WO2004098030A1 - Switched reluctance machine, especially an sr-motor - Google Patents

Switched reluctance machine, especially an sr-motor Download PDF

Info

Publication number
WO2004098030A1
WO2004098030A1 PCT/DE2004/000657 DE2004000657W WO2004098030A1 WO 2004098030 A1 WO2004098030 A1 WO 2004098030A1 DE 2004000657 W DE2004000657 W DE 2004000657W WO 2004098030 A1 WO2004098030 A1 WO 2004098030A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
winding
poles
yoke
reluctance machine
Prior art date
Application number
PCT/DE2004/000657
Other languages
German (de)
French (fr)
Inventor
Roland Karrelmeyer
Elmar Dilger
Markus Watscher
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004098030A1 publication Critical patent/WO2004098030A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors

Definitions

  • Switched reluctance machine especially SR motor
  • the invention is based on a switched reluctance machine, in particular an SR motor, according to the preamble of claim 1.
  • Switched reluctance machines are preferably used as drive motors, so-called SR (switched reluctance) motors.
  • a known switched reluctance machine (DE 40 08 606 AI, Fig. 1) has several teeth or poles arranged both on the stator and on the rotor. While the rotor is windingless, the multi-phase stator winding is wound in concentrated coils on each stator pole. The individual pole windings on diametrically opposite stator poles are connected in series or in parallel. The number of stator pole pairs corresponds to the number of phases in the stator winding.
  • a motor torque is generated by switching the current in a continuous sequence in each winding phase, so that there is a magnetic attraction between those rotor poles and rotor poles that approach each other when the rotor is running.
  • the current in each winding phase is switched off before the rotor poles, which are closest to the stator poles of this winding phase, turn past the aligned position.
  • the torque generated is independent of the direction of current flow.
  • drive motors must be fault-tolerant, i.e. they must have the ability to continue working with a minimum of degradation in the event of an electrical fault.
  • stator pole windings on diametrically opposite stator poles are sequentially excited by separate switching devices.
  • Stator pole windings per phase (where k> 2), k independent switching devices with n phase branches are used in each switching device. These switching devices are powered by the same direct current source or, which is preferred, by separate direct current sources in order to achieve an even higher degree of fault tolerance.
  • a stator pole winding fails, the average torque generation by the motor only drops to approximately (n • k) - 1 / (n • k) of the normal value before the fault occurred in a stator pole winding.
  • the remaining torque is still 5/6 of the original torque.
  • one of the separate direct current sources fails, half of the mean torque is still generated.
  • asymmetrical operation of this SR motor i.e. when the stator winding is only supplied with current from a direct current source, undesirable, asymmetrical magnetic fluxes result, which, depending on the rotor position, prevent the motor from starting.
  • the switched reluctance machine according to the invention in particular an SR motor, with the features of claim 1 has the advantage that in the event of a fault in one stator winding, proper operation of the motor is possible only with the other stator winding. There are no changes in the course of the magnetic flux compared to normal operation, in which the reluctance machine is operated with both stator windings, so that a reliable start-up of the SR motor is ensured even with operation with only one stator winding.
  • Advantageous further developments and improvements of the reluctance machine specified in claim 1 are possible through the measures listed in the further claims.
  • FIG. 1 shows a cross section of an SR motor, shown schematically,
  • FIG. 2 is a circuit diagram of a control device for the SR motor in FIG. 1.
  • the SR motor Switchched Reluctance Motor
  • FIG. 1 The SR motor (Switched Reluctance Motor) shown schematically in cross section in FIG. 1 as an exemplary embodiment of a general switched reluctance machine, which can also be a generator, has a stator 10 with a multi-phase or multi-phase stator winding 12 and a windingless rotor 11 ,
  • the stator 10 has an annularly closed yoke 13 which concentrically surrounds the rotor 11 and on which stator poles 14 which are offset by the same initial angle from one another protrude radially inwards.
  • the stator winding 12 is wound onto the stator poles 14 in the form of individual concentrated toroidal coils.
  • FIG. 1 The SR motor (Switched Reluctance Motor) shown schematically in cross section in FIG. 1 as an exemplary embodiment of a general switched reluctance machine, which can also be a generator, has a stator 10 with a multi-phase or multi-phase
  • the ring coils 151-156 are placed on the stator poles 141-146, the ring coils 151, 154 and the ring coils 152, 155 and the ring coils 153, 156 each belonging to a winding phase and connected in parallel or in series
  • the rotor 11 likewise has teeth or rotor poles 16 which are arranged on the circumference and are offset by the same circumferential angle, the number of which differs from the number of stator poles 14.
  • the rotor 11 has four rotor poles 16, while the stator 10 carries six stator poles 14. Working air gaps are present between the facing end faces of stator poles 14 and rotor poles 16.
  • the stator winding 12 with the ring coils 151-156 accommodated on the stator poles 141-146, which are each connected in series in pairs in the exemplary embodiment, is connected to a switching device 21, as shown in the circuit diagram in FIG. 2 above.
  • the switching device 21 is controlled by a motor control unit 20 such that the individual winding phases of the stator winding 12 are successively connected to a direct voltage Ui of a direct current source 24.
  • the switching device 21 has a total of six electronic semiconductor switches, in the exemplary embodiment
  • FET 22 Field effect transistors 22 and six freewheeling diodes 23.
  • Each winding phase with two toroidal coils 15 is arranged in series with two FEs 22, and the series connections are connected in parallel with one another.
  • the freewheeling diodes 22 each connect the ends of the winding strands in suitably with the DC potential or the zero potential.
  • a second stator winding 17 with individual toroid coils 18, also called a toroid winding is provided.
  • Each toroidal coil 18 is wound on one of the yoke sections of the yoke 13 present between the stator poles 14.
  • the toroid coil 181 is wound on the yoke section 131, the toroid coil 182 on the yoke section 132, the toroid coil 183 on the yoke section 133, the toroid coil 184 on the yoke section 134, the toroid coil 185 on the yoke section 135, and the toroid coil 186 on the yoke section 136 ,
  • the second stator or toroid winding 17 has the same number of phases as the first stator winding 12, wherein again two toroid coils 18 wound onto yoke sections that are offset by 180 °, that is to say diametrically opposite one another, belong to a winding phase or a winding phase, so the toroid coils 181, 184 , the toroid coils 182, 185 and the toroid coils 183, 186.
  • the toroid coils 18 of a winding phase are connected in series or in parallel. In the exemplary embodiment, the toroidal coils 18 of a winding phase are in series.
  • the second stator or toroid winding 17 is connected to a second switching device 25, which is likewise controlled by the motor control device 20 and which connects the individual winding strands of the toroid winding 17 one after the other consequently applies to the direct voltage U 2 of a direct current source 26.
  • the second switching device 25 is identical to the first switching device 21 with six FETs 22 and six freewheeling diodes 23, the two toroidal coils 18 of a winding strand being connected in series with two FETs 22, and the series connections being connected in parallel.
  • the direct voltages U and U 2 applied to the two switching devices 21, 25 can be the same or different from one another.
  • the two direct current sources 24, 26 can also be combined to form a single direct current source. However, the separation of the DC sources leads to a higher degree of fault tolerance.
  • the SR motor In normal, undisturbed operation, the SR motor is operated together with both stator windings 12, 17. In the event of a fault, the SR motor can be operated using only one of the two stator windings 12 or 17. Since the flux distribution in the stator and rotor does not change in either operating mode, reliable starting of the rotor 11 is ensured even in the event of an electrical fault in one of the stator windings 12 or 17 or in the event of failure of one of the separate direct current sources 24, 26.
  • the invention is not limited to the described three-phase embodiment of an SR motor.
  • the SR motor can have any number of phases.
  • the number of stator poles and the number of rotor poles can also be designed differently than described above.
  • the SR motor can be four-phase with eight stator poles and six rotor poles.
  • the SR motor has n winding phases and k stator poles per winding phase, where k> 2.
  • the second stator or toroid winding 17 is also n-phase, each with k Toroid coils 18 per winding phase, where k> 2.
  • the ring coils 15 of the first stator winding 12 belonging to a winding phase or a winding phase are each spatially offset by 360 ° / k on the stator poles 14 or on the yoke sections of the yoke 13.
  • the two switching devices 21, 25 have n parallel switching branches, each with k coils 15 or 18 connected in series or in parallel and two FEs 22.

Abstract

The invention relates to a switched reluctance machine, especially an SR motor, comprising a stator (10) provided with several stator poles (14), a rotor (11) comprising a number of rotor poles differing from the number of stator poles (14) and a multi-stator winding (12), whereon one winding thereof is wound on the stator poles displaced on the stator (10), at the same peripheral angle. The aim of the invention is to produce said reluctance machine such that it is tolerant to errors and functions in a secure manner, even in the case of errors. As a result, the stator (10) supports a second stator winding (17) having the same number of billets and a plurality of toroids (18), which are wound on the interference yoke sections (131-136) extending between the stator poles (14) in such a manner that the toroids (18) displaced by the same peripheral angle on the interference yoke (13), are part of the same winding billet.

Description

Geschaltete Reluktanzmaschine, insbesondere SR-Motor Switched reluctance machine, especially SR motor
Stand der TechnikState of the art
Die Erfindung geht aus von einer geschalteten Reluktanzmaschine, insbesondere SR-Motor, nach dem Oberbegriff des Anspruchs 1.The invention is based on a switched reluctance machine, in particular an SR motor, according to the preamble of claim 1.
Geschaltete Reluktanzmaschinen werden vorzugsweise als Antriebsmotoren, sog. SR- (Switched Reluctance-) Motoren eingesetzt. Eine bekannte geschaltete Reluktanzmaschine (DE 40 08 606 AI, Fig. 1) hat mehrere, sowohl auf dem Stator als auch auf dem Rotor angeordnete Zähne oder Pole. Während der Rotor wicklungslos ist, ist die mehrphasige Statorwicklung in konzentrierten Spulen auf jedem Statorpol aufgewickelt. Die einzelnen Polwicklungen auf diametral gegenüberliegenden Statorpolen sind in Reihe oder parallel geschaltet. Die Anzahl der Statorpolpaare entspricht der Phasenzahl der Statorwicklung. Ein Motordrehmoment wird erzeugt, indem der Strom in jeder Wicklungsphasen in einer fortlaufenden Sequenz geschaltet wird, so dass sich eine magnetische Anziehungskraft zwischen denjenigen Rotorpolen und Läuferpolen ergibt, die sich beim Lauf des Rotors einander nähern. Der Strom in jeder Wicklungsphase wird abσeschaltet, bevor die Rotorpole, die den Statorpolen dieser Wicklungsphase am nächsten sind, sich an der ausgerichteten Position vorbeidrehen. Das erzeugte Drehmoment ist von der Richtung des Stromflusses unabhängig.Switched reluctance machines are preferably used as drive motors, so-called SR (switched reluctance) motors. A known switched reluctance machine (DE 40 08 606 AI, Fig. 1) has several teeth or poles arranged both on the stator and on the rotor. While the rotor is windingless, the multi-phase stator winding is wound in concentrated coils on each stator pole. The individual pole windings on diametrically opposite stator poles are connected in series or in parallel. The number of stator pole pairs corresponds to the number of phases in the stator winding. A motor torque is generated by switching the current in a continuous sequence in each winding phase, so that there is a magnetic attraction between those rotor poles and rotor poles that approach each other when the rotor is running. The current in each winding phase is switched off before the rotor poles, which are closest to the stator poles of this winding phase, turn past the aligned position. The torque generated is independent of the direction of current flow.
Aus Sicherheitsgründen müssen Antriebsmotoren fehlertolerant sein, d.h. sie müssen die Fähigkeit haben, bei Auftreten eines elektrischen Fehlers mit einem Minimum an Leistungsverschlechterung weiterzuarbeiten .For safety reasons, drive motors must be fault-tolerant, i.e. they must have the ability to continue working with a minimum of degradation in the event of an electrical fault.
Bei einer bekannten, fehlertoleranten, geschalteten Reluktanzmaschine (DE 40 08 606 AI, Fig. 4) sind die Ständerpolwicklungen auf diametral gegenüberliegenden Ständerpolen durch separate Schaltvorrichtungen sequentiell erregt. Bei einem SR-Motor mit n Phasen und kIn a known, fault-tolerant, switched reluctance machine (DE 40 08 606 AI, Fig. 4), the stator pole windings on diametrically opposite stator poles are sequentially excited by separate switching devices. For an SR motor with n phases and k
Ständerpolwicklungen pro Phase (wobei k > 2 ist) werden dabei k unabhängige Schaltvorrichtungen mit n Phasenzweigen in jeder Schaltvorrichtung benutzt. Diese Schaltvorrichtungen werden durch dieselbe Gleichstromquelle gespeist oder, was bevorzugt wird, durch separate Gleichstromquellen, um einen noch höheren Grad an Fehlertoleranz zu erreichen. Bei Ausfall einer Ständerpolwicklung sinkt in diesem Fall die mittlere Drehmomenterzeugung durch den Motor nur auf ungefähr (n • k) - 1 / (n • k) des normalen Wertes vor dem Auftreten der Störung in einer Ständerpolwicklung. Bei der Auslegung der Maschine mit n=3 und k=2 beträgt also das verbleibende Drehmoment noch 5/6 des ursprünglichen Drehmoments. Bei Ausfall einer der separaten Gleichstromquellen wird noch die Hälfte des mittleren Drehmoments erzeugt. Im asymmetrischen Betrieb dieses SR-Motors, wenn also die Statorwicklung nur von einer Gleichstromquelle aus bestromt wird, ergeben sich jedoch unerwünschte, asymmetrische Magnetflüsse, die je nach Rotorstellung ein Anlaufen des Motors verhindern.Stator pole windings per phase (where k> 2), k independent switching devices with n phase branches are used in each switching device. These switching devices are powered by the same direct current source or, which is preferred, by separate direct current sources in order to achieve an even higher degree of fault tolerance. In this case, if a stator pole winding fails, the average torque generation by the motor only drops to approximately (n • k) - 1 / (n • k) of the normal value before the fault occurred in a stator pole winding. When designing the machine with n = 3 and k = 2, the remaining torque is still 5/6 of the original torque. If one of the separate direct current sources fails, half of the mean torque is still generated. In the asymmetrical operation of this SR motor, i.e. when the stator winding is only supplied with current from a direct current source, undesirable, asymmetrical magnetic fluxes result, which, depending on the rotor position, prevent the motor from starting.
Es ist bereits ein SR-Motor mit einer Statorwicklung bekannt (Ki-Bong Kim, "Toroidal Switched Reluctance Motor", Proceedings of the 3rd Small Motors and Servo Motors International Conference (SMIC 99), Tokio, Japan, Oktober 1999, Seiten 57 - 60), die als sog. Toroidwicklung ausgebildet ist. Die Statorpole sind hier ebenso wie die Rotorpole unbewickelt. Die Statorwicklung setzt sich aus einzelnen Toroidspulen zusammen, die auf den zwischen den Statorpolen vorhandenen Ringabschnitten des Rückschlussrings aufgewickelt sind. Jeder Wicklungsstrang weist zwei Toroidspulen auf. Von den drei Wicklungssträngen werden jeweils zwei gleichzeitig erregt. Ein solcher SR-Motor ist nicht fehlertolerant.There is already an SR motor known (with a stator winding Ki-Bong Kim, "Toroidal Switched Reluctance Motor", Proceedings of the 3rd Small Motors and Servo Motors International Conference (SMIC 99), Tokyo, Japan, October 1999, pages 57 - 60), which is designed as a so-called toroidal winding. The stator poles, like the rotor poles, are unwound here. The stator winding is composed of individual toroid coils, which are wound on the ring sections of the return ring present between the stator poles. Each winding strand has two toroid coils. Two of the three winding phases are excited simultaneously. Such an SR motor is not fault tolerant.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße, geschaltete Reluktanzmaschine, insbesondere SR-Motor, mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass im Falle eines Fehlers in der einen Statorwicklung der ordnungsgemäße Betrieb des Motors allein mit der anderen Statorwicklung möglich ist. Dabei ergeben sich keine Veränderungen in dem Verlauf des magnetischen Flusses gegenüber dem Normalbetrieb, in dem die Reluktanzmaschine mit beiden Statorwicklungen betrieben wird, so dass auch im Betrieb mit nur einer Statorwicklung ein sicherer Anlauf des SR-Motors gewährleistet ist. Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Reluktanzmaschine möglich.The switched reluctance machine according to the invention, in particular an SR motor, with the features of claim 1 has the advantage that in the event of a fault in one stator winding, proper operation of the motor is possible only with the other stator winding. There are no changes in the course of the magnetic flux compared to normal operation, in which the reluctance machine is operated with both stator windings, so that a reliable start-up of the SR motor is ensured even with operation with only one stator winding. Advantageous further developments and improvements of the reluctance machine specified in claim 1 are possible through the measures listed in the further claims.
Zeichnungdrawing
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Es zeigen:The invention is explained in more detail in the following description with reference to an embodiment shown in the drawing. Show it:
Fig. 1 einen Querschnitt eines SR-Motors, schematisch dargestellt,1 shows a cross section of an SR motor, shown schematically,
Fig. 2 ein Schaltbild einer Steuervorrichtung für den SR-Motor in Fig. 1.FIG. 2 is a circuit diagram of a control device for the SR motor in FIG. 1.
Beschreibung des AusführungsbeispielsDescription of the embodiment
Der in Fig. 1 schematisch im Querschnitt dargestellte SR- Motor (Switched Reluctance-Motor) als Ausführungsbeispiel für eine allgemeine geschaltete Reluktanzmaschine, die auch ein Generator sein kann, weist einen Stator 10 mit einer mehrphasigen oder mehrsträngigen Statorwicklung 12 sowie einen wicklungslosen Rotor 11 auf. Der Stator 10 weist ein den Rotor 11 konzentrisch umschließendes, ringförmig geschlossenes Rückschlussjoch 13 auf, an dem um gleiche U fangswinkel zueinander versetzt angeordnete Statorpole 14 radial nach innen abstehen. Die Statorwicklung 12 ist auf die Statorpole 14 in Form von einzelnen konzentrierten Ringspulen aufgewickelt. Im Ausführungsbeispiel der Fig. 1 hat der SR- Motor n=3 Wicklungsphasen oder Wicklungsstränge und k=2 Ringspulen pro Phase, die auf einem Polpaar aufgewickelt sind, das von zwei um 180° gegeneinander versetzten, also diametral gegenüberliegenden Statorpolen 14 gebildet ist. So sind in Fig. 1 auf den Statorpolen 141 - 146 die Ringspulen 151 - 156 aufgesetzt, wobei die Ringspulen 151, 154 und die Ringspulen 152, 155 ur.d die Ringspulen 153, 156 jeweils einem Wicklungsstrang zugehörig und parallel oder in Reihe geschaltet sind. Der Rotor 11 weist ebenfalls um gleiche Umfangswinkel zueinander versetzt am Umfang angeordnete Zähne oder Rotorpole 16 auf, deren Zahl gegenüber der Anzahl der Statorpole 14 verschieden ist. Im Beispiel der Fig. 1 besitzt der Rotor 11 vier Rotorpole 16, während der Stator 10 sechs Statorpole 14 trägt. Zwischen den einander zugekehrten Stirnflächen von Statorpolen 14 und Rotorpolen 16 sind Arbeitsluftspalte vorhanden.The SR motor (Switched Reluctance Motor) shown schematically in cross section in FIG. 1 as an exemplary embodiment of a general switched reluctance machine, which can also be a generator, has a stator 10 with a multi-phase or multi-phase stator winding 12 and a windingless rotor 11 , The stator 10 has an annularly closed yoke 13 which concentrically surrounds the rotor 11 and on which stator poles 14 which are offset by the same initial angle from one another protrude radially inwards. The stator winding 12 is wound onto the stator poles 14 in the form of individual concentrated toroidal coils. In the exemplary embodiment in FIG. 1, the SR motor has n = 3 winding phases or winding phases and k = 2 toroidal coils per phase, which are wound on one pole pair are, which is formed by two diametrically opposed stator poles 14 offset from each other by 180 °. 1, the ring coils 151-156 are placed on the stator poles 141-146, the ring coils 151, 154 and the ring coils 152, 155 and the ring coils 153, 156 each belonging to a winding phase and connected in parallel or in series , The rotor 11 likewise has teeth or rotor poles 16 which are arranged on the circumference and are offset by the same circumferential angle, the number of which differs from the number of stator poles 14. In the example of FIG. 1, the rotor 11 has four rotor poles 16, while the stator 10 carries six stator poles 14. Working air gaps are present between the facing end faces of stator poles 14 and rotor poles 16.
Die Statorwicklung 12 mit den auf den Statorpolen 141 - 146 aufgenommenen Ringspulen 151 - 156, die im Ausführungsbeispiel jeweils paarweise in Reihe geschaltet sind, ist an einer Schaltvorrichtung 21 angeschlossen, wie sie im Schaltbild der Fig. 2 oben dargestellt ist. Die Schaltvorrichtung 21 wird von einer Motorsteuereinheit 20 so angesteuert, dass die einzelnen Wicklungsstränge der Statorwicklung 12 nacheinander folgerichtig an eine Gleichspannung Ui einer Gleichstromquelle 24 gelegt sind. Die Schaltvorrichtung 21 weist insgesamt sechs elektronische Halbleiterschalter, im AusführungsbeispielThe stator winding 12 with the ring coils 151-156 accommodated on the stator poles 141-146, which are each connected in series in pairs in the exemplary embodiment, is connected to a switching device 21, as shown in the circuit diagram in FIG. 2 above. The switching device 21 is controlled by a motor control unit 20 such that the individual winding phases of the stator winding 12 are successively connected to a direct voltage Ui of a direct current source 24. The switching device 21 has a total of six electronic semiconductor switches, in the exemplary embodiment
Feldef ekttransistoren (FET) 22, sowie sechs Freilaufdioden 23 auf. Jeder Wicklungsstrang mit zwei Ringspulen 15 ist in Reihe mit zwei FE ' s 22 angeordnet, und die Reihenschaltungen sind zueinander parallel geschaltet. Die Freilaufdioden 22 verbinden jeweils die Enden der Wicklungsstränge in geeigneter Weise mit dem Gleichspannungspotential bzw. dem Nullpotential .Field effect transistors (FET) 22 and six freewheeling diodes 23. Each winding phase with two toroidal coils 15 is arranged in series with two FEs 22, and the series connections are connected in parallel with one another. The freewheeling diodes 22 each connect the ends of the winding strands in suitably with the DC potential or the zero potential.
Um ein fehlertolerantes Verhalten des SR-Motors zu erreichen, d.h. sicherzustellen, dass bei Auftreten eines elektrischen Fehlers in der Statorwicklung 12 oder in der Schalteinrichtung 21 der SR-Motor mit einem Minimum, an Leistungsverschlechterung weiterarbeitet, ist eine zweite Statorwicklung 17 mit einzelnen Toroidspulen 18, auch Toroidwicklung genannt, vorgesehen. Jeweils eine Toroidspule 18 ist auf einem der zwischen den Statorpolen 14 vorhandenen Jochabschnitten des Rückschlussjoches 13 aufgewickelt. So ist die Toroidspule 181 auf dem Jochabschnitt 131, die Toroidspule 182 auf dem Jochabschnitt 132, die Toroidspule 183 auf dem Jochabschnitt 133, die Toroidspule 184 auf dem Jochabschnitt 134, die Toroidspule 185 auf dem Jochabschnitt 135 und die Toroidspule 186 auf dem Jochabschnitt 136 aufgewickelt. Die zweite Stator- oder Toroidwicklung 17 weist die gleiche Phasenzahl wie die erste Statorwicklung 12 auf, wobei wiederum zwei auf um 180° gegeneinander versetzten, also einander diametral gegenüberliegenden Jochabschnitten aufgewickelte Toroidspulen 18 einer Wicklungsphase oder einem Wicklungsstrang zugehörig sind, so die Toroidspulen 181, 184, die Toroidspulen 182, 185 und die Toroidspulen 183, 186. Die Toroidspulen 18 eines Wicklungsstrangs sind in Reihe oder parallel geschaltet. Im Ausführungsbeispiel liegen die Toroidspulen 18 einer Wicklungsphase in Reihe.To achieve fault-tolerant behavior of the SR engine, i.e. To ensure that if an electrical fault occurs in the stator winding 12 or in the switching device 21, the SR motor continues to work with a minimum of deterioration in performance, a second stator winding 17 with individual toroid coils 18, also called a toroid winding, is provided. Each toroidal coil 18 is wound on one of the yoke sections of the yoke 13 present between the stator poles 14. Thus, the toroid coil 181 is wound on the yoke section 131, the toroid coil 182 on the yoke section 132, the toroid coil 183 on the yoke section 133, the toroid coil 184 on the yoke section 134, the toroid coil 185 on the yoke section 135, and the toroid coil 186 on the yoke section 136 , The second stator or toroid winding 17 has the same number of phases as the first stator winding 12, wherein again two toroid coils 18 wound onto yoke sections that are offset by 180 °, that is to say diametrically opposite one another, belong to a winding phase or a winding phase, so the toroid coils 181, 184 , the toroid coils 182, 185 and the toroid coils 183, 186. The toroid coils 18 of a winding phase are connected in series or in parallel. In the exemplary embodiment, the toroidal coils 18 of a winding phase are in series.
Die zweite Stator- oder Toroidwicklung 17 ist an einer ebenfalls von der Motorsteuereinrichtung 20 gesteuerten zweiten Schaltvorrichtung 25 angeschlossen, die die einzelnen Wicklüngsstränge der Toroidwicklung 17 nacheinander folgerichtig an die Gleichspannung U2 einer Gleichstromquelle 26 legt. Die zweite Schaltvorrichtung 25 ist identisch zur ersten Schaltvorrichtung 21 mit sechs FET ' s 22 und sechs Freilaufdioden 23 ausgeführt, wobei jeweils die beiden Toroidspulen 18 eines Wicklungsstrangs in Reihe mit zwei FET ' s 22 geschaltet sind, und die Reihenschaltungen parallel geschaltet sind. Die an die beiden Schaltvorrichtungen 21, 25 anliegenden Gleichspannungen U bzw. U2 können gleich oder verschieden voneinander sein. Auch können die beiden Gleichstromquellen 24, 26 zu einer einzigen Gleichstromquelle zusammengefasst werden. Die Trennung der Gleichstromquellen führt jedoch zu einem höheren Grad an Fehlertoleranz.The second stator or toroid winding 17 is connected to a second switching device 25, which is likewise controlled by the motor control device 20 and which connects the individual winding strands of the toroid winding 17 one after the other consequently applies to the direct voltage U 2 of a direct current source 26. The second switching device 25 is identical to the first switching device 21 with six FETs 22 and six freewheeling diodes 23, the two toroidal coils 18 of a winding strand being connected in series with two FETs 22, and the series connections being connected in parallel. The direct voltages U and U 2 applied to the two switching devices 21, 25 can be the same or different from one another. The two direct current sources 24, 26 can also be combined to form a single direct current source. However, the separation of the DC sources leads to a higher degree of fault tolerance.
Im normalen, ungestörten Betrieb wird der SR-Motor mit beiden Statorwicklungen 12, 17 gemeinsam betrieben. Im Fehlerfall ist ein Betrieb des SR-Motors allein mit einer der beiden Statorwicklungen 12 oder 17 möglich. Da sich bei beiden Betriebsarten die Flussverteilung in Stator und Rotor nicht ändert, ist auch im Falle eines elektrischen Fehlers in einer der Statorwicklungen 12 oder 17 oder bei Ausfall einer der separaten Gleichstromquellen 24, 26 ein sicheres Anlaufen des Roters 11 gewährleistet.In normal, undisturbed operation, the SR motor is operated together with both stator windings 12, 17. In the event of a fault, the SR motor can be operated using only one of the two stator windings 12 or 17. Since the flux distribution in the stator and rotor does not change in either operating mode, reliable starting of the rotor 11 is ensured even in the event of an electrical fault in one of the stator windings 12 or 17 or in the event of failure of one of the separate direct current sources 24, 26.
Die Erfindung ist nicht auf das beschriebene dreiphasige Ausführungsbeispiel eines SR-Motors beschränkt. So kann der SR-Motor eine beliebige Phasenzahl aufweisen. Auch kann die Ständerpolzahl und die Läuferpolzahl anders ausgeführt werden als vorstehend beschrieben. Z.B. kann der SR-Motor vierphasig mit acht Ständerpolen und sechs Läuferpolen sein. Allgemein besitzt der SR-Motor n Wicklungsphasen und k Ständerpole pro Wicklungsphase, wobei k>2 ist. Die zweite Stator- oder Toroidwicklung 17 ist ebenfalls n-phasig mit jeweils k Toroidspulen 18 pro Wicklungsphase, wobei k>2 ist. Die einem Wicklungsstrang oder einer Wicklungsphase zugehörigen Ringspulen 15 der ersten Statorwicklung 12 sind ebenso wie die einem Wicklungsstrang zugehörigen Toroidspulen 18 der zweiten Statorwicklung 17 um jeweils 360°/k räumlich versetzt auf den Statorpolen 14 bzw. auf den Jochabschnitten des Rückschlussjochs 13 angeordnet. Entsprechend weisen die beiden Schaltvorrichtungen 21, 25 n parallele Schaltzweige mit jeweils k in Reihe oder parallelgeschalteten Spulen 15 bzw. 18 und zwei FE ' s 22 auf.The invention is not limited to the described three-phase embodiment of an SR motor. The SR motor can have any number of phases. The number of stator poles and the number of rotor poles can also be designed differently than described above. For example, the SR motor can be four-phase with eight stator poles and six rotor poles. In general, the SR motor has n winding phases and k stator poles per winding phase, where k> 2. The second stator or toroid winding 17 is also n-phase, each with k Toroid coils 18 per winding phase, where k> 2. The ring coils 15 of the first stator winding 12 belonging to a winding phase or a winding phase, like the toroid coils 18 of the second stator winding 17 belonging to a winding phase, are each spatially offset by 360 ° / k on the stator poles 14 or on the yoke sections of the yoke 13. Correspondingly, the two switching devices 21, 25 have n parallel switching branches, each with k coils 15 or 18 connected in series or in parallel and two FEs 22.
Bei einem SR-Motor mit einer Statorwicklung 12 mit z.B. n=3 Wicklungssträngen und k=3 Statorpolen pro Wicklungsphase bzw. Wicklungsstrang sind insgesamt n • k = 9 Statorpole 14 vorhanden, die um 40° gegeneinander versetzt und mit je einer Ringspule 15 belegt sind. Die drei Ringspulen 15 eines Wicklungsstrangs sind auf Statorpolen 14 angeordnet, die um gleiche Umfangswinkel am Stator 10 versetzt sind, im Beispiel also um 360°/3 = 120°. Die zweite, ebenfalls dreiphasige Statorwicklung oder Toroidwicklung 17 hat dann neun Toroidspulen 18, die wiederum auf neun Jochabschnitten des Rückschlussjochs 13 aufgewickelt sind. Alle Toroidspulen 18 sind um 40 ° gegeneinander auf dem Rückschlussjoch 13 versetzt, wobei die drei einem Wicklungsstrang zugehörigen Toroidspulen 18 jeweils einem Versatzwinkel von 360°/3 = 120° gegeneinander aufweisen. In the case of an SR motor with a stator winding 12 with e.g. n = 3 winding strands and k = 3 stator poles per winding phase or winding strand, there are a total of n • k = 9 stator poles 14, which are offset from one another by 40 ° and are each occupied by a ring coil 15. The three toroidal coils 15 of a winding phase are arranged on stator poles 14 which are offset by the same circumferential angle on the stator 10, that is to say in the example by 360 ° / 3 = 120 °. The second, likewise three-phase stator winding or toroid winding 17 then has nine toroid coils 18, which in turn are wound on nine yoke sections of the yoke 13. All toroidal coils 18 are offset from one another by 40 ° on the yoke 13, the three toroidal coils 18 belonging to a winding phase each having an offset angle of 360 ° / 3 = 120 ° relative to one another.

Claims

AnsprücheExpectations
Geschaltete Reluktanzmaschine, insbesondere SR-Motor, mit einem Stator (10) , der mehrere, von einem ringförmigen Rückschluss och (13) radial abstehende Statorpolen (14) aufweist, mit einem Rotor (11), der eine von der Zahl der Statorpole (14) abweichende Anzahl von Rotorpolen (16) aufweist, und mit einer mehrsträngigen Statorwicklung (12), von deren Wicklungssträngen jeweils einer auf um gleiche Umfangswinkel zueinander am Stator (10) versetzten Statorpolen aufgewickelt ist, dadurch gekennzeichnet, dass auf dem Stator (10) eine die gleiche Strangzahl aufweisende zweite Statorwicklung (17) mit einer Mehrzahl von Toroidspulen (18) angeordnet ist, die auf den zwischen den' Statorpolen (14) sich erstreckenden Jochabschnitten (131-136) des Rückschlussjochs (13) so aufgewickelt sind, dass um gleiche Umfangswinkel zueinander am Rückschlussjoch (13) versetzte Toroidspulen (18) jeweils einem Wicklungsstrang zugehörig sind.Switched reluctance machine, in particular SR motor, with a stator (10) which has a plurality of stator poles (14) projecting radially from an annular yoke (13), with a rotor (11) which has one of the number of stator poles (14 ) has a different number of rotor poles (16), and with a multi-stranded stator winding (12), of the winding strands of which one stator pole, which is offset from one another by the same circumferential angle on the stator (10), characterized in that on the stator (10) the second strand stator winding (17) having the same number of strands is arranged with a plurality of toroid coils (18) which are wound on the yoke sections (131-136) of the yoke (13) extending between the stator poles (14) in such a way that they are the same Circumferential angles to each other on the yoke (13) offset toroidal coils (18) each belong to a winding phase.
Reluktanzmaschine nach Anspruch 1, dadurch gekennzeichnet, dass jede Statorwicklung (12, 17) an einer Schaltvorrichtung (25) zum sukzessiven Aufschalten einer Gleichspannung (Uχ,U2) auf die Wicklungsstränge der ersten bzw. zweiten Statorwicklung (12, 17) angeschlossen ist.Reluctance machine according to claim 1, characterized in that each stator winding (12, 17) on a switching device (25) for successive connection a DC voltage (Uχ, U 2 ) is connected to the winding phases of the first or second stator winding (12, 17).
3. Reluktar.-r.aschine nach Anspruch 2, dadurch gekennzeichnet, dass die an die beiden Statorwicklungen (12, 17) angelegten Gleichspannungen- (Ui, U2) von derselben Gleichstromquelle abgenommen sind.3. Reluctance machine according to claim 2, characterized in that the direct voltages (Ui, U 2 ) applied to the two stator windings (12, 17) are taken from the same direct current source.
4. Reluktanzmaschine nach Anspruch 2, dadurch gekennzeichnet, dass jede an eine der Statorwicklungen (12, 17) angelegte Gleichspannung (Ui, U2) von einer separaten Gleichstromquelle (24, 26) abgenommen ist.4. Reluctance machine according to claim 2, characterized in that each DC voltage (Ui, U 2 ) applied to one of the stator windings (12, 17) is taken from a separate DC power source (24, 26).
5. Reluktanzmaschine nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die an die Statorwicklungen (12, 17) angelegten Gleichspannungen (Ui, U2) gleich oder verschieden sind.5. Reluctance machine according to claim 3 or 4, characterized in that the direct voltages (Ui, U 2 ) applied to the stator windings (12, 17) are the same or different.
6. Reluktanzmaschine nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass bei einer n-strängigen ersten Statorwicklung (12) mit k jeweils auf einem Statorpol (14) angeordneten Ringspulen (15) pro Wicklungsstrang und einer n-strängigen zweiten Statorwicklung (17) mit k jeweils auf einem Jochabschnitt des Rückschlussjochs (13) aufgewickelten Toroidspulen' (18) pro Wicklungsstrang der räumliche Versatz der jeweils einem Wicklungsstrang zugehörigen Ringspulen (15) bzw. Toroidspulen (18) gegeneinander am Stator (10) jeweils 360°/k beträgt. 6. reluctance machine according to one of claims 1-5, characterized in that in an n-stranded first stator winding (12) with k each on a stator pole (14) arranged ring coils (15) per winding strand and an n-stranded second stator winding (17th ) with k each toroidal coils ' (18) wound on a yoke section of the yoke (13) per winding strand, the spatial offset of the ring coils (15) or toroidal coils (18) each associated with one winding strand is 360 ° / k relative to each other on the stator (10) ,
PCT/DE2004/000657 2003-04-30 2004-03-30 Switched reluctance machine, especially an sr-motor WO2004098030A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10319394.4 2003-04-30
DE10319394A DE10319394A1 (en) 2003-04-30 2003-04-30 Switched reluctance machine, especially SR motor

Publications (1)

Publication Number Publication Date
WO2004098030A1 true WO2004098030A1 (en) 2004-11-11

Family

ID=33305034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000657 WO2004098030A1 (en) 2003-04-30 2004-03-30 Switched reluctance machine, especially an sr-motor

Country Status (2)

Country Link
DE (1) DE10319394A1 (en)
WO (1) WO2004098030A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647465A (en) * 2013-12-13 2014-03-19 中国科学院深圳先进技术研究院 Power converting device
CN104158240A (en) * 2014-07-23 2014-11-19 浙江大学 Distributed feed source switch reluctance motor system for flexible charging of electromobile
CN106899183A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The outer halbach array helical arrangement stator switch magnetic resistance motors of double straight-tooth
CN106899187A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Interior four spirals halbach array ring stator tooths motor extremely arranged in a straight line
CN106899169A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The spiral external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899165A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Backpitch mover motor is set in the helical arrangement stator of halbach array helical tooths pole
CN106899168A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The straight-tooth external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899188A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The spiral external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899176A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Eight spiral external stator tooth pole helical arrangement motors
CN106899181A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The spiral external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899164A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Cross spiral inner stator tooth pole helical arrangement motor
CN106899173A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Interior four spirals halbach array ring stator tooths motor extremely arranged in a straight line
CN106899180A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Three-dimensional vertical bar shape helical tooth pole stator motor
CN106899162A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Interior four spirals halbach array ring stator tooths pole helical arrangement motor
CN106899184A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The straight-tooth external stator tooth pole helical arrangement motor of halbach arrays four
CN106899174A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The straight-tooth external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899186A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Cross spiral inner stator tooth pole helical arrangement motor
CN106899163A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Outer single-screw tooth switched reluctance machines extremely arranged in a straight line
CN106899167A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Double helix external tooth pole halbach array helical arrangement motors
CN106899179A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The double helix external teeth pole halbach in line motors of array stator component
CN106921225A (en) * 2015-12-25 2017-07-04 郑州吉田专利运营有限公司 The in line interior mover of the tooth of cored screw four
CN106921277A (en) * 2015-12-25 2017-07-04 郑州吉田专利运营有限公司 Interior eight spirals mover bar
CN106921275A (en) * 2015-12-24 2017-07-04 郑州吉田专利运营有限公司 Double straight-tooth external tooth pole halbach array stator components
CN113178962A (en) * 2021-05-20 2021-07-27 河北工业大学 Modularized rotor hybrid excitation magnetic flux reverse motor
CN113178961A (en) * 2021-05-20 2021-07-27 河北工业大学 Axial modularization magnetic flux reverse motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003564A1 (en) * 2008-01-09 2009-07-16 Dorma Gmbh + Co. Kg Proximity sensor, especially for door systems
DE102013112634A1 (en) * 2013-11-15 2015-05-21 Jungheinrich Aktiengesellschaft Reluctance machine and method for operating a reluctance machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317765A (en) * 1964-04-20 1967-05-02 William H Cone Combination vehicle motor and electrical power unit
WO1984003400A1 (en) * 1983-02-18 1984-08-30 Sundstrand Corp Redundant multiple channel electric motors and generators
DE4008606A1 (en) * 1989-03-31 1990-10-04 Gen Electric FAULT-TOLERANT SWITCHED RELUCTIVE MACHINE
JPH05292716A (en) * 1992-04-10 1993-11-05 Nissan Motor Co Ltd Reluctance motor
US6114789A (en) * 1995-10-19 2000-09-05 Tridelta Industries, Inc. Switched reluctance motor
JP2001037133A (en) * 1999-07-23 2001-02-09 Matsushita Electric Ind Co Ltd Stator and motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317765A (en) * 1964-04-20 1967-05-02 William H Cone Combination vehicle motor and electrical power unit
WO1984003400A1 (en) * 1983-02-18 1984-08-30 Sundstrand Corp Redundant multiple channel electric motors and generators
DE4008606A1 (en) * 1989-03-31 1990-10-04 Gen Electric FAULT-TOLERANT SWITCHED RELUCTIVE MACHINE
JPH05292716A (en) * 1992-04-10 1993-11-05 Nissan Motor Co Ltd Reluctance motor
US6114789A (en) * 1995-10-19 2000-09-05 Tridelta Industries, Inc. Switched reluctance motor
JP2001037133A (en) * 1999-07-23 2001-02-09 Matsushita Electric Ind Co Ltd Stator and motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 088 (E - 1507) 14 February 1994 (1994-02-14) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 19 5 June 2001 (2001-06-05) *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647465A (en) * 2013-12-13 2014-03-19 中国科学院深圳先进技术研究院 Power converting device
CN103647465B (en) * 2013-12-13 2016-08-17 中国科学院深圳先进技术研究院 A kind of power conversion unit
CN104158240A (en) * 2014-07-23 2014-11-19 浙江大学 Distributed feed source switch reluctance motor system for flexible charging of electromobile
CN106899173A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Interior four spirals halbach array ring stator tooths motor extremely arranged in a straight line
CN106899162A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Interior four spirals halbach array ring stator tooths pole helical arrangement motor
CN106899169A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The spiral external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899165A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Backpitch mover motor is set in the helical arrangement stator of halbach array helical tooths pole
CN106899168A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The straight-tooth external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899188A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The spiral external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899176A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Eight spiral external stator tooth pole helical arrangement motors
CN106899181A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The spiral external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899164A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Cross spiral inner stator tooth pole helical arrangement motor
CN106899183A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The outer halbach array helical arrangement stator switch magnetic resistance motors of double straight-tooth
CN106899180A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Three-dimensional vertical bar shape helical tooth pole stator motor
CN106899187A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Interior four spirals halbach array ring stator tooths motor extremely arranged in a straight line
CN106899184A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The straight-tooth external stator tooth pole helical arrangement motor of halbach arrays four
CN106899174A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The straight-tooth external stator tooth motor extremely arranged in a straight line of halbach arrays four
CN106899186A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Cross spiral inner stator tooth pole helical arrangement motor
CN106899163A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Outer single-screw tooth switched reluctance machines extremely arranged in a straight line
CN106899167A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 Double helix external tooth pole halbach array helical arrangement motors
CN106899179A (en) * 2015-12-20 2017-06-27 郑州吉田专利运营有限公司 The double helix external teeth pole halbach in line motors of array stator component
CN106921275A (en) * 2015-12-24 2017-07-04 郑州吉田专利运营有限公司 Double straight-tooth external tooth pole halbach array stator components
CN106921225A (en) * 2015-12-25 2017-07-04 郑州吉田专利运营有限公司 The in line interior mover of the tooth of cored screw four
CN106921277A (en) * 2015-12-25 2017-07-04 郑州吉田专利运营有限公司 Interior eight spirals mover bar
CN113178962A (en) * 2021-05-20 2021-07-27 河北工业大学 Modularized rotor hybrid excitation magnetic flux reverse motor
CN113178961A (en) * 2021-05-20 2021-07-27 河北工业大学 Axial modularization magnetic flux reverse motor
CN113178962B (en) * 2021-05-20 2023-02-24 河北工业大学 Modularized rotor hybrid excitation magnetic flux reverse motor

Also Published As

Publication number Publication date
DE10319394A1 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
WO2004098030A1 (en) Switched reluctance machine, especially an sr-motor
DE69732119T2 (en) DC POWER PERMANENT MAGNET WITH INTEGRATED REGULATION OF RECONFIGURABLE WINDING
EP1208631B1 (en) Unipolar transverse flux machine
EP2160816B1 (en) Synchronous motor having 12 stator teeth and 10 rotor poles
EP1380094B1 (en) Electric motor, especially an electronically commutated d.c. motor
EP3224929B1 (en) Permanent-magnet synchronous machine and motor vehicle system
WO2002095903A1 (en) Brushless dc drive
DE102015207368A1 (en) Stator for an electric machine as well as electrical machine
EP1739319A2 (en) Electro-magnetic bearing arrangement
DE102014222064B4 (en) Electric machine
DE102016204688A1 (en) Electronically commutated electrical machine
WO2013007679A2 (en) Electrical machine for a steering drive
EP3547505A1 (en) Combination of an electrical ac machine with a converter unit and wind turbine
DE69929709T2 (en) ELECTRICAL MACHINE WITH PERMANENT MAGNETS AND ENERGY SAVING CONTROL
DE102014226570A1 (en) Asynchronous machine for safety-related applications
WO2018166930A1 (en) Electronically commutated electrical machine
WO2002025796A1 (en) Electrical machine
DE3817423A1 (en) DEVICE AND METHOD FOR CONTROLLING BRUSHLESS, 4-STRING DC MOTORS
EP1158648B1 (en) Electromagnetic rotary drive
DE102019118145A1 (en) Electrically commutated, multi-strand motor
DE19734958A1 (en) Series motor
EP0138000B1 (en) Multi-phase electric machine
DE102016218664A1 (en) Electric motor with a plurality of annularly arranged stator coils
WO2009121733A2 (en) Stator apparatus for a synchronous motor
DE102022133348A1 (en) Rotating electrical machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase