WO2004078255A1 - Nerve stimulation apparatus - Google Patents

Nerve stimulation apparatus Download PDF

Info

Publication number
WO2004078255A1
WO2004078255A1 PCT/GB2004/000835 GB2004000835W WO2004078255A1 WO 2004078255 A1 WO2004078255 A1 WO 2004078255A1 GB 2004000835 W GB2004000835 W GB 2004000835W WO 2004078255 A1 WO2004078255 A1 WO 2004078255A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
driving unit
control unit
sensing
patient
Prior art date
Application number
PCT/GB2004/000835
Other languages
French (fr)
Inventor
John Charles Alderman
Per Johan Slycke
David Robert Francis
Diana Margaret Hodgins
Original Assignee
Finetech Medical Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Finetech Medical Limited filed Critical Finetech Medical Limited
Publication of WO2004078255A1 publication Critical patent/WO2004078255A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6828Leg
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance

Definitions

  • This invention relates to apparatus suitable for countering dropped foot syndrome by stimulating the nerves in an affected leg of a patient.
  • dropped-foot syndrome a chronic condition characterised by the inability to hold the foot raised during the swing phase of walking. Stroke victims are most likely to suffer from dropped- foot syndrome, but also people with incomplete spinal cord injuries and MS patients often have this condition. A sufferer from dropped-foot syndrome has to develop a peculiar and difficult gait in order to be able to make progress by walking, and activities such as ascending and descending stairs can be extremely difficult. As such, there have been considerable efforts at relieving the symptoms of dropped-foot syndrome.
  • ankle-foot orthosis usually in the form of a lightweight plastic device that fits behind the leg and under the foot.
  • spring-assisted ankle-foot orthoses which permit selection of the amount of ankle motion, with selected degrees of dorsiflexion assistance.
  • the known ankle-foot orthoses have major drawbacks, including high maintenance, noise and wear and tear on clothing, shoes and furniture.
  • a small switch is located between the heel of the patient and a shoe worn on the affected foot, which switch is connected to a control unit by wires leading to a control unit either strapped to the patient's leg or carried elsewhere about the patient's body.
  • That control unit is connected to electrodes which are coupled to the deep and superficial peroneal nerves; the control unit supplies to those electrodes stimulating signals following recognition of the heel being lifted off a surface, at the commencement of the swing phase.
  • a pulsed current for stimulating the peroneal nerves is ramped up to preset values and continues at an appropriate frequency during the swing phase.
  • the stimulation current continues for a fixed time before being ramped down to zero.
  • a system such as that described above is capable of greatly improving the gait of a dropped-foot syndrome patient, who becomes able to adopt a near-normal walking gait.
  • the provision of a switch in a shoe, below the heel of the patient leads to various complications including the need always to wear a shoe to ensure the switch is properly located below the heel and is operated on lifting the leg.
  • the switches are less than wholly reliable and need frequent replacement for continued operation of the device.
  • the present invention aims at improving the known form of apparatus which directly stimulates the nerves in the affected leg of a patient, to mitigate the effects of dropped-foot syndrome, as well as to improve on the known form of system where a heel switch is employed to detect the swing phase of a walking gait.
  • one aspect of this invention provides apparatus to stimulate peroneal nerves in a leg of a patient to mitigate dropped-foot syndrome, which apparatus comprises a sensing unit adapted to be mounted on the affected leg of a patient, a control unit, and a driving unit having electrodes for connection to the appropriate nerves in the leg of a patient, the sensing unit including sensing means to determine acceleration in two distinct directions and at least one angular rate sensor, the sensing means and the angular rate sensor together being arranged so that when in use the sensing unit detects acceleration in a generally vertical plane and the angular rate sensor detects acceleration about a generally horizontal axis, the outputs of the sensing unit being supplied to the control unit which processes said outputs and supplies a drive signal to the driving unit to cause triggering of the nerves in the leg of a patient to control foot movement.
  • MST Micro-system technologies
  • suitable motion sensors typically using piezo-electric devices to detect both linear acceleration and angular rate.
  • Such sensors may be made by known MST/MEMS (micro-electro-mechanical systems) processes. Since the production of such devices is known in the art and forms no part of this invention, they will not be described in any detail herein.
  • the sensing means comprises two linear accelerometers, the axes of operation (detection) of which are substantially orthogonal.
  • the axes of operation preferably lie in a common plane, which should be disposed substantially vertically when the sensing unit is in use.
  • a third linear accelerometer arranged with its sensing axis in a third distinct direction, which preferably is substantially orthogonal to the two distinct directions of the first-mentioned linear accelerometers. This could be used to give better control of foot movement, which may be desirable for some patients.
  • the angular rate sensor preferably also is an MST device, in the form of a solid- state gyroscope.
  • the axis of sensing of that device is normal to the plane containing the axes of operation of the two accelerometers of the sensing means.
  • the driving unit preferably is self-contained and apart from the electrodes which connect to the peroneal nerves, should be encapsulated in a bio-stable material whereby the driving unit may be implanted in an affected leg of a patient.
  • the implantation site must be selected by the surgeon depending upon the patient's anatomy but should be on the outside of the affected lower leg, just below the knee and typically no more than 200mm from the knee joint.
  • the driving unit need not contain any power source and may derive its power from the control unit, the control and driving units being inductively coupled whereby signals are inductively transmitted by the control unit to the driving unit.
  • Those signals preferably are in two separate channels to permit the transfer of the required control signals for the electrodes connected to the superficial and deep peroneal nerves, respectively, as well as the transfer of power to the driving unit.
  • the inductive coupling between the two units is preferred for the inductive coupling between the two units to be by way of flat-wound coils which are closely juxtaposed but with body tissue therebetween, so minimising both the internal and external intrusiveness of the two units.
  • a power feed-back loop is provided from the driving unit to the control unit, whereby the control unit may adjust the power level supplied to the driving unit so as to lie within a preset range. This can be important to ensure proper stimulation of the peroneal nerves and by monitoring the power transferred from the control unit to the driving unit, it becomes possible to compensate for possible misalignment between the control unit and the driving unit.
  • the superficial branch of the peroneal nerve supplies the peroneus longus/brevis and sometimes the extensor digitorum brevis.
  • the deep branch supplies the tibialis anterior, extensor hallucis longus, extensor digitorum longus and peroneus tertius muscles.
  • tibialis anterior combines with two other dorsiflexors, extensor digitorum longus and extensor hallucis longus, to dorsiflex the foot, whilst maintaining adequate balance between the everting action of the extensor digitorum longus and the inverting action of the tibialis anterior.
  • control system of this invention permits excellent control of the relative levels of stimulation for the two peroneal nerve branches, so permitting good relief from dropped foot syndrome within a wide range of operating parameters.
  • Figure 1 diagrammatically shows the system mounting and configuration
  • Figure 2 is a simplified transmitter diagram
  • Figure 3 is a block diagram of the operation of the system; and Figure 4 is a simplified flow chart of the system.
  • the embodiment of apparatus of this invention is intended to control foot movement, for use by a patient suffering from dropped-foot syndrome.
  • the apparatus comprises a main unit 10 intended to be strapped to the upper part of the lower leg, typically not more than 200mm below the knee joint.
  • the main unit 10 may take the form of a relatively flat essentially rectangular box within which the required electronics and sensors are mounted, the box being retained in position by one or two elastic straps which extend around the calf. When positioned as shown, the sensing unit is above the region of greatest calf muscle girth, such that there will not be any significant tendency for the control unit to descend the calf, when in use.
  • Contained within the main unit is a battery for powering the apparatus, which battery preferably is rechargeable.
  • the main unit encloses a sensing unit which includes two linear accelerometers arranged with their sensing axes orthogonal to each other and lying in a common plane.
  • the common plane is intended to be essentially vertical, with the accelerometer axes extending generally along the length of a leg and in the general direction of walking, as shown by the directions X and Y on Figure 1.
  • the sensing unit also includes an angular rate sensor in the form of a solid- state gyroscopic device, operating about an axis of rotation Z as shown in Figure 1 , orthogonal to axes X and Y.
  • control electronics for processing the outputs of the two accelerometers and the rate sensor, and providing an RF signal to a coil within the main unit, for inductively coupling to an implanted driving unit (not shown, to be described below).
  • the control electronics permit the adjustment of the signals generated for peroneal nerve stimulation in order to achieve the required correction characteristics for the dropped-foot syndrome. In particular, allowance may be made for adjustment of the power supplied to the nerves, the duration of the supply, the rise and fall times of the signals and the frequency of the pulses supplied. Other parameters may be made adjustable as required.
  • control of the supply of the signals may be by means of a processing unit which may be programmed by connecting to the main unit a suitable controller, preferably by way of an RF link to the main unit.
  • the controller may then be operated by a clinician or physician on setting up the system and when completed, the patient will have no ability to adjust the system.
  • the clinician or physician may adjust the system to suit a patient, the system then operating without further adjustment for an extended period of time.
  • the only control required by the patient is an on/off switch, on the main unit.
  • the driving unit is implanted subcutaneously, immediately below the normal position of the control unit when secured to the lower leg by the elastic straps, the driving unit having a pair of electrodes which are connected to the superficial and deep peroneal nerves within the affected leg.
  • the process of connecting to those nerves is known and understood by those skilled in the art and will not be described in detail here.
  • the driving unit takes the form of a two-channel receiver or two parallel receivers operating at different frequencies and connected to a common planar coil all sealed within the driving unit body which typically will be of a button- shape, with a diameter of less than 35mm and a thickness of less than 6mm.
  • the driving unit should be capable of remaining implanted on a long-term basis, without causing expulsion, erosion or a related pathological event.
  • the driving unit should have suitable suture sites or otherwise provide a clinically- acceptable method of fixation to the surrounding tissue.
  • Figure 2 diagrammatically illustrates a simplified form of the transmitter system.
  • the transmitter (which is external to the leg and contained within the main unit 10) includes a planar coil LTx the frequency of which can be switched by means of switch S1 , to operate at typically 1MHz or at 2MHz.
  • Planar coils give the advantage of increased reliability, a lower profile and can be made to tight tolerances.
  • the resonant frequency of LRx1 and its capacitor C1 is 1MHz and the resonant frequency of LRx2 and its capacitor C2 is 2MHz, such that discrimination between the two channels can be achieved.
  • the driving unit is implanted only just subcutaneously and the transmitter within the main unit is intended immediately to overlie the driving unit, only relatively low powers are required with a range of typically less than 25mm, at the operating frequencies.
  • Figures 3 and 4 show the operation of the system.
  • the outputs of the X-axis accelerometer, the Y-axis accelerometer and the Z-axis rate sensor are supplied to an inertial system analyser the output of which is supplied to a signal processor within which are set the required trigger levels and timings.
  • a controller, display and waveform setting module is connected both to the signal processor and to the transmitter, for the production of the required trigger signals at the appropriate power levels, to give the necessary degree of stimulation to the peroneal nerves.
  • An operator interaction device is able to talk to the waveform setting module to permit the setting of the required power levels, pulse frequencies and so on to give proper operation, but that interaction device will normally be used only by a clinician or physician.
  • the waveform setting module communicates with the transmitter section, for the supply of the RF signals to the driving unit implanted in a leg.
  • Power for all of these described components is derived from a rechargeable battery also located within the main unit and having a voltage regulator as well as a charging unit.
  • the passive receiver is shown in Figure 3, as receiving signals from the transmitter.
  • a power feed-back loop giving power control By having the transmitter monitoring the feed-back loop from the receiver, the power supplied to the transmitter can be controlled to ensure that the required power level is received by the driving unit for proper driving of the peroneal nerves, despite possible misalignment between the transmitter and the receivers of the driving unit.
  • a biometric feedback path The receiver stimulates the nerves in a leg which causes a foot to rotate and that rotation will be detected by the sensors of the sensing unit. The response may be compared by the signal processing unit with that which had been demanded by the system and the continuing stimulation of the peroneal nerves may be modified to take into account that response.
  • Figure 4 shows the processing steps described above, from the swing phase of leg movement being detected to nerve energisation to achieve rotation of the foot, thus minimising the effect of dropped-foot syndrome.
  • the removal of the supply of the signals to the peroneal nerves may be performed in much the same way, by detecting the termination of the swing phase and then shutting down the supply of power to the receivers, so that the energisation of the nerves ceases.
  • a feed-back loop is provided from the "receive and decode signal" step of Figure 4, to be transmitted back to a receiver within the control unit, which receiver then causes the waveform setting module suitably to adjust the power supplied to the transmitter of the control unit.
  • the inertial sensors will sense the rotation of the foot that takes place, which can then be compared to the demanded rotation by the system.

Abstract

Apparatus to stimulate peroneal nerves in a leg of a patient to mitigate dropped-foot syndrome. The apparatus comprises a sensing unit adapted to be mounted on the affected leg of a patient, a control unit, and a driving unit having electrodes for connection to the appropriate nerves in the leg of a patient. The sensing unit includes sensing means to determine acceleration in two distinct directions and at least one angular rate sensor. The sensing means and the angular rate sensor are arranged so that in use, the sensing unit detects acceleration in a generally vertical plane and the angular rate sensor detects acceleration about a generally horizontal axis. The control unit processes the outputs of the sensing unit and supplies a drive signal to the driving unit to cause triggering of the nerves in the leg of a patient thereby controlling foot movement.

Description

NERVE STIMULATION APPARATUS
This invention relates to apparatus suitable for countering dropped foot syndrome by stimulating the nerves in an affected leg of a patient.
A fairly common walking disability is known as dropped-foot syndrome, a chronic condition characterised by the inability to hold the foot raised during the swing phase of walking. Stroke victims are most likely to suffer from dropped- foot syndrome, but also people with incomplete spinal cord injuries and MS patients often have this condition. A sufferer from dropped-foot syndrome has to develop a peculiar and difficult gait in order to be able to make progress by walking, and activities such as ascending and descending stairs can be extremely difficult. As such, there have been considerable efforts at relieving the symptoms of dropped-foot syndrome.
Various mechanical devices have been developed in order to compensate for dropped-foot syndrome. For example, the foot can be held against dropping by way of a moulded ankle-foot orthosis, usually in the form of a lightweight plastic device that fits behind the leg and under the foot. Also known are spring-assisted ankle-foot orthoses, which permit selection of the amount of ankle motion, with selected degrees of dorsiflexion assistance. Unfortunately, the known ankle-foot orthoses have major drawbacks, including high maintenance, noise and wear and tear on clothing, shoes and furniture. In view of the generally less than totally satisfactory nature of various designs of ankle-foot orthoses, there have been proposals for directly stimulating the peroneal nerves in an affected leg, to cause appropriate operation of the muscles in the ankle-foot region over the required period of a walking cycle, such that the foot does not drop during the swing phase of the gait. In one known system, a small switch is located between the heel of the patient and a shoe worn on the affected foot, which switch is connected to a control unit by wires leading to a control unit either strapped to the patient's leg or carried elsewhere about the patient's body. That control unit is connected to electrodes which are coupled to the deep and superficial peroneal nerves; the control unit supplies to those electrodes stimulating signals following recognition of the heel being lifted off a surface, at the commencement of the swing phase. Typically, after a fixed delay following switch operation on the lifting of a heel, a pulsed current for stimulating the peroneal nerves is ramped up to preset values and continues at an appropriate frequency during the swing phase. Following detection of the heel being placed on a surface at the end of the swing phase, the stimulation current continues for a fixed time before being ramped down to zero.
A system such as that described above is capable of greatly improving the gait of a dropped-foot syndrome patient, who becomes able to adopt a near-normal walking gait. However, the provision of a switch in a shoe, below the heel of the patient, leads to various complications including the need always to wear a shoe to ensure the switch is properly located below the heel and is operated on lifting the leg. Further, experience has shown that the switches are less than wholly reliable and need frequent replacement for continued operation of the device. There are also difficulties in ensuring the wires between the switch and the control unit remain connected and are not damaged or otherwise disturbed by the shoe, clothing and general wear and tear.
The present invention aims at improving the known form of apparatus which directly stimulates the nerves in the affected leg of a patient, to mitigate the effects of dropped-foot syndrome, as well as to improve on the known form of system where a heel switch is employed to detect the swing phase of a walking gait.
Accordingly, one aspect of this invention provides apparatus to stimulate peroneal nerves in a leg of a patient to mitigate dropped-foot syndrome, which apparatus comprises a sensing unit adapted to be mounted on the affected leg of a patient, a control unit, and a driving unit having electrodes for connection to the appropriate nerves in the leg of a patient, the sensing unit including sensing means to determine acceleration in two distinct directions and at least one angular rate sensor, the sensing means and the angular rate sensor together being arranged so that when in use the sensing unit detects acceleration in a generally vertical plane and the angular rate sensor detects acceleration about a generally horizontal axis, the outputs of the sensing unit being supplied to the control unit which processes said outputs and supplies a drive signal to the driving unit to cause triggering of the nerves in the leg of a patient to control foot movement.
It will be appreciated that with the apparatus of this invention, no reliance is placed on the use of a mechanical switch to detect heel lifting and heel striking, at the two ends of the swing phase of a walking cycle. Rather, a determination is made of when to stimulate the peroneal nerves in the affected leg from the dynamics of the walking gait, as detected by a sensing unit adapted to be mounted on the affected leg of a patient and including appropriate sensing devices for leg movement. It has been established that it is possible to determine the gait phase by analysing inertial movement data from the lower leg. Inertial motion sensors need no external reference for accurate measurement of motion quantities and recent advances in solid state miniaturisation of motion sensors have made them ideal for employment in the apparatus of this invention. The signals from the motion sensors may be analysed in real-time, so that the swing phase of the gait cycle can be determined, on the basis of the output from the sensors.
Micro-system technologies (MST) may be employed in the fabrication of suitable motion sensors, typically using piezo-electric devices to detect both linear acceleration and angular rate. Such sensors may be made by known MST/MEMS (micro-electro-mechanical systems) processes. Since the production of such devices is known in the art and forms no part of this invention, they will not be described in any detail herein.
Preferably, the sensing means comprises two linear accelerometers, the axes of operation (detection) of which are substantially orthogonal. In this case, the axes of operation preferably lie in a common plane, which should be disposed substantially vertically when the sensing unit is in use. Though not essential, it would be possible to use a third linear accelerometer arranged with its sensing axis in a third distinct direction, which preferably is substantially orthogonal to the two distinct directions of the first-mentioned linear accelerometers. This could be used to give better control of foot movement, which may be desirable for some patients. In addition to the accelerometers, the angular rate sensor preferably also is an MST device, in the form of a solid- state gyroscope. Preferably, the axis of sensing of that device is normal to the plane containing the axes of operation of the two accelerometers of the sensing means.
The driving unit preferably is self-contained and apart from the electrodes which connect to the peroneal nerves, should be encapsulated in a bio-stable material whereby the driving unit may be implanted in an affected leg of a patient. The implantation site must be selected by the surgeon depending upon the patient's anatomy but should be on the outside of the affected lower leg, just below the knee and typically no more than 200mm from the knee joint. The driving unit need not contain any power source and may derive its power from the control unit, the control and driving units being inductively coupled whereby signals are inductively transmitted by the control unit to the driving unit. Those signals preferably are in two separate channels to permit the transfer of the required control signals for the electrodes connected to the superficial and deep peroneal nerves, respectively, as well as the transfer of power to the driving unit.
In order to minimise the size of both the control unit and the driving unit, it is preferred for the inductive coupling between the two units to be by way of flat-wound coils which are closely juxtaposed but with body tissue therebetween, so minimising both the internal and external intrusiveness of the two units.
In a preferred form of this invention, a power feed-back loop is provided from the driving unit to the control unit, whereby the control unit may adjust the power level supplied to the driving unit so as to lie within a preset range. This can be important to ensure proper stimulation of the peroneal nerves and by monitoring the power transferred from the control unit to the driving unit, it becomes possible to compensate for possible misalignment between the control unit and the driving unit.
The superficial branch of the peroneal nerve supplies the peroneus longus/brevis and sometimes the extensor digitorum brevis. The deep branch supplies the tibialis anterior, extensor hallucis longus, extensor digitorum longus and peroneus tertius muscles. During the swing phase in normal walking, -the activity of tibialis anterior combines with two other dorsiflexors, extensor digitorum longus and extensor hallucis longus, to dorsiflex the foot, whilst maintaining adequate balance between the everting action of the extensor digitorum longus and the inverting action of the tibialis anterior. By appropriate stimulation of the two branches of the peroneal nerve, it is possible to control dorsiflexion/plantarflexion inversion and eversion of the leg/foot joint but the required balance is extremely difficult to achieve and the result is often excessive eversion resulting from the action of the two peroneus muscles. Therefore, control over the relative stimulation levels to the superficial and deep branch is necessary to provide the necessary moment to balance inversion and eversion.
The control system of this invention, especially when used in combination with power feedback, permits excellent control of the relative levels of stimulation for the two peroneal nerve branches, so permitting good relief from dropped foot syndrome within a wide range of operating parameters.
By way of example only, one specific embodiment of apparatus of this invention will now be described in detail, reference being made to the accompanying drawings, in which:-
Figure 1 diagrammatically shows the system mounting and configuration; Figure 2 is a simplified transmitter diagram;
Figure 3 is a block diagram of the operation of the system; and Figure 4 is a simplified flow chart of the system.
The embodiment of apparatus of this invention is intended to control foot movement, for use by a patient suffering from dropped-foot syndrome. The apparatus comprises a main unit 10 intended to be strapped to the upper part of the lower leg, typically not more than 200mm below the knee joint. The main unit 10 may take the form of a relatively flat essentially rectangular box within which the required electronics and sensors are mounted, the box being retained in position by one or two elastic straps which extend around the calf. When positioned as shown, the sensing unit is above the region of greatest calf muscle girth, such that there will not be any significant tendency for the control unit to descend the calf, when in use. Contained within the main unit is a battery for powering the apparatus, which battery preferably is rechargeable. Recharging may be achieved inductively or by the physical connection thereto of a suitable charger, typically overnight when the main unit has been removed from the leg of a patient. In addition to the power source, the main unit encloses a sensing unit which includes two linear accelerometers arranged with their sensing axes orthogonal to each other and lying in a common plane. In use, with the unit strapped -to a leg, the common plane is intended to be essentially vertical, with the accelerometer axes extending generally along the length of a leg and in the general direction of walking, as shown by the directions X and Y on Figure 1. The sensing unit also includes an angular rate sensor in the form of a solid- state gyroscopic device, operating about an axis of rotation Z as shown in Figure 1 , orthogonal to axes X and Y.
Further contained within the main unit 10 are the required control electronics for processing the outputs of the two accelerometers and the rate sensor, and providing an RF signal to a coil within the main unit, for inductively coupling to an implanted driving unit (not shown, to be described below). The control electronics permit the adjustment of the signals generated for peroneal nerve stimulation in order to achieve the required correction characteristics for the dropped-foot syndrome. In particular, allowance may be made for adjustment of the power supplied to the nerves, the duration of the supply, the rise and fall times of the signals and the frequency of the pulses supplied. Other parameters may be made adjustable as required.
Typically, the control of the supply of the signals may be by means of a processing unit which may be programmed by connecting to the main unit a suitable controller, preferably by way of an RF link to the main unit. The controller may then be operated by a clinician or physician on setting up the system and when completed, the patient will have no ability to adjust the system. Thus, the clinician or physician may adjust the system to suit a patient, the system then operating without further adjustment for an extended period of time. As such, the only control required by the patient is an on/off switch, on the main unit. The driving unit is implanted subcutaneously, immediately below the normal position of the control unit when secured to the lower leg by the elastic straps, the driving unit having a pair of electrodes which are connected to the superficial and deep peroneal nerves within the affected leg. The process of connecting to those nerves is known and understood by those skilled in the art and will not be described in detail here.
The driving unit takes the form of a two-channel receiver or two parallel receivers operating at different frequencies and connected to a common planar coil all sealed within the driving unit body which typically will be of a button- shape, with a diameter of less than 35mm and a thickness of less than 6mm. The driving unit should be capable of remaining implanted on a long-term basis, without causing expulsion, erosion or a related pathological event. The driving unit should have suitable suture sites or otherwise provide a clinically- acceptable method of fixation to the surrounding tissue. Figure 2 diagrammatically illustrates a simplified form of the transmitter system. The transmitter (which is external to the leg and contained within the main unit 10) includes a planar coil LTx the frequency of which can be switched by means of switch S1 , to operate at typically 1MHz or at 2MHz. Planar coils give the advantage of increased reliability, a lower profile and can be made to tight tolerances. Within the driving unit, implanted below the skin shown in Figure 2, there are two separate planar coils, one for each of the two frequencies of the transmitter. The resonant frequency of LRx1 and its capacitor C1 is 1MHz and the resonant frequency of LRx2 and its capacitor C2 is 2MHz, such that discrimination between the two channels can be achieved. As the driving unit is implanted only just subcutaneously and the transmitter within the main unit is intended immediately to overlie the driving unit, only relatively low powers are required with a range of typically less than 25mm, at the operating frequencies.
Figures 3 and 4 show the operation of the system. The outputs of the X-axis accelerometer, the Y-axis accelerometer and the Z-axis rate sensor are supplied to an inertial system analyser the output of which is supplied to a signal processor within which are set the required trigger levels and timings. A controller, display and waveform setting module is connected both to the signal processor and to the transmitter, for the production of the required trigger signals at the appropriate power levels, to give the necessary degree of stimulation to the peroneal nerves. An operator interaction device is able to talk to the waveform setting module to permit the setting of the required power levels, pulse frequencies and so on to give proper operation, but that interaction device will normally be used only by a clinician or physician.
The waveform setting module communicates with the transmitter section, for the supply of the RF signals to the driving unit implanted in a leg. Power for all of these described components is derived from a rechargeable battery also located within the main unit and having a voltage regulator as well as a charging unit.
The passive receiver is shown in Figure 3, as receiving signals from the transmitter. In broken lines, there is shown a power feed-back loop giving power control. By having the transmitter monitoring the feed-back loop from the receiver, the power supplied to the transmitter can be controlled to ensure that the required power level is received by the driving unit for proper driving of the peroneal nerves, despite possible misalignment between the transmitter and the receivers of the driving unit. Also shown in Figure 3 is a biometric feedback path. The receiver stimulates the nerves in a leg which causes a foot to rotate and that rotation will be detected by the sensors of the sensing unit. The response may be compared by the signal processing unit with that which had been demanded by the system and the continuing stimulation of the peroneal nerves may be modified to take into account that response.
Figure 4 shows the processing steps described above, from the swing phase of leg movement being detected to nerve energisation to achieve rotation of the foot, thus minimising the effect of dropped-foot syndrome. The removal of the supply of the signals to the peroneal nerves may be performed in much the same way, by detecting the termination of the swing phase and then shutting down the supply of power to the receivers, so that the energisation of the nerves ceases. If power control is to be provided, then a feed-back loop is provided from the "receive and decode signal" step of Figure 4, to be transmitted back to a receiver within the control unit, which receiver then causes the waveform setting module suitably to adjust the power supplied to the transmitter of the control unit. Further, there will be biometric feedback in that the inertial sensors will sense the rotation of the foot that takes place, which can then be compared to the demanded rotation by the system.

Claims

CLAIWIS
1. Apparatus to stimulate peroneal nerves in a leg of a patient to mitigate dropped-foot syndrome, which apparatus comprises a sensing unit adapted to be mounted on the affected leg of a patient, a control unit, and a driving unit having electrodes for connection to the appropriate nerves in the leg of a patient, the sensing unit including sensing means to determine acceleration in two distinct directions and at least one angular rate sensor, the sensing means and the angular rate sensor together being arranged so that when in use the sensing unit detects acceleration in a generally vertical plane and the angular rate sensor detects acceleration about a generally horizontal axis, the outputs of the sensing unit being supplied to the control unit which processes said outputs and supplies a drive signal to the driving unit to cause triggering of the nerves in the leg of a patient to control foot movement.
2. Apparatus as claimed in claim 1 , wherein the sensing means comprises two linear accelerometers.
3. Apparatus as claimed in claim 2, wherein the axes of operation of the two linear accelerometers are substantially orthogonal.
4. Apparatus as claimed in claim 2 or claim 3, wherein the axes of operation of the two accelerometers lie in a common plane which is disposed substantially vertical when the sensing unit is in use.
5. Apparatus as claimed in any of the preceding claims, wherein the angular rate sensor comprises a solid-state gyroscopic device.
6. Apparatus as claimed in any of the preceding claims, wherein the sensing means of the sensing unit includes a third linear accelerometer arranged with its sensing axis in a third distinct direction.
7. Apparatus as claimed in claim 6, wherein the third distinct direction is substantially orthogonal to both of said two distinct directions.
8. Apparatus as claimed in any of the preceding claims, wherein the driving unit is self-contained and apart from the electrodes is encapsulated in a bio- stable material whereby the unit may be implanted in an affected leg of a patient.
9. Apparatus as claimed in claim 8, wherein the driving unit includes an antenna and a receiver circuit for RF signals transmitted by the control unit, the receiver providing an output which controls the supply of voltage to the electrodes.
10. Apparatus as claimed in any of claims 1 to 8, wherein the control unit and the driving unit are inductively coupled and signals are inductively transmitted by the control unit to the driving unit.
11. Apparatus as claimed in claim 10, wherein the control unit and the driving unit include power transfer means permitting the inductive transfer of power for the operation of the driving unit from the control unit to the driving unit.
12. Apparatus as claimed in claim 10 or claim 11 , wherein the driving unit includes two receivers tuned to different frequencies, each receiver being coupled to a respective electrode whereby two nerves may separately be stimulated by the control unit.
13. Apparatus as claimed in any of the preceding claims, wherein the control unit is integrated with the sensor unit.
14. Apparatus as claimed in any of the preceding claims, wherein the sensing unit is provided with a strap arrangement whereby it may be strapped to the calf of a user.
15. Apparatus as claimed in claim 14, wherein the control unit is adapted for securing to the affected leg of a patient over the implantation site of the driving unit whereby the control unit may be inductively coupled to the driving unit.
16. Apparatus as claimed in claim 15, wherein the control unit includes means to control the level of power supplied to the driving unit.
17. Apparatus as claimed in claim 16, wherein there is provided a power feed-back loop from the driving unit to the control unit whereby the power level supplied to the driving unit may be controlled to lie within a preset range.
18. Apparatus as claimed in claim 17, wherein the power feedback is provided through the inductive coupling of the control unit and the driving unit.
PCT/GB2004/000835 2003-03-01 2004-02-27 Nerve stimulation apparatus WO2004078255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0304714.9 2003-03-01
GB0304714A GB0304714D0 (en) 2003-03-01 2003-03-01 Nerve stimulation apparatus

Publications (1)

Publication Number Publication Date
WO2004078255A1 true WO2004078255A1 (en) 2004-09-16

Family

ID=9953921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/000835 WO2004078255A1 (en) 2003-03-01 2004-02-27 Nerve stimulation apparatus

Country Status (2)

Country Link
GB (1) GB0304714D0 (en)
WO (1) WO2004078255A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055352A1 (en) * 2008-11-14 2010-05-20 European Technology For Business Limited Assessment of gait
US7729772B2 (en) 2005-01-07 2010-06-01 Uroplasty, Inc. Implantable neuromodulation system and method
WO2014015587A1 (en) * 2012-07-24 2014-01-30 杭州共远科技有限公司 Rehabilitation apparatus using functional nerve stimulation
EP2967442A4 (en) * 2013-03-14 2016-12-14 Cymedica Inc Systems and methods for treating or supporting human joints or a portion of the human body
RU2681707C2 (en) * 2016-09-21 2019-03-12 Общество с ограниченной ответственностью "Лаборатория умной ортопедии" Orthosis for treatment of foot paresis
CN110448272A (en) * 2019-08-02 2019-11-15 周长伟 A kind of Neurology leg neurological examination device
EP3978070A1 (en) * 2015-07-01 2022-04-06 BTL Healthcare Technologies a.s. Magnetic stimulation methods and devices for therapeutic treatments
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444205A (en) * 1980-05-31 1984-04-24 University Of Strathclyde Apparatus for assessing joint mobility
US4817628A (en) * 1985-10-18 1989-04-04 David L. Zealear System and method for evaluating neurological function controlling muscular movements
US5919149A (en) * 1996-03-19 1999-07-06 Allum; John H. Method and apparatus for angular position and velocity based determination of body sway for the diagnosis and rehabilitation of balance and gait disorders
US20020010497A1 (en) * 2000-02-16 2002-01-24 Merfeld Daniel M. Balance prosthesis
US6507757B1 (en) * 2000-06-20 2003-01-14 Ian Douglas Swain Apparatus for electrical stimulation of the body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444205A (en) * 1980-05-31 1984-04-24 University Of Strathclyde Apparatus for assessing joint mobility
US4817628A (en) * 1985-10-18 1989-04-04 David L. Zealear System and method for evaluating neurological function controlling muscular movements
US5919149A (en) * 1996-03-19 1999-07-06 Allum; John H. Method and apparatus for angular position and velocity based determination of body sway for the diagnosis and rehabilitation of balance and gait disorders
US20020010497A1 (en) * 2000-02-16 2002-01-24 Merfeld Daniel M. Balance prosthesis
US6507757B1 (en) * 2000-06-20 2003-01-14 Ian Douglas Swain Apparatus for electrical stimulation of the body

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729772B2 (en) 2005-01-07 2010-06-01 Uroplasty, Inc. Implantable neuromodulation system and method
US8715208B2 (en) 2008-11-14 2014-05-06 European Technology For Business Limited Assessment of gait
WO2010055352A1 (en) * 2008-11-14 2010-05-20 European Technology For Business Limited Assessment of gait
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
WO2014015587A1 (en) * 2012-07-24 2014-01-30 杭州共远科技有限公司 Rehabilitation apparatus using functional nerve stimulation
EP2967442A4 (en) * 2013-03-14 2016-12-14 Cymedica Inc Systems and methods for treating or supporting human joints or a portion of the human body
EP4335365A1 (en) * 2013-03-14 2024-03-13 Motive Health, Inc. Systems for treating or supporting human joints or a portion of the human body
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
EP3978070A1 (en) * 2015-07-01 2022-04-06 BTL Healthcare Technologies a.s. Magnetic stimulation methods and devices for therapeutic treatments
US11883643B2 (en) 2016-05-03 2024-01-30 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including RF and electrical energy
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11590356B2 (en) 2016-05-10 2023-02-28 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11691024B2 (en) 2016-05-10 2023-07-04 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11878162B2 (en) 2016-05-23 2024-01-23 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11896821B2 (en) 2016-05-23 2024-02-13 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11623083B2 (en) 2016-05-23 2023-04-11 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11628308B2 (en) 2016-07-01 2023-04-18 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11607556B2 (en) 2016-07-01 2023-03-21 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11524171B2 (en) 2016-07-01 2022-12-13 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11679270B2 (en) 2016-07-01 2023-06-20 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11794029B2 (en) 2016-07-01 2023-10-24 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
RU2681707C2 (en) * 2016-09-21 2019-03-12 Общество с ограниченной ответственностью "Лаборатория умной ортопедии" Orthosis for treatment of foot paresis
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
CN110448272A (en) * 2019-08-02 2019-11-15 周长伟 A kind of Neurology leg neurological examination device
US11679255B2 (en) 2020-05-04 2023-06-20 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11826565B2 (en) 2020-05-04 2023-11-28 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11813451B2 (en) 2020-05-04 2023-11-14 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11806528B2 (en) 2020-05-04 2023-11-07 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Also Published As

Publication number Publication date
GB0304714D0 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
WO2004078255A1 (en) Nerve stimulation apparatus
Lyons et al. A review of portable FES-based neural orthoses for the correction of drop foot
CN106659892B (en) Systems and methods for functional electrical stimulation
US5814093A (en) Assembly for functional electrical stimulation during movement
US8452410B2 (en) Method and device for reflex-based functional gait training
US9314622B2 (en) Functional electrical stimulation (FES) method and system to improve walking and other locomotion functions
US8280516B2 (en) Method and apparatus for closed-loop deep brain stimulation in treating neurological diseases
US11672983B2 (en) Sensor in clothing of limbs or footwear
US20070203533A1 (en) Implantable medical device for restoration of neurological function impaired by peripheral neuropathy
EP3328277A1 (en) Systems, devices, and method for the treatment of osteoarthritis
US11642272B2 (en) Mobility assistance devices with automated assessment and adjustment control
US11672982B2 (en) Control system for movement reconstruction and/or restoration for a patient
US11524159B2 (en) Control system for closed-loop neuromodulation
Foglyano et al. Accelerometer-based step initiation control for gait-assist neuroprostheses.
EP3653259B1 (en) Movement reconstruction control system
CN111388862A (en) Lower limb electrical stimulation walking aid system based on hip joint angle change characteristic feedback
WO2023273324A1 (en) Gait event-driven, phase-dependent and multi-modal foot rehabilitation system and use method thereof
CN109689154B (en) Device and method for influencing the gait of a patient

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase