WO2005001187A1 - Flame-retardant non-woven fabric and method for production thereof - Google Patents

Flame-retardant non-woven fabric and method for production thereof Download PDF

Info

Publication number
WO2005001187A1
WO2005001187A1 PCT/JP2004/009010 JP2004009010W WO2005001187A1 WO 2005001187 A1 WO2005001187 A1 WO 2005001187A1 JP 2004009010 W JP2004009010 W JP 2004009010W WO 2005001187 A1 WO2005001187 A1 WO 2005001187A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
flame
nonwoven fabric
fibers
heat
Prior art date
Application number
PCT/JP2004/009010
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Takayasu
Kazuhiko Kosuge
Mineaki Matsumura
Original Assignee
Takayasu Co., Ltd.
Du Pont-Toray Company, Ltd.
Ichimura Sangyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takayasu Co., Ltd., Du Pont-Toray Company, Ltd., Ichimura Sangyo Co., Ltd. filed Critical Takayasu Co., Ltd.
Priority to JP2005511054A priority Critical patent/JPWO2005001187A1/en
Publication of WO2005001187A1 publication Critical patent/WO2005001187A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet

Definitions

  • the present invention relates to a flame-retardant nonwoven fabric and a method for producing the same, and more particularly, to interior materials for automobiles, vehicles, aircraft, and ships, materials for civil engineering and construction, packing materials such as frozen containers, bedding products,
  • the present invention relates to a flame-retardant nonwoven fabric that can be suitably used as a sound absorbing material and the like and a method for producing the same.
  • nonwoven fabrics have been widely used as civil engineering and construction materials, automotive materials, and living-related materials.
  • demands for flame-retardant nonwoven fabrics have been increasing, and as one of the major uses of this flame-retardant nonwoven fabric, automobile interior materials are known.
  • Nonwoven fabrics used for automobile interior materials are required to have not only flame retardancy but also excellent recyclability when disposing of automobiles.
  • aramid fiber or polyclar fiber which itself is a flame-retardant fiber
  • a mixture of spinning boric acid-based flame retardants is used, and a non-woven fabric is coated or impregnated with a binder coating liquid in which the flame retardants are dispersed.
  • Patent Documents 1 and 2 disclose a nonwoven mat obtained by subjecting a web in which 95% by weight of polyester fiber, polypropylene fiber or a mixture fiber thereof and 5% by weight of rayon fiber are subjected to needle punching treatment to a nonwoven fabric mat.
  • An automotive interior obtained by adhering HYBREM MARGILLON and performing a drying treatment to form a flame-retardant resin film and then integrally laminating the surface having the resin film and a glass fiber mat.
  • the materials are listed.
  • it is difficult to recycle the interior material because the glass fiber mat is integrated, and there is a problem that dioxin may be generated when the interior material is incinerated.
  • Patent Document 3 discloses a flame-retardant short fiber nonwoven web layer made of a polyester copolymer obtained by copolymerizing a polyester polymer and a phosphoric acid compound on both sides of a polyester fiber nonwoven web layer.
  • a flame-retardant nonwoven fabric is described in which the constituent fibers of both web layers are laminated and entangled with each other.
  • this flame-retardant nonwoven fabric is made Is melted, causing dripping of the liquid melt, and the drip resin spreads, causing problems with the anti-fusing properties.
  • Patent Document 4 discloses that a web in which polyester fiber and flame-retardant rayon fiber or modacrylic fiber are blended is needle-punched and then further stitch-bonded. Thus, a method for imparting flame retardancy and fusibility is described.
  • flame-retardant rayon fiber or modalyl fiber treated with a flame retardant is used for the nonwoven fabric constituent fiber, toxic gas may be generated during combustion, which poses a problem in terms of environmental protection.
  • Patent Document 5 discloses a mixed spinning of 110 to 30% by weight of a yarn yarn aramide fiber and 99 to 70% by weight of one or two kinds of fibers selected from nylon fibers and polyester fibers.
  • a flame-retardant pile fabric comprising a mixed yarn of 50 to 90% by weight of a polyester fiber and 50 to 10% by weight of a non-molten fiber is disclosed.
  • a backing layer made of an acrylate resin latex is formed on the back surface, there is a problem that recyclability is poor and economic efficiency is poor.
  • Patent Document 1 JP-A-62-43336
  • Patent Document 2 JP-A-62-43337
  • Patent Document 3 JP-A-9-59857
  • Patent Document 4 JP-A-2002-348766
  • Patent Document 5 Japanese Patent Application Laid-Open No. 9-250052
  • the present invention has been made in view of the above-mentioned conventional problems, and it is possible to obtain good flame retardancy by incorporating a flame retardant, and to obtain a liquid melt at the time of melting constituent fibers. It is an object of the present invention to provide a flame-retardant nonwoven fabric which has low shrinkage by dripping, is excellent in economy and recyclability, and a method for producing the same.
  • thermoplastic fibers and heat-resistant fibers having an LOI value of 3 ⁇ 45 or more in a mass ratio of 88 / 12-55Z45.
  • a flame-retardant nonwoven fabric in which a flame is quickly eliminated can be obtained by performing, for example, needle punching treatment and entanglement without relying on adhesion or heat fusion, and further studies have been carried out.
  • the flame-retardant nonwoven fabric of the present invention is characterized in that a web containing thermoplastic fibers and heat-resistant fibers having an LOI value of 25 or more in a mass ratio of 88 / 12-55Z45 is added to the web by needle punch or water. It is characterized by jet punching.
  • the web preferably contains thermoplastic fibers and heat-resistant fibers having an LOI value of 25 or more in a mass ratio of 85Z15 65Z35.
  • the heat-resistant fibers include aramide fiber, polyphenylene sulfide fiber, polybenzoxazole fiber, polybenzthiazole fiber, polybenzimidazole fiber, polyetheretherketone fiber, polyarylate fiber, polyimide fiber, fluorine fiber, and flame-resistant fiber.
  • One or two or more organic fibers selected from fibers are preferable.
  • the flame-retardant nonwoven fabric preferably has a bulk density in the range of 0. 01-0. LgZcm 3.
  • thermoplastic fiber is one or more fibers selected from polyester fibers, polypropylene fibers and nylon fibers.
  • the flame-retardant non-woven fabric is preferably a non-woven fabric comprising a polyester fiber which is a thermoplastic fiber and a para-aramid fiber which is a heat-resistant fiber having an LOI value of 25 or more.
  • thermoplastic fiber and the heat-resistant fiber having an LOI value of 25 or more have a mass ratio of 88 / 12-55 / 45, preferably 85. Needle punching or water jet punching is performed on the web containing the ratio of / 15 to 65/35.
  • thermoplastic fibers used in the present invention are not particularly limited as long as the fibers are made of a thermoplastic resin.
  • the thermoplastic resin include a polyester resin, a polyamide resin, an acrylic resin, a polypropylene resin, and a polyethylene resin.
  • the thermoplastic fiber can be produced from a thermoplastic resin by a known method such as wet spinning, dry spinning or melt spinning.
  • Thermoplastic fibers include one or more fibers selected from polyester fibers, polyamide (eg, nylon) fibers, acrylic fibers, polypropylene fibers, polyethylene fibers, and the like. Thus, polyester fibers, polypropylene fibers, and nylon fibers are preferred.
  • the above-mentioned fibers can be used alone or as a mixture in an arbitrary ratio as thermoplastic fibers.
  • polyester fibers are preferred because the raw material polyester can be easily recycled by heat melting of the used nonwoven fabric, the economic efficiency is excellent, the feel of the nonwoven fabric is excellent, and the moldability is excellent.
  • the polyester fiber is not particularly limited as long as it is a fiber made of a polyester resin.
  • the polyester resin is not particularly limited as long as it is a polymer resin containing an ester bond in the repeating unit, and may be a polyester resin comprising a dicarboxylic acid component having ethylene terephthalate as a main repeating unit and a glycol component.
  • the dicarboxylic acid component include terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, and 1,4-cyclohexanedicarboxylic acid.
  • glycol component examples include ethylene glycol propylene, propylene glycol, tetramethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
  • Part of the dicarboxylic acid component may be replaced with adipic acid, sebacic acid, dimer acid, sulfonic acid metal-substituted isophthalic acid, etc. , 1,4-cyclohexanediol, 1,4-cyclohexane It may be replaced with sandimethanol, polyalkylene glycol, or the like.
  • the polyester fiber is usually produced by a known spinning method such as polyester resin melt spinning.
  • the polyester fiber include polyethylene terephthalate (PET) fiber, polybutylene terephthalate (PBT) fiber, polyethylene phthalate (PEN) fiber, polycyclohexylene dimethylene terephthalate (PCT) fiber, and polytrimethylene terephthalate (PTT) fiber.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene phthalate
  • PCT polycyclohexylene dimethylene terephthalate
  • PTT polytrimethylene terephthalate
  • Fiber polytrimethylene naphthalate (PTN) fiber, biodegradable polyester fiber, low-melting polyester fiber and the like.
  • Particularly preferred is polyethylene terephthalate (PET) fiber.
  • the polyester fibers include various inorganic particles such as titanium oxide, silicon oxide, calcium carbonate, silicon nitride, clay, talc, kaolin, and dinoreconidic acid, as well as particles such as crosslinked polymer particles and various metal particles. Conventional antioxidants, sequestering agents, ion exchange agents, anti-coloring agents, waxes, silicone oils, various surfactants, etc. are added.
  • the polypropylene fiber is not particularly limited as long as it is a fiber made of a polypropylene resin.
  • Polypropylene resin contains a —CH (CH) CH— structure in the repeating unit
  • polypropylene fibers are produced from the above polypropylene resin by a known spinning method such as melt spinning.
  • the polypropylene fiber may be added to the polyester fiber described above, or may be added with various additives.
  • the nylon fibers include polypromamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polyhexamethylene sebacamide (nylon 610), Hexamethylene dodecamide (nylon 612), polydecaneamide (nylon 11), polydodecaneamide (nylon 12), polymethaxylene adipamide (nylon MXD6), polyhexamethylene terephthalamide (nylon 6T), Polyhexamethylene isophthalamide (nylon 61), polyxylylene adipamide (nylon XD6), polycapramide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T), polyhexamethylene adipamide / polyhexa Methylene terephthalamide copolymer (nylon 66 / 6T), polyhexene methylene Pamido / poly hexamethylene isophthalamide copoly
  • the cross-sectional shape of the thermoplastic fiber is not particularly limited, and may be a true circular cross-section or an irregular cross-section. For example, oval, X-section, Y-section, T-section, L-section, star-shaped section, leaf-shaped section (for example, three-lobe, four-lobe, five-lobe, etc.), and other polygonal sections (for example, triangle , Square, pentagon, hexagon, etc.). Further, the thermoplastic fiber may be a hollow fiber or a crimped fiber.
  • the fiber length and fineness of the thermoplastic fiber are not particularly limited, and can be appropriately determined according to the compatibility with the heat-resistant fiber and the use of the flame-retardant nonwoven fabric.
  • the thermoplastic fiber may be either a long fiber or a short fiber. In the case of a short fiber, the fiber length is preferably 10 to 100 mm, more preferably 20 to 80 mm.
  • the fineness of the thermoplastic fiber is preferably 0.5-30 dtex, more preferably 1.0-10 dtex.
  • thermoplastic short fibers can be used alone or in combination of two or more. It is also possible to mix and use thermoplastic short fibers of the same type or different types with different fineness and fiber length. In this case, the mixing ratio of the fibers is arbitrary and can be appropriately determined according to the use and purpose of the nonwoven fabric.
  • the heat-resistant fiber used in the present invention has an LOI value (critical oxygen index) of 25 or more, and is flame-retardant by adding a flame retardant such as flame-retardant rayon fiber, flame-retardant vinylon fiber, and modacrylic fiber. Excluded fibers are not included.
  • the LOI value is required to burn more than 5cm continuously. Meaning the lowest oxygen concentration, the LOI value is a value measured by the JIS L 1091 method. If the LOI value of the heat-resistant fiber is 25 or more, flame retardancy can be imparted to the non-woven fabric.
  • the heat-resistant fiber examples include aramide fiber, polyphenylene sulfide fiber, polybenzoxazole fiber, polybenzthiazole fiber, polybenzimidazole fiber, polyetheretherketone fiber, polyarylate fiber, and polyimide fiber. And one or more organic fibers selected from fluorinated fibers and oxidized fibers.
  • the oxidized fiber is mainly produced by firing acrylic fiber at 200 to 500 ° C in an active atmosphere such as air, and is a precursor of carbon fiber.
  • the heat-resistant fiber other than the flame-resistant fiber is produced from the corresponding resin using known means such as spinning (wet, dry, melting, etc.).
  • aramide fibers from the viewpoint of low shrinkage and processability, aramide fibers, polyphenylene sulfide fibers, polybenzoxazole fibers, polyetheretherketone fibers, polyarylate fibers, and flame-resistant fibers
  • aramide fibers are preferred, in which at least one organic fiber selected from the group consisting of:
  • para-based aramide fibers and meta-based aramide fibers are particularly preferably para-aramid fibers in view of the fact that a certain amount of heat shrinkage is small.
  • para-aramid fiber include polyparaphenylene terephthalamide fiber (manufactured by Dupont Co., Ltd., Toray's Dupont Co., Ltd., trade name “KEVLAR” (registered trademark)), and copolybaraf-dylene-1,3,4'-oxydif.
  • Commercially available products such as nitrene terephthalamide fiber (manufactured by Teijin Limited, trade name “Technola” (registered trademark)) can be used.
  • the heat-resistant fiber used in the present invention is excellent in that it is a low-shrinkable fiber that does not melt-shrink when the nonwoven fabric burns.
  • the heat-resistant fiber is preferably a fiber having a dry heat shrinkage at 280 ° C of 1% or less.
  • the fiber length and fineness of the heat-resistant fiber are not particularly limited, and may be different from those of the thermoplastic fiber. Can be appropriately determined depending on the compatibility of the resin and the use of the flame-retardant nonwoven fabric. Usually, a fineness of 0.5 to 30 dtex, particularly 1.0 to 10 dtex is preferably used. Although the mechanism of flame retardancy in the nonwoven fabric of the present invention is not clear, it is considered that the heat-resistant fiber entangled with the thermoplastic fiber has a role of blocking the combustion of the thermoplastic fiber.
  • the heat-resistant fiber may be a long fiber or a short fiber.
  • the fiber length of the heat-resistant short fiber is not particularly limited, but in consideration of flame retardancy and productivity, it is preferable that the fiber length be 20 100 mm, particularly 40-80 mm.
  • the heat-resistant fibers can be used alone or in combination of two or more. Fibers of the same kind or different kinds and having different fineness and fiber length can be mixed and used. In this case, the mixing ratio of the fibers is arbitrary, and can be determined appropriately according to the use and purpose of the nonwoven fabric.
  • fine denier thermoplastic fibers can be contained in the thermoplastic fibers.
  • the fine denier thermoplastic fiber include one or more fibers selected from the above-mentioned polyester fiber, polypropylene fiber, polyethylene fiber, linear low-density polyethylene fiber, ethylene monoacetate copolymer fiber, and the like. Can be mentioned.
  • the fineness of the fine denier thermoplastic fiber is usually a force S using a 0.0001 5. Odtex, preferably 0.5 to 6.6 dtex, particularly 1.1 to 3.3 dtex. But preferred.
  • the fine denier thermoplastic fiber may be either a long fiber or a short fiber. When the fine denier thermoplastic fiber is a short fiber, the fiber length is not particularly limited and can be appropriately determined depending on the compatibility with the heat-resistant fiber and the use of the flame-retardant nonwoven fabric. More preferably, it is 20-80 mm.
  • the blending ratio of the fine denier thermoplastic fibers is 30 to 70% by mass, more preferably 30 to 70% by mass, based on the total amount of the thermoplastic fibers in the web. Desirably, it is 50% by mass.
  • the basis weight of the web containing the above-mentioned thermoplastic fiber (containing fine denier fiber as necessary) and heat-resistant fiber depends on the use of the flame-retardant nonwoven fabric and the like. It can be appropriately determined according to the conditions, but from the viewpoints of the shape retention of the web layer, the energy required for entanglement, and the like, it is usually about 150 to 800 gZm 2 .
  • the web can be produced by a conventional web forming method using a conventional web forming apparatus. For example, a web is formed after the mixed thermoplastic fiber and the heat-resistant fiber are spread using a force machine.
  • the nonwoven fabric of the present invention is provided with a needle punch or a water jet punch on a web containing thermoplastic fibers and heat-resistant fibers having an LOI value of 25 or more at a mass ratio of 88 / 12-55 / 45. It is obtained by applying. By performing the punching treatment, the fibers of the web can be entangled to improve the wear resistance of the nonwoven fabric.
  • the needle punching treatment may be either one-sided or two-sided treatment of the web. If the punch density is too low, the abrasion resistance of the nonwoven fabric will be insufficient, and if it is too high, the bulk density will decrease, and the heat insulating effect and the sound absorption effect will be impaired due to the decrease in the air volume ratio in the nonwoven fabric. —300 times / cm 2 , more preferably 50-100 times / cm 2 .
  • needle punching can be performed according to a conventional needle punching method using a conventional needle punching device. After the needle punching, the flame-retardant nonwoven fabric of the present invention can be obtained by drying as in the related art.
  • a water jet punch is a device in which a large number of injection holes having a hole diameter of, for example, 0.05 to 0.2 mm are arranged in a line or a plurality of lines at a hole interval of 0.3 to 10 mm. It can be carried out according to a conventional water jet punching method using a water jet punching device that jets a high-pressure water stream at 250 kg / cm 2 G. Injection hole and ⁇ The distance from Eb should be about 110cm. After the water jet punch, the flame-retardant nonwoven fabric of the present invention can be obtained by drying as before.
  • the flame-retardant nonwoven fabric of the present invention has a bulk density in the range of 0.01 to 0.2 gZcm 3 from the viewpoints of flame retardancy, heat insulation, sound absorption, abrasion resistance, workability, and the like. It is preferred instrument 0. 01 -0. lg / it cm in the range of 3 more preferably tool more preferably 0. 01 -0. 08g / cm 3 , most preferably 0. 02-0. 05g / Les, Shi desirable in the range of cm 3.
  • the proportion of air (oxygen) in the nonwoven fabric is controlled within a certain range, and the nonwoven fabric is provided with excellent flame retardancy, heat insulation, and sound absorption. You.
  • the thickness of the nonwoven fabric is not particularly limited, and can be appropriately determined depending on the purpose and application.
  • the flame-retardant nonwoven fabric of the present invention may be colored with a dye or a pigment as necessary.
  • a coloring method a dyed or pigment mixed with a polymer before spinning may be used and spun original yarn may be used, or fibers colored by various methods may be used.
  • the flame-retardant nonwoven fabric may be colored with a dye or a pigment.
  • the flame-retardant nonwoven fabric of the present invention does not chemically bond the webs in the fibers. Therefore, the used nonwoven fabric is collected, washed and the like as necessary, and then the entangled fibers are unraveled. Can be easily recycled.
  • the flame-retardant nonwoven fabric of the present invention may have an acrylic resin emulsion, a phosphate ester-based flame retardant, a halogen-based flame retardant, if necessary, in order to further improve its flame retardancy and abrasion resistance.
  • An acrylic resin emulsion or an acrylic resin solution containing a known flame retardant such as a flame retardant or a hydrated metal compound may be coated or impregnated.
  • the flame-retardant nonwoven fabric of the present invention can be used for various applications by processing it to an appropriate size, shape, etc. by applying a known method or the like according to its purpose or application.
  • the flame-retardant nonwoven fabric of the present invention can be used for all applications where flame retardancy is required.
  • automobiles, vehicles such as freight cars, aircrafts, interior materials for transportation equipment such as ships, civil engineering and construction It can be suitably used for civil engineering 'building materials such as wall members, floor members, ceiling members, etc .; packing materials for frozen containers, etc .; bedding products, sound absorbing members, and the like.
  • the flame spreads to the driver's seat when the engine ignites.
  • Polyester fiber staple (1.7dtex X 51mm) and "Kevlar” (registered trademark) staple, a para-aramid fiber manufactured by Toray DuPont (1.7dtex X 51mm, dry heat shrinkage at 280 ° C) 0.1% or less and a LOI value of 29) were mixed in a conventional manner so as to have a mass ratio of 70/30, to produce a web having a basis weight of 400 g / m 2 .
  • the web was punched in a conventional manner under the conditions of a needle density of 70 needles / cm 2 and a needle depth of 12. Omm, and then dried in a conventional manner to obtain a flame-retardant nonwoven fabric.
  • the bulk density of the obtained nonwoven fabric was 0.04 g / cm 3 .
  • a nonwoven fabric was obtained by repeating the same operation as in Example 1 except that a web was prepared only from polyester fibers (1.7 dtex X 51 mm).
  • Kepler (registered trademark) staple, a para-aramid fiber manufactured by Toray DuPont (1.7 dtex X 51 mm, dry heat shrinkage at 280 ° C 0.1% or less, L ⁇ I value 29 ) Alone, except that a web was produced, to obtain a nonwoven fabric by repeating the same operation as in Example 1.
  • the test was performed based on JIS A 1322 "Testing method for flame retardancy of thin building materials". In other words, using a non-woven fabric specimen cut to a size of 20 cm X 30 cm, visually observe the burning situation when approaching a flame, the presence or absence of drip, and the presence or absence of perforations in the non-woven fabric. Evaluation was based on criteria.
  • test piece width 3 cm, length 10 cm
  • state of the nonwoven fabric after the flame was extinguished was determined according to the following criteria.
  • Ease of processing when processing the nonwoven fabric into a desired shape and size was determined according to the following criteria.
  • the nonwoven fabric obtained in the example has the property of burning once when approaching a flame, but has the property of quickly stopping combustion and extinguishing the fire, and the nonwoven fabric obtained in Comparative Example 2 Excellent in cutting workability compared to. Furthermore, it has a soft feel and good flexibility. In contrast, the ratio
  • the flame-retardant nonwoven fabric of the present invention is suitably used for interior materials of automobiles, vehicles, aircraft, ships, civil engineering and construction materials, packing materials such as frozen containers, bedding products, sound absorbing materials, and the like.

Abstract

A flame-retardant non-woven fabric which is produced by a method comprising subjecting a web containing a thermoplastic fiber and a heat-resistant fiber having an LOI value of 25 or more in a mass ratio of 88/12 to 55/45 to needle-punching or water jet punching.

Description

明 細 書  Specification
難燃性不織布およびその製造方法  Flame-retardant nonwoven fabric and method for producing the same
技術分野  Technical field
[0001] 本発明は、難燃性不織布およびその製造方法に関し、さらに詳細には、自動車、 車輛、航空機、船舶の内装材、土木'建築用資材、冷凍コンテナ等の梱包材、寝装 品、吸音材等に好適に使用しうる難燃性不織布およびその製造方法に関する。 背景技術  The present invention relates to a flame-retardant nonwoven fabric and a method for producing the same, and more particularly, to interior materials for automobiles, vehicles, aircraft, and ships, materials for civil engineering and construction, packing materials such as frozen containers, bedding products, The present invention relates to a flame-retardant nonwoven fabric that can be suitably used as a sound absorbing material and the like and a method for producing the same. Background art
[0002] 従来より、土木 ·建築用資材、 自動車用資材、生活関連資材などに不織布が広く用 レ、られている。近年、火災予防の観点から、難燃性不織布への要請が強まっており、 この難燃性不織布の大きな用途の一つとして、 自動車内装材が知られている。 自動 車内装材に用いる不織布は、難燃性のみならず、自動車を廃棄処分する際のリサィ クル性に優れたものが要求されてきてレ、る。  [0002] Conventionally, nonwoven fabrics have been widely used as civil engineering and construction materials, automotive materials, and living-related materials. In recent years, from the viewpoint of fire prevention, demands for flame-retardant nonwoven fabrics have been increasing, and as one of the major uses of this flame-retardant nonwoven fabric, automobile interior materials are known. Nonwoven fabrics used for automobile interior materials are required to have not only flame retardancy but also excellent recyclability when disposing of automobiles.
[0003] 一般に不織布を難燃化する場合、不織布を構成する合成繊維の主成分として繊維 自体が難燃性のァラミド繊維、ポリクラール繊維などを使用したり、合成繊維としてリ ン酸系難燃剤、ホウ酸系難燃剤を混合紡糸したものを使用したり、不織布に、難燃剤 が分散したバインダー塗工液を塗布又は含浸させたりすることが行われている。  [0003] Generally, when a nonwoven fabric is made flame-retardant, aramid fiber or polyclar fiber, which itself is a flame-retardant fiber, is used as a main component of the synthetic fiber constituting the nonwoven fabric. A mixture of spinning boric acid-based flame retardants is used, and a non-woven fabric is coated or impregnated with a binder coating liquid in which the flame retardants are dispersed.
[0004] 例えば、特許文献 1、特許文献 2には、ポリエステル繊維、ポリプロピレン繊維又は これらの混合物繊維 95wt%とレーヨン繊維 5wt%とを配合したウェブにニードルパ ンチング処理を施した不織布マットに、塩ィヒビュルェマルジヨンを付着させ、乾燥処 理を行うことで難燃性の樹脂被膜を形成させた後、該樹脂被膜を有する面とガラス繊 維マットとを一体に積層して得られる自動車内装材が記載されている。しかしながら、 ガラス繊維マットを一体化しているため内装材のリサイクルが困難であり、また、内装 材を焼却処分した場合にはダイォキシンが発生するおそれがあるという問題がある。  [0004] For example, Patent Documents 1 and 2 disclose a nonwoven mat obtained by subjecting a web in which 95% by weight of polyester fiber, polypropylene fiber or a mixture fiber thereof and 5% by weight of rayon fiber are subjected to needle punching treatment to a nonwoven fabric mat. An automotive interior obtained by adhering HYBREM MARGILLON and performing a drying treatment to form a flame-retardant resin film and then integrally laminating the surface having the resin film and a glass fiber mat. The materials are listed. However, it is difficult to recycle the interior material because the glass fiber mat is integrated, and there is a problem that dioxin may be generated when the interior material is incinerated.
[0005] また、特許文献 3には、ポリエステル繊維不織ウェブ層の両面に、ポリエステル重合 体とリン酸化合物とを共重合させたポリエステル共重合体からなる難燃性短繊維不 織ウェブ層を積層し、両ウェブ層の構成繊維を相互に交絡させた難燃性不織布が 記載されている。しかし、この難燃性不織布は、燃焼時の熱により不織布の構成繊維 が溶融して液状溶融物の液だれ (ドリップ)が生じ、ドリップした樹脂が延焼するなど、 防融性に問題がある。 [0005] Patent Document 3 discloses a flame-retardant short fiber nonwoven web layer made of a polyester copolymer obtained by copolymerizing a polyester polymer and a phosphoric acid compound on both sides of a polyester fiber nonwoven web layer. A flame-retardant nonwoven fabric is described in which the constituent fibers of both web layers are laminated and entangled with each other. However, this flame-retardant nonwoven fabric is made Is melted, causing dripping of the liquid melt, and the drip resin spreads, causing problems with the anti-fusing properties.
[0006] 不織布の防融性を改善する方法として、特許文献 4は、ポリエステル繊維と難燃レ 一ヨン繊維又はモダクリル繊維とを混綿したウェブに、ニードルパンチを施した後に 更にステッチボンド加工を施して、難燃性と防融性を付与する方法が記載されている 。し力 ながら、不織布構成繊維に難燃剤で処理した難燃レーヨン繊維又はモダタリ ル繊維を使用しているため、燃焼時に有毒ガスが発生するおそれがあり、環境対応 上問題がある。  [0006] As a method for improving the fusibility of a nonwoven fabric, Patent Document 4 discloses that a web in which polyester fiber and flame-retardant rayon fiber or modacrylic fiber are blended is needle-punched and then further stitch-bonded. Thus, a method for imparting flame retardancy and fusibility is described. However, since flame-retardant rayon fiber or modalyl fiber treated with a flame retardant is used for the nonwoven fabric constituent fiber, toxic gas may be generated during combustion, which poses a problem in terms of environmental protection.
[0007] 一方、特許文献 5には、ノ ィル糸力 ァラミド繊維 1一 30重量%と、ナイロン繊維 およびポリエステル繊維から選択される 1種または 2種の繊維 99一 70重量%との混 紡糸からなり、地糸が、ポリエステル繊維 50— 90重量%と、非溶融繊維 50 10重 量%との混紡糸からなる難燃性パイル布帛が開示されている。し力、しながら、裏面に アクリル酸エステル系樹脂ラテックスからなるバッキング層を形成するため、リサイクル 性が悪く経済性にも劣るという問題がある。  [0007] On the other hand, Patent Document 5 discloses a mixed spinning of 110 to 30% by weight of a yarn yarn aramide fiber and 99 to 70% by weight of one or two kinds of fibers selected from nylon fibers and polyester fibers. A flame-retardant pile fabric comprising a mixed yarn of 50 to 90% by weight of a polyester fiber and 50 to 10% by weight of a non-molten fiber is disclosed. However, since a backing layer made of an acrylate resin latex is formed on the back surface, there is a problem that recyclability is poor and economic efficiency is poor.
特許文献 1 :特開昭 62 - 43336号公報  Patent Document 1: JP-A-62-43336
特許文献 2 :特開昭 62— 43337号公報  Patent Document 2: JP-A-62-43337
特許文献 3:特開平 9 - 59857号公報  Patent Document 3: JP-A-9-59857
特許文献 4 :特開 2002— 348766号公報  Patent Document 4: JP-A-2002-348766
特許文献 5:特開平 9 - 250052号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 9-250052
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、前記従来の問題点に鑑みてなされたものであり、難燃剤を含有させるこ となぐ良好な難燃性を得ることができるとともに、構成繊維溶融時の液状溶融物の 液だれ (ドリップ)がなぐ低収縮性で、経済性及びリサイクル性に優れた難燃性不織 布、およびその製造方法を提供することを目的とする。 [0008] The present invention has been made in view of the above-mentioned conventional problems, and it is possible to obtain good flame retardancy by incorporating a flame retardant, and to obtain a liquid melt at the time of melting constituent fibers. It is an object of the present invention to provide a flame-retardant nonwoven fabric which has low shrinkage by dripping, is excellent in economy and recyclability, and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、上記目的を達成すべく鋭意検討した結果、熱可塑性繊維と LOI値 力 ¾5以上の耐熱性繊維とを、質量比で 88/12— 55Z45の割合で含有するウェブ に、例えばニードルパンチング処理を施し接着又は熱融着に拠らずに絡合させること によって、火炎が速やかに消失する難燃性の不織布が得られることを見出し、さらに 検討を重ねて、本発明を完成するに至った。 The present inventors have conducted intensive studies to achieve the above object, and as a result, a web containing thermoplastic fibers and heat-resistant fibers having an LOI value of ¾5 or more in a mass ratio of 88 / 12-55Z45. In addition, it has been found that a flame-retardant nonwoven fabric in which a flame is quickly eliminated can be obtained by performing, for example, needle punching treatment and entanglement without relying on adhesion or heat fusion, and further studies have been carried out. Was completed.
[0010] すなわち、本発明の難燃性不織布は、熱可塑性繊維と LOI値が 25以上の耐熱性 繊維とを、質量比で 88/12— 55Z45の割合で含有するウェブに、ニードルパンチ 又はウォータージェットパンチを施してなることを特徴とする。該ウェブは、熱可塑性 繊維と LOI値が 25以上の耐熱性繊維とを、質量比で 85Z15 65Z35の割合で含 有するのが好ましい。該耐熱性繊維は、ァラミド繊維、ポリフエ二レンスルフイド繊維、 ポリべンズォキサゾール繊維、ポリべンズチアゾール繊維、ポリべンズイミダゾール繊 維、ポリエーテルエーテルケトン繊維、ポリアリレート繊維、ポリイミド繊維、フッ素繊維 及び耐炎化繊維から選ばれた一種又は二種以上の有機繊維であることが好ましい。 [0010] That is, the flame-retardant nonwoven fabric of the present invention is characterized in that a web containing thermoplastic fibers and heat-resistant fibers having an LOI value of 25 or more in a mass ratio of 88 / 12-55Z45 is added to the web by needle punch or water. It is characterized by jet punching. The web preferably contains thermoplastic fibers and heat-resistant fibers having an LOI value of 25 or more in a mass ratio of 85Z15 65Z35. The heat-resistant fibers include aramide fiber, polyphenylene sulfide fiber, polybenzoxazole fiber, polybenzthiazole fiber, polybenzimidazole fiber, polyetheretherketone fiber, polyarylate fiber, polyimide fiber, fluorine fiber, and flame-resistant fiber. One or two or more organic fibers selected from fibers are preferable.
[0011] 前記の難燃性不織布は、その嵩密度が 0. 01-0. lgZcm3の範囲内であることが 好ましい。 [0011] The flame-retardant nonwoven fabric preferably has a bulk density in the range of 0. 01-0. LgZcm 3.
本発明の難燃性不織布においては、熱可塑性繊維が、ポリエステル繊維、ポリプロ ピレン繊維及びナイロン繊維から選ばれた一種又は二種以上の繊維であることがより 好ましい。  In the flame-retardant nonwoven fabric of the present invention, it is more preferable that the thermoplastic fiber is one or more fibers selected from polyester fibers, polypropylene fibers and nylon fibers.
前記難燃性不織布は、熱可塑性繊維であるポリエステル繊維と、 LOI値が 25以上 の耐熱性繊維であるパラ系ァラミド繊維とからなる不織布であるのが好ましい。  The flame-retardant non-woven fabric is preferably a non-woven fabric comprising a polyester fiber which is a thermoplastic fiber and a para-aramid fiber which is a heat-resistant fiber having an LOI value of 25 or more.
[0012] また、本発明の難燃性不織布の製造方法は、熱可塑性繊維と、 LOI値が 25以上 の耐熱性繊維とを、質量比で 88/12— 55/45の割合、好ましくは 85/15— 65/ 35の割合で含有するウェブに、ニードルパンチ又はウォータージェットパンチを施す ことを特徴とする。 [0012] Further, in the method for producing a flame-retardant nonwoven fabric of the present invention, the thermoplastic fiber and the heat-resistant fiber having an LOI value of 25 or more have a mass ratio of 88 / 12-55 / 45, preferably 85. Needle punching or water jet punching is performed on the web containing the ratio of / 15 to 65/35.
発明の効果  The invention's effect
[0013] 以上説明した通り、本発明によれば、難燃剤を含有させることなぐ良好な難燃性を 得ること力 Sできるとともに、構成繊維溶融時の液状溶融物の液だれ (ドリップ)がなく低 収縮性であり、加工性、耐摩耗性が良好で、断熱性や吸音効果に優れた難燃性不 織布を、低コストで得ることができる。また、本発明の難燃性不織布はバインダーを使 用しなくてもよいため、リサイクル性に優れている。 発明を実施するための最良の形態 [0013] As described above, according to the present invention, it is possible to obtain a good flame retardancy without containing a flame retardant S, and there is no drip of the liquid melt when the constituent fibers are melted. A flame-retardant nonwoven fabric having low shrinkage, good workability and abrasion resistance, and excellent in heat insulation and sound absorption can be obtained at low cost. Further, the flame-retardant nonwoven fabric of the present invention does not require the use of a binder, and thus has excellent recyclability. BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明の難燃性不織布は、熱可塑性繊維と LOI値が 25以上の耐熱性繊維とを、 熱可塑性繊維/耐熱性繊維 = 88/12— 55/45 (好ましくは 85/15— 65/35) ( 質量比)の比率で含有するウェブに、ニードルパンチ又はウォータージェットパンチを 施してなるものである。 [0014] The flame-retardant nonwoven fabric of the present invention comprises a thermoplastic fiber and a heat-resistant fiber having an LOI value of 25 or more: thermoplastic fiber / heat-resistant fiber = 88 / 12-55 / 45 (preferably 85 / 15- 65/35) The web containing (mass ratio) is needle-punched or water-jet punched.
[0015] 本発明で用いられる熱可塑性繊維は、熱可塑性樹脂からなる繊維であれば特に限 定されない。熱可塑性樹脂としては、ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂 、ポリプロピレン樹脂又はポリエチレン樹脂などが挙げられる。熱可塑性繊維は、熱 可塑性樹脂から例えば湿式紡糸、乾式紡糸又は溶融紡糸等の公知の方法に従つて 製造できる。熱可塑性繊維としては、ポリエステル繊維、ポリアミド (例えばナイロン) 繊維、アクリル繊維、ポリプロピレン繊維、ポリエチレン繊維等から選ばれる一種又は 二種以上の繊維が挙げられる力 中でも、耐久性、耐摩耗性に優れる点から、ポリエ ステル繊維、ポリプロピレン繊維、ナイロン繊維が好ましい。本発明においては、熱可 塑性繊維として、上記した繊維を単独で、又は任意の割合で混合して使用することが できる。特に、使用済み不織布の熱溶融により原料ポリエステルを容易にリサイクノレ 使用することが可能で、経済性に優れ、不織布の風合レ、も良ぐ成形性に優れる点よ り、ポリエステル繊維が好ましい。  [0015] The thermoplastic fibers used in the present invention are not particularly limited as long as the fibers are made of a thermoplastic resin. Examples of the thermoplastic resin include a polyester resin, a polyamide resin, an acrylic resin, a polypropylene resin, and a polyethylene resin. The thermoplastic fiber can be produced from a thermoplastic resin by a known method such as wet spinning, dry spinning or melt spinning. Thermoplastic fibers include one or more fibers selected from polyester fibers, polyamide (eg, nylon) fibers, acrylic fibers, polypropylene fibers, polyethylene fibers, and the like. Thus, polyester fibers, polypropylene fibers, and nylon fibers are preferred. In the present invention, the above-mentioned fibers can be used alone or as a mixture in an arbitrary ratio as thermoplastic fibers. In particular, polyester fibers are preferred because the raw material polyester can be easily recycled by heat melting of the used nonwoven fabric, the economic efficiency is excellent, the feel of the nonwoven fabric is excellent, and the moldability is excellent.
[0016] 上記のポリエステル繊維は、ポリエステル樹脂からなる繊維であれば特に限定され なレ、。ポリエステル樹脂は、エステル結合を繰り返し単位に含む重合体樹脂であれ ば特に限定されず、エチレンテレフタレートを主たる繰り返し単位とするジカルボン酸 成分とグリコール成分からなるポリエステル樹脂であってよレ、。ジカルボン酸成分とし ては、テレフタル酸、 2, 6—ナフタレンジカルボン酸、イソフタル酸、 1, 4—シクロへキ サンジカルボン酸などが挙げられる。また、グリコール成分としては、エチレングリコー ノレ、プロピレングリコール、テトラメチレングリコール、 1, 3_プロパンジオール、 1 , 4— ブタンジオール、 1 , 4—シクロへキサンジメタノール等が挙げられる。上記ジカルボン 酸成分の一部を、アジピン酸、セバシン酸、ダイマー酸、スルホン酸金属置換イソフタ ル酸などで置き換えてもよぐまた、上記のグリコール成分の一部を、ジエチレンダリ コール、ネオペンチルグリコール、 1, 4ーシクロへキサンジオール、 1 , 4ーシクロへキ サンジメタノール、およびポリアルキレングリコールなどに置き換えてもよい。 [0016] The polyester fiber is not particularly limited as long as it is a fiber made of a polyester resin. The polyester resin is not particularly limited as long as it is a polymer resin containing an ester bond in the repeating unit, and may be a polyester resin comprising a dicarboxylic acid component having ethylene terephthalate as a main repeating unit and a glycol component. Examples of the dicarboxylic acid component include terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, and 1,4-cyclohexanedicarboxylic acid. Examples of the glycol component include ethylene glycol propylene, propylene glycol, tetramethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol. Part of the dicarboxylic acid component may be replaced with adipic acid, sebacic acid, dimer acid, sulfonic acid metal-substituted isophthalic acid, etc. , 1,4-cyclohexanediol, 1,4-cyclohexane It may be replaced with sandimethanol, polyalkylene glycol, or the like.
[0017] 上記ポリエステル繊維は、通常、ポリエステル樹脂力 溶融紡糸等の公知の紡糸法 により製造される。上記ポリエステル繊維としては、例えば、ポリエチレンテレフタレー ト(PET)繊維、ポリブチレンテレフタレート(PBT)繊維、ポリエチレンフタレート(PE N)繊維、ポリシクロへキシレンジメチレンテレフタレート(PCT)繊維、ポリトリメチレン テレフタレート(PTT)繊維、ポリトリメチレンナフタレート(PTN)繊維、生分解性ポリ エステル繊維、低融点ポリエステル繊維などが挙げられる力 とりわけ、ポリエチレン テレフタレート(PET)繊維が好ましい。このポリエステル繊維には、酸化チタン、酸化 ケィ素、炭酸カルシウム、チッ化ケィ素、クレー、タルク、カオリン、ジノレコニゥム酸など の各種無機粒子や架橋高分子粒子、各種金属粒子などの粒子類のほか、従来から ある抗酸化剤、金属イオン封鎖剤、イオン交換剤、着色防止剤、ワックス類、シリコー ンオイル、各種界面活性剤などが添加されてレ、てもよレ、。  [0017] The polyester fiber is usually produced by a known spinning method such as polyester resin melt spinning. Examples of the polyester fiber include polyethylene terephthalate (PET) fiber, polybutylene terephthalate (PBT) fiber, polyethylene phthalate (PEN) fiber, polycyclohexylene dimethylene terephthalate (PCT) fiber, and polytrimethylene terephthalate (PTT) fiber. ) Fiber, polytrimethylene naphthalate (PTN) fiber, biodegradable polyester fiber, low-melting polyester fiber and the like. Particularly preferred is polyethylene terephthalate (PET) fiber. The polyester fibers include various inorganic particles such as titanium oxide, silicon oxide, calcium carbonate, silicon nitride, clay, talc, kaolin, and dinoreconidic acid, as well as particles such as crosslinked polymer particles and various metal particles. Conventional antioxidants, sequestering agents, ion exchange agents, anti-coloring agents, waxes, silicone oils, various surfactants, etc. are added.
[0018] 上記ポリプロピレン繊維は、ポリプロピレン樹脂からなる繊維であれば特に限定され なレ、。ポリプロピレン樹脂は、繰り返し単位に— CH (CH ) CH—の構造を含んでいる  The polypropylene fiber is not particularly limited as long as it is a fiber made of a polypropylene resin. Polypropylene resin contains a —CH (CH) CH— structure in the repeating unit
3 2  3 2
重合体樹脂であれば特に限定されず、例えば、ポリプロピレン樹脂、プロピレンーェ チレン共重合体樹脂等のプロピレン一才レフイン共重合体樹脂等が挙げられる。ポリ プロピレン繊維は、上記ポリプロピレン樹脂から溶融紡糸等の公知の紡糸法を用い て製造される。また、ポリプロピレン繊維には、上記したポリエステル繊維に添加して もよレ、各種添加剤などが添加されてレ、てもよレ、。  It is not particularly limited as long as it is a polymer resin, and examples thereof include a propylene one-year-old olefin copolymer resin such as a polypropylene resin and a propylene-ethylene copolymer resin. Polypropylene fibers are produced from the above polypropylene resin by a known spinning method such as melt spinning. The polypropylene fiber may be added to the polyester fiber described above, or may be added with various additives.
[0019] 上記ナイロン繊維としては、ポリ力プロアミド(ナイロン 6)、ポリへキサメチレンアジパ ミド(ナイロン 66)、ポリテトラメチレンアジパミド(ナイロン 46)、ポリへキサメチレンセバ カミド(ナイロン 610)、ポリへキサメチレンドデカミド(ナイロン 612)、ポリゥンデカンァ ミド (ナイロン 11)、ポリドデカンアミド(ナイロン 12)、ポリメタキシレンアジパミド(ナイ口 ン MXD6)、ポリへキサメチレンテレフタラミド(ナイロン 6T)、ポリへキサメチレンイソフ タラミド(ナイロン 61)、ポリキシリレンアジパミド(ナイロン XD6)、ポリ力プロアミド/ポリ へキサメチレンテレフタルアミドコポリマー(ナイロン 6/6T)、ポリへキサメチレンアジ パミド /ポリへキサメチレンテレフタルアミドコポリマー(ナイロン 66/6T)、ポリへキサ メチレンアジパミド /ポリへキサメチレンイソフタルアミドコポリマー(ナイロン 66/61) 、ポリへキサメチレンアジパミド /ポリへキサメチレンイソフタルアミド /ポリ力プロアミド コポリマー(ナイロン 66/61/6)、ポリへキサメチレンテレフタルアミド/ポリへキサメ チレンイソフタルアミドコポリマー(ナイロン 6T/6I)、ポリへキサメチレンテレフタルァ ミド Zポリドデカンアミドコポリマー(ナイロン 6T/12)、ポリへキサメチレンアジパミド /ポリへキサメチレンテレフタルアミド /ポリへキサメチレンイソフタルアミドコポリマー (ナイロン 66/6T/6I)又はポリへキサメチレンテレフタルアミド Zポリ _2—メチルぺ ンタメチレンテレフタルアミドコポリマー(ナイロン 6TZM5T)等のナイロン共重合体 樹脂等のナイロン樹脂からなるナイロン繊維が挙げられる。ナイロン樹脂からナイロン 繊維を製造する方法は、溶融紡糸等の公知の方法であってよい。また、ナイロン繊維 には、上記したポリエステル繊維に添カ卩してもよい各種添加剤などが添加されていて あよい。 [0019] The nylon fibers include polypromamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polyhexamethylene sebacamide (nylon 610), Hexamethylene dodecamide (nylon 612), polydecaneamide (nylon 11), polydodecaneamide (nylon 12), polymethaxylene adipamide (nylon MXD6), polyhexamethylene terephthalamide (nylon 6T), Polyhexamethylene isophthalamide (nylon 61), polyxylylene adipamide (nylon XD6), polycapramide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T), polyhexamethylene adipamide / polyhexa Methylene terephthalamide copolymer (nylon 66 / 6T), polyhexene methylene Pamido / poly hexamethylene isophthalamide copolymer (nylon 66/61) , Polyhexamethylene adipamide / polyhexamethylene isophthalamide / polycaprolamide copolymer (nylon 66/61/6), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 6T / 6I), Polyhexamethylene terephthalamide Z polydodecaneamide copolymer (nylon 6T / 12), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6T / 6I) or Polyhexamethylene terephthalamide Z Nylon fibers made of nylon resin such as nylon copolymer resin such as poly_2-methylpentamethylene terephthalamide copolymer (nylon 6TZM5T). The method for producing nylon fibers from the nylon resin may be a known method such as melt spinning. In addition, various additives which may be added to the above-mentioned polyester fiber may be added to the nylon fiber.
[0020] 熱可塑性繊維の断面形状は、特に限定されず、真円断面状であってもよいし、異 形断面状であってもよい。例えば楕円状、 X断面状、 Y断面状、 T断面状、 L断面状、 星型断面状、葉形断面状 (例えば三つ葉形状、四葉形状、五葉形状等)、その他の 多角断面状 (例えば三角状、四角状、五角状、六角状等)などの異形断面状であつ てもよレ、。また、熱可塑性繊維は中空糸ならびに捲縮糸であってもよい。  [0020] The cross-sectional shape of the thermoplastic fiber is not particularly limited, and may be a true circular cross-section or an irregular cross-section. For example, oval, X-section, Y-section, T-section, L-section, star-shaped section, leaf-shaped section (for example, three-lobe, four-lobe, five-lobe, etc.), and other polygonal sections (for example, triangle , Square, pentagon, hexagon, etc.). Further, the thermoplastic fiber may be a hollow fiber or a crimped fiber.
熱可塑性繊維の繊維長及び繊度は、特に限定されず、耐熱性繊維との相性や難 燃性不織布の用途により適宜決定することができる。熱可塑性繊維は、長繊維、短 繊維のいずれであってもよいが、短繊維の場合は、繊維長が好ましくは 10— 100m m、より好ましくは 20— 80mmである。また、前記熱可塑性繊維の繊度は好ましくは 0 . 5— 30dtexであり、より好ましくは 1. 0— lOdtexである。  The fiber length and fineness of the thermoplastic fiber are not particularly limited, and can be appropriately determined according to the compatibility with the heat-resistant fiber and the use of the flame-retardant nonwoven fabric. The thermoplastic fiber may be either a long fiber or a short fiber. In the case of a short fiber, the fiber length is preferably 10 to 100 mm, more preferably 20 to 80 mm. The fineness of the thermoplastic fiber is preferably 0.5-30 dtex, more preferably 1.0-10 dtex.
[0021] 前記熱可塑性短繊維は、それぞれ単独で又は二種以上を混合して用いることがで きる。同種又は異種の繊維で、繊度や繊維長の異なる熱可塑性短繊維を混合して用 レ、ることもできる。この場合、繊維の混合比は任意であり、不織布の用途や目的に合 せて適宜決定することができる。  [0021] The thermoplastic short fibers can be used alone or in combination of two or more. It is also possible to mix and use thermoplastic short fibers of the same type or different types with different fineness and fiber length. In this case, the mixing ratio of the fibers is arbitrary and can be appropriately determined according to the use and purpose of the nonwoven fabric.
[0022] 本発明で用いられる耐熱性繊維は、 LOI値(限界酸素指数)が 25以上であり、難燃 レーヨン繊維や難燃ビニロン繊維、モダクリル繊維などのように難燃剤を添加して難 燃化した繊維は含まれない。ここで、 LOI値は 5cm以上継続して燃えるのに必要な 最低酸素濃度を意味するが、 LOI値は JIS L 1091法により測定される値である。 耐熱性繊維の LOI値が 25以上あれば不織布に難燃性を付与できるが、より難燃性 に優れた不織布にするためには LOI値が 28以上であることが望ましい。 [0022] The heat-resistant fiber used in the present invention has an LOI value (critical oxygen index) of 25 or more, and is flame-retardant by adding a flame retardant such as flame-retardant rayon fiber, flame-retardant vinylon fiber, and modacrylic fiber. Excluded fibers are not included. Here, the LOI value is required to burn more than 5cm continuously. Meaning the lowest oxygen concentration, the LOI value is a value measured by the JIS L 1091 method. If the LOI value of the heat-resistant fiber is 25 or more, flame retardancy can be imparted to the non-woven fabric.
[0023] 耐熱性繊維としては、例えば、ァラミド繊維、ポリフヱニレンスルフイド繊維、ポリベン ズォキサゾール繊維、ポリべンズチアゾール繊維、ポリべンズイミダゾール繊維、ポリ エーテルエーテルケトン繊維、ポリアリレート繊維、ポリイミド繊維、フッ素繊維及び耐 炎化繊維から選ばれた一種又は二種以上の有機繊維を挙げることができる。これら の繊維は、従来公知のものや、公知の方法又はそれに準ずる方法に従って製造した ものを全て使用することができる。ここで、耐炎化繊維は、主としてアクリル繊維を空 気などの活性雰囲気中で 200— 500°Cで焼成して製造されるもので、炭素繊維の前 駆体である。例えば、旭化成社製造の商品名「ラスタン」(登録商標)、東邦テナックス 社製造の商品名「パイロメッタス」(登録商標)などを挙げることができる。耐炎化繊維 以外の耐熱性繊維は、対応する樹脂から、例えば紡糸(湿式、乾式、溶融等)等の公 知の手段を用いて製造される。 [0023] Examples of the heat-resistant fiber include aramide fiber, polyphenylene sulfide fiber, polybenzoxazole fiber, polybenzthiazole fiber, polybenzimidazole fiber, polyetheretherketone fiber, polyarylate fiber, and polyimide fiber. And one or more organic fibers selected from fluorinated fibers and oxidized fibers. As these fibers, all conventionally known fibers and those produced according to a known method or a method analogous thereto can be used. Here, the oxidized fiber is mainly produced by firing acrylic fiber at 200 to 500 ° C in an active atmosphere such as air, and is a precursor of carbon fiber. For example, the product name "Rastan" (registered trademark) manufactured by Asahi Kasei Corporation, and the product name "Pyromettas" (registered trademark) manufactured by Toho Tenax Co., Ltd. can be exemplified. The heat-resistant fiber other than the flame-resistant fiber is produced from the corresponding resin using known means such as spinning (wet, dry, melting, etc.).
[0024] 上記の耐熱性繊維の中でも、低収縮性及び加工性の点から、ァラミド繊維、ポリフ ェニレンスルフイド繊維、ポリべンズォキサゾール繊維、ポリエーテルエーテルケトン 繊維、ポリアリレート繊維及び耐炎化繊維から選ばれる少なくとも一種の有機繊維が 好ましぐ特にァラミド繊維が好ましい。 [0024] Among the above heat-resistant fibers, from the viewpoint of low shrinkage and processability, aramide fibers, polyphenylene sulfide fibers, polybenzoxazole fibers, polyetheretherketone fibers, polyarylate fibers, and flame-resistant fibers In particular, aramide fibers are preferred, in which at least one organic fiber selected from the group consisting of:
ァラミド繊維には、パラ系ァラミド繊維とメタ系ァラミド繊維とがある力 加熱収縮が少 ない点よりパラ系ァラミド繊維が特に好ましい。パラ系ァラミド繊維としては、例えば、 ポリパラフエ二レンテレフタルアミド繊維(米国デュポン株式会社、東レ'デュポン株式 会社製、商品名「KEVLAR」(登録商標))、コポリバラフヱ二レン一 3, 4'—ォキシジフ ヱ二レンテレフタルアミド繊維 (帝人株式会社製、商品名「テクノーラ」(登録商標))等 の市販品を用いることができる。  Among the aramide fibers, para-based aramide fibers and meta-based aramide fibers are particularly preferably para-aramid fibers in view of the fact that a certain amount of heat shrinkage is small. Examples of the para-aramid fiber include polyparaphenylene terephthalamide fiber (manufactured by Dupont Co., Ltd., Toray's Dupont Co., Ltd., trade name “KEVLAR” (registered trademark)), and copolybaraf-dylene-1,3,4'-oxydif. Commercially available products such as nitrene terephthalamide fiber (manufactured by Teijin Limited, trade name “Technola” (registered trademark)) can be used.
[0025] 本発明で用いられる耐熱性繊維は、不織布が燃焼した際に溶融収縮しない低収縮 性の繊維である点で優れている。本発明においては、耐熱性繊維が、 280°Cにおけ る乾熱収縮率が 1 %以下の繊維であることが望ましい。  [0025] The heat-resistant fiber used in the present invention is excellent in that it is a low-shrinkable fiber that does not melt-shrink when the nonwoven fabric burns. In the present invention, the heat-resistant fiber is preferably a fiber having a dry heat shrinkage at 280 ° C of 1% or less.
[0026] 上記の耐熱性繊維における繊維長及び繊度は、特に限定されず、熱可塑性繊維と の相性や難燃性不織布の用途により適宜決定することができる。通常、繊度は 0. 5 一 30dtex、特に 1 · 0— lOdtexのものが好適に用いられる。本発明の不織布におけ る難燃化のメカニズムは明らかではないが、熱可塑性繊維と交絡させた耐熱性繊維 が熱可塑性繊維の燃焼を遮断する役割を有すると考えられる。上記耐熱性繊維は、 長繊維であってもよいし、短繊維であってもよい。耐熱性短繊維の繊維長は、特に限 定されないが、難燃性及び生産性等を考慮すると繊維長 20 100mm、特に 40— 8 0mmの短繊維であることが好ましレ、。 [0026] The fiber length and fineness of the heat-resistant fiber are not particularly limited, and may be different from those of the thermoplastic fiber. Can be appropriately determined depending on the compatibility of the resin and the use of the flame-retardant nonwoven fabric. Usually, a fineness of 0.5 to 30 dtex, particularly 1.0 to 10 dtex is preferably used. Although the mechanism of flame retardancy in the nonwoven fabric of the present invention is not clear, it is considered that the heat-resistant fiber entangled with the thermoplastic fiber has a role of blocking the combustion of the thermoplastic fiber. The heat-resistant fiber may be a long fiber or a short fiber. The fiber length of the heat-resistant short fiber is not particularly limited, but in consideration of flame retardancy and productivity, it is preferable that the fiber length be 20 100 mm, particularly 40-80 mm.
[0027] 前記の耐熱性繊維は、それぞれ単独で又は二種以上を混合して用いることができ る。同種又は異種の繊維で、繊度や繊維長の異なる繊維を混合して用いることもでき る。この場合、繊維の混合比は任意であり、不織布の用途や目的に合せて適宜決定 すること力 Sできる。 [0027] The heat-resistant fibers can be used alone or in combination of two or more. Fibers of the same kind or different kinds and having different fineness and fiber length can be mixed and used. In this case, the mixing ratio of the fibers is arbitrary, and can be determined appropriately according to the use and purpose of the nonwoven fabric.
[0028] 本発明で使用する熱可塑性繊維と耐熱性繊維とは、熱可塑性繊維 Z耐熱性繊維 = 88/12— 55/45 (質量比)で配合される。前記の比率が 88/12を超える場合 は、不織布の難燃性が不十分となり、液ダレ(ドリップ)が生じ易くなる。つまり、耐熱 性繊維をウェブ中に 12質量%以上含有させて熱可塑性繊維と交絡させることにより 、熱可塑性繊維の燃焼及び溶融を防止することができる。一方、前記の比率が 55/ 45未満の場合は、難燃性が良好であるが、不織布を所望のサイズに加工する際の 加工性が不良となり、経済性にも劣る。難燃性及び加工性の点より、熱可塑性繊維 /耐熱性繊維の比率(質量比)は、より好ましくは 85/15— 55/45であり、最も好ま しぐは 85/15— 65/35である。  [0028] The thermoplastic fiber and the heat-resistant fiber used in the present invention are blended in a ratio of thermoplastic fiber Z heat-resistant fiber = 88 / 12-55 / 45 (mass ratio). If the ratio exceeds 88/12, the flame retardancy of the nonwoven fabric becomes insufficient, and liquid dripping (drip) tends to occur. In other words, by including the heat-resistant fiber in the web at 12% by mass or more and entangled with the thermoplastic fiber, combustion and melting of the thermoplastic fiber can be prevented. On the other hand, when the above ratio is less than 55/45, the flame retardancy is good, but the workability when processing the nonwoven into a desired size becomes poor, and the economic efficiency is also poor. From the viewpoint of flame retardancy and processability, the ratio (mass ratio) of thermoplastic fiber / heat-resistant fiber is more preferably 85 / 15-55 / 45, and most preferably 85 / 15-65 / 35. It is.
[0029] 本発明において、不織布の耐摩耗性を向上させるためには、熱可塑性繊維中に細 デニールの熱可塑性繊維を含有させることができる。細デニールの熱可塑性繊維と しては、前述のポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維、線状低密 度ポリエチレン繊維、エチレン一酢酸ビュル共重合体繊維等から選ばれる一種又は 二種以上の繊維を挙げることができる。  [0029] In the present invention, in order to improve the wear resistance of the nonwoven fabric, fine denier thermoplastic fibers can be contained in the thermoplastic fibers. Examples of the fine denier thermoplastic fiber include one or more fibers selected from the above-mentioned polyester fiber, polypropylene fiber, polyethylene fiber, linear low-density polyethylene fiber, ethylene monoacetate copolymer fiber, and the like. Can be mentioned.
[0030] 細デニールの熱可塑性繊維の繊度は、通常、 0. 0001 5. Odtexのものを使用 する力 S、好ましくは 0. 5—6. 6dtex、特に 1. 1— 3. 3dtexであることが好ましレ、。ま た、上記細デニールの熱可塑性繊維は、長繊維、短繊維のいずれであってもよい。 細デニールの熱可塑性繊維が短繊維である場合、繊維長は特に限定されず、耐熱 性繊維との相性や難燃性不織布の用途により適宜決定することができるが、好ましく は、 10— 100mm、より好ましくは 20— 80mmである。 [0030] The fineness of the fine denier thermoplastic fiber is usually a force S using a 0.0001 5. Odtex, preferably 0.5 to 6.6 dtex, particularly 1.1 to 3.3 dtex. But preferred. The fine denier thermoplastic fiber may be either a long fiber or a short fiber. When the fine denier thermoplastic fiber is a short fiber, the fiber length is not particularly limited and can be appropriately determined depending on the compatibility with the heat-resistant fiber and the use of the flame-retardant nonwoven fabric. More preferably, it is 20-80 mm.
[0031] ウェブ中に細デニールの熱可塑性繊維を配合する場合、細デニールの熱可塑性 繊維の配合割合が、ウェブ中の熱可塑性繊維全量に対して 30— 70質量%、より好 ましくは 30 50質量%とすることが望ましい。  [0031] When fine denier thermoplastic fibers are blended in the web, the blending ratio of the fine denier thermoplastic fibers is 30 to 70% by mass, more preferably 30 to 70% by mass, based on the total amount of the thermoplastic fibers in the web. Desirably, it is 50% by mass.
[0032] 本発明におレ、て、上述した熱可塑性繊維 (必要に応じて細デニール繊維を含有す る)と耐熱性繊維とを含有するウェブの目付量は、難燃性不織布の用途等に応じて 適宜決定することができるが、ウェブ層の形態保持性、交絡に要するエネルギー等 の観点から、通常、 150 800gZm2程度である。 [0032] In the present invention, the basis weight of the web containing the above-mentioned thermoplastic fiber (containing fine denier fiber as necessary) and heat-resistant fiber depends on the use of the flame-retardant nonwoven fabric and the like. It can be appropriately determined according to the conditions, but from the viewpoints of the shape retention of the web layer, the energy required for entanglement, and the like, it is usually about 150 to 800 gZm 2 .
[0033] なお、ウェブは、従来と同様のウェブ形成装置を用いて、従来のウェブ形成方法に 従って作製することができる。例えば、混綿された熱可塑性繊維と耐熱性繊維とを力 一ド機を用いて開繊された後に、ウェブに形成される。  [0033] The web can be produced by a conventional web forming method using a conventional web forming apparatus. For example, a web is formed after the mixed thermoplastic fiber and the heat-resistant fiber are spread using a force machine.
[0034] 本発明の不織布は、熱可塑性繊維と LOI値が 25以上の耐熱性繊維とを、質量比 で 88/12— 55/45の割合で含有するウェブに、ニードルパンチ又はウォータージ エツトパンチを施すことにより得られる。パンチ処理を施すことにより、ウェブの繊維を 交絡させて不織布の耐摩耗性を向上させることができる。  [0034] The nonwoven fabric of the present invention is provided with a needle punch or a water jet punch on a web containing thermoplastic fibers and heat-resistant fibers having an LOI value of 25 or more at a mass ratio of 88 / 12-55 / 45. It is obtained by applying. By performing the punching treatment, the fibers of the web can be entangled to improve the wear resistance of the nonwoven fabric.
[0035] ニードルパンチ処理は、ウェブの片面又は両面処理のいずれでも良い。パンチ密 度は、少なすぎると不織布の耐摩耗性が不十分となり、多すぎると嵩密度が低下し、 不織布中の空気体積率の低下により断熱効果や吸音効果が損なわれるため、好ま しくは 50— 300回/ cm2、より好ましくは 50— 100回/ cm2であることが望ましい。 [0035] The needle punching treatment may be either one-sided or two-sided treatment of the web. If the punch density is too low, the abrasion resistance of the nonwoven fabric will be insufficient, and if it is too high, the bulk density will decrease, and the heat insulating effect and the sound absorption effect will be impaired due to the decrease in the air volume ratio in the nonwoven fabric. —300 times / cm 2 , more preferably 50-100 times / cm 2 .
[0036] 本発明において、ニードルパンチは、従来と同様のニードルパンチ装置を用いて、 従来のニードルパンチ方法に従って行うことができる。ニードルパンチの後、従来と 同様に乾燥することにより、本発明の難燃性不織布を得ることができる。  In the present invention, needle punching can be performed according to a conventional needle punching method using a conventional needle punching device. After the needle punching, the flame-retardant nonwoven fabric of the present invention can be obtained by drying as in the related art.
[0037] また、ウォータージェットパンチは、例えば孔径が 0. 05-2. Ommの噴射孔を、孔 間隔 0. 3— 10mmで一列あるいは複数列に多数配列した装置であって、噴射圧力 を 90 250kg/cm2Gとして高圧水流を噴射させるウォータージェットパンチ装置を 用いて、従来のウォータージェットパンチ方法に従って行うことができる。噴射孔とゥ エブとの距離は、 1一 10cm程度とするのがよい。ウォータージェットパンチの後、従 来と同様に乾燥することにより、本発明の難燃性不織布を得ることができる。 A water jet punch is a device in which a large number of injection holes having a hole diameter of, for example, 0.05 to 0.2 mm are arranged in a line or a plurality of lines at a hole interval of 0.3 to 10 mm. It can be carried out according to a conventional water jet punching method using a water jet punching device that jets a high-pressure water stream at 250 kg / cm 2 G. Injection hole and ゥ The distance from Eb should be about 110cm. After the water jet punch, the flame-retardant nonwoven fabric of the present invention can be obtained by drying as before.
[0038] 本発明の難燃性不織布は、難燃性、断熱性、吸音性、耐摩耗性及び加工性等の 観点から、嵩密度が 0. 01 -0. 2gZcm3の範囲内であることが好ましぐ 0. 01 -0. lg/cm3の範囲内であることがより好ましぐさらに好ましくは 0. 01 -0. 08g/cm3 、最も好ましくは 0. 02-0. 05g/cm3の範囲内であることが望ましレ、。このように、不 織布の嵩密度を制御することによって、不織布中の空気 (酸素)の割合が一定範囲 内に制御されて、不織布に優れた難燃性、断熱性及び吸音性が付与される。 [0038] The flame-retardant nonwoven fabric of the present invention has a bulk density in the range of 0.01 to 0.2 gZcm 3 from the viewpoints of flame retardancy, heat insulation, sound absorption, abrasion resistance, workability, and the like. it is preferred instrument 0. 01 -0. lg / it cm in the range of 3 more preferably tool more preferably 0. 01 -0. 08g / cm 3 , most preferably 0. 02-0. 05g / Les, Shi desirable in the range of cm 3. As described above, by controlling the bulk density of the nonwoven fabric, the proportion of air (oxygen) in the nonwoven fabric is controlled within a certain range, and the nonwoven fabric is provided with excellent flame retardancy, heat insulation, and sound absorption. You.
[0039] 本発明において不織布の厚みは特に限定されるものではなぐその目的、用途に 応じて適宜決定することができる。  [0039] In the present invention, the thickness of the nonwoven fabric is not particularly limited, and can be appropriately determined depending on the purpose and application.
[0040] また、本発明の難燃性不織布は、必要に応じて染料や顔料で着色されていてもよ レ、。着色方法として、紡糸前に染料や顔料をポリマーと混合して紡糸した原着糸を使 用してもよぐ各種方法で着色した繊維を用いてもよい。難燃性不織布を染料や顔料 で着色してもよい。  [0040] The flame-retardant nonwoven fabric of the present invention may be colored with a dye or a pigment as necessary. As a coloring method, a dyed or pigment mixed with a polymer before spinning may be used and spun original yarn may be used, or fibers colored by various methods may be used. The flame-retardant nonwoven fabric may be colored with a dye or a pigment.
[0041] 本発明の難燃性不織布は、繊維中のウェブ同士を化学的に接着しないため、使用 後の不織布を回収し、必要に応じて洗浄等をした後、交絡した繊維を解きほぐすだ けで容易にリサイクル使用することができる。  [0041] The flame-retardant nonwoven fabric of the present invention does not chemically bond the webs in the fibers. Therefore, the used nonwoven fabric is collected, washed and the like as necessary, and then the entangled fibers are unraveled. Can be easily recycled.
[0042] なお、本発明の難燃性不織布には、その難燃性ゃ耐摩耗性を更に向上させるため に、必要に応じて、アクリル樹脂ェマルジヨンや、リン酸エステル系難燃剤、ハロゲン 系難燃剤、水和金属化合物などの公知の難燃剤を配合したアクリル樹脂エマルジョ ンあるいはアクリル樹脂溶液等をコーティング又は含浸させてもよい。  [0042] The flame-retardant nonwoven fabric of the present invention may have an acrylic resin emulsion, a phosphate ester-based flame retardant, a halogen-based flame retardant, if necessary, in order to further improve its flame retardancy and abrasion resistance. An acrylic resin emulsion or an acrylic resin solution containing a known flame retardant such as a flame retardant or a hydrated metal compound may be coated or impregnated.
[0043] 本発明の難燃性不織布は、その目的や用途に合せて公知の方法等を適用して適 宜な大きさ、形状等に加工することにより、種々の用途に用いることができる。本発明 の難燃性不織布は、難燃性が求められる用途の全てに用いることができ、例えば、 自 動車、貨車等の車輛、航空機、船舶等の輸送用機器の内装材;土木'建築用の壁用 部材、床用部材、天井用部材等の土木'建築用資材;冷凍コンテナ等の梱包材;寝 装品、吸音部材等に好適に使用することができる。特に、 自動車のエンジンルームの 内装材に使用することにより、エンジンノレームから発火した際に火炎が運転席に延焼 するのを防止することができるほか、エンジンルームから発生する騒音が外部へ漏出 するのを防止することができる。その他、 自動車の天井材、リアパッケージ、ドアトリム; 自動車、電車、航空機などのダッシュボードにおけるインシュレータ;各種の保温材、 遮熱材、断熱材;消防用、高温作業用などの防護衣料、防護手袋、防護帽子;溶接 現場の防護シート;防草材;スピーカー用振動板;電池セパレータ;電気力一^ ^ットの 積層材等の各種用途に用いることができる。 実施例 [0043] The flame-retardant nonwoven fabric of the present invention can be used for various applications by processing it to an appropriate size, shape, etc. by applying a known method or the like according to its purpose or application. The flame-retardant nonwoven fabric of the present invention can be used for all applications where flame retardancy is required.For example, automobiles, vehicles such as freight cars, aircrafts, interior materials for transportation equipment such as ships, civil engineering and construction It can be suitably used for civil engineering 'building materials such as wall members, floor members, ceiling members, etc .; packing materials for frozen containers, etc .; bedding products, sound absorbing members, and the like. In particular, when used as an interior material in the engine room of a car, the flame spreads to the driver's seat when the engine ignites. In addition, it is possible to prevent noise generated from the engine room from leaking to the outside. In addition, car ceiling materials, rear packages, door trims; insulators for dashboards of cars, trains, aircraft, etc .; various heat insulating materials, heat shielding materials, heat insulating materials; protective clothing for firefighting and high-temperature work, protective gloves, It can be used for various applications such as protective hats; welding protection sheet at the site; grass-proof material; speaker diaphragm; battery separator; Example
[0044] 以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明は 以下の実施例のみに限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only the following Examples.
[0045] (実施例 1) (Example 1)
ポリエステル繊維ステープル(1. 7dtex X 51mm)と、東レ'デュポン株式会社製の パラ系ァラミド繊維である「ケブラー」(登録商標)ステープル(1 · 7dtex X 51mm、 2 80°Cでの乾熱収縮率 0. 1 %以下、 LOI値 29)とを、質量比で 70/30となるように、 常法に従って混綿し、 目付量 400g/m2のウェブを作製した。 Polyester fiber staple (1.7dtex X 51mm) and "Kevlar" (registered trademark) staple, a para-aramid fiber manufactured by Toray DuPont (1.7dtex X 51mm, dry heat shrinkage at 280 ° C) 0.1% or less and a LOI value of 29) were mixed in a conventional manner so as to have a mass ratio of 70/30, to produce a web having a basis weight of 400 g / m 2 .
このウェブに対し、常法に従って針密度 70本/ cm2、針深さ 12. Ommの条件で二 一ドルパンチングを行った後、常法に従って乾燥することにより難燃性不織布を得た 。得られた不織布の嵩密度は 0. 04g/cm3であった。 The web was punched in a conventional manner under the conditions of a needle density of 70 needles / cm 2 and a needle depth of 12. Omm, and then dried in a conventional manner to obtain a flame-retardant nonwoven fabric. The bulk density of the obtained nonwoven fabric was 0.04 g / cm 3 .
[0046] (比較例 1) (Comparative Example 1)
ポリエステル繊維(1. 7dtex X 51mm)のみからウェブを作製する以外は、実施例 1と同様の操作を繰り返すことにより不織布を得た。  A nonwoven fabric was obtained by repeating the same operation as in Example 1 except that a web was prepared only from polyester fibers (1.7 dtex X 51 mm).
[0047] (比較例 2) (Comparative Example 2)
東レ'デュポン株式会社製のパラ系ァラミド繊維である「ケプラー」 (登録商標)ステ 一プル(1. 7dtex X 51mm、 280°Cでの乾熱収縮率 0. 1%以下、 L〇I値 29)のみか らウェブを作製する以外は、実施例 1と同様の操作を繰り返すことにより不織布を得 た。  "Kepler" (registered trademark) staple, a para-aramid fiber manufactured by Toray DuPont (1.7 dtex X 51 mm, dry heat shrinkage at 280 ° C 0.1% or less, L〇I value 29 ) Alone, except that a web was produced, to obtain a nonwoven fabric by repeating the same operation as in Example 1.
[0048] なお、上記実施例及び比較例における各物性値は、以下のようにして測定したもの である。  [0048] Each physical property value in the above Examples and Comparative Examples was measured as follows.
〔280°Cでの乾熱収縮率〕 280°Cの空気中に 30分間放置した後の繊維の長さを測定し、放置前の繊維の長さ に対する放置後の繊維の長さの収縮した分の割合を求めた。 [Dry heat shrinkage at 280 ° C] The length of the fiber after standing in air at 280 ° C. for 30 minutes was measured, and the ratio of the contracted length of the fiber after standing to the length of the fiber before standing was determined.
(評 価) (Evaluation)
以上の実施例及び比較例で得られた不織布の、難燃性、収縮性について、以下に 示す方法で試験'評価した。その結果を表 1に示す。  The nonwoven fabrics obtained in the above Examples and Comparative Examples were evaluated for flame retardancy and shrinkage by the following methods. The results are shown in Table 1.
〔難燃性〕  〔Flame retardance〕
JIS A 1322「建築用薄物材料の難燃性試験方法」に基づいて試験した。すなわ ち、 20cm X 30cmの大きさにカットした不織布試験体を用レ、、炎を近づけた際の燃 焼状況、ドリップの有無、不織布の穴開きの有無を目視にて観察し、以下の基準で 評価した。  The test was performed based on JIS A 1322 "Testing method for flame retardancy of thin building materials". In other words, using a non-woven fabric specimen cut to a size of 20 cm X 30 cm, visually observe the burning situation when approaching a flame, the presence or absence of drip, and the presence or absence of perforations in the non-woven fabric. Evaluation was based on criteria.
(1)ドリップ性 〇:ドリップなし、 X:ドリップあり  (1) Drip properties 〇: No drip, X: Drip
(2)穴開き性 〇:穴が開かない、 X:穴が開く  (2) Perforability 〇: Hole does not open, X: Hole opens
〔収縮性〕  (Shrinkage)
不織布からカットした試験片(幅 3cm、長さ 10cm)の片端部に火を付け、炎が消え た後の不織布の状態を、以下の基準に従って判定した。  One end of a test piece (width 3 cm, length 10 cm) cut from the nonwoven fabric was lit, and the state of the nonwoven fabric after the flame was extinguished was determined according to the following criteria.
〇:焦げ跡は残るが殆んど収縮しなレヽ 〇: Burnt marks remain, but hardly shrink.
X:形状が失われる X: Shape is lost
〔加工性〕 [Workability]
不織布を所望の形状、サイズに加工する際の加工のし易さを、以下の基準に従つ て判定した。  Ease of processing when processing the nonwoven fabric into a desired shape and size was determined according to the following criteria.
〇:カットが容易 〇: Easy to cut
△:カットがやや困難 △: slightly difficult to cut
X:カットが困難 X: difficult to cut
[表 1] 不織布 評価[table 1] Non-woven fabric evaluation
No. 目付 No. weight
繊維の組成 (wt¾) ドリ 'ノア性 穴開き性 低収縮性 加工性  Fiber composition (wt%) Drill Noah perforation Low shrinkage Workability
(g/m2) (g / m 2 )
木'リ Iステル繊維 70  Wood's I-stell fiber 70
実施例 1 400 0. 04 〇 〇 〇 〇  Example 1 400 0.04 〇 〇 〇 〇
Λ'ラ系 7ラミト'繊維 30  Λ 'La system 7 Ramito' fiber 30
比較例 1 木 'リ Iステ繊維 100 400 0. 04 X X X 〇 比較例 2 Λ'ラ系ァラミド繊維 100 400 0. 04 〇 〇 〇 Δ  Comparative Example 1 Wood's Iris Fiber 100 400 0.04 X X X 〇 Comparative Example 2 Λ 'Laramid Fiber 100 400 0.04 〇 〇 〇 Δ
[0050] 表 1の結果から、実施例で得られた不織布は、炎を近づけると一旦燃焼するが速や かに燃焼が止まり消火する特性を有しており、比較例 2で得られた不織布と比べて切 断加工性に優れている。更に、ソフトな感触で柔軟性も良好である。これに対し、比 [0050] From the results in Table 1, the nonwoven fabric obtained in the example has the property of burning once when approaching a flame, but has the property of quickly stopping combustion and extinguishing the fire, and the nonwoven fabric obtained in Comparative Example 2 Excellent in cutting workability compared to. Furthermore, it has a soft feel and good flexibility. In contrast, the ratio
it  it
較例 1で得られた不織布は、炎を近づけると直ちに火炎が不織布を突き抜けて不織 布に穴が開くとともに、溶融した樹脂がドリップする。更に、片端部に着火した場合は 不織布全体が燃焼するというものであった。  In the nonwoven fabric obtained in Comparative Example 1, as soon as the flame approaches, the flame penetrates the nonwoven fabric to make a hole in the nonwoven fabric, and the molten resin drip. Furthermore, if one end was ignited, the entire nonwoven fabric would burn.
産業上の利用可能性  Industrial applicability
[0051] 本発明の難燃性不織布は、自動車、車輛、航空機、船舶の内装材、土木'建築用 資材、冷凍コンテナ等の梱包材、寝装品、吸音材等に好適に使用される。  [0051] The flame-retardant nonwoven fabric of the present invention is suitably used for interior materials of automobiles, vehicles, aircraft, ships, civil engineering and construction materials, packing materials such as frozen containers, bedding products, sound absorbing materials, and the like.

Claims

請求の範囲 The scope of the claims
[1] 熱可塑性繊維と LOI値が 25以上の耐熱性繊維とを、質量比で 88Z12— 55/45 の割合で含有するウェブに、ニードルパンチ又はウォータージェットパンチを施して なることを特徴とする難燃性不織布。  [1] A web containing thermoplastic fibers and heat-resistant fibers having an LOI value of 25 or more at a mass ratio of 88Z12-55 / 45, which is characterized by being subjected to needle punching or water jet punching. Flame retardant nonwoven.
[2] ウェブが、熱可塑性繊維と LOI値が 25以上の耐熱性繊維とを、質量比で 85Z15 一 65/35の割合で含有する請求の範囲第 1項に記載の難燃性不織布。  [2] The flame-retardant nonwoven fabric according to claim 1, wherein the web contains a thermoplastic fiber and a heat-resistant fiber having an LOI value of 25 or more in a mass ratio of 85Z15-65 / 35.
[3] 耐熱性繊維が、ァラミド繊維、ポリフエ二レンスルフイド繊維、ポリベンズォキサゾー ノレ繊維、ポリべンズチアゾール繊維、ポリべンズイミダゾール繊維、ポリエーテルエー テルケトン繊維、ポリアリレート繊維、ポリイミド繊維、フッ素繊維及び耐炎化繊維から 選ばれた一種又は二種以上の有機繊維である請求の範囲第 1項又は第 2項に記載 の難燃性不織布。  [3] The heat-resistant fiber is aramide fiber, polyphenylene sulfide fiber, polybenzoxazole fiber, polybenzothiazole fiber, polybenzimidazole fiber, polyetheretherketone fiber, polyarylate fiber, polyimide fiber, fluorine 3. The flame-retardant nonwoven fabric according to claim 1, which is one or more kinds of organic fibers selected from fibers and flame-resistant fibers.
[4] 不織布の嵩密度が 0. 01-0. lg/cm3の範囲内である請求の範囲第 1項一第 3 項のレ、ずれかに記載の難燃性不織布。 [4] The flame-retardant nonwoven fabric according to any one of claims 1 to 3 , wherein the nonwoven fabric has a bulk density in the range of 0.01 to 0.1 lg / cm 3 .
[5] 熱可塑性繊維が、ポリエステル繊維、ポリプロピレン繊維及びナイロン繊維から選 ばれた一種又は二種以上の繊維である請求の範囲第 1項一第 4項のいずれかに記 載の難燃性不織布。 [5] The flame-retardant nonwoven fabric according to any one of claims 1 to 4, wherein the thermoplastic fiber is one or more fibers selected from polyester fiber, polypropylene fiber and nylon fiber. .
[6] 熱可塑性繊維がポリエステル繊維であり、耐熱性繊維がパラ系ァラミド繊維である 請求の範囲第 1項、第 2項または第 4項に記載の難燃性不織布。  [6] The flame-retardant nonwoven fabric according to claim 1, 2 or 4, wherein the thermoplastic fiber is a polyester fiber and the heat-resistant fiber is a para-aramid fiber.
[7] 熱可塑性繊維と、 LOI値が 25以上の耐熱性繊維とを、質量比で 88/12— 55/4[7] A thermoplastic fiber and a heat-resistant fiber having an LOI value of 25 or more are mass ratio of 88 / 12—55 / 4
5の割合で含有するウェブに、ニードルパンチ又はウォータージェットパンチを施すこ とを特徴とする難燃性不織布の製造方法。 A method for producing a flame-retardant nonwoven fabric, characterized by subjecting a web containing at a ratio of 5 to needle punching or water jet punching.
[8] 熱可塑性繊維と、 LOI値が 25以上の耐熱性繊維とを、質量比で 85/15— 65/3[8] Thermoplastic fiber and heat resistant fiber with LOI value of 25 or more are mixed by mass ratio of 85 / 15—65 / 3
5の割合で含有するウェブに、ニードルパンチ又はウォータージェットパンチを施すこ とを特徴とする難燃性不織布の製造方法。 A method for producing a flame-retardant nonwoven fabric, characterized by subjecting a web containing at a ratio of 5 to needle punching or water jet punching.
PCT/JP2004/009010 2003-06-27 2004-06-25 Flame-retardant non-woven fabric and method for production thereof WO2005001187A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511054A JPWO2005001187A1 (en) 2003-06-27 2004-06-25 Flame-retardant nonwoven fabric and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-184341 2003-06-27
JP2003184341 2003-06-27
JP2003430668 2003-12-25
JP2003-430668 2003-12-25

Publications (1)

Publication Number Publication Date
WO2005001187A1 true WO2005001187A1 (en) 2005-01-06

Family

ID=33554466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009010 WO2005001187A1 (en) 2003-06-27 2004-06-25 Flame-retardant non-woven fabric and method for production thereof

Country Status (2)

Country Link
JP (1) JPWO2005001187A1 (en)
WO (1) WO2005001187A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153794B2 (en) 2004-05-07 2006-12-26 Milliken & Company Heat and flame shield
US7341963B2 (en) 2005-05-17 2008-03-11 Milliken & Company Non-woven material with barrier skin
US7454817B2 (en) 2004-05-07 2008-11-25 Milliken & Company Heat and flame shield
WO2009054349A1 (en) * 2007-10-26 2009-04-30 Kaneka Corporation Polyimide fiber mass, sound absorbing material, heat insulation material, flame-retardant mat, filter cloth, heat-resistant clothing, nonwoven fabric, heat insulation/sound absorbing material for aircraft, and heat-resistant bag filter
US7651964B2 (en) 2005-08-17 2010-01-26 Milliken & Company Fiber-containing composite and method for making the same
US7709405B2 (en) 2005-05-17 2010-05-04 Milliken & Company Non-woven composite
US7825050B2 (en) 2006-12-22 2010-11-02 Milliken & Company VOC-absorbing nonwoven composites
US7871947B2 (en) 2007-11-05 2011-01-18 Milliken & Company Non-woven composite office panel
CN102978831A (en) * 2012-11-22 2013-03-20 芜湖跃飞新型吸音材料股份有限公司 PET (polyethylene terephthalate) fiber/polybenzimidazole fiber composite sound absorption cotton and preparation method thereof
WO2014073226A1 (en) * 2012-11-08 2014-05-15 吉田房織物株式会社 Backing material layer for carpet hardly generating harmful gas and so on, carpet hardly generating harmful gas which is equipped with said backing material layer, and method for manufacturing carpet hardly generating harmful gas
KR20140078631A (en) * 2012-11-08 2014-06-25 요시다후사 오리모노 가부시키가이샤 Flame retardant planar element and floor covering hardly generating hazardous gas using the flame retardant planar element, and production method of the floor covering hardly generating hazardous gas
IT201900008217A1 (en) * 2019-06-06 2020-12-06 Agotex S R L NON-INFLAMMABLE THERMAL INSULATING COMPOSITE SUBSTRATE FOR VEHICLES AND MANUFACTURING METHOD
DE112013005933B4 (en) 2012-12-12 2023-06-07 Korea Institute Of Industrial Technology A fibrous cushioning material having good compression resistance and air permeability, containing poly(1,4-cyclohexane dimethylene terephthalate) hollow fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328962A (en) * 1986-07-15 1988-02-06 日本バイリーン株式会社 Heat resistant nonwoven fabric
WO1996010668A1 (en) * 1994-10-04 1996-04-11 Daikin Industries, Ltd. Mixed cotton-like material, nonwoven cloth obtained from the material and method of manufacturing these materials
JP2002194651A (en) * 2000-10-17 2002-07-10 Du Pont Toray Co Ltd Felt
JP2002298821A (en) * 2001-03-30 2002-10-11 Japan Vilene Co Ltd Battery separator and battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328962A (en) * 1986-07-15 1988-02-06 日本バイリーン株式会社 Heat resistant nonwoven fabric
WO1996010668A1 (en) * 1994-10-04 1996-04-11 Daikin Industries, Ltd. Mixed cotton-like material, nonwoven cloth obtained from the material and method of manufacturing these materials
JP2002194651A (en) * 2000-10-17 2002-07-10 Du Pont Toray Co Ltd Felt
JP2002298821A (en) * 2001-03-30 2002-10-11 Japan Vilene Co Ltd Battery separator and battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229938B2 (en) 2004-05-07 2007-06-12 Milliken & Company Heat and flame shield
US7454817B2 (en) 2004-05-07 2008-11-25 Milliken & Company Heat and flame shield
US7153794B2 (en) 2004-05-07 2006-12-26 Milliken & Company Heat and flame shield
US7341963B2 (en) 2005-05-17 2008-03-11 Milliken & Company Non-woven material with barrier skin
US7709405B2 (en) 2005-05-17 2010-05-04 Milliken & Company Non-woven composite
US7651964B2 (en) 2005-08-17 2010-01-26 Milliken & Company Fiber-containing composite and method for making the same
US7825050B2 (en) 2006-12-22 2010-11-02 Milliken & Company VOC-absorbing nonwoven composites
JP5529542B2 (en) * 2007-10-26 2014-06-25 株式会社カネカ Polyimide fiber assembly, sound absorbing material, heat insulating material, flame retardant mat, filter cloth, heat resistant clothing, non-woven fabric, heat insulating sound absorbing material for aircraft, and heat resistant bag filter
WO2009054349A1 (en) * 2007-10-26 2009-04-30 Kaneka Corporation Polyimide fiber mass, sound absorbing material, heat insulation material, flame-retardant mat, filter cloth, heat-resistant clothing, nonwoven fabric, heat insulation/sound absorbing material for aircraft, and heat-resistant bag filter
US9617669B2 (en) 2007-10-26 2017-04-11 Kaneka Corporation Method of making polyimide fiber assembly
US7871947B2 (en) 2007-11-05 2011-01-18 Milliken & Company Non-woven composite office panel
US7998890B2 (en) 2007-11-05 2011-08-16 Milliken & Company Non-woven composite office panel
KR101588217B1 (en) 2012-11-08 2016-01-25 요시다후사 오리모노 가부시키가이샤 Flame retardant planar element and floor covering hardly generating hazardous gas using the flame retardant planar element, and production method of the floor covering hardly generating hazardous gas
KR20140078631A (en) * 2012-11-08 2014-06-25 요시다후사 오리모노 가부시키가이샤 Flame retardant planar element and floor covering hardly generating hazardous gas using the flame retardant planar element, and production method of the floor covering hardly generating hazardous gas
JP2014111371A (en) * 2012-11-08 2014-06-19 Yoshda Fusa Orimono Kk Flame-retardant tabular object, toxic gas generation-inhibiting rug using flame-retardant tabular object, and method for manufacturing toxic gas generation-inhibiting rug
WO2014073226A1 (en) * 2012-11-08 2014-05-15 吉田房織物株式会社 Backing material layer for carpet hardly generating harmful gas and so on, carpet hardly generating harmful gas which is equipped with said backing material layer, and method for manufacturing carpet hardly generating harmful gas
CN102978831A (en) * 2012-11-22 2013-03-20 芜湖跃飞新型吸音材料股份有限公司 PET (polyethylene terephthalate) fiber/polybenzimidazole fiber composite sound absorption cotton and preparation method thereof
DE112013005933B4 (en) 2012-12-12 2023-06-07 Korea Institute Of Industrial Technology A fibrous cushioning material having good compression resistance and air permeability, containing poly(1,4-cyclohexane dimethylene terephthalate) hollow fibers
IT201900008217A1 (en) * 2019-06-06 2020-12-06 Agotex S R L NON-INFLAMMABLE THERMAL INSULATING COMPOSITE SUBSTRATE FOR VEHICLES AND MANUFACTURING METHOD
WO2020245735A1 (en) * 2019-06-06 2020-12-10 Agotex S.R.L. Non-flammable thermal insulating composite substrate for motor vehicles and production method

Also Published As

Publication number Publication date
JPWO2005001187A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
KR101114805B1 (en) Sound absorbing material
WO2005115739A1 (en) Easily moldable acoustic material
WO2005001187A1 (en) Flame-retardant non-woven fabric and method for production thereof
US7694779B2 (en) Sound absorbing material
KR100903559B1 (en) Sound absorption material using nonwoven fabric
JPWO2009037765A1 (en) Buffer sound absorbing member
JPH0534921Y2 (en)
JP2002348766A (en) Flame-retardant sheet material
JP5986837B2 (en) Artificial leather base material excellent in flame retardancy and seat seat using the same
JP4009117B2 (en) Olefin composite sheet and reinforced composite nonwoven fabric
JP2004330711A (en) Base material for automobile upholstery, and automobile upholstery
JP2007301774A (en) Base material for car trim material and car trim material
JP5143110B2 (en) Sound absorbing material
JP6965405B1 (en) Sheet material, composite material using it, multilayer molded body using it, and method of manufacturing sheet material
RU2358246C2 (en) Sound adsorbing material
JP2019193980A (en) Laminate and sound absorbing material using the same
JP2002115118A (en) Fiber and composition containing the same
JP3895207B2 (en) Flame retardant polyolefin fiber and fiber composition and fiber laminate using the same
JP2006022454A (en) Sheet for defence
JP2019155642A (en) Laminate and sound absorber using the same
US11952712B2 (en) Synthetic leather and covered article
JP4491814B2 (en) Manufacturing method of anti-static soundproof sheet
JP2005195637A (en) Acoustic material
KR20090060539A (en) Artificial leather and method of manufacturing the same
JP7442362B2 (en) Base material for molding

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511054

Country of ref document: JP

122 Ep: pct application non-entry in european phase