WO2004080494A1 - Optical sterilizing method and device using flash pulses - Google Patents

Optical sterilizing method and device using flash pulses Download PDF

Info

Publication number
WO2004080494A1
WO2004080494A1 PCT/JP2004/003283 JP2004003283W WO2004080494A1 WO 2004080494 A1 WO2004080494 A1 WO 2004080494A1 JP 2004003283 W JP2004003283 W JP 2004003283W WO 2004080494 A1 WO2004080494 A1 WO 2004080494A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sterilization
flash pulse
flash
emitting diode
Prior art date
Application number
PCT/JP2004/003283
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichi Fujii
Yasuhiro Kotani
Junichi Jo
Yesato Sato
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Publication of WO2004080494A1 publication Critical patent/WO2004080494A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation

Definitions

  • the present invention relates to a flash for sterilizing an object to be sterilized by irradiating a flash pulse to the object to be sterilized.
  • the present invention relates to a photosterilization method using light pulses and an apparatus therefor.
  • FIG. 10 is a block diagram showing a conventional light sterilization apparatus using a flash pulse which can be sterilized without heating and without contact.
  • the conventional light sterilizing device 101 using a flash pulse is separated from a strobe device 103 that can irradiate a flash pulse sterilization target with the strobe device 103 by a distance D.
  • Transport means 105 for transporting the sterilized object S disposed to a sterilizing place below the strobe device 103 and transporting the sterilized object S to another location after completion of sterilization (for example, , Patent Document 1).
  • the tropo device 103 is composed of a strobe 13 and a drive circuit 13 3 for driving the strobe 13.
  • the strobe light 13 1 is provided at the center of the reflector 13 1 a with a discharge tube 13 such as a xenon lamp. 1b is provided, and a glass plate 1311c is provided in front of the reflector 13a.
  • the drive circuit 133 includes a charge / discharge circuit 133a for directly driving the discharge tube 133b, a power supply circuit 133b for supplying power to the charge / discharge circuit 133a, and a flash.
  • the control circuit 13 c controls the number of times, irradiation time, light emission timing and the like.
  • the transport means 105 is driven by a drive unit 151 based on a timing signal from a control circuit 133 c, and continuously transports the sterilization target S immediately below the strobolite 13 1 Device.
  • the flash time is in the range of 1/500 [second] to 1Z1700 [second].
  • the wavelength of the light emitted from the tube 13 1 b within the range of 250 [nm] to 1100 [nm] and irradiating a flash pulse to the sterilization target S, the sterilization target S is obtained.
  • the bacteria to be sterilized absorb the pulsed light and rise in temperature to die, and since the sterilized material has a large heat capacity, the absorbed heat is dissipated and the composition of the sterilized object is deformed. There is no advantage.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-10072
  • the present invention solves the above-mentioned drawbacks, enables miniaturization, does not emit heat, It is another object of the present invention to provide an energy-saving light sterilization method using a flash pulse and an apparatus therefor.
  • a light sterilization method using a flash pulse according to the invention according to claim 1 is a light sterilization method using a flash pulse, which irradiates a flash pulse to an object to be sterilized to sterilize the object to be sterilized.
  • a blue light-emitting diode array is driven by a pulse signal under predetermined conditions, and a flash pulse is generated from the blue light-emitting diode array and irradiated to an object to be sterilized for sterilization.
  • a light sterilization device using a flash pulse according to the invention according to claim 2 is a light sterilization device using a flash pulse that irradiates a flash pulse to a sterilization target to sterilize the sterilization target. And a driving circuit for driving the blue light emitting diode array with pulse signals at predetermined intervals.
  • FIG. 1 is a diagram showing an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention.
  • FIG. 2 is a side view showing a configuration example of a blue light emitting diode array used in an apparatus for realizing a method of sterilizing light by a flash pulse according to an embodiment and an example of the present invention.
  • FIG. 3 is a configuration example of a blue light emitting diode array used in an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention.
  • FIG. 3 is a configuration example of a blue light emitting diode array used in an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention.
  • FIG. 4 is a circuit diagram showing a circuit configuration of a blue light emitting diode array used in an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention.
  • FIG. 5 is a diagram showing an example of a test device performed in the same manner as other light sources to verify the effectiveness of the light sterilization method using the light sterilization device using a flash pulse according to the embodiment and the example of the present invention. It is.
  • FIG. 6 is a characteristic diagram showing a spectrum of another light source (“GL_6”) measured by a light intensity measuring instrument.
  • Fig. 7 shows other light sources ("OC 90 Aj" and "M
  • FIG. 9 is a characteristic diagram showing a spectrum of S 90 AJ).
  • FIG. 8 is a characteristic diagram showing the spectrum of another light source (“white LEDJ”) measured by the light intensity measuring instrument.
  • FIG. 9 is a characteristic diagram showing a spectrum of a light source (“blue LEDJ”) of a photosterilizer using a flash pulse according to the present invention, measured by a light intensity measuring device.
  • FIG. 10 is a block diagram showing a conventional light sterilizer using a flash pulse which can be sterilized without heating and without contact.
  • FIG. 1 is a diagram showing an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention.
  • the light sterilizer 1 using a flash pulse kills the flash pulse.
  • FIG. 2 is a side view showing a configuration example of a blue light emitting diode array used in an apparatus for realizing a photodisinfection method using a flash pulse according to an embodiment and an example of the present invention.
  • FIG. 3 is a plan view showing a configuration example of a blue light emitting diode array used in an apparatus for realizing a photosterilization method using a flash pulse according to an embodiment and an example of the present invention.
  • FIG. 4 is a circuit diagram showing a circuit configuration of a blue light emitting diode array used in an apparatus for realizing a photosterilization method using a flash pulse according to an embodiment and an example of the present invention.
  • the blue light emitting diode array 3 used in the photodisinfection device 1 using a flash pulse has, for example, 37 blue light emitting diodes 3 a,. It is arranged and fixed on a substrate 3b. As shown in FIG. 4, the nodes of the diodes 3a,... And the force nodes are connected in parallel.
  • a drive pulse is supplied from the drive circuit 5 to each of the diodes 3 a,..., Anode and cathode.
  • This drive pulse has a pulse width of 10 [ms], a duty ratio of 1/10, a voltage of 4.5 [[V], and a pulse forward current of 100 [mA] per blue light emitting diode. ] Is adopted.
  • a pulse signal of a predetermined condition is transmitted from the drive circuit 5 to the blue light-emitting diodes 3 a,.
  • Anode and The light is supplied to the cathode to drive the blue light-emitting diode array 3, and the blue light-emitting diode array 3 generates a flash pulse and irradiates the target S for sterilization.
  • the bacteria to be tested were selected, and several light sources capable of generating a flash pulse were selected, and the sterilization state was checked. .
  • test bacteria selected, using Bacillus subtilis (I AM 1 0 6 9 frozen spores 5. 6 X 1 0 -7 [pieces ./ m l].
  • This fungus spores belonging to Gram-positive rod It is a spore-forming bacterium that forms and is a taxonomically close member of Bacillus subtilis and Bacillus natto, and Bacillus anthracis is also a kind of Bacillus subtilis, but the bacterium used here is harmless to the human body.
  • This fungus The most distinctive feature of this fungus is that the cells themselves proliferate during cell division, form spores that are generally stronger than the fungus itself, and can survive even in harsh environments. Since the spores are covered with a hard shell, they have high resistance to external factors such as heat and chemicals, and are reported not to die even in boiling water for 100 [° C] and 5 [minutes].
  • spores resistant to any stress such as Bacillus
  • Bacillus can be killed, other bacteria (such as Escherichia coli) can be treated sufficiently for future applications.
  • GL-6 GL-6 type germicidal lamp manufactured by National
  • a Zeno flasher lamp “OC9OA type” manufactured by Tozai Electric Industries Co., Ltd., with a light emission interval of 1 / 1.3 [second] (hereinafter referred to as roc90A)
  • a Zenon flasher lamp “MS 9 OA type” with an emission interval of 1/7 [second] (hereinafter referred to as “MS 90 AJ”) was adopted.
  • Nichia As one of the other light sources, Nichia
  • NSPW500 BS "NSPW500 BS” (hereinafter referred to as “white LED”), and power consumption 9 [W].
  • blue LED a blue light emitting diode (hereinafter, referred to as “blue LED”) of “LP_03B 36A-81” manufactured by Sanyo Electric Co., Ltd. was used as a light source for use in the photosterilizer using a flash pulse according to the present invention.
  • sterilization is performed using light.
  • Ultraviolet light (200 [nm]-400 [nm]) is mainly used in photosterilization, and the wavelength with a high relative value of sterilization power is around 250 [nm]-260 [nm].
  • the absorbed ultraviolet light destroys the DNA genome (DNA) required for life support and transmission of genetic information, triggers a thymine timer, and covalently bonds two adjacent thymine molecules to prevent regeneration. And stop the activities of bacteria etc. and die Let it.
  • the mechanism of sterilization by light having a visible wavelength of 350 nm or more is considered to be an indirect effect involving molecules surrounding the cells, for example, oxygen and photosensitizing molecules. Also, apart from the photosynthetic bacteria Chlorella, light is not only unnecessary but rather harmful for many microorganisms.
  • the total bacteria counting method is a method of directly counting the number of bacteria, such as bacteria and yeast, under a microscope, using a Petroff-Hauser bacterial counting plate and a Thoma hemocytometer.
  • spectroscopic methods there is an absorption method using a nephelometer or a colorimeter.
  • this laser method when a semiconductor laser irradiates a suspension containing bacteria with 780 [nm] light, the light that attenuates is received by the light-receiving unit, converted to a voltage, and expressed as absorbance. Things.
  • the light absorption is determined by counting the intensity of incident light, transmitted light, and scattered light.
  • the viable cell counting method is a method in which a bacterial solution is appropriately diluted to generate a knee so that only the viable cells are measured.
  • the measurement was performed by employing the colony force method based on the viable cell counting method.
  • a colony is a colony of bacteria.
  • One colony contains about 100 million bacteria. Since one bacterium repeats division and creates one lip, it is possible to measure the presence or absence of the bacterium and its number by forming a colony.
  • agar plate medium using Eiken Chemical's ordinary agar medium (agar with nutrients to promote the growth of bacteria) in the Petri dish, and close the Petri dish until the agar medium solidifies. ⁇ 30 [min] Leave to stand. At this time, appropriate nutrients and temperatures are required to culture the bacteria. Originally, culture medium purification After dissolving the drug in water and adjusting the pH, it is necessary to add 65% [%] of powdered agar and pasteurize it, but this time the normal agar medium used was sterilized and pH adjusted. It is something.
  • a sterile target (sample agar plate) diluted with platinum wire so that the formed colonies do not overlap.
  • a sterile target sample agar plate
  • platinum wire Before and after using platinum wire, be sure to sterilize the platinum wire with flame. At this time, the tip of the platinum wire with the cells is first placed in a low-temperature inner flame, and then burnt with a high-temperature outer flame. This is because if you suddenly enter the outer flame, there is a risk that the bacterial cells will scatter around.
  • a light sterilization method using a flash pulse by the light sterilization device 1 using a flash pulse according to the embodiment of the present invention is subjected to photosterilization by the photosterilization method including a flash pulse.
  • the object to be sterilized (sample agar plate) sterilized by the photosterilization method using the flash pulse by the flash pulse photosterilizer device 1 according to the embodiment of the present invention, and the flash by the other three light sources described above.
  • the three sterilized objects (sample agar plates) sterilized by the light sterilization method including pulse are cultured in an electric thermostat at 37 [° C] for 24 hours. At this time, if the door is frequently opened and closed, the temperature will change, so care must be taken.
  • each sterilization target (sample agar plate) removed from the electric thermostat.
  • each sterilization target (sample agar plate) to be counted should have a colony number of about 30 to 300 [pieces] per petri dish. Is the most reliable and desirable.
  • a and 1- are performed several times, because colonies may overlap with each other in a single data, bacteria may be mixed in the air, or errors may occur due to differences in bacterial growth. The average value of the data was used.
  • a light intensity measuring device was used to measure the light intensity of the pulsed light.
  • FIG. 5 is a diagram showing an example of a test device performed in the same manner as other light sources to verify the effectiveness of the light sterilization method using the light sterilization device using a flash pulse according to the embodiments and examples of the present invention. It is.
  • reference numeral 11 denotes a light source
  • the light source 11 is a light source by a light sterilizing apparatus using a flash pulse according to the embodiment and the example of the present invention, or three other light sources.
  • the symbol S is a sterilization target (sample agar plate).
  • reference numeral 13 denotes a light intensity measuring device, and the light intensity measuring device 13 includes a photodiode (PD) 13a for converting light into electricity, and an electric signal from the PD 13a. And a control unit 13c for controlling the peak hold circuit 13b. '
  • Each light source (the other four light sources (“GL-6”, “OC 90A”, “MS 90A”, “white LED” and “blue LED” used in the light sterilization method using a flash pulse according to the present invention)] 1
  • the light intensity of (1) naturally becomes weaker as the distance from the light source (11) increases, so in order to measure the sterilization efficiency based on the light intensity, measure the light intensity against the distance and grasp the values. Therefore, the measurement was performed using an optical power meter and an optical intensity measuring device 13.
  • Fig. 6 is a characteristic diagram showing the spectrum of another light source ("GL-6") measured by a light intensity measuring instrument.
  • the horizontal axis represents the wavelength [nm]
  • the vertical axis represents the intensity [dBm], Each one is taken.
  • FIG. 7 is a characteristic diagram showing the spectrum of another light source (“0 C 90 AJ” and “MS 90 AJ”) measured by a light intensity measuring instrument, in which the horizontal axis represents the wavelength [nm] and the vertical axis represents the wavelength [nm]. The axis shows the intensity [dBm].
  • FIG. 8 is a characteristic diagram showing the spectrum of another light source (“white LED”) measured by a light intensity measuring instrument, where the horizontal axis represents wavelength [nm] and the vertical axis represents intensity [dBm]. Is taken respectively.
  • FIG. 9 is a characteristic diagram showing a spectrum of a light source (“blue LED”) of a photosterilizer using a flash pulse according to the present invention, which is measured by a light intensity measuring device.
  • the horizontal axis represents wavelength [nm], and the vertical axis represents wavelength.
  • the axis shows the intensity [dBm].
  • Table 1 shows the results of these characteristic diagrams. Table 1 Spectrum wavelength range of each light source Peak wavelength.
  • GL-6 had a wavelength of 330 [nm] to 700 [nm] and a peak wavelength of 435 [nm].
  • OC 90 A and MS 90 A had a wavelength of 320 nm to L 150 nm and a peak wavelength of 845 nm.
  • White L EDJ had a wavelength of 330 [nm] to 800 [nm] and a peak wavelength of 468 [nm].
  • Blue LED used in the photodisinfection device 1 using a flash pulse according to the embodiment of the present invention. The wavelength was 419 [nm] to 519 [nm], and the peak wavelength was 466 [nmj].
  • Table 2 shows the other three light sources ("GL-6", “OC90A” and “MS90A”, “white LED”) and the light sterilizer using a flash pulse according to the embodiment of the present invention. It shows the relationship between the light source distance and the light intensity in a light source ("blue LED”).
  • "GL- 6" is, 1 [cm] at 7. 47 [w / m 2] , 2 [cm] at 5. 77 [w / m 2] , ⁇ , 20 The characteristic was 0.31 [w / m 2 ] in [cm].
  • OC 90 A and “MS 90 A” are 1.10 X 10.4 [w / m 2 ] at 1 [cm] and 1.19 at 2 [cm].
  • X 1 0. 4 [w / m 2], ... 1. was 63 X 10-4 [wZm 2] in ⁇ 20 [cm].
  • "white LEDJ is, 1 [cm] at 243. 1 9 [w / m 2 ] 2 [cm] 208. 81 [w / m 2] in, ⁇ ⁇ , 20 [cm Was 12.73 [w / m 2 ].
  • the “blue LED” of the light source used in the photosterilizer using a flash pulse according to the present invention was 48.50 [w / m 2 ] at 1 [cm] and 2 [c 111] at 1 [cm].
  • the other light source “GL-6” has a peak wavelength (Wavelength (Peak)) of 435 [nm] and has a wavelength from near ultraviolet to visible light. The light intensity is 2.18 [w / m2] at a distance of 5 [cm].
  • the other light sources, “OC 90A” and “MS 90A” have a peak wavelength (Wavelength (Peak)) of 845 [nm]. It has the property of having a wavelength up to the line and a light intensity of 8.2 X 10-4 [ w / m2 ] at a distance of 5 cm.
  • the other light source “white LED” has a peak wavelength (Wavelength (Peak)) of 468 [nm], has a wavelength from near ultraviolet to visible light, and has a light intensity of 5 [cm] away. 1 20.93 [wZm 2 ].
  • the “blue LED” of the light source used in the photosterilizer using a flash pulse according to the present invention has a peak wavelength (Wavelength (Peak)) of 466 [nm], a wavelength of near-ultraviolet light, and a light intensity. Is 5 [cm] apart and 39.50 [w / m 2 ].
  • the light source (“white LEDJ”) and the light source (“blue LEDJ”) used in the photodisinfection device using a flash pulse according to the embodiment of the present invention have a certain wavelength in the near ultraviolet region.
  • the light source (“blue LED") used in the photodisinfection device using a flash pulse according to the embodiment of the present invention has more near-ultraviolet wavelengths, so the disinfection efficiency seems to be higher. It is.
  • the photosterilizer 1 using a flash pulse is composed of a blue light-emitting diode array 3 and a drive circuit 5, and the object to be sterilized is simply obtained from the blue light-emitting diode array 3.
  • the method of irradiating S with pulsed light was used, the present invention is not limited to this, and the following configuration may be employed.
  • the blue light emitting diode array 3 may be enlarged, and light from the blue light emitting diode array 3 may be efficiently guided to the sterilization target S using a lens or a mirror.
  • the size of the blue light emitting diode array 3 may be increased, and the light to be emitted may be applied to the sterilization target S from the tip of the optical fiber using the optical fiber. .
  • the object S to be sterilized may be surrounded by the blue light emitting diode array 3 and sterilized.
  • the light sterilizing apparatus 1 using a flash pulse is a disposable towel made of paper at a restaurant or a geriatric care center, sterilizing water, and a raw counter display such as a spar. Applicable to sterilization of objects. Further, the light sterilizing apparatus using a flash pulse according to the embodiment of the present invention can be applied to disinfection that does not require wetting with a disinfecting solution or the like for infection in hospitals.
  • the light sterilizing apparatus using a flash pulse can be applied to sterilization in a washing basket in a washing machine, in a dishwasher, in washing water, and in a vacuum cleaner.
  • the light sterilization apparatus using a flash pulse according to the embodiment of the present invention can be refrigerated. It can be applied to sterilization of water and filters inside the refrigerator and in the water storage tank of the ice machine.
  • the photosterilizer using a flash pulse according to the embodiment of the present invention can be applied to sterilization of an air conditioner filter.
  • the present invention can be applied to sterilization of a narrow portion or a gap that is inaccessible.
  • the light sterilizer using a flash pulse according to the embodiment of the present invention can be applied to sterilization of a bathtub and the like, and can be downsized, so that it can be applied to a small household sterilizer and a portable sterilizer.
  • a blue light emitting diode array is driven by a predetermined pulse signal, and a flash pulse is generated from the blue light emitting diode array to sterilize the light. Since the target can be irradiated and sterilized, it has the advantages of high efficiency, low power consumption, low cost and downsizing, and sterilization without heat radiation and without affecting the human body. There is an advantage.

Abstract

A device using flash pulses, which is small-sized, produces no heat radiation, and is energy-saving. An optical sterilizing device using flash pulses adapted to irradiate a sterilization subject with flash pulses to sterilize the sterilization subject, wherein the device comprises a blue color light emitting diode array (3) opposed to a sterilization subject with a predetermined distance therebetween, and a driving circuit (5) for driving this blue color light emitting diode array (3) by pulse signals spaced at predetermined intervals. This blue color light emitting diode array (3) irradiates the sterilization subject (S) with near ultraviolet rays to effect sterilization.

Description

閃光パルスによる光殺菌方法及びその装置 Light sterilization method and device using flash pulse
技術分野 本発明は、 閃光パルスを殺菌対象物に照射して殺菌対象物を殺菌する閃 明 TECHNICAL FIELD The present invention relates to a flash for sterilizing an object to be sterilized by irradiating a flash pulse to the object to be sterilized.
光パルスによる光殺菌方法及ぴその装置に関するものである。 書 The present invention relates to a photosterilization method using light pulses and an apparatus therefor. book
背景技術 現在、 微生物による食中毒の多発等を受け、 H A C C P ( Hazard Analysys Control Point evaluation)の導入が世界的に普及してきており、 主流である加熱殺菌や薬剤使用殺菌に代わつて、 非加熱 ·非接触で殺菌可 能な技術への要求が高まっている。 図 1 0は、 上述した非加熱 ·非接触で殺菌可能な従来の閃光パルスによ る光殺菌装置を示すブロック図である。 この図 1 0において、 従来の閃光パルスによる光殺菌装置 1 0 1は、 閃 光パルス殺菌対象物に照射できるスト口ボ装置 1 0 3と、 前記ストロボ装 置 1 0 3と距離 Dだけ離して配置され殺菌対象物 Sを前記ストロボ装置 1 0 3の下の殺菌場所に搬送し殺菌が完了した殺菌対象物 Sを別な場所に搬 送する搬送手段 1 0 5とから構成されている (例えば、 特許文献 1参照)。 ここで、 前記ストロポ装置 1 0 3は、 ストロボラィト 1 3 1と、 これを 駆動する駆動回路 1 3 3とから構成れさている。 前記ストロボライト 1 3 1は、 反射傘 1 3 1 aの中央部に、 例えばキセノンランプ等の放電管 1 3 1 bが設けられ、 その反射傘 1 3 1 aの前にガラス板 1 3 1 cが設けられ ている。 前記駆動回路 1 3 3は、 放電管 1 3 1 bを直接駆動する充放電回 路 1 3 3 aと、 前記充放電回路 1 3 3 aに電力を供給する電源回路 1 3 3 bと、 閃光回数 ·照射時間 ·発光タイミング等を制御する制御回路 1 3 3 cとから構成されている。 Background technology At present, due to the frequent occurrence of food poisoning by microorganisms, the introduction of HACCP (Hazard Analysys Control Point evaluation) has become widespread worldwide, and non-heating and non-contact have replaced the mainstream heat sterilization and drug-based sterilization. There is a growing demand for sterilizable technologies. FIG. 10 is a block diagram showing a conventional light sterilization apparatus using a flash pulse which can be sterilized without heating and without contact. In FIG. 10, the conventional light sterilizing device 101 using a flash pulse is separated from a strobe device 103 that can irradiate a flash pulse sterilization target with the strobe device 103 by a distance D. Transport means 105 for transporting the sterilized object S disposed to a sterilizing place below the strobe device 103 and transporting the sterilized object S to another location after completion of sterilization (for example, , Patent Document 1). Here, the tropo device 103 is composed of a strobe 13 and a drive circuit 13 3 for driving the strobe 13. The strobe light 13 1 is provided at the center of the reflector 13 1 a with a discharge tube 13 such as a xenon lamp. 1b is provided, and a glass plate 1311c is provided in front of the reflector 13a. The drive circuit 133 includes a charge / discharge circuit 133a for directly driving the discharge tube 133b, a power supply circuit 133b for supplying power to the charge / discharge circuit 133a, and a flash. The control circuit 13 c controls the number of times, irradiation time, light emission timing and the like.
前記搬送手段 1 0 5は、 制御回路 1 3 3 cからのタイミング信号に基づ き、 駆動装置 1 5 1によって駆動され、 殺菌対象物 Sをストロボラィト 1 3 1の直下に連続して搬送する装置である。  The transport means 105 is driven by a drive unit 151 based on a timing signal from a control circuit 133 c, and continuously transports the sterilization target S immediately below the strobolite 13 1 Device.
このような閃光パルスによる光殺菌装置 1 0 1による閃光パルスによる 光殺菌方法によれば、 閃光時間が 1 / 5 0 0 [秒] 〜 1 Z 1 7 0 0 0 [秒] の範囲で、 放電管 1 3 1 bから発光させる光の波長を 2 5 0 [請] 〜 1 1 0 0 [ n m] の範囲に保って、 閃光パルスを殺菌対象物 Sに照射するこ とにより、 殺菌対象物 Sを非加熱 ·非接触で殺菌している。 これにより、 殺菌対象物の菌は、 パルス光を光を吸収して温度が上昇し死滅し、 殺菌対 象物は熱容量が大きいため、 吸収された熱が放散されて殺菌対象物の組成 変形がないという利点がある。  According to the photosterilization method using the flash pulse by the flash pulse using the flash pulse device 101, the flash time is in the range of 1/500 [second] to 1Z1700 [second]. By keeping the wavelength of the light emitted from the tube 13 1 b within the range of 250 [nm] to 1100 [nm] and irradiating a flash pulse to the sterilization target S, the sterilization target S is obtained. Non-heating · Non-contact sterilization. As a result, the bacteria to be sterilized absorb the pulsed light and rise in temperature to die, and since the sterilized material has a large heat capacity, the absorbed heat is dissipated and the composition of the sterilized object is deformed. There is no advantage.
【特許文献 1 ] 特開 2 0 0 0— 1 0 7 2 6 2号公報  [Patent Document 1] Japanese Patent Application Laid-Open No. 2000-10072
しかしながら、 上記従来の閃光パルスによる光殺菌装置及びによれば、 装置が大型化し、 かつ、 熱の放射も大きく、 しかも、 エネルギー消費が大 きいという不都合があった。 発明の開示  However, according to the conventional photosterilizer using a flash pulse described above, there are disadvantages that the device becomes large, heat radiation is large, and energy consumption is large. Disclosure of the invention
本発明は、 上述した欠点を解消し、 小型化が可能で、 熱の放射がなく、 かつ、 省エネルギーの閃光パルスによる光殺菌方法及びその装置を提供す ることを目的とする。 The present invention solves the above-mentioned drawbacks, enables miniaturization, does not emit heat, It is another object of the present invention to provide an energy-saving light sterilization method using a flash pulse and an apparatus therefor.
上記目的を達成するために、 請求項 1記載の発明に係る閃光パルスによ る光殺菌方法は、 閃光パルスを殺菌対象物に照射して殺菌対象物を殺菌す る閃光パルスによる光殺菌方法において、 所定の条件のパルス信号で青色 発光ダイォードアレイを駆動し、 青色発光ダイォードアレイから閃光パル スを発生させて殺菌対象物に照射して殺菌することを特徴とするものであ る。  To achieve the above object, a light sterilization method using a flash pulse according to the invention according to claim 1 is a light sterilization method using a flash pulse, which irradiates a flash pulse to an object to be sterilized to sterilize the object to be sterilized. A blue light-emitting diode array is driven by a pulse signal under predetermined conditions, and a flash pulse is generated from the blue light-emitting diode array and irradiated to an object to be sterilized for sterilization.
上記目的を達成するため、 請求項 2記載の発明に係る閃光パルスによる 光殺菌装置は、 閃光パルスを殺菌対象物に照射して殺菌対象物を殺菌する 閃光パルスによる光殺菌装置において、 殺菌対象物に所定の距離を離して 対峙させた青色発光ダイォードアレイと、 前記青色発光ダイォードアレイ を所定間隔のパルス信号で駆動する駆動回路とを備えたことを特徴とする ものである。 図面の簡単な説明  In order to achieve the above object, a light sterilization device using a flash pulse according to the invention according to claim 2 is a light sterilization device using a flash pulse that irradiates a flash pulse to a sterilization target to sterilize the sterilization target. And a driving circuit for driving the blue light emitting diode array with pulse signals at predetermined intervals. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態及び実施例に係る閃光パルスによる光 殺菌方法を実現する装置を示す図である。  FIG. 1 is a diagram showing an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention.
第 2図は、 本発明の実施の形態及ぴ実施例に係る閃光パルスによる光 殺菌方法を実現する装置に使用される青色発光ダイォードアレイの構成例 を示す側面図である。  FIG. 2 is a side view showing a configuration example of a blue light emitting diode array used in an apparatus for realizing a method of sterilizing light by a flash pulse according to an embodiment and an example of the present invention.
第 3図は、 本発明の実施の形態及び実施例に係る閃光パルスによる光 殺菌方法を実現する装置に使用される青色発光ダイォードアレイの構成例 を示す平面図である。 FIG. 3 is a configuration example of a blue light emitting diode array used in an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention. FIG.
第 4図は、 本発明の実施の形態及び実施例に係る閃光パルスによる光 殺菌方法を実現する装置に使用される青色発光ダイォードアレイの回路構 成を示す回路図である。  FIG. 4 is a circuit diagram showing a circuit configuration of a blue light emitting diode array used in an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention.
第 5図は、 本発明の実施の形態及び実施例に係る閃光パルスによる光 殺菌装置による光殺菌方法の有効性を検証するために、 他の光源と同様に 行った試験装置の一例を示す図である。  FIG. 5 is a diagram showing an example of a test device performed in the same manner as other light sources to verify the effectiveness of the light sterilization method using the light sterilization device using a flash pulse according to the embodiment and the example of the present invention. It is.
第 6図は、 光強度測定器で測定した他の光源 (「G L _ 6」) のスぺク トルを示す特性図である。  FIG. 6 is a characteristic diagram showing a spectrum of another light source (“GL_6”) measured by a light intensity measuring instrument.
第 7図は、 光強度測定器で測定した他の光源 (「O C 9 0 Aj 及び 「M Fig. 7 shows other light sources ("OC 90 Aj" and "M
S 9 0 AJ ) のスぺクトルを示す特性図である。 FIG. 9 is a characteristic diagram showing a spectrum of S 90 AJ).
第 8図は、 光強度測定器で測定した他の光源 (「白色 L E D J ) のスぺ クトルを示す特性図である。  FIG. 8 is a characteristic diagram showing the spectrum of another light source (“white LEDJ”) measured by the light intensity measuring instrument.
第 9図は、 光強度測定器で測定した本発明に係る閃光パルスによる光 殺菌装置の光源 (「青色 L E D J ) のスぺクトルを示す特性図である。  FIG. 9 is a characteristic diagram showing a spectrum of a light source (“blue LEDJ”) of a photosterilizer using a flash pulse according to the present invention, measured by a light intensity measuring device.
第 1 0図は、 非加熱 ·非接触で殺菌可能な従来の閃光パルスによる光 殺菌装置を示すブロック図である。 発明を実施するための最良の形態  FIG. 10 is a block diagram showing a conventional light sterilizer using a flash pulse which can be sterilized without heating and without contact. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態及び実施例について図面を参照して説明する。 図 1は、 本発明の実施の形態及び実施例に係る閃光パルスによる光殺菌 方法を実現する装置を示す図である。  Hereinafter, embodiments and examples of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an apparatus for realizing a light sterilization method using a flash pulse according to an embodiment and an example of the present invention.
この図 1において、 閃光パルスによる光殺菌装置 1は、 閃光パルスを殺 菌対象物に照射して殺菌対象物を殺菌する閃光パルスによる光殺菌装置で あって、 殺菌対象物 Sに所定の距離を離して対峙させた青色発光ダイォー ドアレイ 3と、 前記青色発光ダイォードアレイ 3を所定間隔のパルス信号 で駆動する駆動回路 5とを備えたものである。 In FIG. 1, the light sterilizer 1 using a flash pulse kills the flash pulse. A light-sterilizing device using a flash pulse for irradiating a germ object to sterilize the germ object; a blue light-emitting diode array 3 facing the germ object S at a predetermined distance; and the blue light-emitting diode array. And a driving circuit 5 for driving 3 with a pulse signal at a predetermined interval.
図 2は、 本発明の実施の形態及ぴ実施例に係る閃光パルスによる光殺菌 方法を実現する装置に使用される青色発光ダイォードアレイの構成例を示 す側面図である。 図 3は、 本発明の実施の形態及び実施例に係る閃光パル スによる光殺菌方法を実現する装置に使用される靑色発光ダイォードアレ ィの構成例を示す平面図である。 図 4は、 本発明の実施の形態及ぴ実施例 に係る閃光パルスによる光殺菌方法を実現する装置に使用される青色発光 ダイォードアレイの回路構成を示す回路図である。  FIG. 2 is a side view showing a configuration example of a blue light emitting diode array used in an apparatus for realizing a photodisinfection method using a flash pulse according to an embodiment and an example of the present invention. FIG. 3 is a plan view showing a configuration example of a blue light emitting diode array used in an apparatus for realizing a photosterilization method using a flash pulse according to an embodiment and an example of the present invention. FIG. 4 is a circuit diagram showing a circuit configuration of a blue light emitting diode array used in an apparatus for realizing a photosterilization method using a flash pulse according to an embodiment and an example of the present invention.
本発明の実施の形態に係る閃光パルスによる光殺菌装置 1で用いる青色 発光ダイオードアレイ 3は、 図 2及び図 3に示すように、 例えば 3 7個の 青色発光ダイォード 3 a , …を六角形状に基板 3 bの上に配置固定したも のであって、 図 4に示すように各ダイォード 3 a, …のァノード同士と力 ソード同士をそれぞれ並列に接続してなるものである。 これら各ダイォー ド 3 a, …アノードと、 カソードに前記駆動回路 5から駆動パルスを供給 するようになっている。この駆動パルスは、例えばパルス幅が 1 0 [m S ]、 デューティー比が 1 / 1 0、 電圧が 4 . 5 [ [V]、 パルス順電流が青色発 光ダイオード 1個当たり 1 0 0 [mA] のものを採用している。  As shown in FIGS. 2 and 3, the blue light emitting diode array 3 used in the photodisinfection device 1 using a flash pulse according to the embodiment of the present invention has, for example, 37 blue light emitting diodes 3 a,. It is arranged and fixed on a substrate 3b. As shown in FIG. 4, the nodes of the diodes 3a,... And the force nodes are connected in parallel. A drive pulse is supplied from the drive circuit 5 to each of the diodes 3 a,..., Anode and cathode. This drive pulse has a pulse width of 10 [ms], a duty ratio of 1/10, a voltage of 4.5 [[V], and a pulse forward current of 100 [mA] per blue light emitting diode. ] Is adopted.
このような閃光パルスによる光殺菌装置 1によって実現される閃光パル スによる光殺菌方法では、 前記駆動回路 5から所定の条件のパルス信号を 青色発光ダイォードアレイ 3の青色発光ダイォード 3 a, …のアノードと カソードに供給して青色発光ダイォードアレイ 3を駆動し、 青色発光ダイ ォードアレイ 3から閃光パルスを発生させて殺菌対象物 Sに照射すること により殺菌している。 In the light sterilization method using a flash pulse realized by the light sterilization apparatus 1 using such a flash pulse, a pulse signal of a predetermined condition is transmitted from the drive circuit 5 to the blue light-emitting diodes 3 a,. Anode and The light is supplied to the cathode to drive the blue light-emitting diode array 3, and the blue light-emitting diode array 3 generates a flash pulse and irradiates the target S for sterilization.
(検証)  (Verification)
このような閃光パルスによる光殺菌装置 1による殺菌方法が有効か否か を確認するため、 被検細菌を選択し、 かつ、 閃光パルスを発生できる光源 を幾つか選択して、 殺菌状態を確認した。  In order to confirm whether the sterilization method using the light sterilization device 1 using a flash pulse is effective, the bacteria to be tested were selected, and several light sources capable of generating a flash pulse were selected, and the sterilization state was checked. .
<選択した被検細菌について >  <About the selected test bacteria>
選択した被検細菌としては、 Bacillus subtilis( I AM 1 0 6 9 冷凍 芽胞菌 5 . 6 X 1 0 -7 [個 ./ml] を用いた。 この菌は、 グラム陽性桿に 属し胞子を形成する芽胞形成菌であり、 枯草菌や納豆菌と分類学上で近 ί彖 種である。 また、 炭疽菌も枯草菌の一種であるが、 ここで用いた菌は人体 に無害である。 The test bacteria selected, using Bacillus subtilis (I AM 1 0 6 9 frozen spores 5. 6 X 1 0 -7 [pieces ./ m l]. This fungus spores belonging to Gram-positive rod It is a spore-forming bacterium that forms and is a taxonomically close member of Bacillus subtilis and Bacillus natto, and Bacillus anthracis is also a kind of Bacillus subtilis, but the bacterium used here is harmless to the human body.
この菌の最大の特徴は、 細胞分裂で細胞自体が増殖し、 過酷な環境下で も一般に菌自体より強い胞子を形成し、その環境に耐えられることである。 芽胞が固い殻で覆われているため、 熱や薬品等の外的因子に対する抵抗力 が高く、 1 0 0 [°C]、 5 [分] 間の熱湯中でも死滅しないと報告されてい る。  The most distinctive feature of this fungus is that the cells themselves proliferate during cell division, form spores that are generally stronger than the fungus itself, and can survive even in harsh environments. Since the spores are covered with a hard shell, they have high resistance to external factors such as heat and chemicals, and are reported not to die even in boiling water for 100 [° C] and 5 [minutes].
一般的に安全性の高い菌でもあるので、 加熱殺菌の指標菌として広く利 用されている。 Bacillus属のように、 あらゆるス トレスに強い芽胞菌が殺 菌可能であれば、 将来的な応用を考えた場合、 その他の菌 (大腸菌等) の 処理も充分に可能である。  Generally, it is a highly safe bacterium, and is widely used as an indicator bacterium for heat sterilization. If spores resistant to any stress, such as Bacillus, can be killed, other bacteria (such as Escherichia coli) can be treated sufficiently for future applications.
<選択した光源について〉 本発明が有効であることを検証するために、 他の光源による殺菌状態と を比較する。 以下、 本発明において、 比較のために選択した光源について 以下に説明する。 <About the selected light source> In order to verify that the present invention is effective, a comparison is made between the sterilized state using other light sources. Hereinafter, the light source selected for comparison in the present invention will be described below.
(1) 他の光源の一つとして、 National製、 殺菌灯 「GL— 6型」 (以 下、 「GL—6」 という) を採用した。  (1) As one of the other light sources, a GL-6 type germicidal lamp manufactured by National (hereinafter referred to as "GL-6") was adopted.
(2) 他の光源の一つとして、 東西電気産業株式会社製、 ゼノンフラッ シャランプ「OC 9 OA型」、発光間隔が 1/1. 3 [秒] (以下、 roc 9 0A」 とレヽう) と、 ゼノンフラッシャランプ 「MS 9 OA型」、 発光間隔が 1/7 [秒] (以下、 「MS 90 AJ という) を採用した。  (2) As one of the other light sources, a Zeno flasher lamp “OC9OA type” manufactured by Tozai Electric Industries Co., Ltd., with a light emission interval of 1 / 1.3 [second] (hereinafter referred to as roc90A) A Zenon flasher lamp “MS 9 OA type” with an emission interval of 1/7 [second] (hereinafter referred to as “MS 90 AJ”) was adopted.
(3) 他の光源の一つとして、 日亜化学製、 白色発光ダイオード (白色 (3) As one of the other light sources, Nichia
LED), 「NSPW500 B S」 (以下、 「白色 L E D」 という)、消費電力 9 [W] を採用した。 LED), "NSPW500 BS" (hereinafter referred to as "white LED"), and power consumption 9 [W].
なお、 本発明に係る閃光パルスによる光殺菌装置で用レ、る光源には、 三 洋電機製、 「LP_03B 36A— 81」の青色発光ダイォード(以下、「青 色 LED」 という) を採用した。  Note that a blue light emitting diode (hereinafter, referred to as “blue LED”) of “LP_03B 36A-81” manufactured by Sanyo Electric Co., Ltd. was used as a light source for use in the photosterilizer using a flash pulse according to the present invention.
ぐ光殺菌の原理 >  The principle of light sterilization>
殺菌の原理は殺菌方法により様々であるが、 本発明では光を用いて殺菌 を行っている。  The principle of sterilization varies depending on the sterilization method. In the present invention, sterilization is performed using light.
光殺菌では主に紫外線 (200 [nm] 〜400 [nm]) が用いられ、 中でも殺菌力相対値が高い波長は、 250 [nm] 〜260 [nm] 付近 である。 吸収された紫外線は、 生命維持と遺伝情報の伝達に必要な DN A (菌体ゲノム) を破壞し、 チミンタイマーを誘起して 2つの隣り合ったチ ミン分子が共有結合させて、 再生を妨害し、 細菌等の活動を停止させ死滅 させる。 Ultraviolet light (200 [nm]-400 [nm]) is mainly used in photosterilization, and the wavelength with a high relative value of sterilization power is around 250 [nm]-260 [nm]. The absorbed ultraviolet light destroys the DNA genome (DNA) required for life support and transmission of genetic information, triggers a thymine timer, and covalently bonds two adjacent thymine molecules to prevent regeneration. And stop the activities of bacteria etc. and die Let it.
3 5 0 [ n m] 以上の可視領域波長の光による殺菌のメカニズムは、 菌 体をとりまく分子、 例えば酸素、 光増感分子の関与する間接効果が考えら れる。 また、 光合成菌ゃクロレラは別として、 多くの微生物にとっては光 は不必要ばかりカ むしろ有害である。  The mechanism of sterilization by light having a visible wavelength of 350 nm or more is considered to be an indirect effect involving molecules surrounding the cells, for example, oxygen and photosensitizing molecules. Also, apart from the photosynthetic bacteria Chlorella, light is not only unnecessary but rather harmful for many microorganisms.
閃光パルス殺菌のメカニズムとして、 次の二つのことが考えられる。 前述した紫外線殺菌のメカニズムと同様の効果が考えられ、 閃光パルス が発する瞬間的な光により、 菌の細胞膜等の紫外線吸収がある物質が存在 する場合でも、 奥深くまで光が到達することにより殺菌効果が得られると 考えられる。  The following two mechanisms are considered as the mechanism of flash pulse sterilization. The same effect as the UV sterilization mechanism described above can be considered. Even if there is a substance that absorbs ultraviolet light, such as the cell membrane of a bacterium, due to the instantaneous light emitted by a flash pulse, the light reaches deep into the bactericidal effect. It is thought that
一方、 可視光や赤外線を照射することにより、 殺菌対象物の表面で吸収 された光が熱に変換され、 温度上昇が起こり、 殺菌効果が生じている。 非 常に短時間の照射であるため、 瞬間的で、 かつ、 殺菌対象物の極表面のみ で急激な温度上昇が発生している。 前述の紫外線による D NA損傷と、 可 視 ·赤外線による急激な温度上昇が同時に発生する効果により、 高い殺菌 効果が得られると考えられる。  On the other hand, by irradiating with visible light or infrared light, the light absorbed on the surface of the object to be sterilized is converted into heat, and the temperature rises, resulting in a sterilizing effect. Due to the very short irradiation time, a rapid temperature rise occurs instantaneously and only on the very surface of the object to be sterilized. It is thought that a high sterilization effect can be obtained by the effect of simultaneous occurrence of DNA damage by ultraviolet rays and rapid temperature rise by visible and infrared rays.
<特性試験概要 >  <Characteristic test outline>
次に、 本発明の有効性を確認するため、 次のような特性試験を行った。 細菌を用いる上で、 菌を肉眼で確認することが不可能なため、 また、 細菌 の大きさが 1 [ i m] 〜1 0 0 [ μ ιη] と小さく、 通常の光学顕微鏡でも 確認が難しく、 生死の判別ができないため、 特殊な方法により計測を行つ た。  Next, the following characteristic tests were performed to confirm the effectiveness of the present invention. When using bacteria, it is impossible to confirm the bacteria with the naked eye. Also, the size of the bacteria is as small as 1 [im] to 100 [μιη], and it is difficult to confirm even with a normal optical microscope. Because it is not possible to determine whether the object is alive or dead, measurement was performed using a special method.
微生物の増殖過程を測定するには、 様々な方法がある。 まず、 総菌計数法は、 細菌や酵母などの菌数を顕微鏡下で直接数える方 法で、 Petroff-Hauserの菌計数盤や Thomaの血球計数器を用いる。 There are various methods for measuring the growth process of microorganisms. First, the total bacteria counting method is a method of directly counting the number of bacteria, such as bacteria and yeast, under a microscope, using a Petroff-Hauser bacterial counting plate and a Thoma hemocytometer.
次に、 分光学的方法では、 比濁計や比色計を用いた吸光法がある。 光電 比色計を用いて菌体を含む培地の光吸度を測定する方法や、 培地中の微生 物濃度を測定するレーザー法がある。 このレーザー法は、 半導体レーザー により 7 8 0 [ n m] の光を、 菌体を含有する懸濁液に照射したとき、 減 衰する光を受光部で受け、電圧に変換して吸光度として表したものである。 光吸度とは、 入射光、 透過光の強さ及ぴ散乱光の計数によって決定するよ うにしたものである。  Next, in spectroscopic methods, there is an absorption method using a nephelometer or a colorimeter. There are methods for measuring the optical absorbance of a medium containing bacterial cells using a photoelectric colorimeter and a laser method for measuring the concentration of microorganisms in the medium. In this laser method, when a semiconductor laser irradiates a suspension containing bacteria with 780 [nm] light, the light that attenuates is received by the light-receiving unit, converted to a voltage, and expressed as absorbance. Things. The light absorption is determined by counting the intensity of incident light, transmitted light, and scattered light.
さらに、 生菌計数法は、 菌液を適当に希釈してコ口ニーを発生させ、 生 きている菌だけを測定する方法である。  In addition, the viable cell counting method is a method in which a bacterial solution is appropriately diluted to generate a knee so that only the viable cells are measured.
本発明の有効性を検証するために、 本発明では、 生菌計数法を基にコロ ニー力ゥント法を採用して計測することにした。  In order to verify the effectiveness of the present invention, in the present invention, the measurement was performed by employing the colony force method based on the viable cell counting method.
<コロニー力ゥント法 >  <Colony force method>
コロニーとは細菌の集落のことで、 一つのコロニーに約 1億匹の菌が存 在する。 一つの細菌が分裂を繰り返し、 一つのコ口-一を作成することか ら、 コロユーを形成させることにより、 菌の発生の有無、 及びその数の測 定が可能である。  A colony is a colony of bacteria. One colony contains about 100 million bacteria. Since one bacterium repeats division and creates one lip, it is possible to measure the presence or absence of the bacterium and its number by forming a colony.
次に、 コロニーカウント法について具体的に説明をする。  Next, the colony counting method will be specifically described.
シャーレに栄研化学株式会社製の普通寒天培地 (菌の発育を促すため栄 養入りの寒天) を用いて寒天平板培地を作成して、 寒天培地が固まるまで シャーレに蓋を閉めて、 2 0〜3 0 [分] 放置する。 このとき、 菌を培養 するには、 適度な栄養と温度が必要である。 本来、 培地精製は、 培地調整 薬を水に溶かし、 P Hを調整後、粉末寒天を 6 5 [% ] 添加して加圧殺菌 する過程を踏む必要があるが、 今回、 使用した普通寒天培地は減菌済みか つ P H調整済みなのものである。 Prepare an agar plate medium using Eiken Chemical's ordinary agar medium (agar with nutrients to promote the growth of bacteria) in the Petri dish, and close the Petri dish until the agar medium solidifies. ~ 30 [min] Leave to stand. At this time, appropriate nutrients and temperatures are required to culture the bacteria. Originally, culture medium purification After dissolving the drug in water and adjusting the pH, it is necessary to add 65% [%] of powdered agar and pasteurize it, but this time the normal agar medium used was sterilized and pH adjusted. It is something.
寒天培地が固まった後に、 電気恒温槽内で蓋を僅かにずらして、 無菌的 に 1 5〜2 0 [分] 間水滴を乾かす。  After the agar medium has solidified, slightly shift the lid in an electric water bath and aseptically dry the water droplets for 15 to 20 minutes.
さらに、 形成したコロニーが重複しないように、 白金線で希釈した殺菌 対象物 (試料寒天平板) 上に塗布する。 また、 白金線を使う前後は必ず、 白金線を火炎滅菌しておく。 このとき、 菌体のついた白金線の先端は、 ま ず温度の低い内炎に入れ、 次に高温の外炎で焼く。 なぜなら、 いきなり外 炎にいれると、 周囲に菌体が飛び散る恐れがあるからである。  In addition, apply on a sterile target (sample agar plate) diluted with platinum wire so that the formed colonies do not overlap. Before and after using platinum wire, be sure to sterilize the platinum wire with flame. At this time, the tip of the platinum wire with the cells is first placed in a low-temperature inner flame, and then burnt with a high-temperature outer flame. This is because if you suddenly enter the outer flame, there is a risk that the bacterial cells will scatter around.
このように、 コロニーが発生した少なくとも 4つの殺菌対象物 (試料寒 天平板) に対して、 本発明の実施の形態に係る閃光パルスによる光殺菌装 置装置 1による閃光パルスによる光殺菌方法と、 上述した他の 3つの光源 による閃光パルスを含む光殺菌方法とによつて、それぞれを光殺菌をする。 上述した本発明の実施の形態に係る閃光パルスによる光殺菌装置装置 1 による閃光パルスによる光殺菌方法によつて殺菌した殺菌対象物 (試料寒 天平板) と、 上述した他の 3つの光源による閃光パルスを含む光殺菌方法 とによつて殺菌した 3つの殺菌対象物 (試料寒天平板) を 3 7 [°C] で 2 4時間の間、 電気恒温槽で培養する。 このときに、 頻繁に扉を開閉すると 温度が変化してしまうので、 注意する必要がある。  As described above, for at least four sterilization targets (sample agar plates) in which colonies have occurred, a light sterilization method using a flash pulse by the light sterilization device 1 using a flash pulse according to the embodiment of the present invention; Each of the three other light sources is subjected to photosterilization by the photosterilization method including a flash pulse. The object to be sterilized (sample agar plate) sterilized by the photosterilization method using the flash pulse by the flash pulse photosterilizer device 1 according to the embodiment of the present invention, and the flash by the other three light sources described above. The three sterilized objects (sample agar plates) sterilized by the light sterilization method including pulse are cultured in an electric thermostat at 37 [° C] for 24 hours. At this time, if the door is frequently opened and closed, the temperature will change, so care must be taken.
2 4時間後に電気恒温槽から取り出した各殺菌対象物 (試料寒天平板) のコロニーの数を計数する。 このとき、 計数する各殺菌対象物 (試料寒天 平板) は、 1シャーレ当たりのコロニー数が 3 0〜3 0 0 [個] 程度の場 合が最も信頼度が高く望ましい。 After 24 hours, count the number of colonies of each sterilization target (sample agar plate) removed from the electric thermostat. At this time, each sterilization target (sample agar plate) to be counted should have a colony number of about 30 to 300 [pieces] per petri dish. Is the most reliable and desirable.
く殺菌効果の定義〉  Definition of bactericidal effect>
殺菌効率を泥状的に調べるため、 次のように定義する。 光を照射しなか つたときに発生した菌の個数を A、 t時間光を照射した後に残っていた菌 の個数を rとしたときの殺菌効率を Pとすると、  In order to examine the sterilization efficiency muddy, it is defined as follows. Let A be the number of bacteria generated without light irradiation, and P be the sterilization efficiency when the number of bacteria remaining after light irradiation is r.
P = { (A— r ) /A} X 1 0 0 … ( 1 )  P = {(A— r) / A} X 1 0 0… (1)
と定義する。 . Is defined. .
ただし、 一回のデータではコロニー同士が重なり合ってしまったり、 空 気中の雑菌が混入してしまったり、 菌の発育の違いによる誤差がでてくる ため、 A、 1-は数回の実行してデータの平均値を用いた。  However, A and 1- are performed several times, because colonies may overlap with each other in a single data, bacteria may be mixed in the air, or errors may occur due to differences in bacterial growth. The average value of the data was used.
ぐ試験装置〉  Test equipment>
以上の試験を行うため、 次のような装置を用いた。  The following equipment was used to perform the above tests.
( 1 ) 波長分布測定を行うため、 光スぺクトルナァライザを用いた。 (1) An optical spectrum analyzer was used to measure the wavelength distribution.
( 2 ) CW光の光強度測定を行うため、 光パワーメータを用いた。 (2) An optical power meter was used to measure the light intensity of CW light.
( 3 ) パルス光の光強度を測定するため、 光強度測定器を用いた。  (3) A light intensity measuring device was used to measure the light intensity of the pulsed light.
図 5は、 本発明の実施の形態及び実施例に係る閃光パルスによる光殺菌 装置による光殺菌方法の有効性を検証するために、 他の光源と同様に行つ た試験装置の一例を示す図である。  FIG. 5 is a diagram showing an example of a test device performed in the same manner as other light sources to verify the effectiveness of the light sterilization method using the light sterilization device using a flash pulse according to the embodiments and examples of the present invention. It is.
この図 3において、 符号 1 1は光源であり、 この光源 1 1は、 本発明の 実施の形態及び実施例に係る閃光パルスによる光殺菌装置による光源、 ま たは、 他の 3つの光源のことを差す。  In FIG. 3, reference numeral 11 denotes a light source, and the light source 11 is a light source by a light sterilizing apparatus using a flash pulse according to the embodiment and the example of the present invention, or three other light sources. Insert
また、 上述した図 5において、 符号 Sは殺菌対象物 (試料寒天平板) で ある。 さらに、 上述した図 5において、 符号 13は光強度測定器であり、'光強 度測定器 13は、光を電気に変換するフォトダイオード(PD) 13 aと、 この PD 13 aからの電気信号のうち最大値を保持するピークホールド回 路 13 bと、 前記ピークホールド回路 13 bを制御する制御部 13 cとか らなる。 ' Further, in FIG. 5 described above, the symbol S is a sterilization target (sample agar plate). Further, in FIG. 5 described above, reference numeral 13 denotes a light intensity measuring device, and the light intensity measuring device 13 includes a photodiode (PD) 13a for converting light into electricity, and an electric signal from the PD 13a. And a control unit 13c for controlling the peak hold circuit 13b. '
各光源 (他の 4つの光源 (「GL—6」、 「OC 90A」、 「MS 90A」、 「白色 LED」と、本発明に係る閃光パルスによる光殺菌方法に用いる「青 色 LED」) 1 1の光強度は、当然光源 1 1から遠くなるにしたがって弱く なってゆくので、 光強度による殺菌効率の測定を行うためには、 距離に対 する光強度の測定をおこない、 それらの値を把握する必要がある。 そのた め、 光パワーメータ及び光強度測定器 13を用いて測定を行った。  Each light source (the other four light sources (“GL-6”, “OC 90A”, “MS 90A”, “white LED” and “blue LED” used in the light sterilization method using a flash pulse according to the present invention)] 1 The light intensity of (1) naturally becomes weaker as the distance from the light source (11) increases, so in order to measure the sterilization efficiency based on the light intensity, measure the light intensity against the distance and grasp the values. Therefore, the measurement was performed using an optical power meter and an optical intensity measuring device 13.
図 6は、 光強度測定器で測定した他の光源 (「GL— 6」) のスペク トル を示す特性図であって、横軸に波長 [nm] を、縦軸に強度 [dBm] を、 それぞれとったものである。  Fig. 6 is a characteristic diagram showing the spectrum of another light source ("GL-6") measured by a light intensity measuring instrument. The horizontal axis represents the wavelength [nm], the vertical axis represents the intensity [dBm], Each one is taken.
図 7は、 光強度測定器で測定した他の光源 (「0 C 90 A J 及ぴ 「MS 9 0 AJ) のスぺクトルを示す特性図であって、 横軸に波長 [nm] を、 縦軸 に強度 [dBm] を、 それぞれとったものである。  FIG. 7 is a characteristic diagram showing the spectrum of another light source (“0 C 90 AJ” and “MS 90 AJ”) measured by a light intensity measuring instrument, in which the horizontal axis represents the wavelength [nm] and the vertical axis represents the wavelength [nm]. The axis shows the intensity [dBm].
図 8は、 光強度測定器で測定した他の光源 (「白色 LED」) のスぺク 卜 ルを示す特性図であって、 横軸に波長 [nm] を、 縦軸に強度 [dBm] を、 それぞれとったものである。  FIG. 8 is a characteristic diagram showing the spectrum of another light source (“white LED”) measured by a light intensity measuring instrument, where the horizontal axis represents wavelength [nm] and the vertical axis represents intensity [dBm]. Is taken respectively.
図 9は、 光強度測定器で測定した本発明に係る閃光パルスによる光殺菌 装置の光源 (「青色 LED」) のスペク トルを示す特性図であって、 横軸に 波長 [nm] を、 縦軸に強度 [dBm] を、 それぞれとったものである。 こられの特性図の結果を表 1に示す。 表 1 各光源のスペク トラム 波長範囲 ピーク波長 . FIG. 9 is a characteristic diagram showing a spectrum of a light source (“blue LED”) of a photosterilizer using a flash pulse according to the present invention, which is measured by a light intensity measuring device. The horizontal axis represents wavelength [nm], and the vertical axis represents wavelength. The axis shows the intensity [dBm]. Table 1 shows the results of these characteristic diagrams. Table 1 Spectrum wavelength range of each light source Peak wavelength.
(}レ6 330nm〜 700nm 435nm  (} Le 6 330nm〜 700nm 435nm
OC90A&MS90A 320nm〜 1150nra 845nm  OC90A & MS90A 320nm〜 1150nra 845nm
白色 LED 330nm〜 800nra 468nm  White LED 330nm〜 800nra 468nm
青色 LED 419nm〜 519nm 466nm  Blue LED 419nm ~ 519nm 466nm
この表 1からわかるように、 「GL— 6」 は波長が 330 [nm] 〜 7 00 [nm]でピーク波長は 435 [nm]であった。 また、 「OC 90 A」 及ぴ 「MS 90 A」 は波長が 320 [nm] 〜; L 1 50 [nm] でピーク 波長は 845 [nm] であった。 「白色 L EDJ は波長が 330 [nm] 〜 800 [nm] でピーク波長は 468 [nm] であった。 本発明の実施の形態に係る閃光パルスによる光殺菌装置 1で用いる 「青 色 LED」 は波長が 4 1 9 [nm] 〜5 1 9 [nm] でピーク波長は 46 6 [n mj でめった。 As can be seen from Table 1, “GL-6” had a wavelength of 330 [nm] to 700 [nm] and a peak wavelength of 435 [nm]. “OC 90 A” and “MS 90 A” had a wavelength of 320 nm to L 150 nm and a peak wavelength of 845 nm. “White L EDJ had a wavelength of 330 [nm] to 800 [nm] and a peak wavelength of 468 [nm].“ Blue LED ”used in the photodisinfection device 1 using a flash pulse according to the embodiment of the present invention. The wavelength was 419 [nm] to 519 [nm], and the peak wavelength was 466 [nmj].
Figure imgf000015_0001
每光源の距離 光強度特性 -
Figure imgf000015_0001
距離 Light source distance Light intensity characteristics-
(光強度の単位は WZm . 2 ) (The unit of light intensity is WZm. 2)
Gl-6 OC90A&MS90A 白色 LED 青色 LED Gl-6 OC90A & MS90A White LED Blue LED
1cm 7.47 2.10*10Λ-4 243.19 48.50 1cm 7.47 2.10 * 10 Λ -4 243.19 48.50
zcm .5.77 1.97*10A-4 208.81 .45.30 zcm .5.77 1.97 * 10 A -4 208.81 .45.30
icm 3.71 . 1.88*10A-4 179.53 42.90 icm 3.71 .1.88 * 10 A -4 179.53 42.90
4cm ' 3.03 1.81*10Λ-4 129.87 40.70 4cm '3.03 1.81 * 10 Λ -4 129.87 40.70
Dcm 2.18 1.78* 10 120.93 39.50  Dcm 2.18 1.78 * 10 120.93 39.50
10cm 0.80 1,71警 4 . 35.65 20.50  10cm 0.80 1,71 Police 4.35.65 20.50
15cm 0.58 1.68*10A-4 14.00 11.60 15cm 0.58 1.68 * 10 A -4 14.00 11.60
20cm 0.31 1.63* 10 12.73 7.30  20cm 0.31 1.63 * 10 12.73 7.30
次に、 光源 1 1と殺菌対象物 (試料寒天平板) Sとの距離を変化させて 測定を行った。 表 2は、 各他の 3つの光源 (「GL— 6」、 「OC 90A」 及 び「MS 90A」、 「白色 LED」) と、本発明の実施の形態に係る閃光パル スによる光殺菌装置で用レ、る光源(「青色 L E D」)における光源の距離と、 光強度との関係を示すものである。 この表 2に示すように、 「GL— 6」 は、 1 [cm] で 7. 47 [w/m 2]、 2 [cm] で 5. 77 [w/m2], ···、 20 [cm] で 0. 3 1 [w /m2] の特性であった。 この表 2に示すように、 「OC 90 A」及ぴ「MS 90 A」 は、 1 [cm] で 2. 1 0 X 1 0.4 [w/m2], 2 [cm] で 1. 1 9 X 1 0.4 [w/m2], …ヽ 20 [cm] で 1. 63 X 10-4 [wZm2] であった。 この表 2に示すように、 「白色 LEDJは、 1 [cm]で 243. 1 9 [w /m2] 2 [cm] で 208. 81 [w/m2], ■··、 20 [ c m] で 1 2. 73 [w/m2] であった。 この表 2に示すように、 本発明に係る閃光パルスによる光殺菌装置で用 いる光源の 「青色 LED」 は、 1 [cm] で 48. 50 [w/m2]、 2 [c 111] で45. 30 [w/m2] …ゝ 20 [cm] で 7. 30 [w/m2] で あつに 本発明の実施の形態に係る閃光パルスによる光殺菌装置で用いる光源 Next, the measurement was performed while changing the distance between the light source 11 and the sterilization target (sample agar plate) S. Table 2 shows the other three light sources ("GL-6", "OC90A" and "MS90A", "white LED") and the light sterilizer using a flash pulse according to the embodiment of the present invention. It shows the relationship between the light source distance and the light intensity in a light source ("blue LED"). As shown in Table 2, "GL- 6" is, 1 [cm] at 7. 47 [w / m 2] , 2 [cm] at 5. 77 [w / m 2] , ···, 20 The characteristic was 0.31 [w / m 2 ] in [cm]. As shown in Table 2, “OC 90 A” and “MS 90 A” are 1.10 X 10.4 [w / m 2 ] at 1 [cm] and 1.19 at 2 [cm]. X 1 0. 4 [w / m 2], ... 1. was 63 X 10-4 [wZm 2] inヽ20 [cm]. As shown in Table 2, "white LEDJ is, 1 [cm] at 243. 1 9 [w / m 2 ] 2 [cm] 208. 81 [w / m 2] in, ■ ··, 20 [cm Was 12.73 [w / m 2 ]. As shown in Table 2, the “blue LED” of the light source used in the photosterilizer using a flash pulse according to the present invention was 48.50 [w / m 2 ] at 1 [cm] and 2 [c 111] at 1 [cm]. 45.30 light source used in optical sterilizer according [w / m 2] ...ゝ20 [cm] at 7.30 flash pulses according to an embodiment of the present invention to a thickness in [w / m 2]
(「青色 LEDJ) と、 その他の光源 (「GL— 6」、 「OC 90 A」 及ぴ 「M S 90A」、 「白色 LEDJ) の特徴を表 3に示す。 表 3 (“Blue LEDJ”) and other light sources (“GL-6”, “OC90A” and “MS90A”, “White LEDJ”) are shown in Table 3. Table 3
,各光源の特徴 , Characteristics of each light source
Light source GL-6 OC90A & MS90A Light source GL-6 OC90A & MS90A
sterilization lamp ¾ flash lamp  sterilization lamp ¾ flash lamp
Wawkngtli (Peak) 435nm 845nm  Wawkngtli (Peak) 435nm 845nm
Characteristic from near UV to visible from near UV to near I  Characteristic from near UV to visible from near UV to near I
Light intensity (5cm) 2.18 W/mA2 1.78* 10 W/mA2 Light intensity (5cm) 2.18 W / m A 2 1.78 * 10 W / m A 2
(GL-6 1) 1 8.2*10Λ - 5 (GL-6 1) 1 8.2 * 10 Λ -5
LigM s©暫 £ White LED "Blue LED LigM s © Interim £ White LED "Blue LED
Waveiengli ( Peak) . ' 468nm ' 466nm  Waveiengli (Peak). '468nm' 466nm
Characteristic from near UV to visible almost near UV  Characteristic from near UV to visible almost near UV
Light intensity (5em) 120.93 W/m八 2 39.50 W/mA2 Light intensity (5em) 120.93 W / m 8 2 39.50 W / m A 2
(GL-6 = 1) 55 18 表 3 において、 他の光源である 「 G L— 6」 はピーク波長 (Wavelength(Peak)) が 435 [nm] で、 近紫外線から可視光までの波 長を有し、 光強度が 5 [cm] 離れて 2. 18 [w/m2] であるという特 性を有する。 表 3において、 他の光源である 「OC 90A」 及び 「MS 90A」 はピ ーク波長 (Wavelength(Peak)) が 845 [nm] で、 近紫外線から近赤外 線までの波長を有し、 光強度が 5 [cm] 離れて 8. 2 X 1 0-4 [w/m2] であるという特性を有する。 (GL-6 = 1) 55 18 In Table 3, the other light source “GL-6” has a peak wavelength (Wavelength (Peak)) of 435 [nm] and has a wavelength from near ultraviolet to visible light. The light intensity is 2.18 [w / m2] at a distance of 5 [cm]. In Table 3, the other light sources, “OC 90A” and “MS 90A”, have a peak wavelength (Wavelength (Peak)) of 845 [nm]. It has the property of having a wavelength up to the line and a light intensity of 8.2 X 10-4 [ w / m2 ] at a distance of 5 cm.
表 3において、 他の光源である 「白色 L E D」 はピーク波長 (Wavelength(Peak)) が 468 [nm] で、 近紫外線から可視光までの波 長を有し、 光強度が 5 [cm] 離れて 1 20. 93 [wZm2] であるとい う特性を有する。 In Table 3, the other light source “white LED” has a peak wavelength (Wavelength (Peak)) of 468 [nm], has a wavelength from near ultraviolet to visible light, and has a light intensity of 5 [cm] away. 1 20.93 [wZm 2 ].
表 3において、 本発明に係る閃光パルスによる光殺菌装置で使用する光 源の 「青色 L E D」 はピーク波長 (Wavelength(Peak)) が 466 [nm] で、 近紫外線の波長を有し、 光強度が 5 [cm] 離れて 39. 50 [w/ m2] であるという特性を有する。 In Table 3, the “blue LED” of the light source used in the photosterilizer using a flash pulse according to the present invention has a peak wavelength (Wavelength (Peak)) of 466 [nm], a wavelength of near-ultraviolet light, and a light intensity. Is 5 [cm] apart and 39.50 [w / m 2 ].
各光源 1 1と殺菌対象物 (試料寒天平板) Sとの距離を 1 [cm], 3 [c m], 5 [cm] と変えて、 光強度に対する各光照射時間の殺菌効率の測定 と、 この結果を比較するために光源 1 1からの距離に対する光強度の測定 を行った。  By changing the distance between each light source 11 and the object to be sterilized (sample agar plate) S to 1 [cm], 3 [cm], 5 [cm], measurement of the sterilization efficiency at each light irradiation time with respect to the light intensity, In order to compare the results, the light intensity with respect to the distance from the light source 11 was measured.
照射距離 Z照射時間における殺菌効率の結果について、 光源 (「GL— 6 J) 1 1については表 4に、光源(「OC 90 AJ) 1 1については表 5に、 光源 (「MS 90A」) 1 1については表 6に、 光源 (「白色 LED」) 1 1 については表 7に、 本発明に係る閃光パルスによる光殺菌装置で用いた光 源 (「青色 LED」) 1 1については表 8に、 それぞれ示している。  Irradiation distance The results of the sterilization efficiency at the Z irradiation time are shown in Table 4 for the light source ("GL-6J" 11) and in Table 5 for the light source ("OC 90 AJ" 11). The light source ("MS 90A") Table 6 for 11 and Table 7 for the light source (“white LED”) 11, and Table 8 for the light source (“blue LED”) 11 Are shown below.
Figure imgf000018_0001
表 4
Figure imgf000018_0001
Table 4
G L - 6殺菌灯における殺菌効率  Sterilization efficiency in G L-6 germicidal lamp
3cm  3cm
Figure imgf000019_0001
Figure imgf000019_0001
3時間 10.00% 6.00% 表 8 青色 L E Dによる殺菌効率 lcm 3 hours 10.00% 6.00% Table 8 Sterilization efficiency by blue LED lcm
1時間 29.10%  1 hour 29.10%
2時間 40.00%  2 hours 40.00%
3時間 33.30% 本発明の実施の形態に係る閃光パルスによる光殺菌装置による光殺菌方 法に関しては、 表 8に示すように、 空気中の雑菌が混入したり、 菌がうま く発育しなかったりと問題が生じたため、 他の光源の結果と比較してデー タが少なくなつている。 また、 試験結果により、 本発明の実施の形態に係る閃光パルスによる光 殺菌方法で用いた光源 (「青色 LEDJ) も、他の光源 (「GL_6」、 roc 90 AJ 及び 「MS 90 A」、 「白色 LEDJ) とも、 殺菌効率は認められる 力 殺菌対象物 (試料寒天平板) Sの菌の根絶までには至らなかった。 まず、表 4〜表 8に示す結果について考察すると、全ての結果において、 殺菌効果及び菌の発育の抑制は認められたが、 菌の根絶までには至らなか つた また、 表 4、 表 5、 表 6よりフラッシュランプ (「OC 90 AJ 及び 「M S 90 AJ) と殺菌灯 (「GL—6」) の動条件を比較してみると、 フラッシ ュランプ (「OC 90A」 及び 「MS 90A」) のほうが殺菌効率が低いこ とがわかる。 この結果より、 波長が短くパワーが強いほど、 より高効率が えられる傾向を確認できた。 また、 結果だけみると、 フラッシュランプ (「OC 90 A」 及び 「MS 9 0 AJ) は、 殺菌灯 (「GL— 6」) よりも殺菌効率が低いため、 あまり実用 に向いていないと考えられるが、 波長 ·光強度ともに、 他の光源の中で最 弱であるにも関わらず、 菌の発育を抑える効果が認められたことから、 閃 光パルス殺菌の有効性と発展の可能性が確認できる。 また、 フラッシュラ ンプ (「OC 90A」 及ぴ 「MS 90A」) よりも強いパルス光源を用いれ ば、 菌の減菌を可能だと考えられる。 3 hours 33.30% Regarding the light sterilization method using the light sterilization device using a flash pulse according to the embodiment of the present invention, as shown in Table 8, various bacteria in the air may be mixed or the bacteria may not grow well. The data has been reduced compared to the results of other light sources. Further, according to the test results, the light source (“blue LEDJ”) used in the light sterilization method using a flash pulse according to the embodiment of the present invention was also replaced with another light source (“GL_6”, roc 90 AJ and “MS 90 A”, “ For both white LEDJ), sterilization efficiency was observed. Power Sterilization target (sample agar plate) Did not reach the eradication of bacteria in S. First, considering the results shown in Tables 4 to 8, A bactericidal effect and suppression of bacterial growth were observed, but did not reach the eradication of the fungus.Tables 4, 5, and 6 show that flash lamps (OC 90 AJ and MS 90 AJ) and germicidal lamps Comparing the dynamic conditions of “GL-6”, it can be seen that the flashlamp (“OC 90A” and “MS 90A”) has lower sterilization efficiency. From this result, it was confirmed that the higher the power was, the shorter the wavelength was, the higher the efficiency was. Looking at the results alone, the flash lamps (“OC 90 A” and “MS 90 AJ”) are less practical than the germicidal lamps (“GL-6”) because of their lower sterilization efficiency. Although it is considered that it is not suitable for lightning, the effect of suppressing the growth of bacteria was recognized in spite of the weakest wavelength and light intensity among other light sources, indicating the effectiveness of flash pulse sterilization And the possibility of development can be confirmed. In addition, if a pulsed light source stronger than the flash lamp (“OC 90A” and “MS 90A”) is used, it will be possible to reduce bacteria.
表 4、 表 7及び表 8の結果については、 本発明の実施の形態に係る閃光 パルスによる光殺菌装置で用いる光源 (「青色 LED」) 及び他の光源のう ちの一つの光源 (「白色 LEDJ) は、 他の光源のうちの一つの光源である 殺菌灯 (「GL_6」) よりは殺菌効率が低レ、という結果となった。  The results in Tables 4, 7 and 8 show that the light source (“blue LED”) used in the photosterilizer using a flash pulse according to the embodiment of the present invention and one of the other light sources (“white LEDJ”). ) Resulted in lower germicidal efficiency than the germicidal lamp (“GL_6”), one of the other light sources.
しかしながら、 本発明の実施の形態に係る閃光パルスによる光殺菌装置 で用いる光源 (「青色 LED」) では、 データが少ないが、 殺菌灯 (「GL— 6 J) とほぼ同様の殺菌効率を得ることができた。  However, in the light source (“blue LED”) used in the flash pulse light sterilizer according to the embodiment of the present invention, although the data is small, it is possible to obtain almost the same sterilization efficiency as that of the germicidal lamp (“GL-6J”). Was completed.
この結果は、 光源 (「白色 LEDJ) と、 本発明の実施の形態に係る閃光 パルスによる光殺菌装置で用いた光源 (「青色 LEDJ) とともに近紫外域 に波長をある程度有しているが、 本発明の実施の形態に係る閃光パルスに よる光殺菌装置で用レ、た光源 (「青色 LED」) のほうがより多くの近紫外 域に波長を有しているため、 殺菌効率が高くなつたと思われる。  This result shows that the light source (“white LEDJ”) and the light source (“blue LEDJ”) used in the photodisinfection device using a flash pulse according to the embodiment of the present invention have a certain wavelength in the near ultraviolet region. The light source ("blue LED") used in the photodisinfection device using a flash pulse according to the embodiment of the present invention has more near-ultraviolet wavelengths, so the disinfection efficiency seems to be higher. It is.
また、 光殺菌において、 光強度も重要な要素であるが、 その光源のスぺ ク トルに紫外域 (近紫外域) の波長をより多く含んでいるほうが、 より高 い殺菌効果がえられる傾向があると考えられる。  In light sterilization, light intensity is also an important factor, but the higher the wavelength of the ultraviolet region (near ultraviolet region) in the spectrum of the light source, the higher the sterilization effect tends to be obtained. It is thought that there is.
上述したことから、 閃光パルスと、 青色 LEDとを組み合わせた本発明 の実施の形態に係る閃光パルスによる光殺菌装置によれば、 通常の殺菌灯 よりも、 高効率、 低消費電力、 低コス トで小型化できるという利点がある ほか、 人体に影響のない殺菌装置を得ることができる。 From the above, according to the photodisinfection device using a flash pulse according to the embodiment of the present invention in which a flash pulse and a blue LED are combined, higher efficiency, lower power consumption, and lower cost than a normal germicidal lamp. Has the advantage that it can be miniaturized In addition, it is possible to obtain a sterilizing device that does not affect the human body.
本発明の実施の形態に係る閃光パルスによる光殺菌装置では、 閃光パル スによる光殺菌装置 1を青色発光ダイォードアレイ 3と駆動回路 5とから 構成し、 単に青色発光ダイオードアレイ 3から殺菌対象物 Sにパルス光を 照射するという方法であつたが、 これに限定されることなく、 次のような 構成であってもよい。  In the photosterilizer using a flash pulse according to the embodiment of the present invention, the photosterilizer 1 using a flash pulse is composed of a blue light-emitting diode array 3 and a drive circuit 5, and the object to be sterilized is simply obtained from the blue light-emitting diode array 3. Although the method of irradiating S with pulsed light was used, the present invention is not limited to this, and the following configuration may be employed.
まず、 第 1の変形例は、 青色発光ダイォードアレイ 3の大型化し、 これ からの光をレンズや鏡を利用して効率的に殺菌対象物 Sに導くようにして もよい。  First, in the first modified example, the blue light emitting diode array 3 may be enlarged, and light from the blue light emitting diode array 3 may be efficiently guided to the sterilization target S using a lens or a mirror.
第 2の変形例としては、 青色発光ダイォードアレイ 3の大型化し、 これ からの光を光ファイバ一を用いて光ファイバ一の先端から殺菌対象物 Sに パルス光を照射するようにしてもよい。  As a second modification, the size of the blue light emitting diode array 3 may be increased, and the light to be emitted may be applied to the sterilization target S from the tip of the optical fiber using the optical fiber. .
第 3の変形例としては、 青色発光ダイォードアレイ 3で殺菌対象物 Sを 囲み殺菌するようにしてもよい。  As a third modified example, the object S to be sterilized may be surrounded by the blue light emitting diode array 3 and sterilized.
また、 本発明の実施の形態に係る閃光パルスによる光殺菌装置 1は、 レ ス トランや老人ケアセンターの紙製使い捨ておしぼりや、 水の殺菌や、 ス 一パー等のカウンターディスプレイの生もの.新鮮物の殺菌に応用できる。 また、 本発明の実施の形態に係る閃光パルスによる光殺菌装置は、 病院 内感染などへの消毒液などで濡らす必要のない消毒に応用できる。  In addition, the light sterilizing apparatus 1 using a flash pulse according to the embodiment of the present invention is a disposable towel made of paper at a restaurant or a geriatric care center, sterilizing water, and a raw counter display such as a spar. Applicable to sterilization of objects. Further, the light sterilizing apparatus using a flash pulse according to the embodiment of the present invention can be applied to disinfection that does not require wetting with a disinfecting solution or the like for infection in hospitals.
さらに、 本発明の実施の形態に係る閃光パルスによる光殺菌装置は、 洗 濯機内の洗濯かごや、 食器洗浄器の内部や、 洗浄水、 掃除機内の殺菌に応 用できる。  Further, the light sterilizing apparatus using a flash pulse according to the embodiment of the present invention can be applied to sterilization in a washing basket in a washing machine, in a dishwasher, in washing water, and in a vacuum cleaner.
また、 本発明の実施の形態に係る閃光パルスによる光殺菌装置は、 冷蔵 庫内部や、製氷機の貯水タンクにおける水、フィルタの殺菌に応用できる。 加えて、 本発明の実施の形態に係る閃光パルスによる光殺菌装置は、 ェ アコンのフィルターの殺菌に応用できる。 In addition, the light sterilization apparatus using a flash pulse according to the embodiment of the present invention can be refrigerated. It can be applied to sterilization of water and filters inside the refrigerator and in the water storage tank of the ice machine. In addition, the photosterilizer using a flash pulse according to the embodiment of the present invention can be applied to sterilization of an air conditioner filter.
さらに、 本発明の実施の形態に係る閃光パルスによる光殺菌装置に光フ アイバーを併用して、 手の届かないような狭部いや隙間の殺菌に応用でき る。  Furthermore, by using an optical fiber in combination with the light sterilizing apparatus using a flash pulse according to the embodiment of the present invention, the present invention can be applied to sterilization of a narrow portion or a gap that is inaccessible.
また、 本発明の実施の形態に係る閃光パルスによる光殺菌装置は、 浴槽 などの殺菌に応用できるほか、 小型化が可能なので、 家庭用の小型な殺菌 装置や、 携帯用殺菌装置に応用できる。 産業上の利用可能性  In addition, the light sterilizer using a flash pulse according to the embodiment of the present invention can be applied to sterilization of a bathtub and the like, and can be downsized, so that it can be applied to a small household sterilizer and a portable sterilizer. Industrial applicability
以上説明したように本発明の閃光パルスによる光殺菌方法及びその装 置によれば、 所定のパルス信号で青色発光ダイォードアレイを駆動し、 青 色発光ダイォードアレイから閃光パルスを発生させて殺菌対象物に照射し て殺菌することがてきるので、 高効率、 低消費電力、 低コス トで小型化で きるという利点があるほか、 熱放射がなく、 かつ、 人体に影響のない殺菌 ができるという利点がある。  As described above, according to the light sterilization method using a flash pulse of the present invention and the apparatus therefor, a blue light emitting diode array is driven by a predetermined pulse signal, and a flash pulse is generated from the blue light emitting diode array to sterilize the light. Since the target can be irradiated and sterilized, it has the advantages of high efficiency, low power consumption, low cost and downsizing, and sterilization without heat radiation and without affecting the human body. There is an advantage.

Claims

請 求 の 範 囲 The scope of the claims
1 . 閃光パルスを殺菌対象物に照射して殺菌対象物を殺菌する閃光パルス による光殺菌方法において、 所定のパルス信号で青色発光ダイォードアレ ィを駆動し、 青色発光ダイォードアレイから閃光パルスを発生させて殺菌 対象物に照射して殺菌することを特徴とする閃光パルスによる光殺菌方法。1. In a light sterilization method using a flash pulse for sterilizing an object to be sterilized by irradiating the object with a flash pulse, a blue light emitting diode array is driven by a predetermined pulse signal to generate a flash pulse from the blue light emitting diode array. A light sterilization method using a flash pulse, wherein the object is sterilized by irradiating the object.
2 . 閃光パルスを殺菌対象物に照射して殺菌対象物を殺菌する閃光パルス による光殺菌装置において、 殺菌対象物に所定の距離を離して対峙させた 青色発光ダイオードアレイと、 前記青色発光ダイォードアレイを所定間隔 のパルス信号で駆動する駆動回路とを備えたことを特徴とする閃光パルス による光殺菌装置。 2. In a light sterilization apparatus using a flash pulse for irradiating a sterilization target with a flash pulse to sterilize the sterilization target, a blue light-emitting diode array facing the sterilization target at a predetermined distance, and the blue light-emitting diode And a drive circuit for driving the array by pulse signals at predetermined intervals.
PCT/JP2004/003283 2003-03-14 2004-03-12 Optical sterilizing method and device using flash pulses WO2004080494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-069544 2003-03-14
JP2003069544A JP2004275335A (en) 2003-03-14 2003-03-14 Optical sterilization method by scintillation pulse and its apparatus

Publications (1)

Publication Number Publication Date
WO2004080494A1 true WO2004080494A1 (en) 2004-09-23

Family

ID=32984622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003283 WO2004080494A1 (en) 2003-03-14 2004-03-12 Optical sterilizing method and device using flash pulses

Country Status (2)

Country Link
JP (1) JP2004275335A (en)
WO (1) WO2004080494A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754156B2 (en) 2006-03-31 2010-07-13 The Invention Science Fund I, Llc Surveying sterilizer methods and systems
WO2011031167A1 (en) * 2009-09-08 2011-03-17 Mondiale Technologies Limited Heating and sterilisation apparatus, incubators and incubator systems
US8114342B2 (en) 2006-03-31 2012-02-14 The Invention Science Fund I, Llc Methods and systems for monitoring sterilization status
US8277724B2 (en) 2006-03-31 2012-10-02 The Invention Science Fund I, Llc Sterilization methods and systems
JP2013006041A (en) * 2005-02-04 2013-01-10 Biodefense Corp Article processing apparatus and related method
US8758679B2 (en) 2006-03-31 2014-06-24 The Invention Science Fund I, Llc Surveying sterilizer methods and systems
US8932535B2 (en) 2006-03-31 2015-01-13 The Invention Science Fund I, Llc Surveying sterilizer methods and systems
US8992837B2 (en) 2006-03-31 2015-03-31 The Invention Science Fund I, Llc Methods and systems for monitoring sterilization status
US10646602B2 (en) 2006-03-31 2020-05-12 Deep Science, Llc Methods and systems for sterilization
CN111511409A (en) * 2017-10-11 2020-08-07 香港科技大学 Asynchronous intermittent illumination for rapid surface disinfection
CN113028726A (en) * 2019-12-09 2021-06-25 合肥华凌股份有限公司 Storage device, pulsed light control method, and pulsed light control device
US11850319B2 (en) 2020-09-29 2023-12-26 Abl Ip Holding Llc Techniques for directing ultraviolet energy towards a moving surface
US11896728B2 (en) 2020-09-29 2024-02-13 Abl Ip Holding Llc Techniques for directing ultraviolet energy towards a moving surface

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0515550D0 (en) 2005-07-29 2005-09-07 Univ Strathclyde Inactivation of staphylococcus species
JP2008070001A (en) * 2006-09-12 2008-03-27 Matsushita Electric Ind Co Ltd Storage device
JP2008161095A (en) * 2006-12-27 2008-07-17 Univ Of Tokushima Apparatus for ultraviolet ray sterilization, and method for ultraviolet ray sterilization
JP5435619B2 (en) * 2009-03-06 2014-03-05 国立大学法人山口大学 Surface sterilizer
JP5281487B2 (en) * 2009-06-01 2013-09-04 パナソニック株式会社 Drainage device for sanitary equipment
US20110284773A1 (en) 2010-05-19 2011-11-24 Pugh Randall B Germicidal bulb disinfection base for ophthalmic lenses
US9282796B2 (en) 2010-05-19 2016-03-15 Johnson & Johnson Vision Care, Inc. UV radiation control for disinfecting of ophthalmic lenses
US20110284764A1 (en) 2010-05-19 2011-11-24 Pugh Randall B Ophthalmic lens disinfecting base
WO2015009252A1 (en) * 2013-07-15 2015-01-22 Kinayman Ahmet Muhtar Electronic hygiene system for the coolers
CN113028699B (en) * 2019-12-09 2022-10-18 合肥华凌股份有限公司 Storage device, pulsed light control method, and pulsed light control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364645A (en) * 1992-10-30 1994-11-15 The Regents Of The University Of California Method of controlling microorganisms by pulsed ultraviolet laser radiation
JPH10277367A (en) * 1997-04-04 1998-10-20 Sanyo Electric Co Ltd Apparatus for deodorization-sterilization
JPH11155932A (en) * 1997-12-02 1999-06-15 Sanyo Electric Co Ltd Nozzle having light-emitting means
JP2000107262A (en) * 1998-10-09 2000-04-18 Kometto Kk Sterilization method by photoirradiation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364645A (en) * 1992-10-30 1994-11-15 The Regents Of The University Of California Method of controlling microorganisms by pulsed ultraviolet laser radiation
JPH10277367A (en) * 1997-04-04 1998-10-20 Sanyo Electric Co Ltd Apparatus for deodorization-sterilization
JPH11155932A (en) * 1997-12-02 1999-06-15 Sanyo Electric Co Ltd Nozzle having light-emitting means
JP2000107262A (en) * 1998-10-09 2000-04-18 Kometto Kk Sterilization method by photoirradiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENSHO OKAMOTO: "LED NO SHIN OYO KOKIDO LED O MOCHIITA SHOKUBUTSU SAIBAI, SHINSEIJI OTAN CHIRYO OYOBI AOKABI BOSHI", OPTRONICS, vol. 191, 1997, pages 153 - 162, XP002982579 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006041A (en) * 2005-02-04 2013-01-10 Biodefense Corp Article processing apparatus and related method
US8992837B2 (en) 2006-03-31 2015-03-31 The Invention Science Fund I, Llc Methods and systems for monitoring sterilization status
US11185604B2 (en) 2006-03-31 2021-11-30 Deep Science Llc Methods and systems for monitoring sterilization status
US8178042B2 (en) 2006-03-31 2012-05-15 The Invention Science Fund I, Llc Methods and systems for monitoring sterilization status
US8277724B2 (en) 2006-03-31 2012-10-02 The Invention Science Fund I, Llc Sterilization methods and systems
US7754156B2 (en) 2006-03-31 2010-07-13 The Invention Science Fund I, Llc Surveying sterilizer methods and systems
US8758679B2 (en) 2006-03-31 2014-06-24 The Invention Science Fund I, Llc Surveying sterilizer methods and systems
US8114342B2 (en) 2006-03-31 2012-02-14 The Invention Science Fund I, Llc Methods and systems for monitoring sterilization status
US10646602B2 (en) 2006-03-31 2020-05-12 Deep Science, Llc Methods and systems for sterilization
US8932535B2 (en) 2006-03-31 2015-01-13 The Invention Science Fund I, Llc Surveying sterilizer methods and systems
WO2011031167A1 (en) * 2009-09-08 2011-03-17 Mondiale Technologies Limited Heating and sterilisation apparatus, incubators and incubator systems
CN111511409A (en) * 2017-10-11 2020-08-07 香港科技大学 Asynchronous intermittent illumination for rapid surface disinfection
CN113028726A (en) * 2019-12-09 2021-06-25 合肥华凌股份有限公司 Storage device, pulsed light control method, and pulsed light control device
CN113028726B (en) * 2019-12-09 2022-10-18 合肥华凌股份有限公司 Storage device, pulsed light control method, and control device
US11850319B2 (en) 2020-09-29 2023-12-26 Abl Ip Holding Llc Techniques for directing ultraviolet energy towards a moving surface
US11896728B2 (en) 2020-09-29 2024-02-13 Abl Ip Holding Llc Techniques for directing ultraviolet energy towards a moving surface

Also Published As

Publication number Publication date
JP2004275335A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
WO2004080494A1 (en) Optical sterilizing method and device using flash pulses
US9061083B2 (en) Ultraviolet laser sterilization system
US20210206664A1 (en) Light radiating module and sterilization apparatus comprising the same
US20090250626A1 (en) Liquid sanitization device
EP2394963B1 (en) Ultraviolet sterilization device for outdoor water
CN102318872B (en) Light-emitting diode (LED) ultraviolet fluid disinfection method and device thereof
US20160052802A1 (en) Water purification apparatus
KR20190006023A (en) Elimination of microbial light using pulsed violet or blue light
US9801966B2 (en) Systems and methods of microbial sterilization using polychromatic light
EP3583072B1 (en) Method for water disinfection
KR20100126208A (en) Antimicrobial uv up-conversion composition
Maclean et al. A new proof of concept in bacterial reduction: antimicrobial action of violet-blue light (405 nm) in ex vivo stored plasma
CN212439522U (en) Ultraviolet disinfection equipment capable of automatically controlling ultraviolet irradiation dose
CN111511409A (en) Asynchronous intermittent illumination for rapid surface disinfection
FI128996B (en) System and method for controlling growth of microorganisms
JP4771402B2 (en) UV sterilizer
Yagi et al. Sterilization using 365 nm UV-LED
JP3037936B2 (en) Sterilization method by light irradiation
US9961927B2 (en) Systems and methods of microbial sterilization using polychromatic light
WO2019061035A1 (en) Ultraviolet system for disinfection and ultraviolet disinfection method
Hönes et al. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405 nm and 460 nm light emitting diodes
CN214713518U (en) Compound ultraviolet band degassing unit, system
Sun et al. Novel measurement system for linear array type uvc germicidal system
CN204864165U (en) Oral cavity apparatus light wave sterilizer
CN217391206U (en) Fixed wavelength LED ultraviolet ray sterilization virus killing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase