WO2004088855A2 - Direct conversion transmitter system and method with quadrature balancing and low lo feed through - Google Patents

Direct conversion transmitter system and method with quadrature balancing and low lo feed through

Info

Publication number
WO2004088855A2
WO2004088855A2 PCT/US2004/008782 US2004008782W WO2004088855A2 WO 2004088855 A2 WO2004088855 A2 WO 2004088855A2 US 2004008782 W US2004008782 W US 2004008782W WO 2004088855 A2 WO2004088855 A2 WO 2004088855A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
recited
mixer
signals
equation
Prior art date
Application number
PCT/US2004/008782
Other languages
French (fr)
Other versions
WO2004088855A3 (en
Inventor
Lawrence J. Malone
Lon W. Christensen
Original Assignee
Quorum Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quorum Systems, Inc. filed Critical Quorum Systems, Inc.
Publication of WO2004088855A2 publication Critical patent/WO2004088855A2/en
Publication of WO2004088855A3 publication Critical patent/WO2004088855A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to circuitry, and more particularly to direct-conversion circuitry.
  • Direct-conversion is an alternative wireless transmitter architecture to the well- established superheterodyne, particularly for highly integrated, low-power terminals. Its fundamental advantage is that the transmitted signal is mixed directly to radio frequency (RF) without the use of an intermediate frequency. This means less hardware complexity, lower component count and a simpler frequency plan.
  • RF radio frequency
  • LO local oscillator
  • the LO is necessary to convert the baseband signal to RF for transmission, if significant LO leakage occurs in the middle of the up-converted signal spectrum, the signal will be corrupted and rendered unreceivable.
  • the transmitter must be able to control the power that it is transmitting.
  • the LO feed-through amplitude cannot be controlled as it is an unwanted byproduct of circuit non-idealities. This forces the transmitting signal to always be much larger than the LO feed-through.
  • LO feed-through can be reduced through the use of on-chip or external calibration schemes at the cost of additional hardware size and complexity.
  • IQ in-phase and quadrature
  • Quadrature phases are typically derived by passing a reference local oscillator through a CR-RC phase shift network. Ideally, this creates two signals with equal amplitude and 90 degrees of phase difference. However, this depends on the accuracy of resistors and capacitors which make up the phase shift network. The resistors and capacitors can vary by up to 15 percent in a typical integrated circuit causing the in-phase and quadrature components to have different amplitudes and a phase difference not equal to 90 degrees.
  • in-phase and quadrature paths can cause additional amplitude/phase imbalance.
  • circuits in the in-phase and quadrature paths i.e. amplifiers and mixers
  • Many feedback calibration schemes have been proposed and implemented to mitigate quadrature imbalance at the cost of hardware and/or system complexity.
  • a conventional direct conversion transmitter is illustrated in FIG. 1.
  • a direct conversion transmitter takes the modulated in-phase and quadrature baseband signals 100, 101 and translates the signal to an RF frequency by multiplying them by a quadrature LO.
  • the transmitter multiplies the baseband signals 100, 101 with two different phases 102, 103 of a local oscillator 107 using a first mixer 110 and a second mixer 111.
  • the in-phase and quadrature baseband signals can be denoted BB ⁇ and BB Q .
  • the two phases 102, 103 of the local oscillator are 90 degrees apart and thus, are known as the in-phase (“I”) 102 and quadrature ("Q") 103 components and can be denoted LO ⁇ and LO Q respectively.
  • the mixer outputs 104, 105 are summed together to produce the RF signal 106.
  • the RF signal 106 can be represented by Equation 1.
  • FIG. 2 Another conventional direct conversion architecture is shown in FIG. 2.
  • This differential direct conversion architecture is more resilient to self generated noise than the one illustrated in FIG. 1.
  • the I and Q baseband signals are differential signals composed of positive and negative components.
  • the equivalent single-ended baseband in-phase signal to the differential baseband in-phase signal is described by Equation 2.
  • Equation 2 BBi denotes the single-ended in-phase signal
  • BB ⁇ s denotes the positive component of the differential signal
  • BB ljneg denotes the negative component of the differential signal.
  • a differential signal has a positive and negative component which subtract to form the signal.
  • Equation 3 describes the quadrature relationship in similar terms.
  • Equation 2 and Equation 3 BB ⁇ s, BB ⁇ >n e g , BBQ !P0S , BBQ )neg correspond to 200, 201, 202, 203, respectively, in FIG. 2.
  • the differential direct conversion architecture shown in FIG. 2 uses differential LO signals to mix the baseband signal to RF.
  • the polyphase network 205 is a circuit which converts the local oscillator voltage waveform 204 into four voltage waveforms 206, 207, 208, 209 at the same frequency as LO but at 0, 180, 90, 270 degrees offset compared to the local oscillator signal 204 respectively.
  • these four signals 206, 207, 208, 209 are referred to as polyphase local oscillator signals.
  • the following signals 206, 207, 208, 209 are denoted as LO°, LO 180 , LO 90 , LO 270 corresponding to their phase shift compared to the local oscillator 204. Shifting a sinusoidal signal 180 degrees in phase is the same as inverting the signal. Therefore, the equivalent single-ended in-phase and quadrature LO signals, denoted LO ⁇ and LO Q , are described mathematically in Equations 4 and 5.
  • the differential quadrature baseband signals are routed to the differential mixers 210, 211 where they are multiplied by the differential local oscillator signals.
  • Equation 6 describes the mixing process and summing process 212 of the differential signals to generate the RF signal 213.
  • Equation 7 is a simplified version of Equation 6 where all the differential signals are represented as single-ended signals.
  • LO feed-through is added to the output of the mixers.
  • LOci represents the differential LO feed-through from the polyphase LO signal to the output of mixer 210
  • LOc 2 represents the differential LO feed-through at the at output of mixer 211.
  • the amplitude and phase imbalance of the mixers and the polyphase LO signals can be accounted for at the output of each mixer.
  • a complex multiplicative term, Ale ,P1 represents a random amplitude variation ("Al") and a random phase variation ("PI") introduced by the first mixer 210, the signal path 200, 201 and LO path 206, 207 connected to the mixer.
  • A2e P2 represents a random amplitude and phase variation introduced by the second mixer 211 and the signal 202, 203 and LO paths 208, 209 connected to it.
  • Equation 8 and 9 the RF distortion grows as Al and A2 differ and as PI and P2 differ. As the distortion increase, it is harder for the signal to be received and decoded. Likewise as LOci and LOc 2 increase, they become the dominant component of the RF signal in Equation 8 and 9.
  • a system and method are provided for communicating a radio frequency (RF) signal.
  • RF radio frequency
  • a baseband signal is mixed with a plurality of oscillator signals with different phases in an interleaving manner.
  • the mixed baseband signal is then communicated as an RF signal.
  • the oscillator signals may include an oscillator signal frequency substantially equal to an RF signal frequency of the RF signal. Further, the RF signal may be modulated over a finite bandwidth.
  • the oscillator signals may have phase differences of 0, 90, 180, and 270 degrees.
  • the mixing may be carried out by a plurality of mixers.
  • the oscillator signals may be input to the mixers in the interleaving manner. Moreover, this may be accomplished by switching which oscillator signals are input to which mixers. Still yet, the switching may occur at a rate that is faster than a bandwidth of the RF signal. Optionally, the switching may occur in a substantially random manner, or even in a random manner.
  • the baseband signal may be inverted using an interleaving operation.
  • the baseband signal may be routed to at least one mixer using an interleaving operation.
  • a plurality of the baseband signals may be provided including an in-phase baseband signal and a quadrature baseband signal.
  • FIG. 1 is a block diagram of a conventional single-ended direct-conversion transmitter
  • FIG. 2 is a block diagram of the conventional differential direct-conversion transmitter
  • FIG. 3 is a block diagram of a differential direct-conversion transmitter with local- oscillator phase interleaving and baseband signal interleaving;
  • FIGs. 4a-d show the four configurations of the baseband signal interleaver
  • FIGs. 5a-d show the four configurations of the local-oscillator phase interleaver
  • FIG. 6 is an illustration of a wireless communication system in which one embodiment may be used.
  • FIG. 7 illustrates the functional components of a wireless communication device, shown in block diagram format.
  • the differential direct conversion architecture described in FIG. 2 is enhanced with two switching matrices: 1) the local oscillator phase interleaver (“LOPI”) 326 circuit, and 2) the baseband interleaver (“BBI”) 304. Each has four combinations of connections.
  • LOPI local oscillator phase interleaver
  • BBI baseband interleaver
  • the BBI 304 routes the in-phase baseband signals 300, 301 and quadrature baseband signals 302, 303 to a first up-conversion mixer 309 and the second up-conversion mixer 310.
  • the differential in-phase baseband signals are denoted BB 1>pos , BB ⁇ ;neg while the differential quadrature signals are denoted BBQ JP0S , BB Q , neg .
  • the in-phase and quadrature baseband signals are routed alternately to each mixer.
  • any imbalances in the baseband path affect the in-phase and quadrature signals similarly mitigating the adverse effect.
  • the baseband interleaver 304 circuit switches between one of four combinations of connections illustrated in FIG. 4. In addition, in two of the states it inverts the incoming baseband signals. In state 1 illustrated in FIG. 4a, the baseband interleaver passes BB ⁇ )P0S 400 and BBj, ne 401 to the first mixer and BB QJP0S 402 and BB Q;neg 403 to the second mixer.
  • the baseband interleaver inverts the incoming signals, BB 1)P0S 410 and BB 1)ne g 411, prior to routing them to the first mixer. Likewise, the baseband interleaver inverts BB QJP0S 412 and BB Qjneg 413 before routing them to the second mixer.
  • state 3 illustrated in FIG. 4c BB IJP0S 420 and BB ⁇ )neg 421 are routed to the second mixer while BB Q)P0S 422 and BB Q ⁇ neg 403 are routed to the first mixer.
  • the baseband interleaver inverts the incoming signals and routes the inverted BB ⁇ s 430 BB ⁇ >neg 431 to the second mixer and the inverted BB Q , P0S 432 and BB Q!ne g433 to the first mixer.
  • the baseband signals 305, 306 arriving at the first mixer 309 are described by Equations 21, 22, 23, and 24.
  • Equations 21, 22, 23 and 24 can be represented by the notations +BB ⁇ , -BBi, +BB Q , and -BB Q respectively.
  • +BB ⁇ represents the differential in-phase baseband signal with positive polarity.
  • -BBi represents the differential in-phase baseband signal with negative polarity.
  • +BB Q represents the differential baseband signal with negative polarity.
  • -BB Q represents the differential quadrature baseband signal with negative polarity.
  • the baseband signals 307, 308 arriving at the second mixer 310 are described by Equations 25, 26, 27, and 28.
  • Equations 25, 26, 27 and 28 can be represented by the notations +BBQ, -BB Q , +BB l5 and -BBi respectively.
  • the local oscillator 320 waveform is transformed by a polyphase circuit 321 into four waveforms 322, 323, 324, and 325 each at the same frequency as the LO but with a phase shift referenced to the local oscillator phase.
  • these four polyphase local oscillator signals 322, 323, 324, 325 will be denoted LO°, LO 90 , LO 180 , LO 270 respectively.
  • the LO phase interleaver circuit 326 periodically switches configuration so that the LO° and LO 180 periodically are routed to the first mixer 309 and are periodically routed to the second mixer 310. Likewise, the LO phase interleaver 326 periodically routes LO 90 and LO 270 to the second mixer 310 and then to the first mixer 309. By switching the polyphase local oscillator signals to different mixers, it modulates the LO feed-though signal causing the LO feed-through peak energy to be reduced.
  • interleaving may refer to the plain and ordinary meaning thereof, as well as any sort of switching, exchanging, toggling, swapping, interchanging, etc.
  • FIG. 5a, 5b, 5c and 5d Four LOPI combinations are illustrated in FIG. 5a, 5b, 5c and 5d.
  • state 1 as illustrated in FIG. 5a, LO° 500 and LO ' 80 501 are routed to the first mixer and LO90 502 and LO 503 are routed to the second mixer.
  • the LO° 510 and LO 180 511 are routed to the first mixer; however, they have been interchanged compared to the routing in state 1 represented in FIG. 5a. The effect of this interchange is to reverse the polarity of the signal.
  • LO 90 512 and LO 270 513 are routed to the second mixer; however, they too have been interchanged compared to state 1.
  • LO° 530 and LO 180 531 are routed to the second mixer and LO90532 and LO 270 533 are routed to the first mixer.
  • the LO° 540 andO LO 180 541 are routed to the second mixer; however, they have been interchanged compared to the routing in state 3 represented in FIG. 5c. The effect of this interchange is to reverse the polarity of the signal.
  • LO 90 542 and LO 270 543 are routed to the first mixer; however, they too have been interchanged compared to state 3.
  • each mixer input sees each polyphase LO signal LO°, LO 90 , LO 180 , LO 270 .
  • the LO signals 327, 328 arriving at the first mixer 309 are described by Equations 29, 30, 31 and 32.
  • the LO signals 329, 330 arriving at the second mixer 310 are described by Equations 33, 34, 35 and 36.
  • Equations 29, 30, 31 and 32 can be represented by the notations +LO ⁇ , -LO l5 +LO Q , and -LO Q respectively.
  • +LO ⁇ represents the differential in-phase local oscillator signal with positive polarity.
  • -LOi represents the differential in-phase local oscillator signal with negative polarity.
  • +LO Q represents the differential local-oscillator signal with positive polarity.
  • -LO Q represents the differential quadrature local-oscillator signal with negative polarity.
  • the Equations 33,34,35 and 36 can be represented by the notations +LO Q , -LO Q , +LO I , and -LO I respectively.
  • the LO feed-through at the output of the first mixer 309 and the second mixer 310 is dependent on the LO signal applied to the mixer and the individual characteristics of the mixer itself. Therefore, the LO feed-through at the output of first mixer 309 can be defined by Equations 37, 38, 39, and 40 and the LO feed-through at the output of the second mixer 310 can be define by Equations 41 , 42, 43, and 44.
  • the LO feed- through is defined by three subscripts and a precedent sign in these equations. As it is a function of the mixer, the first subscript indicates which mixer the feed-through is associated with.
  • the switch matrix determines the LO feed-through relative polarity represented by a +/- precedent sign and its second subscript represents the in-phase or quadrature LO component.
  • the third subscript, F distinguishes it from the LO signal.
  • a complex multiplicative term, Ale' 1 ' 1 represents a random amplitude variation
  • A2e P2 represents a random amplitude and phase variation introduced by second mixer 310 and the signal 307,308 and LO paths 329,330 connected to it.
  • Combining 315 the differential mixer outputs 311, 312, 313, 314 forms the RF output signal 316.
  • the RF output corresponding to the four interleaving states is described by Equations 45, 46, 47 and 48.
  • Equations 45, 46, 47, and 48 can be reduced to Equations 49, 50, 51, and 52 by combining signs.
  • Equation 52 In Equations 49 through 52, it can be seen that the RF signal LO feed-through components, LO ⁇ , ⁇ , F , LO ⁇ Q ,,] ? , L0 2 , I)F , and L0 2 ,Q, F , oscillate between positive and negative values. This results in the LO feed-through energy being spectrally spread away from the desired signal spectrum.
  • the LO feed-through term is being modulated at a frequency of the interleaving clock 340, the LO feed-through is being spread with over a bandwidth equivalent to the frequency of the interleaving clock. As the interleaving clock frequency increases, the in-band distortion caused by the LO feed-through is reduced. Furthermore, by using a delta signal modulator 341 the switching behavior of the
  • BBI and LOPI can be modified as to shape the spectral characteristics of the LO feed-through.
  • Equations 49 through 52 it can be seen that the RF signal quadrature imbalance components A i ejP i and A2e ]P2 are each multiplied to both the in-band and quadrature baseband signal components.
  • the RF in-phase component BBi * LOi has is modified by two values: Ale ,pl for states 1 and 2 and A2e iP2 for states 3 and 4.
  • the quadrature baseband signal follows the opposite pattern for amplitude and phase imbalance.
  • the in-phase and quadrature signal components are modified by the amplitude and phase distortions at a much higher frequency than their own modulation bandwidths, the two distortion products are averaged together in effect. This is shown in Equation 53.
  • the present embodiment may thus provide a solution for important drawbacks of direct conversion transmitters: LO feed-through and quadrature imbalance.
  • FIG. 6 is an illustration of a multi-mode wireless communication system in which one embodiment may be used. It should be understood that the components shown in FIG. 6 are merely representative of one mode of wireless communication system and that other communication systems may use different components in order to achieve similar, or even different results. For example, a wired transceiver communication system may also be employed. The claims, therefore, are not intended to be limited to the system shown in FIG. 6. For example, the present technology may be implemented in a single-mode system.
  • wireless communication devices In the wireless communication system of FIG. 6, multi-mode, wireless communication devices, otherwise referred to herein simply as wireless communication devices, are shown as wireless communication devices 100a, 100b, and lOOn, one or more wireless communication devices being assigned to each user in the system.
  • the designations a, b, and n on the wireless communication device identifiers correspond respectively to a first user, a second user, and an nth user, representing "n" number of users in the communication system.
  • a wireless communication system typically comprises many thousands of users.
  • control station 120 typically includes interface and processing circuitry for providing system control to base stations 110a through 11 On, representing one through "n" base stations comprising the wireless communication system.
  • Base stations are provided for transmitting and receiving communication signals to and from wireless communication devices.
  • Each base station 110 provides a coverage area ranging up to several miles in radius from the base station location. As wireless communication devices travel within the coverage area of each base station, communication signals to be transferred to and from the wireless communication device are routed generally through the particular base station to which the wireless communication device is most closely located.
  • Control station 120 provides circuitry for routing communications between wireless communication devices operating in various base station coverage areas, as well as between remote stations and land-line telephone users through a Public Switch Telephone Network, shown in FIG. 6 as the PSTN 130.
  • Control station 120 may, alternatively, or in addition to, be connected to computer network 160 to provide communications between wireless communication devices in the communication system and various known computing devices connected to computer network 160, such as personal computers, mainframe computers, digital cameras, email systems, remotely controlled devices, and so on.
  • Control station 120 typically comprises a telecommunications switch (not shown) and a Base Station Controller (BSC) (also not shown).
  • BSC Base Station Controller
  • the telecommunication switch provides a switching interface to PSTN 130 while the BSC provides the necessary hardware and software for communications to take place between base stations.
  • Control station 120 provides other functions in the communication system as well, such as billing services and data services.
  • Control station 120 may be coupled to the base stations by various means such as dedicated telephone lines, optical fiber links, or microwave communication links.
  • a paging message is transmitted to one or more base stations proximate to the wireless communication device initiating the call, generally over a paging channel.
  • the paging message is routed to control station 120, where it is processed and routed either to PSTN 130 or to one or more base stations proximate to a wireless communication device for which the call is intended.
  • PSTN 130 PSTN 130
  • a paging message is received by control station 120 where it is then converted into a format suitable for the particular wireless communication system.
  • the wireless communication device 100 is able to communicate in at least two modes, or types, of communications, data communications and voice communications.
  • Data communication mode is used when it is desirous to send or receive information generally suitable for digital computational devices, such as laptop computers.
  • Data is generally transmitted in discreet segments called packets.
  • Each data packet generally contains overhead information used for a variety of purposes. For example, many data packets contain a data field used to store an error detection code. The error detection code may be used to check a received data packet to ensure that it was received intact; that is, the data was not corrupted during the transmission process.
  • Voice communication mode is used when it is desirous to transmit acoustic information, including human speech, facsimile tones, music, or other audible forms of communication.
  • voice communication mode audio information is transmitted using one or more well-known wireless communication modulation techniques, such as CDMA, TDMA, AMPS, and others.
  • an over the air channel is established between one or more base stations and a wireless telephone.
  • the channel is maintained throughout the duration of the voice call, no matter how much or little voice activity is occurring between the wireless telephone and the base station.
  • voice data is digitized and formatted into packets prior to transmission.
  • Voice packets differ from data packets in that no information as to a destination address is contained within the voice packets. That is, a connection is first established between two locations, then voice data is transmitted between the two locations. No address information need be contained within the voice packets as the source and destination of the voice packets are predetermined by the connection.
  • Data mode may further include a capability of transmitting voice in certain applications.
  • voice is digitized.
  • the digitized voice signals may be encrypted to provide for secure voice transmissions over the air.
  • the digitized voice signals are then formatted into data packets, which are then transmitted over the air using well-known data transmission protocols. As explained above, each data packet contains information as to the address, or destination, of where the data packet is to arrive.
  • FIG. 7 illustrates the functional components of a wireless communication device, or wireless communication device, 100, shown in block diagram format. It should be understood that the components shown in FIG. 7 are merely representative of one mode of wireless communication device and that other communication devices may use different components in order to achieve similar, or even different results. The claims, therefore, are not intended to be limited to the system shown in FIG. 7.
  • Wireless communication device 100 is capable of multi-mode communications, meaning that it can operate in several modes of communications, such as voice communications or data communications. It should be understood that voice communications comprise any audio information including speech, music, or audible tones used for call processing, modems, and facsimile machines. Data communications comprise synchronous or asynchronous data transmission. In addition to these modes, wireless communication device is also capable of other modes of communications as well.
  • a user of wireless communication device 100 initiates communications generally by using input device 200.
  • Input device 200 comprises a keypad in the exemplary embodiment, however, input device 200 could be any device which accepts user commands, such as a voice response device which converts voice commands into electrical signals suitable for processing by controller 202.
  • the user speaks into microphone 204, which transforms acoustic energy into electrical energy and sends the electrical signals to controller 202 for processing.
  • Microphone 204 may be substituted for input device 200 in an application where a second audio input device is undesirable.
  • a voice encoder/decoder generally known as a Codec
  • controller 202 or is incorporated within controller 202, to convert the electrical signals from microphone 204 into a format more suitable for transmission over a limited bandwidth air interface.
  • Speaker 206 is used to convert received electrical signals into acoustic signals.
  • Speaker 206 may comprise a speaker suitable for low volume acoustic outputs, typically for use in a traditional telephone application, or speaker 206 may comprise a loudspeaker, suitable for high volume acoustic outputs, typically for use in a dispatch applications.
  • speaker 206 may comprise a combination of the high volume and low volume acoustic speakers.
  • Wireless communication device 100 further comprises display 208 for allowing a user to view operational characteristics of the wireless communication device.
  • display 208 for allowing a user to view operational characteristics of the wireless communication device.
  • Such displays are common in many of today's wireless devices including telephones and remote data terminals.
  • Data port 210 serves as an interface between controller 202 and external hardware devices. Data port 210 generally allows a variety of bi-directional data communications to take place between wireless communication device 100 and the external device. Such external devices include laptop computers, facsimile machines, and remote data terminals, among others.
  • an identification code corresponding to a second communication device is entered using input device 200.
  • input device 200 comprises keys corresponding to digits 0 through 9, as well as additional function keys, such as SEND, END, and so forth.
  • Input device 200 may also comprise one or more keys used to classify an outgoing communication as being a data communication or a voice communication.
  • a user wishing to initiate a data communication might press a key designated for data communications, then dial a telephone number corresponding to a data device that the user wishes to communicate with.
  • all calls from wireless communication device 100 are assumed to be voice calls, unless classified as some other mode of communication, as described by one of the methods above.
  • Controller 202 serves as the main computational unit of wireless communication device 100. Although controller 202 is shown as a single element in FIG. 7, it should be understood that controller 202 may comprise one or more individual components such as one or more Application Specific Integrated Circuits (ASICs) in combination with memory devices, bus controllers, and other support devices well known to those skilled in the art.
  • ASICs Application Specific Integrated Circuits
  • an RF transceiver 212 and an antenna 214 are coupled to controller 202 for sending and receiving such signals. Similar to the controller 202, one or more ASICs in combination with memory devices, bus controllers, etc. may be used to provide the RF transceiver 212. Moreover, the aforementioned direct-conversion receiver may be incorporated into the RF transceiver 212 and/or controller 202 in any desired capacity for providing an improved system.
  • the memory 216 is a device used to store information represented in digital format. Examples of memory 216 include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), non- volatile memory, and other known storage devices. While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Abstract

A system and method are provided for communicating a radio frequency (RF) signal. In use, a baseband signal is mixed with a plurality of oscillator signals with different phases in an interleaving manner. The mixed baseband signal is then communicated as an RF signal.

Description

DIRECT CONVERSION TRANSMITTER SYSTEM AND METHOD WITH QUADRATURE BALANCING AND LOW
LO FEED THROUGH
FIELD OF THE INVENTION
The present invention relates to circuitry, and more particularly to direct-conversion circuitry.
BACKGROUND OF THE INVENTION
Direct-conversion is an alternative wireless transmitter architecture to the well- established superheterodyne, particularly for highly integrated, low-power terminals. Its fundamental advantage is that the transmitted signal is mixed directly to radio frequency (RF) without the use of an intermediate frequency. This means less hardware complexity, lower component count and a simpler frequency plan.
In direct-conversion transmitters the most serious problem is that of local oscillator ("LO") feed-through due to a variety of on-chip coupling mechanisms. While the LO is necessary to convert the baseband signal to RF for transmission, if significant LO leakage occurs in the middle of the up-converted signal spectrum, the signal will be corrupted and rendered unreceivable.
Furthermore, in modern communication systems, the transmitter must be able to control the power that it is transmitting. The LO feed-through amplitude cannot be controlled as it is an unwanted byproduct of circuit non-idealities. This forces the transmitting signal to always be much larger than the LO feed-through. Traditionally, LO feed-through can be reduced through the use of on-chip or external calibration schemes at the cost of additional hardware size and complexity.
Another problem in direct-conversion transmitters is in-phase and quadrature ("IQ") imbalance of the LO and signal path. Traditionally, direct conversion transmitters and receivers need a local oscillator with quadrature outputs for vector modulation and demodulation. However, when the quadrature signal components are not equal in amplitude and not exactly 90 degrees out of phase, the signal degrades in quality.
Quadrature phases are typically derived by passing a reference local oscillator through a CR-RC phase shift network. Ideally, this creates two signals with equal amplitude and 90 degrees of phase difference. However, this depends on the accuracy of resistors and capacitors which make up the phase shift network. The resistors and capacitors can vary by up to 15 percent in a typical integrated circuit causing the in-phase and quadrature components to have different amplitudes and a phase difference not equal to 90 degrees.
In addition, layout differences between the in-phase and quadrature paths can cause additional amplitude/phase imbalance. Contributing to further in-phase/quadrature imbalance, the circuits in the in-phase and quadrature paths (i.e. amplifiers and mixers) have physical properties that differ. Many feedback calibration schemes have been proposed and implemented to mitigate quadrature imbalance at the cost of hardware and/or system complexity.
A conventional direct conversion transmitter is illustrated in FIG. 1. As illustrated in FIG. 1, a direct conversion transmitter takes the modulated in-phase and quadrature baseband signals 100, 101 and translates the signal to an RF frequency by multiplying them by a quadrature LO. Specifically, the transmitter multiplies the baseband signals 100, 101 with two different phases 102, 103 of a local oscillator 107 using a first mixer 110 and a second mixer 111. The in-phase and quadrature baseband signals can be denoted BBΪ and BBQ. The two phases 102, 103 of the local oscillator are 90 degrees apart and thus, are known as the in-phase ("I") 102 and quadrature ("Q") 103 components and can be denoted LOΪ and LOQ respectively. The mixer outputs 104, 105 are summed together to produce the RF signal 106. The RF signal 106 can be represented by Equation 1.
RF = BBΪ X LOi + BBQ X LOQ Equation 1
Another conventional direct conversion architecture is shown in FIG. 2. This differential direct conversion architecture is more resilient to self generated noise than the one illustrated in FIG. 1. In FIG. 2, the I and Q baseband signals are differential signals composed of positive and negative components. The equivalent single-ended baseband in-phase signal to the differential baseband in-phase signal is described by Equation 2. In Equation 2, BBi denotes the single-ended in-phase signal, BB^s denotes the positive component of the differential signal, and BBljneg denotes the negative component of the differential signal. A differential signal has a positive and negative component which subtract to form the signal. Equation 3 describes the quadrature relationship in similar terms.
BBΪ = (BBlιP0S - BBι,neg) Equation 2
BBQ = (BBQιP0S - BBQjneg) Equation 3
In Equation 2 and Equation 3, BB^s, BBι>neg, BBQ!P0S, BBQ)neg correspond to 200, 201, 202, 203, respectively, in FIG. 2.
The differential direct conversion architecture shown in FIG. 2 uses differential LO signals to mix the baseband signal to RF. The polyphase network 205 is a circuit which converts the local oscillator voltage waveform 204 into four voltage waveforms 206, 207, 208, 209 at the same frequency as LO but at 0, 180, 90, 270 degrees offset compared to the local oscillator signal 204 respectively. Collectively, these four signals 206, 207, 208, 209 are referred to as polyphase local oscillator signals. To facilitate the present description, the following signals 206, 207, 208, 209 are denoted as LO°, LO180, LO90, LO270 corresponding to their phase shift compared to the local oscillator 204. Shifting a sinusoidal signal 180 degrees in phase is the same as inverting the signal. Therefore, the equivalent single-ended in-phase and quadrature LO signals, denoted LOΪ and LOQ, are described mathematically in Equations 4 and 5.
!= LO0-LO180 Equation 4 LOQ = LO90 - LO270 Equation 5
The differential quadrature baseband signals are routed to the differential mixers 210, 211 where they are multiplied by the differential local oscillator signals.
At the first mixer 210, the differential in-phase baseband signal (BBi) is multiplied by the in-phase LO (LOi). Likewise, at the second mixer 211, the differential quadrature baseband signal (BBQ) is multiplied by the quadrature LO (LOQ). Equation 6 describes the mixing process and summing process 212 of the differential signals to generate the RF signal 213. Likewise, Equation 7 is a simplified version of Equation 6 where all the differential signals are represented as single-ended signals.
,90
RF — (BB1;Pos — BB1;Iιeg) X (LO • LO180) + (BBQJP0S — BBQ>neg) X (LO LO270)
Equation 6
RF = BBΪ X LOi + BBQ X LOQ Equation 7
Now, to elucidate the problems with direct conversion transmitters, LO feed-through and imbalance distortions will be added to Equations 6 and 7. LO feed-through is added to the output of the mixers. LOci represents the differential LO feed-through from the polyphase LO signal to the output of mixer 210, and LOc2 represents the differential LO feed-through at the at output of mixer 211. Likewise the amplitude and phase imbalance of the mixers and the polyphase LO signals can be accounted for at the output of each mixer. A complex multiplicative term, Ale,P1, represents a random amplitude variation ("Al") and a random phase variation ("PI") introduced by the first mixer 210, the signal path 200, 201 and LO path 206, 207 connected to the mixer. Likewise, A2eP2 represents a random amplitude and phase variation introduced by the second mixer 211 and the signal 202, 203 and LO paths 208, 209 connected to it. Thus, with these distortions added, Equations 6 and 7 become Equations 8 and 9.
RF = (BBIJP0S - BBτ,neg) X (LO° - LO180) X Ale 1 + LOCι +
(BBQ,p0s -BBQ!neg) X (LO90 - LO270) X A2eiP2 + LOC2
Equation 8
RF = BBΪ X LOi X Al e*1"1 + LOci + BBQ X LOQ X A2ejP2 + LOC2
Equation 9
As seen in Equations 8 and 9, the RF distortion grows as Al and A2 differ and as PI and P2 differ. As the distortion increase, it is harder for the signal to be received and decoded. Likewise as LOci and LOc2 increase, they become the dominant component of the RF signal in Equation 8 and 9.
There is thus a need for a transmitter for overcoming these problems and/or providing general improvements over prior art transmitters.
SUMMARY OF THE INVENTION
A system and method are provided for communicating a radio frequency (RF) signal. In use, a baseband signal is mixed with a plurality of oscillator signals with different phases in an interleaving manner. The mixed baseband signal is then communicated as an RF signal.
In one embodiment, the oscillator signals may include an oscillator signal frequency substantially equal to an RF signal frequency of the RF signal. Further, the RF signal may be modulated over a finite bandwidth.
In another embodiment, the oscillator signals may have phase differences of 0, 90, 180, and 270 degrees. Further, the mixing may be carried out by a plurality of mixers.
In use, the oscillator signals may be input to the mixers in the interleaving manner. Moreover, this may be accomplished by switching which oscillator signals are input to which mixers. Still yet, the switching may occur at a rate that is faster than a bandwidth of the RF signal. Optionally, the switching may occur in a substantially random manner, or even in a random manner.
In still another embodiment, the baseband signal may be inverted using an interleaving operation. Also, the baseband signal may be routed to at least one mixer using an interleaving operation. A plurality of the baseband signals may be provided including an in-phase baseband signal and a quadrature baseband signal.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of a conventional single-ended direct-conversion transmitter;
FIG. 2 is a block diagram of the conventional differential direct-conversion transmitter;
FIG. 3 is a block diagram of a differential direct-conversion transmitter with local- oscillator phase interleaving and baseband signal interleaving;
FIGs. 4a-d show the four configurations of the baseband signal interleaver;
FIGs. 5a-d show the four configurations of the local-oscillator phase interleaver;
FIG. 6 is an illustration of a wireless communication system in which one embodiment may be used; and
FIG. 7 illustrates the functional components of a wireless communication device, shown in block diagram format.
DETAILED DESCRIPTION
Turning to one embodiment in FIG. 3, the differential direct conversion architecture described in FIG. 2 is enhanced with two switching matrices: 1) the local oscillator phase interleaver ("LOPI") 326 circuit, and 2) the baseband interleaver ("BBI") 304. Each has four combinations of connections.
The BBI 304 routes the in-phase baseband signals 300, 301 and quadrature baseband signals 302, 303 to a first up-conversion mixer 309 and the second up-conversion mixer 310. Continuing the terminology established in the example of FIG. 2, the differential in-phase baseband signals are denoted BB1>pos, BBι;neg while the differential quadrature signals are denoted BBQJP0S, BBQ,neg. By periodically switching the BBI configuration, the in-phase and quadrature baseband signals are routed alternately to each mixer. Thus, any imbalances in the baseband path affect the in-phase and quadrature signals similarly mitigating the adverse effect.
The baseband interleaver 304 circuit switches between one of four combinations of connections illustrated in FIG. 4. In addition, in two of the states it inverts the incoming baseband signals. In state 1 illustrated in FIG. 4a, the baseband interleaver passes BBι)P0S 400 and BBj,ne 401 to the first mixer and BBQJP0S 402 and BBQ;neg403 to the second mixer.
In the second state illustrated in FIG 4b, the baseband interleaver inverts the incoming signals, BB1)P0S 410 and BB1)neg 411, prior to routing them to the first mixer. Likewise, the baseband interleaver inverts BBQJP0S 412 and BBQjneg413 before routing them to the second mixer. In state 3 illustrated in FIG. 4c, BBIJP0S 420 and BBτ)neg421 are routed to the second mixer while BBQ)P0S 422 and BBQιneg403 are routed to the first mixer. Finally in state 4 illustrated in FIG. 4d, the baseband interleaver inverts the incoming signals and routes the inverted BB^s 430 BBι>neg431 to the second mixer and the inverted BBQ,P0S 432 and BBQ!neg433 to the first mixer. Returning to FIG. 3, the baseband signals 305, 306 arriving at the first mixer 309 are described by Equations 21, 22, 23, and 24.
State 1 : BBTJP0S - BBIjneg Equation 21
State 2: (-l)*BBτ,pos - (-l)*BBι,neg Equation 22
State 3: BBQJP0S - BBQjneg Equation 23
State 4: (-l)*BBQjP0S - (-l)*BBQjneg Equation 24
To facilitate the description of this embodiment, Equations 21, 22, 23 and 24 can be represented by the notations +BBι, -BBi, +BBQ, and -BBQ respectively. +BBι represents the differential in-phase baseband signal with positive polarity. -BBi represents the differential in-phase baseband signal with negative polarity. +BBQ represents the differential baseband signal with negative polarity. -BBQ represents the differential quadrature baseband signal with negative polarity.
Likewise, the baseband signals 307, 308 arriving at the second mixer 310 are described by Equations 25, 26, 27, and 28.
State 1 : BBQ)P0S - BBQ,ne Equation 25
State 2: (-1)*BBQ;P0S - (-l)*BBQ>neg Equation 26 State 3: BBτ!P0S - BB1)neg Equation 27
State 4: (-l)*BBτ,pos - (-l)*BBι,neg Equation 28
As in the case with Equations 21-24, the Equations 25, 26, 27 and 28 can be represented by the notations +BBQ, -BBQ, +BBl5 and -BBi respectively. Returning to FIG. 3, the local oscillator 320 waveform is transformed by a polyphase circuit 321 into four waveforms 322, 323, 324, and 325 each at the same frequency as the LO but with a phase shift referenced to the local oscillator phase. To continue the terminology established in the example associated with FIG. 2, these four polyphase local oscillator signals 322, 323, 324, 325 will be denoted LO°, LO90, LO180, LO270 respectively.
The LO phase interleaver circuit 326 periodically switches configuration so that the LO° and LO180 periodically are routed to the first mixer 309 and are periodically routed to the second mixer 310. Likewise, the LO phase interleaver 326 periodically routes LO90 and LO270 to the second mixer 310 and then to the first mixer 309. By switching the polyphase local oscillator signals to different mixers, it modulates the LO feed-though signal causing the LO feed-through peak energy to be reduced.
In the context of the present description, "interleaving" may refer to the plain and ordinary meaning thereof, as well as any sort of switching, exchanging, toggling, swapping, interchanging, etc.
Four LOPI combinations are illustrated in FIG. 5a, 5b, 5c and 5d. In state 1, as illustrated in FIG. 5a, LO° 500 and LO ' 80 501 are routed to the first mixer and LO90 502 and LO 503 are routed to the second mixer. In the second state, as illustrated in FIG. 5b, the LO° 510 and LO180 511 are routed to the first mixer; however, they have been interchanged compared to the routing in state 1 represented in FIG. 5a. The effect of this interchange is to reverse the polarity of the signal. Returning to FIG. 5b, LO90512 and LO270 513 are routed to the second mixer; however, they too have been interchanged compared to state 1.
In state 3, as illustrated in FIG. 5c, LO° 530 and LO180 531 are routed to the second mixer and LO90532 and LO270 533 are routed to the first mixer. In the fourth state, as illustrated in FIG. 5d, the LO° 540 andO LO180 541 are routed to the second mixer; however, they have been interchanged compared to the routing in state 3 represented in FIG. 5c. The effect of this interchange is to reverse the polarity of the signal. Returning to FIG. 5d, LO90542 and LO270 543 are routed to the first mixer; however, they too have been interchanged compared to state 3.
Returning to FIG. 3, through the processes of local oscillator phase interleaving, each mixer input sees each polyphase LO signal LO°, LO90, LO180, LO270. Thus, if a phase or amplitude imbalance of one mixer distorts one LO component then it distorts all components. The LO signals 327, 328 arriving at the first mixer 309 are described by Equations 29, 30, 31 and 32. Likewise the LO signals 329, 330 arriving at the second mixer 310 are described by Equations 33, 34, 35 and 36.
State 1: LO0 - LO180 Equation 29 S Sttaattee 22:: L LOO1108U0 -- LLOOυ° Equation 30
State 3: LO90 - LO270 Equation 31
State 4: LO270 - LO90 Equation 32
State 1: LO90 - LO270 Equation 33
State 2: LO270 - LO90 Equation 34 S Sttaattee 33:: L L0Oυ0 --LL0O1158υ0 Equation 35
State 4: LO180 - LO° Equation 36
To facilitate the present description, Equations 29, 30, 31 and 32 can be represented by the notations +LOι, -LOl5 +LOQ, and -LOQ respectively. +LOι represents the differential in-phase local oscillator signal with positive polarity. -LOi represents the differential in-phase local oscillator signal with negative polarity. +LOQ represents the differential local-oscillator signal with positive polarity. -LOQ represents the differential quadrature local-oscillator signal with negative polarity. As in the case with Equations 29-32, the Equations 33,34,35 and 36 can be represented by the notations +LOQ, -LOQ, +LOI, and -LOI respectively. The LO feed-through at the output of the first mixer 309 and the second mixer 310 is dependent on the LO signal applied to the mixer and the individual characteristics of the mixer itself. Therefore, the LO feed-through at the output of first mixer 309 can be defined by Equations 37, 38, 39, and 40 and the LO feed-through at the output of the second mixer 310 can be define by Equations 41 , 42, 43, and 44. The LO feed- through is defined by three subscripts and a precedent sign in these equations. As it is a function of the mixer, the first subscript indicates which mixer the feed-through is associated with. The switch matrix determines the LO feed-through relative polarity represented by a +/- precedent sign and its second subscript represents the in-phase or quadrature LO component. The third subscript, F, distinguishes it from the LO signal.
State 1: + LO F Equation 37
State 2: - OIAF Equation 38
State 3: + L01JQJF Equation 39 S Sttaattee 44:: - - LL0O1IJ,QQJ,FF Equation 40
State 1: + L02JQJF Equation 41
State 2: - L02;Q,F Equation 42
State 3: + L02,I,F Equation 43
State 4: - L02,ι,F Equation 44
A complex multiplicative term, Ale'1'1, represents a random amplitude variation
("Al") and a random phase variation ("PI") introduced by the first mixer 309, the signal path 305, 306 and LO path 327, 328 connected to the mixer. Likewise, A2eP2 represents a random amplitude and phase variation introduced by second mixer 310 and the signal 307,308 and LO paths 329,330 connected to it. Combining 315 the differential mixer outputs 311, 312, 313, 314 forms the RF output signal 316. The RF output corresponding to the four interleaving states is described by Equations 45, 46, 47 and 48.
State 1 : (+BBτ) X (+LOr) X Ale>pl + LOUF +
(+BBQ) X (+LOQ) X A2ejP2 + L02,Q)F
Equation 45
State 2: (-BBi) X (-LOi) X Ale1*1 - LO F + (-BBQ) X (-LθQ)'x A2eiP2 - L0Q;F
Equation 46
State 3: (+BBQ) X (+LOQ) X Alejpl + LOι)Q>F +
(+BBι) X (+LOι) X A2ejP2 + L02,ι,F Equation 47
State 4: (-BBQ) X (-LOQ) X Ale>pl - L01)Q,F +
(-BB X (-LOi) X A2ejP2 - L02,ι,F
Equation 48
Equations 45, 46, 47, and 48 can be reduced to Equations 49, 50, 51, and 52 by combining signs.
State 1 : BBi X LOi X Al e>pl + LO )F +
BBQ X LOQ X A2ejP2 + L02>QjF
Equation 49
State 2: BBi X LOi X Ale"1"1 - LOUjF + BBQ X LθQ,χ A2eiP2 - L02,Q)F
Equation 50
State 3: BBQ X LOQ X Ale11"1 + LOι,Q)F +
BBi X LOi X A2eJp2 + L02;ι,F Equation 51
State 4: BBQ X LOQ X Ale^1 - L01>Q,F +
BBι X LOι X A2eiP2 - L02J>F
Equation 52 In Equations 49 through 52, it can be seen that the RF signal LO feed-through components, LOι,ι,F, LO^Q,,]?, L02,I)F, and L02,Q,F, oscillate between positive and negative values. This results in the LO feed-through energy being spectrally spread away from the desired signal spectrum.
Since the LO feed-through term is being modulated at a frequency of the interleaving clock 340, the LO feed-through is being spread with over a bandwidth equivalent to the frequency of the interleaving clock. As the interleaving clock frequency increases, the in-band distortion caused by the LO feed-through is reduced. Furthermore, by using a delta signal modulator 341 the switching behavior of the
BBI and LOPI can be modified as to shape the spectral characteristics of the LO feed-through.
In Equations 49 through 52, it can be seen that the RF signal quadrature imbalance components AiejPi and A2e]P2 are each multiplied to both the in-band and quadrature baseband signal components. The RF in-phase component BBi * LOi has is modified by two values: Ale,pl for states 1 and 2 and A2eiP2 for states 3 and 4. The quadrature baseband signal follows the opposite pattern for amplitude and phase imbalance. When the in-phase and quadrature signal components are modified by the amplitude and phase distortions at a much higher frequency than their own modulation bandwidths, the two distortion products are averaged together in effect. This is shown in Equation 53.
RF = (BBi * LOi) * ( (Ale^1 + A2ejp2)/2) + (BBQ * LOQ) * ( (Alejpl + A2eiP2)/2)
Equation 53
So while the amplitude and phase distortion are still present in the RF signal, each signal component is distorted in the same fashion. Furthermore, the rapid switching of amplitude and phase distortion causes this distortion to be spread over a wide frequency and thus lowering its effects on in-band signal components. The present embodiment may thus provide a solution for important drawbacks of direct conversion transmitters: LO feed-through and quadrature imbalance.
FIG. 6 is an illustration of a multi-mode wireless communication system in which one embodiment may be used. It should be understood that the components shown in FIG. 6 are merely representative of one mode of wireless communication system and that other communication systems may use different components in order to achieve similar, or even different results. For example, a wired transceiver communication system may also be employed. The claims, therefore, are not intended to be limited to the system shown in FIG. 6. For example, the present technology may be implemented in a single-mode system.
In the wireless communication system of FIG. 6, multi-mode, wireless communication devices, otherwise referred to herein simply as wireless communication devices, are shown as wireless communication devices 100a, 100b, and lOOn, one or more wireless communication devices being assigned to each user in the system. The designations a, b, and n on the wireless communication device identifiers correspond respectively to a first user, a second user, and an nth user, representing "n" number of users in the communication system. Although only three wireless communication devices 100 are shown in FIG. 6, it should be understood that a wireless communication system typically comprises many thousands of users.
Referring again to FIG. 6, control station 120 typically includes interface and processing circuitry for providing system control to base stations 110a through 11 On, representing one through "n" base stations comprising the wireless communication system. Base stations are provided for transmitting and receiving communication signals to and from wireless communication devices. Each base station 110 provides a coverage area ranging up to several miles in radius from the base station location. As wireless communication devices travel within the coverage area of each base station, communication signals to be transferred to and from the wireless communication device are routed generally through the particular base station to which the wireless communication device is most closely located.
Control station 120 provides circuitry for routing communications between wireless communication devices operating in various base station coverage areas, as well as between remote stations and land-line telephone users through a Public Switch Telephone Network, shown in FIG. 6 as the PSTN 130. Control station 120 may, alternatively, or in addition to, be connected to computer network 160 to provide communications between wireless communication devices in the communication system and various known computing devices connected to computer network 160, such as personal computers, mainframe computers, digital cameras, email systems, remotely controlled devices, and so on.
Control station 120 typically comprises a telecommunications switch (not shown) and a Base Station Controller (BSC) (also not shown). The telecommunication switch provides a switching interface to PSTN 130 while the BSC provides the necessary hardware and software for communications to take place between base stations. Control station 120 provides other functions in the communication system as well, such as billing services and data services.
Control station 120 may be coupled to the base stations by various means such as dedicated telephone lines, optical fiber links, or microwave communication links. When a call is initiated by a wireless communication device, a paging message is transmitted to one or more base stations proximate to the wireless communication device initiating the call, generally over a paging channel. The paging message is routed to control station 120, where it is processed and routed either to PSTN 130 or to one or more base stations proximate to a wireless communication device for which the call is intended. When a call is initiated from PSTN 130, a paging message is received by control station 120 where it is then converted into a format suitable for the particular wireless communication system. In the exemplary embodiment, the wireless communication device 100 is able to communicate in at least two modes, or types, of communications, data communications and voice communications. Data communication mode is used when it is desirous to send or receive information generally suitable for digital computational devices, such as laptop computers. Data is generally transmitted in discreet segments called packets. Each data packet generally contains overhead information used for a variety of purposes. For example, many data packets contain a data field used to store an error detection code. The error detection code may be used to check a received data packet to ensure that it was received intact; that is, the data was not corrupted during the transmission process.
Voice communication mode is used when it is desirous to transmit acoustic information, including human speech, facsimile tones, music, or other audible forms of communication. In voice communication mode, audio information is transmitted using one or more well-known wireless communication modulation techniques, such as CDMA, TDMA, AMPS, and others.
During typical voice communications, an over the air channel is established between one or more base stations and a wireless telephone. The channel is maintained throughout the duration of the voice call, no matter how much or little voice activity is occurring between the wireless telephone and the base station. In many instances, voice data is digitized and formatted into packets prior to transmission. Voice packets differ from data packets in that no information as to a destination address is contained within the voice packets. That is, a connection is first established between two locations, then voice data is transmitted between the two locations. No address information need be contained within the voice packets as the source and destination of the voice packets are predetermined by the connection.
Data mode may further include a capability of transmitting voice in certain applications. In this scenario, voice is digitized. The digitized voice signals may be encrypted to provide for secure voice transmissions over the air. The digitized voice signals are then formatted into data packets, which are then transmitted over the air using well-known data transmission protocols. As explained above, each data packet contains information as to the address, or destination, of where the data packet is to arrive.
FIG. 7 illustrates the functional components of a wireless communication device, or wireless communication device, 100, shown in block diagram format. It should be understood that the components shown in FIG. 7 are merely representative of one mode of wireless communication device and that other communication devices may use different components in order to achieve similar, or even different results. The claims, therefore, are not intended to be limited to the system shown in FIG. 7.
Wireless communication device 100 is capable of multi-mode communications, meaning that it can operate in several modes of communications, such as voice communications or data communications. It should be understood that voice communications comprise any audio information including speech, music, or audible tones used for call processing, modems, and facsimile machines. Data communications comprise synchronous or asynchronous data transmission. In addition to these modes, wireless communication device is also capable of other modes of communications as well.
A user of wireless communication device 100 initiates communications generally by using input device 200. Input device 200 comprises a keypad in the exemplary embodiment, however, input device 200 could be any device which accepts user commands, such as a voice response device which converts voice commands into electrical signals suitable for processing by controller 202. During voice communications, the user speaks into microphone 204, which transforms acoustic energy into electrical energy and sends the electrical signals to controller 202 for processing. Microphone 204 may be substituted for input device 200 in an application where a second audio input device is undesirable. In many instances, a voice encoder/decoder, generally known as a Codec, is used between microphone 204 and controller 202, or is incorporated within controller 202, to convert the electrical signals from microphone 204 into a format more suitable for transmission over a limited bandwidth air interface.
Speaker 206 is used to convert received electrical signals into acoustic signals. Speaker 206 may comprise a speaker suitable for low volume acoustic outputs, typically for use in a traditional telephone application, or speaker 206 may comprise a loudspeaker, suitable for high volume acoustic outputs, typically for use in a dispatch applications. In another embodiment, speaker 206 may comprise a combination of the high volume and low volume acoustic speakers.
Wireless communication device 100 further comprises display 208 for allowing a user to view operational characteristics of the wireless communication device. Such displays are common in many of today's wireless devices including telephones and remote data terminals.
Data port 210 serves as an interface between controller 202 and external hardware devices. Data port 210 generally allows a variety of bi-directional data communications to take place between wireless communication device 100 and the external device. Such external devices include laptop computers, facsimile machines, and remote data terminals, among others.
When a user initiates voice or data communications, an identification code corresponding to a second communication device, generally a telephone number, is entered using input device 200. In the exemplary embodiment, input device 200 comprises keys corresponding to digits 0 through 9, as well as additional function keys, such as SEND, END, and so forth. Input device 200 may also comprise one or more keys used to classify an outgoing communication as being a data communication or a voice communication.
For example, a user wishing to initiate a data communication might press a key designated for data communications, then dial a telephone number corresponding to a data device that the user wishes to communicate with. In one embodiment, all calls from wireless communication device 100 are assumed to be voice calls, unless classified as some other mode of communication, as described by one of the methods above.
Controller 202 serves as the main computational unit of wireless communication device 100. Although controller 202 is shown as a single element in FIG. 7, it should be understood that controller 202 may comprise one or more individual components such as one or more Application Specific Integrated Circuits (ASICs) in combination with memory devices, bus controllers, and other support devices well known to those skilled in the art.
To facilitate the transmission and receipt of wireless RF signals in the foregoing context, an RF transceiver 212 and an antenna 214 are coupled to controller 202 for sending and receiving such signals. Similar to the controller 202, one or more ASICs in combination with memory devices, bus controllers, etc. may be used to provide the RF transceiver 212. Moreover, the aforementioned direct-conversion receiver may be incorporated into the RF transceiver 212 and/or controller 202 in any desired capacity for providing an improved system.
Working in conjunction with the controller 202 is memory 216. The memory 216 is a device used to store information represented in digital format. Examples of memory 216 include random access memory (RAM), electrically erasable programmable read-only memory (EEPROM), non- volatile memory, and other known storage devices. While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims

CLAIMSWhat is claimed is:
1. A method for communicating a radio frequency (RF) signal, comprising: mixing a baseband signal with a plurality of oscillator signals with different phases in an interleaving manner; and communicating the mixed baseband signal as an RF signal.
2. The method as recited in claim 1 , wherein the method is carried out by a transmitter.
3. The method as recited in claim 1 , wherein the oscillator signals include an oscillator signal frequency substantially equal to an RF signal frequency of the RF signal.
4. The method as recited in claim 1 , wherein the RF signal is modulated over a finite bandwidth.
5. The method as recited in claim 1, wherein the oscillator signals have phase differences of 0, 90, 180, and 270 degrees.
6. The method as recited in claim 1, wherein the mixing is carried out by a plurality of mixers.
7. The method as recited in claim 6, wherein the oscillator signals are input to the mixers in the interleaving manner.
8. The method as recited in claim 7, wherein the oscillator signals are input to the mixers in the interleaving manner by switching which oscillator signals are input to which mixers.
9. The method as recited in claim 8, wherein the switching occurs at a rate that is faster than a bandwidth of the RF signal.
10. The method as recited in claim 8, wherein the switching occurs in a substantially random manner.
11. The method as recited in claim 10, wherein the switching occurs in a random manner.
12. The method as recited in claim 1 , wherein the baseband signal is inverted using an interleaving operation.
13. The method as recited in claim 1, wherein the baseband signal is routed to at least one mixer using an interleaving operation.
14. The method as recited in claim 1, wherein a plurality of the baseband signals is provided including an in-phase baseband signal and a quadrature baseband signal.
15. A subsystem for transmitting a radio frequency (RF) signal, comprising: means for mixing a baseband signal with a plurality of oscillator signals with different phases in an interleaving manner; and means for transmitting the mixed baseband signal as an RF signal.
16. A subsystem for transmitting a radio frequency (RF) signal, comprising: at least one mixer for mixing a baseband signal with a plurality of oscillator signals with different phases in an interleaving manner.
7. A system, comprising: a mobile device in communication with a wireless communication network; wherein the device includes an integrated circuit including: at least one mixer for mixing a baseband signal with a plurality of oscillator signals with different phases in an interleaving manner.
PCT/US2004/008782 2003-03-31 2004-03-22 Direct conversion transmitter system and method with quadrature balancing and low lo feed through WO2004088855A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45862103P 2003-03-31 2003-03-31
US60/458,621 2003-03-31

Publications (2)

Publication Number Publication Date
WO2004088855A2 true WO2004088855A2 (en) 2004-10-14
WO2004088855A3 WO2004088855A3 (en) 2005-04-07

Family

ID=33131811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/008782 WO2004088855A2 (en) 2003-03-31 2004-03-22 Direct conversion transmitter system and method with quadrature balancing and low lo feed through

Country Status (1)

Country Link
WO (1) WO2004088855A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016422A (en) * 1997-10-31 2000-01-18 Motorola, Inc. Method of and apparatus for generating radio frequency quadrature LO signals for direct conversion transceivers
US6055429A (en) * 1996-10-07 2000-04-25 Lynch; Michael R. Distributed wireless call processing system
US6064664A (en) * 1996-09-21 2000-05-16 Samsung Electronics Co., Ltd. Base-band interleaver for code division multiple access mobile telecommunication system
US6385439B1 (en) * 1997-10-31 2002-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Linear RF power amplifier with optically activated switches
US6665159B2 (en) * 2000-02-21 2003-12-16 Hitachi, Ltd. Semiconductor integrated circuit device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064664A (en) * 1996-09-21 2000-05-16 Samsung Electronics Co., Ltd. Base-band interleaver for code division multiple access mobile telecommunication system
US6055429A (en) * 1996-10-07 2000-04-25 Lynch; Michael R. Distributed wireless call processing system
US6016422A (en) * 1997-10-31 2000-01-18 Motorola, Inc. Method of and apparatus for generating radio frequency quadrature LO signals for direct conversion transceivers
US6385439B1 (en) * 1997-10-31 2002-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Linear RF power amplifier with optically activated switches
US6665159B2 (en) * 2000-02-21 2003-12-16 Hitachi, Ltd. Semiconductor integrated circuit device

Also Published As

Publication number Publication date
WO2004088855A3 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
US7603099B2 (en) Direct-conversion receiver system and method with quadrature balancing and DC offset removal
US6819910B2 (en) Radio employing a self calibrating transmitter with reuse of receiver circuitry
US9198035B2 (en) Simple pairing to generate private keys for different protocol communications
Brown et al. A reconfigurable modem for increased network capacity and video, voice, and data transmission over GSM PCS
US20060154625A1 (en) Direct conversion transmitter system and method with quadrature balancing and low lo feed through
US9621305B2 (en) Bit parser for interleaver in transmitter with multiple transmit antennas
US7031672B2 (en) Direct conversion transmitter system and method with quadrature balancing and low LO feed through
US6920324B2 (en) Methods, receivers, transmitters, and systems for performing a soft hand-over of a mobile terminal between base stations that communicate using different communication channels
EP1261142A1 (en) Dual mode transceiver architecture for digital wireless communication
RU2420013C1 (en) Mobile station of confidential telephone communication
JPH09186620A (en) Communication equipment and communication method
EP1374424A1 (en) Radio transceiver
US20030202616A1 (en) Radio receiver utilizing a single analog to digital converter
JP4348498B2 (en) Wireless communication equipment
US5638405A (en) Dual-mode baseband controller for radio-frequency interfaces relating to digital cordless telephones
WO2004088855A2 (en) Direct conversion transmitter system and method with quadrature balancing and low lo feed through
US7058379B2 (en) Orthogonal frequency division multiplexing transceiver and method of operating the same
EP1628407A2 (en) Digital baseband transmitter with digital RF/IF support in GSM/GPRS/EDGE compliant handsets
US20040033785A1 (en) Modulation-demodulation apparatus and wireless communication apparatus
WO2004086637A2 (en) Direct-conversion receiver system and method with quadrature balancing and dc offset removal
KR100549923B1 (en) Multi-mode mobile station
JP2003051860A (en) Data transmitter, mixer circuit, and mobile phone terminal
WO2022226682A1 (en) Switch circuit, communication apparatus and terminal device
JP2811696B2 (en) Cordless telephone equipment
US5335279A (en) Digital voice-band spectrum inversion apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase