WO2004107031A1 - Display drive method and image display unit - Google Patents

Display drive method and image display unit Download PDF

Info

Publication number
WO2004107031A1
WO2004107031A1 PCT/JP2004/007265 JP2004007265W WO2004107031A1 WO 2004107031 A1 WO2004107031 A1 WO 2004107031A1 JP 2004007265 W JP2004007265 W JP 2004007265W WO 2004107031 A1 WO2004107031 A1 WO 2004107031A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
display
image
particles
electrode
Prior art date
Application number
PCT/JP2004/007265
Other languages
French (fr)
Japanese (ja)
Inventor
Shuhei Tsuchie
Norio Nihei
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to JP2005506493A priority Critical patent/JPWO2004107031A1/en
Publication of WO2004107031A1 publication Critical patent/WO2004107031A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell

Definitions

  • the present invention relates to an image display driving method and an image display used in a reversible image display device capable of repeatedly performing an image display by utilizing the flying movement of a particle group or the movement of a powdery fluid due to Coulomb force or the like. It concerns the device.
  • an image display device replacing a liquid crystal (LCD)
  • an image display device (display) using a technology such as an electrophoresis method, an electoric chromium method, a thermal method, and a two-color particle rotation method. Being done.
  • image display devices provide next-generation inexpensive display devices because of their advantages such as obtaining a wide viewing angle close to ordinary printed matter, low power consumption, and having a memory function, as compared with LCDs. It is considered as a device and is expected to be applied to displays for mobile terminals and electronic paper.
  • the drive voltage applied between the electrodes in order to apply an electric field to a particle group or the like for image display has a voltage value at a certain point in time.
  • the panel display characteristics are deteriorated, and the life of the number of inversions and the contrast are adversely affected.
  • An object of the present invention is to provide a display driving method and an image display device which solve the above-mentioned problems, do not deteriorate panel display characteristics, and do not adversely affect the number of reversals and the life of contrast. is there.
  • particles are encapsulated between opposing substrates, at least one of which is transparent, and an electric field is applied to two types of electrode forces having different potentials to fly the particles.
  • An image is displayed by applying a voltage by a method of applying a unipolar voltage.
  • a powder fluid is sealed between opposing substrates, at least one of which is transparent, and an electric field is applied to the powder fluid from two types of electrodes having different potentials.
  • a display driving method for an image display device that displays an image by moving a fluid, wherein one electrode potential is set to a ground potential, and the other electrode is provided with an alternating voltage whose voltage value gradually changes at least in an increasing process with time.
  • An image is displayed by applying a voltage by a method of applying a voltage or a unipolar voltage.
  • one electrode potential is set to a ground potential, and the other electrode is supplied with an alternating voltage whose voltage value gradually changes at least in an increasing process with time.
  • a display driving method and an image display device that do not deteriorate the panel display characteristics and do not adversely affect the number of reversals and the contrast are provided. Obtainable.
  • Preferred examples of the first invention and the second invention of the display driving method of the present invention include an alternating voltage and Means that the unipolar voltage gradually changes over time in the form of a sine wave, at least in the process of increasing, and that the alternating voltage or unipolar voltage increases at least over time in the form of a trapezoidal or staircase wave
  • the voltage value may gradually change during the process, and the voltage value may gradually change at least in the process of increasing the AC voltage or the unipolar voltage with time in the form of a triangular wave or a ramp wave at least over time.
  • the present invention can be more preferably implemented.
  • an image display device of the present invention is characterized in that an image is displayed according to the above-described display driving method.
  • FIG. 1 is a diagram showing an example of a display method in an image display device of the present invention.
  • FIG. 2 is a diagram showing another example of a display method in the image display device of the present invention.
  • FIGS. 3 (a) and 3 (f) are diagrams for explaining examples of a display driving method according to a conventional example and an example of the present invention, respectively.
  • FIG. 4 is a graph showing an example of a result obtained by repeating white display and black display at the same frequency and obtaining the relationship between the density and the number of inversions in the conventional example and the present invention example.
  • FIG. 5 is a graph showing an example of a result obtained by repeatedly performing white display and black display at the same frequency and obtaining the relationship between the density difference and the number of inversions in black and white display for the conventional example and the present invention example. is there.
  • FIG. 6 shows another example of a result obtained by repeating white display and black display at the same frequency and obtaining the relationship between the density difference and the number of inversions in the black and white display for the conventional example and the present invention example. It is a graph.
  • FIG. 7 shows still another example of the result obtained by repeating white display and black display at the same frequency and obtaining the relationship between the density difference and the number of inversions in the black and white display for the conventional example and the present invention example.
  • FIG. 7 shows still another example of the result obtained by repeating white display and black display at the same frequency and obtaining the relationship between the density difference and the number of inversions in the black and white display for the conventional example and the present invention example.
  • FIGS. 9 (a) and 9 (f) are diagrams for explaining still another example of the display driving method according to the example of the present invention.
  • FIG. 10 is a diagram showing an example of a shape of a partition wall in the image display device of the present invention.
  • electrodes are passed through the display panel in which at least two or more types of particle groups or powder fluids are sealed between opposing substrates.
  • An electric charge is provided in the substrate.
  • Particles or powder fluid charged at low potential are attracted toward the high potential electrode by Coulomb force, and particles or powder fluid charged at high potential are attracted toward the low potential electrode by Coulomb force.
  • the particles are attracted and the particles or powder fluid reciprocate between the electrodes to display an image. Therefore, it is necessary to design a display panel so that the particles or the powder fluid can move uniformly and maintain stability during repetition or storage.
  • FIG. 1 and FIG. 2 are diagrams each showing a configuration of an example of an image display panel to which the present invention is applied.
  • two types of particles here, white particles 3W and black particles 3B
  • An image is displayed by applying an electric field to the encapsulated particle group 3 from the electrodes 5 and 6 provided on the substrate and moving the particles in a direction perpendicular to the substrates 1 and 2.
  • the space between the substrates 1 and 2 is divided by a partition wall 4 to have a structure with a plurality of cells, and the particle group 3 is enclosed in the structure to form an image display panel.
  • the electrodes provided on the substrate may be on either side of the substrate or may be embedded inside the substrate. Further, the above configuration is the same even when a powder fluid is used instead of the particle group.
  • a feature of the present invention resides in an image display driving method in the image display panel having the above-described configuration. That is, in the image display panel having the above-described configuration, in both the example using the particle group and the example using the powder fluid, one of the electrodes 5 and 6 is set to the ground potential, and the other is increased at least in the process of increasing with time. It is characterized in that an image is displayed by applying a voltage between the electrodes 5 and 6 by applying an alternating voltage or a unipolar voltage whose voltage value gradually changes.
  • the applied voltage is defined as "alternating voltage or unipolar voltage whose voltage value gradually changes at least in the process of increasing with time", as in a conventional pulse-shaped rectangular wave.
  • the voltage value rises / falls instantaneously, especially in a moment This is to exclude a voltage having a shape that rises (increases) in time.
  • the alternating voltage means a voltage crossing GND
  • the unipolar voltage means a voltage not crossing GND.
  • FIGS. 3A and 3F are diagrams for explaining examples of the display driving method of the conventional example and the example of the present invention, respectively.
  • the potential of the electrode 6 is set to the ground potential in each of the examples.
  • an alternating voltage composed of a pulsed rectangular wave is applied to the electrode 5.
  • an alternating voltage composed of a sine wave is applied to the electrode 5.
  • an alternating voltage composed of a trapezoidal wave is applied to the electrode 5.
  • an alternating voltage composed of a staircase wave is applied to the electrode 5.
  • an alternating voltage composed of a ramp wave is applied to the electrode 5.
  • an alternating voltage consisting of a triangular wave is applied to the electrode 5.
  • FIG. 5 shows the relationship between the number of inversions and the density difference in monochrome display in the same example as FIG. From this, it can be seen that the density difference in black-and-white display is small even when reversal is repeated in the sine wave according to the present invention, whereas the density difference in black-and-white display is significantly reduced in the conventional rectangular wave according to repetition of reversal. You can see that
  • FIGS. 3A and 3F the results of measuring the density difference when white display and black display are repeated at the same frequency are shown.
  • Figure 6 and Figure 7. As can be seen from the results of FIGS. 6 and 7, in the example of the present invention, not only the sine wave but also the trapezoidal wave, the staircase wave, the ramp wave, and the triangular wave show a small decrease in the density difference at the time of monochrome display due to repeated inversion.
  • the conventional rectangular wave displays black and white according to the repetition of inversion. It can be seen that the density difference at the time is greatly reduced. Further, it can be seen that there is no particularly significant difference between the sine wave and the trapezoidal wave, the staircase wave, the ramp wave, and the triangular wave in the examples of the present invention.
  • FIGS. 8 (a) -1 (f) and 9 (a) -1 (f) are diagrams for explaining other examples of the display driving method of the conventional example and the present invention example, respectively.
  • FIG. 8 (a) an example in which a unipolar voltage composed of a pulsed rectangular wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 8 (b).
  • FIG. 8 (c) the example in which the voltage applied to the electrode is inverted are shown.
  • FIG. 8 (c) FIG.
  • FIG. 8 (d) shows an example in which a unipolar voltage composed of a sine wave is applied to one electrode 5 and the other electrode 6 is connected to GND.
  • FIG. 8C shows an example in which the voltage applied to the electrode is inverted.
  • FIG. 8 (f) shows an example in which a unipolar voltage consisting of a trapezoidal wave is applied to one electrode 5 and the other electrode 6 is connected to GND.
  • FIG. 8 (e) and an example in which the voltage applied to the electrode is inverted are shown.
  • FIG. 9A an example in which a unipolar voltage composed of a staircase wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9A
  • FIG. 9 (c) shows an example of the present invention shown in FIG. 9 (a) and an example in which the voltage applied to the electrode is inverted.
  • FIG. 9 (d) an example in which a unipolar voltage consisting of a ramp wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9 (d).
  • FIG. 9C the example in which the voltage applied to the electrode is inverted are shown.
  • FIG. 9 (e) an example in which a unipolar voltage consisting of a triangular wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9 (f).
  • FIG. 9 (e) the example in which the voltage applied to the electrode is inverted are shown.
  • the panel display characteristics do not deteriorate, It was found that the number of reversals and the contrast were not adversely affected. Therefore, by using the display driving method of the present invention, an image display device having preferable characteristics can be obtained.
  • Particles can be prepared by kneading and pulverizing a necessary resin, charge control agent, colorant, and other additives, or by polymerizing from a monomer, or by converting existing particles into a resin, a charge control agent, and coloring. , Even if coated with other additives.
  • the resin examples include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, Fluororesins and the like can be used, and two or more kinds can be mixed.
  • polyester resins, acrylic urethane resins, acrylic urethane silicone resins, acrylic urethane fluororesins, urethane resins, and the like are used for controlling the adhesion to the substrate. Fluororesins are preferred.
  • Examples of the charge control agent include a quaternary ammonium salt compound, a Nigguchi syn dye, a triphenylmethane compound, and an imidazole derivative in the case of imparting a positive charge.
  • Examples thereof include metal-containing azo dyes, salicylic acid metal complexes, and nitroimidazole derivatives.
  • coloring agent examples include dyes such as basic and acidic dyes, and examples include Nigguchi Shin, Methylene Blue, Quinoline Yellow, Rose Bengal and the like.
  • inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, tanolek, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt vinyl, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, aluminum powder and the like.
  • the resin constituting the particles may be used. It is effective to control the stability, especially the water absorption and the solvent insolubility.
  • the water absorption of the resin constituting the particles sealed between the substrates is preferably 3% by weight or less, particularly preferably 2% by weight or less.
  • the water absorption is measured according to ASTM D570, and the measurement conditions are 23 ° C for 24 hours.
  • the solvent insolubility of the particles represented by the following relational expression is preferably 50% or more, particularly preferably 70% or more.
  • the solvent (good solvent) for measuring the solvent insolubility may be methylethyl ketone or the like for a fluororesin, methanol or the like for a polyamide resin, methyl ethyl ketone or toluene for an acrylurethane resin, or acetone for a melamine resin.
  • silicone resins such as isopropanol and the like, toluene is preferred.
  • the particles are preferably spherical.
  • the particle size distribution Span represented by the following formula is set to less than 5, preferably less than 3.
  • d (0.5) is a numerical value expressed by / im that 50% of the particles are larger and 50% is smaller than this
  • d (0.1) is the ratio of particles smaller than 10%.
  • the particle diameter is expressed in ⁇ m
  • d (0.9) is the particle diameter in which 90% of the particles are 90%.
  • the size of each particle can be uniform and uniform particle movement can be achieved.
  • the average particle diameter d (0.5) of each particle is set to 0.150 xm. If the size is larger than this range, the sharpness of the display will be poor, and if the size is smaller than this range, the cohesion between the particles will be too large, which will hinder the movement of the particles. [0041] Furthermore, regarding the correlation of each particle, of the particles used, the ratio of d (0.5) of the particle having the minimum diameter to d (0.5) of the particle having the maximum diameter is 50 or less, preferably 10 or less. It is important to do so.
  • the particle size distribution and the particle size described above can be determined by a laser diffraction / scattering method or the like.
  • a laser beam is applied to the particles to be measured, a spatial light intensity distribution pattern of the diffracted Z scattered light is generated, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution can be measured. .
  • the particle size and the particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, the particles are introduced into a nitrogen gas stream, and the particles are analyzed using the attached analysis software (software based on volume-based distribution using Mie theory). Measurements of diameter and particle size distribution can be made.
  • Mastersizer2000 Malvern Instruments Ltd.
  • the "powder fluid” in the present invention is a substance in an intermediate state between a fluid and a particle exhibiting fluidity by itself without using the power of gas or liquid.
  • a liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity, a characteristic of liquid, and anisotropy (optical properties), a characteristic of solid (Heibonsha: Encyclopedia) ).
  • anisotropy optical properties
  • a characteristic of solid Heibonsha: Encyclopedia
  • the definition of a particle is an object having a finite mass, even if it is negligible, and is said to be affected by gravity (Maruzen: Encyclopedia of Physics).
  • particles also have a special state of gas-solid fluidized bed or liquid-solid fluid.
  • gas-solid fluidized bed When gas flows from the bottom plate to the particles, an upward force acts on the particles corresponding to the velocity of the gas.
  • a fluid that can easily flow when it balances gravity is called a gas-solid fluidized bed, and a fluidized state by the same fluid is called a liquid-solid fluid. (Heibonsha: Encyclopedia).
  • the gas-solid fluidized bed and the liquid-solid fluid are in a state utilizing the flow of gas or liquid.
  • a substance in a state of exhibiting fluidity can be specifically produced without using the power of such a gas or the power of a liquid, and this is defined as a powder fluid.
  • the powder fluid in the present invention is an intermediate state having both characteristics of particles and liquid, and has the characteristics of the particles described above, similarly to the definition of liquid crystal (intermediate phase between liquid and solid).
  • Such a substance can be obtained in an aerosol state, that is, a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the solid substance is regarded as a dispersoid in the image display device of the present invention. Is what you do.
  • the image display device to which the present invention is applied is a powder fluid that exhibits high fluidity in an aerosol state in which solid particles are stably suspended as a dispersoid in a gas between opposed substrates, at least one of which is transparent.
  • a powder fluid can be easily and stably moved by applying Coulomb force or the like when a low voltage is applied.
  • the powder fluid is a substance in an intermediate state between a fluid and a particle that exhibits fluidity by itself without using the power of gas or liquid.
  • the powdered fluid can be in an aerosol state, and is used in the image display device of the present invention in a state where a solid substance is relatively stably suspended as a dispersoid in a gas.
  • the range of the aerosol state is preferably at least twice as large as the apparent volume at the time of the maximum suspension of the powder fluid, more preferably at least 2.5 times, particularly preferably at least three times the non-suspended volume. You.
  • the upper limit is not particularly limited, but is preferably 12 times or less.
  • the apparent volume at the time of maximum floating of the powder fluid is smaller than twice that of the non-floating state, it becomes difficult to control the display, and if it is larger than 12 times, the powder fluid will fly too much when sealed in the device. Inconvenience in handling such as The apparent volume at the time of maximum suspension is measured as follows. That is, the powdered fluid is put into a closed container through which the powdered fluid can be seen, and the container itself is vibrated or dropped to create a maximum floating state, and the apparent volume at that time is measured for the external force of the container.
  • a polypropylene container with a 6 cm diameter (inner diameter) and a 10 cm height has a volume equivalent to 1/5 of the volume of powder fluid when not suspended. Fill the powder fluid, set the container on a shaker, and shake at a distance of 6 cm at 3 reciprocations / sec for 3 hours. The apparent volume immediately after stopping shaking is the apparent volume at the time of maximum suspension.
  • the image display device of the present invention is preferably one in which the temporal change of the apparent volume of the powder fluid satisfies the following expression. V / V> 0.8
  • V is the apparent volume (cm 3 ) 5 minutes after the maximum suspension, and V is 10
  • the image display device of the present invention Shows the apparent volume (cm 3 ) after minutes.
  • the temporal change V / V of the apparent volume of the powder fluid is larger than 0.85, and it is preferable that the volume change is larger than 0.9.
  • V / V is 0.8 or less, the field using ordinary so-called particles
  • the average particle diameter (d (0.5)) of the particulate matter constituting the powder fluid is preferably 0.1 to 2 Ozm, more preferably 0.515 xm, and particularly preferably 0.5. 9 8 xm. If it is smaller than 0. l xm, it will be difficult to control the display. If it is larger than 20 zm, it will be possible to display, but the concealment ratio will decrease, making it difficult to make the device thinner.
  • the average particle size (d (0.5)) of the particulate matter constituting the powder fluid is the same as d (0.5) in the following particle size distribution Span.
  • the particle material constituting the powder fluid preferably has a particle diameter distribution Span represented by the following formula of less than 5, more preferably less than 3.
  • d (0.5) is a numerical value expressing the particle diameter in m that 50% of the particulate matter constituting the powder fluid is larger than 50% and smaller than 50%, and d (0.1) is less than this.
  • Numerical value expressed as / im the particle diameter at which the ratio of the particulate matter constituting the powdered fluid is 10%
  • d (0.9) is the particle diameter at which the particulate matter constituting the powdered fluid is 90% or less. In / m.
  • the particle size distribution and the particle size of the particulate matter constituting the powder fluid can be determined by a laser single diffraction / scattering method or the like.
  • a light intensity distribution pattern of diffracted / scattered light is generated spatially, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution are reduced.
  • the particle size and the particle size distribution are obtained from a volume-based distribution.
  • the powder fluid can be prepared by kneading and pulverizing a necessary resin, a charge control agent, a colorant, and other additives, or by polymerizing from a monomer, by converting existing particles into a resin, a charge control agent, and a colorant. And other additives.
  • the resin, the charge control agent, the colorant, and other additives constituting the powder fluid will be exemplified.
  • the resin examples include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, Fluororesin and the like can be used, and two or more kinds can be mixed.
  • atalinole urethane resin, acryl urethane silicone resin, acryl urethane fluoro resin, urethane resin, and fluoro resin are preferable. It is.
  • Examples of the charge control agent include a quaternary ammonium salt-based compound, a Nigguchi syn dye, a triphenylmethane-based compound, and an imidazole derivative in the case of imparting a positive charge.
  • Examples thereof include metal-containing azo dyes, salicylic acid metal complexes, and nitroimidazole derivatives.
  • colorant examples include dyes such as basic and acidic dyes, and examples include Nigguchi Shin, Methylene Blue, Quinoline Yellow, Rose Bengal and the like.
  • inorganic additives examples include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, copper powder, aluminum powder and the like.
  • inorganic fine particles having an average particle diameter of 20 100 nm, preferably 280 nm on the surface of the particle material constituting the powder fluid. Further, it is appropriate that the inorganic fine particles are treated with silicone oil.
  • the inorganic fine particles silicon dioxide (silica), zinc oxide, aluminum oxide, magnesium oxide, cerium oxide , Iron oxide, copper oxide and the like. The method of fixing the inorganic fine particles is important.
  • a powder fluid showing an aerosol state can be produced.
  • the stability of the resin constituting the powder fluid in particular, the water absorption and the solvent insolubility.
  • the water absorption of the resin that constitutes the powder fluid sealed between the substrates is preferably 3% by weight or less, particularly preferably 2% by weight or less.
  • the water absorption was measured in accordance with ASTM-D570, and the measurement conditions were 23 ° C for 24 hours.
  • the solvent insolubility of the resin constituting the powder fluid represented by the following relational expression is preferably 50% or more, particularly preferably 70% or more.
  • the solvent insolubility is less than 50%, bleeding occurs on the surface of the particulate matter composing the powdery fluid during long-term storage, which affects the adhesion to the powdery fluid and hinders the movement of the powdery fluid. The durability may be impaired.
  • the solvent good solvent
  • the solvent is methyl ethyl ketone or the like for a fluororesin, methanol or the like for a polyamide resin, methyl ethyl ketone or toluene for an acrylic urethane resin, or melamine resin for a melamine resin.
  • silicone resins such as acetone and isopropanol, toluene is preferred.
  • the volume occupancy of the particle group or the powder fluid is 5 to 70 vol%, preferably 5 to 60 vol%, more preferably 5 to 70 vol% of the gap between the opposing substrates. It is preferable to adjust so as to be 55 vol%. If the volume occupancy of the particle group or powder fluid is less than 5 vol%, clear image display will not be possible, and if it is greater than 70 vol%, the particle group or powder fluid will move.
  • the space volume refers to a volume that can be filled with a so-called particle group or powder fluid, excluding a portion sandwiched between the opposing substrates 1 and 2 and excluding a portion occupied by the partition 4 and a device sealing portion.
  • At least one of the substrate 1 and the substrate 2 can confirm the color of the particles or powder fluid from the outside of the apparatus. It is preferable to use a material which is a transparent substrate having high visible light transmittance and good heat resistance. The presence or absence of flexibility is appropriately selected depending on the application.For example, flexible materials are used for applications such as electronic paper, and flexible materials are used for applications such as mobile phones, PDAs, and portable devices such as notebook computers. Re, materials are used.
  • the substrate material examples include a polymer sheet such as polyethylene terephthalate, polyether sulfone, polyethylene, and polycarbonate, and an inorganic sheet such as glass and quartz.
  • the thickness of the substrate is preferably 25000 ⁇ , preferably 51000 ⁇ m. If the thickness is too small, it is difficult to maintain the strength and uniformity between the substrates. However, a decrease in contrast occurs, and particularly in the case of an electronic paper application, it lacks flexibility.
  • Examples of an electrode forming material for the electrodes provided on the substrate include metals such as aluminum, silver, nickel, copper, and gold; conductive metal oxides such as ⁇ , indium oxide, conductive tin oxide, and conductive zinc oxide; Conductive polymers such as polyaniline, polypyrrole, and polythiophene are exemplified, and are appropriately selected and used.
  • Examples of the method for forming an electrode include a method of forming the above-described materials into a thin film by a sputtering method, a vacuum evaporation method, a CVD (chemical vapor deposition) method, a coating method, or a method in which a conductive agent is mixed with a solvent or a synthetic resin binder.
  • the electrodes provided on the viewing side substrate need to be transparent, but the electrodes provided on the back side substrate do not need to be transparent.
  • the above-mentioned conductive material capable of forming a pattern can be suitably used.
  • the shape of the partition wall of the present invention is optimally set as appropriate depending on the size of particles involved in the display or the size of the powdery fluid, and is not particularly limited, but the width of the partition wall is 10 to 1000 zm, preferably 10 500 zm.
  • the height of the septum is adjusted to 10-500 ⁇ m, preferably 10-200 ⁇ m.
  • the display cell formed by the rib-made partition walls has a substrate plane as shown in FIG. Seen from the direction, a square, a triangle, a line, a circle, and a hexagon are exemplified, and the arrangement is exemplified by a lattice shape, a honeycomb shape, and a mesh shape. It is better to make the part (area of the frame part of the display cell) corresponding to the cross-section of the partition seen from the display side as small as possible.
  • examples of the method for forming the partition include a screen printing method, a sand blast method, a photolithography method, and an additive method. Of these, a photolithography method using a resist film is preferably used.
  • the image display device of the present invention includes a display section of a mopile device such as a notebook computer, a PDA, a mobile phone, a handy terminal, an electronic book such as an electronic book and an electronic newspaper, a signboard, a booster, a bulletin board such as a blackboard, a calculator, and a home appliance. It is suitably used for display parts for automobiles, etc., card display parts such as point cards and IC cards, electronic advertisements, electronic POP, electronic price tags, electronic music scores, and display parts for RF-ID devices.
  • a mopile device such as a notebook computer, a PDA, a mobile phone, a handy terminal, an electronic book such as an electronic book and an electronic newspaper, a signboard, a booster, a bulletin board such as a blackboard, a calculator, and a home appliance. It is suitably used for display parts for automobiles, etc., card display parts such as point cards and IC cards, electronic advertisements, electronic POP, electronic price tags, electronic music scores,

Abstract

A display drive method in an image display unit, comprising the steps of sealing particle groups or powder and particles to between opposing substrates, at least one of which being transparent, giving an electric field to particle groups or powder and particles from two kinds of electrodes at different potentials, and moving and send particle groups or powder and particles flying to display an image, wherein a voltage is applied to between electrodes using a method under which one electrode is kept at the ground potential, and an ac voltage or a single-polarity voltage, of which value gradually changes over time and at least during an increasing process, is applied to the other electrode to thereby display an image.

Description

明 細 書  Specification
表示駆動方法及び画像表示装置  Display driving method and image display device
技術分野  Technical field
[0001] 本発明は、クーロン力等による粒子群の飛翔移動または粉流体の移動を利用する ことで画像表示を繰り返し行うことができる可逆性画像表示装置に用いられる画像の 表示駆動方法及び画像表示装置に関するものである。  The present invention relates to an image display driving method and an image display used in a reversible image display device capable of repeatedly performing an image display by utilizing the flying movement of a particle group or the movement of a powdery fluid due to Coulomb force or the like. It concerns the device.
背景技術  Background art
[0002] 従来より、液晶(LCD)に代わる画像表示装置として、電気泳動方式、エレクト口クロ ミック方式、サーマル方式、 2色粒子回転方式などの技術を用いた画像表示装置(デ イスプレイ)が提案されてレ、る。  [0002] Conventionally, as an image display device replacing a liquid crystal (LCD), an image display device (display) using a technology such as an electrophoresis method, an electoric chromium method, a thermal method, and a two-color particle rotation method has been proposed. Being done.
[0003] これらの画像表示装置は、 LCDに比べて、通常の印刷物に近い広い視野角が得 られる、消費電力が小さい、メモリー機能を有している等のメリットから、次世代の安価 な表示装置として考えられ、携帯端末用表示、電子ペーパー等への展開が期待され ている。  [0003] These image display devices provide next-generation inexpensive display devices because of their advantages such as obtaining a wide viewing angle close to ordinary printed matter, low power consumption, and having a memory function, as compared with LCDs. It is considered as a device and is expected to be applied to displays for mobile terminals and electronic paper.
[0004] 最近、分散粒子と着色溶液からなる分散液をマイクロカプセル化し、これを対向す る基板間に配置する電気泳動方式が提案されている。し力、しながら、電気泳動方式 では、低比重の溶液中に酸化チタンなどの高比重の粒子を分散させているために、 沈降しやすぐ分散状態の安定性維持が難しぐまた、色をつけるために溶液に染料 等を添加しているために長期保存性に難があり、画像繰り返し安定性に欠けるという 問題を抱えている。マイクロカプセル化にしても、セルサイズをマイクロカプセルレべ ルにし、見かけ上、このような欠点が現れ難くしているだけで、本質的な問題は何ら 解決されていない。  [0004] Recently, an electrophoresis method has been proposed in which a dispersion liquid composed of dispersed particles and a coloring solution is microencapsulated, and the dispersion liquid is disposed between opposing substrates. However, in the electrophoresis method, since particles of high specific gravity such as titanium oxide are dispersed in a solution of low specific gravity, it is difficult to sediment and maintain the stability of the dispersed state immediately. Since a dye or the like is added to the solution for applying the toner, there is a problem in that it has a problem in long-term storage stability and lacks image repetition stability. Even with microencapsulation, the cell size has been reduced to the microcapsule level, and apparently such defects are unlikely to appear, but the essential problems have not been solved at all.
[0005] 一方、溶液中での粒子挙動を利用した電気泳動方式に対し、溶液を全く使わない 方式も提案されている (例えば、趙 国来、外 3名、 "新しいトナーディスプレイデバイ ス(1) "、 1999年 7月 21日、 日本画像学会年次大会(通算 83回)" Japan Hardcopy' 99"論文集、 p.249-252参照)。この方式は、粒子と基板から成る気体中での粒子挙 動を利用した方式である。この方式では、溶液を全く用いないために、電気泳動方式 で問題となってレ、た粒子の沈降、凝集の問題は解決される。 [0005] On the other hand, a method that does not use a solution at all has been proposed in contrast to an electrophoresis method using particle behavior in a solution (for example, Zhao Guorai and three others, "New Toner Display Device (1 ), July 21, 1999, Annual Meeting of the Imaging Society of Japan (83 times in total), "Japan Hardcopy '99", pp.249-252). This method utilizes the behavior of particles in a gas consisting of particles and a substrate. In this method, no solution is used, so the electrophoresis method The problem of sedimentation and aggregation of particles is solved.
[0006] し力 ながら、上記のような乾式の画像表示用パネルにおいては、画像表示のため 粒子群等に電界を与えるために電極間に印加する駆動電圧として、ある時点で電圧 値が一瞬のうちに上昇/下降するパルス状の矩形波を利用していた。近年になって 、この矩形波により駆動して画像を表示すると、パネル表示特性が悪化し、反転回数 寿命、コントラストに悪影響を及ばすことがわかってきた。  However, in a dry image display panel as described above, the drive voltage applied between the electrodes in order to apply an electric field to a particle group or the like for image display has a voltage value at a certain point in time. We used a pulse-like rectangular wave that rises and falls. In recent years, it has been found that, when an image is displayed by driving with this rectangular wave, the panel display characteristics are deteriorated, and the life of the number of inversions and the contrast are adversely affected.
発明の開示  Disclosure of the invention
[0007] 本発明の目的は上述した課題を解消して、パネル表示特性が悪化せず、反転回数 寿命、コントラストに悪影響を及ぼすことのない表示駆動方法及び画像表示装置を 提供しょうとするものである。  An object of the present invention is to provide a display driving method and an image display device which solve the above-mentioned problems, do not deteriorate panel display characteristics, and do not adversely affect the number of reversals and the life of contrast. is there.
[0008] 本発明の表示駆動方法の第 1発明は、少なくとも一方が透明な対向する基板間に 粒子群を封入し、電位の異なる 2種類の電極力 粒子群に電界を与えて、粒子を飛 翔移動させ画像を表示する画像表示装置における表示駆動方法であって、一方の 電極電位を接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電 圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電圧を印加し て、画像を表示することを特徴とするものである。  [0008] In the first invention of the display driving method of the present invention, particles are encapsulated between opposing substrates, at least one of which is transparent, and an electric field is applied to two types of electrode forces having different potentials to fly the particles. A display driving method in an image display device for displaying an image by moving the electrode, wherein one electrode potential is set to a ground potential, and the other electrode is supplied with an alternating voltage or a voltage whose voltage value gradually changes at least in an increasing process with time. An image is displayed by applying a voltage by a method of applying a unipolar voltage.
[0009] また、本発明の表示駆動方法の第 2発明は、少なくとも一方が透明な対向する基板 間に粉流体を封入し、電位の異なる 2種類の電極から粉流体に電界を与えて、粉流 体を移動させ画像を表示する画像表示装置における表示駆動方法であって、一方 の電極電位を接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電 圧値が徐々に変化する交番電圧または片極性電圧を印加する方法で電圧を印加し て、画像を表示することを特徴とするものである。  [0009] In a second aspect of the display driving method of the present invention, a powder fluid is sealed between opposing substrates, at least one of which is transparent, and an electric field is applied to the powder fluid from two types of electrodes having different potentials. A display driving method for an image display device that displays an image by moving a fluid, wherein one electrode potential is set to a ground potential, and the other electrode is provided with an alternating voltage whose voltage value gradually changes at least in an increasing process with time. An image is displayed by applying a voltage by a method of applying a voltage or a unipolar voltage.
[0010] 本発明の表示駆動方法の第 1発明及び第 2発明においては、一方の電極電位を 接地電位とし、もう一方の電極に、時間とともに少なくとも増大過程で電圧値が徐々 に変化する交番電圧または片極性電圧を印加する方法で電圧を印加して、画像を 表示することで、パネル表示特性が悪化せず、反転回数寿命、コントラストに悪影響 を及ぼすことのない表示駆動方法及び画像表示装置を得ることができる。  [0010] In the first invention and the second invention of the display driving method of the present invention, one electrode potential is set to a ground potential, and the other electrode is supplied with an alternating voltage whose voltage value gradually changes at least in an increasing process with time. Alternatively, by applying a voltage by a method of applying a unipolar voltage and displaying an image, a display driving method and an image display device that do not deteriorate the panel display characteristics and do not adversely affect the number of reversals and the contrast are provided. Obtainable.
[0011] 本発明の表示駆動方法の第 1発明及び第 2発明の好適例としては、交番電圧また は片極性電圧が、 Sin波の形状で時間とともに少なくとも増大過程で電圧値が徐々 に変化すること、及び、交番電圧または片極性電圧が、台形波の形状または階段波 の形状で時間とともに少なくとも増大過程で電圧値が徐々に変化すること、及び、交 番電圧または片極性電圧が、三角波の形状またはランプ波の形状で時間とともに少 なくとも増大過程で電圧値が徐々に変化することがある。いずれの場合も、本発明を さらに好適に実施することができる。 [0011] Preferred examples of the first invention and the second invention of the display driving method of the present invention include an alternating voltage and Means that the unipolar voltage gradually changes over time in the form of a sine wave, at least in the process of increasing, and that the alternating voltage or unipolar voltage increases at least over time in the form of a trapezoidal or staircase wave The voltage value may gradually change during the process, and the voltage value may gradually change at least in the process of increasing the AC voltage or the unipolar voltage with time in the form of a triangular wave or a ramp wave at least over time. In any case, the present invention can be more preferably implemented.
[0012] また、本発明の画像表示装置は、上述した表示駆動方法に従って画像を表示する ことを特徴とするものである。 [0012] Further, an image display device of the present invention is characterized in that an image is displayed according to the above-described display driving method.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0013] [図 1]図 1は、本発明の画像表示装置における表示方式の一例を示す図である。  FIG. 1 is a diagram showing an example of a display method in an image display device of the present invention.
[図 2]図 2は、本発明の画像表示装置における表示方式の他の例を示す図である。  FIG. 2 is a diagram showing another example of a display method in the image display device of the present invention.
[図 3]図 3 (a)一 (f)は、それぞれ従来例及び本発明例の表示駆動方法の一例を説明 するための図である。  FIGS. 3 (a) and 3 (f) are diagrams for explaining examples of a display driving method according to a conventional example and an example of the present invention, respectively.
[図 4]図 4は、従来例と本発明例について、同じ周波数で白表示と黒表示を繰り返し、 その濃度と反転回数との関係を求めた結果の一例を示すグラフである。  FIG. 4 is a graph showing an example of a result obtained by repeating white display and black display at the same frequency and obtaining the relationship between the density and the number of inversions in the conventional example and the present invention example.
[図 5]図 5は、従来例と本発明例について、同じ周波数で白表示と黒表示を繰り返し、 その白黒表示時の濃度差と反転回数との関係を求めた結果の一例を示すグラフで ある。  FIG. 5 is a graph showing an example of a result obtained by repeatedly performing white display and black display at the same frequency and obtaining the relationship between the density difference and the number of inversions in black and white display for the conventional example and the present invention example. is there.
[図 6]図 6は、従来例と本発明例について、同じ周波数で白表示と黒表示を繰り返し、 その白黒表示時の濃度差と反転回数との関係を求めた結果の他の例を示すグラフ である。  [FIG. 6] FIG. 6 shows another example of a result obtained by repeating white display and black display at the same frequency and obtaining the relationship between the density difference and the number of inversions in the black and white display for the conventional example and the present invention example. It is a graph.
[図 7]図 7は、従来例と本発明例について、同じ周波数で白表示と黒表示を繰り返し、 その白黒表示時の濃度差と反転回数との関係を求めた結果のさらに他の例を示す グラフである。  [FIG. 7] FIG. 7 shows still another example of the result obtained by repeating white display and black display at the same frequency and obtaining the relationship between the density difference and the number of inversions in the black and white display for the conventional example and the present invention example. FIG.
[図 8]図 8 (a)一 (f)は、それぞれ従来例及び本発明例の表示駆動方法の他の例を説 明するための図である。  8 (a) -1 (f) are diagrams for explaining other examples of the display driving method of the conventional example and the example of the present invention, respectively.
[図 9]図 9 (a)一 (f)は、それぞれ本発明例の表示駆動方法のさらに他の例を説明す るための図である。 [図 10]図 10は、本発明の画像表示装置における隔壁の形状の一例を示す図である 発明を実施するための最良の形態 FIGS. 9 (a) and 9 (f) are diagrams for explaining still another example of the display driving method according to the example of the present invention. FIG. 10 is a diagram showing an example of a shape of a partition wall in the image display device of the present invention.
[0014] 本発明の第 1発明及び第 2発明の対象となる画像表示用パネルでは、対向する基 板間に少なくとも 2種以上の粒子群または粉流体を封入した表示用パネルに電極を 通じてその基板内に電荷が付与される。高電位電極側に向かっては低電位に帯電 した粒子群または粉流体がクーロン力などによって引き寄せられ、また低電位電極側 に向かっては高電位に帯電した粒子群または粉流体がクーロン力などによって引き 寄せられ、それら粒子群または粉流体が電極間を往復運動することにより、画像表示 がなされる。従って、粒子群または粉流体が、均一に移動し、かつ、繰り返し時あるい は保存時の安定性を維持できるように、表示用パネルを設計する必要がある。  [0014] In the image display panel according to the first and second inventions of the present invention, electrodes are passed through the display panel in which at least two or more types of particle groups or powder fluids are sealed between opposing substrates. An electric charge is provided in the substrate. Particles or powder fluid charged at low potential are attracted toward the high potential electrode by Coulomb force, and particles or powder fluid charged at high potential are attracted toward the low potential electrode by Coulomb force. The particles are attracted and the particles or powder fluid reciprocate between the electrodes to display an image. Therefore, it is necessary to design a display panel so that the particles or the powder fluid can move uniformly and maintain stability during repetition or storage.
[0015] 図 1及び図 2はそれぞれ本発明の対象となる画像表示用パネルの一例の構成を示 す図である。図 1に示す本発明の対象となる画像表示用パネルでは、帯電特性及び 光学的反射率の異なる 2種類の粒子群(ここでは白色粒子群 3Wと黒色粒子群 3B) を、基板 1、 2間に封入し、封入した粒子群 3に基板上に設けた電極 5、 6から電界を 与えて、基板 1、 2と垂直方向に移動させることで画像表示を行っている。この方式で は、図 2に示すように、基板 1、 2間の空隙を隔壁 4で区切って複数のセルを持った構 造とし、その中に粒子群 3を封入して画像表示用パネルを構成することもできる。基 板上に設ける電極は基板の内外いずれの側でも良ぐ基板内部に埋め込んでも良 レ、。また、以上の構成は、粒子群の代わりに粉流体を使用しても同じである。  FIG. 1 and FIG. 2 are diagrams each showing a configuration of an example of an image display panel to which the present invention is applied. In the image display panel to which the present invention is applied as shown in FIG. 1, two types of particles (here, white particles 3W and black particles 3B) having different charging characteristics and optical reflectivity are placed between the substrates 1 and 2. An image is displayed by applying an electric field to the encapsulated particle group 3 from the electrodes 5 and 6 provided on the substrate and moving the particles in a direction perpendicular to the substrates 1 and 2. In this method, as shown in Fig. 2, the space between the substrates 1 and 2 is divided by a partition wall 4 to have a structure with a plurality of cells, and the particle group 3 is enclosed in the structure to form an image display panel. It can also be configured. The electrodes provided on the substrate may be on either side of the substrate or may be embedded inside the substrate. Further, the above configuration is the same even when a powder fluid is used instead of the particle group.
[0016] 本発明の特徴は、上述した構成の画像表示パネルにおける画像の表示駆動方法 にある。すなわち、上述した構成の画像表示パネルにおいて、粒子群を利用した例 でも粉流体を利用した例でも、電極 5、 6の一方を接地電位とし、もう一方に、時間とと もに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片極性電圧を印 加する方法で電極 5、 6間に電圧を印加して、画像を表示することを特徴としている。 なお、本発明において、印加する電圧を「時間とともに少なくとも増大過程で電圧値 が徐々に変化する交番電圧または片極性電圧」と定義したのは、従来のパルス状の 矩形波のように、ある時点で電圧値が一瞬のうちに上昇/下降する形状、特に一瞬 のうちに上昇 (増大)する形状の電圧を除外するためである。また、交番電圧とは、 G NDを交差する電圧のことをいい、片極性電圧とは、 GNDを交差しない電圧のことを いう。 A feature of the present invention resides in an image display driving method in the image display panel having the above-described configuration. That is, in the image display panel having the above-described configuration, in both the example using the particle group and the example using the powder fluid, one of the electrodes 5 and 6 is set to the ground potential, and the other is increased at least in the process of increasing with time. It is characterized in that an image is displayed by applying a voltage between the electrodes 5 and 6 by applying an alternating voltage or a unipolar voltage whose voltage value gradually changes. In the present invention, the applied voltage is defined as "alternating voltage or unipolar voltage whose voltage value gradually changes at least in the process of increasing with time", as in a conventional pulse-shaped rectangular wave. The voltage value rises / falls instantaneously, especially in a moment This is to exclude a voltage having a shape that rises (increases) in time. The alternating voltage means a voltage crossing GND, and the unipolar voltage means a voltage not crossing GND.
[0017] 図 3 (a) (f)はそれぞれ従来例及び本発明例の表示駆動方法の一例を説明する ための図である。図 3 (a)—(f)においては、いずれの例においても電極 6の電位を接 地電位としている。ここで、図 3 (a)に示す従来例では、パルス状の矩形波からなる交 番電圧を電極 5に印加している。これに対し、図 3 (b)に示す本発明例では、 Sin波か らなる交番電圧を電極 5に印加している。また、図 3 (c)に示す本発明例では、台形 波からなる交番電圧を電極 5に印加している。さらに、図 3 (d)に示す本発明例では、 階段波からなる交番電圧を電極 5に印加している。さらにまた、図 3 (e)に示す本発明 例では、ランプ波からなる交番電圧を電極 5に印加している。また、図 3 (f)に示す本 発明例では、三角波からなる交番電圧を電極 5に印加している。  FIGS. 3A and 3F are diagrams for explaining examples of the display driving method of the conventional example and the example of the present invention, respectively. 3A to 3F, the potential of the electrode 6 is set to the ground potential in each of the examples. Here, in the conventional example shown in FIG. 3A, an alternating voltage composed of a pulsed rectangular wave is applied to the electrode 5. On the other hand, in the example of the present invention shown in FIG. 3B, an alternating voltage composed of a sine wave is applied to the electrode 5. In the example of the present invention shown in FIG. 3C, an alternating voltage composed of a trapezoidal wave is applied to the electrode 5. Further, in the example of the present invention shown in FIG. 3D, an alternating voltage composed of a staircase wave is applied to the electrode 5. Furthermore, in the example of the present invention shown in FIG. 3 (e), an alternating voltage composed of a ramp wave is applied to the electrode 5. In the example of the present invention shown in FIG. 3 (f), an alternating voltage consisting of a triangular wave is applied to the electrode 5.
[0018] 以上の図 3 (a)一 (f)に示す従来例及び本発明例の表示駆動方法のうち、図 3 (a) に示す従来例のパルス状の矩形波からなる交番電圧の場合と、図 3 (b)に示す本発 明例の Sin波からなる交番電圧の場合とについて、同じ周波数で白表示と黒表示を 繰り返し、その濃度と反転回数との関係を求めた。結果を図 4に示す。図 4の結果か ら、本発明例の Sin波で駆動すると黒表示、白表示のいずれにおいても反転を繰り 返すことによる濃度低下が小さいのに対し、従来例の矩形波では反転を繰り返すに つれて濃度低下が大きくなり、特に、黒濃度の低下が顕著であることがわかる。なお、 図 5に、図 4と同様の例において、反転回数と白黒表示時の濃度差との関係を示す。 これから、本発明例の Sin波では反転を繰り返し行っても白黒表示時の濃度差の低 下が小さいのに対し、従来例の矩形波では反転の繰り返しに従って白黒表示時の濃 度差が大きく低下することがわかる。  [0018] Among the display driving methods of the conventional example and the present invention example shown in FIGS. 3 (a) and 1 (f), in the case of an alternating voltage composed of a pulse-shaped rectangular wave of the conventional example shown in FIG. 3 (a). The white display and the black display were repeated at the same frequency for the alternating voltage consisting of the sine wave of the present invention shown in Fig. 3 (b), and the relationship between the density and the number of inversions was obtained. Fig. 4 shows the results. From the results shown in FIG. 4, it can be seen that when driving with the sine wave of the example of the present invention, the density reduction due to repeated inversion in both black display and white display is small, whereas in the conventional rectangular wave, as the inversion is repeated, It can be seen that the decrease in density is large, and the decrease in black density is particularly remarkable. FIG. 5 shows the relationship between the number of inversions and the density difference in monochrome display in the same example as FIG. From this, it can be seen that the density difference in black-and-white display is small even when reversal is repeated in the sine wave according to the present invention, whereas the density difference in black-and-white display is significantly reduced in the conventional rectangular wave according to repetition of reversal. You can see that
[0019] 次に、図 3 (a)一 (f)に示す従来例及び本発明例の表示駆動方法に従って、同じ周 波数で白表示と黒表示を繰り返した場合の濃度差を測定した結果を、図 6及び図 7 に示す。図 6及び図 7の結果からわかるように、本発明例は Sin波のみならず台形波 、階段波、及び、ランプ波、三角波の例でも、反転繰り返しによる白黒表示時の濃度 差の低下が小さいのに対し、従来例の矩形波では反転の繰り返しに従って白黒表示 時の濃度差が大きく低下することがわかる。また、本発明例のなかでは、 Sin波と台形 波、階段波、ランプ波、三角波とで特に大きな違いはないことがわかる。 Next, according to the display driving methods of the conventional example and the present invention example shown in FIGS. 3A and 3F, the results of measuring the density difference when white display and black display are repeated at the same frequency are shown. And Figure 6 and Figure 7. As can be seen from the results of FIGS. 6 and 7, in the example of the present invention, not only the sine wave but also the trapezoidal wave, the staircase wave, the ramp wave, and the triangular wave show a small decrease in the density difference at the time of monochrome display due to repeated inversion. On the other hand, the conventional rectangular wave displays black and white according to the repetition of inversion. It can be seen that the density difference at the time is greatly reduced. Further, it can be seen that there is no particularly significant difference between the sine wave and the trapezoidal wave, the staircase wave, the ramp wave, and the triangular wave in the examples of the present invention.
[0020] 図 8 (a)一(f)及び図 9 (a)一 (f)はそれぞれ従来例及び本発明例の表示駆動方法 の他の例を説明するための図である。ここで、図 8 (a)に示す従来例では、パルス状 の矩形波からなる片極性電圧を一方の電極 5に印加するとともに他方の電極 6を GN Dに接続した例を、図 8 (b)に示す従来例では、図 8 (a)に示す例と電極に印加する 電圧を反転した例を示す。また、図 8 (c)に示す本発明例では、 Sin波からなる片極 性電圧を一方の電極 5に印加するとともに他方の電極 6を GNDに接続した例を、図 8 (d)に示す本発明例では、図 8 (c)に示す例と電極に印加する電圧を反転した例を 示す。さらに、図 8 (e)に示す本発明例では、台形波からなる片極性電圧を一方の電 極 5に印加するとともに他方の電極 6を GNDに接続した例を、図 8 (f)に示す本発明 例では、図 8 (e)に示す例と電極に印加する電圧を反転した例を示す。  FIGS. 8 (a) -1 (f) and 9 (a) -1 (f) are diagrams for explaining other examples of the display driving method of the conventional example and the present invention example, respectively. Here, in the conventional example shown in FIG. 8 (a), an example in which a unipolar voltage composed of a pulsed rectangular wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 8 (b). In the conventional example shown in ()), the example shown in FIG. 8 (a) and the example in which the voltage applied to the electrode is inverted are shown. In the example of the present invention shown in FIG. 8 (c), FIG. 8 (d) shows an example in which a unipolar voltage composed of a sine wave is applied to one electrode 5 and the other electrode 6 is connected to GND. In the example of the present invention, an example shown in FIG. 8C and an example in which the voltage applied to the electrode is inverted are shown. Further, in the example of the present invention shown in FIG. 8 (e), FIG. 8 (f) shows an example in which a unipolar voltage consisting of a trapezoidal wave is applied to one electrode 5 and the other electrode 6 is connected to GND. In the example of the present invention, an example shown in FIG. 8 (e) and an example in which the voltage applied to the electrode is inverted are shown.
[0021] 同様に、図 9 (a)に示す本発明例では、階段波からなる片極性電圧を一方の電極 5 に印加するとともに他方の電極 6を GNDに接続した例を、図 9 (b)に示す本発明例 では、図 9 (a)に示す例と電極に印加する電圧を反転した例を示す。また、図 9 (c)に 示す本発明例では、ランプ波からなる片極性電圧を一方の電極 5に印加するとともに 他方の電極 6を GNDに接続した例を、図 9 (d)に示す本発明例では、図 9 (c)に示す 例と電極に印加する電圧を反転した例を示す。さらに、図 9 (e)に示す本発明例では 、三角波からなる片極性電圧を一方の電極 5に印加するとともに他方の電極 6を GN Dに接続した例を、図 9 (f)に本発明例では、図 9 (e)に示す例と電極に印加する電 圧を反転した例を示す。  Similarly, in the example of the present invention shown in FIG. 9A, an example in which a unipolar voltage composed of a staircase wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9) shows an example of the present invention shown in FIG. 9 (a) and an example in which the voltage applied to the electrode is inverted. Further, in the example of the present invention shown in FIG. 9 (c), an example in which a unipolar voltage consisting of a ramp wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9 (d). In the invention example, the example shown in FIG. 9C and the example in which the voltage applied to the electrode is inverted are shown. Further, in the example of the present invention shown in FIG. 9 (e), an example in which a unipolar voltage consisting of a triangular wave is applied to one electrode 5 and the other electrode 6 is connected to GND is shown in FIG. 9 (f). In the example, the example shown in FIG. 9 (e) and the example in which the voltage applied to the electrode is inverted are shown.
[0022] ここでも、上述した例と同様に、図 8 (a)一 (f)及び図 9 (a)一 (f)に示す従来例及び 本発明例の表示駆動方法に従って、同じ周波数で白表示と黒表示を繰り返した結果 、図 8 (c)、(d)及び図 9 (a)—(f)に示す本発明例では反転繰り返しによる白黒表示 時の濃度差の低下が小さいのに対し、従来例では反転の繰り返しに従って白黒表示 時の濃度差が大きく低下することがわかった。また、反転の繰り返しによる白黒表示 時の濃度差の低下度合は、交番電圧と片極性電圧ともほぼ同じであった。  [0022] Here, similarly to the above-described example, according to the display driving method of the conventional example and the example of the present invention shown in Figs. 8 (a) and 1 (f) and Figs. As a result of repeating display and black display, in the example of the present invention shown in FIGS. 8 (c), (d) and FIGS. 9 (a)-(f), the decrease in density difference during black-and-white display due to repeated inversion is small. On the other hand, in the conventional example, it was found that the density difference at the time of black-and-white display was greatly reduced as the reversal was repeated. Further, the degree of reduction in the density difference during the black and white display due to the repetition of the inversion was almost the same for both the alternating voltage and the unipolar voltage.
[0023] 以上の結果から、本発明の表示駆動方法によれば、パネル表示特性が悪化せず、 反転回数寿命、コントラストに悪影響を及ぼすことのないことがわかった。そのため、 本発明の表示駆動方法を利用することで、好ましい特性の画像表示装置を得ること ができる。 From the above results, according to the display driving method of the present invention, the panel display characteristics do not deteriorate, It was found that the number of reversals and the contrast were not adversely affected. Therefore, by using the display driving method of the present invention, an image display device having preferable characteristics can be obtained.
[0024] 以下、本発明の画像表示装置の各構成部分について、粒子、粉流体、共通の構 成部分の順に、詳細に説明する。  Hereinafter, each component of the image display device of the present invention will be described in detail in the order of particles, liquid powder, and common components.
[0025] 先ず、本発明の第 1発明に用いる粒子について述べる。 First, the particles used in the first invention of the present invention will be described.
[0026] 粒子の作製は、必要な樹脂、荷電制御剤、着色剤、その他添加剤を混練り粉砕し ても、あるいはモノマーから重合しても、あるいは既存の粒子を樹脂、荷電制御剤、 着色剤、その他添加剤でコーティングしても良レ、。  [0026] Particles can be prepared by kneading and pulverizing a necessary resin, charge control agent, colorant, and other additives, or by polymerizing from a monomer, or by converting existing particles into a resin, a charge control agent, and coloring. , Even if coated with other additives.
[0027] 以下に、樹脂、荷電制御剤、着色剤、その他添加剤を例示する。  Hereinafter, examples of the resin, the charge control agent, the colorant, and other additives will be described.
[0028] 樹脂の例としては、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン変性ァ クリル樹脂、シリコーン樹脂、ナイロン樹脂、エポキシ樹脂、スチレン樹脂、プチラー ル樹脂、塩化ビニリデン樹脂、メラミン樹脂、フエノール樹脂、フッ素樹脂などが挙げ られ、 2種以上混合することもでき、特に、基板との付着力を制御する上から、ポリエ ステル樹脂、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタン フッ素樹脂、ウレタン樹脂、フッ素樹脂が好適である。  Examples of the resin include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, Fluororesins and the like can be used, and two or more kinds can be mixed.In particular, polyester resins, acrylic urethane resins, acrylic urethane silicone resins, acrylic urethane fluororesins, urethane resins, and the like are used for controlling the adhesion to the substrate. Fluororesins are preferred.
[0029] 荷電制御剤の例としては、正電荷付与の場合には、 4級アンモニゥム塩系化合物、 ニグ口シン染料、トリフエニルメタン系化合物、イミダゾール誘導体などが挙げられ、負 電荷付与の場合には、含金属ァゾ染料、サリチル酸金属錯体、ニトロイミダゾール誘 導体などが挙げられる。  [0029] Examples of the charge control agent include a quaternary ammonium salt compound, a Nigguchi syn dye, a triphenylmethane compound, and an imidazole derivative in the case of imparting a positive charge. Examples thereof include metal-containing azo dyes, salicylic acid metal complexes, and nitroimidazole derivatives.
[0030] 着色剤の例としては、塩基性、酸性などの染料が挙げられ、ニグ口シン、メチレンブ ルー、キノリンイェロー、ローズベンガルなどが例示される。  Examples of the coloring agent include dyes such as basic and acidic dyes, and examples include Nigguchi Shin, Methylene Blue, Quinoline Yellow, Rose Bengal and the like.
[0031] 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭 酸カルシウム、鉛白、タノレク、シリカ、ケィ酸カルシウム、アルミナホワイト、カドミウムィ エロー、カドミウムレッド、カドミウムオレンジ、チタンイェロー、紺青、群青、コバルトブ ノレ一、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフ エライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。  [0031] Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, tanolek, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt vinyl, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, aluminum powder and the like.
[0032] また、ここで繰り返し耐久性を更に向上させるためには、該粒子を構成する樹脂の 安定性、特に、吸水率と溶剤不溶率を管理することが効果的である。 [0032] Here, in order to further improve the repetition durability, the resin constituting the particles may be used. It is effective to control the stability, especially the water absorption and the solvent insolubility.
[0033] 基板間に封入する粒子を構成する樹脂の吸水率は、 3重量%以下、特に 2重量% 以下とすることが好ましレ、。なお、吸水率の測定は、 ASTM D570に準じて行い、 測定条件は 23°Cで 24時間とする。  [0033] The water absorption of the resin constituting the particles sealed between the substrates is preferably 3% by weight or less, particularly preferably 2% by weight or less. The water absorption is measured according to ASTM D570, and the measurement conditions are 23 ° C for 24 hours.
[0034] 該粒子を構成する樹脂の溶剤不溶率に関しては、下記関係式で表される粒子の溶 剤不溶率を 50%以上、特に 70%以上とすることが好ましレ、。 [0034] With respect to the solvent insolubility of the resin constituting the particles, the solvent insolubility of the particles represented by the following relational expression is preferably 50% or more, particularly preferably 70% or more.
溶剤不溶率(%) = (B/A) X 100  Solvent insolubility (%) = (B / A) x 100
(但し、 Aは樹脂の溶剤浸漬前重量、 Bは良溶媒中に樹脂を 25°Cで 24時間浸漬した 後の重量を示す)  (However, A indicates the weight before immersing the resin in the solvent, and B indicates the weight after immersing the resin in a good solvent at 25 ° C for 24 hours.)
[0035] この溶剤不溶率が 50%未満では、長期保存時に粒子表面にブリードが発生し、粒 子との付着力に影響を及ぼし粒子の移動の妨げとなり、画像表示耐久性に支障をき たす場合がある。  [0035] When the solvent insolubility is less than 50%, bleeding occurs on the particle surface during long-term storage, which affects the adhesion to the particles, hinders the movement of the particles, and hinders the image display durability. May be.
[0036] なお、溶剤不溶率を測定する際の用の溶剤(良溶媒)としては、フッ素樹脂ではメチ ルェチルケトン等、ポリアミド樹脂ではメタノール等、アクリルウレタン樹脂ではメチル ェチルケトン、トルエン等、メラミン樹脂ではアセトン、イソプロパノール等、シリコーン 樹脂ではトルエン等が好ましレ、。  [0036] The solvent (good solvent) for measuring the solvent insolubility may be methylethyl ketone or the like for a fluororesin, methanol or the like for a polyamide resin, methyl ethyl ketone or toluene for an acrylurethane resin, or acetone for a melamine resin. For silicone resins such as isopropanol and the like, toluene is preferred.
[0037] また、粒子は球形であることが好ましい。  [0037] The particles are preferably spherical.
[0038] 本発明では、各粒子の粒子径分布に関して、下記式に示される粒子径分布 Spanを 5未満、好ましくは 3未満とする。  In the present invention, regarding the particle size distribution of each particle, the particle size distribution Span represented by the following formula is set to less than 5, preferably less than 3.
Span= (d(0.9)-d(0.1)) /d(0.5)  Span = (d (0.9) -d (0.1)) /d(0.5)
(但し、 d(0.5)は粒子の 50%がこれより大きぐ 50%がこれより小さいという粒子径を/ i mで表した数値、 d(0.1)はこれ以下の粒子の比率が 10%である粒子径を μ mで表し た数値、 d(0.9)はこれ以下の粒子が 90%である粒子径を x mで表した数値である。 ) (However, d (0.5) is a numerical value expressed by / im that 50% of the particles are larger and 50% is smaller than this, and d (0.1) is the ratio of particles smaller than 10%. The particle diameter is expressed in μm, and d (0.9) is the particle diameter in which 90% of the particles are 90%.
[0039] Spanを 5以下の範囲に納めることにより、各粒子のサイズが揃レ、、均一な粒子移動 が可能となる。 [0039] By setting the Span within the range of 5 or less, the size of each particle can be uniform and uniform particle movement can be achieved.
[0040] さらに、各粒子の平均粒子径 d(0.5)を、 0. 1 50 x mとすること力 S好ましレ、。この範 囲より大きいと表示上の鮮明さに欠け、この範囲より小さいと粒子同士の凝集力が大 きすぎるために粒子の移動に支障をきたすようになる。 [0041] さらにまた、各粒子の相関について、使用した粒子の内、最大径を有する粒子の d(0.5)に対する最小径を有する粒子の d(0.5)の比を 50以下、好ましくは 10以下とする ことが肝要である。 [0040] Further, the average particle diameter d (0.5) of each particle is set to 0.150 xm. If the size is larger than this range, the sharpness of the display will be poor, and if the size is smaller than this range, the cohesion between the particles will be too large, which will hinder the movement of the particles. [0041] Furthermore, regarding the correlation of each particle, of the particles used, the ratio of d (0.5) of the particle having the minimum diameter to d (0.5) of the particle having the maximum diameter is 50 or less, preferably 10 or less. It is important to do so.
[0042] たとえ粒子径分布 Spanを小さくしたとしても、互いに帯電特性の異なる粒子が互い に反対方向に動くので、互いの粒子サイズが近ぐ互いの粒子が当量づっ反対方向 に容易に移動できるようにするのが好適であり、それがこの範囲となる。  [0042] Even if the particle size distribution Span is reduced, particles having different charging characteristics move in opposite directions to each other, so that particles having similar particle sizes can easily move in the opposite direction with equivalent weight. Is preferable, and this falls within this range.
[0043] なお、上記の粒子径分布および粒子径は、レーザー回折/散乱法などから求める こと力 sできる。測定対象となる粒子にレーザー光を照射すると空間的に回折 Z散乱 光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があるこ とから、粒子径および粒子径分布が測定できる。  The particle size distribution and the particle size described above can be determined by a laser diffraction / scattering method or the like. When a laser beam is applied to the particles to be measured, a spatial light intensity distribution pattern of the diffracted Z scattered light is generated, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution can be measured. .
[0044] 本発明における粒子径および粒子径分布は、体積基準分布から得られたものであ る。具体的には、 Mastersizer2000(Malvern Instruments Ltd.)測定機を用いて、窒素 気流中に粒子を投入し、付属の解析ソフト (Mie理論を用いた体積基準分布を基本と したソフト)にて、粒子径および粒子径分布の測定を行なうことができる。  [0044] The particle size and the particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, the particles are introduced into a nitrogen gas stream, and the particles are analyzed using the attached analysis software (software based on volume-based distribution using Mie theory). Measurements of diameter and particle size distribution can be made.
[0045] 次に、本発明の第 2発明で用いる粉流体について説明する。 Next, the powder fluid used in the second invention of the present invention will be described.
[0046] 本発明における「粉流体」は、気体の力も液体の力も借りずに、 自ら流動性を示す、 流体と粒子の特性を兼ね備えた両者の中間状態の物質である。例えば、液晶は液 体と固体の中間的な相と定義され、液体の特徴である流動性と固体の特徴である異 方性 (光学的性質)を有するものである(平凡社:大百科事典)。一方、粒子の定義は 、無視できるほどの大きさであっても有限の質量をもった物体であり、重力の影響を 受けるとされている(丸善:物理学事典)。ここで、粒子でも、気固流動層体、液固流 動体という特殊状態があり、粒子に底板から気体を流すと、粒子には気体の速度に 対応して上向きの力が作用し、この力が重力とつりあう際に、流体のように容易に流 動できる状態になるものを気固流動層体と呼び、同じぐ流体により流動化させた状 態を液固流動体と呼ぶとされている(平凡社:大百科事典)。このように気固流動層体 や液固流動体は、気体や液体の流れを利用した状態である。本発明では、このよう な気体の力も、液体の力も借りずに、 自ら流動性を示す状態の物質を、特異的に作り 出せることが判明し、これを粉流体と定義した。 [0047] すなわち、本発明における粉流体は、液晶(液体と固体の中間相)の定義と同様に 、粒子と液体の両特性を兼ね備えた中間的な状態で、先に述べた粒子の特徴である 重力の影響を極めて受け難ぐ高流動性を示す特異な状態を示す物質である。この ような物質はエアロゾノレ状態、すなわち気体中に固体状もしくは液体状の物質が分 散質として安定に浮遊する分散系で得ることができ、本発明の画像表示装置で固体 状物質を分散質とするものである。 [0046] The "powder fluid" in the present invention is a substance in an intermediate state between a fluid and a particle exhibiting fluidity by itself without using the power of gas or liquid. For example, a liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity, a characteristic of liquid, and anisotropy (optical properties), a characteristic of solid (Heibonsha: Encyclopedia) ). On the other hand, the definition of a particle is an object having a finite mass, even if it is negligible, and is said to be affected by gravity (Maruzen: Encyclopedia of Physics). Here, particles also have a special state of gas-solid fluidized bed or liquid-solid fluid. When gas flows from the bottom plate to the particles, an upward force acts on the particles corresponding to the velocity of the gas. A fluid that can easily flow when it balances gravity is called a gas-solid fluidized bed, and a fluidized state by the same fluid is called a liquid-solid fluid. (Heibonsha: Encyclopedia). As described above, the gas-solid fluidized bed and the liquid-solid fluid are in a state utilizing the flow of gas or liquid. In the present invention, it has been found that a substance in a state of exhibiting fluidity can be specifically produced without using the power of such a gas or the power of a liquid, and this is defined as a powder fluid. [0047] That is, the powder fluid in the present invention is an intermediate state having both characteristics of particles and liquid, and has the characteristics of the particles described above, similarly to the definition of liquid crystal (intermediate phase between liquid and solid). A substance that exhibits a unique state of high fluidity that is extremely insensitive to gravity. Such a substance can be obtained in an aerosol state, that is, a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the solid substance is regarded as a dispersoid in the image display device of the present invention. Is what you do.
[0048] 本発明の対象となる画像表示装置は、少なくとも一方が透明な、対向する基板間に 、気体中に固体粒子が分散質として安定に浮遊するエアロゾル状態で高流動性を示 す粉流体を封入するものであり、このような粉流体は、低電圧の印加でクーロン力な どにより容易に安定して移動させることができる。  [0048] The image display device to which the present invention is applied is a powder fluid that exhibits high fluidity in an aerosol state in which solid particles are stably suspended as a dispersoid in a gas between opposed substrates, at least one of which is transparent. Such a powder fluid can be easily and stably moved by applying Coulomb force or the like when a low voltage is applied.
[0049] 粉流体とは、先に述べたように、気体の力も液体の力も借りずに、 自ら流動性を示 す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。この粉流体は、 特にエアロゾル状態とすることができ、本発明の画像表示装置では、気体中に固体 状の物質が分散質として比較的安定に浮遊する状態で用いられる。  [0049] As described above, the powder fluid is a substance in an intermediate state between a fluid and a particle that exhibits fluidity by itself without using the power of gas or liquid. The powdered fluid can be in an aerosol state, and is used in the image display device of the present invention in a state where a solid substance is relatively stably suspended as a dispersoid in a gas.
[0050] エアロゾル状態の範囲は、粉流体の最大浮遊時の見かけ体積が未浮遊時の 2倍 以上であることが好ましぐ更に好ましくは 2. 5倍以上、特に好ましくは 3倍以上であ る。上限は特に限定されないが、 12倍以下であることが好ましい。  [0050] The range of the aerosol state is preferably at least twice as large as the apparent volume at the time of the maximum suspension of the powder fluid, more preferably at least 2.5 times, particularly preferably at least three times the non-suspended volume. You. The upper limit is not particularly limited, but is preferably 12 times or less.
[0051] 粉流体の最大浮遊時の見かけ体積が未浮遊時の 2倍より小さいと表示上の制御が 難しくなり、また、 12倍より大きいと粉流体を装置内に封入する際に舞い過ぎてしまう などの取扱い上の不便さが生じる。なお、最大浮遊時の見かけ体積は次のようにして 測定される。すなわち、粉流体が透過して見える密閉容器に粉流体を入れ、容器自 体を振動或いは落下させて、最大浮遊状態を作り、その時の見かけ体積を容器外側 力 測定する。具体的には、直径(内径) 6cm、高さ 10cmのポリプロピレン製の蓋付 き容器 (商品名アイボーイ:ァズワン (株)製)に、未浮遊時の粉流体として 1/5の体 積相当の粉流体を入れ、振とう機に容器をセットし、 6cmの距離を 3往復/ secで 3時 間振とうさせる。振とう停止直後の見かけ体積を最大浮遊時の見かけ体積とする。  [0051] If the apparent volume at the time of maximum floating of the powder fluid is smaller than twice that of the non-floating state, it becomes difficult to control the display, and if it is larger than 12 times, the powder fluid will fly too much when sealed in the device. Inconvenience in handling such as The apparent volume at the time of maximum suspension is measured as follows. That is, the powdered fluid is put into a closed container through which the powdered fluid can be seen, and the container itself is vibrated or dropped to create a maximum floating state, and the apparent volume at that time is measured for the external force of the container. Specifically, a polypropylene container with a 6 cm diameter (inner diameter) and a 10 cm height (product name: Iboy: Az-One Co., Ltd.) has a volume equivalent to 1/5 of the volume of powder fluid when not suspended. Fill the powder fluid, set the container on a shaker, and shake at a distance of 6 cm at 3 reciprocations / sec for 3 hours. The apparent volume immediately after stopping shaking is the apparent volume at the time of maximum suspension.
[0052] また、本発明の画像表示装置は、粉流体の見かけ体積の時間変化が次式を満た すものが好ましい。 V /V >0.8 [0052] Further, the image display device of the present invention is preferably one in which the temporal change of the apparent volume of the powder fluid satisfies the following expression. V / V> 0.8
10 5  10 5
ここで、 Vは最大浮遊時から 5分後の見かけ体積(cm3)、 V は最大浮遊時から 10 Here, V is the apparent volume (cm 3 ) 5 minutes after the maximum suspension, and V is 10
5 10  5 10
分後の見かけ体積 (cm3)を示す。なお、本発明の画像表示装置は、粉流体の見か け体積の時間変化 V /Vが 0. 85よりも大きいものが好ましぐ 0. 9よりも大きいも Shows the apparent volume (cm 3 ) after minutes. In the image display device of the present invention, it is preferable that the temporal change V / V of the apparent volume of the powder fluid is larger than 0.85, and it is preferable that the volume change is larger than 0.9.
10 5  10 5
のが特に好ましい。 V /Vが 0. 8以下の場合は、通常のいわゆる粒子を用いた場  Is particularly preferred. If V / V is 0.8 or less, the field using ordinary so-called particles
10 5  10 5
合と同様となり、本発明のような高速応答、耐久性の効果が確保できなくなる。  In this case, the effects of high-speed response and durability as in the present invention cannot be secured.
[0053] また、粉流体を構成する粒子物質の平均粒子径(d(0. 5) )は、好ましくは 0. 1— 2 O zm、更に好ましくは 0. 5 15 xm、特に好ましくは 0. 9 8 xmである。 0. l xm より小さいと表示上の制御が難しくなり、 20 zmより大きいと、表示はできるものの隠 蔽率が下がり装置の薄型化が困難となる。なお、粉流体を構成する粒子物質の平均 粒子径(d(0. 5))は、次の粒子径分布 Spanにおける d(0. 5)と同様である。 [0053] Further, the average particle diameter (d (0.5)) of the particulate matter constituting the powder fluid is preferably 0.1 to 2 Ozm, more preferably 0.515 xm, and particularly preferably 0.5. 9 8 xm. If it is smaller than 0. l xm, it will be difficult to control the display. If it is larger than 20 zm, it will be possible to display, but the concealment ratio will decrease, making it difficult to make the device thinner. The average particle size (d (0.5)) of the particulate matter constituting the powder fluid is the same as d (0.5) in the following particle size distribution Span.
[0054] 粉流体を構成する粒子物質は、下記式に示される粒子径分布 Spanが 5未満である ことが好ましぐ更に好ましくは 3未満である。 The particle material constituting the powder fluid preferably has a particle diameter distribution Span represented by the following formula of less than 5, more preferably less than 3.
粒子径分布 Span= (d(0. 9)-d(0. l))/d(0. 5)  Particle size distribution Span = (d (0.9) -d (0.l)) / d (0.5)
ここで、 d(0. 5)は粉流体を構成する粒子物質の 50%がこれより大きぐ 50%がこれ より小さいという粒子径を mで表した数値、 d(0. 1)はこれ以下の粉流体を構成す る粒子物質の比率が 10%である粒子径を/ imで表した数値、 d(0. 9)はこれ以下の 粉流体を構成する粒子物質が 90%である粒子径を/ mで表した数値である。粉流 体を構成する粒子物質の粒子径分布 Spanを 5以下とすることにより、サイズが揃い、 均一な粉流体移動が可能となる。  Here, d (0.5) is a numerical value expressing the particle diameter in m that 50% of the particulate matter constituting the powder fluid is larger than 50% and smaller than 50%, and d (0.1) is less than this. Numerical value expressed as / im, the particle diameter at which the ratio of the particulate matter constituting the powdered fluid is 10%, and d (0.9) is the particle diameter at which the particulate matter constituting the powdered fluid is 90% or less. In / m. By setting the particle size distribution Span of the particulate matter constituting the powder fluid to 5 or less, the size becomes uniform and the powder fluid can be moved uniformly.
[0055] なお、以上の粉流体を構成する粒子物質の粒子径分布および粒子径は、レーザ 一回折/散乱法などから求めることができる。測定対象となる粉流体にレーザー光を 照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パター ンは粒子径と対応関係があることから、粒子径および粒子径分布が測定できる。この 粒子径および粒子径分布は、体積基準分布から得られる。具体的には、 [0055] The particle size distribution and the particle size of the particulate matter constituting the powder fluid can be determined by a laser single diffraction / scattering method or the like. When laser light is irradiated to the powder fluid to be measured, a light intensity distribution pattern of diffracted / scattered light is generated spatially, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution are reduced. Can be measured. The particle size and the particle size distribution are obtained from a volume-based distribution. In particular,
Mastersizer2000(Malvern Instruments Ltd.)測定機を用いて、窒素気流中に粉流体 を投入し、付属の解析ソフト (Mie理論を用いた体積基準分布を基本としたソフト)にて 、測定を行うことができる。 [0056] 粉流体の作製は、必要な樹脂、荷電制御剤、着色剤、その他添加剤を混練り粉砕 しても、モノマーから重合しても、既存の粒子を樹脂、荷電制御剤、着色剤、その他 添加剤でコーティングしても良い。以下、粉流体を構成する樹脂、荷電制御剤、着色 剤、その他添加剤を例示する。 Using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, a powder fluid is injected into a nitrogen stream, and measurement can be performed using the attached analysis software (software based on volume-based distribution using Mie theory). it can. [0056] The powder fluid can be prepared by kneading and pulverizing a necessary resin, a charge control agent, a colorant, and other additives, or by polymerizing from a monomer, by converting existing particles into a resin, a charge control agent, and a colorant. And other additives. Hereinafter, the resin, the charge control agent, the colorant, and other additives constituting the powder fluid will be exemplified.
[0057] 樹脂の例としては、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン変性ァ クリル樹脂、シリコーン樹脂、ナイロン樹脂、エポキシ樹脂、スチレン樹脂、プチラー ル樹脂、塩化ビニリデン樹脂、メラミン樹脂、フエノール樹脂、フッ素樹脂などが挙げ られ、 2種以上混合することもでき、特に、基板との付着力を制御する上から、アタリノレ ウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、ウレタン 樹脂、フッ素樹脂が好適である。  Examples of the resin include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, butyral resin, vinylidene chloride resin, melamine resin, phenol resin, Fluororesin and the like can be used, and two or more kinds can be mixed.In particular, from the viewpoint of controlling the adhesive force with the substrate, atalinole urethane resin, acryl urethane silicone resin, acryl urethane fluoro resin, urethane resin, and fluoro resin are preferable. It is.
[0058] 荷電制御剤の例としては、正電荷付与の場合には、 4級アンモニゥム塩系化合物、 ニグ口シン染料、トリフエニルメタン系化合物、イミダゾール誘導体などが挙げられ、負 電荷付与の場合には、含金属ァゾ染料、サリチル酸金属錯体、ニトロイミダゾール誘 導体などが挙げられる。  [0058] Examples of the charge control agent include a quaternary ammonium salt-based compound, a Nigguchi syn dye, a triphenylmethane-based compound, and an imidazole derivative in the case of imparting a positive charge. Examples thereof include metal-containing azo dyes, salicylic acid metal complexes, and nitroimidazole derivatives.
[0059] 着色剤の例としては、塩基性、酸性などの染料が挙げられ、ニグ口シン、メチレンブ ルー、キノリンイェロー、ローズベンガルなどが例示される。  Examples of the colorant include dyes such as basic and acidic dyes, and examples include Nigguchi Shin, Methylene Blue, Quinoline Yellow, Rose Bengal and the like.
[0060] 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭 酸カルシウム、鉛白、タルク、シリカ、ケィ酸カルシウム、アルミナホワイト、カドミウムィ エロー、カドミウムレッド、カドミウムオレンジ、チタンイェロー、紺青、群青、コバルトブ ルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、銅粉、アル ミニゥム粉などが挙げられる。  Examples of the inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, and cadmium. Orange, titanium yellow, navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, copper powder, aluminum powder and the like.
[0061] し力、しながら、このような材料を工夫無く混練り、コーティングなどを施しても、エア口 ゾル状態を示す粉流体を作製することはできなレ、。エアロゾル状態を示す粉流体の 決まった製法は定かではなレ、が、例示すると次のようになる。  [0061] Even if such a material is kneaded and coated without any ingenuity while applying force, it is not possible to produce a powder fluid showing an aerosol state in the air. It is not clear how the powdered fluid that shows the aerosol state is determined, but the following is an example.
[0062] まず、粉流体を構成する粒子物質の表面に、平均粒子径が 20 100nm、好ましく は 20 80nmの無機微粒子を固着させることが適当である。更に、その無機微粒子 がシリコーンオイルで処理されていることが適当である。ここで、無機微粒子としては、 二酸化珪素(シリカ)、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化セリウム 、酸化鉄、酸化銅等が挙げられる。この無機微粒子を固着させる方法が重要であり、 例えば、ハイブリダィザー(奈良機械製作所 (株)製)ゃメカノフュージョン (ホソカワミク ロン (株)製)などを用いて、ある限定された条件下 (例えば処理時間)で、エアロゾル 状態を示す粉流体を作製することができる。 [0062] First, it is appropriate to fix inorganic fine particles having an average particle diameter of 20 100 nm, preferably 280 nm on the surface of the particle material constituting the powder fluid. Further, it is appropriate that the inorganic fine particles are treated with silicone oil. Here, as the inorganic fine particles, silicon dioxide (silica), zinc oxide, aluminum oxide, magnesium oxide, cerium oxide , Iron oxide, copper oxide and the like. The method of fixing the inorganic fine particles is important. For example, using a hybridizer (manufactured by Nara Machinery Co., Ltd.) ゃ mechanofusion (manufactured by Hosokawa Miclon Co., Ltd.) or the like, under certain limited conditions (for example, processing time) ), A powder fluid showing an aerosol state can be produced.
[0063] ここで繰り返し耐久性を更に向上させるためには、粉流体を構成する樹脂の安定性 、特に、吸水率と溶剤不溶率を管理することが効果的である。基板間に封入する粉 流体を構成する樹脂の吸水率は、 3重量%以下、特に 2重量%以下とすることが好ま しレ、。なお、吸水率の測定は、 ASTM—D570に準じて行レ、、測定条件は 23°Cで 24 時間とする。粉流体を構成する樹脂の溶剤不溶率に関しては、下記関係式で表され る粉流体の溶剤不溶率を 50%以上、特に 70%以上とすることが好ましレ、。  Here, in order to further improve the repeated durability, it is effective to control the stability of the resin constituting the powder fluid, in particular, the water absorption and the solvent insolubility. The water absorption of the resin that constitutes the powder fluid sealed between the substrates is preferably 3% by weight or less, particularly preferably 2% by weight or less. The water absorption was measured in accordance with ASTM-D570, and the measurement conditions were 23 ° C for 24 hours. Regarding the solvent insolubility of the resin constituting the powder fluid, the solvent insolubility of the powder fluid represented by the following relational expression is preferably 50% or more, particularly preferably 70% or more.
溶剤不溶率(%) = (B/A) X 100  Solvent insolubility (%) = (B / A) x 100
(但し、 Aは樹脂の溶剤浸漬前重量、 Bは良溶媒中に樹脂を 25°Cで 24時間浸漬した 後の重量を示す)  (However, A indicates the weight before immersing the resin in the solvent, and B indicates the weight after immersing the resin in a good solvent at 25 ° C for 24 hours.)
[0064] この溶剤不溶率が 50%未満では、長期保存時に粉流体を構成する粒子物質表面 にブリードが発生し、粉流体との付着力に影響を及ぼし粉流体の移動の妨げとなり、 画像表示耐久性に支障をきたす場合がある。なお、溶剤不溶率を測定する際の溶剤 (良溶媒)としては、フッ素樹脂ではメチルェチルケトン等、ポリアミド樹脂ではメタノー ル等、アクリルウレタン樹脂では、メチルェチルケトン、トルエン等、メラミン樹脂では アセトン、イソプロパノール等、シリコーン樹脂ではトルエン等が好ましい。  [0064] If the solvent insolubility is less than 50%, bleeding occurs on the surface of the particulate matter composing the powdery fluid during long-term storage, which affects the adhesion to the powdery fluid and hinders the movement of the powdery fluid. The durability may be impaired. When measuring the solvent insolubility, the solvent (good solvent) is methyl ethyl ketone or the like for a fluororesin, methanol or the like for a polyamide resin, methyl ethyl ketone or toluene for an acrylic urethane resin, or melamine resin for a melamine resin. For silicone resins such as acetone and isopropanol, toluene is preferred.
[0065] また、粒子群または粉流体の充填量については、粒子群または粉流体の体積占有 率力 対向する基板間の空隙部分の 5— 70vol%、好ましくは 5— 60vol%、更に好ま しくは 5 55vol%になるように調整することが好ましい。粒子群または粉流体の体積 占有率が、 5vol%より小さいと鮮明な画像表示が行えなくなり、 70vol%より大きいと 粒子群または粉流体が移動しに《なる。ここで、空間体積とは、対向する基板 1、基 板 2に挟まれる部分から、隔壁 4の占有部分、装置シール部分を除いた、いわゆる粒 子群または粉流体を充填可能な体積を指すものとする。  [0065] As for the filling amount of the particle group or the powder fluid, the volume occupancy of the particle group or the powder fluid is 5 to 70 vol%, preferably 5 to 60 vol%, more preferably 5 to 70 vol% of the gap between the opposing substrates. It is preferable to adjust so as to be 55 vol%. If the volume occupancy of the particle group or powder fluid is less than 5 vol%, clear image display will not be possible, and if it is greater than 70 vol%, the particle group or powder fluid will move. Here, the space volume refers to a volume that can be filled with a so-called particle group or powder fluid, excluding a portion sandwiched between the opposing substrates 1 and 2 and excluding a portion occupied by the partition 4 and a device sealing portion. And
[0066] 次に、基板について述べる。  Next, the substrate will be described.
[0067] 基板 1、基板 2の少なくとも一方は装置外側から粒子または粉流体の色が確認でき る透明基板であり、可視光の透過率が高くかつ耐熱性の良い材料が好適である。可 とう性の有無は用途により適宜選択され、例えば、電子ペーパー等の用途には可とう 性のある材料、携帯電話、 PDA,ノートパソコン類の携帯機器表示等の用途には可 とう性のなレ、材料が用いられる。 [0067] At least one of the substrate 1 and the substrate 2 can confirm the color of the particles or powder fluid from the outside of the apparatus. It is preferable to use a material which is a transparent substrate having high visible light transmittance and good heat resistance. The presence or absence of flexibility is appropriately selected depending on the application.For example, flexible materials are used for applications such as electronic paper, and flexible materials are used for applications such as mobile phones, PDAs, and portable devices such as notebook computers. Re, materials are used.
[0068] 基板材料を例示すると、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリ エチレン、ポリカーボネートなどのポリマーシートや、ガラス、石英などの無機シートが 挙げられる。 [0068] Examples of the substrate material include a polymer sheet such as polyethylene terephthalate, polyether sulfone, polyethylene, and polycarbonate, and an inorganic sheet such as glass and quartz.
[0069] 基板厚みは、 2 5000 μ πι、好ましくは 5 1000 μ mが好適であり、薄すぎると、 強度、基板間の間隔均一性を保ちにくくなり、厚すぎると、表示機能としての鮮明さ、 コントラストの低下が発生し、特に、電子ペーパー用途の場合には可とう性に欠ける。  The thickness of the substrate is preferably 25000 μπι, preferably 51000 μm. If the thickness is too small, it is difficult to maintain the strength and uniformity between the substrates. However, a decrease in contrast occurs, and particularly in the case of an electronic paper application, it lacks flexibility.
[0070] 基板に設ける電極の電極形成材料としては、アルミニウム、銀、ニッケル、銅、金等 の金属類や ιτο、酸化インジウム、導電性酸化錫、導電性酸化亜鉛等の導電金属 酸化物類、ポリア二リン、ポリピロール、ポリチォフェンなどの導電性高分子類が例示 され、適宜選択して用いられる。電極の形成方法としては、上記例示の材料をスパッ タリング法、真空蒸着法、 CVD (化学蒸着)法、塗布法等で薄膜状に形成する方法 や、導電剤を溶媒や合成樹脂バインダーに混合して塗布したりする方法が用いられ る。視認側基板に設ける電極は透明である必要があるが、背面側基板に設ける電極 は透明である必要がない。いずれの場合もパターン形成可能である導電性である上 記材料を好適に用いることができる。  [0070] Examples of an electrode forming material for the electrodes provided on the substrate include metals such as aluminum, silver, nickel, copper, and gold; conductive metal oxides such as ιτο, indium oxide, conductive tin oxide, and conductive zinc oxide; Conductive polymers such as polyaniline, polypyrrole, and polythiophene are exemplified, and are appropriately selected and used. Examples of the method for forming an electrode include a method of forming the above-described materials into a thin film by a sputtering method, a vacuum evaporation method, a CVD (chemical vapor deposition) method, a coating method, or a method in which a conductive agent is mixed with a solvent or a synthetic resin binder. Or a method of applying by spraying. The electrodes provided on the viewing side substrate need to be transparent, but the electrodes provided on the back side substrate do not need to be transparent. In any case, the above-mentioned conductive material capable of forming a pattern can be suitably used.
[0071] 次に、隔壁について説明する。 Next, the partition will be described.
[0072] 本発明の隔壁の形状は、表示にかかわる粒子のサイズあるいは粉流体のサイズに より適宜最適設定され、一概には限定されないが、隔壁の幅は 10— 1000 z m、好ま しくは 10 500 μ mに、隔壁の高さは 10— 500 μ m、好ましくは 10— 200 μ mに調整さ れる。  [0072] The shape of the partition wall of the present invention is optimally set as appropriate depending on the size of particles involved in the display or the size of the powdery fluid, and is not particularly limited, but the width of the partition wall is 10 to 1000 zm, preferably 10 500 zm. The height of the septum is adjusted to 10-500 μm, preferably 10-200 μm.
[0073] また、隔壁を形成するにあたり、対向する両基板の各々にリブを形成した後に接合 する両リブ法と、片側の基板上にのみリブを形成する片リブ法が考えられるが、本発 明はどちらにも適用できる。  [0073] In forming the partition, a two-rib method in which ribs are formed on each of the opposing substrates and then bonding, and a one-rib method in which the ribs are formed only on one substrate are conceivable. Ming is applicable to both.
[0074] これらリブからなる隔壁により形成される表示セルは、図 10に示すごとぐ基板平面 方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては 格子状ゃハニカム状や網目状が例示される。表示側から見える隔壁断面部分に相 当する部分 (表示セルの枠部の面積)はできるだけ小さくした方が良ぐ画像表示の 鮮明さが増す。ここで、隔壁の形成方法を例示すると、スクリーン印刷法、サンドブラ スト法、フォトリソ法、アディティブ法が挙げられる。このうち、レジストフイルムを用いる フォトリソ法が好適に用いられる。 [0074] The display cell formed by the rib-made partition walls has a substrate plane as shown in FIG. Seen from the direction, a square, a triangle, a line, a circle, and a hexagon are exemplified, and the arrangement is exemplified by a lattice shape, a honeycomb shape, and a mesh shape. It is better to make the part (area of the frame part of the display cell) corresponding to the cross-section of the partition seen from the display side as small as possible. Here, examples of the method for forming the partition include a screen printing method, a sand blast method, a photolithography method, and an additive method. Of these, a photolithography method using a resist film is preferably used.
産業上の利用可能性 Industrial applicability
本発明の画像表示装置は、ノートパソコン、 PDA,携帯電話、ハンディターミナル 等のモパイル機器の表示部、電子ブック、電子新聞等の電子ペーパー、看板、ボス ター、黒板等の掲示板、電卓、家電製品、 自動車用品等の表示部、ポイントカード、 I Cカード等のカード表示部、電子広告、電子 POP、電子値札、電子楽譜、 RF - ID機 器の表示部等に好適に用いられる。  The image display device of the present invention includes a display section of a mopile device such as a notebook computer, a PDA, a mobile phone, a handy terminal, an electronic book such as an electronic book and an electronic newspaper, a signboard, a booster, a bulletin board such as a blackboard, a calculator, and a home appliance. It is suitably used for display parts for automobiles, etc., card display parts such as point cards and IC cards, electronic advertisements, electronic POP, electronic price tags, electronic music scores, and display parts for RF-ID devices.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも一方が透明な対向する基板間に粒子群を封入し、電位の異なる 2種類の 電極から粒子群に電界を与えて、粒子を飛翔移動させ画像を表示する画像表示装 置における表示駆動方法であって、一方の電極電位を接地電位とし、もう一方の電 極に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または 片極性電圧を印加する方法で電圧を印加して、画像を表示することを特徴とする表 示駆動方法。  [1] Display on an image display device that encloses a particle group between opposing substrates, at least one of which is transparent, applies an electric field to the particle group from two types of electrodes with different potentials, and moves the particles to move and display an image In the driving method, one electrode potential is set to the ground potential, and a voltage is applied to the other electrode by a method of applying an alternating voltage or a unipolar voltage whose voltage value gradually changes at least in an increasing process with time. And displaying an image.
[2] 前記交番電圧または片極性電圧が、 Sin波の形状で時間とともに少なくとも増大過 程で電圧値が徐々に変化する請求項 1記載の表示駆動方法。  2. The display drive method according to claim 1, wherein the alternating voltage or the unipolar voltage gradually changes with time in at least an increasing process in the form of a sine wave.
[3] 前記交番電圧または片極性電圧が、台形波の形状または階段波の形状で時間とと もに少なくとも増大過程で電圧値が徐々に変化する請求項 1記載の表示駆動方法。  3. The display driving method according to claim 1, wherein the alternating voltage or the unipolar voltage has a trapezoidal wave shape or a staircase wave shape, and the voltage value gradually changes at least in a process of increasing with time.
[4] 前記交番電圧または片極性電圧が、三角波の形状またはランプ波の形状で時間と ともに少なくとも増大過程で電圧値が徐々に変化する請求項 1記載の表示駆動方法  4. The display driving method according to claim 1, wherein the alternating voltage or the unipolar voltage has a triangular wave shape or a ramp wave shape and a voltage value gradually changes at least in a process of increasing with time.
[5] 少なくとも一方が透明な対向する基板間に粉流体を封入し、電位の異なる 2種類の 電極から粉流体に電界を与えて、粉流体を移動させ画像を表示する画像表示装置 における表示駆動方法であって、一方の電極電位を接地電位とし、もう一方の電極 に、時間とともに少なくとも増大過程で電圧値が徐々に変化する交番電圧または片 極性電圧を印加する方法で電圧を印加して、画像を表示することを特徴とする表示 駆動方法。 [5] A display drive in an image display device that encloses a powder fluid between opposed substrates at least one of which is transparent, applies an electric field to the powder fluid from two types of electrodes having different electric potentials, moves the powder fluid, and displays an image. Applying a voltage to the other electrode by applying an alternating voltage or a unipolar voltage whose voltage value gradually changes at least in the course of increase with time to the other electrode, A display driving method characterized by displaying an image.
[6] 前記交番電圧または片極性電圧が、 Sin波の形状で時間とともに少なくとも増大過 程で電圧値が徐々に変化する請求項 5記載の表示駆動方法。  6. The display driving method according to claim 5, wherein the alternating voltage or the unipolar voltage gradually changes with time in at least an increasing process in the form of a sine wave.
[7] 前記交番電圧または片極性電圧が、台形波の形状または階段波の形状で時間とと もに少なくとも増大過程で電圧値が徐々に変化する請求項 5記載の表示駆動方法。  7. The display driving method according to claim 5, wherein the alternating voltage or the unipolar voltage has a trapezoidal wave shape or a staircase wave shape, and the voltage value gradually changes at least in a process of increasing with time.
[8] 前記交番電圧または片極性電圧が、三角波の形状またはランプ波の形状で時間と ともに少なくとも増大過程で電圧値が徐々に変化する請求項 5記載の表示駆動方法  [8] The display driving method according to claim 5, wherein the alternating voltage or the unipolar voltage has a triangular wave shape or a ramp wave shape, and the voltage value gradually changes at least in a process of increasing with time.
[9] 請求項 1一 8のいずれ力 1項に記載の表示駆動方法に従って画像を表示することを 特徴とする画像表示装置。 [9] An image is displayed according to the display driving method according to any one of claims 1 to 8. Characteristic image display device.
PCT/JP2004/007265 2003-05-27 2004-05-27 Display drive method and image display unit WO2004107031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506493A JPWO2004107031A1 (en) 2003-05-27 2004-05-27 Display driving method and image display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003148900 2003-05-27
JP2003-148900 2003-05-27

Publications (1)

Publication Number Publication Date
WO2004107031A1 true WO2004107031A1 (en) 2004-12-09

Family

ID=33487134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007265 WO2004107031A1 (en) 2003-05-27 2004-05-27 Display drive method and image display unit

Country Status (2)

Country Link
JP (1) JPWO2004107031A1 (en)
WO (1) WO2004107031A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057680A (en) * 2005-08-23 2007-03-08 Fuji Xerox Co Ltd Image display device and image display method
JP2010528340A (en) * 2007-05-21 2010-08-19 イー インク コーポレイション Method for driving a video electro-optic display
JP2010191006A (en) * 2009-02-16 2010-09-02 Seiko Epson Corp Display device, electronic equipment and method for driving display device
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US9966018B2 (en) 2002-06-13 2018-05-08 E Ink Corporation Methods for driving electro-optic displays
US10331005B2 (en) 2002-10-16 2019-06-25 E Ink Corporation Electrophoretic displays
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082361A (en) * 2000-09-08 2002-03-22 Fuji Xerox Co Ltd Method for driving display medium
JP2003091023A (en) * 2001-09-19 2003-03-28 Bridgestone Corp Electrostatic image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082361A (en) * 2000-09-08 2002-03-22 Fuji Xerox Co Ltd Method for driving display medium
JP2003091023A (en) * 2001-09-19 2003-03-28 Bridgestone Corp Electrostatic image display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966018B2 (en) 2002-06-13 2018-05-08 E Ink Corporation Methods for driving electro-optic displays
US10331005B2 (en) 2002-10-16 2019-06-25 E Ink Corporation Electrophoretic displays
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US9542895B2 (en) 2003-11-25 2017-01-10 E Ink Corporation Electro-optic displays, and methods for driving same
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
JP2007057680A (en) * 2005-08-23 2007-03-08 Fuji Xerox Co Ltd Image display device and image display method
JP2010528340A (en) * 2007-05-21 2010-08-19 イー インク コーポレイション Method for driving a video electro-optic display
US10319313B2 (en) 2007-05-21 2019-06-11 E Ink Corporation Methods for driving video electro-optic displays
JP2010191006A (en) * 2009-02-16 2010-09-02 Seiko Epson Corp Display device, electronic equipment and method for driving display device

Also Published As

Publication number Publication date
JPWO2004107031A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP5097807B2 (en) Manufacturing method of image display device
JP4202266B2 (en) Image display apparatus and method
JP4657727B2 (en) Image display panel manufacturing method, image display device manufacturing method, and image display device
WO2004059379A1 (en) Image display
JP4846224B2 (en) Particles for display medium, information display panel using the same, and information display device
JPWO2004006006A1 (en) Image display device
WO2004107031A1 (en) Display drive method and image display unit
JP2005241779A (en) Particle, powder and granular material, used for picture display device, and picture display device using them
JP4667016B2 (en) Manufacturing method of information display panel
WO2005076064A1 (en) Information display device
JP4758231B2 (en) Information display device
JP2006113267A (en) Particles for display medium to be used for information display panel
JP4190799B2 (en) Electrostatic display
JP4737921B2 (en) Preprocessing method for image display device
JP4587682B2 (en) Manufacturing method of image display panel
JP4484589B2 (en) Method for producing particles for image display medium
JP4484446B2 (en) Image display device
JP4597569B2 (en) Image display panel and image display apparatus using the same
JP4566624B2 (en) Method for producing particles for image display medium
JP4562446B2 (en) Image display panel and image display device
JP2006058578A (en) Electronic book display device
JP2006058544A (en) Panel for picture display and method for manufacturing the same
JP5134775B2 (en) Particles for display media and information display panels
JP4671642B2 (en) Image display panel and manufacturing method thereof
JP2005352145A (en) Method of manufacturing image display panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506493

Country of ref document: JP

122 Ep: pct application non-entry in european phase