WO2004086030A1 - Gassensormodul mit kontaktloser schnittstelle - Google Patents

Gassensormodul mit kontaktloser schnittstelle Download PDF

Info

Publication number
WO2004086030A1
WO2004086030A1 PCT/EP2004/003176 EP2004003176W WO2004086030A1 WO 2004086030 A1 WO2004086030 A1 WO 2004086030A1 EP 2004003176 W EP2004003176 W EP 2004003176W WO 2004086030 A1 WO2004086030 A1 WO 2004086030A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
sensor module
interface
data
module according
Prior art date
Application number
PCT/EP2004/003176
Other languages
English (en)
French (fr)
Inventor
Peter Lindmüller
Martin Lohmann
Original Assignee
Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh + Co. Kg filed Critical Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh + Co. Kg
Priority to EP04723170A priority Critical patent/EP1606617A1/de
Priority to US10/549,751 priority patent/US20060254911A1/en
Publication of WO2004086030A1 publication Critical patent/WO2004086030A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method, e.g. intermittent, or the display, e.g. digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/283Means for supporting or introducing electrochemical probes
    • G01N27/286Power or signal connectors associated therewith

Definitions

  • the present invention relates to a gas sensor, in particular an electrochemical gas sensor, for connection to a converter.
  • Electrochemical gas sensors are used to monitor the atmosphere according to various criteria. When monitoring the maximum workplace concentration MAK, for example, the surroundings of a workplace are monitored for toxic components. Gas sensors are also used for UEG / OEG monitoring. LEL / OEL denotes the concentration of explosive mixtures, i.e. the lower and the upper explosion limits. Another frequently monitored parameter is asphyxia, i.e. the depletion of oxygen in a wanted and unwanted manner.
  • the gas sensors are subject to aging, so that they often have to be replaced or recalibrated after a short operating time.
  • on-site calibration is more difficult because the gas sensors are often installed in locations that are difficult to access.
  • the Dräger company provides a modular gas monitoring system that consists of a converter module called Polytron 2 and interchangeable sensor modules that can be connected to it.
  • the sensor modules include an integrated temperature sensor and a data memory, in particular an EEPROM.
  • the data memory stores sensor-specific data such as gas types, sensitivity, manufacturing data and the date of the last calibration. Insofar as the data is stored in the sensor module and not in the converter, the sensor modules can be easily calibrated in a workshop.
  • the converter module recognizes a new sensor and automatically adjusts to the new sensor.
  • the output signal of the converter module is an analog 4 ... 20 mA signal or a digital signal according to the HART standard.
  • the communication between the sensor module and the converter module and the energy supply of the sensor module takes place via an interface with plug contacts which effect a galvanic coupling between the circuits of the sensor module and the circuits of the converter module.
  • plug contacts can degenerate in corrosive environments. This can affect the signal transmission between the modules.
  • spark break at the plug contacts when replacing a sensor module. This should be avoided in particular in potentially explosive environments.
  • the present invention is therefore based on the object of providing a gas sensor module which overcomes the disadvantages of the prior art described.
  • the object is achieved according to the invention by the gas sensor module according to independent patent claim 1, by the converter module according to independent patent claim 8 and the modular gas sensor arrangement according to independent patent claim 10.
  • the gas sensor module comprises an elementary sensor for detecting a gas concentration; a digital data memory for storing sensor data or process data; and an interface for connection to a higher-level unit for data exchange with the higher-level unit and for energy supply to the gas sensor module by the higher-level unit, and for reading and / or writing digital data from or to the digital data memory, the interface of the gas sensor module being a contactless interface.
  • the Contactless interface can be designed, for example, as a contactless plug or as a socket for a complementary contactless plug.
  • the term contactless is intended to denote that the sensor-side interface is electrically or galvanically isolated from the transmitter-side interface.
  • the contactless interface can be, for example, an optical, capacitive or inductive interface, with an inductive interface currently being preferred.
  • a corresponding interface is described, for example, in European Patent Application No. 1 216 079 by the same applicant. For details regarding the design of the interface, reference is made to the European patent application mentioned.
  • the higher-level unit is, in particular, a suitable converter module or another suitable device for recording and processing the data of the gas sensor module.
  • the connection of the interface of the gas sensor module to the higher-level system can be made directly or via a connecting cable which has a suitable contactless interface.
  • the contactless interface can be designed, for example, as a socket or as a plug for a complementary contactless socket.
  • All surfaces of the interfaces of the gas sensor module and the converter module are preferably corrosion-resistant, as a result of which influences of a corrosive environment on the data exchange and the energy supply are prevented.
  • the surfaces of the interfaces are hermetically sealed and in particular have no openings for electrical contacts, the surface material of the interfaces can easily be adapted to the respective corrosive media, and a modular system of interface materials can be provided which are optimized for the respective application environment.
  • the gas sensor module according to the invention has an analog-digital converter which generates a digital signal which is a function of the gas concentration-dependent analog signal of the elementary sensor.
  • the gas sensor module according to the invention preferably further comprises a microprocessor which on the one hand controls the data exchange between the interface of the gas sensor module and the higher-level system and on the other hand the reading and writing of the digital data memory.
  • the analog-digital converter is particularly preferably integrated in the microprocessor.
  • a microprocessor on the modular gas sensor can be dispensed with. In this case, the reading or writing of data to the digital data memory can be controlled by the higher-level system or converter module.
  • the gas sensor module preferably has a housing in which the data memory, the interface and possibly further electronic components, such as an analog-digital converter and a microprocessor, are integrated.
  • a temperature sensor is integrated in the gas sensor module in order to be able to take into account the temperature and its influence on the sensitivity of the elementary sensor when evaluating the primary signals of the elementary sensor.
  • the digital data memory is preferably a data memory that can be written to multiple and / or once. EEPROMS are currently particularly preferred, although EPROMS are generally also suitable.
  • the digital data memory can in particular store one or more of the following data:
  • the sensed sensitivity of the sensor at a first temperature in particular 25 ° C
  • the temperature offset logistic information, for example a SAP code and / or a
  • Order number the serial number; the temperature range; the nominal range of the gas concentration; the extreme values of the operating temperature; the extreme values of the operating gas concentration; the sign of a laboratory technician (for traceability of the calibration); the duration of use; the sensor check system status; the gas concentration reading; and the temperature reading.
  • the higher-level unit or the converter module can preferably access all of the stored data with a read command.
  • the higher-level unit or the converter module can preferably have a selection of the above data stored in the memory via write commands.
  • the converter module according to the invention for operating at least one gas sensor module comprises a contactless interface for receiving data from the gas sensor module and, if appropriate, sending data to the gas sensor module and for supplying energy to the gas sensor module, the data comprising sensor-specific data and measurement data; and a communication circuit for outputting at least one signal dependent on the measurement data.
  • the contactless interface can be designed, for example, as a contactless plug or as a socket for a complementary contactless plug.
  • the communication circuit can be, for example, a circuit for generating a 4 ... 20 mA signal, a HART modem, or an interface for connection to a data bus, for example a Fieldbus Foundation data bus or a PROFIBUS data bus.
  • the modular gas sensor arrangement according to the invention comprises a converter module according to the invention and at least one matching gas sensor module according to the invention.
  • a plurality of gas sensor modules according to the invention are connected directly or via cables with suitable contactless interfaces to a higher-level unit, for example a converter according to the invention.
  • the gas sensor modules can, for example, either be specific for different gas types or mixtures, and / or they can monitor the concentration of the same gas type at different locations.
  • Fig.2 a perspective view of the mechanical
  • FIG. 1 shows a gas sensor module 1 with a sensor housing 2 and an elementary sensor 3 arranged therein, which has an electrochemical gas sensor element.
  • a microprocessor 4 is also arranged in the housing 2, which preferably has an integrated analog-digital converter (ADC) 5.
  • ADC analog-digital converter
  • the microprocessor 4 is coupled on the one hand to the analog outputs of the elementary sensor 3.
  • the microprocessor is connected to a digital memory 6, which is an EEPROM in this embodiment.
  • the microprocessor 4 is connected to an inductive interface 7, via which the gas sensor module 1 is supplied with energy on the one hand and the data transmission from and to a higher-level unit, which in this case comprises a converter module 8, takes place.
  • a direct connection between the memory 6 and the interface 7 can also be provided.
  • the converter module 8 comprises a converter-side inductive interface 9, for supplying energy to the gas sensor module 1 and for digital data exchange with the gas sensor module 1.
  • the converter module comprises a data processing unit 11 which is coupled to the converter-side inductive interface 9 and a system-side interface 10. Measurement data can be output and device-specific data can be exchanged at the system interface. All common protocols such as HART, Fieldbus Foundation or PROFIBUS can be used for this.
  • the microprocessor 4 receives at least one analog signal from the elementary sensor which depends on the gas concentration, and preferably also a temperature-dependent analog signal.
  • the ADC 5 converts the analog signals into digital signals, which on the one hand are stored in the data memory 6 and on the other hand can be output to the converter module 8 via the inductive interface 7.
  • the parameters for evaluating the signals dependent on the gas concentration and possibly the temperature data are stored in the form of calibration data on the data memory 6. After a read command from the converter module 8, the calibration data are output either via the microprocessor 4 or directly to the inductive interface 7 in order to be available to the data processing unit 11 of the converter module 8 for further processing, such as error compensation, etc.
  • FIG. 2 shows an exemplary embodiment for the mechanical arrangement of the housing 2 of the gas sensor module 1 on a rod-shaped elementary sensor 3, in particular a glass electrode.
  • the housing 2 has a thread 12 on its outer surface with which the modular gas sensor 1 can be mounted in a fitting.
  • the housing 2 has a cylindrical end section facing away from the elementary sensor 3, in the surface area of which recesses of a bayonet lock are arranged.
  • the inductive interface 7 is arranged in this end section.
  • the housing 2 On the face side, the housing 2 has a cylindrical, axial blind hole, which serves as a receptacle for a housed ferrite core of an inductive interface 9 on the converter side.
  • the converter-side inductive interface 9 is designed as a plug on a cable which is connected to a converter module.
  • the converter-side interface 9 can be connected directly to a converter module housing or the like. be trained.
  • the plug has on its end face facing the gas sensor module 1 a sleeve-like jacket surface which projects axially and coaxially surrounds the ferrite core.
  • the sleeve-like lateral surface encloses at least part of the cylindrical end section of the housing 2 when the plug is fastened on the housing 2. Radially inward projections on the sleeve-like outer surface are then in engagement with the recesses of the bayonet lock in order to secure the connector.

Abstract

Das erfindungsgemäße Gassensormodul umfaßt einen Elementarsensor zum Erfassen einer Gaskonzentration; einen digitalen Datenspeicher zur Speicherung von Sensordaten oder Prozeßdaten; und eine Schnittstelle zum Anschluß an eine übergeordnete Einheit zur Energieversorgung des Gassensormoduls und zum Datenaustausch zwischen dem Gassensormoduls und der übergeordneten Einheit, wobei die Schnittstelle eine kontaktlose Schnittstelle ist. Das erfindungsgemäße Umformermodul zum Betreiben mindestens eines Gassensormoduls nach einem der vorhergehenden Ansprüche, umfaßt eine kontaktlose Schnittstelle zum Datenaustausch mit dem Gassensormodul sowie zur Energieversorgung des Gassensormoduls; und eine Kommunikationsschaltung zur Ausgabe mindestens eines von den Meßdaten abhängigen Signals.

Description

GASSENSORMODUL MIT KONTAKTLOSER SCHNITTSTELLE
Die vorliegende Erfindung betrifft einen Gassensor, insbesondere einen elektrochemischen Gassensor, zum Anschluß an einen Umformer.
Elektrochemische Gassensoren dienen zur Überwachung der Atmosphäre nach verschiedenen Kriterien. Bei der Überwachung der maximalen Arbeitsplatzkonzentration MAK wird beispielsweise die Umgebung eines Arbeitsplatzes auf toxische Komponenten überwacht. Gleichermaßen werden Gassensoren zum UEG/OEG-Monitoring eingesetzt. UEG/OEG bezeichnet die Konzentration von explosiven Mischungen, also die untere und die obere Explosionsgrenzen. Ein anderer häufig überwachter Parameter ist die Asphyxie, also die Verarmung an Sauerstoff in gewollter und ungewollter Art.
In vielen Anwendungsfällen sind die Gassensoren einer Alterung ausgesetzt, so daß sie häufig nach kurzer Betriebszeit ausgetauscht oder nachkalibriert werden müssen. Die Kalibrierung vor Ort ist jedoch mit größeren Schwierigkeiten verbunden, da die Gassensoren häufig an schwer zugänglichen Standorten montiert sind.
Die Firma Dräger stellt ein modulares Gasüberwachungssystem bereit, welches aus einen Umformermodul unter der Bezeichnung Polytron 2 und daran anschließbaren, austauschbaren Sensormodulen besteht. Die Sensormodule umfassen neben dem eigentlichen elektrochemischen Gassensorelement, nachfolgend auch Elementarsensor genannt, einen integrierten Temperatursensor und einen Datenspeicher, insbesondere ein EEPROM. Der Datenspeicher speichert sensorspezifische Daten, wie Gastypen, Empfindlichkeit, Herstellungsdaten und das Datum der letzten Kalibration. Insofern als die Daten im Sensormodul und nicht im Umformer gespeichert sind, können die Sensormodule bequem in einer Werkstatt kalibriert werden. Das Umformermodul erkennt einen neuen Sensor und stellt sich automatisch auf den neuen Sensor ein. Das Ausgangssignal des Umformermoduls ist ein analoges 4...20 mA Signal oder ein digitales Signal nach dem HART-Standard.
Die Kommunikation zwischen dem Sensormodul und dem Umformermodul und die Energieversorgung des Sensormoduls erfolgt über eine Schnittstelle mit Steckkontakten, die eine galvanische Kopplung zwischen Schaltkreisen des Sensormoduls und Schaltkreisen des Umformermoduls bewirken. Dies ist insofern nachteilig, als die Steckkontakte in korrosiven Umgebungen degenerieren können. Dies kann die Signalübertragung zwischen den Modulen beeinträchtigen. Zudem besteht die Gefahr eines Funkenabriss an den Steckkontakten beim Austausch eines Sensormoduls. Dies ist insbesondere in explosionsgefährdeten Umgebungen zu vermeiden.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Gassensormodul bereitzustellen, der die geschilderten Nachteile des Stands der Technik überwindet.
Die Aufgabe wird erfindungsgemäß gelöst durch das Gassensormodul gemäß des unabhängigen Patentanspruchs 1 , durch das Umformermodul gemäß des unabhängigen Patentanspruchs 8 und die modulare Gassensoranordnung gemäß des unabhängigen Patentanspruchs 10.
Das erfindungsgemäße Gassensormodul umfaßt einen Elementarsensor zum Erfassen einer Gaskonzentration; einen digitalen Datenspeicher zur Speicherung von Sensordaten oder Prozeßdaten; und eine Schnittstelle zum Anschluß an eine übergeordnete Einheit zum Datenaustausch mit der übergeordneten Einheit und zur Energieversorgung des Gassensormoduls durch die übergeordnete Einheit, und zum Auslesen und/oder Schreiben von digitalen Daten von dem bzw. auf den digitalen Datenspeicher, wobei die Schnittstelle des Gassensomoduls eine kontaktlose Schnittstelle ist. Die kontaktlose Schnittstelle kann beispielsweise als kontaktloser Stecker oder als Buchse für einen komplementären kontaktlosen Stecker ausgebildet sein.
Der Begriff kontaktlos soll bezeichnen, daß die sensorseitige Schnittstelle von der transmitterseitigen Schnittstelle elektrisch bzw. galvanisch isoliert ist. Die kontaktlose Schnittstelle kann beispielsweise eine optische, kapazitive oder induktive Schnittstelle sein, wobei derzeit eine induktive Schnittstelle bevorzugt ist. Eine entsprechende Schnittstelle ist beispielsweise in der europäischen Patentanmeldung Nr. 1 216 079 der gleichen Anmelderin beschrieben. Zu Einzelheiten hinsichtlich der Gestaltung der Schnittstelle wird auf die genannte europäische Patentanmeldung verwiesen.
Die übergeordnete Einheit ist insbesondere ein passendes Umformermodul oder eine andere geeignete Vorrichtung zur Erfassung und Verarbeitung der Daten des Gassensormoduls. Der Anschluß der Schnittstelle des Gassensormoduls an das übergeordnete System kann direkt oder über ein Anschlußkabel erfolgen, welches eine passende kontaktlose Schnittstelle aufweist. Die kontaktlose Schnittstelle kann beispielsweise als Buchse oder als Stecker für eine komplementäre kontaktlose Buchse ausgebildet sein.
Vorzugsweise sind alle Oberflächen der Schnittstellen des Gassensormoduls und des Umformermoduls korrosionsbeständig, wodurch Einflüsse einer korrosiven Umgebung auf den Datenaustausch und die Energieversorgung verhindert werden. Insofern als die Oberflächen der Schnittstellen hermetisch dicht sind und insbesondere keine Öffnungen für elektrische Kontakte aufweisen, kann das Oberflächenmaterial der Schnittstellen einfach den jeweiligen korrosiven Medien angepaßt werden, und es kann ein Baukastensystem von Schnittstellenmaterialien bereitgestellt werden, welche für die jeweilige Einsatzumgebung optimiert sind. Für das Wesen der Erfindung ist es unbeachtlich, ob das Gassensormodul sämtliche zum Betrieb des Gassensormoduls erforderlichen elektronischen Schaltungen aufweist, und ob die Datenspeicher von Schaltungen des Gassensormoduls beschrieben und/oder ausgelesen werden, oder ob das Schreiben und/oder Auslesen der Daten von der jeweils angeschlossenen übergeordneten Einheit erfolgt.
Das erfindungsgemäße Gassensormodul weist in einer bevorzugten Ausführungsform einen Analog-Digital-Wandler auf, welcher ein digitales Signal generiert, das eine Funktion des gaskonzentrationsabhangigen analogen Signals des Elementarsensors ist.
Das erfindungsgemäße Gassensormodul umfaßt vorzugsweise weiterhin einen Mikroprozessor welcher einerseits den Datenaustausch zwischen der Schnittstelle des Gassensormoduls und dem übergeordneten System und andererseits das Auslesen und Beschreiben des digitalen Datenspeichers steuert. Besonders bevorzugt ist der Analog-Digital-Wandler in den Mikroprozessor integriert. Für einfache Ausgestaltungen der vorliegenden Erfindung kann jedoch auf einen Mikroprozessor am modulare Gassensor verzichtet werden. Das Auslesen bzw. Schreiben von Daten auf den digitalen Datenspeicher kann in diesem Fall vom übergeordneten System bzw. Umformermodul gesteuert werden.
Vorzugsweise weist das Gassensormodul ein Gehäuse auf, in welches der Datenspeicher, die Schnittstelle und ggf. weitere elektronische Bauelemente, wie ein Analog-Digital-Wandler und ein Mikroprozessor integriert sind.
In einer besonders bevorzugten Ausführungsform ist ein Temperatursensor in das Gassensormodul integriert, um die Temperatur und deren Einfluß auf die Empfindlichkeit des Elementarsensors bei der Auswertung der Primärsignale des Elementarsensors berücksichtigen zu können. Der digitale Datenspeicher ist vorzugsweise ein mehrfach und/oder einmalig beschreibbarer Datenspeicher. Derzeit sind EEPROMS besonders bevorzugt, wobei EPROMS grundsätzlich ebenfalls geeignet sind.
Der digitale Datenspeicher kann insbesondere eines oder mehrere der folgenden Daten speichern:
das zu erfassende Gas bzw. das Gasgemisch
Kalibrierdatum; die ermittelte Empfindlichkeit des Sensors bei einer ersten Temperatur, insbesondere 25°C; den Temperaturoffset; logistische Informationen, beispielsweise einen SAP-Code und/oder eine
Bestellnummer; die Seriennummer; den Temperatureinsatzbereich; den Nennbereich der Gaskonzentration; die Extremalwerte der Betriebstemperatur; die Extremalwerte der Betriebs-Gaskonzentration; das Signum eines Laboranten (zur Nachverfolgbarkeit der Kalibration); die Einsatzdauer; den Sensor-Check-System-Status; den Gaskonzentrationsmesswert; und den Temperaturmesswert.
Die übergeordnete Einheit bzw. das Umformermodul kann vorzugsweise auf sämtliche der abgelegten Daten mit einem Lesebefehl zugreifen. Vorzugsweise kann die übergeordnete Einheit bzw. das Umformermodul über Schreibbefehle eine Auswahl der obigen Daten im Speicher ablegen lassen.
Das erfindungsgemäße Umformermodul zum Betreiben mindestens eines Gassensormoduls umfaßt eine kontaktlose Schnittstelle zum Empfangen von Daten von dem Gassensormodul und ggf. Senden von Daten an das Gassensormodul sowie zur Energieversorgung des Gassensormoduls, wobei die Daten sensorspezifische Daten und Meßdaten umfassen; und eine Kommunikationsschaltung zur Ausgabe mindestens eines von den Meßdaten abhängigen Signals. Die kontaktlose Schnittstelle kann beispielsweise als kontaktloser Stecker oder als Buchse für einen komplementären kontaktlosen Stecker ausgebildet sein. Die Kommunikationsschaltung kann beispielsweise eine Schaltung zur Generierung eines 4...20 mA Signals, ein HART-Modem, oder eine Schnittstelle zum Anschluß an einen Datenbus, beispielsweise einen Fieldbus Foundation-Datenbus oder einen PROFIBUS-Datenbus sein.
Die erfindungsgemäße modulare Gassensoranordnung umfaßt ein erfindungsgemäßes Umformermodul und mindestens ein dazu passendes erfindungsgemäßes Gassensormodul.
In einer Ausgestaltung der Erfindung sind mehrere erfindungsgemäße Gassensormodule direkt oder über Kabel mit passenden kontaktlosen Schnittstellen an eine übergeordnete Einheit, beispielsweise einen erfindungsgemäßen Umformer angeschlossen. Die Gassensormodule können dabei beispielsweise entweder spezifisch für verschiedene Gastypen oder Gemische sein, und/oder sie können die Konzentration des gleichen Gastyps an verschiedenen Orten überwachen.
Die Datenübertragung über Kabel mit kontaktlosen Schnittstellen zum Anschluß an ein Sensormodul bzw. ein Umformermodul sind beispielsweise in der noch nicht offengelegten deutschen Patentanmeldung 102 20 450 der gleichen Anmelderin beschrieben, auf die für Einzelheiten verwiesen wird. Eine geeignete Art der Übertragung von Daten und Energie innerhalb des Kabelstrangs, d.h. zwischen der gassensormodulseitigen Schnittstelle des Kabels und dem Anschluß an die übergeordnete Einheit, erfolgt beispielsweise nach dem RS485-Protokoll. Einzelheiten hierzu sind der genannten Anmeldung zu entnehmen.
Weitere Gesichtspunkte der Erfindung ergeben sich aus den abhängigen Patentansprüchen, der Beschreibung der Ausführungsbeispiele und den Zeichnungen.
Es zeigt:
Fig.1 : ein Blockschaltbild einer erfindungsgemäßen modularen Gassensoranordnung; und
Fig.2: eine perspektivische Ansicht der mechanischen
Konstruktion der Schnittstelle eines Gassensormoduls.
Ein Ausführungsbeispiel der Erfindung wird nun anhand von Fign. 1 und 2 erläutert. Das Blockschaltbild in Fig. 1 zeigt ein Gassensormodul 1 mit einem Sensorgehäuse 2 und einem darin angeordneten Elementarsensor 3, welcher ein elektrochemisches Gassensorelement aufweist. Im Gehäuse 2 ist außerdem ein Mikroprozessor 4 angeordnet, der vorzugsweise einen integrierten Analog-Digital-Wandler (ADC) 5 aufweist. Der Mikroprozessor 4 ist einerseits mit den analogen Ausgängen des Elementarsensors 3 gekoppelt. Andererseits ist der Mikroprozessor mit einem digitalen Speicher 6 verbunden, der bei dieser Ausführungsform ein EEPROM ist. Schließlich ist der Mikroprozessor 4 mit einer induktiven Schnittstelle 7 verbunden, über die einerseits die Energieversorgung des Gassensormoduls 1 und andererseits die Datenübertragung von und zu einer übergeordneten Einheit erfolgt, die in diesem Fall einen Umformermodul 8 umfaßt. Optional kann auch eine direkte Verbindung zwischen dem Speicher 6 und der Schnittstelle 7 vorgesehen sein. Das Umformermodul 8 umfaßt eine umformerseitige induktive Schnittstelle 9, zur Energieversorgung des Gassensomoduls 1 und zum digitalen Datenaustausch mit dem Gassensormodul 1. Weiterhin umfaßt das Umformermodul eine Datenverarbeitungseinheit 11 , welche mit der umformerseitigen induktiven Schnittstelle 9 und einer systemseitigen Schnittstelle 10 gekoppelt ist. An der systemseitigen Schnittstelle können Meßdaten ausgegeben und gerätespezifische Daten ausgetauscht werden. Hierzu kommen alle gängigen Protokolle wie beispielsweise HART, Fieldbus Foundation oder PROFIBUS in Frage.
Im Meßbetrieb empfängt der Mikroprozessor 4 vom Elementarsensor mindestens ein analoges Signal welches von der Gaskonzentration abhängt, und vorzugsweise auch ein temperaturabhängiges analoges Signal. Die analogen Signale werden vom ADC 5 in digitale Signale gewandelt, welche einerseits im Datenspeicher 6 abgelegt und andererseits über die induktive Schnittstelle 7 an das Umformermodul 8 ausgegeben werden können.
Zu Einzelheiten der induktiven Datenübertragung und Energieversorgung wird nochmals auf die europäische Patentanmeldung Nr. 1 216 079 verwiesen.
Die Parameter zur Auswertung der von der Gaskonzentration abhängigen Signale und ggf. der Temperaturdaten sind in Form von Kalibrationsdaten auf dem Datenspeicher 6 abgelegt. Die Kalibrationsdaten werden nach einem Lesebefehl des Umformermoduls 8 entweder über den Mikroprozessor 4 oder direkt an die induktive Schnittstelle 7 ausgegeben, um der Datenverarbeitungseinheit 11 des Umformermoduls 8 zur weiteren Verarbeitung wie Fehlerkompensationen etc. zur Verfügung zu stehen.
Bei der Erstkalibrierung oder einer Nachkalibrierung des Gassensormoduls 1 werden umformerseitig Schreibbefehle zur Speicherung der ermittelten Kalibrierungsdaten ausgegeben, woraufhin die Daten auf dem EEPROM 6 abgelegt werden.
Figur 2 zeigt ein Ausführungsbeispiel für die mechanische Anordnung des Gehäuses 2 des Gassensormoduls 1 auf einem stabförmigen Elementarsensor 3, insbesondere einer Glaselektrode.
Das Gehäuse 2 weist auf seiner Mantelfläche ein Gewinde 12 auf, mit dem der modulare Gassensor 1 in einer Armatur montiert werden kann. Das Gehäuse 2 weist einen, dem Elementarsensor 3 abgewandten, zylindrischen Endabschnitt auf, in dessen Mantelfäche Aussparungen eines Bajonettverschluß angeordnet sind. In diesem Endabschnitt ist die induktive Schnittstelle 7 angeordnet. Stirnseitig weist das Gehäuse 2 ein zylindrisches axiales Sackloch auf, welches als Aufnahme für einen gehäusten Ferritkern einer umformerseitigen induktiven Schnittstelle 9 dient. Beim Ausführungsbeispiel ist die umformerseitige induktive Schnittstelle 9 als Stecker an einem Kabel gestaltet, welches mit einem Umformermodul verbunden ist. Gleichermaßen, kann die umformerseitige Schnittstelle 9 direkt an einem Umformermodulgehäuse o.a. ausgebildet sein. Der Stecker weist an seiner dem Gassensormodul 1 zugewandten Stirnseite eine hülsenartige Mantelfläche auf, die axial vorsteht und den Ferritkern koaxial umgibt. Die hülsenartige Mantelfläche umschließt zumindest einen Teil des zylindrischen Endabschnitts des Gehäuses 2, wenn der Stecker auf dem Gehäuse 2 befestigt ist. Radial einwärts verlaufende Vorsprünge auf der hülsenartigen Mantelfläche befinden sich dann mit den Aussparungen des Bajonettverschlusses in Eingriff, um den Stecker zu sichern.

Claims

Patentansprüche
1. Gassensormodul umfassend:
einen Elementarsensor zum Erfassen einer Gaskonzentration;
einen digitalen Datenspeicher zur Speicherung von Sensordaten oder Prozeßdaten; und
eine Schnittstelle zum Anschluß an eine übergeordnete Einheit zur Energieversorgung des Gassensormoduls und zum Datenaustausch zwischen dem Gassensormoduls und der übergeordneten Einheit, dadurch gekennzeichnet, daß
die Schnittstelle eine kontaktlose Schnittstelle ist.
2. Gassensormodul nach Anspruch 1 , wobei die kontaktlose Schnittstelle als kontaktloser Stecker oder als Buchse für einen komplementären kontaktlosen Stecker ausgebildet sein.
3. Gassensormodul nach Anspruch 1 oder 2, wobei die kontaktlose Schnittstelle eine induktive Schnittstelle umfaßt.
4. Gassensormodul nach einem der Ansprüche 1 bis 3, weiterhin umfassend: einen Analog-Digital-Wandler, zur Generierung eines digitalen Signals, das eine Funktion eines von der Gaskonzentration abhängigen analogen Signals des Elementarsensors ist.
5. Gassensormodul nach einem der Ansprüche 1 bis 4, weiterhin umfassend: einen Mikroprozessor welcher einerseits den
Datenaustausch zwischen der Schnittstelle des Gassensormoduls und dem übergeordneten System und andererseits das Auslesen und Beschreiben des digitalen Datenspeichers steuert.
6. Gassensormodul nach Anspruch 5, wobei der Analog-Digital-Wandler in den Mikroprozessor integriert ist.
7. Gassensormodul nach einem der Ansprüche 1 bis 6, weiterhin umfassend: einen Temperatursensor.
8. Umformermodul zum Betreiben mindestens eines Gassensormoduls nach einem der vorhergehenden Ansprüche, umfassend:
eine kontaktlose Schnittstelle zum Datenaustausch mit dem Gassensormodul sowie zur Energieversorgung des
Gassensormoduls; und
eine Kommunikationsschaltung zur Ausgabe mindestens eines von den Meßdaten abhängigen Signals.
9. Umformermodul nach Anspruch 8, wobei die Kommunikationsschaltung eine Schaltung zur Generierung eines 4...20 mA Signals, ein HART-Modem, oder eine Schnittstelle zum Anschluß an einen Datenbus, beispielsweise einen Fieldbus Foundation-Datenbus oder einen PROFIBUS Datenbus ist.
10. Modulare Gassensoranordnung, umfassend: ein Umformermodul nach einem der Ansprüche 8 bis 9 und mindestens ein dazu passendes Gassensormodul nach einem der Ansprüche 1 bis 7.
PCT/EP2004/003176 2003-03-26 2004-03-25 Gassensormodul mit kontaktloser schnittstelle WO2004086030A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04723170A EP1606617A1 (de) 2003-03-26 2004-03-25 Gassensormodul mit kontaktloser schnittstelle
US10/549,751 US20060254911A1 (en) 2003-03-26 2004-03-25 Gas sensor module with contactless interface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10313639A DE10313639A1 (de) 2003-03-26 2003-03-26 Elektrochemischer Gassensor
DE10313639.8 2003-03-26

Publications (1)

Publication Number Publication Date
WO2004086030A1 true WO2004086030A1 (de) 2004-10-07

Family

ID=32946199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003176 WO2004086030A1 (de) 2003-03-26 2004-03-25 Gassensormodul mit kontaktloser schnittstelle

Country Status (5)

Country Link
US (1) US20060254911A1 (de)
EP (1) EP1606617A1 (de)
CN (1) CN1764836A (de)
DE (1) DE10313639A1 (de)
WO (1) WO2004086030A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031339A1 (de) * 2003-09-23 2005-04-07 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh + Co. Kg Steckmodul für einen flüssigkeits- oder gassensor mit galvanisch entkoppelter überträgungsstrecke
DE102005044973A1 (de) * 2005-09-20 2007-03-22 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Steckmodul für einen Flüssigkeits- oder Gassensor
CN104501852A (zh) * 2006-03-30 2015-04-08 罗斯蒙德公司 识别过程组件的系统和方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045272B4 (de) * 2005-09-22 2007-10-04 Dräger Safety AG & Co. KGaA Gasmesssystem
DE102006005632A1 (de) 2006-02-08 2007-08-09 Knick Elektronische Messgeräte GmbH & Co. KG Verbindungssystem, insbesondere Steckverbindungssystem zur Übertragung von Daten- und Energieversorgungssignalen
DE102006005633A1 (de) * 2006-02-08 2007-08-23 Knick Elektronische Messgeräte GmbH & Co. KG Verbindungssystem, insbesondere Steckverbindungssystem zur Übertragung von Daten- und Energieversorgungssignalen
US20170090002A9 (en) * 2006-04-26 2017-03-30 Endress + Hauser Conducta Gesellschaft Fur Mess - Und Regeltechnik Mbh + Co. Kg Sensor for a Measuring Point and Method for Testing a Sensor for a Measuring Point
EP2010867B1 (de) * 2006-04-26 2017-05-31 Endress + Hauser Conducta GmbH + Co. KG Sensor für eine messstelle und verfahren zur überprüfung eines sensors für eine messstelle
DE102006020341A1 (de) * 2006-04-28 2007-10-31 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensor für eine Messstelle und Verfahren zur Überprüfung eines Sensors für eine Messstelle
GB2445774B (en) * 2007-01-18 2011-12-28 Inductronics Technology Ltd A two part inductive connector where the parts rotate into a locked engagement
DE102007039528A1 (de) 2007-08-21 2009-02-26 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Feldgerät für die Prozessautomatisierung
DE102007039530A1 (de) 2007-08-21 2009-02-26 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren zur Kompatibilitätsprüfung eines Meßsystems bestehend aus einem Messumformer und einem Sensor
DE102007041238A1 (de) 2007-08-30 2009-03-05 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Elektrochemischer Sensor
DE102007048812A1 (de) 2007-10-10 2009-04-16 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Kabelschaltung mit digitaler Signalaufbereitung
DE102007049523A1 (de) * 2007-10-15 2009-04-16 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG System für die Prozessautomatisierung mit einer Vielzahl von intelligenten Sensoren und ein Verfahren zur Kalibrierung der Sensoren
DE102007053223A1 (de) * 2007-11-06 2009-05-07 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren zum Betreiben einer Messstelle, Messstelle und Sensoreinheit für eine solche Messstelle
US20100302008A1 (en) * 2008-10-22 2010-12-02 Rosemount Inc. Sensor/transmitter plug-and-play for process instrumentation
DE102008053920A1 (de) * 2008-10-30 2010-05-06 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verteilermodul bzw. damit gebildetes Messsystem
DE102009022814B4 (de) * 2009-05-27 2023-06-15 Testo Ag Geräteanordnung zur Analyse einer Messprobe
US20110098939A1 (en) * 2009-10-27 2011-04-28 Rosemount Analytical Inc. Process analytic sensor with low power memory write function
DE202010010172U1 (de) * 2010-07-14 2011-10-20 Babel Management Consulting Sensor zur Flüssigkeits- oder Gasanalyse
DE102011004492A1 (de) * 2011-02-22 2012-08-23 Robert Bosch Gmbh Lamdasonde und Verfahren zum Betrieb einer Lamdasonde
GB2497295A (en) * 2011-12-05 2013-06-12 Gassecure As Method and system for gas detection
DE102011088012A1 (de) * 2011-12-08 2013-06-13 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensorendmodul, Sensor und Messeinrichtung
DE102011089346B4 (de) 2011-12-21 2021-12-23 Endress+Hauser SE+Co. KG Verfahren zum Betreiben eines Feldgerätes der Prozessautomatisierungstechnik
US8890678B2 (en) * 2012-01-19 2014-11-18 Rosemount Inc. Plug-and-play sensor peripheral component for process instrumentation
CN102944648B (zh) * 2012-11-15 2015-03-04 中国科学院自动化研究所 模块化智能气体检测装置
JP6114309B2 (ja) * 2012-12-26 2017-04-12 ローズマウント インコーポレイテッド プロセス計装用のプラグアンドプレイ式のセンサ周辺コンポーネント
US9048901B2 (en) * 2013-03-15 2015-06-02 Rosemount Inc. Wireless interface within transmitter
DE102013214463A1 (de) * 2013-07-24 2015-01-29 Sick Ag Sensoranordnung
DE102015111594A1 (de) * 2015-07-16 2017-01-19 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Kommunikation zwischen einem Sensor und einem mit dem Sensor verbindbaren Anschlusselement
DE102017116504A1 (de) * 2017-07-21 2019-01-24 Endress+Hauser Conducta Gmbh+Co. Kg Modulares Messsystem
DE102017215064A1 (de) * 2017-08-29 2019-02-28 Robert Bosch Gmbh Vorrichtung, Mundstück, System und Verfahren zur Messung eines Analyten in einer Probe, insbesondere in Ausatemluft
KR102407592B1 (ko) * 2017-10-25 2022-06-13 삼성전자주식회사 교체 가능한 센서를 장착하는 전자 장치
CN111478127B (zh) * 2020-04-17 2020-12-29 中国科学院地质与地球物理研究所 信号处理电路、非接触连接器、信号处理方法及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221776A (ja) * 1988-04-06 1990-01-24 Philips Gloeilampenfab:Nv 予測性静止画像エンコーダ・デコーダ
JPH11183422A (ja) * 1997-12-19 1999-07-09 Fuji Electric Co Ltd ガス検知装置
WO2001014873A1 (en) * 1999-08-20 2001-03-01 Neodym Systems Inc. Gas detection system and method
US6252510B1 (en) * 1998-10-14 2001-06-26 Bud Dungan Apparatus and method for wireless gas monitoring
WO2003096139A2 (de) * 2002-05-07 2003-11-20 Endress + Hauser Conducta Gmbh+Co. Kg Verbindungskabel zur kontaktlosen daten und energieübertragung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1501502A (en) * 1975-01-08 1978-02-15 Pelcon Ltd Inductive connectors
US4476706A (en) * 1982-01-18 1984-10-16 Delphian Partners Remote calibration system
US5363690A (en) * 1992-09-30 1994-11-15 Exidyne Instrumentation Technologies, Inc. Gas detection apparatus
DE9309640U1 (de) * 1993-06-30 1993-09-23 Rwe Energie Ag Gefahrenzustands- und brandmeldesystem mit an meldeleitungen angeordneten meldeeinheiten
DE4329898A1 (de) * 1993-09-04 1995-04-06 Marcus Dr Besson Kabelloses medizinisches Diagnose- und Überwachungsgerät
DE19724888B4 (de) * 1997-06-12 2005-04-14 Drägerwerk AG Gasmeßkopf mit einem elektrochemischen Gassensor
DE19732546C1 (de) * 1997-07-29 1998-12-17 Draegerwerk Ag Gasdetektionssystem mit austauschbaren Gassensoren
DE19743953C2 (de) * 1997-10-04 2000-05-18 Wwu Wissenschaftliche Werkstat Gasanalysator zur Bestimmung der Konzentration von heteroatomigen Gasen ausgebildet als Einschubkarte für einen Personalcomputer
DE19832478C2 (de) * 1998-07-20 2002-06-06 Process Electronic Analyse Und Meßsonde
DE29907177U1 (de) * 1999-04-22 2000-11-23 Wessollek Heimo Biologisches untoxisches Pflanzenstärkungs- und wachstumsförderndes Mittel
US6225510B1 (en) * 1999-12-10 2001-05-01 Crompton Corporation Preparation of di-t-alkyl peroxides and t-alkyl hydroperoxides from n-alkyl ethers
DE10062062C1 (de) * 2000-12-13 2002-02-28 Draegerwerk Ag Elektrochemischer Sensor
DE20101751U1 (de) * 2001-02-01 2001-04-19 Sensortechnik Meinsberg Gmbh Mehrparameter-Messsystem für die Analysentechnik
US20030085714A1 (en) * 2001-11-05 2003-05-08 Keyes Marion A. Mass flow control in a process gas analyzer
DE10312881B3 (de) * 2003-03-22 2004-05-06 Drägerwerk AG Atemgasschlauch für ein Atemgerät
DE10329834A1 (de) * 2003-07-02 2005-02-03 Dräger Safety AG & Co. KGaA Modulares Gasmesssystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221776A (ja) * 1988-04-06 1990-01-24 Philips Gloeilampenfab:Nv 予測性静止画像エンコーダ・デコーダ
JPH11183422A (ja) * 1997-12-19 1999-07-09 Fuji Electric Co Ltd ガス検知装置
US6252510B1 (en) * 1998-10-14 2001-06-26 Bud Dungan Apparatus and method for wireless gas monitoring
WO2001014873A1 (en) * 1999-08-20 2001-03-01 Neodym Systems Inc. Gas detection system and method
WO2003096139A2 (de) * 2002-05-07 2003-11-20 Endress + Hauser Conducta Gmbh+Co. Kg Verbindungskabel zur kontaktlosen daten und energieübertragung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 05 30 May 1997 (1997-05-30) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 12 29 October 1999 (1999-10-29) *
See also references of EP1606617A1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031339A1 (de) * 2003-09-23 2005-04-07 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh + Co. Kg Steckmodul für einen flüssigkeits- oder gassensor mit galvanisch entkoppelter überträgungsstrecke
US7587953B2 (en) 2003-09-23 2009-09-15 Endress + Hauser Conducta Gesellschaft Fur Mess- Und Regeltechnik Mbh + Co. Kg Pluggable module for a liquid or gas sensor
DE102005044973A1 (de) * 2005-09-20 2007-03-22 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Steckmodul für einen Flüssigkeits- oder Gassensor
US8847602B2 (en) 2005-09-20 2014-09-30 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Plug-in module for a liquid or gas sensor
CN104501852A (zh) * 2006-03-30 2015-04-08 罗斯蒙德公司 识别过程组件的系统和方法
CN104501852B (zh) * 2006-03-30 2018-12-04 罗斯蒙德公司 识别过程组件的系统和方法

Also Published As

Publication number Publication date
DE10313639A1 (de) 2004-10-07
US20060254911A1 (en) 2006-11-16
CN1764836A (zh) 2006-04-26
EP1606617A1 (de) 2005-12-21

Similar Documents

Publication Publication Date Title
EP1606617A1 (de) Gassensormodul mit kontaktloser schnittstelle
DE10218606A1 (de) Potentiometrischer Sensor
EP2233994B1 (de) Modulare Vorrichtung zur Überwachung und Bedienung von intelligenten Prozesssensoren
EP2204647B1 (de) Potentiometrische Sensoreinrichtung für pH-Wertmessung
DE102005049483B4 (de) Elektrischen Stecker und Verfahren zur dezentralen Speicherung der Parameter eines Sensors
DE102013107964A1 (de) Messanordnung
DE102007062914A1 (de) Verfahren zum Bereitstellen von Identifikationsinformationen eines Feldgeräts
DE10344262A1 (de) Steckmodul für einen Flüssigkeits- oder Gassensor
DE102017105809A1 (de) Messanordnung
DE102013013299A1 (de) Verfahren zum Bedienen eines Feldgeräts
DE102013111714A1 (de) Verfahren zur Funktionseinstellung einer Messstelle und Messstelle
US8606546B2 (en) Sensor for a measuring point and method for testing a sensor for a measuring point
DE102009002762A1 (de) Gerät zur Überwachung einer oder mehrerer Prozessgrößen
DE10161401B4 (de) Feldgerät zur Bestimmung und/oder Überwachung einer Prozessvariablen
WO2010020534A1 (de) Verfahren zur überwachung des ladezustands bzw. der restkapazität einer batterie bzw. eines akkus in der automatisierungstechnik
DE102011088012A1 (de) Sensorendmodul, Sensor und Messeinrichtung
DE102009047535A1 (de) Verfahren zum Ermitteln einer Anschlusskonfiguration eines Feldgerätes an einem Wireless Adapter
EP3918282A1 (de) Abnehmbares anzeige- und bedienmodul für ein messgerät
EP1772707B1 (de) Messvorrichtung
EP1828042B1 (de) Multifunktionaler drucksensor und zugehöriges verfahren
DE102016122110A1 (de) Datentransfersystem
EP2024719A1 (de) Temperatursonde
DE102010028832A1 (de) Einfache Bedienvorrichtung zur Aktualisierung einer Basissoftware einer Sensoreinheit
DE20023865U1 (de) Programmierbares Feldgerät
EP3183567A1 (de) VORRICHTUNG, SENSOREINHEIT UND TRANSMITTER ZUR ERMITTLUNG EINER MESSGRÖßE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004723170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048079107

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004723170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006254911

Country of ref document: US

Ref document number: 10549751

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10549751

Country of ref document: US