WO2004078270A2 - System and method for controlling an exercise apparatus - Google Patents

System and method for controlling an exercise apparatus Download PDF

Info

Publication number
WO2004078270A2
WO2004078270A2 PCT/US2004/005837 US2004005837W WO2004078270A2 WO 2004078270 A2 WO2004078270 A2 WO 2004078270A2 US 2004005837 W US2004005837 W US 2004005837W WO 2004078270 A2 WO2004078270 A2 WO 2004078270A2
Authority
WO
WIPO (PCT)
Prior art keywords
mode
exercise
tread
exercise apparatus
control unit
Prior art date
Application number
PCT/US2004/005837
Other languages
French (fr)
Other versions
WO2004078270A3 (en
Inventor
Douglas Crawford
Bradley Smith
Original Assignee
Nautilus, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nautilus, Inc. filed Critical Nautilus, Inc.
Priority to CN200480005227.XA priority Critical patent/CN1753706B/en
Priority to EP04715667A priority patent/EP1606026A4/en
Publication of WO2004078270A2 publication Critical patent/WO2004078270A2/en
Publication of WO2004078270A3 publication Critical patent/WO2004078270A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/15Arrangements for force transmissions
    • A63B21/151Using flexible elements for reciprocating movements, e.g. ropes or chains
    • A63B21/154Using flexible elements for reciprocating movements, e.g. ropes or chains using special pulley-assemblies
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0048Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with cantilevered support elements pivoting about an axis
    • A63B22/0056Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with cantilevered support elements pivoting about an axis the pivoting movement being in a vertical plane, e.g. steppers with a horizontal axis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0207Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills having shock absorbing means
    • A63B22/0214Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills having shock absorbing means between the belt supporting deck and the frame
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • A63B22/0242Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation
    • A63B22/025Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation electrically, e.g. D.C. motors with variable speed control
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • A63B22/0242Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation
    • A63B22/0257Mechanical systems therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0292Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills separate for each leg, e.g. dual deck
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/04Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable multiple steps, i.e. more than one step per limb, e.g. steps mounted on endless loops, endless ladders
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0405Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0405Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
    • A63B23/0429Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously with guided foot supports moving parallel to the body-symmetrical-plane by being cantilevered about a horizontal axis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • A63B24/0006Computerised comparison for qualitative assessment of motion sequences or the course of a movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B2022/0278Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills with reversible direction of the running surface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • A63B24/0006Computerised comparison for qualitative assessment of motion sequences or the course of a movement
    • A63B2024/0009Computerised real time comparison with previous movements or motion sequences of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0625Emitting sound, noise or music
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/22Resisting devices with rotary bodies
    • A63B21/225Resisting devices with rotary bodies with flywheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0015Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
    • A63B22/0023Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements the inclination of the main axis of the movement path being adjustable, e.g. the inclination of an endless band
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0285Physical characteristics of the belt, e.g. material, surface, indicia
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/17Counting, e.g. counting periodical movements, revolutions or cycles, or including further data processing to determine distances or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/34Angular speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/51Force
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • A63B2220/76Wind conditions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/15Miscellaneous features of sport apparatus, devices or equipment with identification means that can be read by electronic means
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/20Miscellaneous features of sport apparatus, devices or equipment with means for remote communication, e.g. internet or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/30Maintenance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/30Maintenance
    • A63B2225/305Remote servicing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/64Heated
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/01User's weight
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/40Measuring physiological parameters of the user respiratory characteristics
    • A63B2230/42Measuring physiological parameters of the user respiratory characteristics rate
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/40Measuring physiological parameters of the user respiratory characteristics
    • A63B2230/43Composition of exhaled air
    • A63B2230/436Composition of exhaled air partial O2 value
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0075Means for generating exercise programs or schemes, e.g. computerized virtual trainer, e.g. using expert databases

Definitions

  • a program memory or storage device accessible by a processor tangibly embodying a program of instructions executable by the processor to configure an exercise apparatus into one of a plurality of modes
  • Such program of instructions may include receiving at least one user input signal and, based upon the received user input signal, selecting from one of many exercise modes supported by the exercise apparatus.
  • the many exercise modes supported by the exercise apparatus may further include a stepper mode and at least one of a treadmill mode and a combined treadmill and stepper mode.
  • a TSS in certain embodiments, provides signals useful in calculating and controlling an effective tread speed and that such signals may be generated or derived, as necessary, for particular embodiments of the present invention.
  • a TSS includes a read switch (hereinafter, the "tread switch") which is configured to detect the passing of a magnet (hereinafter, the "tread magnet”) situated on a pulley or other component that is attached directly or indirectly to the motor/drive mechanism. With each corresponding rotation of the pulley and/or the drive shaft (gearing and the like may be utilized), the tread magnet passes the tread switch, which detects the passing of the tread magnet and outputs a tread speed signal 35 to the MCU 10. The MCU receives and utilizes the tread speed signal to calculate the effective speed of the treads.
  • various embodiments of the present invention may be configured to include a SS (40), for detecting whenever an exerciser takes a "step.”
  • the SS is configured to detect the relative movement of a rocker arm.
  • the rocker arm creates a dependency between the right and left treadles such that as one treadle falls (or travels towards the ground) the other automatically rises, and vice versa. Detecting and/or sensing the relative movement of the rocker arm may be accomplished utilizing, for example, a read switch (hereinafter, the "step switch”) and a corresponding magnet (hereinafter, the "step magnet”).
  • the UII may be configured to accept inputs from external sources (i.e., sources other than the exerciser) such as an instructor of a group exercise class or an interactive fitness program (e.g., one provided via an associated audio-visual presentation or a software application running on a computer). Such inputs are then communicated to the MCU with or without processing by the UII.
  • the UII may be configured to communicate to the MCU, or otherwise, input control signals from a variety and a plurality of sources, both human and computer generated, and/or both local or remote to the apparatus.
  • the VO 2 expended by an exerciser will vary based upon the resistance level set for the apparatus and the fitness level of the exerciser (i.e., exercisers in less than desirable fitness may not be able to maintain R aV g- throughout an exercise routine).
  • the higher the resistance level the greater the amount work that may need to be performed in order to depress a step a full step height.
  • the amount of time necessary for a step, at a given resistance level, to be depressed the full height distance may also vary based upon the weight of the exerciser.
  • each trail is desirably continued until steady state is confirmed by the participant's heart rate ( ⁇ 5 beats per minute), oxygen consumption ( ⁇ 150 mL of Oxygen per minute), and ventilation ( ⁇ 3 Liters per minute).
  • the participants' heart rate may be obtained by POLAR telemetry or other heart monitoring devices. The participant's heart rate is monitored continuously during each trial. Further, a mean heart rate obtained during the last 15 seconds of each minute may be used for data acquisition.
  • At least one embodiment of the apparatus of the present invention may be configured to operate in one of three modes: S-mode, T-mode or TC- mode.
  • S-mode S-mode
  • T-mode T-mode
  • TC- mode TC- mode
  • the present invention may be configured to utilize a wide variety of control units, sensors, actuators, inputs, and outputs. More specifically and with particular reference to the control unit and/or data processing aspects of the present invention, it is to be appreciated that a wide range of controllers/processors may be utilized, i some embodiments, a processor/controller may not even be included.

Abstract

The various embodiments of the present invention generally provide a control system and a process for an exercise apparatus configurable into a combined treadmill and stepper mode. The apparatus may also be configured into stepper only and treadmill only modes. The apparatus generally includes a master control unit, a first sensor, in communication with the master control unit, which generates a first signal indicative of an effective tread speed for the apparatus, and a resistive element that includes at least one resistance level. Using the first signal, the resistance level, and empirical information, the amount of energy expended by a user of the apparatus may be calculated and the operation of the apparatus controlled. Various sensors, actuators and information, such as that obtained from various data structures, may be utilized in performing calculations and controlling the features, functions and operation of the apparatus.

Description

System and Method for Controlling an Exercise Apparatus
Cross Reference to Related Applications
[1] The present application incorporates by reference, in its entirety, as if fully described herein, and claims priority to the subject matter disclosed in: U.S. Provisional Patent Application Serial Number 60/450,890, entitled "System and Method for Controlling an Exercise Apparatus," which was filed on 28 February 2003 in the name of inventors Doug Crawford et al.; U.S. Provisional Patent Application Serial Number 60/450,789 entitled "Dual Deck Exercise Device," which was filed on 28 February 2003 in the name of inventors Gary Piaget, et al.; U.S. Provisional Patent Application Serial Number 60/451,104, entitled "Exercise Device with Treadles," which was filed on 28 February 2003 in the name of inventors Gary Piaget, et al.; U.S. Utility Patent Application Serial Number (TBD) , entitled "Dual Deck Exercise Device," which was filed on 26 February 2004 in the name of inventors Gary Piaget, et al., and is further identified by Dorsey & Whitney LLP Docket Number 2072/US/2 and U.S. Postal Service Express Mail Number EV304883463US ; U.S. Utility Patent Application Serial Number (TBD), entitled "Exercise Device with Treadles," which was filed on 26 February 2004 in the name of inventors Gary Piaget, et al., and is further identified by Dorsey & Whitney LLP Docket Number 2071/US/2 and U.S. Postal Service Express Mail Number EV30488345 OUS; and in U.S. Provisional Patent Application Serial Number (TBD) , entitled "Control System and Method for an Exercise Apparatus," which was filed on 26 February 2004 in the name of inventors Doug Crawford et al., and is further identified by Dorsey & Whitney LLP Docket Number 34006/US and U.S. Postal Service Express Mail Number EV447463126US.
Inventive Field
[2] The inventive field relates to systems and processes for controlling the features, operation and functions of exercise apparatus. More specifically, the inventive field relates to systems and processes for controlling the features, operation and functions of an exercise apparatus which combines walking, running and/or striding type movements (which commonly occur in a horizontal or substantially horizontal direction) and stair climbing, stepping and/or climbing type motions (which commonly occur in a vertical or substantially vertical direction). Background
[3] To date, various exercise apparatus have been developed which facilitate in-door walking, running and/or striding type motions (hereinafter, collectively "striding"), i.e., motions in a horizontal or substantially horizontal direction without requiring the exerciser to actually change their present location. Examples of such devices include, but are not limited to, treadmills, elliptical trainers (which are generally designed to mimic a running motion while reducing the impact of running upon joints and other devices) and other like devices. Further, various exercise apparatus have been developed which facilitate and/or simulate stair climbing, stepping (as in rolling steps), and/or climbing type motions (hereinafter, collectively "stepping"), i.e., motions in a vertical or substantially vertical direction without requiring the exerciser to actually change their vertical position or physical location. Also, to date an exercise apparatus has been developed which combines striding and stepping type motions into a single physical motion.
[4] Further, while various systems and processes have been developed for controlling, for example, the operation of a treadmill (for striding) or a STALRMASTER (for stepping), to date there is a need for a control system and process for controlling the features and functions of an exercise apparatus which combines substantially horizontal (i.e., striding) type motions with substantially vertical (i.e., stepping) type motions. Additionally, there is a need for a system and process for determining the amount of energy exerted by an exerciser using a combined striding and stepping motion.
Summary
[5] In one embodiment of the present invention, an exercise apparatus comprising, a master control unit, a first sensor, in communication with the master control unit, which generates a first signal indicative of an effective tread speed for the apparatus, and a resistive element that includes at least one resistance level is provided. The exercise apparatus of this embodiment, may also further comprise a data structure containing data indicative of the amount of energy expended for a given resistance level. The master control unit, in such embodiment, may access the data structure and determine the amount of energy expended based upon at least one of the first signal and at least one resistance level.
[6] In another embodiment, the exercise apparatus may further comprise a second sensor, in communication with the master control unit, which generates at least one second signal with each downward movement of a treadle. The master control unit may calculate the amount of energy expended based upon the received first and second signals. Yet, the exercise apparatus may further comprise a data structure containing data indicative of the amount of energy expended for at least one of a given effective tread speed and a given resistance level; and the master control unit may utilize data from the data structure in calculating the amount of energy expended.
[7] In yet another embodiment, the exercise apparatus may include at least one tread, such that the resistive element imparts a first force upon the tread in a substantially vertical direction. The resistive element may also be configured to counteract at least a portion if not all of a second force imparted upon the tread by an exerciser.
[8] Similarly, in another embodiment of the exercise apparatus, the master control unit may be configured to control the effective tread speed for each of the at least one treads in a substantially horizontal direction. A tread control unit may be included in the exercise apparatus. Such tread control unit may be in communication with the master control unit and may control the rotation of at least one tread on the exercise apparatus. Alternatively and/or additionally, the exercise apparatus may be configured such that the master control unit controls the operation of the tread control unit. Such control by the master control unit may be based upon, for example, a first signal, indicative of a tread speed. In some embodiments, the tread control unit may comprise at least one of a D.C. motor and an A.C. motor.
[9] In yet another embodiment of the present invention, the exercise apparatus may be configured such that striding, stepping or combined striding and stepping motions are facilitated by the apparatus. The master control unit may be configured to determine whether striding, stepping and/or combined striding and stepping motions are to be facilitated by the apparatus based upon at least one of a desired effective tread speed and a desired resistance level. Further, at least one of the desired effective tread speed and the desired resistance level may be specified via a user interface. The master control unit may also be configured to determine whether stepping or combined striding and stepping motions are to be facilitated by the apparatus based upon resistance level.
[10] In yet another embodiment, the apparatus may be configured to operate as at least one of a treadmill, a stepper and a combined treadmill and stepper. For stepping mode, the master control unit may be configured to determine the amount of calories expended based upon the second signal when the first sensor provides a null reading. Similarly, for treadmill mode, the master control unit may be configured to determine the amount of energy expended based upon a first or tread speed signal when a step or second signal provides a null reading.
[11] Also, various embodiments of the present invention provide systems for controlling the operation of an exercise device which may be configured to operate as a treadmill, a stepper, or a combined treadmill and stepper. One embodiment of such a system comprises a processor, a first sensor, in communication with the processor, for sensing a substantially horizontal motion by a tread in the exercise device and generating a first signal indicative thereof, a second sensor, in communication with the processor, for sensing a substantially vertical motion by the tread and generating a second signal indicative thereof, and a data storage device, containing in a data structure information useful in determining the amount of energy expended based upon the first signal and/or the second signal. Further, the processor may be configured to control the operation of the exercise device based upon at least one of the first signal and the second signal. The processor may also be configured, upon receiving the first signal over a given time period, to determine an average effective tread speed over the given time period, accesses data from the data structure based upon a resistance level, and based upon the average effective tread speed and the data determines the effort expended over the given time period.
[12] hi yet another embodiment of the present invention, an article of manufacture is provided which comprises a computer usable medium having computer readable program code means embodied therein for selecting a mode for an exercise apparatus, the computer readable program code means further comprising a computer readable program code means for selecting a treadmill mode, and a computer readable program code means for selecting a stepper mode. Yet, the computer usable medium may further comprise a computer readable program code means for selecting a combination striding and stepping mode.
[13] In yet another embodiment of the present invention an apparatus is provided. Such apparatus may comprise a computer usable medium having computer readable program code means embodied therein for selecting a mode for the apparatus, comprising at least any two of a computer readable program code means for selecting a treadmill mode, a computer readable program code means for selecting a stepper mode, and a computer readable program code means for selecting a combined treadmill and stepper mode. [14] In another embodiment of the present invention, a control system for an exercise apparatus may be provided. One embodiment of a control system comprises a master control unit, and a memory device for holding a data structure for access by the master control unit, wherein the data structure contains at least one data element utilized in determining the effort exerted during use of the exercise apparatus, and wherein the exercise apparatus is configurable into a stepper mode and a treadmill mode. In another embodiment, the exercise apparatus may be further configurable into a combined stepper and treadmill mode.
[15] In another embodiment of the present invention, a program memory or storage device accessible by a processor, tangibly embodying a program of instructions executable by the processor to configure an exercise apparatus into one of a plurality of modes maybe provided. Such program of instructions may include receiving at least one user input signal and, based upon the received user input signal, selecting from one of many exercise modes supported by the exercise apparatus. The many exercise modes supported by the exercise apparatus may further include a stepper mode and at least one of a treadmill mode and a combined treadmill and stepper mode.
[16] In another embodiment of the present invention, a method of determining the energy expended during use of an exercise device having a combined treadmill and stepper function, wherein the exercise machine includes dual treadle assemblies operating at a number of steps per minute and having respective treads operating at an effective tread speed may be provided. Such method comprises receiving a first value indicative of a specified weight, receiving a second value indicative of a resistance setting on the exercise device, receiving a third value indicative of an effective tread speed for the exercise device, receiving at least one fourth value indicative of V02 expended by a population of exercisers over a range of resistances for the combined treadmill and stepper functions, and calculating calories burned as a function of the first value, the second value, the third value and the at least one fourth value.
[17] In another embodiment of the present invention, a method of monitoring a workout on an exercise machine configurable for a treadmill workout or for a stepper workout, wherein the exercise machine includes dual treadle assemblies operating at a number of steps per minute during stepper mode and having respective treads operating at an effective tread speed during treadmill mode may be provided. One embodiment of such method comprises: receiving a first value indicative of a weight, receiving a second value indicative of a resistance level for the exercise machine, and selecting either the stepper mode or the treadmill mode as a function of the second value. Further, when treadmill mode is selected, such method may further comprise receiving a first signal indicative of an effective tread speed and calculating calories burned as a function of the first value, the second value, the first signal, and empirical data indicative of V02 expended by a population of exercisers for the treadmill mode. Also, when a stepper mode is selected, such method may further comprise receiving a second signal indicative of the number of steps per minute accomplished and calculating calories burned as a function of the first value, the second value, the second signal, and empirical data indicative of V02 expended by a population of exercisers for the stepper mode.
[18] Thus, it is to be appreciated that the present invention may be provided in numerous embodiments of apparatus, systems, devices, articles of manufacture, data structures, processes, methods and otherwise. The following drawing figures and detailed description describe certain embodiments of the present invention, but, the scope of the present invention is not to be construed as being limited by the following figures or detailed description.
Brief Description of the Drawing Figures
[19] Fig. 1 is a schematic representation of the various sensors, actuators, signals and devices utilized in one embodiment of the control system of the present invention.
[20] Fig. 2 is a flow chart illustrating the process steps which may be utilized in one embodiment of the present invention to calculate the amount of energy expended by a user of the apparatus.
[21] Fig. 3 is a graphical representation of empirical data which may be obtained in conjunction with use of the exercise apparatus in the stepper only mode.
[22] Fig. 4 is a flow chart illustrating, for one embodiment of the present invention, one process by which the amount of energy expended by a user of the exercise apparatus when in combined treadmill and stepper mode may be determined.
[23] Fig. 5 is a graphical representation of empirical data which may be obtained in conjunction with the use of the exercise apparatus in the combined treadmill and stepper mode when the effective tread speed is held constant while varying the resistance level. [24] Fig. 6 is a graphical representation of empirical data which may be obtained in conjunction with the use of the exercise apparatus in the combined treadmill and stepper mode when the resistance level is held constant and the effective tread speed is varied.
[25] Fig. 7 is a flow chart illustrating, for one embodiment of the present invention, one process by which empirical data may be obtained for use in calculating the amount of energy expended over a range of resistance levels and effective tread speeds.
[26] Fig. 8 is a flow chart illustrating, for one embodiment of the present invention, one process by which the exercise apparatus may be configured for use.
[27] Fig. 9 is a pictorial representation of a user interface for one embodiment of the present invention.
Detailed Description
[28] The various embodiments of the present invention provide a control system and process for a combination exercise apparatus which simulates a combined striding and a stepping type motion. Such motion may be characterized as being similar to walking or running on a beach, climbing a loose surface and similar motions wherein an exerciser's foot slides partially while stepping. Further, the various embodiments of the present invention provide a control system and process for controlling the exercise apparatus regardless of whether the apparatus is configured to facilitate a combination striding and stepping motion, a striding only motion, a stepping only motion, or some other motion(s). Also, the various embodiments of the present invention, as discussed in greater detail hereinbelow, provides systems and processes for estimating and/or calculating the amount of energy exerted by an exerciser when using the exercise apparatus in a combination striding/stepping mode, a striding only mode and/or a stepping only mode. Other modes, and energy calculations related thereto, may also be calculated by various embodiments of the control systems and processes of the present invention.
[29] As discussed in greater detail in the related applications identified above, the exercise apparatus of the present invention, in at least one embodiment, includes a set of treadles upon which a belt (or tread) rotates so as to facilitate a striding type motion. The treadles are configured to rotate about an axis such that a stepping type motion may also be obtained. The treadles are desirably interdependent, such that as one treadle rises or falls the other treadle falls/rises a corresponding amount of displacement. Such displacement desirably occurs while the treads are rotating about each treadle, so as to provide for a combination striding and stepping motion.
[30] The control system and processes of the present invention desirably control the combination striding and stepping motions and calculates the energy expended by an exerciser thereof. To accomplish such control and/or energy calculation features and functions, at least one embodiment of the apparatus of the present invention, as shown in Fig. 1, includes: a Master Control Unit 10 ("MCU"), a Tread Control Unit 20 ("TCU"), a Tread Speed Sensor 30 ("TSS"), a Step Sensor 40 ("SS"), an Exerciser Input Interface 50 ("UII"), and an Exerciser Output Interface 60 ("UOI"), as well as the computer programs and data structures necessary to control and calculate energy expenditures. Each of these components are described in greater detail hereinbelow. It is to be appreciated that various embodiments of the present invention may include all, some, or none of these components.
Control System Overview
[31] At least one embodiment of the present invention includes an MCU 10. The MCU 10 may be utilized to control various aspects of the operation, features and/or functions of the exercise apparatus (hereinafter, the "apparatus"). The MCU provides those output signals necessary to control the operation of the apparatus including, but not limited to, driving the tread belts. The MCU also receives various input signals which provide status and other operational information.
[32] One output signal the MCU may be configured to generate is shown in Fig. 1, as a tread control signal 15. The tread control signal 15 desirably provides control signals to the "TCU" 20. These control signals may be in a digital signal format, an analog signal format, a combination digital and analog signal format and other formats, should a specific implementation of the present invention so require.
[33] As further shown in Fig. 1, the MCU also is desirably configured, in at least one embodiment of the present invention, to receive a tread speed signal 35 from a TSS. The TSS essentially measures the speed of the treads, such that the effective tread speed, i.e., the speed at which an exerciser walking on the treads would sense and/or the distance an exerciser would travel in a given time period if such exerciser was moving in a substantially horizontal direction over the ground instead of upon the apparatus. The effective tread speed, which may be calculated by the TSS, the MCU and/or other devices, is desirably presented to the exerciser in commonly known and understood measurement figures such as miles per hour, kilometers per hour, feet per minute or the like. Thus, the MCU receives tread speed signals which are utilized in calculating an effective tread speed and other exercise related parameters, for example, energy or watts expended during the exercise routine. The features, functions and various embodiments of the TSS are described in greater detail hereinbelow.
[34] The various embodiments of the apparatus of the present invention may also be configured to include an SS 40. The SS may be configured to provide a Step Signal 45 to the MCU which indicates how often a given tread is raised or lowered and thus, a "step" taken by an exerciser of the apparatus. The features, functions and operation of the SS are described in greater detail hereinbelow.
[35] Referring still to Fig. 1, the various embodiments of the present invention may also include one more UIIs 50 which are in communication with the MCU via communication link 55. In addition to providing input devices by which the exerciser may specify an effective tread speed, the UII may also be configured to include input devices by which the exerciser may input and/or specify various other parameters including, but not limited to, the exerciser's weight, a desired workout setting, a workout time, a desired program routine, and others. Further, the UII may be utilized by the exerciser to control the operation of the apparatus during a "workout," for example, by increasing or decreasing the effective speed of the treads, the angle of the treads, the step resistance, or other parameters. The features, operations and functions of the UII, as provided for in various embodiments of the present invention, are described in greater detail hereinbelow.
[36] The various embodiments of the present invention desirably include one or more
OUIs 60 which are in communication with the MCU via communication links 65. The OUI facilitates communication of status, operation, diagnostic and other information (as desired) from the apparatus to the exerciser and/or others (for example, to a coach, trainer, nurse, doctor, technician, computer or others). The features, operations and functions of the OUI, as provided for the various embodiments of the present invention, are described in greater detail hereinbelow.
Master Control Unit ("MCU") [37] As discussed above, the various embodiments of the present invention commonly include an MCU 10, which controls the features, functions and operation of the apparatus. It is to be appreciated that the MCU may include practically any control unit and/or processor(s) which are configured or may be configured (for example, via software, hard coding or otherwise) to process inputs, generate control signals and provide outputs signals (such as those for presentation or display to an exerciser). Such input, control and/or output signals may include those discussed herein and/or others commonly known and/or used in conjunction with or support of an exercise apparatus.
[38] h at least one embodiment, the MCU includes a control unit which utilizes a processor, such as a digital signal processor, a personal computer processor, a special purpose processor or the like, to process inputs and generate outputs (both display and control). Other processors, such as input/output controllers, display drivers, and other devices may be utilized to support and/or augment the features and functions provided by the MCU.
[39] The MCU also generally includes some form of memory or data storage device or data storage reading device. Examples of memory/storage devices which may be used separately or in conjunction with the apparatus include, but are not limited to, ROM, PROM, EPROM, EEPROM, RAM, DRAM, RDRAM, SDLRAM, EDO DRAM, FRAM, non-volatile memory, Flash memory, magnetic storage devices, optical storage devices, removable storage devices (such as memory sticks and flash memory cards), and the like. The MCU also commonly includes and/or is connected to a power supply. Battery backup may be provided as necessary to preserve exerciser settings and/or other information. The MCU also may be configured to include various types of input and/or output ports. Common examples of such I/O ports ("I/O") include, but are not limited to, serial ports, parallel ports, RJ-11 and RJ-45 interface ports, DIN ports, sockets, universal serial bus ports, "firewire" or IEEE 802.11 ports, wireless interface ports, smart card ports, video ports, PS/2 ports, and the like. One should appreciate that the MCU is not limited to any specific devices and/or system or component configurations, and may be provided, in whole or in part, as a single unit, a plurality of parallel units, remote units (e.g., one provided via an external device, such as a local or remote personal computer), distributed units or in any other configuration capable of supporting the features and functions of the various embodiments of the present invention.
Tread Control Unit ("TCU") [40] As discussed above, at least one embodiment of the present invention includes a TCU
20 which controls the speed of rotation of the treads on the respective treadles. In one embodiment, the TCU controls the operation of a motor, which drives the treads, by utilizing digital signals from the MCU. Such digital signals may be in any suitable signal format, for example, Pulse Width Modulation ("PWM") signals may be utilized. As is commonly appreciated, PWMs can be utilized to control the operating speed of D.C. motors, and thus the speed of any tread connected directly or indirectly to such motor, by varying the time period during which the D.C. motor is powered. Such time period may be varied by pulsing on/off an input current provided to the motor. PWM may also be utilized to control the rotational speed of the motor by controlling the duty cycle of the motor, i.e., the longer the duty cycle, the longer a drive current is provided, or by modifying the pulse duration of any given duty cycle (i.e., a longer pulse width generally equates to a longer "on" period for the motor). The MCU directly or indirectly, via the TCU, may be configured to control the electricity provided to the motor such that the rotational speed of the motor shaft and the treads connected directly or indirectly thereto are correspondingly controlled. Further, by periodically directing the application of electrical pulses to the motor, via the TCU, the MCU may increase or decrease the rotational speed of the motor shaft which, in turn, results in a corresponding increase or decrease in the speed of the treads. It is to be further appreciated, that the rotational speed of the motor shaft may be slowed and/or stopped by applying a current in an opposite directional flow (which may be a negative or positive current, depending upon the specific implementation utilized) so as to apply a decelerating or braking effect to the motor shaft. In short, the MCU, in at least one embodiment, provides tread control signals to the TCU. Such tread control signals directly or indirectly control the operation of the motor and thereby control the speed and/or direction of the treads.
[41] It is to be appreciated that for certain alternative embodiments, the MCU may be configured to provide, and the TCU configured to receive and act upon, tread control signals which result in the motor rotating the treads in a second or opposite direction, wherein a first tread direction is defined as the direction of travel of the treads away from a console such that as an exerciser faces the console the exerciser effectively walks on the treads and towards the console, and the second tread direction is defined as the direction of travel of the treads towards the console such that as the exerciser faces the console the exerciser effectively walks backwards and away from the console. It is to be appreciated that when the motor is driving the treads in the second tread direction, an exerciser may suitably position themselves such that they are facing 180 degrees away from the console, and as the tread progresses towards the console, the exerciser effectively utilizes a "stepping-up" motion. The location and configuration of the various embodiments of the console for the present invention are described in greater detail in the related applications.
[42] Further, it is commonly appreciated that a given motor generally may operate within a pre-determined range of rotational speeds and that greater or lesser speeds may be obtained using pulleys, belt-drive mechanisms, geared mechanisms, or the like. For purposes of at least one embodiment of the present invention, the apparatus may be suitably configured to provide tread speeds over an operating range of 0.7 miles per hour to 4.0 miles per hour in the first tread direction. Comparable, greater and/or lesser speeds may also be supported in the second tread direction in alternative embodiments. Further, the motor is desirably configured to provide speed increments of 0.1 miles per hour over the specified operating range. However, greater or lesser operating speeds, ranges of speeds, and/or greater or lesser speed increments may be supported in other embodiments as desired. However, the present invention is not to be construed as being limited to apparatus which only operate over any specific range of speeds, or any specific speed.
Tread Speed Sensor ("TSS")
[43] As mentioned above, at least one embodiment of the present invention includes a TSS
30 which is utilized in calculating and/or controlling the effective tread speed. It is to be appreciated that the TSS essentially provides a feedback loop (providing speed measurement signals), to the MCU 10 which enables the MCU, in certain embodiments, to monitor and control the driving of the treads by the TCU. In other embodiments, such as those wherein an A.C. motor or other tread drive mechanism are utilized and from which the effective tread speed may be determined directly or indirectly based upon tread control signals 15 or other signals, the TSS 30 may or may not be utilized. In yet other embodiments, the TSS may be essential to the operation of the device, as the drive mechanism for the treads may not be capable of reliably being calibrated or controlled based upon input signals to a drive mechanism and/or other signals. Thus, it is to be appreciated that the TSS, in certain embodiments, provides signals useful in calculating and controlling an effective tread speed and that such signals may be generated or derived, as necessary, for particular embodiments of the present invention. [44] More specifically, in at least one embodiment of the present invention, a TSS includes a read switch (hereinafter, the "tread switch") which is configured to detect the passing of a magnet (hereinafter, the "tread magnet") situated on a pulley or other component that is attached directly or indirectly to the motor/drive mechanism. With each corresponding rotation of the pulley and/or the drive shaft (gearing and the like may be utilized), the tread magnet passes the tread switch, which detects the passing of the tread magnet and outputs a tread speed signal 35 to the MCU 10. The MCU receives and utilizes the tread speed signal to calculate the effective speed of the treads.
[45] It is to be appreciated that the effective speed of the treads may be determined based upon measurements obtained from any location on the pulley (or any other drive mechanism component). Correspondingly, it is to be appreciated that greater or lesser degrees of precision may be obtained by positioning the tread magnet and the corresponding tread switch inwards or outwards, respectively, along a radius of the pulley. As such, for purposes of the present embodiment of the invention, the location of the tread magnet upon the pulley is situated on the axis of the pulley such that a given number of rotations of the pulley result in the measurement of as little as an 0.1 mile per hour increase/decrease in the effective tread speed.
[46] While the above described embodiment of the present invention is configured to determine the effective tread speed based upon a sensor reading obtained from the passing of a magnet on the pulley, it is to be appreciated that the rotational speed of the treads, the motor, the drive shaft, or any other drive assembly related component, and calibrations related thereto, may be suitably utilized by the TSS and/or MCU to determine the effective tread speed. Further, it is to be appreciated that various other types of sensors including, but not limited to, tachometers, potentiometers, optical sensors, and the like may be utilized by the TSS to provide the tread speed signals to the MCU.
[47] i other embodiments, for example, embodiments wherein precise effective tread speed control is not required or necessary, the motor may also be controlled without requiring a feedback loop, such as the feedback loop provided by the TSS to MCU connection. In such an embodiment, the speed of the motor may be controlled based upon empirical, statistical or other data which specify the operating characteristics of the apparatus at a given input current level (or duty cycle) for the motor. Such data and operating characteristics may be further measured, determined and/or calibrated during testing based upon the weight of the exerciser and/or other factors. As such, it is to be appreciated that various embodiments of the present invention may utilize various devices and/or processes to control the effective tread speed.
[48] Based upon TSS provided speed signals (when available), the MCU may also be configured to determine when to provide tread control signals to the TCU in order to accelerate or decelerate the motor in order to maintain the effective tread speed at a desired effective tread speed or within a desired effective tread speed range.
[49] As mentioned previously, the effective tread speed, for at least one embodiment, may vary over a range of 0.7 to 4.0 miles per hour. The desired effective tread speed may be specified by an exerciser via an UII 50, which is connected to the MCU 10, for example, by incrementing or decrementing the desired effective tread speed using, for example, "+" or "- " buttons. The use of push buttons to increment or decrement control settings is well known in the art and is not discussed further herein. Additionally and/or alternatively, the effective tread speed may be controlled based upon non-exerciser inputs, such as those provided by pre-programmed routine, those provided by an instructor (for example, in an exercise class setting), or otherwise.
Step Sensor ("SS")
[50] As discussed previously, various embodiments of the present invention may be configured to include a SS (40), for detecting whenever an exerciser takes a "step." In one embodiment, the SS is configured to detect the relative movement of a rocker arm. As described in the related applications, the rocker arm creates a dependency between the right and left treadles such that as one treadle falls (or travels towards the ground) the other automatically rises, and vice versa. Detecting and/or sensing the relative movement of the rocker arm may be accomplished utilizing, for example, a read switch (hereinafter, the "step switch") and a corresponding magnet (hereinafter, the "step magnet"). In this embodiment, as the right tread is moved in a first direction (i.e., up or down relative to an axis about which the tread may rotate), the step magnet attached to the rocker arm correspondingly passes by the step switch which generates a step signal 45 for communication to the MCU. Similarly, when the left tread is lowered, the rocker arm and the step magnet correspondingly moves in an opposite or second direction and past the step switch and generating a step signal 45. Regardless of the direction of rotation of the rocker arm, the read switch may be positioned to detect the up/down movement of the step magnet and thereby the rocker arm to which it is attached and correspondingly each step (which may be a full step or a portion thereof) taken by the exerciser. Such detections are suitably communicated to the MCU.
[51] It is to be appreciated that the location of the step magnet relative to the axis about which the rocker arm rotates may determine the depth of each "step" (or up/down motion of a given tread) necessary for a "step" to be detected by the read switch. As such, in one embodiment of the present invention, the step magnet and corresponding step switch are positioned on the rocker arm so as to detect "steps" of at least one (1) inch of declination/inclination.
[52] Further, it is to be appreciated that other devices may be utilized to provide step sensing as desired. Such devices include, but are not limited to, potentiometers, other forms of magnetic sensors, optical sensors, rotational sensors, encoders, and the like. Further, the position of any given SS along the rocker arm or elsewhere on the apparatus may also vary without departing from the spirit or scope of the present invention. For example, the SS may be suitably positioned such that a magnet affixed to one or more treads is utilized to detect the movement of such tread(s). Again, the position of such sensor relative to a given axis of rotation for the tread may determine the degree of step height measurable.
[53] The SS, in at least one embodiment, may be configured to generate and output a step signal to the MCU. The utilization of the step signal by the MCU in determining various parameters, controlling operation of the apparatus, and/or determining exerciser performance characteristics is discussed in greater detail hereinbelow.
User Input Interface ("UII")
[54] As mentioned above, at least one embodiment of the present invention includes one or more UIIs 50. Some UII embodiments may be configured to accept exerciser inputs, for example, via push buttons suitably provided on an exerciser interface. In other embodiments, exerciser instructions, information and other inputs may be communicated to the MCU, via a UII over communications link 55, by utilizing input devices which include, but are not limited to, keyboards, control wheels, biometric inputs (such as those provided by a heart rate monitor and/or other biometric sensors), voice inputs, and others. Further, the UII may be configured to accept inputs from external sources (i.e., sources other than the exerciser) such as an instructor of a group exercise class or an interactive fitness program (e.g., one provided via an associated audio-visual presentation or a software application running on a computer). Such inputs are then communicated to the MCU with or without processing by the UII. In short, the UII may be configured to communicate to the MCU, or otherwise, input control signals from a variety and a plurality of sources, both human and computer generated, and/or both local or remote to the apparatus.
User Output Interface ("UOI")
[55] The various embodiments of the present invention also generally include one or more
UOIs 60. Such UOIs are utilized to communicate, from the MCU to the user or others over communications link 65, real-time status information and/or pre- or post- exercise routine related information. Such information may include energy expended, "steps" climbed, feet gained, distance traveled, percentage of exercise above a given threshold (e.g., anaerobic or aerobic), and/or others. Further, such information may be communicated to an exerciser or other via practically any available output devices. Examples of those output devices supported by the various embodiments of the present invention include, but are not limited to: video display devices, such as light emitting diodes, liquid crystal display devices, flat panel displays, cathode ray tube displays, head-up displays, and visor based displays; audible display devices, such as speaker and headphones, both wired and wireless; hard-copy output devices such as printers; tactile output devices; and others.
[56] The UOI may also be configured to output exerciser, status, performance, diagnostic and/or other information via a variety of communications links 65 ports and/or output devices. Example of output ports include, but are not limited to, serial port, parallel ports, USB ports, IR ports, and RF ports. Practically any type of display, output or presentation device may be supported by various embodiments of the present invention.
Control System Operation
[57] The various embodiments of the present invention may be utilized, desirably, in at least one, some, or all, of three different modes: stepper only mode; treadmill mode and treadclimber mode. Each of these modes is discussed in greater detail hereinbelow. In certain embodiments of the present invention, only the treadclimber mode is supported. In other embodiments, the treadclimber and stepper modes are supported, the treadclimber and treadmill modes are supported or the stepper and treadmill modes are supported. As discussed in greater detail in the related applications, at least one embodiment of the apparatus includes a locking mechanism, which, upon activation, "locks" the left and right treadles parallel to each other so that the combined decking effectively provides a single platform. Other embodiments may not include this locking feature and other embodiments may not be configured to rotate the treadles while one is stepping upon them (i.e., the apparatus in certain embodiments may be configured to not operate in treadclimber mode). Thus, it is to be appreciated that the present invention may be configured into different embodiments of steppers, treadmills and treadclimbers as particular implementations and/or utilizations specify.
