direction randomly, but either maintains a constant orientation or varies in a systematic manner. In-plane polarization, the electric vector remains in a single plane, while in circular or elliptical polarization, the electric vector of the beam of light rotates in a systematic manner. The term "biaxially stretched" refers to a film that has been stretched in two different directions, a first direction and a second direction, in the plane of the film.
The term "simultaneously biaxially stretched" refers to a film in which at least a portion of stretching in each of the two directions is performed simultaneously.
The terms "orient," "draw," and "stretch" are used interchangeably throughout this disclosure, as are the terms "oriented," "drawn," and "stretched" and the terms
"orienting," "drawing," and "stretching".
The term "retardation or retardance" refers to the difference between two orthogonal indices of refraction times the thickness of the optical element.
The term "in-plane retardation" refers to the product of the difference between two orthogonal in-plane indices of refraction times the thickness of the optical element.
The term "out-of-plane retardation" refers to the product of the difference of the index of refraction along the thickness direction (z direction) of the optical element minus one in-plane index of refraction times the thickness of the optical element. Alternatively, this term refers to the product of the difference of the index of refraction along the thickness direction (z direction) of the optical element minus the average of in-plane indices of refraction times the thickness of the optical element.
The term "substantially non-absorbing" refers to the level of transmission of the optical element, being at least 80 percent transmissive to at least one polarization state of visible light, where the percent transmission is normalized to the intensity of the incident, optionally polarized light.
The term "substantially non-scattering" refers to the level of collimated or nearly collimated incident light that is transmitted through the optical element, being at least 80 percent transmissive for at least one polarization state of visible light within a cone angle of less than 30 degrees. The term "J-retarder" refers to a film or sheet that is substantially non-absorbing and non-scattering for at least one polarization state of visible light, where at least two of the three orthogonal indices of refraction are unequal, and where the in-plane retardation is no more than 100 nm and the out-of plane retardation is at least 50 nm.
All numeric values are herein assumed to be modified by the term "about," whether or not explicitly indicated. The term "about" generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms "about" may include numbers that are rounded to the nearest significant figure.
Weight percent, percent by weight, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms "a", "an", and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing "a compound" includes a mixture of two or more compounds. As used in this specification and the appended claims, the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.
Figure 1 illustrates an axis system for use in describing the optical elements. Generally, for display devices, the x and y axes correspond to the width and length of the display and the z axis is typically along the thickness direction of the display. This convention will be used throughout, unless otherwise stated. In the axis system of Figure 1, the x axis and y axis are defined to be parallel to a major surface 102 of the optical element 100 and may correspond to width and length directions of a square or rectangular surface. The z axis is perpendicular to that major surface and is typically along the thickness direction of the optical element.
A variety of materials and methods can be used to make optical film element of the invention. For example, the optical film may include a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in- plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
Any polymeric material capable of being biaxially stretched and possessing the optical properties described herein are contemplated. A partial listing of these polymers include, for example, polyolefin, polyacrylates, polyesters, polycarbonates, fluoropolymers and the like. One or more polymers can be combined to form the polymeric optical film.
Polyolefin includes for example: cyclic olefin polymers such as, for example, polystyrene, norbornene and the like; polypropylene; polyethylene; polybutylene; polypentylene; and the like. A specific polybutylene is poly(l-butene). A specific polypentylene is poly(4-methyl-l-pentene).
Polyacrylate includes, for example, acrylates, methacrylates and the like. Examples of specific polyacrylates include poly(methyl methacrylate), and poly(butyl methacrylate). Fluoropolymer specifically includes, but is not limited to, poly(vinylidene fluoride).
The in-plane retardance of the polymeric optical film may be 100 nm or less or 0 nm to 100 nm. The in-plane retardance of the polymeric optical film may be 20 nm or less or 0 nm to 20 nm. The in-plane retardance of the polymeric optical film may be 20 nm to 50 nm. The in-plane retardance of the polymeric optical film may be 50 nm to 100 nm.
The out-of-plane retardance of the polymeric optical film may be 50 nm or greater, up to 1000 nm. The out-of-plane retardance of the polymeric optical film may be 75 nm or greater or 75 nm to 1000 nm. The out-of-plane retardance of the polymeric optical film may be 100 nm or greater or 100 nm to 1000 nm. The out-of-plane retardance of the polymeric optical film may be 150 nm or greater or 150 nm to 1000 nm.
The polymeric optical film can have a thickness (z direction) of 5 micrometers or greater. The polymeric optical film can have a thickness (z direction) of 5 micrometers to 200 micrometers or 5 micrometers to 100 micrometers. The polymeric optical film can have a thickness (z direction) of 7 micrometers to 75 micrometers. The polymeric optical film can have a thickness (z direction) of 10 micrometers to 50 micrometers.
The polymeric optical film can have a length and width of at least 0.65 meter. The polymeric optical film can have a length and width of at least 1.3 meters. The polymeric optical film can have a length and width of at least 1.5 meters. The in-plane and out-of- plane retardance is substantially uniform across the length and width of the polymeric optical film. The phrase "retardance is substantially uniform across the length, and width of the polymeric optical film" refers to retardance (both in-plane and out-of-plane) changing less than 4 nm/cm, or 2 nm/cm or 1 nm/cm along the width and/or length and width of the layer of biaxially stretched polymer film. One quantitative measure of uniformity is defined as,
A max 01"1 in in
W where over a width of film w, Δ™ax is the maximum in-plane retardation and Δ™m is the minimum in-plane retardation. Any number of additional additives may optionally be added to the polymer forming the optical film. A partial listing of additives includes, for example, stabilizers, processing aids, crystallization modifiers, tackifiers, stiffening agents, nano-particles, and the like.
Stabilizers include, for example, anti-oxidants, anti-ozone agents, anti-static agents, UV absorbers, and light stabilizers. Processing aids include, for example, lubricants, extrusion aids, blocking agents, and electrostatic pinning aids.
Crystallization modifiers include, for example, clarifying agents and nucleating agents. Crystallization modifiers aid in reducing "haze" in the biaxially stretched polymeric optical film. Crystallization modifiers can be present in any amount effective to reduce "haze", such as, for example, 10 ppm to 500000 ppm or 100 ppm to 400000 pm or
100 ppm to 350000 ppm or 250 ppm to 300000 ppm.
The range or solid cone of desired viewing angles can be manipulated depending upon the exact nature of the application. For example, in some embodiments, it is desirable to have a large solid angle of acceptable viewing. In other embodiments, it is desirable to strictly control the range of acceptable viewing (for example, for privacy purposes) to a narrower range of angles than is normally associated with an uncompensated display.
The polymeric optical film of the invention may replace cellulose triacetate (TAC) layers now present in many optical bodies. TAC may be obtained commercially from Fuji Photo (Japan). TAC films are available in a range of thickness from about 40 micrometers to over 120 micrometers. TAC is made with a solvent casting process and exhibits a nearly isotropic in-plane retardance. TAC exhibits an out-of-plane retardance from 30 nm to 120 nm.
The simultaneous biaxially stretched polymeric optical film of the invention may provide a wide range of properties that are different from TAC, such as, for example: lower dispersion of the refractive index; higher levels of ou-of-plane retardation for any given thickness of the polymeric optical film of the invention verses TAC; improved moisture barrier resistance; lower manufacturing costs; environmentally friendly manufacturing; ability to easily customize the optical properties from substantially a c- plate to that of a biaxial retarder. The polymeric optical film of the invention may be thinner than TAC films with a similar or even smaller negative c-plate retardance, the overall thickness of the novel integrated stack of films, described below, can be thinner. New techniques for manufacturing polymeric optical film have been developed. These techniques include stretching a polymer film in a first direction and stretching the polymer film in a second direction different than the first direction forming a biaxially stretched polymeric film. At least a portion of the stretching in the second direction occurs simultaneously with the stretching in the first direction. This technique forms a polymeric optical film with the properties and attributes described above.
Attempts to biaxially stretch polymeric film in a sequential manner have failed to produce ideal polymeric optical film with the properties and attributes described above. Polymeric optical film biaxially stretched in a sequential manner (i.e., stretching the film in a first machine direction (MD) followed by stretching the film in a second transverse direction (TD)) may often produce polymeric optical film with "patchy" optical properties and attributes. It has been observed that the final stretch direction imparts a greater influence on the optical properties and attributes of the biaxially stretched polymeric optical film. However, attempts to optimize this process have failed to produce polymeric optical films with the properties and attributes of the present invention.
Simultaneously biaxially stretched polymeric optical film still has some of the problems associated with sequentially biaxially stretched polymeric optical film in addition to issues unique to simultaneously biaxially stretched polymeric optical film. Simultaneously biaxially stretched polymeric optical film does not produce polymeric optical film with "patchy" optical properties and attributes. In addition, by employing a simultaneously biaxially stretching process, improvements in film dimensional stability and reduced thickness variability is realized over a sequential biaxial stretching process. The process described herein produces polymeric optical films with the properties and attributes of the present invention.
Figure 2 illustrates a top schematic view of a tenter apparatus for carrying out the process of the invention. The tenter may be of the type disclosed in U.S. Patent No.
5,051,225. Tenter apparatus 10 includes a first side rail 12 and a second side rail 14 on which the driven clips 22 and idler clips 24 ride. The driven clips 22 are illustrated schematically as boxes marked "X" while the idler clips 24 are illustrated schematically as open boxes. Between pairs of driven clips 22 on a given rail, there are one or more idler clips 24. As illustrated, there may be two idler clips 24 between each pair of clips 22 on a given rail. One set of clips 22, 24 travels in a closed loop about the first rail 12 in the direction indicated by the arrows at the ends of the rail. Similarly, another set of clips 22, 24 travels in a closed loop about the second rail 14 in the direction indicated by the arrows at the ends of the rail. The clips 22, 24 hold the film edges and propel film 26 in the direction shown by the arrow at the center of the film. At the ends of the rails 12, 14, the clips 22, 24 release the film 26. The clips then return along the outside of the rails to the entrance of the tenter to grip the cast web to propel it through the tenter. (For clarity of illustration, the clips returning to the entrance on the outside of the rails have been omitted from Figure 2.) The stretched film 26 exiting the tenter may be wound up for later processing or use, or may be processed further.
The polymer can be cast into a sheet form to prepare a web suitable for stretching to arrive at the optical film described above. The polymer may be cast by feeding polymer resin into the feed hopper of a single screw, twin screw, cascade, or other extrusion system having an extruder barrel with temperatures adjusted to produce a stable homogeneous melt. The polymer can be extruded through a sheet die onto a rotating cooled metal casting wheel. The web is then biaxially stretched according to the process described herein. The extruded web may be quenched, reheated and fed to the clips 22, 24 on the first and second rails 12, 14 to be propelled through the tenter apparatus 10. The optional heating and the gripping by the clips 22, 24 may occur in any order or simultaneously. The rails 12, 14 pass through three sections: preheat section 16; stretch section 18; and post-stretch treatment section 20. In the preheat section 16, the film is heated to within an appropriate temperature range to allow a significant amount of stretching without breaking. The three functional sections 16, 18, and 20 may be broken down further into zones. For example, in one embodiment of the tenter, the preheat section 16 includes zones Zl, Z2, and Z3, the stretch section 18 includes zones Z4, Z5, and Z6, and the post-stretch section 20 may include zones Z7, Z8, and Z9. It is understood that the preheat, stretch, and post-treatment sections may each include fewer or more zones than illustrated. Further, within the stretch section 18, the TD (Transverse Direction) component of stretch or the MD (Machine Direction) component of stretch may be performed in the same or in different zones. For example, MD and TD stretch each may occur in any one, two or three of the zones Z4, Z5, and Z6. Further, one component of stretch may occur before the other, or may begin before the other and overlap the other.
Still further, either component of stretch may occur in more than one discrete step. For example, MD stretch may occur in Z4 and Z6 without any MD stretch occurring in Z5. Some stretching in the MD and/or TD may also occur in the preheat section or post-stretch treatment section. For example, in the embodiment illustrated, stretching may begin in zone Z3. Stretching may continue into zone Z7 or beyond. Stretching may resume in any of the zones after zones Z3, Z5, or Z6.
The amount of stretching in the MD may be different than the amount of stretching in the TD. The amount of stretching in the MD may be up to 10% or 25% or 50% greater than the amount of stretching in the TD. The amount of stretching in the TD may be up to 10% or 25% or 50% greater than the amount of stretching in the MD. Surprisingly, this
"unbalanced" stretching helps to provide the optical film with substantially uniform in- plane retardance.
The film may be propelled through the post-treatment section 20. In this section, the film 26 may be maintained at a desired temperature while no significant stretching occurs. This treatment can be referred to as a heat set or anneal, and may be performed to improve the properties of the final film, such as dimensional stability. Also, a small amount of relaxation in either or both the TD and MD may occur in the post-treatment section 20. Relaxation here refers to a convergence of the rails in the TD and/or a convergence of the driven clips on each rail in the MD, or simply the reduction of stress on the film in the TD and/or MD.
Biaxial stretching of films is sensitive to many process conditions, including but not limited to the composition of the polymer or resin, film casting and quenching parameters, the time-temperature history while preheating the film prior to stretching, the stretching temperature used, the stretch profile used, and the rates of stretching. With the benefits of the teaching herein, one of skill in the art may adjust any or all of these parameters and obtain films having the desired optical properties and characteristics. The cooling of the biaxially stretched optical film may begin before or after the onset of stretching in the stretch section 18. The cooling can be "zone" cooling which refers to cooling substantially the entire width or TD of the web, from the edge portions 28 of the film through the center portion 30 of the film. Surprisingly, zone cooling immediately after the stretching zone has been found to improve uniformity of in-plane retardance of polymeric optical films when applied in an effective amount. Cooling may be provided by forced air convection.
In addition, application of an effective amount of zone cooling improves the cross- directional (TD) variation of in-plane retardation. As illustrated in the Examples below, by employing zone cooling immediately after the stretching zone, the cross-directional (TD) variation of in-plane retardation, as expressed previously,
A max λmm in in
W is reduced. The ability to actively control the cross-directional (TD) variation of in-plane retardation is useful when considering the practical aspects of manufacturing polymeric optical films to a sizable width (i.e. 0.65 meter or 1.3 meter or 1.5 meter) and when considering advantages gained in economy of scale and yield. The Examples below illustrate a variety of processing parameters to achieve the polymeric optical film of the present invention.
Optical compensators can be formed using a variety of different optical elements. Among these optical elements are o-plates, c-plates, a-plates, biaxial retarders, twisted o- plates, twisted a-plates, and other retarders. Information regarding o-plates, c-plates, and a-plates can be found, for example, in Yeh et al., Optics of Liquid Crystal Displays, John Wiley & Sons, New York (1999), U.S. Patents Nos. 5,504,603, 5,557,434, 5,612,801, 5,619,352, 5,638,197, 5,986,733, and 5,986,734, and PCT Patent Applications Publication Nos. WO 01/20393 and WO 01/20394, all of which are incorporated herein by reference. The optical elements are configured in combinations as described below to form optical bodies or optical compensator stacks. Optical bodies or optical compensator stacks can be formed by disposing a polarizer layer or a cholesteric liquid crystal material on the novel polymeric optical film described above.
Figure 3 shows an optical compensator stack 300 that includes a J-retarder 310 disposed on a first liquid crystal layer 320. The J-retarder 310 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The J-retarder 310 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater. The first liquid crystal layer 320 includes liquid crystal material. The first liquid crystal layer 320 may be an o-plate, an a-plate or the like.
Figure 3 shows that the optical compensator stack 300 may include a second liquid crystal layer 325 disposed on the J-retarder 310 or the J-retarder 310 may be disposed between the first liquid crystal layer 320 and the second liquid crystal layer 325. The second liquid crystal layer 325 may be an o-plate, an a-plate or the like. The optical compensator stack 300 may further include a polarizer layer 330 disposed on the first liquid crystal layer 320 or the first liquid crystal layer 320 may be disposed between the polarizer layer 330 and the J-retarder 310. The polarizer layer 330 may be an absorbing polarizer or a reflecting polarizer. A reflecting polarizer layer 340 can be disposed on the absorbing polarizing layer 330 or the absorbing polarizing layer 330 can be disposed between the reflecting polarizing layer 340 and the first liquid crystal layer 320.
Figure 4 shows an optical compensator stack 400 that includes a J-retarder 410 disposed on a polarizer layer 430. The J-retarder 410 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The J-retarder 410 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
The optical compensator stack 400 may further include a second polarizer layer 440 disposed on the first polarizing layer 430 or the first polarizing layer 430 can be disposed between the second polarizing layer 440 and the J-retarder 410. The polarizer layer 430 may be an absorbing polarizer or a reflecting polarizer. If the first polarizing layer 430 is an absorbing polarizer, then the second polarizing layer 440 can be a reflecting polarizer layer.
