WO2004093471A2 - Network - Google Patents

Network Download PDF

Info

Publication number
WO2004093471A2
WO2004093471A2 PCT/US2004/009734 US2004009734W WO2004093471A2 WO 2004093471 A2 WO2004093471 A2 WO 2004093471A2 US 2004009734 W US2004009734 W US 2004009734W WO 2004093471 A2 WO2004093471 A2 WO 2004093471A2
Authority
WO
WIPO (PCT)
Prior art keywords
signals
cell
site
diversity
antenna
Prior art date
Application number
PCT/US2004/009734
Other languages
French (fr)
Other versions
WO2004093471A3 (en
Inventor
Peter David Ransome
James Laurence Taylor
Peter Paul Smyth
Original Assignee
Nextg Networks, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nextg Networks, Inc filed Critical Nextg Networks, Inc
Priority to US10/551,069 priority Critical patent/US7764655B2/en
Publication of WO2004093471A2 publication Critical patent/WO2004093471A2/en
Publication of WO2004093471A3 publication Critical patent/WO2004093471A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • This invention relates to diversity in wireless networks, and in particular to implementations of macro and micro diversity at a distributed access point in a wireless LAN.
  • the network may implement a range of wireless protocols such as IEEE 802.11a and 802.11b for terminals communicating through the access point.
  • Wireless LANs local area networks
  • LANs local area networks
  • RF radio frequency
  • Diversity techniques can improve wireless communication by selecting one channel, or combining a subset of channels, from a range of decorrelated channels that may exist between a transmitter and a receiver.
  • each channel is a physical path between a transmitting antenna and a receiving antenna, with selection of the most suitable receiving antenna according to analysis of the respective signal.
  • Macro diversity counters large scale and generally static spatial variations between the receiving antennae such as shadowing.
  • Micro diversity counters relatively small scale and often time varying effects such as multipath fading. Both macro and micro spatial effects can be important in wireless LANs with distributed access points.
  • the invention may broadly be said to consist in a communications network comprising: two or more cell sites for communication with wireless terminals, at least one of the cell sites having multiple receive antennas; and a central site having one or more interface controllers and a switch system through which the controllers are connected to the cell sites; wherein for each controller in communication with a wireless terminal, a cell site is selected for reception of signals from the terminal, and for each selected cell site having more than one receive antenna, an antenna within the site is selected for reception from the terminal.
  • the network further comprises: a cell selector in the central site that uses a diversity technique to select cell sites for reception from the wireless terminals and connects the selected sites to respective controllers through the switch.
  • the network further comprises: an antenna selector in each controller that uses a diversity technique to select an antenna within each cell site having multiple receive antennas.
  • the interface controllers include transceivers that transmit and receive RF signals according to respective protocols that are used by the wireless terminals, and preferably the central site is connected to at least some of the cell sites via optical fibres.
  • Figure 1 shows a prior art wireless network with a distributed access point
  • Figure 2 shows how macro diversity may be implemented in a distributed access point
  • Figure 3 shows how micro diversity may be implemented in a distributed access point
  • Figure 4 shows how both macro and micro diversity may be implemented in a distributed access point
  • Figure 5 shows how macro and micro diversity may be alternatively implemented in a distributed access point
  • Figure 6 gives detail of the macro diversity selection in Figure 5.
  • FIG. 1 schematically shows part of a network serving a number of wireless terminals WT1-4 through a distributed access point.
  • the access point includes a server 10 connected to a wired network 11 and to a number of points of presence POP 1-3, being three in this example, each having RF transmit and receive antennas.
  • Each POP represents a small cell site for radio communication.
  • the server contains one or more controllers, commonly called NICs (network interface cards) that carry out various functions including conversion of signals between protocols and carriers used on the wired and wireless parts of the network.
  • the controllers are connected to the POPs through a switch 12 that enables any one of the NICs to transmit and receive RF or IF signals through any one of the POPs.
  • Each POP has a connection 13 to the switch, by way of optical fibre in this example, with RF signals being modulated and demodulated onto and from optical signals at each end of a fibre.
  • a series of ports are provided for each of the POPs respectively in an opto-electronic module 14. Connections may also be made by a range of other means such as coaxial cable.
  • the wireless terminals WT1-4 may communicate with each other, and with fixed terminals 15 or other wireless and fixed terminals in the network through the access point.
  • FIG. 2 schematically indicates how macro diversity techniques may be implemented among POPs at the distributed access point in Figure 1.
  • Server 10 includes two interface controllers NIC 1-2, provided as cards, that enable communication with devices using any of a range of wireless protocols such as IEEE 802.11 a and 802.1 lb, for example.
  • the two NICs, a processor 20, memory 21 and network port 22 in the server are connected by address, data and control buses, shown in simple form for clarity.
  • Processor 20 carries out a range of general functions for the access point, including frequency planning, power control, diagnostics and network management via SNMP (simple network management protocol) for example.
  • Switch 12 preferably includes separate transmit and receive switching components 23 and 24 respectively, to reduce cross talk when transferring transmit and receive signals between the NICs and the POPs.
  • Opto-electronic module 14 includes a series of ports 26 for fibre optic connection to the POPs, each having an optical transmitter and an optical receiver, typically lasers LI -3 and photodiodes PI -3 respectively. Outputs from the transmit switching component 23 are connected to the lasers Ll-3.
  • Macro diversity in Figure 2 is implemented by way of a selection system 27 connected between the opto-electronic module 14 and the receive switching component 24 of the switch 12.
  • Outputs from the photodiodes PI -3 are connected to inputs of the receive switching component 24, with portions of the signals being passed through filters Fl-3 respectively in the selection system.
  • Output from each of the filters is connected to a detector 28.
  • the signal received from a POP may contain individual signals representing separate communications on several channels in several bands. For example, a POP that is constructed to enable IEEE 802.11a and b will potentially receive signals on several channels in each of the 5.2GHz and 2.4GHz bands that have been defined for those standards.
  • the filters Fl-3 are therefore preferably narrow-band per- channel filters and the detector 28 preferably has a separate power detector for each possible channel for each POP. Power or signal levels are preferably detected near the channel centres only, or pattern matched across multiple channels, to improve rejection of power from neighbouring channels.
  • Various known diversity algorithms can be implemented by the selection system 27 for analysis of the signals from each POP, such as signal power, channel delay spread, channel matrix eigenvalue spread and preamble soft error magnitude. Output from the selection system 27 is used by the switch controller 25 to set pathways through the receive switching component, so that each NIC in the server 10 receives an optimum signal from a selected POP.
  • FIG 3 schematically indicates how micro diversity techniques may be implemented in POPs at the distributed access point in Figure 1. Many of the elements in this figure are the same or similar to those of Figure 2. Switch connections have been shown in simple form for NIC2 only.
  • Each POP now has more than one receive antenna and is able to provide two or more versions of the same signal to the server 10 through the switch 12.
  • each POP has two receive antennas that provide signals to the opto-electronic module 14 along separate optical fibres.
  • Each port 26 in the module 14 now includes an optical transmitter such as a laser LI -3, and two optical receivers such as a photodiode PI -3 and PI '-3'.
  • Separate receive switching components 30, 31 are preferably provided in the switch 12, corresponding to the number of signals from each POP.
  • the transmit and receive switching components are set by the controller 25.
  • a diversity selection system 33 in each of the interface controllers NIC 1-2 selects from the received signals from a particular POP. Both of the received signals from a particular POP are delivered to a particular NIC by the switch controller generally according to macro diversity techniques that may also be implemented.
  • Various known diversity algorithms can be implemented by the selection systems 33 for analysis of the signals from each POP as mentioned above.
  • Figure 4 shows schematically how a distributed access point combining both macro and micro diversity techniques may be implemented. Many of the elements common to the preceding figures have been omitted, while some extra detail has been included, and only a single NIC 40 has been shown.
  • each POP is connected by optical fibres to an opto-electronic port 26 having a laser L for optical transmission and two photodiodes P, P' for optical reception.
  • the outgoing signal to each POP shares an optical fibre 45 with one of the incoming signals from the POP, while a separate fibre 46 is provided for the other incoming signal.
  • the POPs may also contain lasers, photodiodes, amplifiers, filters, frequency converters and optical multiplexers as required.
  • the NIC carries out both macro and micro diversity selection, with all of the signals received from all of the POPs capable of being presented to the selection system 47.
  • Some specific components of the NIC including an I/O port for connection to the server, a MAC processor for analysing packets received from wired or wireless terminals, a baseband modem for conversion of digital signals to and from quadrature form, and an RF or IF stage for modulation and demodulation of the quadrature signals onto high frequency carriers are also shown.
  • Specific transmit and receive connections are also shown in the switch, again by way of example.
  • FIG. 5 shows an alternative implementation of macro and micro diversity in a distributed access point. Many of the elements common to the preceding figures have been omitted for simplicity, while some extra detail has been included.
  • POPs each with two receive antennas, enabling macro and micro diversity selections from eight and two channels respectively.
  • NICs 50 have now been shown with specific receive switching connections 51, and opto-electronic ports 52. Only a few of the total number of receive connections in the switch have been shown, while the transmit connections have been omitted altogether.
  • the two receive switch components preferred for transfer of signals from each pair of receive antennas in the POPs are shown in overlay form.
  • Macro diversity selection is carried out on the POP side of the switch by filters and power detectors in block 27 as in Figure 2, with adjustment of the switch being carried out by control 25.
  • Micro diversity selection is carried out by the NICs as in Figure 3.
  • both macro and micro diversity selection may be carried out on the POP side of the switch.
  • FIG. 6 gives some detail of the diversity selection system 27 in Figures 2 and 5.
  • a pair of signals is input to the selection system from a POP having two receive antennas.
  • the signals are received along an optical fibre by an O/E card 60 containing suitable opto-electronic components, typically photodiodes.
  • Each signal from an antenna may contain component signals from a range of wireless terminals using a range of different protocols.
  • the signals are broadly filtered 61 according to two prescribed bands, such as the 2.4GHz and 5.1GHz bands of the IEEE 802.11 standards.
  • a portion of the signal in each band is then filtered by a respective bank of narrow band filters 62 covering each of the available channels.
  • the power in each channel is determined and output as data to a local processor 63, generally part of the switch control 25.
  • a control signal from the main processor 20 in the access server 10 in Figure 2 is also usually received.
  • Output from the local processor is used to determine the switch settings 51 in Figure 5.
  • the pair of signals are then passed through buffers
  • Diversity arrangements implemented according to the invention are able to achieve selection and switching on practical time scales.
  • the selection process should generally take place as close as possible to the switching mechanism to reduce any delay in operating the switch. It is preferred that selection by macro diversity take place prior to switching and that selection by micro diversity take place after the switch. However, it will be appreciated that various combinations of diversity selection and switching will be appropriate in different networks.

Abstract

A communications network comprises two or more cell sites for communication with wireless terminals. At least one of the cell sites has multiple receive antennas (43, 44). A central site has one or more interface controllers (25) and a switch system (12) through which the controllers are connected to the cell sites. For each controller in communication with a wireless terminal, a cell site is selected for reception of signals from the terminal, and for each selected cell site having more than one receive antenna, an antenna within the site is selected for reception from the terminal.

Description

FIELD OF THE INVENTION
This invention relates to diversity in wireless networks, and in particular to implementations of macro and micro diversity at a distributed access point in a wireless LAN. The network may implement a range of wireless protocols such as IEEE 802.11a and 802.11b for terminals communicating through the access point.
BACKGROUND TO THE INVENTION Wireless LANs (local area networks) are emerging as important infrastructure for a wide range of commercial and domestic premises. They enable mobility of wireless devices about the premises and are generally more flexible and lower cost than networks with equivalent wired connections. However, a large number of wireless access points may be required to properly serve the coverage volume of a particular network, and different mobile devices may require service within the volume using different wireless protocols. This increases the number of wireless interface controllers with RF (radio frequency) transceivers that are required by the network, and therefore increases its cost. Distributed access points having a number of relatively simple cells or POPs (points of presence) for transmission and reception of RF signals are therefore under development. Each access point has a central server with a set of transceivers that are typically connected to the POPs by optical fibres, coaxial cables or the like, through a bridge or switch.
Diversity techniques can improve wireless communication by selecting one channel, or combining a subset of channels, from a range of decorrelated channels that may exist between a transmitter and a receiver. A range of different algorithms exist for selecting or combining signals from among the available channels. In spatial diversity each channel is a physical path between a transmitting antenna and a receiving antenna, with selection of the most suitable receiving antenna according to analysis of the respective signal. Macro diversity counters large scale and generally static spatial variations between the receiving antennae such as shadowing. Micro diversity counters relatively small scale and often time varying effects such as multipath fading. Both macro and micro spatial effects can be important in wireless LANs with distributed access points.
SUMMARY OF THE INVENTION It is therefore an object of the invention to provide for the use of spatial diversity techniques in wireless LANs having distributed access points, or at least to provide an alternative to existing diversity systems in wireless networks.
In one aspect the invention may broadly be said to consist in a communications network comprising: two or more cell sites for communication with wireless terminals, at least one of the cell sites having multiple receive antennas; and a central site having one or more interface controllers and a switch system through which the controllers are connected to the cell sites; wherein for each controller in communication with a wireless terminal, a cell site is selected for reception of signals from the terminal, and for each selected cell site having more than one receive antenna, an antenna within the site is selected for reception from the terminal. Preferably the network further comprises: a cell selector in the central site that uses a diversity technique to select cell sites for reception from the wireless terminals and connects the selected sites to respective controllers through the switch. Preferably the network further comprises: an antenna selector in each controller that uses a diversity technique to select an antenna within each cell site having multiple receive antennas. Preferably the interface controllers include transceivers that transmit and receive RF signals according to respective protocols that are used by the wireless terminals, and preferably the central site is connected to at least some of the cell sites via optical fibres.
The invention may also be said to consist in any alternative combination of features that are suggested in this specification of the drawings. All equivalents of these features are deemed to be included whether or not explicitly set out.
LIST OF FIGURES
Preferred embodiments of the invention will be described with respect to the accompanying figures, of which: Figure 1 shows a prior art wireless network with a distributed access point, Figure 2 shows how macro diversity may be implemented in a distributed access point,
Figure 3 shows how micro diversity may be implemented in a distributed access point,
Figure 4 shows how both macro and micro diversity may be implemented in a distributed access point, Figure 5 shows how macro and micro diversity may be alternatively implemented in a distributed access point, and
Figure 6 gives detail of the macro diversity selection in Figure 5.
DESCRIPTION OF PREFERRED EMBODIMENTS Referring to the drawings it will be appreciated that the invention can be implemented in a range of wireless networks in a range of different ways. The embodiments described here are given by way of example only.
Figure 1 schematically shows part of a network serving a number of wireless terminals WT1-4 through a distributed access point. The access point includes a server 10 connected to a wired network 11 and to a number of points of presence POP 1-3, being three in this example, each having RF transmit and receive antennas. Each POP represents a small cell site for radio communication. The server contains one or more controllers, commonly called NICs (network interface cards) that carry out various functions including conversion of signals between protocols and carriers used on the wired and wireless parts of the network. The controllers are connected to the POPs through a switch 12 that enables any one of the NICs to transmit and receive RF or IF signals through any one of the POPs. Each POP has a connection 13 to the switch, by way of optical fibre in this example, with RF signals being modulated and demodulated onto and from optical signals at each end of a fibre. A series of ports are provided for each of the POPs respectively in an opto-electronic module 14. Connections may also be made by a range of other means such as coaxial cable. The wireless terminals WT1-4 may communicate with each other, and with fixed terminals 15 or other wireless and fixed terminals in the network through the access point.
Figure 2 schematically indicates how macro diversity techniques may be implemented among POPs at the distributed access point in Figure 1. Server 10 includes two interface controllers NIC 1-2, provided as cards, that enable communication with devices using any of a range of wireless protocols such as IEEE 802.11 a and 802.1 lb, for example. The two NICs, a processor 20, memory 21 and network port 22 in the server are connected by address, data and control buses, shown in simple form for clarity. Processor 20 carries out a range of general functions for the access point, including frequency planning, power control, diagnostics and network management via SNMP (simple network management protocol) for example. Switch 12 preferably includes separate transmit and receive switching components 23 and 24 respectively, to reduce cross talk when transferring transmit and receive signals between the NICs and the POPs. Both switch components are set by a controller 25. Switch connections have been shown in simple form for NICl only. Opto-electronic module 14 includes a series of ports 26 for fibre optic connection to the POPs, each having an optical transmitter and an optical receiver, typically lasers LI -3 and photodiodes PI -3 respectively. Outputs from the transmit switching component 23 are connected to the lasers Ll-3.
Macro diversity in Figure 2 is implemented by way of a selection system 27 connected between the opto-electronic module 14 and the receive switching component 24 of the switch 12. Outputs from the photodiodes PI -3 are connected to inputs of the receive switching component 24, with portions of the signals being passed through filters Fl-3 respectively in the selection system. Output from each of the filters is connected to a detector 28. The signal received from a POP may contain individual signals representing separate communications on several channels in several bands. For example, a POP that is constructed to enable IEEE 802.11a and b will potentially receive signals on several channels in each of the 5.2GHz and 2.4GHz bands that have been defined for those standards. The filters Fl-3 are therefore preferably narrow-band per- channel filters and the detector 28 preferably has a separate power detector for each possible channel for each POP. Power or signal levels are preferably detected near the channel centres only, or pattern matched across multiple channels, to improve rejection of power from neighbouring channels. Various known diversity algorithms can be implemented by the selection system 27 for analysis of the signals from each POP, such as signal power, channel delay spread, channel matrix eigenvalue spread and preamble soft error magnitude. Output from the selection system 27 is used by the switch controller 25 to set pathways through the receive switching component, so that each NIC in the server 10 receives an optimum signal from a selected POP.
Figure 3 schematically indicates how micro diversity techniques may be implemented in POPs at the distributed access point in Figure 1. Many of the elements in this figure are the same or similar to those of Figure 2. Switch connections have been shown in simple form for NIC2 only. Each POP now has more than one receive antenna and is able to provide two or more versions of the same signal to the server 10 through the switch 12. In this example, each POP has two receive antennas that provide signals to the opto-electronic module 14 along separate optical fibres. Each port 26 in the module 14 now includes an optical transmitter such as a laser LI -3, and two optical receivers such as a photodiode PI -3 and PI '-3'. Separate receive switching components 30, 31 are preferably provided in the switch 12, corresponding to the number of signals from each POP. The transmit and receive switching components are set by the controller 25. A diversity selection system 33 in each of the interface controllers NIC 1-2 selects from the received signals from a particular POP. Both of the received signals from a particular POP are delivered to a particular NIC by the switch controller generally according to macro diversity techniques that may also be implemented. Various known diversity algorithms can be implemented by the selection systems 33 for analysis of the signals from each POP as mentioned above. Figure 4 shows schematically how a distributed access point combining both macro and micro diversity techniques may be implemented. Many of the elements common to the preceding figures have been omitted, while some extra detail has been included, and only a single NIC 40 has been shown. In this example, there are eight POPs 41 each with a transmit antenna 42 and two receive antennas 43, 44 enabling selection from eight channels for macro diversity and two channels for micro diversity. Each antenna may operate in multiple bands, covering both of the bands prescribed for IEEE 802.11 a and b, for example. Each POP is connected by optical fibres to an opto-electronic port 26 having a laser L for optical transmission and two photodiodes P, P' for optical reception. In this example, the outgoing signal to each POP shares an optical fibre 45 with one of the incoming signals from the POP, while a separate fibre 46 is provided for the other incoming signal. The POPs may also contain lasers, photodiodes, amplifiers, filters, frequency converters and optical multiplexers as required. The NIC carries out both macro and micro diversity selection, with all of the signals received from all of the POPs capable of being presented to the selection system 47. Some specific components of the NIC including an I/O port for connection to the server, a MAC processor for analysing packets received from wired or wireless terminals, a baseband modem for conversion of digital signals to and from quadrature form, and an RF or IF stage for modulation and demodulation of the quadrature signals onto high frequency carriers are also shown. Specific transmit and receive connections are also shown in the switch, again by way of example.
Figure 5 shows an alternative implementation of macro and micro diversity in a distributed access point. Many of the elements common to the preceding figures have been omitted for simplicity, while some extra detail has been included. In this example there are again eight POPs each with two receive antennas, enabling macro and micro diversity selections from eight and two channels respectively. Four NICs 50 have now been shown with specific receive switching connections 51, and opto-electronic ports 52. Only a few of the total number of receive connections in the switch have been shown, while the transmit connections have been omitted altogether. The two receive switch components preferred for transfer of signals from each pair of receive antennas in the POPs are shown in overlay form. Macro diversity selection is carried out on the POP side of the switch by filters and power detectors in block 27 as in Figure 2, with adjustment of the switch being carried out by control 25. Micro diversity selection is carried out by the NICs as in Figure 3. Alternatively, both macro and micro diversity selection may be carried out on the POP side of the switch.
Figure 6 gives some detail of the diversity selection system 27 in Figures 2 and 5. A pair of signals is input to the selection system from a POP having two receive antennas. The signals are received along an optical fibre by an O/E card 60 containing suitable opto-electronic components, typically photodiodes. Each signal from an antenna may contain component signals from a range of wireless terminals using a range of different protocols. In this case, the signals are broadly filtered 61 according to two prescribed bands, such as the 2.4GHz and 5.1GHz bands of the IEEE 802.11 standards. A portion of the signal in each band is then filtered by a respective bank of narrow band filters 62 covering each of the available channels. The power in each channel is determined and output as data to a local processor 63, generally part of the switch control 25. A control signal from the main processor 20 in the access server 10 in Figure 2 is also usually received. Output from the local processor is used to determine the switch settings 51 in Figure 5. The pair of signals are then passed through buffers 64.
Diversity arrangements implemented according to the invention are able to achieve selection and switching on practical time scales. The selection process should generally take place as close as possible to the switching mechanism to reduce any delay in operating the switch. It is preferred that selection by macro diversity take place prior to switching and that selection by micro diversity take place after the switch. However, it will be appreciated that various combinations of diversity selection and switching will be appropriate in different networks.

Claims

1. A communications network comprising: two or more cell sites for communication with wireless terminals, at least one of the cell sites having multiple receive antennas; and a central site having one or more interface controllers and a switch system through which the controllers are connected to the cell sites; wherein for each controller in communication with a wireless terminal, a cell site is selected for reception of signals from the terminal, and for each selected cell site having more than one receive antenna, an antenna within the site is selected for reception from the terminal.
2. A network according to claim 1 further comprising: a cell selector in the central site that uses a diversity technique to select cell sites for reception from the wireless terminals and connects the selected sites to respective controllers through the switch.
3. A network according to claim 1 further comprising: an antenna selector in each controller that uses a diversity technique to select an antenna within each cell site having multiple receive antennas.
4. A network according to claim 1 wherein the interface controllers include transceivers that transmit and receive RF signals according to respective protocols that are used by the wireless terminals
5. A network according to claim 1 wherein the central site is connected to at least some of the cell sites via optical fibres.
PCT/US2004/009734 2003-03-31 2004-03-30 Network WO2004093471A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/551,069 US7764655B2 (en) 2003-03-31 2004-03-30 Local area network utilizing macro and micro diversity techniques in receiving signals from cell sites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0307434A GB2402300B (en) 2003-03-31 2003-03-31 Network
GB0307434.1 2003-03-31

Publications (2)

Publication Number Publication Date
WO2004093471A2 true WO2004093471A2 (en) 2004-10-28
WO2004093471A3 WO2004093471A3 (en) 2004-12-23

Family

ID=9955909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/009734 WO2004093471A2 (en) 2003-03-31 2004-03-30 Network

Country Status (2)

Country Link
GB (1) GB2402300B (en)
WO (1) WO2004093471A2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8111998B2 (en) * 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8472767B2 (en) 2006-05-19 2013-06-25 Corning Cable Systems Llc Fiber optic cable and fiber optic cable assembly for wireless access
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072790A (en) * 1999-05-13 2000-06-06 Motorola, Inc. Method and apparatus for performing distribution in a communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2311693B (en) * 1996-03-29 2000-06-21 Nokia Mobile Phones Ltd Antenna selection control circuitry
JP3105869B2 (en) * 1998-08-10 2000-11-06 静岡日本電気株式会社 Antenna diversity switching method and antenna diversity receiving apparatus using the method
US20020160737A1 (en) * 2001-03-06 2002-10-31 Magis Networks, Inc. Method and apparatus for diversity antenna branch selection
US20040162037A1 (en) * 2003-02-18 2004-08-19 Eran Shpak Multi-channel WLAN transceiver with antenna diversity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072790A (en) * 1999-05-13 2000-06-06 Motorola, Inc. Method and apparatus for performing distribution in a communication system

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472767B2 (en) 2006-05-19 2013-06-25 Corning Cable Systems Llc Fiber optic cable and fiber optic cable assembly for wireless access
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) * 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Also Published As

Publication number Publication date
WO2004093471A3 (en) 2004-12-23
GB2402300B (en) 2006-08-30
GB0307434D0 (en) 2003-05-07
GB2402300A (en) 2004-12-01

Similar Documents

Publication Publication Date Title
WO2004093471A2 (en) Network
CN101529741B (en) Repeater techniques for multiple input multiple output utilizing beam formers
US6205133B1 (en) Flexible wideband architecture for use in radio communications systems
US7392015B1 (en) Calibration methods and structures in wireless communications systems
US7564910B2 (en) Method and system for communications with reduced complexity receivers
CN1638504B (en) Radio base station with multiple radio frequency heads
US8842788B2 (en) Systems and methods for improved high capacity in wireless communication systems
CN108199729A (en) Multidiameter option switch and wireless telecom equipment
EP2798753B1 (en) Cell clustering and aperture selection
US20040151503A1 (en) Communication system having wireless transmission path and optical transmission path
US20100067392A1 (en) Wireless communication system
CN101911520A (en) Apparatus and method for switching from reception to transmission
KR20010087367A (en) Broadband wireless mesh topology network
EP1570546A1 (en) Adaptive passive distributed antenna system
CN101622798A (en) Switched beam antenna system and method with numerically controlled weighted radio frequency combination
US7764655B2 (en) Local area network utilizing macro and micro diversity techniques in receiving signals from cell sites
US5887021A (en) Base station receiver and a method for receiving a signal
CN101690312A (en) Establishing parallel tunnels for higher bit rate
KR100350542B1 (en) A wireless telecommunications system architecture supporting receive diversity
CN113382484B (en) Customer premises equipment
EP2154793A2 (en) Dynamic switching system and method between single and multiple antenna transmission
KR100263652B1 (en) Transmission output control method and apparatus for wireless local area network stations
KR20050014530A (en) Method for configurating base station transceiver system by holing digital unit of mobile communication system in common
EP4184808A1 (en) Antenna apparatus
Gordon et al. Experimental comparison of antenna clustering strategies in MIMO distributed antenna systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006182072

Country of ref document: US

Ref document number: 10551069

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10551069

Country of ref document: US