Stepper Only Mode
[58] The apparatus may be configured to operate as a "stepper" (hereinafter, "S-mode").
When configured in S-mode, the MCU generally does not provide any tread control signals to the motor (or those signals, if any, the MCU does provide may be utilized to minimize or otherwise control the rotation of the drive shaft and, by extension thereof, the rotational motion of the treads). Since the motor may not be powered and the pulley is desirably not rotating, the MCU should not receive any tread speed signals from the TSS, when in S-mode. However, in the event that the tread magnet is aligned with the tread switch, the TSS may generate a continuous tread speed signal and the MCU may be configured to ignore this signal while in stepper mode. The MCU, however, does continue to receive step signals with each "step" initiated by the exerciser and to process such step signals so as to calculate the amount of "work" or calories currently being expended by the exerciser at that time.
[59] More specifically, it is to be appreciated that users of exercise devices, such as the apparatus of the present invention, generally desire to receive current, elapsed and/or final indications of how much "work" is expended during a "workout," or a given segment thereof (such as, a snapshot in time, over a given interval, or over the extended period of a single and/or a plurality of workout sessions). Commonly, exercisers measure the amount of "work" performed during exercising in terms of calories "burned." In order to determine the number of calories "burned," one commonly needs two parameters: the VO2 associated with a given exercise; and the weight of the exerciser. In general, the amount of calories "burned" per minute for a given exercise routine may be expressed by the following equation:
Calories per Minute = Exerciser's Weight in kG x VO2 x 0.005 (a constant)
(Equation #1)
[60] The first part of this equation, the exerciser's weight, is directly or indirectly provided by the user of the apparatus. As discussed previously hereinabove, the MCU is configured to receive user inputs, via the UII, which may include the exerciser's weight. As such, the exerciser may directly provide their weight to the apparatus in order to calculate calories burned. Alternatively, the apparatus may be configured to indirectly receive the exerciser's weight information, for example, by using a "scale" to measure the weight of the exerciser. Various types of scales are well known in the art and may be utilized in conjunction with the present invention to determine an exerciser's weight.
[61] As mentioned above, the second component necessary to determine the amount of calories burned for a given workout is VO . It is commonly appreciated that VO varies based upon the type of exercise being performed (e.g., rumiing, swimming, stepping, biking, weight lifting and the like) and the workout setting or resistance level associated with the exercise. For well established exercise routines, such as, running on flat grounds or on an incline, cycling, and stepping (for a given step height), the VO2 expended has been well documented by the American College of Sports Medicine ("ACSM") and may be obtained from equations and/or charts provided by the ACSM.
[62] For a stepper function, such as that provided by at least one embodiment of the present invention, when configured in S-mode, ACSM established formulas or other formulas may be utilized. However, in the present embodiment, a non-ACSM formula, as described hereinbelow, is utilized because of the interdependencies which exist between the left and right treadles. This formula may be used to determine the amount of VO2 expended when performing a stepping action based upon the inches per minute "obtained" by the exerciser. In general, this relationship may be expressed by the following equation:
VO2stepping = (HT x 0.04) + 3.5
(wherein "Hτ" = total height gained in inches per minute) (Equation #2).
[63] hi general, in order to determine VO2, the MCU needs the total height "Hτ" of all of the steps talcen by the exerciser over a given time period. Since the actual height of any given step taken by an exerciser may vary from a previous or subsequent step, over an extended time period, Hτ may also vary. As such, it is commonly appreciated that an exerciser will often take steps of less than full height and, therefore, less than the optimal VO2 will be expended by the exerciser over any given time period. In order to accurately reflect the amount of work actually performed by an exerciser, in general, an exercise apparatus, such as the various embodiments of the present invention should account for irregular stepping, as exemplified by less than full steps or extended duration steps (i.e., when the exerciser rests while stepping or when the step comes into contact with a bottom stop). Often, these variations in stepping and/or step height, and thus the determination of VO2 actually expended by the exerciser, may be calculated based upon measurements of the actual step height taken and the frequency of stepping. It is to be appreciated that in various embodiments of the present invention, the actual step height may be directly measured using potentiometers, encoders or the like.
[64] However, other embodiments of the present invention may not include or utilize a potentiometer, encoder or other sensor to directly measure step height taken by an exerciser and, thus, the MCU cannot directly calculate the total step height Hτ over a given time period. Instead, the apparatus may be configured to determine VO2 based upon those step signals generated by the SS. When the MCU is not provided with measured step height information, the MCU may be configured to extrapolate the step height, based upon the number of steps per minute by the exerciser "Ractuai," as detected by the SS, in order to determine the VO2 expended by the exerciser over a given time period.
[65] More specifically, at least one embodiment of the apparatus may be configured to calculate the total step height Hτ based upon the number of step signals received per minute by the MCU from the SS times the default step depth "D" (in inches or other comparable measurements) credited to the exerciser based upon an average step rate Ravg. Ravg may be deteπnined based upon empirical studies, for example, those conducted at a constant resistance level for a constant exerciser's body weight.
[66] For at least one embodiment of the present invention, the default step height D equals the maximum travel of the treads in an up/down motion, which is desirably six (6) inches. It is to be appreciated, however, that for other embodiments D may be larger or smaller. As D varies, the average step rate Ravg, may also vary. Thus, additional empirical studies may be necessary to determine Ravg for other embodiments.
[67] As such, for at least one embodiment, when the apparatus is in S-mode, an exerciser is credited with a maximum step depth D of six (6) inches whenever the actual number of steps per minute Ractuab as sensed by the SS, are less than or equal to a predetermined and empirically calculated average step rate Ravg (wherein Ravg equals the number of full steps the empirical average exerciser would have taken for a given weight and resistance level). As such, for an exerciser performing at or below the empirically determined average performance level (as measured in steps per minute), the work performed by the exerciser is related to the actual number of steps taken as set forth by the following formula:
VO2 = (Ractuai D 0.04) +3.5
(wherein RactUai = actual steps per minute attained and D = the maximum step depth)
(Equation #3)
[68] For example, a first exerciser weighs 175 pounds or 79.54 kGs and is optimally exercising at a first resistance level (i.e., Ractuaι = Ravg)- Also, assume that Ravg equals 40 steps/minute (i.e., based upon empirical studies, it may be determined that the first exerciser, optimally working out at a given resistance level, should be able to complete forty (40) full steps per minute). Further assume that D equals six inches (i.e., the maximum step depth is assumed to be six (6) inches). As such, the first exerciser, during each minute working out at this exertion level, should "obtain" a total step height Hτ (which may be defined as Ravg x D) of: 40 steps x 6 inches = 240 inches/minute. Using the formula set forth above as equation #2, the exerciser's VO2 therefore would be: (240 x 0.04) + 3.5 = 13.1. Further, using equation #1, the calories burned per minute by the exerciser would be 5.2 cal/min.
[69] In another workout, however, assume the first exerciser works out at a non-optimal rate of Ractuai = 25 steps per minute (with all other settings remaining the same). In this situation, the exerciser's total stepping height Hτ would be: Ractuaι x D = 25 x 6 = 150 and the resulting VO2 would be: (25 x 6 x 0.04) + 3.5 = 9.5. In short, by working out at less than the optimal performance level, the exerciser exerts less energy.
[70] However, when the same exerciser, at the same resistance level steps at a rate higher than the empirical average rate, for example, when Ractuai = 65 steps per minute, while Ravg. = 40 steps/minute, the MCU accordingly reduces the total step height Hτ by multiplying the maximum step depth D by the ratio of the empirical average number of steps Rav . to the actual number of steps Ractuai and thereby arrives at a modified total step height HM- The modified total step height HM may be used in equation #2 to determine VO2, as follows:
VO2 = (Rac uai x HM x 0.04) + 3.5
[71] For example, when the first exerciser exercises at the first resistance level and has an actual stepping rate Ractuai of 65 steps per minute, VO2 = (65 x (6 x (40/65)) x 0.04) + 3.5 = (65 x 3.69 x 0.04) + 3.5 = 13.094 =13.1. [72] As such, the foregoing example shows that when an exerciser steps at stepping rate which is higher than the empirically established stepping rate, the exerciser effectively expends the same amount of energy by effectively taking more steps of shorter depth, so as to result in the same amount of vertical gain as if the exerciser had taken fewer steps at the full step depth over a given time period.
[73] In short, in order to determine the VO2 expended by an exerciser of a given weight, at a given resistance level, for at least one embodiment of the present invention, the MCU uses the step signal from the SS, the previously or then provided exerciser's weight, and the current resistance level setting.
[74] As discussed above, the MCU may be configured to determine an exerciser's VO2, without receiving an actual step height indication, by utilizing step signals and empirical data obtained during testing. This empirical data may be obtained by the process shown in Fig. 2. As shown, this process may begin with the specification of an exerciser's weight 200. It is to be appreciated, that a wide variety of exercisers of varying weights may use the apparatus. For the present embodiment, such weight range is specified as over the range of 100 - 300 pounds. However, other weight ranges may be supported, as desired, by other embodiments. Additionally, the process provides for the specification of a resistance level, for example, levels 0-12 202. At this point a first exerciser is tested to determine the actual number of steps they may take over a given time period (e.g., a minute) 204. These results are then stored 206, and subsequent exercisers of the same weight are then desirably tested, at the same resistance level, until a sufficient set of samples have been obtained 208. Based upon this sample set, averages and statistical operations may be applied to the sample set to determine the average resistance, Rav ., associated with an exerciser of a given weight at a given resistance level 210. It is to be appreciated that these tests and corresponding measurements can be accomplished using males only, females only and/or mixed gender sample sets. Once an Ravg. for a given weight and resistance is determined, the process may continue with detennining Rav . values across varying resistance levels and/or varying exerciser weights 212-214. These additional tests then, desirably, yield a second and a third, respectively, sample sets for which curve fitting, regression analysis, standard deviation, mean or other statistical and/or other mathematical operations may be performed in order to determine relationships between: Ravg. and a given resistance level across a range of exerciser weight settings 216; and Ravg. and an exerciser's weight across a range of resistance level settings 218-220. For example, Fig. 3 shows one example of curve fitting 300 which may be used to determine the Rav - associated with a given exerciser weight across a plurality of resistance levels. As shown, it is to be anticipated that the relationship between Ravg. and resistance level, at a given weight setting, is substantially, but not perfectly, linear.
[75] In short, it is to be appreciated that the VO2 expended by an exerciser will vary based upon the resistance level set for the apparatus and the fitness level of the exerciser (i.e., exercisers in less than desirable fitness may not be able to maintain RaVg- throughout an exercise routine). In short, the higher the resistance level, the greater the amount work that may need to be performed in order to depress a step a full step height. Similarly, the amount of time necessary for a step, at a given resistance level, to be depressed the full height distance may also vary based upon the weight of the exerciser.
[76] It is to be appreciated that the relationship between weight, resistance level, and Ravg. may also be expressed in a data structure, such as a table. For example, a given Rav ., at a given resistance level may be expressed in a data structure as a function of the exerciser's weight, as shown below in Table 1. In general, it is believed that empirical testing may show that the number of steps taken by a heavier exerciser are usually greater than those taken by a lighter exerciser, over a given time period, when both exercisers are working out at the same resistance level. Using such data, the MCU can compare the actual number of steps to a given RaVg. for an exerciser of a specified weight, at a given resistance level, and extrapolate the total step height Hτ attained by the exerciser and the VO2 expended by the exerciser.
Table 1
Figure imgf000024_0001
(Values provided for illustrative purposes only and are not based upon empirical results)
[77] Similarly, the beforementioned relationship may also be expressed as a mathematical formula or algorithm. Curve fitting software such as DATAFIT Version 6.1.10, manufactured by Oakdale Engineering may be utilized to obtain such mathematical formulas based upon empirical testing results.
[78] Therefore, when configured in S-mode, at least one embodiment of the present invention may be configured to determine the amount of work, VO2, expended by an exerciser at a given resistance level. Based upon this determination of VO2, the calories burned by the exerciser per minute may be calculated using equation #1 or other suitable calculation.
[79] As discussed above, the MCU may also be configured to determine calories burned by the exerciser over a given time period, such as a period of minutes for a given workout, or the like. As desired, exerciser performance data may be suitably stored by the MCU directly or indirectly in a memory or storage device (for example, in remote or removable storage or memory device), utilized for additional performance measurements, and/or used for any other purpose. The stored data may then be mathematically, statistically or otherwise manipulated and/or analyzed to reach desired results, such as, total energy expended, average steps per heart rate and others.
Treadmill Only Mode
[80] Another mode the apparatus may be configured to operate in is treadmill only mode
(hereinafter, "T-mode"). When in T-mode, the left and right treads are desirably fixed at a given incline. In one embodiment, such incline is set at a ten (10) degree slope, but, in other embodiments, other degrees of slope maybe utilized.
[81] In T-mode, the MCU desirably outputs tread control signals to the TCU (thereby controlling the speed of the treads) and receives tread speed signals from the TSS. Also, the MCU desirable receives a steady-state step signal from the step sensor, indicative of the treads being positioned in the ten (10) degrees of slope configuration. It is to be appreciated, however, that the step magnet and the step switch may be configured so as to not generate a step signal when the treads are configured for T-mode. As such, the MCU may be suitably programmed so as to utilize or not utilize any output signals provided by the SS when in T- mode. However, from a control aspect, desirably, the SS outputs a steady state step signal so that the absence of such signal may be utilized by the MCU to detect a drop in the relative position of a given tread (and/or the corresponding rise in the opposite tread). Such a drop may be symptomatic of the treads becoming unlocked or other error conditions. [82] When in T-mode, the determination of the amount of work expended by an exerciser while exercising may be determined by using ACSM established determinations of the VO2 expended by an exerciser of a given weight on a treadmill often (10) degrees incline at a given miles/hour. These calculations and the algorithms associated therewith are well known in the art. As such, the MCU may access such ACSM algorithms, tables, or the like to determine the amount of work and the calories burned by an exerciser of an embodiment of the apparatus in T-mode.
TreadClimber Mode
[83] Another mode the apparatus may be configured to operate in is referred to hereinafter as TreadClimber mode or "TC-mode". As discussed herein in greater detail, when in TC- mode the apparatus functions as both a stepper and a treadmill (i.e., it facilitates stepping and striding in a combined motion). Input signals may be received by the MCU from both the TSS (providing an indication of the effective tread speed) and the SS (providing an indication of the steps per minute). When in TC-mode the MCU may also be configured to output tread control signals to the TCU and/or other output signals.
[84] For at least one embodiment of the apparatus of the present invention, when in TC- mode, the amount of work or V0 expended by an exerciser may be based upon empirical studies and the effective tread speed. These studies generally collect data points indicative of the V0 expended by an exerciser over a range of resistance levels and at a range of effective tread speeds. As is commonly appreciated, V0 is independent of the weight of the exerciser. As such, these empirical studies may be performed at a variety of exerciser weights, for given resistance levels and effective tread speeds. As discussed further hereinbelow, empirical studies commonly are conducted using heart rate monitoring as well as respiratory exchange monitoring.
[85] With reference to Fig. 4, one process by which VO2 may be calculated for an exerciser of an embodiment of the present invention is set forth. As shown, this process may begin with selecting an exerciser having a first given weight (for example, an exerciser weighing 120 pounds) and, if desired, by gender 400. The exerciser is suitably warmed-up, as set forth by established testing protocols, and the resistance level for the apparatus is set to a first level, for example, level 1 402. The apparatus also is configured for a first tread speed setting, for example, 1 mile/hour 404. Based upon these settings, the exerciser's performance, heart rate and other biometric indicators are monitored 406. Based upon this monitoring the amount of VO2 expended by the exerciser may be determined, recorded and saved 408. The process may be repeated, as desired, for a different tread speed setting while holding the resistance level constant, at a different resistance level while holding the tread speed setting constant, for a different exerciser weight, or for any other purpose 410-412-414. The results of these collective measurements may be used to define and/or refine VO2 calculations across a range of resistance levels, effective tread speeds, exerciser weights, gender and other parameters.
[86] Preferably at least ten (10) data samples are collected for each combination of resistance level and effective tread speed. As discussed previously, the VO2 expended should not vary based upon exerciser weight, however, for statistical sampling purposes, data is collected based upon exercisers of varying weights. Once the desired number of data samples are collected 416, such data points may be suitably compiled and may be graphed, listed in tables, "curve-fitted" (for example, using the before-mentioned curve-fitting software or comparable software) or otherwise manipulated in order to determine the VO2 associated with a given resistance level and effective tread speed 418. One example of the results of measuring the calories per minute expended by a 160 pound exerciser of an apparatus of the present invention is shown in Fig. 5. In this figure, the effective tread speed is held constant while the resistance level (as specified by the "Workout Setting") is varied. As such, a substantially proportional increase in calories per minute occurs as the resistance level is incremented from an "easy" workout setting of level 1 to a "difficult" workout setting of level 12. In contrast, Fig. 6 provides a representation of the calories per minute expended by a 160 pound exerciser at given resistance levels as the effective tread speed is increased. As shown in Fig. 6, a one mile per hour increase in the effective tread speed results in an increase of approximately 2.5 calories per minute, for this empirical study.
[87] Another embodiment of a process by which empirical data may be obtained and used to calculate the V0 associated with a range of resistance levels and effective tread speeds is shown in Fig. 7. As shown, this process begins with recruiting test subjects from a population which desirably varies in demographics 700. For example, for one study performed in conjunction with at least one embodiment of the present invention, the population of test subjects was obtained from the population of Adelphi University students, faculty and staff. [88] Next, the representative sample of test subjects are screened for testing compatibility 702. It is to be appreciated that such screening may be accomplished using PAR-Q screening, medical history reviews and/or other known techniques.
[89] A matrix may then be developed which identifies available test subjects (i.e., those having passed the screenings) and the trials desired 704. For at least one embodiment, a cover-over design may be employed in developing the matrix so that all available test subjects (hereinafter, "participants") perform all of the trials.
[90] Next, each of the participants perform all of the desired trials in a randomly selected sequence so as to eliminate any familiarization basis 706. During testing, metabolic testing may be performed with open circuit spirometry using, for example, a Max LT, Fitco Metabolic System, which are manufactured by Fitco Instruments of Quogue, New York. During this testing, high and low calibration gases are desirably employed to ensure standards of calibration for both oxygen and carbon dioxide analyzers, the availability and use of which are well known in the art. Further, a three (3) liter syringe, such as one manufactured by Warren Collins or the Hans-Rudolph Company, may be used to calibrate ventilatory volumes. Further, any obtained metabolic data may be converted from BTPS to STPD conditions by obtaining ambient temperature, relative humidity and barometric pressure immediately prior to each trial. Desirably, but not necessarily, testing should be performed under laboratory conditions which adhere to the guidelines for testing set forth by the ACSM, such as those set forth in ACSM's Guidelines for Exercise Testing and Prescription, 6th Edition, Lippincott Williams & Wilkins, 2000, the entire contents of which are incorporated herein by reference. Further, the trials, desirably, are also conducted under laboratory conditions set forth by the Australian Sports Commission, such as those set forth Physiological Test for Elite Athletes, Human Kinetics Publication, 2000, the entire contents of which are incorporated herein by reference.
[91] Further, for at least one embodiment of the present invention, each trail is desirably continued until steady state is confirmed by the participant's heart rate (± 5 beats per minute), oxygen consumption (± 150 mL of Oxygen per minute), and ventilation (± 3 Liters per minute). It is to be appreciated that the participants' heart rate may be obtained by POLAR telemetry or other heart monitoring devices. The participant's heart rate is monitored continuously during each trial. Further, a mean heart rate obtained during the last 15 seconds of each minute may be used for data acquisition. A subjective Rating of Perceived Exertion (RPE) may also be obtained during the last minute of each trial using, for example, the Borg Category Scale of Perceived Exertion (Borg's Perceived Exertion and Pain Scales, Human Kinetics Publication, 1998).
[92] Once all of the beforementioned data has been obtained from all of the participants for all of the desired trials (as specified in the matrix) 708, the process continues with reducing the data for computer analysis 710. It is to be appreciated that various system and/or processes may be utilized to reduce the data for computer analysis. For at least one embodiment, such analysis includes calculating means and standard deviations for the data, across the various testing regimens, for each variable and for each trial 712. Statistical analysis, using for example ANOVA, may also be applied to such data, the means and/or the standard deviations. Also, t-testing at a probability P of less than 0.5 level of significance may be applied to the data.
[93] Based upon the results of the beforementioned statistical and/or other data analysis, data points are obtained that can be mapped or "curve-fitted" (as discussed previously hereinabove) in or order to obtain graphs, tables, algorithms, data structure or the like which describe, specify or otherwise set forth the relationships between resistance levels, effective tread speeds, VO2, calories burned per a given time period, and/or any other parameter as desired by specific implementations of the present invention 714.
[94] To summarize, it is to be appreciated that a variety of testing regimens may be utilized to obtain empirical values for VO2 data/information, across a range of exercise regimens. Such data/information may be provided to or stored in the MCU, or other local or remote computational units, such that the various embodiments of the present invention may be configured to accurately calculate the calories per minute expended by an exerciser of a given weight based upon the selected effective tread speed and the selected resistance level when in TC-mode. It is to be further appreciated that such empirical testing regimens may also be applied to the other exercise modes discussed herein, to combinations of exercise modes and/or to combinations of such exercise modes with and/or apart from the utilization of an embodiment of the present invention.
Configuring Apparatus for Various Modes
[95] As discussed hereinabove, at least one embodiment of the apparatus of the present invention may be configured to operate in one of three modes: S-mode, T-mode or TC- mode. In order to quickly, and with a minimum number of exerciser inputs, specify to the MCU which mode the exerciser desires the apparatus to operate in at any given time, the following process/conventions have been established for at least one embodiment of the present invention, as shown in Fig. 8, with reference to Fig. 9.
[96] The initialization of the apparatus, for at least one embodiment of the present invention, may suitably begin with depressing the "power" button 800. Other techniques for starting the apparatus may also be employed, such as, by beginning to depress the pedals. Following power being applied to the apparatus, the MCU may request various information, such as the exerciser weight may be requested and the exerciser may input such information, for example, by using the faster ("+") and slower ("-") speed buttons. Further, if the apparatus has been previously used, the apparatus may be configured to automatically display the last exerciser's weight and such weight maybe changed as desired 802-804-806.
[97] The desired resistance level or "workout setting" may also be inputted into the
MCU 808. It is to be appreciated that the actual resistance level for certain embodiments of the present invention may be manually adjusted using the workout level dials on each hydraulic cylinder and by entering a corresponding input into the MCU via the UII. However, it is to be appreciated that the present invention is not limited to manually adjusted resistance levels, and that other embodiments may include resistance levels that are set automatically or semi-automatically set under the direction and/or guidance and control of the exerciser, the MCU and/or other local or remote controller, processors or other devices. Such resistance levels may be suitably controlled by hydraulic, pneumatic, electro-mechanical, mechanical, electro-magnetic, separately or in combinations thereof, and/or using other method, processes, or devices which may be used or configured to control the resistance level or "workout setting" of any particular embodiment of the present invention.
[98] Referring again to Fig. 8, when the inputted resistance level is set at "0" 810, for at least one embodiment of the present invention, the MCU desirably proceeds into T-mode 812. When in T-mode, the exerciser may initiate the rotation of the treads by various inputs, for example, pressing the "start/stop" button 814. Further, the exerciser or the MCU may specify a desired effective tread speed 816. When specified by the exerciser, the effective tread speed, as detected by the TSS and determined by the MCU, may be increased or decreased by utilizing the "+" and "-" buttons, respectively. [99] Alternatively, when the inputted resistance level is set over the range of 1 - 12, the
MCU desirably configures the apparatus for either TC-mode or S-mode 818. The exerciser may initiate the rotation of the treads by pushing the start/stop button, an increment button, or otherwise 820. The MCU then determines whether the apparatus is to operate in TC-mode or S-mode based upon whether an effective tread speed is selected by the exerciser or the MCU 822. In at least one embodiment of the present invention, the exerciser may specify a desired effective tread speed and, in so doing, specify that the desired operating mode is TC-mode 824-826. h short, when a tread speed and a resistance level is specified by either the MCU or the exerciser, the apparatus operates in TC-mode. When only a resistance level is specified, the apparatus desirably operates in S-mode 828. And, when only an effective tread speed is specified, the apparatus operates in T-mode.
[ 100] Thus, by specifying a resistance level and an effective tread speed (if any) the apparatus may be configured by the exerciser and/or by the MCU to operate in any of the three specified modes. The mode utilized at any given time during a workout routine, however, may vary as the routine specifies. Such variations may be accomplished automatically, semi-automatically or manually. It is also to be appreciated, that other processes and/or devices for specifying the desired mode of the apparatus may be used. Such processes and/or devices include, but are not limited to, push buttons, menus, programmed routines (which may instruct the apparatus to switch between the various modes during a workout routine), externally directed modes (for example, a mode specified by an instructor during a group exercise), or otherwise.
Alternative Embodiments
[101] While the foregoing discussion has been primarily directed to a single embodiment of the present invention, it is to be appreciated that the present invention is not so limited. As discussed in general above, the present invention may be configured to utilize a wide variety of control units, sensors, actuators, inputs, and outputs. More specifically and with particular reference to the control unit and/or data processing aspects of the present invention, it is to be appreciated that a wide range of controllers/processors may be utilized, i some embodiments, a processor/controller may not even be included. As such, the range over which the MCU may operate generally includes essentially "dumb" processors, which may provide little, if any, control functions and/or capabilities and which may be configured to primarily receive data inputs and generate outputs for display to the exerciser, to highly advanced processors, such as those which utilize advanced microprocessor architectures (for example, PENTIUM microprocessors). Such processors may be combined with other devices to provide personal computer like capabilities, features and functions, and may be configured such that such processor(s) may control various if not all of the features, operations and functions of the present invention as discussed hereinabove, as well as provide additional features, functions and/or control capabilities. Thus, it is to be appreciated that the various embodiments of the present invention are not limited to those described herein and that other embodiments may be utilized to control the features, functions and operations of the apparatus.
[102] Further, the various embodiments of the present invention may include a wide variety, quantity, quality, range and type of sensors and/or sensing devices. As discussed above, the present invention may be configured to include practically any sensor that is compatible with a given implementation of the present invention. Such sensors may be configured to monitor various, any and/or all of the features and/or functions of the apparatus. Some of these functions may relate to how an exerciser utilizes and/or enjoys the apparatus. Sensors, for example, may monitor speed, inclination, step height, step depth, impact of the exerciser's foot upon the treads (for example, to determine whether the exerciser steps heavily or lightly and to adjust system performance based thereon), pressure applied by the exerciser to any handles (for example, to determine if the exerciser is "cheating"), heart rate or other biometric indicators of the exerciser's physical condition, stride length (for example, in order to determine whether the treads should be shifted towards or away from the console in order to provide the exerciser with a more optimal and/or comfortable workout), and others. Similarly, sensors may be provided which separately or in a multifaceted role monitor parameters other than those related to the exerciser's experience. Such parameters may include motor hours, shock or hydraulic system use (for example, how many compressions a shock has performed in order to determine when servicing may be needed), and other parameters.
[103] Just as the various embodiments of the present invention may be configured to process inputs provided by a variety of sensor and input devices, such embodiments may also be configured and/or configurable to control a wide range of actuators. As discussed above, one such actuator is the motor, which drives the treads. Other actuators may include, but are not limited to: step height actuators (for example, actuators which adjust the step height and/or the step depth based upon an exerciser's height, a type of desired workout, or the like); tread actuators (for example, actuators which may control the speed, angle, orientation and other aspects of a single or both treads); shock or dampening resistance actuators (for example, electro-magnetic resistive devices, hydraulic, pneumatic and others types of devices may be used to control how quickly or with how much energy a tread will rise or fall); environmental actuators (for example, cooling fans, heaters, audio-visual devices, and others which relate to or concern an exerciser's experience with the apparatus); safety actuators (for example, those winch are designed to prevent injury to an exerciser or others); and other actuators. In short, embodiments of the present invention may be configured with actuators that manually, semi-automatically or automatically control practically any aspect of the operation, configuration, and/or use of the apparatus.
With regard to inputs provided to a control unit(s), inputs may be provided by any of the beforementioned controllers (for example, inputs from a slave or remote control device, such as the TCU), sensors and actuators. Further, inputs may be provided by exercisers. Exerciser inputs, for example, may run the gamut from demographic indicators (e.g., height, weight, age, smoking/non-smoking), to medical history information (for example, whether the exerciser has had a heart attack or has heart disease - thereby providing a greater emphasis upon controlling the workout based upon the exerciser's heart rate, or requiring a longer cool-down period), to workout goals, or other information. Inputs may also be provided by others and/or other devices, systems or processes. For example, various embodiments of the present invention may be configured to operate in a group or class setting wherein an instructor or others specify a goal for the effective tread speed, resistance levels, target heart rate, and others. Such "goals" may or may not be adapted or custom tailored by the MCU in each apparatus as particular exerciser requirements may specify (for example, an apparatus associated with an overweight exerciser in a class may be tailored to operate at a lower starting resistance level (while still increasing or decreasing the resistance levels during the workout, as specified by an instructor) than the instructor or a triathlete in the same class setting may utilize. Further, inputs may be provided by automated systems, such as workout videos which may include triggers in the video signal that indicate to the apparatus when to change a setting for a given actuator. Similarly, inputs may be provided by remote or local computer programs, software routines and other devices. [105] Also, a wide variety of outputs may be provided by various embodiments of the present invention. One embodiment of a User Interface is shown in Fig. 9. As discussed above, output signals to actuators may be provided by the MCU or other processors. Also, output signals to exercisers may be provided in the context of audio, visual, tactile or other signals. Other signals may also be output by the apparatus including performance levels for an apparatus/exerciser. For example, in a group or class setting, such level and exerciser performance level information may be provided to the instructor so as to ensure exercisers do not over or under exert. Similarly, such performance information may be provided to monitoring services. For example, a heart attack patient's performance data (such as workout level, maximum heart rate obtained, average heart rate and the like) may be provided to emergency monitoring services, to doctors or therapists (for patient monitoring), or to others, including the exerciser. Also, equipment performance data may be provided to manufacturers, researchers or others, for example, over a wired or wireless Internet connection, for purposes of assistance with use, troubleshooting, trending and other diagnostic applications.
[106] Utilizing a variety of control, sensor, actuator, input, and/or output possibilities, the various embodiments of the present invention may be configured to support a wide range of settings and operations. For example, an embodiment may be configured to support the switching between the three different modes during a work-out based upon an exerciser or other input. An apparatus may be provided which supports the changing of the horizontal or vertical axis about which a tread pivots, the depth of such pivot, the height of a step and/or other settings. Embodiments may be provided which include cross-talk capabilities between multiple apparatus, for example, using wired or wireless communication links. Embodiments may be provided which support the recording of exerciser performance and/or setting configurations on removable smart cards - such an embodiment may be desirable in gym, hotel or other settings.
Summary
[107] It is to be appreciated that the present invention has been described in detail with respect to certain embodiments and examples. Variations and modifications may exist which are within the scope of the present invention as set forth by the claims, the specification and/or the drawing figures.

Claims

Claims
1. An exercise apparatus comprising: a master control unit; a first sensor, in communication with the master control unit, which generates a first signal indicative of an effective tread speed for the apparatus; and a resistive element that includes at least one resistance level.
2. The exercise apparatus of claim 1 further comprising a data structure containing data indicative of the amount of energy expended for a given resistance level.
3. The exercise apparatus of claim 2, wherein the master control unit accesses the data structure and determines the amount of energy expended based upon at least one of the first signal and at least one resistance level.
4. The exercise apparatus of claim 1 further comprising a second sensor, in communication with the master control unit, which generates at least one second signal with each downward movement of a treadle.
5. The exercise apparatus of claim 4, wherein the master control unit calculates the amount of energy expended based upon the received first and second signals.
6. The exercise apparatus of claim 5, further comprising a data structure containing data indicative of the amount of energy expended for at least one of a given effective tread speed and a given resistance level; and the master control unit utilizes data from the data structure in calculating the amount of energy expended.
7. The exercise apparatus of claim 1 wherein the apparatus includes at least one tread and the resistive element imparts a first force upon the tread in a substantially vertical direction.
8. The exercise apparatus of claim 7 wherein the force imparted by the resistive element counteracts at least a portion if not all of a second force imparted upon the tread by an exerciser.
9. The exercise apparatus of claim 7 wherein the master control unit controls the effective tread speed for each of the at least one treads in a substantially horizontal direction.
10. The exercise apparatus of claim 1 further comprising a tread control unit, in communication with the master control unit, which controls the rotation of at least one tread on the apparatus.
11. The exercise apparatus of claim 10, wherein the master control unit controls the operation of the tread control unit.
12. The exercise apparatus of claim 11, wherein the master control unit controls the operation of the tread control unit based at least upon the first signal.
13. The exercise apparatus of claim 11, wherein the tread control unit further comprises at least one of a D.C. motor and an A.C. motor.
14. The exercise apparatus of claim 1, wherein the apparatus may be configured such that striding, stepping or combined striding and stepping motions are facilitated by the apparatus.
15. The exercise apparatus of claim 14, wherein the master control unit determines whether striding, stepping and/or combined striding and stepping motions are to be facilitated by the apparatus based upon at least one of a desired effective tread speed and a desired resistance level.
16. The exercise apparatus of claim 15, wherein at least one of the desired effective tread speed and the desired resistance level are specified via a user interface.
17. The exercise apparatus of claim 14, wherein the master control unit determines that stepping or combined striding and stepping motions are to be facilitated by the apparatus based upon resistance level.
18. The exercise apparatus of claim 1, wherein the apparatus may be configured to operate as at least one of a treadmill, a stepper and a combined treadmill and stepper.
19. The exercise apparatus of claim 4, wherein the master control unit determines the amount of calories expended based upon the second signal when the first sensor provides a null reading.
20. The exercise apparatus of claim 19, wherein the apparatus is configured in stepping mode.
21. The exercise apparatus of claim 4, wherein the master control unit determines the amount of energy expended based upon the first signal when the second signal provides a null reading.
22. The exercise apparatus of claim 21, wherein the apparatus is configured in treadmill only mode.
23. A system for controlling the operation of an exercise device which may be configured to operate as a treadmill, a stepper, or a combined treadmill and stepper, comprising: a processor; a first sensor, in communication with the processor, for sensing a substantially horizontal motion by a tread in the exercise device and generating a first signal indicative thereof; a second sensor, in communication with the processor, for sensing a substantially vertical motion by the tread and generating a second signal indicative thereof; and a data storage device, containing in a data structure information useful in determining the amount of energy expended based upon the first signal and/or the second signal.
24. The system of claim 23, wherein the processor controls the operation of the exercise device based upon at least one of the first signal and the second signal.
25. The system of claim 23, whereupon receiving the first signal over a given time period, the processor determines an average effective tread speed over the given time period, accesses data from the data structure based upon a resistance level, and based upon the average effective tread speed and the data determines the effort expended over the given time period.
26. An article of manufacture, comprising: a computer usable medium having computer readable program code means embodied therein for selecting a mode for an exercise apparatus, the computer readable program code means further comprising: a computer readable program code means for selecting a treadmill mode; and a computer readable program code means for selecting a stepper mode.
27. The article of manufacture of claim 26, wherein the computer usable medium further comprises a computer readable program code means for selecting a combination striding and stepping mode.
28. An apparatus, comprising: a computer usable medium having computer readable program code means embodied therein for selecting a mode for the apparatus, comprising at least any two of: a computer readable program code means for selecting a treadmill mode; a computer readable program code means for selecting a stepper mode; and a computer readable program code means for selecting a combined treadmill and stepper mode.
29. A control system for an exercise apparatus, comprising: a master control unit; and a memory device for holding a data structure for access by the master control unit, wherein the data structure contains at least one data element utilized in determining the effort exerted during use of the exercise apparatus, wherein the exercise apparatus is configurable into a stepper mode and a treadmill mode.
30. The control system of claim 29 wherein the exercise apparatus is further configurable into a combined stepper and treadmill mode.
31. A program memory or storage device accessible by a processor, tangibly embodying a program of instructions executable by the processor to configure an exercise apparatus into one of a plurality of modes, by: receiving at least one user input signal; and based upon the received user input signal, selecting from one of many exercise modes supported by the exercise apparatus.
32. The program memory or storage device of claim 31 , wherein the many exercise modes supported by the exercise apparatus include a stepper mode and at least one of a treadmill mode and a combined treadmill and stepper mode.
33. A method of determining the energy expended during use of an exercise device having a combined treadmill and stepper function, wherein the exercise machine includes dual treadle assemblies operating at a number of steps per minute and having respective treads operating at an effective tread speed, comprising: receiving a first value indicative of a specified weight; receiving a second value indicative of a resistance setting on the exercise device; receiving a third value indicative of an effective tread speed for the exercise device; receiving at least one fourth value indicative of VO2 expended by a population of exercisers over a range of resistances for the combined treadmill and stepper functions; and calculating calories burned as a function of the first value, the second value, the third value and the at least one fourth value.
34. A method of monitoring a workout on an exercise machine configurable for a treadmill workout or for a stepper workout, wherein the exercise machine includes dual treadle assemblies operating at a number of steps per minute during stepper mode and having respective treads operating at an effective tread speed during treadmill mode, comprising: receiving a first value indicative of a weight; receiving a second value indicative of a resistance level for the exercise machine; selecting either the stepper mode or the treadmill mode as a function of the second value; when treadmill mode is selected: receiving a first signal indicative of an effective tread speed; and calculating calories burned as a function of the first value, the second value, the first signal, and empirical data indicative of VO2 expended by a population of exercisers for the treadmill mode; and when in stepper mode: receiving a second signal indicative of the number of steps per minute accomplished; and calculating calories burned as a function of the first value, the second value, the second signal, and empirical data indicative of VO expended by a population of exercisers for the stepper mode.
PCT/US2004/005837 2003-02-28 2004-02-27 System and method for controlling an exercise apparatus WO2004078270A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200480005227.XA CN1753706B (en) 2003-02-28 2004-02-27 Control the system and method for exercise device
EP04715667A EP1606026A4 (en) 2003-02-28 2004-02-27 System and method for controlling an exercise apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US45089003P 2003-02-28 2003-02-28
US60/450,890 2003-02-28
US60/451,104 2003-02-28
US60/450,789 2003-02-28
US10/789,579 2004-02-26
US10/789,182 US7621850B2 (en) 2003-02-28 2004-02-26 Dual deck exercise device

Publications (2)

Publication Number Publication Date
WO2004078270A2 true WO2004078270A2 (en) 2004-09-16
WO2004078270A3 WO2004078270A3 (en) 2005-01-27

Family

ID=34082973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/005837 WO2004078270A2 (en) 2003-02-28 2004-02-27 System and method for controlling an exercise apparatus

Country Status (3)

Country Link
US (6) US7621850B2 (en)
EP (1) EP1606026A4 (en)
WO (1) WO2004078270A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228304A (en) * 2010-11-18 2013-07-31 松下电器产业株式会社 Drug injection device
US8597161B2 (en) 2010-08-10 2013-12-03 Nautilus, Inc. Motorless treadmill stepper exercise device
CN113332692A (en) * 2021-05-27 2021-09-03 成都大学 Digital immersive interaction device based on artificial intelligence

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689019B2 (en) 2001-03-30 2004-02-10 Nautilus, Inc. Exercise machine
US6461279B1 (en) 2001-07-25 2002-10-08 Hai Pin Kuo Treadmill having dual treads for stepping exercises
US7704191B2 (en) 2003-02-28 2010-04-27 Nautilus, Inc. Dual treadmill exercise device having a single rear roller
US7517303B2 (en) * 2003-02-28 2009-04-14 Nautilus, Inc. Upper body exercise and flywheel enhanced dual deck treadmills
US7621850B2 (en) * 2003-02-28 2009-11-24 Nautilus, Inc. Dual deck exercise device
US7815549B2 (en) * 2003-02-28 2010-10-19 Nautilus, Inc. Control system and method for an exercise apparatus
US7553260B2 (en) * 2003-02-28 2009-06-30 Nautilus, Inc. Exercise device with treadles
US7618346B2 (en) 2003-02-28 2009-11-17 Nautilus, Inc. System and method for controlling an exercise apparatus
US7462134B2 (en) 2003-06-23 2008-12-09 Nautilus, Inc. Variable stride exercise device
US7736278B2 (en) 2003-06-23 2010-06-15 Nautilus, Inc. Releasable connection mechanism for variable stride exercise devices
US7785235B2 (en) 2003-06-23 2010-08-31 Nautilus, Inc. Variable stride exercise device
US7097593B2 (en) * 2003-08-11 2006-08-29 Nautilus, Inc. Combination of treadmill and stair climbing machine
US7645214B2 (en) 2004-02-26 2010-01-12 Nautilus, Inc. Exercise device with treadles
WO2005104660A2 (en) * 2004-05-04 2005-11-10 Yonatan Manor Device and method for regaining balance
US20060003869A1 (en) * 2004-07-02 2006-01-05 Johnson Tech. Co., Ltd. Folding treadmill
US9192810B2 (en) * 2004-09-14 2015-11-24 David Beard Apparatus, system, and method for providing resistance in a dual tread treadmill
US20060287163A1 (en) * 2005-06-20 2006-12-21 Leao Wang Cushioning mechanism for a treadmill
US8118888B2 (en) * 2005-07-15 2012-02-21 Brunswick Corporation Treadmill deck support
US7387598B2 (en) * 2006-02-22 2008-06-17 Miller Curtis J Multifunctional portable pneumatic exercise device
IL175234A (en) * 2006-04-26 2010-05-31 L P T Technologies Ltd Programmable universal exercise device
FI119717B (en) * 2006-05-04 2009-02-27 Polar Electro Oy User-specific performance meter, method, and computer software product
US7731636B2 (en) 2006-05-05 2010-06-08 Nautilus, Inc. Resistance system for an exercise device
US20070281831A1 (en) * 2006-05-31 2007-12-06 Kenton Bicycle Group (Taiwan) Ltd. Treadmill having vibration damping function for its handlebars
JP4823858B2 (en) * 2006-11-01 2011-11-24 本田技研工業株式会社 Mobility performance test equipment
US20080176718A1 (en) * 2007-01-23 2008-07-24 Leao Wang Cushioning mechanism for a treadmill
US20090029831A1 (en) * 2007-03-30 2009-01-29 Nautilus, Inc. Device and method for limiting travel in an exercise device, and an exercise device including such a limiting device
US7771329B2 (en) * 2007-08-31 2010-08-10 Icon Ip, Inc. Strength system with pivoting components
US20090105052A1 (en) * 2007-10-18 2009-04-23 Icon Health And Fitness Inc. Strength training system with folding frame
US20090221405A1 (en) * 2008-03-03 2009-09-03 Leao Wang Shaking mechanism of a treadmill
IL192476A (en) * 2008-06-26 2014-04-30 Painless Stretch Exercise apparatus for mobility recovery and slimming
US8740756B2 (en) 2008-06-26 2014-06-03 Painless Stretch Exercise apparatus for mobility recovery and slimming
USD624975S1 (en) 2009-01-29 2010-10-05 Nautilus, Inc. Exercise apparatus
WO2010107632A1 (en) 2009-03-17 2010-09-23 Woodway Usa, Inc. Power generating manually operated treadmill
US8684890B2 (en) * 2009-04-16 2014-04-01 Caitlyn Joyce Bosecker Dynamic lower limb rehabilitation robotic apparatus and method of rehabilitating human gait
US8152176B2 (en) * 2009-06-25 2012-04-10 Sbyke Usa Llc Truck assembly
US7717830B1 (en) * 2009-10-01 2010-05-18 Dynamic Fitness Equipment, Llc Exercise device
DE202009017334U1 (en) * 2009-12-21 2010-04-08 Teo Industriedesign Gmbh Treadmill for a treadmill trainer
WO2011094649A1 (en) * 2010-01-28 2011-08-04 Rick Farnsworth Treadmill resistance training apparatus
DE102010012676A1 (en) * 2010-03-24 2011-09-29 Helmut Frey Device for muscle stimulation
US7901332B1 (en) * 2010-05-21 2011-03-08 Shoi-Lien Wen Multi-function exercise equipment
US9764187B1 (en) * 2010-11-30 2017-09-19 Kenneth W Stearns Exercise methods and apparatus
TWM418704U (en) * 2011-03-11 2011-12-21 Chi Hua Fitness Co Ltd Muscle strength training control device by combining motor with beam type load transducer
US9131813B2 (en) * 2011-04-20 2015-09-15 Topseat International, Inc. Laminar toilet lid with display cavity
US9044630B1 (en) * 2011-05-16 2015-06-02 David L. Lampert Range of motion machine and method and adjustable crank
US8721504B2 (en) * 2011-08-03 2014-05-13 Leao Wang Cushioning mechanism of a treadmill
US9168418B2 (en) * 2011-12-30 2015-10-27 Lawrence G. Adamchick Portable physical therapy/rehabilitation/exercise device, system and method
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
WO2013138377A1 (en) * 2012-03-12 2013-09-19 Core Industries, Llc Apparatus, system, and method for dual tread treadmill improvements
CN104245056B (en) * 2012-04-23 2016-03-30 艾肯运动与健康公司 For simulating the exercise system of outdoor terrain
US8430796B1 (en) * 2012-05-29 2013-04-30 Mary Anne Tarkington Exercise devices and methods for exercising an ankle, foot, and/or leg
US8829376B2 (en) * 2012-07-12 2014-09-09 Paradigm Inc. Control panel for fitness equipment
US9636896B2 (en) 2012-07-31 2017-05-02 Topseat International, Inc. Method and apparatus for toilet seat with three-dimensional image and smooth surface
US9849333B2 (en) * 2012-08-31 2017-12-26 Blue Goji Llc Variable-resistance exercise machine with wireless communication for smart device control and virtual reality applications
US8979712B2 (en) * 2012-10-21 2015-03-17 Yuan-Hung Lo Leg exerciser
US20140274577A1 (en) * 2013-03-12 2014-09-18 David Beard Apparatus, system, and method for dual tread treadmill improvements
WO2014153158A1 (en) 2013-03-14 2014-09-25 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US20140274579A1 (en) * 2013-03-14 2014-09-18 Icon Health & Fitness, Inc. Treadmills with adjustable decks and related methods
KR101463757B1 (en) * 2013-05-10 2014-11-21 홍봉필 Multi-Functional Slide Exercise Apparatus
WO2015065948A1 (en) * 2013-10-28 2015-05-07 Arizona Board Of Regents On Behalf Of Arizona State University Variable stiffness treadmill system
EP3623020A1 (en) 2013-12-26 2020-03-18 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US9907994B1 (en) * 2014-01-02 2018-03-06 Joseph D Maresh Treadmill with folding overhead handlebar assembly
US9474928B1 (en) * 2014-01-02 2016-10-25 Joseph D Maresh Treadmill with folding overhead handlebar assembly
US10207143B2 (en) * 2014-01-30 2019-02-19 Icon Health & Fitness, Inc. Low profile collapsible treadmill
US10433612B2 (en) 2014-03-10 2019-10-08 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9364706B2 (en) * 2014-05-20 2016-06-14 Dk City Corporation Treadmill
CN106470739B (en) 2014-06-09 2019-06-21 爱康保健健身有限公司 It is incorporated to the funicular system of treadmill
US9586089B2 (en) 2014-06-17 2017-03-07 Lagree Technologies, Inc. Exercise machine adjustable resistance system and method
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US9555863B2 (en) * 2014-06-27 2017-01-31 Flydive, Inc. Easy maintenance flying board
EP2977086B1 (en) * 2014-07-25 2019-02-27 Technogym S.p.A. Curved treadmill
US10252102B2 (en) 2014-11-07 2019-04-09 Fitness Cubed Inc. Portable elliptical exercise machine, resistance band extension, and transport mechanism
US10569124B2 (en) 2014-11-07 2020-02-25 Fitness Cubed Inc. Portable elliptical exercise machine, resistance band extension, and transport mechanism
CN106232186B (en) 2014-11-07 2019-07-26 健身器械组合公司 Portable ellipse exercise machine
US11305153B2 (en) 2014-11-07 2022-04-19 Fitness Cubed Inc. Portable elliptical exercise machine and transport mechanism
US9675839B2 (en) * 2014-11-26 2017-06-13 Icon Health & Fitness, Inc. Treadmill with a tensioning mechanism for a slatted tread belt
US10258828B2 (en) 2015-01-16 2019-04-16 Icon Health & Fitness, Inc. Controls for an exercise device
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
TWI549719B (en) * 2015-03-06 2016-09-21 岱宇國際股份有限公司 Treadmill
US20160287929A1 (en) * 2015-04-02 2016-10-06 Bachar Corporation Treadmill extender
US10792538B2 (en) 2015-06-12 2020-10-06 Lagree Technologies, Inc. Bioelectrical signal controlled exercise machine system
US9737138B1 (en) 2015-06-29 2017-08-22 Brunswick Corporation Workstation apparatus and method with converging treadmills
USD769381S1 (en) * 2015-06-29 2016-10-18 Brunswick Corporation Convergent treadmill desk
USD770576S1 (en) * 2015-06-29 2016-11-01 Brunswick Corporation Convergent treadmill desk
USD769989S1 (en) * 2015-06-29 2016-10-25 Brunswick Corporation Convergent treadmill desk
US9776031B2 (en) * 2015-07-07 2017-10-03 Wei-Teh Ho Torsion based exerciser
TWM512426U (en) * 2015-08-11 2015-11-21 Cian-Chang Zeng Fitness bike with pulling force training function
US10953305B2 (en) 2015-08-26 2021-03-23 Icon Health & Fitness, Inc. Strength exercise mechanisms
US10940360B2 (en) 2015-08-26 2021-03-09 Icon Health & Fitness, Inc. Strength exercise mechanisms
TWI644702B (en) 2015-08-26 2018-12-21 美商愛康運動與健康公司 Strength exercise mechanisms
WO2017062504A1 (en) 2015-10-06 2017-04-13 Woodway Usa, Inc. Manual treadmill and methods of operating the same
USD795974S1 (en) * 2016-01-22 2017-08-29 Nautilus, Inc. Handle
USD795975S1 (en) * 2016-01-22 2017-08-29 Nautilus, Inc. Handle
USD795973S1 (en) * 2016-01-22 2017-08-29 Nautilus, Inc. Handle for exercise machine
CN205339968U (en) * 2016-02-01 2016-06-29 张烝诚 Dispose improvement formula exerciser of horizontal flywheel
US10293211B2 (en) 2016-03-18 2019-05-21 Icon Health & Fitness, Inc. Coordinated weight selection
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10561894B2 (en) 2016-03-18 2020-02-18 Icon Health & Fitness, Inc. Treadmill with removable supports
US10441840B2 (en) 2016-03-18 2019-10-15 Icon Health & Fitness, Inc. Collapsible strength exercise machine
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10252109B2 (en) 2016-05-13 2019-04-09 Icon Health & Fitness, Inc. Weight platform treadmill
US10471299B2 (en) 2016-07-01 2019-11-12 Icon Health & Fitness, Inc. Systems and methods for cooling internal exercise equipment components
US10441844B2 (en) 2016-07-01 2019-10-15 Icon Health & Fitness, Inc. Cooling systems and methods for exercise equipment
CA3029593C (en) 2016-07-01 2022-08-09 Woodway Usa, Inc. Motorized treadmill with motor braking mechanism and methods of operating same
US20180133545A1 (en) * 2016-08-19 2018-05-17 Eduardo M. Marti Ankle Range of Motion Improving Device
US10369449B2 (en) 2016-09-02 2019-08-06 True Fitness Technology, Inc. Braking systems for exercise machines
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
US10500473B2 (en) 2016-10-10 2019-12-10 Icon Health & Fitness, Inc. Console positioning
US10207148B2 (en) 2016-10-12 2019-02-19 Icon Health & Fitness, Inc. Systems and methods for reducing runaway resistance on an exercise device
US10918905B2 (en) * 2016-10-12 2021-02-16 Icon Health & Fitness, Inc. Systems and methods for reducing runaway resistance on an exercise device
US10376736B2 (en) 2016-10-12 2019-08-13 Icon Health & Fitness, Inc. Cooling an exercise device during a dive motor runway condition
US10661114B2 (en) 2016-11-01 2020-05-26 Icon Health & Fitness, Inc. Body weight lift mechanism on treadmill
TWI646997B (en) 2016-11-01 2019-01-11 美商愛康運動與健康公司 Distance sensor for console positioning
US10625114B2 (en) 2016-11-01 2020-04-21 Icon Health & Fitness, Inc. Elliptical and stationary bicycle apparatus including row functionality
CN106362357A (en) * 2016-11-30 2017-02-01 青岛英派斯健康科技股份有限公司 Self-weight treadmill and wheel set thereof
TWI680782B (en) 2016-12-05 2020-01-01 美商愛康運動與健康公司 Offsetting treadmill deck weight during operation
WO2018128891A1 (en) * 2017-01-03 2018-07-12 Engen Fitness, Inc. Guided movement exercise machine
WO2018129074A1 (en) 2017-01-03 2018-07-12 True Fitness Technology, Inc. Mechanical braking system for exercise machines
US10668316B2 (en) * 2017-02-14 2020-06-02 Bioness Inc. Methods and apparatus for body weight support system
US11266893B2 (en) 2017-05-05 2022-03-08 Surefooted Llc Physical therapy apparatus and method of use
US11938377B2 (en) 2017-05-05 2024-03-26 Surefooted Llc Physical therapy apparatus and method of use
AU2018261004A1 (en) * 2017-05-05 2019-12-12 Surefooted Llc Physical therapy apparatus and method of use
US9987188B1 (en) * 2017-05-10 2018-06-05 Purdue Research Foundation Method and system for body weight support
US10857421B2 (en) 2017-05-31 2020-12-08 Nike, Inc. Treadmill with dynamic belt tensioning mechanism
US10918904B2 (en) 2017-05-31 2021-02-16 Nike, Inc. Treadmill with vertically displaceable platform
US11465012B2 (en) * 2017-06-16 2022-10-11 Core Health & Fitness, Llc Apparatus, system, and method for a flexible treadmill deck
WO2018236945A1 (en) * 2017-06-23 2018-12-27 U Treadmill Llc Foldable portable treadmill
TWI744546B (en) 2017-08-16 2021-11-01 美商愛康運動與健康公司 Systems for providing torque resisting axial impact
CN107596630A (en) * 2017-09-29 2018-01-19 珠海市领创智能物联网研究院有限公司 A kind of Internet of Things Electronic Control smart home sports apparatus
US10729965B2 (en) 2017-12-22 2020-08-04 Icon Health & Fitness, Inc. Audible belt guide in a treadmill
US11338188B2 (en) 2018-01-18 2022-05-24 True Fitness Technology, Inc. Braking mechanism for a self-powered treadmill
CA2992675A1 (en) * 2018-01-23 2019-07-23 Sebastien Lajoie The sky helper and the sky will help you
DE102018102179A1 (en) * 2018-01-31 2019-08-01 ReActive Robotics GmbH Relief system for at least partial relief of the body weight of a person
CA3092212A1 (en) 2018-02-26 2019-08-29 Ts Medical Llc Devices and methods for exercising an ankle, foot, and/or leg
US11638852B2 (en) 2018-04-06 2023-05-02 TS Medical, LLC Portable devices for exercising muscles in the ankle, foot, and/or leg, and related methods
US10898753B2 (en) * 2018-05-31 2021-01-26 Board Of Regents, The University Of Texas System Treadmills having adjustable surface stiffness
CA3055361A1 (en) 2018-09-14 2020-03-14 Mary Anne Tarkington Portable devices for exercising muscles in the ankle, foot, and/or leg, and related methods
US10343011B1 (en) * 2018-10-02 2019-07-09 Genevieve Zillich Portable balancing platform
CN109011394B (en) * 2018-10-09 2023-12-26 孙权 Unpowered autonomous running machine
TWM576069U (en) * 2018-11-12 2019-04-01 翰陽開發股份有限公司 Treadmill
US10994168B2 (en) 2018-12-04 2021-05-04 Lagree Technologies, Inc. Exercise machine with resistance selector system
CN109701213A (en) * 2019-01-09 2019-05-03 广东朗硕健身器材有限公司 Electric treadmill
USD930089S1 (en) 2019-03-12 2021-09-07 Woodway Usa, Inc. Treadmill
JP7052762B2 (en) * 2019-03-15 2022-04-12 トヨタ自動車株式会社 Balance training device and control program for balance training device
GB2583138B (en) * 2019-04-18 2021-11-10 Edward Delves Crisp Charles Treadmill deck
JP6771075B1 (en) * 2019-07-01 2020-10-21 上銀科技股▲分▼有限公司 Gait trainer and how to use it
WO2021061753A1 (en) * 2019-09-24 2021-04-01 Woodway Usa, Inc. Systems and methods for restricting transverse movement of a treadmill belt
JP7287238B2 (en) * 2019-10-16 2023-06-06 トヨタ自動車株式会社 Gait training system and method of operation
JP7294052B2 (en) * 2019-10-16 2023-06-20 トヨタ自動車株式会社 Gait training system and method of operation
JP7251439B2 (en) * 2019-10-16 2023-04-04 トヨタ自動車株式会社 Gait training system, device, and method of operation
US11389683B2 (en) * 2019-11-26 2022-07-19 Gregory C. McCalester Gymnastics swing shape trainer
US11090559B2 (en) * 2019-12-31 2021-08-17 Logitech Europe S.A. Gaming pedal assembly
USD961023S1 (en) 2020-02-12 2022-08-16 TS Medical, LLC Excercise device
US11478395B2 (en) * 2020-04-23 2022-10-25 Sheila Thelen Vestibular training apparatus and method of use
US11058908B2 (en) * 2020-07-22 2021-07-13 David McCann Weight training apparatus
USD1012207S1 (en) 2020-08-12 2024-01-23 TS Medical, LLC Exercise device
USD999144S1 (en) 2021-03-31 2023-09-19 Clmbr1, Llc. Display console
USD1006149S1 (en) 2021-03-31 2023-11-28 Clmbr1, Llc. Handle for climbing exercise machine
CN114129968B (en) * 2021-12-02 2022-07-15 新疆维吾尔自治区人民医院 Foldable lower limb rehabilitation instrument convenient to carry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336146A (en) 1993-12-15 1994-08-09 Piaget Gary D Treadmill with dual reciprocating treads

Family Cites Families (413)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US347101A (en) 1886-08-10 Sash-lock
US219439A (en) 1879-09-09 Improvement in passive-motion walking-machines
US3127171A (en) * 1964-03-31 figure
US326247A (en) 1885-02-16 1885-09-15 Exercising-machine
US782010A (en) * 1902-12-27 1905-02-07 Stair Lift Company Moving stair-lift.
US783769A (en) * 1904-05-20 1905-02-28 Philip Engelskirger Movable stairway.
US834461A (en) 1906-03-29 1906-10-30 Andrew A Fair End-gate fastening.
US881521A (en) * 1906-12-24 1908-03-10 Stephen G Wilson Mechanical chair.
US1020777A (en) * 1909-07-26 1912-03-19 John Peterson Music-bench.
US964898A (en) * 1910-03-17 1910-07-19 Theodor Buedingen Movement-cure apparatus.
US1015071A (en) * 1911-08-28 1912-01-16 Robert Reach Gymnasium rowing apparatus.
US1082940A (en) * 1913-03-01 1913-12-30 Sharp & Smith Exercising appliance.
US1652102A (en) 1925-05-05 1927-12-06 Frank E Elmer Hinge construction
US1850530A (en) * 1929-05-10 1932-03-22 George K Brown Exercising apparatus
US2037492A (en) 1930-02-03 1936-04-14 Albert W Arnold Valve for pneumatic engines
US1902694A (en) * 1932-02-08 1933-03-21 Reid A Edwards Gymnastic apparatus
US2017128A (en) * 1934-09-12 1935-10-15 Jr Frank O'neill Exercising device
US2117957A (en) * 1937-03-05 1938-05-17 Harry C Ritter Exercising device
US2434760A (en) 1945-02-12 1948-01-20 Standard Conveyor Co Conveyor
US2538980A (en) 1947-05-23 1951-01-23 North American Aviation Inc Closure operator and lock
US2512904A (en) * 1947-09-12 1950-06-27 Andrew J Strelecky Foot exerciser
US2661973A (en) 1950-07-27 1953-12-08 Illinois Railway Equipment Co Retaining means for doors and the like
US3022433A (en) * 1955-08-27 1962-02-20 Ferranti Albino Motor-flywheel unit
US2941834A (en) 1956-05-25 1960-06-21 Greer Marine Corp Locking mechanism
US2969060A (en) 1959-07-13 1961-01-24 Howard F Swanda Exercising machine
US3295847A (en) * 1964-07-07 1967-01-03 Sr Albert R Matt Exercising device
US3427019A (en) * 1964-09-08 1969-02-11 George J Brown Spring-biased jumping device
BE664190A (en) * 1965-05-19 1965-09-16
US3464601A (en) 1965-10-24 1969-09-02 Ferdinand Christensen Method of and machine for automatically continuously making ribbon bows
US3408067A (en) * 1966-05-19 1968-10-29 Raymond E. Armstrong Sking simulator device
US3497215A (en) * 1967-04-03 1970-02-24 Univ Johns Hopkins Exercise escalator
US3511500A (en) 1967-04-14 1970-05-12 Michael J Dunn Constant resistance exercise device
US3437180A (en) 1967-06-27 1969-04-08 Universal Railway Devices Co Two-way automatic brake adjuster
US3501140A (en) * 1968-01-02 1970-03-17 George J Eichorn Combined collapsible physical fitness apparatus including a horizontal bar and other exercising devices
US3512619A (en) 1968-05-31 1970-05-19 Cardwell Westinghouse Co Two way automatic brake adjuster
US3559986A (en) * 1968-06-06 1971-02-02 Harry C Ehrmantraut Rollably mounted dollies for leg exercises
AT299038B (en) * 1968-09-10 1972-06-12 Franz Kuelkens Exercise device for sports purposes
US3580340A (en) * 1968-10-25 1971-05-25 David N Brown Electronic marker actuator
US3643943A (en) * 1969-07-28 1972-02-22 Curtis L Erwin Jr Exerciser with work-indicating mechanism
US3642279A (en) * 1970-02-11 1972-02-15 John W Cutter Treadmill jogger
US3650529A (en) * 1970-03-02 1972-03-21 Vincent A Salm Treadmill exercising device
US3637206A (en) * 1970-03-16 1972-01-25 Kenton Chickering Endless belt exerciser with accelerating and decelerating tread surfaces
US3659845A (en) 1970-04-10 1972-05-02 Quinton Instr Exercise treadmill and belt support apparatus
US3647209A (en) * 1970-05-15 1972-03-07 Jack La Lanne Weight lifting type exercising device
US3711090A (en) * 1970-06-08 1973-01-16 Fiedler H Conveor belt and system having low friction contact surfaces
GB1350068A (en) 1970-06-23 1974-04-18 Stewart J S S Physiotherapy control device
US3765245A (en) 1970-12-31 1973-10-16 Jaeger E Dynamo ergometer
US3747924A (en) 1971-08-30 1973-07-24 E Champoux Out-of-phase pedals oscillated exercising device
US3709487A (en) * 1971-09-13 1973-01-09 W Walker Compact and storable exercising apparatus
US3711812A (en) * 1971-11-29 1973-01-16 Del Mar Eng Lab Drive and control system for diagnostic and therapeutic exercise treadmill
US3770267A (en) 1972-03-08 1973-11-06 Carthy M Mc Exercising machine having plural exercising implements thereon
US3848467A (en) 1972-07-10 1974-11-19 E Flavell Proportioned resistance exercise servo system
US3792860A (en) * 1972-10-17 1974-02-19 A Selnes Pivotal platform training apparatus with selectively connectible components
US3846704A (en) 1972-12-13 1974-11-05 R Bessette Apparatus for evaluating athletic performance
US3814420A (en) 1973-04-09 1974-06-04 J Encke Exercise device
US3844431A (en) 1973-05-18 1974-10-29 B Crawford Unloader mechanism for a handtruck
US3826491A (en) * 1973-06-18 1974-07-30 Del Mar Eng Lab Exercise treadmill
US3870297A (en) * 1973-06-18 1975-03-11 Del Mar Eng Lab Exercise treadmill with inclination controlled chair mounted thereon
DE2408052C3 (en) 1974-02-20 1978-04-13 Suspa-Federungstechnik Fritz Bauer & Soehne Ohg, 8503 Altdorf Length-adjustable gas spring
US3970302A (en) 1974-06-27 1976-07-20 Mcfee Richard Exercise stair device
US4334676A (en) * 1974-10-11 1982-06-15 Wilhelm Schonenberger Movable surface apparatus, particularly for physical exercise and training
US4066257A (en) * 1975-11-07 1978-01-03 Moller Bynum W Treadmill exercising device
CH603178A5 (en) * 1975-11-21 1978-08-15 Rudolf Ch Buchmann
US4063726A (en) 1976-04-26 1977-12-20 Wilson Robert J Electronically controlled hydraulic exercising system
US4072309A (en) * 1976-06-21 1978-02-07 Wilson Jerry Lee Multi-purpose exercise device
US4061460A (en) 1976-07-06 1977-12-06 John George Pedal powered potter's wheel
US4126326A (en) * 1976-09-15 1978-11-21 Phillips Marjorie E Training roll-on ball with balancing supports
JPS53140777A (en) * 1977-03-18 1978-12-08 Martelli G Apparatus for taking out semiirigid sheettshaped element and send it to conveyer
US4408183A (en) 1977-06-06 1983-10-04 Wills Thomas A Exercise monitoring device
US4248476A (en) * 1978-12-11 1981-02-03 Phelps Melvin B Convertible seat assembly
US4204673A (en) 1978-12-14 1980-05-27 Speer John Sr Dual-tread exerciser
US4274625A (en) * 1978-12-26 1981-06-23 Salvatore Gaetano Exercising apparatus
US4406451A (en) * 1978-12-26 1983-09-27 Salvatore Gaetano Collapsible bidirectional jogging apparatus
AU537298B2 (en) * 1979-02-15 1984-06-14 Diversified Products Corporation Exercising apparatus
US4369966A (en) * 1979-02-15 1983-01-25 Diversified Products Corporation Folding exercising apparatus
US4185622A (en) * 1979-03-21 1980-01-29 Swenson Oscar J Foot and leg exerciser
US4319747A (en) * 1979-08-27 1982-03-16 Rogers J Frank Convertible exercise bench and accessory apparatus
US4323237A (en) 1979-08-30 1982-04-06 Coats And Clark, Inc. Adaptive exercise apparatus
US4347993A (en) 1979-11-06 1982-09-07 W. J. Industries, Incorporated Tension monitor means and system
US4342452A (en) * 1980-01-25 1982-08-03 Summa H Wayne Treadmill device
DE3011404C2 (en) 1980-03-25 1985-07-11 Hermann Josef 5521 Ferschweiler Becker Strength sports training device for training human muscle strength
US4576352A (en) * 1980-08-05 1986-03-18 Ajay Enterprises Corp. Exercise treadmill
US4374587A (en) * 1980-08-05 1983-02-22 Ralph Ogden Exercise treadmill
US4344616A (en) * 1980-08-05 1982-08-17 Ralph Ogden Exercise treadmill
US4358105A (en) 1980-08-21 1982-11-09 Lifecycle, Inc. Programmed exerciser apparatus and method
US4370766A (en) * 1980-12-04 1983-02-01 Murphy Door Bed Company, Inc. Panel bed and counterbalancing mechanism for panel bed
US4423864A (en) * 1981-10-13 1984-01-03 Wiik Sven E Angularly adjustable ski deck
US4429871A (en) * 1981-11-12 1984-02-07 Amf Incorporated Hydraulic exerciser
US4492375A (en) * 1982-08-16 1985-01-08 Contractor Equipment Manufacturers, Inc. Resilient type exercising device with removable weights
US4502679A (en) * 1982-09-21 1985-03-05 Fred De Lorenzo Motorized variable speed treadmill
US4726583A (en) * 1983-04-14 1988-02-23 Olsen Controls, Inc. Passive hydraulic resistance system
US4563001A (en) * 1983-12-16 1986-01-07 Juris Terauds Portable exercising device
US4555108A (en) 1984-03-12 1985-11-26 Monteiro Frank G Exercising and physical-conditioning apparatus
US4720093A (en) * 1984-06-18 1988-01-19 Del Mar Avionics Stress test exercise device
SU1265113A1 (en) 1984-07-12 1986-10-23 Одесское Специальное Конструкторско-Технологическое Бюро Продовольственного Машиностроения Conveyer
US4572500A (en) * 1984-07-23 1986-02-25 Eugene Weiss Rowing exercise device
JPS6176130A (en) * 1984-09-25 1986-04-18 株式会社 シルバ−メデイカル Optimum motion load apparatus
US4645197A (en) * 1984-09-26 1987-02-24 Mcfee Richard Bounce board exerciser
US4592544A (en) 1984-10-09 1986-06-03 Precor Incorporated Pedal-operated, stationary exercise device
US4533136A (en) 1984-10-09 1985-08-06 Precor Incorporated Pedal-operated, stationary exercise device
US4635927A (en) * 1985-03-04 1987-01-13 Del Mar Avionics Low power treadmill
US4643418A (en) * 1985-03-04 1987-02-17 Battle Creek Equipment Company Exercise treadmill
US4659074A (en) * 1985-03-14 1987-04-21 Landice Products, Inc. Passive-type treadmill having an improved governor assembly and an electromagnetic speedometer integrated into the flywheel assembly
US4635928A (en) * 1985-04-15 1987-01-13 Ajax Enterprises Corporation Adjustable speed control arrangement for motorized exercise treadmills
US4645200A (en) * 1985-05-28 1987-02-24 Hix William R Isometric exercising device
GB8521538D0 (en) * 1985-08-29 1985-10-02 Sheppard J H Exercising machines
US4659077A (en) * 1985-09-30 1987-04-21 Fitness Quest, Inc. Exercise device
US4729558A (en) * 1985-10-11 1988-03-08 Kuo Hai P Running exerciser
US4673177A (en) 1985-11-12 1987-06-16 Excelsior Fitness Equipment Co. Resistance freewheel mechanism
GB2184361B (en) 1985-12-20 1989-10-11 Ind Tech Res Inst Automatic treadmill
US5117170A (en) 1985-12-23 1992-05-26 Life Fitness Motor control circuit for a simulated weight stack
US4747612A (en) * 1986-03-26 1988-05-31 Deere & Company Quick attach coupling
US4813667A (en) 1986-05-08 1989-03-21 Weslo, Inc. Multipurpose exerciser
US5622527A (en) 1986-05-08 1997-04-22 Proform Fitness Products, Inc. Independent action stepper
US4796881A (en) * 1986-05-08 1989-01-10 Weslo, Inc. Multipurpose exercising apparatus
US5062627A (en) 1991-01-23 1991-11-05 Proform Fitness Products, Inc. Reciprocator for a stepper exercise machine
US4733858A (en) * 1986-05-23 1988-03-29 Lan Chuang S Multi-purpose exerciser
US4743011A (en) 1986-07-07 1988-05-10 Calvin Coffey Exercise rowing machine
US4708338A (en) 1986-08-04 1987-11-24 Potts Lanny L Stair climbing exercise apparatus
US4684121A (en) 1986-11-05 1987-08-04 Nestegard Sander C Multiple exercise unit
US4786050A (en) 1986-11-06 1988-11-22 Geschwender Robert C Exercise machine
US5020794A (en) 1987-01-16 1991-06-04 Bally Manufacturing Corporation Motor control for an exercise machine simulating a weight stack
US4805901A (en) * 1987-04-09 1989-02-21 Kulick John M Collapsible exercise device
US4938475A (en) 1987-05-26 1990-07-03 Sargeant Bruce A Bicycle racing training apparatus
US4842268A (en) * 1987-08-07 1989-06-27 Bellwether, Inc. Exercise machine
US4976424A (en) 1987-08-25 1990-12-11 Schwinn Bicycle Company Load control for exercise device
US4798377A (en) 1987-11-16 1989-01-17 White James P Bicycle handle bar grip with exercise
DE3839391C2 (en) * 1987-11-25 1994-06-16 Stearns Mcgee Inc Running exercise machine
US4900013A (en) 1988-01-27 1990-02-13 Rodgers Jr Robert E Exercise apparatus
US4940233A (en) 1988-02-19 1990-07-10 John Bull Aerobic conditioning apparatus
US5054770B1 (en) 1988-04-13 1995-07-18 John W Bull Shock-free aerobic and anaerobic exercising machine for use in the standing position
US4830362A (en) * 1988-04-13 1989-05-16 Bull John W Full body, shock-free aerobic and anaerobic exercising machine for use in the standing position
US5002271A (en) * 1988-05-17 1991-03-26 Gonzales Ike T Portable leg exerciser
US4923193A (en) 1988-09-30 1990-05-08 Bioform Engineering, Inc. Upper and lower body exerciser
US5192255B1 (en) 1988-10-12 1995-01-31 Citicorp North America Inc Adjustable incline system for exercise equipment
USD313826S (en) * 1988-10-12 1991-01-15 Precor Incorporated Exercise treadmill
US5135447A (en) * 1988-10-21 1992-08-04 Life Fitness Exercise apparatus for simulating stair climbing
US4838543A (en) * 1988-10-28 1989-06-13 Precor Incorporated Low impact exercise equipment
US4938474A (en) 1988-12-23 1990-07-03 Laguna Tectrix, Inc. Exercise apparatus and method which simulate stair climbing
US5000440A (en) * 1989-01-03 1991-03-19 Lynch Robert P Treadmill exercise device combined with weight load
US4998725A (en) * 1989-02-03 1991-03-12 Proform Fitness Products, Inc. Exercise machine controller
US5512025A (en) * 1989-02-03 1996-04-30 Icon Health & Fitness, Inc. User-programmable computerized console for exercise machines
US4905330A (en) * 1989-02-23 1990-03-06 Jacobs Lawrence I Combination furniture and exercise device
US5081991A (en) * 1989-03-14 1992-01-21 Performance Predictions, Inc. Methods and apparatus for using nuclear magnetic resonance to evaluate the muscle efficiency and maximum power of a subject during locomotion
CA2018219C (en) * 1989-06-19 1998-03-24 Richard E. Skowronski Exercise treadmill
US5484362A (en) * 1989-06-19 1996-01-16 Life Fitness Exercise treadmill
US6923746B1 (en) * 1989-06-19 2005-08-02 Brunswick Corporation Exercise treadmill
US4949993A (en) 1989-07-31 1990-08-21 Laguna Tectrix, Inc. Exercise apparatus having high durability mechanism for user energy transmission
US5190505A (en) 1989-11-06 1993-03-02 Proform Fitness Products, Inc. Stepper exerciser
US5058882A (en) 1990-02-20 1991-10-22 Proform Fitness Products, Inc. Stepper exerciser
US5184988A (en) * 1990-01-10 1993-02-09 Precor Incorporated Exercise treadmill
US4989858A (en) * 1990-01-29 1991-02-05 Cardio-Fit, Inc. Apparatus for exercising both arms and legs
USD326491S (en) 1990-01-31 1992-05-26 Dalebout William T Stepping exercise machine
DE4003154A1 (en) * 1990-02-03 1991-08-08 Bosch Gmbh Robert TRANSFER DEVICE FOR FLAT OBJECTS
US5088729A (en) * 1990-02-14 1992-02-18 Weslo, Inc. Treadmill frame and roller bracket assembly
US5279528A (en) * 1990-02-14 1994-01-18 Proform Fitness Products, Inc. Cushioned deck for treadmill
US5149084A (en) * 1990-02-20 1992-09-22 Proform Fitness Products, Inc. Exercise machine with motivational display
US5110117A (en) * 1990-02-27 1992-05-05 Glen Henson Treadmill with pivoting handles
US5039088A (en) * 1990-04-26 1991-08-13 Shifferaw Tessema D Exercise machine
US5100127A (en) * 1990-06-18 1992-03-31 Melnick Dennis M Physical exercise treadmill for quadrupeds
US5254067A (en) * 1990-06-21 1993-10-19 Pacific Fitness Corporation Recumbent leg exerciser
US5092581A (en) 1990-07-02 1992-03-03 Michael Koz Rowing exercise apparatus
US5145481A (en) 1990-07-10 1992-09-08 Fitness Master, Inc. Ski exercise machine
US5085426A (en) * 1990-07-30 1992-02-04 Precor Incorporated Integrated drive and elevation system for exercise apparatus
US5129873A (en) 1990-07-30 1992-07-14 Precor Incorporated Exercise apparatus
US5129872A (en) 1991-03-15 1992-07-14 Precor Incorporated Exercise apparatus
US5139255A (en) * 1990-09-10 1992-08-18 Sollami Phillip A Exercise machine
US5183449A (en) * 1990-10-03 1993-02-02 Decloux Richard J Die cast system for control of stair climbing exercise device
US5114390A (en) * 1990-11-09 1992-05-19 Tribelhorn Jr Victor E Sheep treadmill
EP0485981B1 (en) 1990-11-15 1995-03-15 Combi Corporation Step-type training machine and control method
US5071115A (en) 1990-11-19 1991-12-10 Welch Robert M Exercise device for simulating walking and stair climbing
US5048821A (en) * 1990-11-23 1991-09-17 Kuo Liang Wang Stepping exerciser step plates link motion mechanism
US5195935A (en) 1990-12-20 1993-03-23 Sf Engineering Exercise apparatus with automatic variation of provided passive and active exercise without interruption of the exercise
US5207621A (en) * 1991-02-07 1993-05-04 Integral Products Stair climbing exercise machine
US5180353A (en) * 1991-02-07 1993-01-19 Csa, Inc. Hydraulic resistive apparatus for exercise equipment
US5238462A (en) 1991-02-20 1993-08-24 Life Fitness Stair climbing exercise apparatus utilizing drive belts
US5318490A (en) 1991-03-15 1994-06-07 Precor Incorporated Exercise apparatus
US5192257A (en) 1991-07-10 1993-03-09 Fittraxx, Inc. Exercise apparatus
US5078389A (en) * 1991-07-19 1992-01-07 David Chen Exercise machine with three exercise modes
US5267923A (en) 1991-07-24 1993-12-07 Gary Piaget Reciprocating bellows operated exercise machine
US5090690A (en) * 1991-09-10 1992-02-25 Kelvin Huang Exercise mechanism
US5290205A (en) * 1991-11-08 1994-03-01 Quinton Instrument Company D.C. treadmill speed change motor controller system
US5162029A (en) 1992-01-31 1992-11-10 G. David Schine Apparatus for teaching downhill skiing on a simulated ski slope
US5163888A (en) 1992-02-25 1992-11-17 Stearns Kenneth W Exercise apparatus
US5282992A (en) * 1992-04-07 1994-02-01 Betz Laboratories, Inc. Lubricating metal cleaner additive
US5226866A (en) * 1992-05-01 1993-07-13 Nordictrack, Inc. Trimodal exercise apparatus
US5492517A (en) * 1992-05-01 1996-02-20 Nordictrack, Inc. Exercise device
US5318487A (en) 1992-05-12 1994-06-07 Life Fitness Exercise system and method for managing physiological intensity of exercise
US5403252A (en) 1992-05-12 1995-04-04 Life Fitness Exercise apparatus and method for simulating hill climbing
US5385520A (en) * 1992-05-28 1995-01-31 Hockey Acceleration, Inc. Ice skating treadmill
US5277677A (en) * 1992-05-29 1994-01-11 Juris Terauds Stepping exercise machine
US5188577A (en) * 1992-07-13 1993-02-23 Young Gary B Apparatus for total body exercise
US5320588A (en) * 1992-07-23 1994-06-14 Precor Incorporated Independent action exercise apparatus with adjustably mounted linear resistance devices
US5199934A (en) * 1992-08-12 1993-04-06 Lin Pin F Simple type pedaling exerciser
US5460586A (en) * 1992-09-16 1995-10-24 William T. Wilkinson Universal adaptable adjustable arm exercise device to supplement leg exercising
US5207622A (en) 1992-09-16 1993-05-04 William T. Wilkinson Universally adaptable adjustable arm exercise device to supplement leg exercising
DE69323146T2 (en) * 1992-09-16 1999-09-02 Wilkinson Exercise device for the arms and legs
US5242343A (en) * 1992-09-30 1993-09-07 Larry Miller Stationary exercise device
US5282776A (en) * 1992-09-30 1994-02-01 Proform Fitness Products, Inc. Upper body exerciser
US5595556A (en) * 1992-09-30 1997-01-21 Icon Health & Fitness, Inc. Treadmill with upper body system
US5199932A (en) 1992-10-01 1993-04-06 Liao Nien Yuan Gymnastic apparatus providing animation of cliff climbing
US5318488A (en) 1992-10-26 1994-06-07 Michael Anthony Babcock Waterskiing simulator
US5290211A (en) 1992-10-29 1994-03-01 Stearns Technologies, Inc. Exercise device
US5423728A (en) 1992-10-30 1995-06-13 Mad Dogg Athletics, Inc. Stationary exercise bicycle
US6024676A (en) 1997-06-09 2000-02-15 Eschenbach; Paul William Compact cross trainer exercise apparatus
US6168552B1 (en) 1992-11-04 2001-01-02 Paul William Eschenbach Selective lift elliptical exercise apparatus
US5299993A (en) * 1992-12-01 1994-04-05 Pacific Fitness Corporation Articulated lower body exerciser
US5374227A (en) 1993-01-19 1994-12-20 Nautilus Acquisition Corporation Stair stepping exercise apparatus
US5749807A (en) 1993-01-19 1998-05-12 Nautilus Acquisition Corporation Exercise apparatus and associated method including rheological fluid brake
US5263910A (en) 1993-01-26 1993-11-23 Yang Li Hsiang Stepping exerciser
US5338273A (en) * 1993-01-27 1994-08-16 Roadmaster Corporation Quick change mechanism for synchronous/asynchronous exercise machine
US5690582A (en) 1993-02-02 1997-11-25 Tectrix Fitness Equipment, Inc. Interactive exercise apparatus
US5336142A (en) * 1993-02-04 1994-08-09 Proform Fitness Products, Inc. Stepper with adjustable resistance mechanism
US5372564A (en) 1993-05-05 1994-12-13 Spirito; Pamela J. Exercise device for exercising the leg abductor, upper arm and postural muscle groups
USD344557S (en) 1993-05-25 1994-02-22 Proform Fitness Products, Inc. Treadmill
US5338271A (en) 1993-08-17 1994-08-16 Greenmaster Industrial Corporation Exerciser device for simulating mountain climbing and running
CA2133251C (en) 1993-09-30 1999-01-12 Gary D. Piaget Striding exerciser with upwardly curved tracks
US5344371A (en) 1993-10-12 1994-09-06 Greenmaster Industrial Corp. Exerciser for simulating mountain climbing and running movements
US5372560A (en) 1993-11-24 1994-12-13 Chang; John Multi-functional sporting equipment
US5538489A (en) * 1993-12-17 1996-07-23 Magid; Sidney H. Walker apparatus with left and right foot belts
US5411279A (en) * 1993-12-17 1995-05-02 Magid; Sidney H. Multiple-belt conveying apparatus with flat top surface
US5607376A (en) * 1993-12-17 1997-03-04 Magid; Sidney H. Convertible treadmill apparatus with left and right foot belts
US5370592A (en) 1994-01-10 1994-12-06 Cheng-Shiung Chang Modified mechanism for the adjusting valve on the hydraulic cylinder of a stepper
US5527245A (en) * 1994-02-03 1996-06-18 Icon Health & Fitness, Inc. Aerobic and anaerobic exercise machine
US6033344A (en) * 1994-02-04 2000-03-07 True Fitness Technology, Inc. Fitness apparatus with heart rate control system and method of operation
US5595554A (en) * 1994-04-01 1997-01-21 Maresh; Joseph D. Roto stepper exercise machine
USD360915S (en) 1994-05-27 1995-08-01 Nordictrack, Inc. Exercise treadmill
US5431612A (en) * 1994-06-24 1995-07-11 Nordictrack, Inc. Treadmill exercise apparatus with one-way clutch
US5441467A (en) * 1994-06-29 1995-08-15 Stevens; Clive G. Two-pivotal-section handle assembly for an exerciser
US5490818A (en) * 1994-07-14 1996-02-13 Haber; Terry M. Exercise device which simulates climbing a ladder
US5423729A (en) 1994-08-01 1995-06-13 Eschenbach; Paul W. Collapsible exercise machine with arm exercise
US5480365A (en) * 1994-08-10 1996-01-02 Physia, Inc. Foldable handlebar for exercise machine
US5816372A (en) 1994-09-09 1998-10-06 Lord Corporation Magnetorheological fluid devices and process of controlling force in exercise equipment utilizing same
US5665033A (en) 1994-10-21 1997-09-09 Dennis D. Palmer Ski simulating exercise machine
US5919115A (en) * 1994-10-28 1999-07-06 The Regents Of Theuniversity Of California Adaptive exercise machine
US5518471A (en) 1994-11-07 1996-05-21 Tunturi, Inc. Exercise treadmill with rearwardly placed incline mechanism
US5573480A (en) 1995-01-25 1996-11-12 Ccs, Llc Stationary exercise apparatus
US5529555A (en) 1995-06-06 1996-06-25 Ccs, Llc Crank assembly for an exercising device
US5762587A (en) * 1995-02-01 1998-06-09 Icon Health & Fitness, Inc. Exercise machine with adjustable-resistance, hydraulic cylinder
US5650709A (en) * 1995-03-31 1997-07-22 Quinton Instrument Company Variable speed AC motor drive for treadmill
US6042519A (en) * 1995-06-22 2000-03-28 Shea; Michael J. Exercise apparatus
US5895339A (en) 1995-06-30 1999-04-20 Maresh; Joseph D. Elliptical exercise methods and apparatus
US5702323A (en) 1995-07-26 1997-12-30 Poulton; Craig K. Electronic exercise enhancer
US5518470A (en) * 1995-08-15 1996-05-21 Piaget; Gary D. Aerobic exercise apparatus with pivoting foot treadles and handlebar
US5897460A (en) * 1995-09-07 1999-04-27 Stamina Products, Inc. Dual action air resistance treadmill
US5658227A (en) 1995-09-12 1997-08-19 Stearns Technologies, Inc. Exercise device
US5803880A (en) * 1995-12-12 1998-09-08 Allen; Temple W. Stepper/climber exerciser
US5626539A (en) * 1996-01-19 1997-05-06 Piaget; Gary D. Treadmill apparatus with dual spring-loaded treads
US5688209A (en) * 1996-01-25 1997-11-18 True Fitness Technology, Inc. Arm powered treadmill
US5704879A (en) * 1996-01-30 1998-01-06 Icon Health & Fitness, Inc. Cabinet treadmill with latch
US6974404B1 (en) 1996-01-30 2005-12-13 Icon Ip, Inc. Reorienting treadmill
US5662557A (en) 1996-01-30 1997-09-02 Icon Health & Fitness, Inc. Reorienting treadmill with latch
US5718657A (en) * 1996-01-30 1998-02-17 Icon Health & Fitness, Inc. Cabinet treadmill with repositioning assist
US5676624A (en) 1996-01-30 1997-10-14 Icon Health & Fitness, Inc. Portable reorienting treadmill
US5792029A (en) 1996-02-21 1998-08-11 Gordon; Trace Foot skate climbing simulation exercise apparatus and method
US5643144A (en) * 1996-04-29 1997-07-01 True Fitness Technology, Inc. Lubrication system for treadmill
US5733228A (en) 1996-05-28 1998-03-31 Stevens; Clive Graham Folding treadmill exercise device
US5913384A (en) * 1996-06-03 1999-06-22 Charles Williams Treadmill lubricating devices and methods
US5947872A (en) 1996-06-17 1999-09-07 Brunswick Corporation Cross training exercise apparatus
US5899833A (en) 1996-06-17 1999-05-04 Brunswick Corporation Orbital stepping exercise apparatus
US6099439A (en) 1996-06-17 2000-08-08 Brunswick Corporation Cross training exercise apparatus
US5669856A (en) * 1996-07-16 1997-09-23 Liu; Chien-Hsing Exerciser
US5645512A (en) * 1996-07-29 1997-07-08 Yu; Hui-Nan Step exercising machine
US5735773A (en) 1996-08-05 1998-04-07 Vittone; Larry W. Cross-training exercise apparatus
US5967944A (en) 1996-08-05 1999-10-19 Vittone; Larry W. Cross-training exercise apparatus
US5788610A (en) 1996-09-09 1998-08-04 Eschenbach; Paul William Elliptical exercise machine with arm exercise
US6482132B2 (en) 1996-09-09 2002-11-19 Paul William Eschenbach Compact elliptical exercise apparatus
US6436007B1 (en) 1996-09-09 2002-08-20 Paul William Eschenbach Elliptical exercise machine with adjustment
US6422976B1 (en) 1996-09-09 2002-07-23 Paul William Eschenbach Compact elliptical exercise machine with arm exercise
US5709632A (en) * 1996-09-27 1998-01-20 Precor Incorporated Curved deck treadmill
WO1999036129A1 (en) * 1998-01-20 1999-07-22 Precor Incorporated Exercise treadmill
USD421779S (en) 1996-11-01 2000-03-21 Piaget Gary D Treadmill-type exercise apparatus
US5855537A (en) * 1996-11-12 1999-01-05 Ff Acquisition Corp. Powered folding treadmill apparatus and method
US5711745A (en) * 1996-11-21 1998-01-27 Yang; Li-Hsiang Multi-purpose exercise machine
TW303686U (en) 1996-12-05 1997-04-21 Yijo Sporting Goods Ind Co Ltd Stepper
US5993358A (en) 1997-03-05 1999-11-30 Lord Corporation Controllable platform suspension system for treadmill decks and the like and devices therefor
US6042513A (en) 1997-03-27 2000-03-28 Minarik Corporation Non destructive runaway protection for an electric motor
US6013011A (en) * 1997-03-31 2000-01-11 Precor Incorporated Suspension system for exercise apparatus
US5848954A (en) 1997-04-15 1998-12-15 Stearns; Kenneth W. Exercise methods and apparatus
US5857941A (en) 1997-04-15 1999-01-12 Maresh; Joseph D. Exercise methods and apparatus
US6340340B1 (en) 1997-04-15 2002-01-22 Kenneth W. Stearns Exercise method and apparatus
US5879271A (en) * 1997-04-15 1999-03-09 Stearns; Kenneth W. Exercise method and apparatus
US5882281A (en) * 1997-04-24 1999-03-16 Stearns; Kenneth W. Exercise methods and apparatus
US6113518A (en) 1997-04-26 2000-09-05 Maresh; Joseph D. Exercise methods and apparatus with flexible rocker link
US5803871A (en) * 1997-04-24 1998-09-08 Stearns; Kenneth W. Exercise methods and apparatus
US6629909B1 (en) 1997-04-24 2003-10-07 Kenneth W. Stearns Elliptical exercise methods and apparatus
DE29709764U1 (en) 1997-06-04 1997-08-07 Lee Kuo Lung Treadmill
US6422977B1 (en) 1997-06-09 2002-07-23 Paul William Eschenbach Compact elliptical exercise machine with adjustment
US6440042B2 (en) 1997-06-09 2002-08-27 Paul William Eschenbach Pathfinder elliptical exercise machine
US5769760A (en) 1997-07-22 1998-06-23 Lin; Michael Stationary exercise device
US5976083A (en) * 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US5779598A (en) 1997-08-18 1998-07-14 Stamina Products, Inc. Pedal-type exerciser
US5779599A (en) 1997-08-19 1998-07-14 Chen; Paul Stationary exerciser
US5803872A (en) 1997-10-06 1998-09-08 Chang; Shao Ying Step exerciser
US6152859A (en) 1997-10-07 2000-11-28 Stearns; Kenneth W. Exercise methods and apparatus
US7033305B1 (en) 1997-10-17 2006-04-25 Stearns Kenneth W Exercise methods and apparatus
US7438670B2 (en) 1997-10-17 2008-10-21 True Fitness Technology, Inc. Exercise device for side-to-side stepping motion
US5993359A (en) 1997-10-21 1999-11-30 Eschenbach; Paul William Variable stroke elliptical exercise apparatus
US6350218B1 (en) * 1997-10-28 2002-02-26 Icon Health & Fitness, Inc. Fold-out treadmill
US5899834A (en) 1997-10-28 1999-05-04 Icon Health & Fitness, Inc. Fold-out treadmill
US6045490A (en) * 1997-12-10 2000-04-04 Shafer; Terry C. Motorized exercise treadmill
US6030320A (en) 1998-01-12 2000-02-29 Stearns; Kenneth W. Collapsible exercise apparatus
USD406621S (en) 1998-01-23 1999-03-09 Piaget Gary D Treadmill exercise apparatus
DE29802816U1 (en) 1998-02-18 1998-04-23 Chen Chao Chuan Exercise device
US5951449A (en) * 1998-03-12 1999-09-14 Oppriecht; Clair E. Exercise device
US6648801B2 (en) 1998-04-22 2003-11-18 Kenneth W. Stearns Exercise apparatus with elliptical foot motion
US6672994B1 (en) 2000-10-06 2004-01-06 Kenneth W. Stearns Total body exercise methods and apparatus
US6261209B1 (en) 1998-05-29 2001-07-17 Fitness Quest, Inc. Folding exercise treadmill with front inclination
US6042514A (en) * 1998-05-30 2000-03-28 Abelbeck; Kevin G. Moving surface exercise device
US6454679B1 (en) 1998-06-09 2002-09-24 Scott Brian Radow Bipedal locomotion training and performance evaluation device and method
US6217487B1 (en) * 1998-08-25 2001-04-17 Richard W. Reinert Quadruped-type exercise apparatus for humans and method of exercising
US6645124B1 (en) * 1998-09-18 2003-11-11 Athlon Llc Interactive programmable fitness interface system
JP2000093552A (en) 1998-09-18 2000-04-04 Shinichiro Yoshimura Fitness apparatus
US6174267B1 (en) * 1998-09-25 2001-01-16 William T. Dalebout Treadmill with adjustable cushioning members
USD424137S (en) 1998-10-14 2000-05-02 Precor Incorporated Exercise treadmill
US6179753B1 (en) * 1998-10-14 2001-01-30 Illinois Tool Works Inc. Suspension system for exercise apparatus
USD412953S (en) 1998-10-19 1999-08-17 Icon Health & Fitness Pair of arcuate console support arms for an exercise apparatus
US6179754B1 (en) * 1999-02-10 2001-01-30 Leao Wang Sports treadmill
TW381497U (en) 1999-02-26 2000-02-01 Jang Geng Jang Structure of electric jogging machine with collapsible connecting rod and lifting mechanism
TW367860U (en) 1999-02-26 1999-08-21 Jang Shian Di Structure for electric treadmill with taking-up control panel
TW375944U (en) 1999-04-22 1999-12-01 Johnson Metal Ind Co Ltd Folding structure for the electric treadmill
US6923745B2 (en) 1999-05-14 2005-08-02 Kenneth W. Stearns Exercise methods and apparatus
US6132340A (en) 1999-06-22 2000-10-17 Wang; Leao Cushioning device for treadmill
US7166062B1 (en) * 1999-07-08 2007-01-23 Icon Ip, Inc. System for interaction with exercise device
US6312363B1 (en) * 1999-07-08 2001-11-06 Icon Health & Fitness, Inc. Systems and methods for providing an improved exercise device with motivational programming
US6042512A (en) 1999-07-27 2000-03-28 Eschenbach; Paul William Variable lift cross trainer exercise apparatus
US6210305B1 (en) 1999-07-27 2001-04-03 Paul William Eschenbach Variable lift exercise apparatus with curved guide
US6090014A (en) 1999-08-09 2000-07-18 Eschenbach; Paul William Adjustable cross trainer exercise apparatus
US6135925A (en) 1999-08-10 2000-10-24 Liu; Chien Hsing Running exerciser
US6899659B2 (en) * 2000-08-30 2005-05-31 Brunswick Corporation Treadmill mechanism
US6283896B1 (en) * 1999-09-17 2001-09-04 Sarah Grunfeld Computer interface with remote communication apparatus for an exercise machine
US6689020B2 (en) 1999-11-05 2004-02-10 Kenneth W. Stearns Exercise apparatus with elliptical foot motion
US6264042B1 (en) * 1999-11-15 2001-07-24 United Parcel Service Of America, Inc. Bilateral sorter
JP2001170205A (en) 1999-12-14 2001-06-26 Shinichiro Yoshimura Composite health appliance
US6626802B1 (en) 1999-12-22 2003-09-30 Robert E. Rodgers, Jr. Stationary type of exercise apparatus that enables movement of the user's feet in a reciprocating motion
US6648802B2 (en) 2000-01-04 2003-11-18 John Scott Ware Variable pitch stationary exercise bicycle
US6761667B1 (en) * 2000-02-02 2004-07-13 Icon Ip, Inc. Hiking exercise apparatus
US6554749B2 (en) * 2000-02-09 2003-04-29 Pate Pierce & Baird, P.C. Lightweight, clear-path, equilibrated treadmill
WO2001058534A1 (en) 2000-02-09 2001-08-16 Millennial Fitness, Llc Lightweight, clear-path, equilibrated treadmill
DE20005640U1 (en) 2000-03-25 2000-06-21 Wang Wei Chen Double lane running exercise machine
USD445152S1 (en) 2000-04-28 2001-07-17 Leao Wang Motorized treadmill
US6461275B1 (en) 2000-10-30 2002-10-08 Leao Wang Elevatingly folding unit of electric exercise treadmill
USD450792S1 (en) 2001-01-25 2001-11-20 Hai Pin Kuo Treadmill
TW472593U (en) 2001-03-07 2002-01-11 Greenmaster Ind Corp Structure of running machine with a low exercise load
US6689019B2 (en) 2001-03-30 2004-02-10 Nautilus, Inc. Exercise machine
US6648800B2 (en) 2001-04-16 2003-11-18 Kenneth W. Stearns Exercise apparatus with elliptical foot motion
US7435202B2 (en) 2003-02-27 2008-10-14 Brunswick Corporation Elliptical step distance measurement
USD482085S1 (en) 2001-05-03 2003-11-11 True Fitness Technology, Inc. Monocoque frame for a treadmill
US6461279B1 (en) 2001-07-25 2002-10-08 Hai Pin Kuo Treadmill having dual treads for stepping exercises
CN2516185Y (en) 2001-08-02 2002-10-16 陈宗佑 Improved mark time device inductor
US6786852B2 (en) * 2001-08-27 2004-09-07 Icon Ip, Inc. Treadmill deck with cushioned sides
TW515306U (en) 2001-08-23 2002-12-21 Hai-Bin Guo Structure improvement of exercise machine for running and climbing stairs
US6743153B2 (en) * 2001-09-06 2004-06-01 Icon Ip, Inc. Method and apparatus for treadmill with frameless treadbase
US6730002B2 (en) * 2001-09-28 2004-05-04 Icon Ip, Inc. Inclining tread apparatus
CN2510102Y (en) 2001-10-22 2002-09-11 郭海滨 Improved running and step exercising machine
US8025609B2 (en) 2001-11-13 2011-09-27 Cybex International, Inc. Cross trainer exercise apparatus
US20030096677A1 (en) 2001-11-20 2003-05-22 Inray Fitness Products Corp. Oval orbit exercise bike
US6544147B1 (en) 2001-11-28 2003-04-08 Leao Wang Rocker arm for an electric treadmill
US7455626B2 (en) 2001-12-31 2008-11-25 Nautilus, Inc. Treadmill
US6902513B1 (en) 2002-04-02 2005-06-07 Mcclure Daniel R. Interactive fitness equipment
US6505845B1 (en) 2002-04-17 2003-01-14 Chin-Long Fong Jogging scooter
US7179202B2 (en) * 2002-07-26 2007-02-20 Unisen Inc. Maintenance facilitating exercise machine console
US6878099B2 (en) * 2002-07-26 2005-04-12 Unisen, Inc. Cooling system for exercise machine
US7086995B2 (en) * 2002-07-26 2006-08-08 Unisen, Inc. Control circuit using toggled activation to reduce inrush currents
US6979287B2 (en) * 2002-08-19 2005-12-27 Avi Elbaz Proprioceptive and kinesthetic footwear
TW542735B (en) 2002-10-14 2003-07-21 Taiwan Bicycle Ind R&D Center Treadmill load testing and real-time monitoring method and system
TW547102U (en) 2002-11-20 2003-08-11 Jung-Jr Gau Jogging treadmill
US6872168B2 (en) 2003-01-27 2005-03-29 Leao Wang Shock absorption structure for a treadmill
US7621850B2 (en) 2003-02-28 2009-11-24 Nautilus, Inc. Dual deck exercise device
US7704191B2 (en) 2003-02-28 2010-04-27 Nautilus, Inc. Dual treadmill exercise device having a single rear roller
USD534973S1 (en) 2003-02-28 2007-01-09 Nautilus, Inc. Exercise device with treadles
US7618346B2 (en) * 2003-02-28 2009-11-17 Nautilus, Inc. System and method for controlling an exercise apparatus
US7815549B2 (en) 2003-02-28 2010-10-19 Nautilus, Inc. Control system and method for an exercise apparatus
US7517303B2 (en) 2003-02-28 2009-04-14 Nautilus, Inc. Upper body exercise and flywheel enhanced dual deck treadmills
US7553260B2 (en) 2003-02-28 2009-06-30 Nautilus, Inc. Exercise device with treadles
TW569789U (en) 2003-03-10 2004-01-01 Wei-Min Liang Modularized transmission control interface for sport equipment
US6811519B2 (en) * 2003-03-27 2004-11-02 Hai Pin Kuo Dual treadmill having adjustable resistance
US6837829B2 (en) 2003-05-20 2005-01-04 Paul William Eschenbach Climber crosstrainer exercise apparatus
US6849034B2 (en) * 2003-05-23 2005-02-01 Paul William Eschenbach Turnabout climber exercise apparatus
US7244217B2 (en) 2003-06-06 2007-07-17 Rodgers Jr Robert E Exercise apparatus that allows user varied stride length
US7172531B2 (en) 2003-06-06 2007-02-06 Rodgers Jr Robert E Variable stride exercise apparatus
US7169088B2 (en) 2003-06-06 2007-01-30 Rodgers Jr Robert E Compact variable path exercise apparatus
US7201705B2 (en) 2003-06-06 2007-04-10 Rodgers Jr Robert E Exercise apparatus with a variable stride system
US7169089B2 (en) 2003-06-06 2007-01-30 Rodgers Jr Robert E Compact variable path exercise apparatus with a relatively long cam surface
US7214168B2 (en) 2003-06-06 2007-05-08 Rodgers Jr Robert E Variable path exercise apparatus
US7736278B2 (en) 2003-06-23 2010-06-15 Nautilus, Inc. Releasable connection mechanism for variable stride exercise devices
US7462134B2 (en) 2003-06-23 2008-12-09 Nautilus, Inc. Variable stride exercise device
US7785235B2 (en) 2003-06-23 2010-08-31 Nautilus, Inc. Variable stride exercise device
US6835166B1 (en) 2003-08-01 2004-12-28 Kenneth W. Stearns Exercise apparatus with elliptical foot motion
US6811517B1 (en) 2003-08-05 2004-11-02 Paul William Eschenbach Polestrider exercise apparatus with dual treads
US7097593B2 (en) * 2003-08-11 2006-08-29 Nautilus, Inc. Combination of treadmill and stair climbing machine
US6824502B1 (en) 2003-09-03 2004-11-30 Ping-Hui Huang Body temperature actuated treadmill operation mode control arrangement
US7270625B2 (en) 2003-11-18 2007-09-18 Miller Larry D Arm motion assembly for exercise device
TWM249682U (en) 2004-01-20 2004-11-11 Alilife Technological Co Ltd Improved structure of treadmill
CN2675190Y (en) 2004-02-05 2005-02-02 爱力美工业股份有限公司 Walking machine with improved structure
US6893383B1 (en) * 2004-02-17 2005-05-17 Alilife Industrial Co., Ltd. Stepper
US7645214B2 (en) 2004-02-26 2010-01-12 Nautilus, Inc. Exercise device with treadles
USD527060S1 (en) 2004-03-22 2006-08-22 Nautilus, Inc. Exercise device with treadles
US7306546B2 (en) 2004-05-03 2007-12-11 P & F Brother Industrial Corporation Linkage structure of a treadmill
USD546909S1 (en) 2004-08-16 2007-07-17 Nautilus, Inc. Treadmill upright
USD521577S1 (en) * 2005-02-04 2006-05-23 Strength Master Health Corp. Treadmill
US7175568B2 (en) 2005-07-14 2007-02-13 Paul William Eschenbach Elliptical exercise apparatus with articulating track
US7163493B1 (en) * 2006-01-19 2007-01-16 Hai Pin Kuo Treadmill having changeable suspension
US7731636B2 (en) 2006-05-05 2010-06-08 Nautilus, Inc. Resistance system for an exercise device
US7494454B2 (en) 2006-05-18 2009-02-24 Todd Sheets Abdominator: abdomen and obliques exercise machine
US20090029831A1 (en) 2007-03-30 2009-01-29 Nautilus, Inc. Device and method for limiting travel in an exercise device, and an exercise device including such a limiting device
US20080274860A1 (en) 2007-05-01 2008-11-06 Sunny Lee Exercising machine with adjustable stride length and height
CA2729935A1 (en) 2007-05-11 2008-11-20 Michael D'eredita Simulated rowing machine
USD624975S1 (en) 2009-01-29 2010-10-05 Nautilus, Inc. Exercise apparatus
US7862484B1 (en) 2009-11-03 2011-01-04 Coffey Calvin T Folding exercise rowing machine
US9017223B2 (en) 2010-05-05 2015-04-28 Paul William Eschenbach Selective stride elliptical exercise apparatus
US7887466B1 (en) 2010-06-09 2011-02-15 Paul Chen Treadmill having ventilating fan device
US20130035212A1 (en) 2011-08-01 2013-02-07 Jin Chen Chuang Stationary exercise device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336146A (en) 1993-12-15 1994-08-09 Piaget Gary D Treadmill with dual reciprocating treads

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ACSM's Guidelinesfor Exercise Testing and Prescription", 2000, LIPPINCOTT WILLIAMS & WILKINS
"Physiological Test for Elite Athletes", 2000, HUMAN KINETICS PUBLICATION
See also references of EP1606026A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597161B2 (en) 2010-08-10 2013-12-03 Nautilus, Inc. Motorless treadmill stepper exercise device
CN103228304A (en) * 2010-11-18 2013-07-31 松下电器产业株式会社 Drug injection device
US9446206B2 (en) 2010-11-18 2016-09-20 Panasonic Healthcare Holdings Co., Ltd. Pharmaceutical injection device
CN113332692A (en) * 2021-05-27 2021-09-03 成都大学 Digital immersive interaction device based on artificial intelligence

Also Published As

Publication number Publication date
US20130190139A1 (en) 2013-07-25
US20130190138A1 (en) 2013-07-25
US8734300B2 (en) 2014-05-27
US20040214693A1 (en) 2004-10-28
US8696524B2 (en) 2014-04-15
US20100075812A1 (en) 2010-03-25
US20140336009A1 (en) 2014-11-13
EP1606026A2 (en) 2005-12-21
US8550962B2 (en) 2013-10-08
EP1606026A4 (en) 2008-08-06
US20110312472A1 (en) 2011-12-22
US8002674B2 (en) 2011-08-23
WO2004078270A3 (en) 2005-01-27
US7621850B2 (en) 2009-11-24
US9352187B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
US7618346B2 (en) System and method for controlling an exercise apparatus
WO2004078270A2 (en) System and method for controlling an exercise apparatus
US8920288B2 (en) Exercise device with fan controllable by a physiological condition of a user
CA2587491C (en) System for measuring physical performance and for providing interactive feedback
US7846067B2 (en) Fatigue and consistency in exercising
US7914425B2 (en) Hydraulic exercise machine system and methods thereof
US7789816B2 (en) Dynamic variable resistance dual circling exercise method and device
EP3938060A1 (en) System, method and apparatus for exercise or rehabilitation equipment
US20070232455A1 (en) Computerized Physical Activity System to Provide Feedback
US20070232452A1 (en) Computerized Spinning Exercise System and Methods Thereof
US20160303427A1 (en) Exercise promotion, measurement, and monitoring system
KR20020095100A (en) method and system for automatically evaluating physical health state using a game
CN111883227A (en) Management method and system for executing exercise prescription
JP2020120910A (en) Heart rehabilitation support device, and heart rehabilitation support method
EP3598456A1 (en) Improvements to exercise equipment
KR100819205B1 (en) Intelligent running machine for sensing a training state of a user and method of operating the same
KR102030894B1 (en) Method and apparatus for analyzing bio signal and controlling exercise according to exercise situation for assessment and rehabilitation of exercise function to patients with heart disease
US6824499B2 (en) Control console automatically planning a personal exercise program in accordance with the physical condition measured through the whole exercise session
KR101823567B1 (en) System And Method For Smart Recumbent Rehabilitation Exercise
KR20170128155A (en) The bicycle type rehabilitation exercise apparatus and method of operating the same
DE202010004244U1 (en) Acquisition and storage of attribute information in association with diagnostic and vital parameter data in ergometry, diagnostic, therapeutic and training equipment, in particular ergometers and exercise machines
TW200418546A (en) System and method for controlling an exercise apparatus
US20030207735A1 (en) Control console automatically planning a personal exercise program in accordance with the measured value of the cardiopulmonary condition
JP2009077916A (en) Bicycle type ergometer
JP2008237726A (en) Controller and control method for fixed exercise loading apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004805227X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004715667

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004715667

Country of ref document: EP