Additional layers can be added to or between the optical compensation stacks layers described above. Additional optional layer include, for example, alignment layers, o-plates, a-plates and/or c-plates and the like.
One or more optical compensation stacks can be laminated to a first major face and a second major face of a LCD panel in a manner similar to that which conventional dichroic polarizers are laminated. The optical compensation stacks described above provide a wider range of retarder, for example, a biaxial retarder or c-plate, birefringence can be fabricated to make an optical compensation stack without dramatically increasing the thickness of the polarizer. With the teaching of the invention herein, it is possible to fabricate an optical compensation stack with polarizer which is thinner than a conventional polarizer not containing additional compensation film.
The optical bodies or optical compensators described above can be used in a variety of optical displays and other applications, including transmissive (e.g., backlit), reflective, and transflective displays. For example, Figure 5 illustrates a schematic cross- sectional view of one illustrative display system 500 including a light modulator 550 disposed on an optical compensator stack 501 that includes a J-retarder 510 disposed on a first liquid crystal layer 520. The J-retarder 510 includes a layer of simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The J-retarder 510 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in- plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater. The first liquid crystal layer 520 includes liquid crystal material. The first liquid crystal layer 520 may be an o-plate, an a-plate and the like.
The optical compensator stack 501 may include a second liquid crystal layer 525 disposed on the J-retarder 510 or the J-retarder 510 can be disposed between the second liquid crystal layer 525 and the first liquid crystal layer 520. The second liquid crystal layer 525 may be an o-plate, an a-plate or the like. The optical compensator stack 501 may further include a polarizer layer 530 disposed on the first liquid crystal layer 520 or the first liquid crystal layer 520 can be disposed between the polarizer layer 530 and the J- retarder 510. The polarizer layer 530 may be an absorbing polarizer or a reflecting polarizer. A reflecting polarizer layer 540 can be disposed on the polarizing layer 530 or the polarizing layer 530 can be disposed between the reflecting polarizing layer 540 and the first liquid crystal layer 520.
Figure 6 illustrates a schematic cross-sectional view of one illustrative display system 600 including a light modulator 650 disposed on an optical compensator stack 601 that includes a J-retarder 610 disposed on a polarizer layer 630. The J-retarder 610 includes a layer of simultaneous biaxially stretched polymer film being substantially non- absorbing and non-scattering for at least one polarization state of visible light. The J- retarder 610 has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
The optical compensator stack 601 may further include a second polarizer layer 640 disposed on the first polarizing layer 630 or the first polarizing layer 630 can be disposed between the second polarizer layer 640 and the J-retarder 610. A reflecting polarizer layer 640 can be disposed on the polarizing layer 630 or the first polarizing layer
630 can be disposed between the second polarizing layer 640 and the J-retarder 610. The polarizer layer 630 may be an absorbing polarizer or a reflecting polarizer. If the first polarizing layer 630 is an absorbing polarizer, then the second polarizing layer 640 can be a reflecting polarizer layer. The light modulator 550, 650 that supplies the light used to view the display system 500, 600 includes, for example, a light source and a light guide, although other lighting systems can be used. Although the light modulator 550, 650 depicted in Figure 5 and Figure 6 has a generally rectangular cross-section, light modulators 550, 650 can use light guides with any suitable shape. For example, the light guide can be wedge-shaped, channeled, a pseudo-wedge guide, etc. The primary consideration is that the light guide be capable of receiving light from the light source and emitting that light. As a result, the light can include back reflectors (e.g., optional reflector), extraction mechanisms and other components to achieve the desired functions.
To minimize surface reflections, to enable cleaning of the front surface, to prevent scratching as well as to facilitate a number of other properties, different layers or combinations of materials can be disposed on the optical compensation stacks 501, 601. Additional films may also include touch components. To improve brightness of a resulting display, a number of different types of films may be added to the back of the display or in to a back-light cavity. These films may include diffusers, protective shields, EMI shielding, anti-reflection films, prismatic structured films, such as BEF sold by 3M, or reflective polarizers, such as DBEF sold by 3M or Nipocs sold by Nitto Deriko. When reflective polarizers operate by transmitting and reflecting circularly polarized light, such as Nipocs, additional retarder films are required, such as a quarter wave plate and the like.
Figure 5 and Figure 6 illustrate one optical compensation stack disposed on a light modulator, however as stated above, two optical compensation stacks can be laminated to a first major face and a second major face of a LCD panel in a manner similar to that which conventional dichroic polarizers are laminated. Thus, an LCD panel may be disposed between similar or different optical compensation stacks as described above.
It was found that the surface treatment of optical films improved the adhesion of these films to other optical films normally used in LCD's. Surface treatments include, for example, corona, flame, or plasma. Gases used in these surface treatments included oxygen, nitrogen, noble gases (such as argon and helium), chlorine, ammonia, methane, propane, and butane. Coating (e.g., chlorinated polyolefin, i.e., PVDC), chemical etching, and hydrolysis treatments can also be used to enhance the adhesive properties of the optical films. Liquid crystal displays utilize a variety of optical films in the stack of layers comprising the display. Two examples will be provided to help explain the nature of the optical films used in displays, and how surface treatment of these films improves performance and handling.
In a first example, a polarizer comprises an oriented PVA film, which, at least in some embodiments, is stained with iodine to create the dichroism required to effectively polarize light. The oriented and stained PVA is protected from the environment by encapsulating it between two barrier films. These barrier films are often cellulose triacetate (TAC), and the material used to adhere the TAC films to the two major faces of the oriented and stained PVA is a solution including water and PVA, optionally containing methanol. Because TAC film does not wet aqueous solutions, typically the TAC film is treated with a caustic solution to hydrolyze the surfaces prior to the lamination process. In another example, compensation films (such as WNF® available from Fuji Photo, Japan) useful in improving the viewing angle characteristics of liquid crystal displays include a number of different layers, such as a substrate, an alignment layer, an LCP layer, a polarizer (optionally with encapsulating layers), optional primer coatings and adhesives. TAC films are often used both as the encapsulating layers for the oriented and stained PVA and as the substrate for the alignment layer. In a manner similar to that described above, TAC films are often hydrolyzed in order to provide an adequate level of adhesion. A certain level of adhesion is required to assure that, should adhesive failure occur, it does so at the adhesive:glass interface, thus avoiding expensive and tedious removal of films during the optional rework process.
The present invention documents improved adhesion of optical films described herein without complex and potentially expensive primer coatings or hydrolysis treatments. It was found that a variety of surface treatments for a range of optical films improved the adhesion of said films. Novel surface treatments include, for example, corona, flame, or plasma. Gases used in these surface treatments included oxygen, nitrogen, noble gases (such as argon and helium), chlorine, ammonia, methane, propane, and butane.
The polymeric optical film described herein can be used with a variety of other components and films that enhance or provide other properties to a liquid crystal display. Such components and films include, for example, brightness enhancement films, retardation plates including quarter-wave plates and films, multilayer or continuous/disperse phase reflective polarizers, metallized back reflectors, prismatic back reflectors, diffusely reflecting back reflectors, multilayer dielectric back reflectors, and holographic back reflectors.
EXAMPLES Example A
This example illustrates a method for making simultaneously biaxially oriented polypropylene film with equal biaxial orientation. A homopolymer polypropylene (Fina 3376, commercially available from Atofina,
Deer Park, TX) was melt extruded and cast using conventional melt extrusion and casting equipment. The film was cast a thickness of 2250 micrometers. The film was preheated
1. at 178 degrees Celsius with a fan speed setting of 80%. It was simultaneously oriented 7.0 times in the MD and 7.0 times in the TD at a temperature of 160 degrees Celsius. Following orientation, the film was cooled to a temperature of 135 degrees Celsius. The final film thickness was 25 micrometers. The transmission between crossed polarizers was measured using a Perkin Elmer
Lambda 900 spectophotometer, the transmission reading was 0.015%. A piece of the film was then juxtaposed to the analyzer, rotating the piece of film until the transmission was a minimum. The minimum transmission with the sample in place was 0.15%. Henceforth, the minimum transmission of a sample film between crossed polarizers will be referred to a depolarization. The polarizer was then rotated by 90 degrees at align its transmission axis parallel to that of the analyzer. The ratio of the intensity of the parallel polarizers to the intensity of crossed polarizers, henceforth known as the contrast ratio (CR), was 500:1.
Shrinkage values in both the MD and TD were measured by suspending a film in an oven at 85 degrees Celsius for 1000 hours. The results for Example A were 3% in the MD and l% in the TD.
Creep resistance for both the TD and MD was measured at 100 degrees Celsius for 1 minute under a load of 1 lb/linear inch (180 gm/linear cm). The MD and TD creep were both 3.6%.
An in-plane retardance was measured using a National Instruments RPA2000. The in-plane retardance (Δjn) was 20 nm. The in-plane and out-of-plane indices of refraction was measured using a Metricon Model 2010 Prisim Coupler. The out-of-plane retardance (Δout) is the product of the thickness times the difference between the average refractive index in the thickness direction (z direction) and the average refractive index in the plane of the film. Example A had an |Δ0Ut| of 265 nm.
Example 1
Example 1 illustrates a process for making an unbalanced simultaneously biaxially oriented polypropylene film with unequal biaxial orientation that shows improved thermal stability and a lower Δ;n. A film was made in a manner similar to that described in Example A, with the exception that the cast web was 1000 micrometers thick. The final film thickness was 15 micrometers. The temperatures in various sections of the tenter along with the MD and TD draw ratios are listed in Table 1 below.
Table 1
Figure imgf000022_0001
Other properties are shown in Table 2.
Table 2
Figure imgf000022_0002
|Δjn| and |Δout| were averaged over at least 150 cm of web along TD. Examples 2 and 3
Examples 2 and 3 were made in a manner similar to Example 1 with the exception of those process conditions cited in Table 1. The final film thickness for both Examples was 16 micrometers.
Examples 2 and 3 demonstrate that tenter temperatures impacts
w and depolarization. Examples 2 and 3 also exhibit a higher out-of-plane retardance and significantly lower in-plane retardance.
Example 4
Example 4 illustrates the effect of adding a clarifying agent. This example was made in a manner similar to Example 3, with the exception that resin containing a clarifying agent or nucleating agent, Atofina 3289MZ was added at a concentration of 25%. The resulting concentration of clarifying or nucleating agent for Example 4 was 1000 ppm.
The addition of a clarifying agent reduced depolarization to 0.03% from 0.05% in Example 3.
Example 5 Example 5 illustrates the effect of reducing temperature in the preheat section of the tenter. This example was made in a manner similar to Example 3, with the exception that the preheat temperature was decreased by reducing the fan speed to 55%. Example 5 exhibited a reduced depolarization to 0.03% from 0.05% in Example 3.
Example 6
Example 6 illustrates a means to improve creep resistance. This example was made in a manner similar to Example 1, with the exception that the cooling and annealing temperature were slightly reduced and the orientation was unbalanced. An additional process step was added to Example 6 whereby the film was orientated in the MD by an additional 5% in the post-stretch zone. Example 6 exhibited a 50% reduction in the MD creep resistance relative to Example A. Example 7
Examples 7-16 describe improved adhesion of optical films using surface treatment of optical films. Surface treatment may include, for example, corona, flame, and/or plasma. Gases used for these surface treatments include oxygen nitrogen, noble gases, chlorine, ammonia, methane, propane, and butane. The use of coatings, chemical etching, and hydrolysis treatments may also be used to enhance the adhesive properties of the optical films.
Example 7 is a 16 micrometer polypropylene film was made in a manner similar to Example 3 and treated using a variety of gaseous surface chemistries:
(a) Air corona at 0.15 J/cm2 with a relative humidity (RH) of around 25%;
(b) Flame treatment using a laminar, premixed natural gas:air flame supported on a ribbon burner at an equivalence ratio of 0.95 (air:fuel ratio of 10.1:1), a flame power of 5300 Btu/hr-inch (611 W/cm), and a burner-to-film gap of 10 mm; (c) N2 corona at 1.0 J/cm2 where all of the nitrogen corona treatments throughout the examples have an oxygen concentration in the corona of less than 10 ppm; (d) Control (no treatment).
Example 8 Example 8 describes a film using alternate surface treatment chemistries. In a manner similar to Example 7, a 16 micrometer film was treated with different chemistries. Examples 8(a) and 8(b) are described as atmospheric-pressure plasma treatment performed using the Plasma3 -brand hardware developed by Enercon Industries of Milwaukee. Example 8(c) uses a standard corona type treatment with a different chemistry. (a) 88% 12% He/N2 at 0.5 J/cm2,
(b) 88%/12% He N2 at l.0 J/cm2
(c) 99% l% N2/NH3 at 2.6 J/cm2.
Example 9 Example 9 describes surface-treated film with LCP coatings. Example films 7a,
7b, 7c, and 7d were coated with Staralign 2110 (available from Vantico AG, Basel, Switzerland) using MEK as the solvent to form Examples 9a, 9b, 9c and 9d. The thickness of the dried Staralign layer was 50 nm. The Staralign material was then exposed to polarized UN light using an Opto Align (available from Elsicon, Inc., Newark, Delaware) to provide a dose of 15 mJ/cm2 with an incidence angle of 45 degrees.
The Staralign coated films were then scored with razors prior to laminating with an adhesive tape, which was subsequently removed. The Adhesion Tape Test was performed consistent with ASTM D3359. Where poor adhesion of the Staralign coating to the polypropylene film may exist, the tape removes the alignment material. The subsequently coated liquid crystal polymer layer would exhibit random alignment.
The samples were then coated with a 18 weight percent solids mixture in MEK comprising Paliocolor LC242 (henceforth referred to simply as LCP and available from
BASF AG, Ludwigshafen, Germany) with 1.26 weight percent Darocur 1173 (available from Ciba, Basel, Switzerland). The coating was then dried at 80 degrees Celsius and cured with a UN lamp at 100 percent power in an anaerobic atmosphere.
The coated samples were viewed under crossed polarizers and evaluated specifically for regions where the Adhesion Tape Test removed alignment material. In the order of decreasing quality, the relative performance of the surface treatments was: 9c, 9b, and 9a. The control film (Example film 9d) exhibited the worst performance of any of the substrates.
Environment stability was also assessed by laminating the LCP coated polypropylene film to glass and then placing the glass in two ovens with temperatures set at 80 degrees Celsius and 60 degrees Celsius/90% RH, respectively. Failure occurred when films delaminated after exposure to temperature and humidity. In decreasing order, the relative order of performance was: 9c, 9b, 9a, and 9d.
Example 10
Example 10 describes corona-treated polypropylene film with LCP coatings. Example films 8a, 8b, and 8c were coated with Staralign 2110 and photo-aligned and subsequently coated with LCP in a manner similar to Example 9 to form Examples 10a, 10b, and 10c, respectively. The peel force between polypropylene film and LCP for Examples 10a, 10b and 10c were each around 50 oz/inch (560 g/cm) as tested in a manner consistent with ASTM D3330. Example 11
Example 11 describes laminates of surface treated polypropylene film and oriented PVA. Surface treated films Examples 7a, 7b, 7c, and 7d were laminated to an oriented and iodine stained PVA film to form Examples 1 la, 1 lb, l ie, and lid, respectively. In all cases, the oriented and stained PVA actually comprised two films, the PVA and a hydrolyzed TAC layer adhered using a solution comprising 66.5%/27.9%/5.6% MeOH/water/AIRVOL PVA Grade 205 (available from Air Products and Chemicals Inc., Allentown, PA, USA). The designation, "oriented and stained PVA," is intended to help clarify the major face to which additional laminations are performed. The adhesive used to laminate Examples 7a, 7b, 7c, and 7d to the oriented and stained PVA comprised a solution containing 66.5%/27.9%/5.6% MeOH/water/AIRVOL PVA Grade 205. Following lamination, all samples were autoclaved at 60 degrees Celsius for 1 hour at 1 atmosphere of pressure in an air atmosphere.
The laminate films were then environmentally aged at 65 degrees Celsius/90%RH, and the peel forces were tested in a manner consistent with ASTM D3330. The peel forces were: <0.4 oz/inch (2.9 g/cm) for Example film l id, 15 oz/inch (170 g/cm) for Example film 1 la, 20 oz/inch (225 g/cm) for Example film 1 lb, and 22 oz/inch (250 g/cm) for Example film lie.
Example 12
Example 12 describes laminates of surface treated polypropylene and oriented PVA. Surface treated films Examples 8a, 8b, 8c, and 8d were laminated to an oriented and iodine stained PVA film in a manner similar to Example 11. Peel forces for all Example 12 films were found to be similar to Example film l ie.
Example 13
Example 13 describes surface treated polypropylene: oriented PVA laminated to glass. The opposite major face comprising polypropylene film of Example film 1 lc was N2 corona treated (1.0 J/cm ). The resultant surface treated film, designed 13a, was then laminated to Soken 2263, a transfer optical adhesive (available from Soken Chemical &
Engineering Co., Ltd, Japan), to form Example film 13b, which was then adhered to a piece of glass to form Example film 13c. The peel force of the Soken 2263 adhesive / glass interface of Example film 13c was measured to be 22 oz/inch (250 g/cm).
Example 14 Example 14 describes corona treatment of LCP coated polypropylene. The major face of Example film 9c comprising LCP was surface treated to form Example films 14a, 14b, and 14c. The various surface treatments were: a. N2 corona at 0.5 J/cm2; b. N2 corona at 1.0 J/cm2; c. N2 corona at 2.0 J/cm2; d. Control (same as Example film lie).
Example 15
Example 15 describes corona treated "LCP coated polypropylene" laminated to PVA. Example films 14 were laminated to oriented and iodine stained PVA in a manner similar to that described in Example 11 to form Example films 15a, 15b, 15c, and 15d.
Peel forces were measured. The results were < 0.9 oz/inch (9.8 g/cm) of width for
Example film 15d and 19 oz/inch (220 g/cm) of width for Example films 15a, 15b, and
15c.
Example 16
Example 16 describes "corona treated LCP coated polypropylene": PVA laminate adhered to glass. Example films 15a, 15b, and 15c was then laminated to glass using
Soken 2263 adhesive, in a manner similar to that described in Example 13. The peel force of adhesive/glass interface was, in all cases, greater than the polypropylene/PVA interface.
It is envisioned that other optical films, such as DBEF (available from 3M, St.
Paul, MN USA) and Nipocs (available from Nitto Denko, Japan) can be similarly surface treated and adhered to oriented and stained PVA.
The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification.

Claims

WE CLAIM:
1. A process for making an optical film comprising: a) stretching a polyolefin film in a first direction; and b) stretching the polyolefin film in a second direction different than the first direction forming a biaxially stretched polyolefin film, wherein at least a portion of the stretching of the polyolefin film in the second direction occurs simultaneous with the stretching of the polyolefin film in the first direction; wherein the biaxially stretched polyolefin film has a length and a width and being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
2. The process according to claim 1, wherein the polyolefin film further comprises a nucleating agent or a clarifying agent.
3. The process according to claim 1, wherein the polyolefin film further comprises a tackifier.
4. The process according to claim 1, further comprising cooling the entire width of the biaxially stretched polyolefin film an effective amount to provide substantial uniformity of the in-plane retardance across the length and width of the biaxially stretched polyolefin film.
5. The process according to claim 4, wherein the in-plane retardance changes less than 4 nm/cm along the width and length of the layer of biaxially stretched polyolefin film.
6. The process according to claim 1, wherein the biaxially stretched polyolefin film length and width is at least 0.65 meter.
7. The process according to claim 1 , wherein the stretching in the first direction is not equal to the stretching in the second direction.
8. The process according to claim 1, wherein the stretching in the first direction is up to 50% greater than the stretching in the second direction.
9. The process according to claim 1, wherein the stretching in the second direction is up to 50% greater than the stretching in the first direction.
10. A process for making an optical film comprising: a) stretching a polymeric film in a first direction; and b) stretching the polymeric film in a second direction different than the first direction forming an biaxially stretched polymeric film, wherein at least a portion of the stretching of the polymeric film in the second direction occurs simultaneous with the stretching of the polymeric film in the first direction; wherein the biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of- plane retardance being 50 nm or greater and a length and width of at least 0.65 meter and the in-plane and out-of-plane retardance are substantially uniform across the length and width.
11. The process according to claim 10, wherein the polymeric film further comprises a clarifying agent or a nucleating agent.
12. The process according to claim 10, wherein the polyolefin film further comprises a tackifier.
13. The process according to claim 10, further comprising cooling the entire width of the biaxially stretched polymeric film an effective amount to provide substantial uniformity of the in-plane retardance across the length and width of the biaxially stretched polymeric film.
14. The process according to claim 13, wherein the in-plane retardance changes less than 4 nm/cm along the length and width of the layer of biaxially stretched polymer film.
15. The process according to claim 10, wherein the stretching in the first direction is not equal to the stretching in the second direction.
16. The process according to claim 10, wherein the stretching in the first direction is up to 50% greater than the stretching in the second direction.
17. The process according to claim 10, wherein the stretching in the second direction is up to 50% greater than the stretching in the first direction.
The process according to claim 10, wherein the polymer comprises a polyolefin.
19. A process for making an optical film comprising: a) stretching a polymeric film in a first direction; and b) stretching the polymeric film in a second direction different than the first direction forming an biaxially stretched polymeric film, wherein at least a portion of the stretching ' of the polymeric film in the second direction occurs simultaneous with the stretching of the polymeric film in the first direction; wherein the biaxially stretched polymeric film has a length and a width and being substantially non-absorbing and non-scattering for at least one polarization state of visible light; and having x, y, and z orthogonal indices of refraction wherein at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater and a thickness of 5 microns to 200 microns.
20. The process according to claim 19, wherein the polymeric film further comprises a nucleating agent or a clarifying agent.
21. The process according to claim 19, wherein the polyolefin film further comprises a tackifier.
22. The process according to claim 19, further comprising cooling the entire width of the biaxially stretched polymeric film an effective amount to provide substantial uniformity of the in-plane retardance across the length and width of the biaxially stretched polymeric film.
23. The process according to claim 19, wherein the in-plane retardance changes less than 4 nm/cm along the width and length of the layer of biaxially stretched polymer film.
24. The process according to claim 19, wherein the biaxially stretched polymer film length and width is at least 0.65 meter.
25. The process according to claim 19, wherein the stretching in the first direction is not equal to the stretching in the second direction.
26. The process according to claim 19, wherein the stretching in the first direction is up to 50% greater than the stretching in the second direction.
27. The process according to claim 19, wherein the stretching in the second direction is up to 50% greater than the stretching in the first direction.
28. The process according to claim 19, wherein the polymer comprises a polyolefin.
PCT/US2004/002505 2003-02-12 2004-01-29 Process for manufacturing polymeric optical film WO2004072712A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006503138A JP2006517486A (en) 2003-02-12 2004-01-29 Method for producing polymer optical film
EP04706488A EP1592543A2 (en) 2003-02-12 2004-01-29 Process for manufacturing polymeric optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/364,940 US7132065B2 (en) 2003-02-12 2003-02-12 Process for manufacturing polymeric optical film
US10/364,940 2003-02-12

Publications (2)

Publication Number Publication Date
WO2004072712A2 true WO2004072712A2 (en) 2004-08-26
WO2004072712A3 WO2004072712A3 (en) 2004-11-04

Family

ID=32824522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/002505 WO2004072712A2 (en) 2003-02-12 2004-01-29 Process for manufacturing polymeric optical film

Country Status (7)

Country Link
US (3) US7132065B2 (en)
EP (1) EP1592543A2 (en)
JP (1) JP2006517486A (en)
KR (1) KR20050099998A (en)
CN (1) CN100355550C (en)
TW (1) TW200505668A (en)
WO (1) WO2004072712A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351659B2 (en) 2003-08-15 2008-04-01 Micron Technology, Inc. Methods of forming a transistor with an integrated metal silicide gate electrode

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965474B2 (en) * 2003-02-12 2005-11-15 3M Innovative Properties Company Polymeric optical film
US7132065B2 (en) * 2003-02-12 2006-11-07 3M Innovative Properties Company Process for manufacturing polymeric optical film
US7405784B2 (en) * 2003-02-12 2008-07-29 3M Innovative Properties Company Compensators for liquid crystal displays with biaxially stretched single film with crystallization modifier
JP4577033B2 (en) * 2004-04-19 2010-11-10 コニカミノルタオプト株式会社 Method for producing retardation film
EP1805013A1 (en) * 2004-10-29 2007-07-11 3M Innovative Properties Company Optical films incorporating cyclic olefin copolymers
US7611652B2 (en) * 2005-11-22 2009-11-03 Shaw Industries Group, Inc. Monoxially-oriented and annealed films with high cross machine toughness and related process
US20070228586A1 (en) * 2006-03-31 2007-10-04 Merrill William W Process for making an optical film
US20070231548A1 (en) * 2006-03-31 2007-10-04 Merrill William W Process for making an optical film and rolls of optical film
US20070231495A1 (en) * 2006-03-31 2007-10-04 Ciliske Scott L Method of forming multi-layer films using corona treatments
US7707963B2 (en) * 2006-03-31 2010-05-04 3M Innovative Properties Company System for forming multi-layer films using corona treatments
TWI406899B (en) * 2006-09-05 2013-09-01 Tosoh Corp Optical compensation film and phase difference film
US20080085481A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Rolls of optical film
US20080083999A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Process for making an optical film
WO2009105429A1 (en) * 2008-02-20 2009-08-27 3M Innovative Properties Company Multilayer optical compensation film
JP5512759B2 (en) * 2011-09-16 2014-06-04 富士フイルム株式会社 Method for producing biaxially stretched thermoplastic resin film
US20130266904A1 (en) * 2012-04-04 2013-10-10 James Martin Lip Rolling Machine With Rotated Oven Guide Bar
JP5749289B2 (en) * 2013-03-28 2015-07-15 富士フイルム株式会社 Manufacturing method of optical film
ES2837855T3 (en) * 2013-12-18 2021-07-01 Borealis Ag BOPP film that has low shrinkage
KR20180095568A (en) * 2015-12-16 2018-08-27 디에스엠 아이피 어셋츠 비.브이. Transparent stretch products
US10328613B2 (en) * 2016-09-20 2019-06-25 Sumitomo Chemical Company, Limited Film-stretching apparatus and method of producing film
US10137608B2 (en) * 2016-09-20 2018-11-27 Sumitomo Chemical Company, Limited Film-stretching apparatus and method of producing film
US11662510B2 (en) * 2020-01-07 2023-05-30 Meta Platforms Technologies, Llc Optically anisotropic polymer thin films
CN114228121B (en) * 2022-02-24 2022-05-13 佛山市盟思拉伸机械有限公司 Stretching device for improving synchronism of thin film at stretching initial section
CN114228122B (en) * 2022-02-24 2022-06-14 佛山市盟思拉伸机械有限公司 Film bidirectional mixed stretching device and method

Family Cites Families (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2618012A (en) 1948-05-14 1952-11-18 American Viscose Corp Method and apparatus for two-way stretching a continuous sheet
IT576846A (en) 1956-09-06 1900-01-01
US3057835A (en) 1956-10-03 1962-10-09 Eastman Kodak Co Process of producing highly crystalline polyolefins with titanium borohydride catalyst
US3014234A (en) 1959-12-21 1961-12-26 American Viscose Corp Method and apparatus for biaxially stretching films
GB936965A (en) 1959-12-30 1963-09-18 Bx Plastics Ltd Web stretching apparatus
US3296351A (en) 1961-08-11 1967-01-03 Phillips Petroleum Co Method of producing a lateral stretching of a continuous sheet material
US3372049A (en) 1961-10-09 1968-03-05 Minnesota Mining & Mfg Polyolefin film composition, film, and pressure-sensitive adhesive sheet material
US3241662A (en) 1962-06-22 1966-03-22 Johnson & Johnson Biaxially oriented polypropylene tape backing
AT295126B (en) 1963-09-28 1971-12-27 Kalle Ag Process for the production of shrinkable films from polypropylene
US3231642A (en) 1964-07-09 1966-01-25 Du Pont Extrusion and stretching of thermoplastic film
US3502766A (en) 1965-01-28 1970-03-24 Nippon Rayon Kk Process for the improvement of polyamide films
US3510552A (en) 1965-09-15 1970-05-05 Nippon Rayon Kk Biaxially drawing polyamide film
US3491877A (en) 1966-03-17 1970-01-27 Minnesota Mining & Mfg Pressure-sensitive adhesive tape
JPS4822159B1 (en) * 1969-08-05 1973-07-04
US3853598A (en) 1970-04-17 1974-12-10 Scholl Inc Adhesive tape
US4134957A (en) 1970-10-26 1979-01-16 Toyobo Co., Ltd. Method of stretching polypropylene films
DE2110625C3 (en) 1971-03-05 1980-09-04 Willi Johann 6204 Taunusstein Schmidt Process for spreading plastic film webs
FR2147876B1 (en) 1971-08-05 1974-03-29 Cellophane Sa
US3705283A (en) 1971-08-16 1972-12-05 Varian Associates Microwave applicator employing a broadside slot radiator
US3995007A (en) 1971-10-05 1976-11-30 Sanyo-Kokusaku Pulp Co., Ltd. Method of stretching film below the natural draw ratio without necking
US4045515A (en) 1972-06-09 1977-08-30 Toyo Boseki Kabushiki Kaisha Film of good tear property on impact
JPS5245744B2 (en) 1972-06-09 1977-11-18
DE2339892C3 (en) 1972-09-08 1981-03-12 Toray Industries, Inc., Tokyo Finger tearable adhesive tape
US3903234A (en) 1973-02-01 1975-09-02 Du Pont Process for preparing filled, biaxially oriented, polymeric film
US4137362A (en) 1973-08-27 1979-01-30 Nitto Electric Industrial Co., Ltd. Pressure sensitive adhesive tapes
US4139669A (en) 1974-09-09 1979-02-13 Chang Chow M Non-knifing plastic adhesive tape for packaging and sealing purpose
DE2528370C3 (en) * 1975-06-25 1979-11-15 4P Verpackungen Gmbh, 8960 Kempten Process for producing biaxially stretched film webs made of plastic and device for carrying out the process
US4138459A (en) 1975-09-08 1979-02-06 Celanese Corporation Process for preparing a microporous polymer film
US4076532A (en) 1976-01-16 1978-02-28 Eastman Kodak Company Thermosensitive image-forming element and method of processing thereof
US4185148A (en) * 1976-05-17 1980-01-22 Mitsubishi Rayon Company Limited Process for producing the polypropylene film for electrical appliances
US4173676A (en) 1976-12-28 1979-11-06 Toyo Kagaku Kabushiki Kaisha Adhesive tape
US4230767A (en) * 1978-02-08 1980-10-28 Toyo Boseki Kabushiki Kaisha Heat sealable laminated propylene polymer packaging material
JPS5527211A (en) * 1978-08-15 1980-02-27 Toray Ind Inc Producing process of polyester film
DE2853398C3 (en) 1978-12-11 1981-09-17 Unilever N.V., Rotterdam Method and device for simultaneous biaxial stretching of a plastic film web
FR2447275A1 (en) * 1979-01-25 1980-08-22 Charbonnages Ste Chimique LAMINATE MATERIALS BASED ON PHENOLIC RESIN AND PROCESS FOR THEIR PREPARATION
DE2920514A1 (en) * 1979-05-21 1980-11-27 Unilever Nv DYNAMIC LOADABLE POLYPROPYLENE FILM
JPS6036388B2 (en) * 1979-07-13 1985-08-20 東洋紡績株式会社 Packaging material with good adhesion
DE3002204C2 (en) * 1980-01-22 1986-05-28 Württembergische Metallwarenfabrik, 7340 Geislingen Pressure cooker
JPS5725953A (en) * 1980-07-22 1982-02-10 Toray Industries Multilayer laminated polypropylene film
JPS6056101B2 (en) * 1980-09-25 1985-12-09 東レ株式会社 Manufacturing method of polyester film
US4410582A (en) * 1980-12-10 1983-10-18 Toray Industries, Inc. Multi-layered polyolefin laminated film
US4385022A (en) * 1981-05-18 1983-05-24 Mobil Oil Corporation Process for preparing biaxially oriented films of butene-1 homopolymer and copolymers
US4335069A (en) 1981-06-25 1982-06-15 E. I. Du Pont De Nemours And Company Flat sheet process for production of polyolefin shrink film
US4447485A (en) * 1981-08-04 1984-05-08 Mitsubishi Plastics Industries Limited Adhesive tape and process for its production
JPS5874774A (en) * 1981-10-27 1983-05-06 Mitsubishi Plastics Ind Ltd Pressure-sensitive adhesive tape
DE3144912A1 (en) 1981-11-12 1983-05-19 Hoechst Ag, 65929 Frankfurt BIAXIAL STRETCHED POLYOLEFINIC PLASTIC FILM WITH AN ELASTICITY MODULE IN THE LENGTH DIRECTION OF MORE THAN 4000 N / MM (ARROW HIGH) 2 (ARROW HIGH)
US4428723A (en) * 1982-02-18 1984-01-31 Thiel Alfons W Apparatus for stretching a continuously advancing synthetic-resin web and feeding same stepwise to a thermoforming machine
US4581087A (en) * 1983-02-04 1986-04-08 The Kendall Company Method of making a thermoplastic adhesive-coated tape
US4451533A (en) * 1983-02-09 1984-05-29 Minnesota Mining And Manufacturing Company Dispensable polypropylene adhesive-coated tape
DE3323018A1 (en) 1983-06-25 1985-01-10 Beiersdorf Ag, 2000 Hamburg DUCT TAPE
US4652409A (en) * 1983-09-06 1987-03-24 Bakelite Xylonite Limited Web-stretching process
DE3465926D1 (en) 1984-01-24 1987-10-15 Toray Industries Link device for stretching sheet material and stretching apparatus using said link device
US4514534A (en) * 1984-04-13 1985-04-30 United States Steel Corporation Modified polypropylene for film
DE3438736A1 (en) * 1984-10-23 1986-04-24 Hoechst Ag, 6230 Frankfurt COEXTRUDED MULTILAYER AND BIAXIAL STRETCHED, OPAQUE POLYOLEFIN FILM WITH IMPROVED MECHANICAL PROPERTIES, METHOD FOR THEIR PRODUCTION AND THEIR USE
DE3501726A1 (en) * 1985-01-19 1986-07-24 Hoechst Ag, 6230 Frankfurt POLYPROPYLENE TAPE
US5034078A (en) * 1985-05-08 1991-07-23 Exxon Chemical Patents Inc. Method of making an elastomeric film
US4853602A (en) * 1985-12-24 1989-08-01 E. I. Dupont De Nemours And Company System for using synchronous secondaries of a linear motor to biaxially draw plastic films
US4675582A (en) * 1985-12-24 1987-06-23 E. I. Du Pont De Nemours And Company System useful for controlling multiple synchronous secondaries of a linear motor along an elongated path
FR2595157B1 (en) * 1986-02-28 1988-04-29 Commissariat Energie Atomique CELL WITH A DOUBLE LAYER OF LIQUID CRYSTAL, USING THE ELECTRICALLY CONTROLLED BIREFRINGENCE EFFECT AND METHOD FOR MANUFACTURING A UNIAXIC NEGATIVE ANISOTROPY ANISOTROPY MEDIUM FOR USE IN THIS CELL
DE3624921A1 (en) 1986-07-23 1988-01-28 Beiersdorf Ag DUCT TAPE
US4758398A (en) * 1986-10-07 1988-07-19 The Dexter Corporation Method of manufacture preforms
US4908278A (en) * 1986-10-31 1990-03-13 Minnesota Mining And Manufacturing Company Severable multilayer thermoplastic film
US4968464A (en) * 1987-04-30 1990-11-06 Kohjin Co., Ltd. Process for producing a porous resin film
US4825111A (en) * 1987-11-02 1989-04-25 E. I. Du Pont De Nemours And Company Linear motor propulsion system
US5051225A (en) * 1988-06-22 1991-09-24 E. I. Du Pont De Nemours And Company Method of drawing plastic film in a tenter frame
US5072493A (en) * 1988-06-22 1991-12-17 E. I. Du Pont De Nemours And Company Apparatus for drawing plastic film in a tenter frame
DE3821581A1 (en) 1988-06-25 1989-12-28 Hoechst Ag TRANSPARENT SHRINK FILM BASED ON POLYPROPYLENE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR SHRINK FETTIQUETTES
US5077121A (en) * 1988-10-27 1991-12-31 Shell Oil Company High strength high modulus polyolefin composite with improved solid state drawability
GB2233251B (en) * 1989-06-20 1993-03-10 Courtaulds Films & Packaging Production of polymeric films
DE3921358A1 (en) * 1989-06-29 1991-01-10 Hoechst Ag BIAXIAL-ORIENTED POLYPROPYLENE FILM WITH HIGH MECHANICAL STRENGTH
US5036262A (en) * 1989-09-13 1991-07-30 E. I. Du Pont De Nemours And Company Method of determining control instructions
EP0459059B1 (en) 1990-05-03 1994-07-27 Minnesota Mining And Manufacturing Company Tearable, continuous film medical PSA tape
US5073458A (en) * 1990-05-31 1991-12-17 Shell Oil Company Polypropylene-polybutylene laminated packaging film with improved tear strength
DE4030385A1 (en) * 1990-09-26 1992-04-02 Hoechst Ag TRANSPARENT SHRINK FILM MADE OF BIAXIAL-ORIENTED POLYPROPYLENE FOR ALL-ROUND LABELING
DE4031125A1 (en) * 1990-10-02 1992-04-09 Hoechst Ag BIAXIAL ORIENTED POLYPROPYLENE FILM FOR TURNING IN
DE4037417A1 (en) * 1990-11-24 1992-05-27 Hoechst Ag METALLIZABLE ROTARY WRAP FILM MADE OF BIAXIAL-ORIENTED POLYPROPYLENE
DE4101650A1 (en) * 1991-01-22 1992-07-23 Hoechst Ag BIAXIAL STRETCHED POLYPROPYLENE MONO FILM
DE4135096A1 (en) * 1991-10-24 1993-04-29 Hoechst Ag SEALABLE, MATTE BIAXIAL-ORIENTED POLYOLEFIN MULTILAYER FILM, METHOD FOR THEIR PRODUCTION AND THEIR USE
CA2083976A1 (en) * 1991-12-04 1993-06-05 Shinichi Kinoshita Optical tape
US5374482A (en) * 1992-12-02 1994-12-20 Tti Masking tape
US5912292A (en) * 1993-02-10 1999-06-15 Fina Technology, Inc. Sodium benzoate as a nucleating agent for monoaxially oriented polypropylene film
US5474730A (en) * 1993-06-09 1995-12-12 Hoechst Celanese Corporation Production of highly birefringent film
US5429785A (en) * 1994-03-01 1995-07-04 E. I. Du Pont De Nemours And Company Method of making biaxially oriented thermoplastic films
US5691043A (en) * 1994-07-15 1997-11-25 Mobil Oil Corporation Uniaxially shrinkable biaxially oriented polypropylene film and its method of preparation
JP3258831B2 (en) * 1994-09-29 2002-02-18 株式会社興人 Polypropylene heat-shrinkable laminated film
US6417892B1 (en) * 1995-05-23 2002-07-09 Colorlink, Inc. Color filters, sequencers and displays using color selective light modulators
US5799141A (en) * 1995-06-09 1998-08-25 Qualix Group, Inc. Real-time data protection system and method
US6737154B2 (en) * 1995-06-26 2004-05-18 3M Innovative Properties Company Multilayer polymer film with additional coatings or layers
DE19526280A1 (en) * 1995-07-19 1997-01-23 Schloemann Siemag Ag Grinding device
DE19536043A1 (en) * 1995-09-28 1997-04-10 Hoechst Ag Polyolefin film with cycloolefin polymer, process for its production and its use
US5795834A (en) * 1995-12-22 1998-08-18 Minnesota Mining & Manufacturing Company Adhesive tape and method of making
JP3676474B2 (en) * 1996-01-09 2005-07-27 日東電工株式会社 Optical film and liquid crystal display device
US6208396B1 (en) * 1996-10-25 2001-03-27 Sumitomo Chemical Company, Limited Normally white mode twisted nematic liquid crystal display device having improved viewing angle characteristics
US5753172A (en) * 1996-12-11 1998-05-19 E. I. Du Pont De Nemours And Company Film bead heating for simultaneous stretching
KR100223601B1 (en) * 1997-05-29 1999-10-15 윤종용 Lcd device
WO1998054616A1 (en) * 1997-05-30 1998-12-03 Koninklijke Philips Electronics N.V. A liquid crystal display device provided with a reflective polarizer, and a reflective polarizer
US5837177A (en) * 1997-06-23 1998-11-17 Aristech Chemical Corporation Controlled nucleation of polypropylene in biaxially oriented films
US5885501A (en) * 1997-06-24 1999-03-23 E. I. Du Pont De Nemours And Company Process for preparing dimensionally stabilized biaxially stretched thermoplastic film
US5867239A (en) * 1997-10-17 1999-02-02 Minnesota Mining And Manufacturing Company Wide angle optical retarder
JP3204182B2 (en) * 1997-10-24 2001-09-04 日本電気株式会社 In-plane switching LCD
JP3754546B2 (en) * 1997-12-25 2006-03-15 帝人化成株式会社 Retardation film and method for producing the same
US6179948B1 (en) * 1998-01-13 2001-01-30 3M Innovative Properties Company Optical film and process for manufacture thereof
US6256146B1 (en) * 1998-07-31 2001-07-03 3M Innovative Properties Post-forming continuous/disperse phase optical bodies
US6358457B1 (en) * 1998-11-13 2002-03-19 3M Innovative Properties Company Method of stretching films according to an overbias or overstretch profile
US6303067B1 (en) * 1998-11-13 2001-10-16 3M Innovative Properties Company Method of stretching films according to an overbias or overstretch stretch profile
US6451425B1 (en) * 1999-06-16 2002-09-17 3M Innovative Properties Company Adhesive tape backing
US6266114B1 (en) * 1999-07-14 2001-07-24 Rockwell Collins, Inc. Method and apparatus for compensating a liquid crystal display
JP2001194534A (en) * 2000-01-13 2001-07-19 Nitto Denko Corp Light transmission plate and its manufacturing method
US6812983B2 (en) * 2000-05-17 2004-11-02 Fuji Photo Film Co., Ltd. Retardation plate and fabrication method thereof, and plate for circularly polarizing light, ½ wave plate and reflection-type liquid crystal display device utilizing the retardation plate
JP4534306B2 (en) * 2000-05-19 2010-09-01 ソニー株式会社 Item combination presentation device, item combination presentation system, item combination presentation method, and item information presentation method
JP4802409B2 (en) * 2000-07-21 2011-10-26 コニカミノルタホールディングス株式会社 Optical compensation film, polarizing plate and liquid crystal display device using the same
KR100838548B1 (en) * 2000-08-23 2008-06-17 데이진 가부시키가이샤 Biaxially oriented polyester film, adhesive film and colored hard coating film
US6673425B1 (en) * 2000-10-27 2004-01-06 3M Innovative Properties Company Method and materials for preventing warping in optical films
US6912029B2 (en) * 2000-12-18 2005-06-28 Nippon Kayaku Kabushiki Kaisha Optical film and polarizing film using the same, and method for improving view angle of the polarizing film
US6657690B2 (en) * 2000-12-25 2003-12-02 Fuji Photo Film Co., Ltd. Optical compensatory sheet comprising optically uniaxial or biaxial transparent stretched film
US6773649B2 (en) * 2001-02-16 2004-08-10 General Electric Company Film extrusion process for producing thermoplastic film
US7052762B2 (en) * 2001-05-24 2006-05-30 3M Innovative Properties Company Low Tg multilayer optical films
EP1293521B1 (en) * 2001-09-13 2008-02-13 JSR Corporation Cyclic olefin addition copolymer and process for producing same, crosslinkable composition, crosslinked product and process for producing same, and optically transparent material and application thereof
JP2003121641A (en) * 2001-10-10 2003-04-23 Nitto Denko Corp Laminated optical retardation film, polarizing member and liquid crystal display device
US6847453B2 (en) * 2001-11-05 2005-01-25 Optiphase, Inc. All fiber autocorrelator
US7038744B2 (en) * 2002-01-09 2006-05-02 Konica Corporation Polarizing plate having a stretched film on a side thereof and liquid crystal display employing the same
US7132065B2 (en) 2003-02-12 2006-11-07 3M Innovative Properties Company Process for manufacturing polymeric optical film
US7405784B2 (en) * 2003-02-12 2008-07-29 3M Innovative Properties Company Compensators for liquid crystal displays with biaxially stretched single film with crystallization modifier
US6965474B2 (en) * 2003-02-12 2005-11-15 3M Innovative Properties Company Polymeric optical film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351659B2 (en) 2003-08-15 2008-04-01 Micron Technology, Inc. Methods of forming a transistor with an integrated metal silicide gate electrode

Also Published As

Publication number Publication date
US20060272778A1 (en) 2006-12-07
KR20050099998A (en) 2005-10-17
EP1592543A2 (en) 2005-11-09
US7132065B2 (en) 2006-11-07
US20060272779A1 (en) 2006-12-07
TW200505668A (en) 2005-02-16
CN100355550C (en) 2007-12-19
US20040155372A1 (en) 2004-08-12
CN1747827A (en) 2006-03-15
JP2006517486A (en) 2006-07-27
WO2004072712A3 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US6965474B2 (en) Polymeric optical film
US20060272778A1 (en) Process for manufacturing polymeric optical film
US20060238682A1 (en) Compensators for liquid crystal displays
US8760601B2 (en) Liquid crystal display device and polarizing plate
US7964254B2 (en) Optical laminate, optical element and liquid crystal display device
KR100750839B1 (en) Optical film and image display device
JP2005208676A (en) Method for manufacturing optical film, optical film, and image display apparatus
EP1876491A1 (en) Liquid crystal panel and liquid crystal display
JP5209233B2 (en) Retardation film, polarizing plate, liquid crystal panel and liquid crystal display device
US8993075B2 (en) Stretched film, process for producing the same, and liquid crystal display device
JP3976328B2 (en) Method for producing optical film for VA mode liquid crystal display device
JP4116577B2 (en) Birefringent film, optical film, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004706488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1865/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020057014788

Country of ref document: KR

Ref document number: 2006503138

Country of ref document: JP

Ref document number: 20048039684

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057014788

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004706488

Country of ref document: EP